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Abstract

A theoretical modd is presented which describes selection in a genetic algorithm (GA)
under a stochastic fitness measure and correctly accounts for finite population effects. Al-
though thismodel describes a number of selection schemes, we only consider Boltzmann
selectionin detail hereasresultsfor thisform of selection are particul arly transparent when
fitnessis corrupted by additive Gaussian noise. Finite population effects are shown to be
of fundamental importancein thiscase, asthe noise has no effect in the infinite population
limit. In the limit of weak selection we show how the effects of any Gaussian noise can
be removed by increasing the population size appropriately. The theory is tested on two
closdly related problems: the one-max problem corrupted by Gaussian noise and gener-
alization in a perceptron with binary weights. The averaged dynamics can be accurately
modelled for both problems using a formalism which describes the dynamics of the GA
using methods from statistical mechanics. The second problem is a ssimple example of a
learning problem and by considering this problem we show how the accurate characteri-
zation of noisein the fitness eval uation may be relevant in machine learning. Thetraining
error (negative fitness) isthe number of misclassified training examplesin abatch and can
be considered as a noisy version of the generalization error if an independent batch is used
for each evaluation. Thenoiseisdueto thefinitebatch sizeand inthelimit of large problem
size and weak sel ection we show how the effect of thisnoise can be removed by increasing
the population size. Thisallowsthe optimal batch size to be determined, which minimizes
computation time as well as the total number of training examples required.
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1 INTRODUCTION

Genetic agorithms (GAs) are adaptive search techni ques which can be used to find good sol utionsto
problems with poorly characterized and high-dimensional search spaces (Goldberg, 1989; Holland,
1975). They have been successfully applied in alarge range of domains, including anumber of ma:
chine learning problems. The GA differs from other stochastic search techniques, such as simulated
annealing, because solutionsevolvein parale withinapopulation. It is hoped that this may lead to
improvement through the recombination of mutually useful features from different popul ation mem-
bers.

The relative merit of each solutionwithin the populationisusudly determined through afitness mea-
sure. Thefitnessevaluation may be noisy dueto measurement limitationsor incompl etetraining data
and it isimportant to understand and predict the effects of such noise. In some machine learning and
optimization applicationsthere may be atradeoff between improved fidelity in evaluating fitness and
theincreased computational cost thisrequires. It has been suggested that GAs are suitablein thisdo-
main, sincethey arerelatively robust against the effects of noise (Fitzpatrick & Grefenstette, 1988).
Indeed, GAs have recently been shown to deal better with noise than competing local search algo-
rithms on a class of simple additive problems (Baum et al, 1995).

In (Miller & Goldberg, 1995), noise corrupted fithess was modelled in terms of its effect on the
mean fitness after selection from a continuous and Gaussian distribution of fitness. This s effec-
tively an infinite population assumption and leads to the conclusion that proportionate selection is
unaffected by noise. In afinite population, the tails of the distribution will be sparsely populated
and thiswill prove to be of fundamental importance when accounting for the effects of noise. Al-
though Miller and Goldberg sized the population to account for increased finite population effects
dueto noise, their choice of population size was based on a conservative predictor rather than an ex-
act result (Goldberg et al, 1992). Their calculation of the variance for the one-max domain assumes
a binomial distribution of aleles within the population and this assumption is also made in a num-
ber of other predictivemodels (Muhlenbein & Schlierkamp-Voosen, 1995; Srinivas& Patnaik, 1995;
Thierens & Goldberg, 1995). In a finite population this assumption breaks down, because the pop-
ulation becomes more correlated under selection than predicted by a binomial distribution and this
resultsin areduced variance.

In thiswork, a theoretical model is presented which describes selection under a general stochastic
fitness measure and correctly accounts for finite population effects. Although this model can be ap-
plied to a number of selection schemes and noise distributions, Boltzmann selection isconsidered in
greatest detail here as theresultsin this case are transparent. Thisis not the most common selection
scheme used in GAs, but it seems an appropriate scheme for problems where the distribution of fit-
nessiscloseto Gaussian, asit conserves the population’sshapein thiscase. It isalso easy to choose
the selection strength so that the population makes continued progress under selection. For weak
Boltzmann selection and Gaussian noisg, it isshown how an increase in popul ation size removes the
effects of noiseon selection. Noiseonly affectsafinite populationunder thisform of selection, which
emphasi zes the need for any theory to properly account for finite population effects.

The theory is applied to two problems for which the full dynamics can be solved, extending a for-
malism devel oped by Priigel-Bennett, Shapiro, and Rattray for modelling the dynamics of the GA us-
ing methods from statistical mechanics (Priigel-Bennett & Shapiro, 1994; Priigel-Bennett & Shapiro,
1995; Rattray, 1995; Rattray & Shapiro, 1996; Shapiro et al, 1994). Thisformalism does not require
that the population be sufficiently large to ensure convergence to the globa optimum and properly
accounts for correlations accumulated under selection. Under this formalism, the populationis de-



scribed by asmall number of macroscopi ¢ statisticsand amaxi mum entropy assumptionisused to de-
termine anything not trivially related to these macroscopics. Difference equationsare derived which
determine the mean change to each macroscopic under each genetic operator and these can be iter-
ated in sequenceto simulatethe averaged dynamics. A moreexact approach a so followsfluctuations
from mean behaviour by following an ensemble of populations (Priigel-Bennett, 1996). However,
mean behaviour aoneissufficient to accurately describethe problemsunder consideration here. The
macroscopi cs which have proved most successful to date are cumulants of some appropriate quantity
withinthe population and the mean correlation (closely related to the mean Hamming distance). The
first two cumulants are the mean and variance respectively while higher cumulants describe devia-
tionsfrom a Gaussian distribution.

The first case considered isthe one-max problem corrupted by Gaussian noise. To simplify the dis-
cussion, bit-simulated crossover is used (Syswerda, 1993) and this allows the dynamics to be mod-
elled by iterating only two macroscopics: the mean fitness and corrélation within the population. A
maximum entropy assumption is required to determine the higher cumulants before selection and
to evolve the correlation under selection. Relevant results from other studies are reproduced where
necessary in order to make the discussion self-contained. Simulation results show very good corre-
spondenceto thetheory for arange of noise strengthsand thetheory accurately predictsthe evolution
of each macroscopic, averaged over many runs of the GA.

The second case considered isasimple problem from |earning theory, generalization by abinary per-
ceptron. A perceptron with binary weightsistrained to learn ateacher perceptron by training on ex-
amples produced by theteacher. Thishaspreviously been shownto be equivalent toanoisy version of
one-max if anew batch of examples are presented each timethetraining error is calculated (Baum et
al, 1995). This problem was solved under the statistical mechanics formalismin (Rattray & Shapiro,
1996) and thoseresultsare reviewed here. Thetrainingerror iswell approximated by aGaussian dis-
tribution whose mean is the the generalization error and whose variance increases as the batch size
isreduced. Thetheory isshown to agree closely with simulation resultsaveraged over many runs of
the GA. Inthelimit of large problem size and weak selection an increase in population size removes
the effects of noise dueto thefinite size of each training batch and this allowsthe optimal batch size
to be determined.

2 NOTATION

Notation will follow GA conventions where appropriate and therefore differs from a number of re-
lated publications which use conventionsfrom statistical physics (Priigel-Bennett & Shapiro, 1994;
Priigel-Bennett & Shapiro, 1995; Rattray, 1995; Rattray & Shapiro, 1996). The populationsizeisN
and each population member, labelled a, has two associated fitness measures. The ideal fitness fqy
is some deterministic function of the genotype, whilethe noisy fitness Fy isrelated to thisthrough a
conditional probability distribution p(F| ). For example, in asupervised learning problem fy might
be the fitness evaluated over al possible training examples and Fy, might be the best estimate given
asmall training batch. When we refer to the fitnessthiswill usually betheideal fithess and the noisy
fitnesswill always be referred to explicitly.

Inthe cases under consideration here, each popul ation member’s genotypeisastring of binary aleles
of length I. The usual convention in GA theory isto take alelesx® € {0,1} wherei labelsthe site
and o labelsthe population member. Here, however, wechoosedlelesS' € {—1, 1} which are more
appropriate for the binary perceptron problem. A trivial change in variables maps one convention
onto the other.



21 CUMULANTS

Throughout thispaper the popul ationwill be described by anumber of macroscopic variables, the cu-
mulants of theideal fitnessdistributionwithinthe populationand the mean correl ation withinthe pop-
ulation. Cumulantsare stati sticswhich describe the popul ation shape and are often reasonably stable
to fluctuations between runs of the GA, so that they average well (Priigel-Bennett & Shapiro, 1995).
Thefirst two cumulants are the mean and variance respectively, while higher cumulants describe de-
viationsfromaGaussian distribution. The third and fourth cumul ants are rel ated to the skewness and
kurtosis of the population, respectively. The nth cumulant of afinite populationis denoted Kp,.

If fy isthe fitness of population member a then the cumulants of fitness within afinite population
are given by,
on N vt
=lim—Inz; Z= @, 1
n Vl—r’% ayn nes aZ1e ( )
Here, Z iscalled the partition function and holds al the information required to determine the popu-
lation’s cumulants. So, for example, thefirst two cumulants (the mean and variance) are,
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In order to model selection on afinitepopulation, N popul ation members are randomly sampled from
an infinite population before sel ection (thisprocedure isdescribed in greater detail in section 3). Itis
well knownthat the expected variance of afinite sampleisreduced by afactor of 1—1/N and similar
corrections occur for the higher cumulants. If K, isthe nth cumulant of an infinite population, then
expectation values for the first four cumulants of afinite sample are given by,

Ki = Kg (38
Kz = 22Kz (3b)
K3 = NA3K3 (30)
Ks = NgKs—6A(K2)2/N. (3d)
Here, AL, Az and Aj give thefinite population corrections (Prigel-Bennett & Shapiro, 1995),

If p(f) isthedistribution of fitnessin an infinite population, then the infinite popul ation cumulants
can be generated from a characteristic function (analogous to the partition function)?,

n

Ko=lim2inp(n;  p(y) = [dfp(f)er ®

IThisisusually written with an explicitly imaginary argument to ensure convergenceof theintegral, inwhich
caseit isaFourier transform.



The characteristic function can a so be written in terms of a cumulant expansion,

p(Y) = exp (i Kr”f) : (6)

Itisoften useful to parameterize the fitness distributionby expanding around a Gaussian distribution.
In this case we choose a Gram-Charlier expansion (see, for example, (Stuart & Ord, 1987)),

2

where Hp(X) = (71)”6‘2/2(?%e*>‘2/2 are Hermite polynomials and n is the number of cumulants
used. Four cumulants were used in this work and the third and fourth Hermite polynomials are
Ha(X) = (x> — 3x) and Ha(x) = (X* — 6x? + 3). Thisfunctionisnot awell defined probability distri-
bution since it is not necessarily positive, but it has the correct cumulants and providesavery good
approximation in many cases.

2.2 CORRELATION

The correlation is a measure of genotype similarity. The simplest measure of correlation between
two population members, a and 3, isgiven by,

|
Qup = %i;S’SB- ®

Recall that §* € {—1, 1} so that thisquantity equal s one when two popul ation members areidentical
and iszero on average for two randomly generated popul ation members. Thisisclosdly related tothe
Hamming di stance between two binary sequences. To get the mean correlation withinthe popul ation
one averages this quantity over each distinct pair of population members,

2 N
d= (Quplaxp = m z z Qop- 9)

a=1p>a

The expected correlation of afinite sampleis equa to the correation in an infinite population.

3 SELECTION

To describe a general selection scheme it isingtructive to separate the sampling process from the
weighting process. Each population member is assigned a selection weight wy, which is generaly
some non-decreasing function of fitness (thisisthe measured, noisy fitness Fy). For fitness propor-
tionate selection the selection weight is ssmply equd to the fitness. Selection weights can also be
defined for ranking, tournament and truncation selection, and the general method described here can
be applied to these cases (Rattray, 1996). Wewill consider Boltzmann selection in greatest detail, as
this provides a transparent result for Gaussian noise (De laMaza & Tidor, 1991; Priigel-Bennett &
Shapiro, 1994). For Boltzmann selection the selection weight is defined,

Wo = exXp(BFy), (20)



where 3 isthe sel ection strength which determines the rel ative probability of selection for each pop-
ulation member. By scaling the selection strength inversely with the population’s standard devia-
tion one avoids the problem of long convergence times, often cited as a problem with using fitness-
proportionateforms of selection. Thisscaling isused in section 3.3.

To select anew populationit is necessary to take a wel ghted sample from the popul ation before se-
lection. Idedlly, the proportion of each popul ation member in the new populationis given by,
C YaWa

However, it is not possible to choose exactly this amount in a finite population. We will consider
Roulettewhedl sampling, asthisprovidesan anaytically tractablemodel for finite popul ation effects.
Other, less noisy forms of sampling are often preferred in practice (see, for example, (Baker, 1987))
and a challenging task would be to extend the present analysis to these cases.

Pa (11)

Under Roulette wheel sampling, N new population members are selected with replacement, with
probability py. Following the discussionin (Priigel-Bennett, 1996), this process can be divided into
two stages,

1. Sdlect an infinite population from a finite population, so that py is exactly the proportion of
population member o in the infinite popul ation after selection.

2. Randomly sample N population members from theinfinite popul ationto make up the new finite
population.

Mutation and crossover do not involve sampling and can therefore be carried out during the infinite
population stage of the dynamics without any loss of generality. A similar sampling procedure is
used in (Vose & Wright, 1994), but therethey follow an exact microscopi ¢ description of the popul a
tion whilewe only consider asmall number of macroscopic statistics. This simplification makes our
prescription less general, but allows us to capture anumber of interesting and non-trivial features of
the dynamics in a natura way.

3.1 GENERATING THE CUMULANTSAFTER SELECTION

The cumulants of an infinite population after selection can be generated from the logarithm of a se-
lection partition function. If K is the nth cumulant of an infinite population after selection then,

on N
KS=lim=—InZs; Zs= § wge'f. (12)
N y—0oyn azl
For example,
KS — jim2aWafa®™
1 V=0 Yq Wy e/fa
N
= z pC( fC(7 (13a)
d=1

where we have used the definition of py in equation (11). Similarly one finds,

N N 2
5= 3 pati (3 pofa) (130)
a=1 a=1



These are exactly the cumulants of an infinite population after selection, since py is exactly the pro-
portion of each population member in thiscase. The expected cumulants of afinite population after
selection can be found by applying equations (3a) to (3d).

The exact fitness of each population member isnot known in general, only the cumulants of the dis-
tribution from which they are sampled. The selection weight also has a stochastic component due to
variance in the conditional probability distribution relating the measured fitness to the ideal fitness
p(F|f). Therefore, it is necessary to average over the sampling procedure and the noise in fitness
evaluation in order to determine the expected cumulants after selection. Instead of averaging over
the cumulants directly, it is more convenient to average over thelogarithm of the partition function
defined in equation (12),

(InZe) = (ﬁ [dfa p(fa) [dFe p(Fa|fa>) InZs. (14)
a=1- -

Following the discussion in (Prugel-Bennett & Shapiro, 1994) we use Derrida strick to express the
logarithm as an integral® (Derrida, 1981).

(InZs) = /Omdt w (15)

If the sel ection weight associated with popul ation member a isafunction of Ry aone then the aver-
ages on the right hand side decouple from one another,

N N
€'%) - (le‘/ dfa p(fa) [oF p<Fa|fa>) exp(t 3 wiraje'™ )

(/df p(f)/dF p(F|f)e<p(tw(F)er))N. (16)

3.2 BOLTZMANN SELECTION

Consider Boltzmann selection, in which case the selection weight is defined in equation (10). The
above expression can be substituted into equation (15) and equation (12) then providesthe expected
cumulants of an infinite population after Boltzmann selection (the term in the integrand of equa
tion (15) which does not involvey is not required for n > 0),

S __ H an ® gN(tvyvﬁ)
K"**\l/[%ﬁ/odt t an
where
glt,v.B) = [df p(f) [oF p(F|f)exp (e +"). (18)

Notice that athough these are cumulants of an infinite population after selection, they depend on
N which isthe population size before sel ection (see section 3). In genera these integrals have to be
determined numerically and for the simul ation results presented in this paper theintegral swere com-
puted by Gaussian quadratures (Presset al, 1992). Theidea fitness distribution can be parameterized
by the Gram-Charlier expansion in equation (7).

2To seethis, noticethat % = [odt e 2 integrate both sideswith respect to Z and swapthe order of integration
(aslongasZ > 0).



3.3 WEAK SELECTION AND GAUSSIAN NOISE

An anaytically tractable case is for weak selection corrupted by additive Gaussian noise, in which
case p(F|f) is given by a Gaussian distribution centred around f,

o o 2
p(FIf)—\/%ap( (onzf) ) (19)

Here, 02 isthevariance of thenoise. Asshownin (Priigel-Bennett & Shapiro, 1994), one can express
thelogarithm of the partition function analytically for small . Thislimitisaccurate for sufficiently
small B+/K,+ 02 and isinstructive as it shows the relevant effects of selection for each cumulant.

For small B andy, g(t,y, B) which isdefined in equation (18) can be expanded intePF+Y", Exponen-
tiating this expansion onefinds,

N Ntz 2
G (1..)~ ep(-tNuy.B) 1+ 5 (W20 28) W) ). 0

where

Wy = [dip(f) [dF p(F|H S
= ep(3(B0)?) p(B+Y).

Here, p(y) isthe characteristic function defined in equation (5) which can be written in terms of the
cumulant expansion defined in equation (6). Completing theintegral in equation (17), onefinds that
the cumulants after selection up to O(1/N) are given by,

o o " [2 (y+BK P’ & (2 - 2)(y+B)K; 1
ot [ o522 o)) e

The leading term here is the infinite popul ation result.

Expanding thefirst three cumulants after selection in 3, for fixed o, onefinds,

Bo)? 2 Bo)?
Kf = K1—|—B(1e(N )Kz—F%(lse(N )K3—|—--- (228.)
Bo)? Bo)?
Ks — (1e(N )K2+[3<13€(N )K3+--- (22b)
Bo)? Ro)? Bo)2

For zero noise (o — 0) oneretrieves the result in (Priigel-Bennett & Shapiro, 1994). Asin the zero
noise case, finite popul ationeffects | ead to areduced variance and a negative third cumul ant®, rel ated
to the population’s skewness, which leads to an accelerated reduction in variance under further se-
lection. Notice that anormally distributed infinite population remains Gaussian under selection and
doesnot losevariance. Thisisclearly an idealizationwhich cannot be achieved in afinite population,

3Thethird cumulant typically becomesnegative evenin aninfinite population becauseof aninitially negative
fourth cumulant (for finite |) — however, finite population effects are often more significant.



wheretails of the popul ation are sparsely popul ated and no progress can be made beyond the best so-
lution. The other genetic operators are required to reduce the magnitude of the higher cumulants by
repopulating the tails of the population.

The noisein sdlection increases the magnitude of thefinite popul ationterms by reducing the accuracy
of sampling, resulting in a faster loss of variance and less improvement under selection. Clearly,
noise has no effect in theinfinite populationlimit. Thisisbecause the effect of noise over-estimating
and under-estimating the value of f exactly cancelsin thislimit. Thisagain emphasizes the need for
accurate characterization of finite population effects.

It can be seen from equation (21) that in the weak selection limit the effects of Gaussian noise can be
removed by increasing the population size appropriately. If Ny isthe population size for zero noise,
then the effects of any Gaussian noise which isintroduced can be removed by setting,

N = Noexp((Bo)?). (23)

Itisremarkabl e that the eff ects of noise on sel ection can be removed for every cumulant by thissimple
increasein populationsize. Thispopulationresizing provesto be particularly of interestinthecontext
of the binary perceptron problem discussed in section 5.

Notice that this population resizing only holdsif selection strength isindependent of the noise vari-
ance, so that only finite population terms in equations (21) involve the noise variance. For exam-
ple, thisis not the case if selection strength is scaled according to statistics from the measured,
noi se corrupted fitness di stribution (al though the equati ons describing the dynamicswoul d till hol d).
Here, we scale selection strength inversdly to the standard deviation of the idea fitness distribution
B = Bs/+/K2, which ensures a constant selection pressure. Thisis arather artificial choice, as idesl
fitness statisticswould not be known in area noise corrupted problem. However, the results derived
here describe a GA with any fixed schedule for determining the selection strength each generation.
The scaling used hereis equivaent (on average) to an appropriate schedul e for the associated noise-
less problem.

4 ONE-MAX WITH GAUSSIAN NOISE

The dynamicsfor the one-max problem can be modelled using a statistical mechanics formalism de-
veloped in (Prigel-Bennett & Shapiro, 1995; Rattray, 1995; Rattray & Shapiro, 1996). This dis-
cussion will follow that presented in (Rattray & Shapiro, 1996) most closdly. To simplify matters
bit-simulated crossover is used, where the popul ation is compl etely shuffled during crossover so that
achild’s aleles come from any popul ation member with equal probability (Syswerda, 1993). This
brings the population straight to the fixed point of standard uniform crossover (without selection)
and alows the population to be accurately described by only two macroscopics. the mean fitness
and correlation. Under more general forms of crossover it is necessary to follow the evolution of
the higher cumulants, as described in (Priigel-Bennett & Shapiro, 1995; Rattray, 1995). Here, we
only wish to consider thesimplest GA (from atheoretical perspective) compatiblewiththe problems
under consideration.

The formalism used here differs from the models described in (Miihlenbein & Schlierkamp-Voosen,
1995; Srinivas & Patnaik, 1995; Thierens & Goldberg, 1995) by theinclusion of a constraint on the
mean correl ation within the population. 1n these model sthe popul ation was consi dered to be binomi-
ally distributed, and thisassumption bresks down when afinite popul ation correl ates under selection.
Thisisespecially important here, as noisehas no effect in theinfinite popul ationlimit. Unfortunately,



the inclusion of an extra constraint means that the dynamic trgjectory for the macroscopics can no
longer be described analytically. However, the descriptionis still compact in the sense that there are
few degrees of freedom and any numerical computation which is required does not depend on pop-
ulation size or genotype length.

In the following sections difference equations are derived for the change in mean fitnessand correla
tionwithinthe populationunder the action of each genetic operator. To describethepopulationbefore
selection it isnecessary to determinetermswhich are not trividly related to these two macroscopics.
In order to cal culate these terms a maximum entropy cal culation isintroduced, whichisdescribed in
theappendix. Finally, thetheory iscompared to simulationresultsaveraged over many runs, showing
excellent agreement and accurately predicting the averaged evol ution of each macroscopic.

41 THE MACROSCOPICS

Theided fithessfor one-max is given by,

fa = 2Sj : (24)

Here, thedledlesare § € {—1,1}, which ismost convenient for the binary perceptron problem con-
sidered in section 5. This can easily be converted to the standard binary convention under alinear
transformation. The mean and variance of an infinite population are,

Ki = i;(S] )a (259)
o = ((39)), - (591)
. mmﬁgéwﬁh<§M$m (250

where the angled brackets denote population averages and we have used an infinite population ex-
pression for the correlation,

|
a= 73 S "= 7 3 (% (26)

The finite population correction to the second cumulant is given in equation (3b).

Equation (25b) shows how an increase in correlation results in a reduced variance, al other terms
being equal. Thei # j termin thisexpression is related to the linkage disequilibriumin population
genetics (Ewens, 1979) and disappears after bit-simulated crossover. In this case the correlation can
be deduced directly from the variance after crossover.

42 MUTATION

Under mutation, bits are flipped throughout the popul ation with probability py. Introducing an in-
dependent binary variable for each allele within the popul ation providesa natural way of describing



this operator,

. a _ | 1 withprobability 1— pm
§—-mg: M= { —1  with probability pm. (27)
So, for example, the mean fitness of an infinite popul ation after mutationis,
[
Ki'= iz‘(Mi"S’h (28)
and averaging over all mutations gives the expectation value for the mean after mutation,
(KT) = (1 2pm)K1. (29)

This calculation can be generalized to the higher cumulants (Priigel -Bennett & Shapiro, 1995). The
correlation after mutation is similarly found to be,

am = (1— 2pm)°a. (30)

4.3 CROSSOVER

Under bit-simulated crossover, the population is brought straight to the fixed point of standard uni-
form crossover (without selection). Noticethat averages between and within popul ation membersare
egual on average after thisform of crossover; so, for example, terms like S’SB )izj and (§'S! .7&,
are equa (where brackets now denote site averages) and the second term in equatlon (25b) di dJ
pears. Similar cancellations are possible in the higher cumulants, as described in (Priigel-Bennett &
Shapiro, 1995). To accurately model selection we describe the population by four cumulants after
crossove,

Kf = K; (313.)

K3 = 1(1-q) (31b)
|

K§ = —2K1+2_Z(S’)§ (310)

K§ = —2(1-4q) - i (31d)

The terms in the expressions for the third and fourth cumulants which are not trivialy related to
known macroscopics are cal culated through a maximum entropy assumption, as described inthe ap-
pendix. The correlation does not change under crossover, since the mean number of aleles at each
siteisconserved. In (Priigel-Bennett & Shapiro, 1995) it is shown how the cumulants relax towards
thisfixed point under more standard crossover schemes.

44 SELECTION

The cumulants after Boltzmann selection are given in equation (17). It only remains to cal cul ate the
correlation after selection. Thisisa difficult task in generd, as it requires some knowledge of the
mapping between genotype and fitness and we will again make use of the maximum entropy calcu-
lation described in the appendix.



Itisinstructiveto dividethe correl ation after sel ection into two contributions: aduplicationterm and
anatural increaseterm. Theduplicationterm givestheincreased correlation dueto theduplication of
existing popul ation members required in afinite population. The natural increase term is dueto the
natural increase in correlation as the popul ation moves into aregion of higher fitness. The following
resultswere derived in full in (Rattray, 1995; Rattray & Shapiro, 1996) and here we only provide an
outline of the derivation.

The correlation in an infinite population after selectionis,

N N N
0 = Y Pa(l—daa)+ Y 5 PaPpdap
a=1 a=1p=1
= AQd‘qum (32)

where oo are dummy variables which are assumed to come from the same statistics as gqg. Thus,
Jua iSthe expected correlation between two distinct popul ation members both with fithess fy. The
first term hereisarrived at by noting that duplicates have a correlation of unity and replace apair in
the matrix of correlationswhich would otherwise have expected correlation qqq. The second termis
thenatural increasein correl ation asfitnessincreases (and entropy lowers) and isthe sol e contribution
in the infinite population limit (these definitions differ dlightly from those used in (Rattray, 1995)).

441 Natural Increase Term

We estimate the conditional probability distribution for correlation given two fitness values before
selection p(qqg| fa, fg) by assuming thealleles within the popul ation are distributed according to the
maxi mum entropy distributiondescribed inthe appendix. Then g issimply thecorrelation averaged
over thisdistribution and the distribution of fitness after selection, ps(f).

o = [ il Ps( )P T5) PG o, ) (33)

Thisintegral can be calculated for large | by the saddle point method* and we find that in thislimit
the result depends only on the mean fithess after selection (Rattray, 1995),

1L/ t+tanh(y) )2
w(Y) = — — ] 34a)
oly) = 1 i;(1+ritanh(y) (349
wherey isimplicitly related to the mean fithess after selection through,

L 1 4 tanh(y)

£ 1+ Titanh(y) (340)

K:=
i
Here, 1; isthe mean dlele a site i before selection and for a distribution at maximum entropy one
finds (see equation (59) in the appendix),
Tj = tanh(z+ xn;).

The Lagrange multipliers, zand x, are chosen to enforce constraints on the mean overlap and corre-
lation within the population before selection and n; is drawn from a Gaussian distribution with zero
mean and unit variance.

4For weak selection the large| restriction can be dropped (Rattray, 1996).



Itisinstructiveto expand iny, whichisappropriatein theweak selection limit. Inthiscase onefinds,

K = Kf+yK§+y;K§+§—TK2+--- (35a)
Oo(Y) = q*?—/Ké:*é—TKﬁJr-w (35b)

where KE are the cumulants after bit-simulated crossover, when the population is assumed to be at
maximum entropy (defined in equations (31a) to (31d) up to the fourth cumulant). Recall the ex-
pression for the mean fitness after selection given in equation (22a). By comparing thisto the above
expressions, noticethat y playstherol eof selection strengthinthe associ ated i nfinitepopul ation prob-
lem, so for an infinite popul ation one could simply set y — .

To calculate g. we solve equation (34b) for y and then substitute this value into equation (344). In
genera thismust be done numerically, athough the weak selection expansion gives avery good ap-
proximationinmany cases. Thethird cumulant in equation (35b) will be negativefor K; > 0 because
of the negative entropy gradient and thiswill accelerate the increased correlation under selection.

442 Duplication Term

The duplication term Aqyq is defined in equation (32). Asin the selection calculation presented in
section 3.1, population members are independently averaged over adistribution with the correct cu-
mulants to cal cul ate the expectation value of this quantity. In general the expressions must be com-
puted numerically, but the results can be expanded in 1/N for sufficiently weak selection (Rattray &
Shapiro, 1996). In this case onefinds,

P9’ [1— gu(2B)]p(2B) 1
NpZ(B) + o). (39

where g.(Yy) is defined in equation (34a) and p(P) is the characteristic function defined in equa-
tion (5). Noticethat thefactor involvingthe noise hereisthe same asin the cumulant result presented
in equation (21). The effects of noise is therefore removed by the same population size increase as
described in equation (23).

Agg =

Itisinstructiveto expand in {3 as this shows the contribution from each cumulant explicitly. To third
order in 3 for three cumulants one finds,

Bo)?

Mgy ~ (1 ge(2B)) (14 Kof? — K33+ O(B%)) . (37)
Selection leads to a negative third cumulant (see equation (22c)), which in turn leads to an accel-
erated increase in correlation under further selection. Crossover reduces this effect by reducing the
magnitude of the higher cumulants.

45 SIMULATIONS

The dynamics of the GA can be simulated by iterating the expressionsin the preceding sections. In
figure 1 the theoretical results are compared to simulation results from a GA averaged over 1000
samples for a typical choice of parameters. The tragjectories are shown for the mean and variance
of the fitness distribution. The zero noise case is compared to noisy one-max with a2 = 6k, and
02 = 12K, showing how increased noiseleadsto reduced performance. The theoretical resultsshow



excellent agreement. The noise was measured in terms of K, because this providesthe most natural
units for measuring noise (for example, any breakdown in the theory might be expected to occur for
aparticular value of 62 /ky). This may seem rather unnatural, although in many cases the noise will
fal off as fitness increases. For example, thisis the case in the binary perceptron problem which
is considered in the next section. In view of this, afixed noise level might be an equaly artificia
construction. These considerationsare not of critical importance here, however, astheaimisto verify
the theory and a more redlistic situation isintroduced in the next section.
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Figure 1: Thetheory for noisy one-max iscompared to resultsaveraged over 1000 runsof aGA. The
mean (K1) and variance (k) are shown, with solid lines showing theoretica predictions. The result
for zero noise (<) is compared to results with additive Gaussian noise of strength 6 = 6k, (O) and
0% =12k, (/). Theother parameterswere| = 155, Bs= 0.3, pm = 0.005, N = 100 and bit-simul ated
crossover was used.

Notice that the strength of the noise is greater than the popul ation’sstandard deviation in this exam-
ple, which emphasizes how robust the GA is even with high levels of noise. For very high levels
of noise the theory breaks down, probably because the weak selection, low noise approximation is
required to calculate the duplication contribution to the correlation after selection. There may well
be a better approximation for thisterm, athough the approximation used here seems to be accurate
for reasonable levels of noise. It may aso be the case that when noise levels are high the dynamics
do not average well, since there are large fluctuations from mean behaviour. In thiscase it might be
necessary to follow an ensemble of populations, as described in (Priigel -Bennett, 1996).

5 GENERALIZATION IN THE BINARY PERCEPTRON

One of the key questions in learning theory is when and how one might generalize to learn arule
from a set of training examples. A simple example of thisisthe case where a perceptron with binary
weights is trained on patterns generated from a teacher perceptron, also with binary weights. The
statistical mechanics formalism was applied to this problem in (Rattray & Shapiro, 1996) and here



wereview theseresultsin order to show how thiswork may be of rel evanceto problemsfrom machine
learning.

The perceptron has weights § € {—1, 1} and maps a binary vector with components Zi“ e{-11}
onto a binary output,

O“—sgn(i_lzszi“); sgn(X)—{ fl §§8_ (38)

Let T; be the weights of the teacher perceptron and S be the weights of the student. The stability of
apatternisameasure of how well it is stored by the perceptron and the stability of pattern p for the
teacher and student are Af' and AY respectively,

1/ 1/
Ko = STz b = M
/\t—\ﬂig Tig Ns \ﬂiz S¢ - (39)

The training error will be defined as the number of patterns the pupil misclassifies,

Al
1 x>0
_ HAHY . _ >
E= H;G)H\t ns); O = { 0 x<O0, (40)
where Al isthe number of training patterns presented in abatch. To simplify theanalysisanew batch
of training examples is presented each time the training error is ca culated.

The GA processes a population of student weight vectors and the training energy acts as a negative
fitness (thisis the measured, noisy fitness). Define the idedl fitness f to be the overlap between the
weight vectorsof theteacher and the student. We chooseT; — 1 a every sitewithout|ossof generality,
in which case the overlap associated with population member o is fq and is defined,

1 |
fom 73 S (41)

Thisis simply the one-max fitness measure defined in equation (24), normalized to be of order unity
(the nth cumulant isnow typically of O(11~") rather than O(1)). Thus, thisproblemisequivalentto a
noisy version of one-max and theonly differenceisin the conditional probability distributionrel ating
training error to the overlap between teacher and student. This can be determined and if the size of
each batchis O(1) then p(E| ) iswell approximated by a Gaussian distribution (Rattray & Shapiro,
1996),

_ _ 2
P(E[f) = E-5(0) ) (42)

/2102 &P ( 202

where the mean and variance are,

Eg(f) = )\—Tlrcos’l(f) (439)
() = B (1), (43b)

Here, E4( f) isthe generalization error, which isthe probability of misclassifying arandomly chosen
training example multiplied by the batch size (errorsare chosen proportional to| here). The variance
expresses thefact that thereis noiseinthetraining error (negativefitness) eval uation dueto thefinite
size of thetraining set.



51 SELECTION

If thetraining error is considered to be anegativefitness (E = —F) then equation (17) generatesthe
cumulants for the overlap distribution after selection. As before, the integrals have to be computed
numerically. Notice that the mean and variance of p(E|f) are non-linear functions of the overlap
f, so thisproblem isnot exactly equivaent to the noisy one-max problem which was considered in
section 4.

For weak selection and largel it is possibleto apply the weak selection expansion which was intro-
duced in section 3.3. Since the variance of overlapswithin the populationisO(1/1) one can expand
the mean of p(E|f) around the mean of the populationin thislimit (f ~ K3). Itisalso assumed that
the variance of p(E|f) iswell approximated by itsleading term in thislimit. Under these simplifi-
cations one finds,

Ey(f) ~ )‘—Tlr (cosl(Kl) &) (443)
J1-K2
02 ~ )\—Tlrcosfl(Kl) (1 %[cosl(Kl)) . (44b)

Now themean of p(E|f)isalinear functionof f and theproblemisvery similar to selection corrupted
by Gaussian noise. The cumulants after selection are found to be,

)2

n | o K. Bo [ i K.

y—00y"

where

ke M (46)

m/1-K?

Thisis equivalent to selecting on f directly (see equation (21)) where kp3 is the effective selection
strength and o/k is the effective standard deviation of the noise. The correlation result can similarly
be calculated by generalizing the noisy one-max result in section 4.4 and one finds that the results
are equivalent under the same effective sel ection strength and noise. A more thorough discussion of
these resultsis givenin (Rattray & Shapiro, 1996).

52 RESIZING THE POPULATION

The noiseintroduced by the finite sized training set increases the magnitude of the detrimental finite
populationtermsin selection. In the limit of weak selection and large problem size discussed in the
preceding section, the effects of noise can be removed by increasing the population size according to
equation (23). This maps the trajectory of thefinite training set GA onto the trgjectory of the GA in
thezero noisg, infinitetraining set situation. Thisexpressionisvalidif the effective sel ection strength
kB isindependent of batch size (which determines the noise strength). For thisto be the case  must
be chosen proportional to 1/A, whichisthe most natural scalinginany case because thetraining error
isproportional to A. It isthen convenient to rewrite equation (23),

N = Noe<p<%) , (47)



where,
2
Ao = A(Bo)? = @cosfl(m) (1 %[ cosl(Kl)) . (48)

Here, A, isindependent of A because of the 3 scaling described above. Choosing N according to this
expression removes the effects of noise dueto thefinite batch size and maps the dynamical trajectory
ontotheinfinitetraining set dynamics (where E = Eg( f)) for aGA with populationsize Ny. Typicaly
B isof order 1/+/1 and this population resizing will not blow up with increases in problem size (for
fixed A). Thisis consistent with the result in (Baum et al, 1995), athough they provide a rigorous
proof for the scaling of their agorithm.

Both sel ection strength and noisevariance will change over time, and it would therefore be necessary
to change the population size each generation in order to apply the above expression. However, this
is problematic when the popul ation size hasto beincreased, asthisleadsto an increased correl ation®.
In this case the dynamics will no longer exactly map onto the infinitetraining set situation.

Instead of varying the popul ation size, one can fix the popul ation size and vary the size of each train-
ing batch. Inthis case one finds,

Ao
* = Tog(N/No)

Figure 2 shows how choosing the batch si ze each generation according to thisexpression leadsto the
dynamics converging onto theinfinitetraining set trajectory of a GA with asmaller population. The
infinitetraining set result for the largest population size is also shown, as this gives some measure of
the potential variability of trajectoriesavailable under different batch sizing schemes. Any deviation
from the weak selection, large | limit is not apparent here.

(49)

In thiswork the effective sel ection strength was scal ed inversely to the standard deviation of overlaps
(B = Bs/k/K2). Thisisarather artificial choice, as it requiresinformation about overlap statistics
which would not be known in practice. However, the population resizing in equation (47) and the
corresponding batch sizing expression in equation (49) are valid given any fixed schedule for deter-
mining selection strength. The choice of selection scaling used hereis equivaent (on average) to an
appropriate schedule for the infinite training batch problem.

53 OPTIMAL BATCH SIZE

In the previous section it was shown how population size can be increased in order to remove the
effects of noise associated with a finite training batch. Fitzpatrick and Grefenstette also identified
the existence of such atradeoff between population size and batch size, and they suggest that thereis
often an optimal choice of batch size (or measurement accuracy) (Fitzpatrick & Grefenstette, 1988).
If the populationresizing in equation (47) isused, then it is possibleto identify such an optimal batch
size, which minimizes the computational cost of training error evaluations. This choice of batch size
will also minimize the total number of training examples presented when independent batches are
used.

5Thisiis a problem for areal GA which produces a finite population after selection. The theoretical model
described in section 3 does not have this problem, asthe population sizeis infinite after selection. In areal GA
one might overcomethis by creating alarge but finite population after selection, some members of which could
be discarded before the next round of selection.
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Figure2: The mean overlap between teacher and student within the populationis shown each gener-
ation, averaged over 100 runsof a GA training abinary perceptron to generalize from examples pro-
duced by ateacher perceptron. Training batch sizes were chosen according to equation (49), leading
to trajectories converging onto theinfinitetraining set result where E = Eg( ). The solid curveisfor
theinfinite training set result with Np = 60 and finitetraining set resultsare for N = 90 (O), 120(¢)
and 163(A). The inset shows the mean choice of batch parameter (A) each generation. The dashed
lineistheinfinitetraining set result for N = 163, showingthat thereissignificant potential variability
of trajectories under different batch sizing schemes. The other parameters were | — 279, s = 0.25
and pm, = 0.001.

It isassumed that computation ismainly dueto error evaluation and that other overheads can be ne-
glected. There are N error evaluations each generation with computation time for each scaling as A.
If the population size each generation is chosen by equation (47), then the computation time 1¢ is
related to batch size by,

Tc(A) O A ap(%) . (50)

The optimal choice of A is given by the minimum of t¢, whichisat A, (defined in equation (48)).
Choosing this batch size leads to the popul ation size being constant over the whole GA run and for
optimal efficiency one should choose,

N = Nge' ~ 2.73N; (51a)
A = Ao, (51b)

where N is the population size used for the zero noise, infinite training set GA with the same dy-
namical tragjectory. Noticethat it is not necessary to determine Ny in order to choose the size of each
batch, since A, isnot afunction of Np (see equation (48)). One of therunsinfigure 2 isfor thischoice
of N and A, showing close agreement to the infinitetraining set result (N = 163 ~ Nge).

Unfortunately, the optimal batch size isafunction of the mean overlap within the population, which
would not be known in genera (although it could be estimated from training error statistics). How-



ever, theinitial optimal batch size provides an upper bound, since the variance of noise decreases as
the mean overlap increases (see equation (44b)). Setting K1 — 0in equation (48) providesthisbound,

ho< S0NB21 (52)

Recall that 3 isproportional to 1/A, so that the right hand side of thisexpression isindependent of A.
Thisis asomewhat intuitiveresult, asit shows how more effort should be expended in determining
fitness (through increasing the batch size) when the resulting decisions are more critical (through
stronger selection). The selection strength B is typically of order 1/+/1 so that the optimum batch
sizeistypicaly of order | (recall that the batch sizeisAl).

54 SIMULATIONS

The dynamics can be modelled by combining the selection results from section 5.1 with the expres-
sions for mutation and crossover derived in section 4. Figures 3 and 4 show the trgjectories of the
mean and variance of the overlap distribution as well as the maximum overlap, averaged over 1000
runs of a GA for atypica choice of search parameters. The infinite training batch result, where
E = Ey(f), is compared to results for two fixed batch sizes, showing how performance degrades
asthe batch sizeis reduced. The theoretical curves show excellent agreement to simulation results.
Thetheoretical estimate for the maximum overlap was obtai ned by assuming popul ation membersare
randomly sampled from a popul ation with the correct cumulants (Priigel -Bennett & Shapiro, 1995).

There is a dight systematic error in the curves for the smallest batch size and as the batch sizeis
reduced further the theory breaks down. Thisis probably because a weak selection, low noise ap-
proximation was required to cal culate the duplication contribution to the correlation after selection,
as was al so the case for the noisy one-max problem. It isalso possible that the Gaussian approxima-
tion for p(E|f) breaks down for small A, in which case it would be necessary to expand the noise
in terms of more cumulants. Results for the higher cumulants a so agree with high significance, as
shown in (Rattray & Shapiro, 1996).

6 CONCLUSION

A theory which describes selection on afinite population under a general stochastic fithess measure
has been applied to two related problems, showing excellent predictivepower. The problemsconsid-
ered werethe one-max problem corrupted by Gaussian noise and asimplelearning problem, general-
ization by aperceptron with binary weights. Thiswork significantly extendsthe scope of astatistical
mechanics formalism for describing the averaged dynamics of the GA and shows how important it
isto correctly account for finite population effects.

In the limit of weak Boltzmann selection, the expressions describing the effect of selection on each
fitness cumulant can be expressed andytically and wefind that an increased popul ation size removes
the effects of noisein thislimit. This may have important implicationsin learning theory, where
thereisoften noisein fitness eval uation due to incompl etetraining data. Indeed, it isshown how this
population sizing can be used to determine the optimal batch size in the binary perceptron problem,
which minimizes computation time, as well as the total number of training examples required when
independent batches are used.
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Figure 3: Thetheory iscompared to averaged results from a GA training a binary perceptron to gen-
eralize from examples produced by ateacher perceptron. The mean and variance of the overlap dis-
tribution are shown averaged over 1000 runs, with solid lines showing theoretical predictions. The
infinite training set result (<) is compared to results for afinite training set with A = 0.65 (O0) and
A = 0.39(A). The other parameters were | — 155, s = 0.3, pm — 0.005, N = 80 and bit-simulated
crossover was used. Adapted from (Rattray & Shapiro, 1996).
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Figure4: The maximum overlap between teacher and pupil isshown each generation, averaged over
the same simulations as the results presented in figure 3. The solid lines show the theoretica predic-
tionsand symbolsare asin figure 3.
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MAXIMUM ENTROPY DISTRIBUTION

After bit-simulated crossover the population is assumed to be at maximum entropy with constraints
on the mean fitness and correl ation within the population. Thisisaspecia case of the result derived
in (Prugel-Bennett & Shapiro, 1995) for the paramagnet and this discussion followstheirs closely.

Let 1; bethe mean alele at sitei within the population,

Zl=

N
= (Sa=y 3 S (53)

To calculate the distribution of thisquantity over sites one imposes constraints on the mean overlap
and correlation with Lagrange multipliersx and z,

NK; = z% IZS’ = 2N I Tj (549
a=1i= i=
2 N N | 2 |
30N = %;gﬂ;s’s@— <X§> i;r?. (54b)

The correlation expression isfor large N and finite population corrections can beincluded retrospec-
tively.

Without constraints, the fraction of alele configurationswhich are compatible with mean dleleT; is
given by abinomial coefficient,

1 N
2= 50 wa e ) )

One can then define an entropy,

S(1i) = log[Q(Ti)] ~ fglog(lfrizﬂ—%log (iT::) (56)

where Stirling’s approximation has been used. The probability distributionfor alele configurations
decouples at each site,

|
PUTH) = [ P(T) = [ eXPLS(T) + 2T + 0N /2, (57

A Gaussian integral removes the square in the exponent,

. 2
p(Ti) = /%[ ap(%-FNG(Ti,r]i)) ;BT mi) = ST)/N+zmi+xnit. (58)



Themaxima value of G with respect to T; gives the maximum entropy distributionfor T; at each site,
Ti = tanh(z+ xn;), (59)

wheren; isdrawn from a Gaussian with zero mean and unit variance. The constraintscan be used to
obtain values for the Lagrange multipliers,

| b
= STahEn) =73 tarEeon) (60)

Bars denote averages over the Gaussian noise which in general must be done numerically (Gauss-
Hermite quadrature was used here (Press et al, 1992)).

The third and fourth order terms in equations (31c) and (31d) can be found once the Lagrange mul-
tipliers have been determined,

S =tz rn) 3 (S = etz o) (61)

Again, bars denote averages over the Gaussian noise.
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