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Abstract

We analyse natural gradient learning in a two-layer feedsod neural network
using a statistical mechanics framework which is appropriar large input di-
mension. We find significant improvement over standard gradiescent in both
the transient and asymptotic phases of learning.

1 Introduction

One of the most popular forms of neural network training is on{i@ening, in which
training examples (input-output pairs) are presented sequentiallyndegpendently
at each learning iteration. Natural gradient learning was recently proposed &g Am
as a more principled alternative to standard on-line gradient desceiVfgn learn-
ing to emulate a stochastic rule with some probabilistic modeldaisiing algorithm
has the desirable properties of asymptotic optimality, given a sefffiigi rich model
which is differentiable with respect to its parameters, and invariance toanmgaer-
izations of our model distribution. This latter property is achievgdviewing the
parameter space of the model as a Reimannian space in which local distance is de-
fined by the KL-divergence [2, 3]. The Fisher information matrix th&ayg the role

of a Reimannian metric in this space. The natural gradient learning rui¢asied by
pre-multiplying the standard gradient with the inverse of this imatn practice, we
require knowledge of the input distribution in order to determimeFisher informa-
tion matrix. Yang and Amari discuss methods of pre-processing tragiamples to
obtain a whitened Gaussian process for the inputs [3]. If this isilplesshen when
the input dimensioV is large compared to the number of hidden uitsinversion

of the Fisher information for two-layer feed-forward networks reggiionlyO(N?)
operations, providing an efficient and practical algorithm.

We quantify the benefits of natural gradient learning using a recent istaltiste-
chanics description of the learning process which is appropriate Whgn K [4]-[7].
This formalism allows us to compare performance with standard gradéscedt in
both the transient and asymptotic phases of learning, and to obtain geserits in
terms of task complexity and non-linearity. We show that trapping fiman unstable
fixed point which dominates the training time is significantly reducedsigg natural
gradient learning and exhibits a slower power law increase as task cotygeivs.
We also find that asymptotic performance is greatly improved.
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2 Natural gradient learning

Consider a mapping from an input spgce R onto a scalapy(¢) = Zfil g(ITE),
which defines a soft committee machine (we call this the ‘student’ nejwatkere
we choosgy(z) = erf(z/+/2) to be the activation function of the hidden unifs =
{Ji}1<i<k is the set of input to hidden weights and the hidden to output wedaylets
set to one. We can then define a Gaussian noise model for ajitpgiven inputg
which is parameterized h¥,

P3(Cmlé) = (1)
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Let(¢*, ¢*) be theuth input-output pair in a sequence of training examples. The train-
ing error at each learning iteration is taken to be proportional to thdiketjhood of
the current example under our noise modgl¢*, &) = £ (¢* — ¢5(€"))* and the
most basic learning algorithm is to adapt the student weights in thatiwe gradi-
ent direction of this error at each iteration. However, such an algorithratison-
sistent with our probabilistic interpretation of the problemgcsirit depends on our
particular choice of model parameterization. A more principled learning idhgor
can be defined by viewing the manifold of models as a Reimannian space in which
local distance is defined by the KL-divergence [3]. The Fisher informatiatrix
G = [Gia1p] (Wherel < 4,k < K andl < o, < N) defines the appropriate
metric in this space [1],

G. — along(Cm‘g) along(Cm|£)
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The brackets denote an average o§gr according to equation (1), followed by an
average over the input distribution. The natural gradient direcédound by pre-
multiplying the training error gradient by the inverse of this rixatr

Amari has determined the Fisher information matrix for a general two-lager
work. For our particular choice of activation function and with composieht se-
lected independently each iteration from a zero-mean Gaussian distributioamit
variance, we finda = A /o2, where
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with Qik = J;I‘Jk andA = (1 + Q”)(l + Qkk) — Q?k
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3 Deriving the dynamics

We use a statistical mechanics description of the learning process whigadsie

the limit of large N and provides an accurate model of mean behaviour for realistic
values ofN [4, 5]. The training example outputs are generated by a ‘teacher’ network
corrupted by Gaussian noise,

(4)
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Here, ¢ (£") = 224:1 g (BT¢) defines a teacher which may differ in complexity
from the student network introduced in the previous section. Dtleetdlexibility of
this teacher mapping [9] we can represent a variety of learning scenarios thiihin
theoretical framework. The weight update at each iteration of natural gréefiening

is given by,

K
A Z Joner, (5)

wheres! = g'(IT€") [0, g(BTE) — 1, g(ITE) + pt] andp* is zero-mean
Gaussian noise of varianeé. The learning rate is divided by the input dimension
for convenience. Notice that knowledge of the noise variance is not eghoiexecute
this algorithm.

The Fisher information matrix can be inverted using the partitionireghod de-
scribed in [3] and each block is some additive combination of the idemtitlyix and
outer products of the student weight vectors. Using the methods lbeddri [4] it
is then straightforward to derive equations of motion for a set oéomhrameters
JIJ, = Qi, ITB, = R,,, andBIB,, = T,,,, measuring overlaps between
student and teacher vectors. These order parameters are necessary and sufficient to
determine the generalization error [4]. The equations of motion are edfipst order
differential equations for the order parameters with respect to the naadalumber
of examplesx = /N and we can integrate them numerically in order to determine
the evolution of the generalization error.

Although our equations of motion are sufficient to describe learningtioitrary
system size, the number of order parametersA§ K — 1) + KM so that the nu-
merical integration soon becomes rather cumberson#€ asd M grow and analysis
becomes difficult. To obtain generic results in terms of system size weftierex-
ploit symmetries which appear in the dynamics for isotropic tasks andtstally
matched student and teach&f & M andT = T6,,,). In this case we define a four
dimensional system vi@;; = Qd;; + C(1 — d;;) andR;,, = R, + S(1 — 8;1)
which can be used to study the dynamics for arbitd@rgndT" (here,d;; denotes the
Kronecker delta). In [10] we show how the Fisher information matrix caimierted
for this reduced dimensionality system. At the cost of some generatittherefore
obtain a much simplified dynamical system which is amenable to analysis.

As for standard gradient descent [4], the dynamics is characterized by two ma-
jor phases of learning. Initially, the order parameters are trapped in aablmfixed
point, the symmetric phase, in which the generalization error remains atstacd
non-zero value and the student-teacher overlaps are virtually indistivadnle (see
figure 1(a)). Eventually, small perturbations due to the randonaimibnditions lead
to an escape from this phase and convergence towards zero generalizatibnl&rror
the teacher is corrupted by noise then the learning rate must be annealediatdate
in order for the generalization error to decay. The fastest decay for naturatigrad
learning is achieved by setting = 1/« and this leads to a inverse decay law for

1we define the generalization error to be the expected ertheinbsence of noise. The prediction error
contains an additive contribution proportional to the eaiariance
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Figure 1: In (a) the generalization error is shown for optimal natuiadignt learning
(solid line) and optimal gradient descent (dashed line)Koe= 10, T = 1 and zero
noise (we definé = 10~2a). The inset shows the optimal learning rate for natural
gradient learning. In (b) the time required for optimal natural gradieatning to
reach a generalization error td—* K is shown as a function d& on a log-log scale.
The inset shows the optimal learning rate within the symmetric phagmth (a) and
(b) we used initial condition® = 102, Q = U[0,0.5] andS = C' = 0.

the generalization error. This choice saturates the Cramer-Rao bound atdkpro
asymptotic performance equalling the best batch algorithm [1]. The beheftural
gradient learning over standard gradient descent is two-fold: the symmb#se is
shortened significantly and better asymptotic performance is obtain¢ie follow-
ing two sections we consider each phase in turn.

3.1 Transient dynamics

Unfortunately, even for standard gradient descent an analytical study sjfrtivaetric
phase is only possible for small learning rates, which are far fronmapti Such
an approach is not appropriate for realistic learning rates and often gigé=ading
results. It is also unclear how to proceed for natural gradient learning avenisi
limit, since the Fisher information is singular at the fixed pointsidared in [4]. In
order to obtain generic results in this case we apply a recent method finiolgt
globally optimal time-dependent learning parameters by variational maxiorizat
the total reduction in generalization error [6]. We obtain the optimahiegrrates
for both gradient descent and natural gradient learning in order to compiameabp
performance for both methods.

We note that the impact of output noise on the symmetric phase dgaasmot
considered explicitly here. For low noise levels there is no noticealdetein the
length of the symmetric phase, or on the order parameters and generalization er
within this phase. For larger noise levels the symmetric phase incriedsegth and
the student norms increase, resulting in a larger generalization errorevdgvwve
feel that these are secondary effects and that most essential features of thiarphase
captured by the noiseless dynamics. This is not true for later stagesmihigarvhere
the inclusion of noise completely alters qualitative features of thauhjrs.

In figure 1(a) we compare optimal performance for= 10 andT = 1, which
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Figure 2: Prefactor for the asymptotic decay of the generalization eggor={

o%€y/a): (a) shows the prefactor faF = 1 as a function ofK for optimal gradi-
ent descent (circles) and natural gradient learning (crosses) while (b) Sloowthe
prefactor for optimal gradient descent (laf§g¢ decays toward%/2 asT increases,
which is the prefactor for natural gradient learning.

indicates a significant shortening of the symmetric phase for natwadiagtt learning
(the inset shows the optimal learning rate). Figure 1(b) showsree required for
natural gradient learning to reach a generalization errdr0of* K as a function of
K (for T = 1). The learning time is dominated by the symmetric phase, so that
these results provide a scaling law for the length of the symmetdsein terms of
task complexity. We find that the escape time for natural gradient leascizgs as
K2, while the inset shows that the learning rate within the symmehésp scales as
K—2. Scaling laws for gradient descent were determined in [7], showih’g§ daw
for escape time and a learning rate scalind(ofg within the symmetric phase. The
escape time for the adaptive gradient learning rule studied in [7] scal§$ awhich

is also worse than for natural gradient learning.

3.2 Asymptotic dynamics

In the presence of output noise the learning rate must be annealed intorder
achieve zero generalization error asymptotically and it is well known thataiajta-
dient learning is asymptotically optimal with= 1/« [1]. We apply recent analytical
results for the annealing dynamics of gradient descent [8] in order to centipar
asymptotic generalization error for natural gradient learning with thdtries gradi-
ent descent. We find that the asymptotic result for natural gradient |eatalies a
very simple form:e, ~ Ko?/2a [10]. In figure 2 we compare the prefactor of the
generalization error decay for natural gradient learning and optimal gradiezgrdes
(€, = 0?€0/ ). Figure 2(a) shows the result fér = 1 as a function ofK, indicating
a linear scaling for both methods (there are slight deviations foligmadescent). In
figure 2(b) we compare the decay prefactors for each method as a funciioshudw-
ing how the difference diverges a@sis reduced. This can be explained by examining
the asymptotic expression for the Fisher information matrix.[EQ} largeT the diag-
onals of this matrix ar€@(1/+/T) and equal (for largéV) while all other terms are at
mostO(1/T), so that the Fisher information is effectively proportional to treniity
matrix in this limit and Natural gradient learning is asymptotically eglént to gra-



dient descent. However, for smdllthe diagonals ar®(7?) while the off-diagonals
remain finite, so that the Fisher information is dominated by off-diadgin this limit.

4 Conclusion

We have analysed natural gradient learning under a statistical mechanics &ndmew
which is exact in the limit of large input dimension. We find significamprovements
over standard gradient descent in both the transient and asymptotic stegesiog,
with improved scaling of learning time against task complexity. Theomdjawback
with using Natural gradient learning is that the input distribuirequired in order

to determine the Fisher information matrix exactly, and for non-Gansgaputs it

is unclear whether inversion can be carried out efficiently. Efficient averagidg an
inversion may be achieved using the matrix momentum algorithm swegjbgtOrr
and Leen [11] and we are currently investigating this approach within tesept
framework.
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