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Abstract

We analyse natural gradient learning in a two-layer feed-forward neural network
using a statistical mechanics framework which is appropriate for large input di-
mension. We find significant improvement over standard gradient descent in both
the transient and asymptotic phases of learning.

1 Introduction

One of the most popular forms of neural network training is on-linelearning, in which
training examples (input-output pairs) are presented sequentially and independently
at each learning iteration. Natural gradient learning was recently proposed by Amari
as a more principled alternative to standard on-line gradient descent [1].When learn-
ing to emulate a stochastic rule with some probabilistic model thislearning algorithm
has the desirable properties of asymptotic optimality, given a sufficiently rich model
which is differentiable with respect to its parameters, and invariance to reparameter-
izations of our model distribution. This latter property is achieved by viewing the
parameter space of the model as a Reimannian space in which local distance is de-
fined by the KL-divergence [2, 3]. The Fisher information matrix then plays the role
of a Reimannian metric in this space. The natural gradient learning rule is obtained by
pre-multiplying the standard gradient with the inverse of this matrix. In practice, we
require knowledge of the input distribution in order to determinethe Fisher informa-
tion matrix. Yang and Amari discuss methods of pre-processing trainingexamples to
obtain a whitened Gaussian process for the inputs [3]. If this is possible, then when
the input dimensionN is large compared to the number of hidden unitsK, inversion
of the Fisher information for two-layer feed-forward networks requires onlyO(N2)
operations, providing an efficient and practical algorithm.

We quantify the benefits of natural gradient learning using a recent statistical me-
chanics description of the learning process which is appropriate whenN � K [4]–[7].
This formalism allows us to compare performance with standard gradient descent in
both the transient and asymptotic phases of learning, and to obtain generic results in
terms of task complexity and non-linearity. We show that trapping time in an unstable
fixed point which dominates the training time is significantly reduced byusing natural
gradient learning and exhibits a slower power law increase as task complexity grows.
We also find that asymptotic performance is greatly improved.
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2 Natural gradient learning

Consider a mapping from an input space� 2 <N onto a scalar�J(�) =PKi=1 g (JTi �),
which defines a soft committee machine (we call this the ‘student’ network), where
we chooseg(x) � erf(x=p2) to be the activation function of the hidden units,J �fJig1�i�K is the set of input to hidden weights and the hidden to output weightsare
set to one. We can then define a Gaussian noise model for output�m given input�
which is parameterized byJ,pJ(�mj�) = 1p2��2m exp��(�m � �J(�))22�2m � : (1)

Let (��; ��) be the�th input-output pair in a sequence of training examples. The train-
ing error at each learning iteration is taken to be proportional to the log-likelihood of
the current example under our noise model,�J(��; ��) � 12 (�� � �J(��))2 and the
most basic learning algorithm is to adapt the student weights in the negative gradi-
ent direction of this error at each iteration. However, such an algorithm is not con-
sistent with our probabilistic interpretation of the problem, since it depends on our
particular choice of model parameterization. A more principled learning algorithm
can be defined by viewing the manifold of models as a Reimannian space in which
local distance is defined by the KL-divergence [3]. The Fisher information matrixG = [Gi�;k� ] (where1 � i; k � K and1 � �; � � N ) defines the appropriate
metric in this space [1],Gi�;k� = �@ log pJ(�mj�)@Ji� @ log pJ(�mj�)@Jk� �f�m;�g : (2)

The brackets denote an average over�m, according to equation (1), followed by an
average over the input distribution. The natural gradient direction is found by pre-
multiplying the training error gradient by the inverse of this matrix.

Amari has determined the Fisher information matrix for a general two-layernet-
work. For our particular choice of activation function and with components of � se-
lected independently each iteration from a zero-mean Gaussian distribution with unit
variance, we findG = A=�2m, whereAik = 2�p� �I� 1� �(1 +Qkk)JiJTi + (1 +Qii)JkJTk �Qik(JiJTk + JkJTi )��(3)

with Qik � JTi Jk and� = (1 +Qii)(1 +Qkk)�Q2ik.

3 Deriving the dynamics

We use a statistical mechanics description of the learning process which is exact in
the limit of largeN and provides an accurate model of mean behaviour for realistic
values ofN [4, 5]. The training example outputs are generated by a ‘teacher’ network
corrupted by Gaussian noise,pB(��j��) = 1p2��2 exp��(�� � �B(��))22�2 � : (4)



Here,�B(��) = PMn=1 g (BTn�) defines a teacher which may differ in complexity
from the student network introduced in the previous section. Due tothe flexibility of
this teacher mapping [9] we can represent a variety of learning scenarios withinthis
theoretical framework. The weight update at each iteration of natural gradientlearning
is given by,J�+1i = J�i + �N KXj=1A�1ij ��j �� ; (5)

where��i � g0(JTi ��)[PMn=1 g(BTn��)�PKj=1 g(JTj ��) + ��] and�� is zero-mean
Gaussian noise of variance�2. The learning rate� is divided by the input dimension
for convenience. Notice that knowledge of the noise variance is not required to execute
this algorithm.

The Fisher information matrix can be inverted using the partitioningmethod de-
scribed in [3] and each block is some additive combination of the identitymatrix and
outer products of the student weight vectors. Using the methods described in [4] it
is then straightforward to derive equations of motion for a set of order parametersJTi Jk � Qik, JTi Bn � Rin, andBTnBm � Tnm, measuring overlaps between
student and teacher vectors. These order parameters are necessary and sufficient to
determine the generalization error [4]. The equations of motion are coupled first order
differential equations for the order parameters with respect to the normalized number
of examples� = �=N and we can integrate them numerically in order to determine
the evolution of the generalization error.

Although our equations of motion are sufficient to describe learning for arbitrary
system size, the number of order parameters is12K(K � 1) + KM so that the nu-
merical integration soon becomes rather cumbersome asK andM grow and analysis
becomes difficult. To obtain generic results in terms of system size we therefore ex-
ploit symmetries which appear in the dynamics for isotropic tasks and structurally
matched student and teacher (K = M andT = T�nm). In this case we define a four
dimensional system viaQij = Q�ij + C(1 � �ij) andRin = R�in + S(1 � �in)
which can be used to study the dynamics for arbitraryK andT (here,�ij denotes the
Kronecker delta). In [10] we show how the Fisher information matrix can be inverted
for this reduced dimensionality system. At the cost of some generality we therefore
obtain a much simplified dynamical system which is amenable to analysis.

As for standard gradient descent [4], the dynamics is characterized by two ma-
jor phases of learning. Initially, the order parameters are trapped in an unstable fixed
point, the symmetric phase, in which the generalization error remains at a constant
non-zero value and the student-teacher overlaps are virtually indistinguishable (see
figure 1(a)). Eventually, small perturbations due to the random initial conditions lead
to an escape from this phase and convergence towards zero generalization error1. If
the teacher is corrupted by noise then the learning rate must be annealed at latetimes
in order for the generalization error to decay. The fastest decay for natural gradient
learning is achieved by setting� = 1=� and this leads to a inverse decay law for1we define the generalization error to be the expected error inthe absence of noise. The prediction error
contains an additive contribution proportional to the noise variance
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Figure 1: In (a) the generalization error is shown for optimal natural gradient learning
(solid line) and optimal gradient descent (dashed line) forK = 10, T = 1 and zero
noise (we define~� = 10�2�). The inset shows the optimal learning rate for natural
gradient learning. In (b) the time required for optimal natural gradientlearning to
reach a generalization error of10�4K is shown as a function ofK on a log-log scale.
The inset shows the optimal learning rate within the symmetric phase.In both (a) and
(b) we used initial conditionsR = 10�3,Q = U [0; 0:5] andS = C = 0.

the generalization error. This choice saturates the Cramer-Rao bound and provides
asymptotic performance equalling the best batch algorithm [1]. The benefit of natural
gradient learning over standard gradient descent is two-fold: the symmetric phase is
shortened significantly and better asymptotic performance is obtained. Inthe follow-
ing two sections we consider each phase in turn.

3.1 Transient dynamics

Unfortunately, even for standard gradient descent an analytical study of thesymmetric
phase is only possible for small learning rates, which are far from optimal. Such
an approach is not appropriate for realistic learning rates and often gives misleading
results. It is also unclear how to proceed for natural gradient learning even in this
limit, since the Fisher information is singular at the fixed point considered in [4]. In
order to obtain generic results in this case we apply a recent method for obtaining
globally optimal time-dependent learning parameters by variational maximization of
the total reduction in generalization error [6]. We obtain the optimal learning rates
for both gradient descent and natural gradient learning in order to compare optimal
performance for both methods.

We note that the impact of output noise on the symmetric phase dynamics is not
considered explicitly here. For low noise levels there is no noticeable effect on the
length of the symmetric phase, or on the order parameters and generalization error
within this phase. For larger noise levels the symmetric phase increasesin length and
the student norms increase, resulting in a larger generalization error. However, we
feel that these are secondary effects and that most essential features of this phaseare
captured by the noiseless dynamics. This is not true for later stages of learning, where
the inclusion of noise completely alters qualitative features of the dynamics.

In figure 1(a) we compare optimal performance forK = 10 andT = 1, which
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Figure 2: Prefactor for the asymptotic decay of the generalization error (�g =�2�0=�): (a) shows the prefactor forT = 1 as a function ofK for optimal gradi-
ent descent (circles) and natural gradient learning (crosses) while (b) showshow the
prefactor for optimal gradient descent (largeK) decays towardsK=2 asT increases,
which is the prefactor for natural gradient learning.

indicates a significant shortening of the symmetric phase for natural gradient learning
(the inset shows the optimal learning rate). Figure 1(b) shows the time required for
natural gradient learning to reach a generalization error of10�4K as a function ofK (for T = 1). The learning time is dominated by the symmetric phase, so that
these results provide a scaling law for the length of the symmetric phase in terms of
task complexity. We find that the escape time for natural gradient learningscales asK2, while the inset shows that the learning rate within the symmetric phase scales asK�2. Scaling laws for gradient descent were determined in [7], showing aK 83 law
for escape time and a learning rate scaling ofK� 53 within the symmetric phase. The
escape time for the adaptive gradient learning rule studied in [7] scales asK 52 , which
is also worse than for natural gradient learning.

3.2 Asymptotic dynamics

In the presence of output noise the learning rate must be annealed in orderto
achieve zero generalization error asymptotically and it is well known that natural gra-
dient learning is asymptotically optimal with� = 1=� [1]. We apply recent analytical
results for the annealing dynamics of gradient descent [8] in order to compare the
asymptotic generalization error for natural gradient learning with the result for gradi-
ent descent. We find that the asymptotic result for natural gradient learning takes a
very simple form:�g � K�2=2� [10]. In figure 2 we compare the prefactor of the
generalization error decay for natural gradient learning and optimal gradient descent
(�g = �2�0=�). Figure 2(a) shows the result forT = 1 as a function ofK, indicating
a linear scaling for both methods (there are slight deviations for gradient descent). In
figure 2(b) we compare the decay prefactors for each method as a function ofT , show-
ing how the difference diverges asT is reduced. This can be explained by examining
the asymptotic expression for the Fisher information matrix [10]. For largeT the diag-
onals of this matrix areO(1=pT ) and equal (for largeN ) while all other terms are at
mostO(1=T ), so that the Fisher information is effectively proportional to the identity
matrix in this limit and Natural gradient learning is asymptotically equivalent to gra-



dient descent. However, for smallT the diagonals areO(T 2) while the off-diagonals
remain finite, so that the Fisher information is dominated by off-diagonals in this limit.

4 Conclusion

We have analysed natural gradient learning under a statistical mechanics framework
which is exact in the limit of large input dimension. We find significant improvements
over standard gradient descent in both the transient and asymptotic stages of learning,
with improved scaling of learning time against task complexity. The major drawback
with using Natural gradient learning is that the input distributionis required in order
to determine the Fisher information matrix exactly, and for non-Gaussian inputs it
is unclear whether inversion can be carried out efficiently. Efficient averaging and
inversion may be achieved using the matrix momentum algorithm suggested by Orr
and Leen [11] and we are currently investigating this approach within the present
framework.
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