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Abstract

A theoretical model is presented which describes selection in a genetic algorithm (GA)
under a stochastic fitness measure and correctly accounts for finite population effects. Al-
though this model describes a number of selection schemes, we only consider Boltzmann
selection in detail here as results for this form of selection are particularly transparent when
fitness is corrupted by additive Gaussian noise. Finite population effects are shown to be
of fundamental importance in this case, as the noise has no effect in the infinite population
limit. In the limit of weak selection we show how the effects of any Gaussian noise can
be removed by increasing the population size appropriately. The theory is tested on two
closely related problems: the one-max problem corrupted by Gaussian noise and gener-
alization in a perceptron with binary weights. The averaged dynamics can be accurately
modelled for both problems using a formalism which describes the dynamics of the GA
using methods from statistical mechanics. The second problem is a simple example of a
learning problem and by considering this problem we show how the accurate characteri-
zation of noise in the fitness evaluation may be relevant in machine learning. The training
error (negative fitness) is the number of misclassified training examples in a batch and can
be considered as a noisy version of the generalization error if an independent batch is used
for each evaluation. The noise is due to the finite batch size and in the limit of large problem
size and weak selection we show how the effect of this noise can be removed by increasing
the population size. This allows the optimal batch size to be determined, which minimizes
computation time as well as the total number of training examples required.� Internet address: rattraym@cs.man.ac.uk.
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1 INTRODUCTION

Genetic algorithms (GAs) are adaptive search techniques which can be used to find good solutions to
problems with poorly characterized and high-dimensional search spaces (Goldberg, 1989; Holland,
1975). They have been successfully applied in a large range of domains, including a number of ma-
chine learning problems. The GA differs from other stochastic search techniques, such as simulated
annealing, because solutions evolve in parallel within a population. It is hoped that this may lead to
improvement through the recombination of mutually useful features from different population mem-
bers.

The relative merit of each solution within the population is usually determined through a fitness mea-
sure. The fitness evaluation may be noisy due to measurement limitationsor incomplete training data
and it is important to understand and predict the effects of such noise. In some machine learning and
optimization applications there may be a tradeoff between improved fidelity in evaluating fitness and
the increased computational cost this requires. It has been suggested that GAs are suitable in this do-
main, since they are relatively robust against the effects of noise (Fitzpatrick & Grefenstette, 1988).
Indeed, GAs have recently been shown to deal better with noise than competing local search algo-
rithms on a class of simple additive problems (Baum et al, 1995).

In (Miller & Goldberg, 1995), noise corrupted fitness was modelled in terms of its effect on the
mean fitness after selection from a continuous and Gaussian distribution of fitness. This is effec-
tively an infinite population assumption and leads to the conclusion that proportionate selection is
unaffected by noise. In a finite population, the tails of the distribution will be sparsely populated
and this will prove to be of fundamental importance when accounting for the effects of noise. Al-
though Miller and Goldberg sized the population to account for increased finite population effects
due to noise, their choice of population size was based on a conservative predictor rather than an ex-
act result (Goldberg et al, 1992). Their calculation of the variance for the one-max domain assumes
a binomial distribution of alleles within the population and this assumption is also made in a num-
ber of other predictive models (Mühlenbein & Schlierkamp-Voosen, 1995; Srinivas & Patnaik, 1995;
Thierens & Goldberg, 1995). In a finite population this assumption breaks down, because the pop-
ulation becomes more correlated under selection than predicted by a binomial distribution and this
results in a reduced variance.

In this work, a theoretical model is presented which describes selection under a general stochastic
fitness measure and correctly accounts for finite population effects. Although this model can be ap-
plied to a number of selection schemes and noise distributions, Boltzmann selection is considered in
greatest detail here as the results in this case are transparent. This is not the most common selection
scheme used in GAs, but it seems an appropriate scheme for problems where the distribution of fit-
ness is close to Gaussian, as it conserves the population’s shape in this case. It is also easy to choose
the selection strength so that the population makes continued progress under selection. For weak
Boltzmann selection and Gaussian noise, it is shown how an increase in population size removes the
effects of noise on selection. Noise only affects a finite populationunder this form of selection, which
emphasizes the need for any theory to properly account for finite population effects.

The theory is applied to two problems for which the full dynamics can be solved, extending a for-
malism developed by Prügel-Bennett, Shapiro, and Rattray for modelling the dynamics of the GA us-
ing methods from statistical mechanics (Prügel-Bennett & Shapiro, 1994; Prügel-Bennett & Shapiro,
1995; Rattray, 1995; Rattray & Shapiro, 1996; Shapiro et al, 1994). This formalism does not require
that the population be sufficiently large to ensure convergence to the global optimum and properly
accounts for correlations accumulated under selection. Under this formalism, the population is de-



scribed by a small number of macroscopic statistics and a maximum entropy assumption is used to de-
termine anything not trivially related to these macroscopics. Difference equations are derived which
determine the mean change to each macroscopic under each genetic operator and these can be iter-
ated in sequence to simulate the averaged dynamics. A more exact approach also follows fluctuations
from mean behaviour by following an ensemble of populations (Prügel-Bennett, 1996). However,
mean behaviour alone is sufficient to accurately describe the problems under consideration here. The
macroscopics which have proved most successful to date are cumulants of some appropriate quantity
within the population and the mean correlation (closely related to the mean Hamming distance). The
first two cumulants are the mean and variance respectively while higher cumulants describe devia-
tions from a Gaussian distribution.

The first case considered is the one-max problem corrupted by Gaussian noise. To simplify the dis-
cussion, bit-simulated crossover is used (Syswerda, 1993) and this allows the dynamics to be mod-
elled by iterating only two macroscopics: the mean fitness and correlation within the population. A
maximum entropy assumption is required to determine the higher cumulants before selection and
to evolve the correlation under selection. Relevant results from other studies are reproduced where
necessary in order to make the discussion self-contained. Simulation results show very good corre-
spondence to the theory for a range of noise strengths and the theory accurately predicts the evolution
of each macroscopic, averaged over many runs of the GA.

The second case considered is a simple problem from learning theory, generalization by a binary per-
ceptron. A perceptron with binary weights is trained to learn a teacher perceptron by training on ex-
amples produced by the teacher. This has previouslybeen shown to be equivalent to a noisy version of
one-max if a new batch of examples are presented each time the training error is calculated (Baum et
al, 1995). This problem was solved under the statistical mechanics formalism in (Rattray & Shapiro,
1996) and those results are reviewed here. The training error is well approximated by a Gaussian dis-
tribution whose mean is the the generalization error and whose variance increases as the batch size
is reduced. The theory is shown to agree closely with simulation results averaged over many runs of
the GA. In the limit of large problem size and weak selection an increase in population size removes
the effects of noise due to the finite size of each training batch and this allows the optimal batch size
to be determined.

2 NOTATION

Notation will follow GA conventions where appropriate and therefore differs from a number of re-
lated publications which use conventions from statistical physics (Prügel-Bennett & Shapiro, 1994;
Prügel-Bennett & Shapiro, 1995; Rattray, 1995; Rattray & Shapiro, 1996). The population size is N
and each population member, labelled α, has two associated fitness measures. The ideal fitness fα
is some deterministic function of the genotype, while the noisy fitness Fα is related to this through a
conditional probability distribution p(Fj f ). For example, in a supervised learning problem fα might
be the fitness evaluated over all possible training examples and Fα might be the best estimate given
a small training batch. When we refer to the fitness this will usually be the ideal fitness and the noisy
fitness will always be referred to explicitly.

In the cases under consideration here, each populationmember’s genotype is a string of binary alleles
of length l. The usual convention in GA theory is to take alleles xα

i 2 f0;1g where i labels the site
and α labels the population member. Here, however, we choose alleles Sα

i 2 f�1;1gwhich are more
appropriate for the binary perceptron problem. A trivial change in variables maps one convention
onto the other.



2.1 CUMULANTS

Throughout this paper the populationwill be described by a number of macroscopic variables, the cu-
mulants of the ideal fitness distributionwithin the populationand the mean correlation within the pop-
ulation. Cumulants are statistics which describe the population shape and are often reasonably stable
to fluctuations between runs of the GA, so that they average well (Prügel-Bennett & Shapiro, 1995).
The first two cumulants are the mean and variance respectively, while higher cumulants describe de-
viations from a Gaussian distribution. The third and fourth cumulants are related to the skewness and
kurtosis of the population, respectively. The nth cumulant of a finite population is denoted κn.

If fα is the fitness of population member α then the cumulants of fitness within a finite population
are given by,

κn = lim
γ!0

∂n

∂γn lnZ ; Z = N

∑
α=1

eγ fα: (1)

Here, Z is called the partition function and holds all the information required to determine the popu-
lation’s cumulants. So, for example, the first two cumulants (the mean and variance) are,

κ1 = lim
γ!0

∑α fα eγ fα

∑α eγ fα
= 1

N

N

∑
α=1

fα (2a)

κ2 = lim
γ!0

∑α f 2
α eγ fα

�
∑α eγ fα

�� �∑α fαeγ fα
�2�

∑α eγ fα
�2= 1

N

N

∑
α=1

( fα)2 �� 1
N

N

∑
α=1

fα

�2: (2b)

In order to model selection on a finite population, N population members are randomly sampled from
an infinite population before selection (this procedure is described in greater detail in section 3). It is
well known that the expected variance of a finite sample is reduced by a factor of 1�1=N and similar
corrections occur for the higher cumulants. If Kn is the nth cumulant of an infinite population, then
expectation values for the first four cumulants of a finite sample are given by,

κ1 = K1 (3a)

κ2 = N2K2 (3b)

κ3 = N3K3 (3c)

κ4 = N4K4�6N2(K2)2=N: (3d)

Here, N2, N3 and N4 give the finite population corrections (Prügel-Bennett & Shapiro, 1995),

N2 = 1� 1
N

N3 = 1� 3
N

+ 2
N2 N4 = 1� 7

N
+ 12

N2 � 6
N3 : (4)

If p( f ) is the distribution of fitness in an infinite population, then the infinite population cumulants
can be generated from a characteristic function (analogous to the partition function)1,

Kn = lim
γ!0

∂n

∂γn lnρ(γ) ; ρ(γ) = Z
df p( f )eγ f : (5)

1This is usually written with an explicitly imaginary argument to ensure convergenceof the integral, in which
case it is a Fourier transform.



The characteristic function can also be written in terms of a cumulant expansion,

ρ(γ) = exp

 
∞

∑
n=1

Knγn

n!

! : (6)

It is often useful to parameterize the fitness distributionby expanding around a Gaussian distribution.
In this case we choose a Gram-Charlier expansion (see, for example, (Stuart & Ord, 1987)),

p( f ) = 1p
2πK2

exp
��( f �K1)2

2K2

�"
1+ nc

∑
n=3

Kn

n!Kn=2
2

Hn

�
f �K1p

K2

�# ; (7)

where Hn(x) = (�1)nex2=2 dn

dxn e�x2=2 are Hermite polynomials and nc is the number of cumulants
used. Four cumulants were used in this work and the third and fourth Hermite polynomials are
H3(x) = (x3 �3x) and H4(x) = (x4 �6x2 +3). This function is not a well defined probability distri-
bution since it is not necessarily positive, but it has the correct cumulants and provides a very good
approximation in many cases.

2.2 CORRELATION

The correlation is a measure of genotype similarity. The simplest measure of correlation between
two population members, α and β, is given by,

qαβ = 1
l

l

∑
i=1

Sα
i Sβ

i : (8)

Recall that Sα
i 2 f�1;1g so that this quantity equals one when two population members are identical

and is zero on average for two randomly generated population members. This is closely related to the
Hamming distance between two binary sequences. To get the mean correlation within the population
one averages this quantity over each distinct pair of population members,

q = hqαβiα6=β = 2
N(N�1) N

∑
α=1

∑
β>α

qαβ: (9)

The expected correlation of a finite sample is equal to the correlation in an infinite population.

3 SELECTION

To describe a general selection scheme it is instructive to separate the sampling process from the
weighting process. Each population member is assigned a selection weight wα, which is generally
some non-decreasing function of fitness (this is the measured, noisy fitness Fα). For fitness propor-
tionate selection the selection weight is simply equal to the fitness. Selection weights can also be
defined for ranking, tournament and truncation selection, and the general method described here can
be applied to these cases (Rattray, 1996). We will consider Boltzmann selection in greatest detail, as
this provides a transparent result for Gaussian noise (De la Maza & Tidor, 1991; Prügel-Bennett &
Shapiro, 1994). For Boltzmann selection the selection weight is defined,

wα = exp(βFα); (10)



where β is the selection strength which determines the relative probability of selection for each pop-
ulation member. By scaling the selection strength inversely with the population’s standard devia-
tion one avoids the problem of long convergence times, often cited as a problem with using fitness-
proportionate forms of selection. This scaling is used in section 3.3.

To select a new population it is necessary to take a weighted sample from the population before se-
lection. Ideally, the proportion of each population member in the new population is given by,

pα = wα

∑α wα
: (11)

However, it is not possible to choose exactly this amount in a finite population. We will consider
Roulette wheel sampling, as this provides an analytically tractable model for finite populationeffects.
Other, less noisy forms of sampling are often preferred in practice (see, for example, (Baker, 1987))
and a challenging task would be to extend the present analysis to these cases.

Under Roulette wheel sampling, N new population members are selected with replacement, with
probability pα. Following the discussion in (Prügel-Bennett, 1996), this process can be divided into
two stages,

1. Select an infinite population from a finite population, so that pα is exactly the proportion of
population member α in the infinite population after selection.

2. Randomly sample N population members from the infinite population to make up the new finite
population.

Mutation and crossover do not involve sampling and can therefore be carried out during the infinite
population stage of the dynamics without any loss of generality. A similar sampling procedure is
used in (Vose & Wright, 1994), but there they follow an exact microscopic description of the popula-
tion while we only consider a small number of macroscopic statistics. This simplification makes our
prescription less general, but allows us to capture a number of interesting and non-trivial features of
the dynamics in a natural way.

3.1 GENERATING THE CUMULANTS AFTER SELECTION

The cumulants of an infinite population after selection can be generated from the logarithm of a se-
lection partition function. If Ks

n is the nth cumulant of an infinite population after selection then,

Ks
n = lim

γ!0

∂n

∂γn lnZs ; Zs = N

∑
α=1

wαeγ fα: (12)

For example,

Ks
1 = lim

γ!0

∑α wα fαeγ fα

∑α wαeγ fα= N

∑
α=1

pα fα; (13a)

where we have used the definition of pα in equation (11). Similarly one finds,

Ks
2 = N

∑
α=1

pα f 2
α �� N

∑
α=1

pα fα

�2: (13b)



These are exactly the cumulants of an infinite population after selection, since pα is exactly the pro-
portion of each population member in this case. The expected cumulants of a finite population after
selection can be found by applying equations (3a) to (3d).

The exact fitness of each population member is not known in general, only the cumulants of the dis-
tribution from which they are sampled. The selection weight also has a stochastic component due to
variance in the conditional probability distribution relating the measured fitness to the ideal fitness
p(Fj f ). Therefore, it is necessary to average over the sampling procedure and the noise in fitness
evaluation in order to determine the expected cumulants after selection. Instead of averaging over
the cumulants directly, it is more convenient to average over the logarithm of the partition function
defined in equation (12),hlnZsi = N

∏
α=1

Z
dfα p( fα)Z dFα p(Fαj fα)! lnZs: (14)

Following the discussion in (Prügel-Bennett & Shapiro, 1994) we use Derrida’s trick to express the
logarithm as an integral2 (Derrida, 1981).hlnZsi= Z ∞

0
dt

e�t �he�tZsi
t

: (15)

If the selection weight associated with population member α is a function of Fα alone then the aver-
ages on the right hand side decouple from one another,he�tZs i =  

N

∏
α=1

Z
dfα p( fα)Z dFα p(Fαj fα)!exp

��t
N

∑
α=1

w(Fα)eγ fα

�= �Z
df p( f )Z dF p(Fj f )exp

��tw(F)eγ f ��N : (16)

3.2 BOLTZMANN SELECTION

Consider Boltzmann selection, in which case the selection weight is defined in equation (10). The
above expression can be substituted into equation (15) and equation (12) then provides the expected
cumulants of an infinite population after Boltzmann selection (the term in the integrand of equa-
tion (15) which does not involve γ is not required for n > 0),

Ks
n =� lim

γ!0

∂n

∂γn

Z ∞

0
dt

gN(t;γ;β)
t

; (17)

where

g(t;γ;β)= Z
df p( f )Z dF p(Fj f )exp

��teβF+γ f
� : (18)

Notice that although these are cumulants of an infinite population after selection, they depend on
N which is the population size before selection (see section 3). In general these integrals have to be
determined numerically and for the simulation results presented in this paper the integrals were com-
puted by Gaussian quadratures (Press et al, 1992). The ideal fitness distributioncan be parameterized
by the Gram-Charlier expansion in equation (7).

2To see this, notice that 1
Z = R ∞

0 dt e�Zt , integrate both sides with respect to Z and swap the order of integration
(as long as Z > 0).



3.3 WEAK SELECTION AND GAUSSIAN NOISE

An analytically tractable case is for weak selection corrupted by additive Gaussian noise, in which
case p(Fj f ) is given by a Gaussian distribution centred around f ,

p(Fj f ) = 1p
2πσ2

exp

��(F � f )2

2σ2

� : (19)

Here, σ2 is the variance of the noise. As shown in (Prügel-Bennett & Shapiro, 1994), one can express
the logarithm of the partition function analytically for small β. This limit is accurate for sufficiently
small β

p
K2+σ2 and is instructive as it shows the relevant effects of selection for each cumulant.

For small β and γ, g(t;γ;β) which is defined in equation (18) can be expanded in teβF+γ f . Exponen-
tiating this expansion one finds,

gN(t;γ;β)' exp
��tNψ(γ;β)��1+ Nt2

2

�
ψ(2γ;2β)�ψ2(γ;β)�� ; (20)

where

ψ(γ;β) = Z
df p( f )Z dF p(Fj f )eβF+γ f= exp
� 1

2(βσ)2�ρ(β+ γ):
Here, ρ(γ) is the characteristic function defined in equation (5) which can be written in terms of the
cumulant expansion defined in equation (6). Completing the integral in equation (17), one finds that
the cumulants after selection up to O(1=N) are given by,

Ks
n = lim

γ!0

∂n

∂γn

"
∞

∑
i=1

(γ+β)iKi

i!
� e(βσ)2

2N
exp

 
∞

∑
i=1

(2i�2)(γ+β)iKi

i!

!+O

�
1
N

�# : (21)

The leading term here is the infinite population result.

Expanding the first three cumulants after selection in β, for fixed βσ, one finds,

Ks
1 = K1 +β

�
1� e(βσ)2

N

�
K2 + β2

2

�
1� 3e(βσ)2

N

�
K3 + � � � (22a)

Ks
2 = �

1� e(βσ)2
N

�
K2 +β

�
1� 3e(βσ)2

N

�
K3 + � � � (22b)

Ks
3 = �

1� 3e(βσ)2
N

�
K3 +β

"�
1� 7e(βσ)2

N

�
K4� 6e(βσ)2

N
(K2)2

#+ � � � : (22c)

For zero noise (σ = 0) one retrieves the result in (Prügel-Bennett & Shapiro, 1994). As in the zero
noise case, finite populationeffects lead to a reduced variance and a negative third cumulant3, related
to the population’s skewness, which leads to an accelerated reduction in variance under further se-
lection. Notice that a normally distributed infinite population remains Gaussian under selection and
does not lose variance. This is clearly an idealization which cannot be achieved in a finite population,

3The third cumulant typically becomesnegative even in an infinite population becauseof an initially negative
fourth cumulant (for finite l) – however, finite population effects are often more significant.



where tails of the population are sparsely populated and no progress can be made beyond the best so-
lution. The other genetic operators are required to reduce the magnitude of the higher cumulants by
repopulating the tails of the population.

The noise in selection increases the magnitude of the finite population terms by reducing the accuracy
of sampling, resulting in a faster loss of variance and less improvement under selection. Clearly,
noise has no effect in the infinite population limit. This is because the effect of noise over-estimating
and under-estimating the value of f exactly cancels in this limit. This again emphasizes the need for
accurate characterization of finite population effects.

It can be seen from equation (21) that in the weak selection limit the effects of Gaussian noise can be
removed by increasing the population size appropriately. If N0 is the population size for zero noise,
then the effects of any Gaussian noise which is introduced can be removed by setting,

N = N0 exp
�(βσ)2�: (23)

It is remarkable that the effects of noise on selection can be removed for every cumulant by this simple
increase in populationsize. This population resizing proves to be particularlyof interest in the context
of the binary perceptron problem discussed in section 5.

Notice that this population resizing only holds if selection strength is independent of the noise vari-
ance, so that only finite population terms in equations (21) involve the noise variance. For exam-
ple, this is not the case if selection strength is scaled according to statistics from the measured,
noise corrupted fitness distribution(although the equations describing the dynamics would still hold).
Here, we scale selection strength inversely to the standard deviation of the ideal fitness distribution
β = βs=pκ2, which ensures a constant selection pressure. This is a rather artificial choice, as ideal
fitness statistics would not be known in a real noise corrupted problem. However, the results derived
here describe a GA with any fixed schedule for determining the selection strength each generation.
The scaling used here is equivalent (on average) to an appropriate schedule for the associated noise-
less problem.

4 ONE-MAX WITH GAUSSIAN NOISE

The dynamics for the one-max problem can be modelled using a statistical mechanics formalism de-
veloped in (Prügel-Bennett & Shapiro, 1995; Rattray, 1995; Rattray & Shapiro, 1996). This dis-
cussion will follow that presented in (Rattray & Shapiro, 1996) most closely. To simplify matters
bit-simulated crossover is used, where the population is completely shuffled during crossover so that
a child’s alleles come from any population member with equal probability (Syswerda, 1993). This
brings the population straight to the fixed point of standard uniform crossover (without selection)
and allows the population to be accurately described by only two macroscopics: the mean fitness
and correlation. Under more general forms of crossover it is necessary to follow the evolution of
the higher cumulants, as described in (Prügel-Bennett & Shapiro, 1995; Rattray, 1995). Here, we
only wish to consider the simplest GA (from a theoretical perspective) compatible with the problems
under consideration.

The formalism used here differs from the models described in (Mühlenbein & Schlierkamp-Voosen,
1995; Srinivas & Patnaik, 1995; Thierens & Goldberg, 1995) by the inclusion of a constraint on the
mean correlation within the population. In these models the population was considered to be binomi-
ally distributed, and this assumption breaks down when a finite population correlates under selection.
This is especially important here, as noise has no effect in the infinite population limit. Unfortunately,



the inclusion of an extra constraint means that the dynamic trajectory for the macroscopics can no
longer be described analytically. However, the description is still compact in the sense that there are
few degrees of freedom and any numerical computation which is required does not depend on pop-
ulation size or genotype length.

In the following sections difference equations are derived for the change in mean fitness and correla-
tion within the populationunder the action of each genetic operator. To describe the populationbefore
selection it is necessary to determine terms which are not trivially related to these two macroscopics.
In order to calculate these terms a maximum entropy calculation is introduced, which is described in
the appendix. Finally, the theory is compared to simulation results averaged over many runs, showing
excellent agreement and accurately predicting the averaged evolution of each macroscopic.

4.1 THE MACROSCOPICS

The ideal fitness for one-max is given by,

fα = l

∑
i=1

Sα
i : (24)

Here, the alleles are Sα
i 2 f�1;1g, which is most convenient for the binary perceptron problem con-

sidered in section 5. This can easily be converted to the standard binary convention under a linear
transformation. The mean and variance of an infinite population are,

K1 = l

∑
i=1
hSα

i iα (25a)

K2 = �� l

∑
i=1

Sα
i

�2�
α
�� l

∑
i=1
hSα

i iα�2= l(1�q) + l

∑
i=1

∑
j 6=i

hSα
i Sα

j iα �hSα
i iαhSα

j iα; (25b)

where the angled brackets denote population averages and we have used an infinite population ex-
pression for the correlation,

q = 1
l

l

∑
i=1
hSα

i Sβ
i iα6=β

N!∞= 1
l

l

∑
i=1
hSα

i i2α: (26)

The finite population correction to the second cumulant is given in equation (3b).

Equation (25b) shows how an increase in correlation results in a reduced variance, all other terms
being equal. The i 6= j term in this expression is related to the linkage disequilibrium in population
genetics (Ewens, 1979) and disappears after bit-simulated crossover. In this case the correlation can
be deduced directly from the variance after crossover.

4.2 MUTATION

Under mutation, bits are flipped throughout the population with probability pm. Introducing an in-
dependent binary variable for each allele within the population provides a natural way of describing



this operator,

Sα
i !Mα

i Sα
i ; Mα

i = � 1 with probability 1� pm�1 with probability pm: (27)

So, for example, the mean fitness of an infinite population after mutation is,

Km
1 = l

∑
i=1
hMα

i Sα
i iα (28)

and averaging over all mutations gives the expectation value for the mean after mutation,hKm
1 i= (1�2pm)K1: (29)

This calculation can be generalized to the higher cumulants (Prügel-Bennett & Shapiro, 1995). The
correlation after mutation is similarly found to be,

qm = (1�2pm)2q: (30)

4.3 CROSSOVER

Under bit-simulated crossover, the population is brought straight to the fixed point of standard uni-
form crossover (without selection). Notice that averages between and within populationmembers are
equal on average after this form of crossover; so, for example, terms like hSα

i Sβ
j ii 6= j and hSα

i Sα
j ii 6= j

are equal (where brackets now denote site averages) and the second term in equation (25b) disap-
pears. Similar cancellations are possible in the higher cumulants, as described in (Prügel-Bennett &
Shapiro, 1995). To accurately model selection we describe the population by four cumulants after
crossover,

Kc
1 = K1 (31a)

Kc
2 = l(1�q) (31b)

Kc
3 = �2K1 +2

l

∑
i=1
hSα

i i3α (31c)

Kc
4 = �2l(1�4q)�6

l

∑
i=1
hSα

i i4α: (31d)

The terms in the expressions for the third and fourth cumulants which are not trivially related to
known macroscopics are calculated through a maximum entropy assumption, as described in the ap-
pendix. The correlation does not change under crossover, since the mean number of alleles at each
site is conserved. In (Prügel-Bennett & Shapiro, 1995) it is shown how the cumulants relax towards
this fixed point under more standard crossover schemes.

4.4 SELECTION

The cumulants after Boltzmann selection are given in equation (17). It only remains to calculate the
correlation after selection. This is a difficult task in general, as it requires some knowledge of the
mapping between genotype and fitness and we will again make use of the maximum entropy calcu-
lation described in the appendix.



It is instructive to divide the correlation after selection into two contributions: a duplication term and
a natural increase term. The duplication term gives the increased correlation due to the duplication of
existing population members required in a finite population. The natural increase term is due to the
natural increase in correlation as the population moves into a region of higher fitness. The following
results were derived in full in (Rattray, 1995; Rattray & Shapiro, 1996) and here we only provide an
outline of the derivation.

The correlation in an infinite population after selection is,

qs = N

∑
α=1

p2
α(1�qαα)+ N

∑
α=1

N

∑
β=1

pα pβqαβ= ∆qd +q∞; (32)

where qαα are dummy variables which are assumed to come from the same statistics as qαβ. Thus,
qαα is the expected correlation between two distinct population members both with fitness fα. The
first term here is arrived at by noting that duplicates have a correlation of unity and replace a pair in
the matrix of correlations which would otherwise have expected correlation qαα. The second term is
the natural increase in correlation as fitness increases (and entropy lowers) and is the sole contribution
in the infinite population limit (these definitions differ slightly from those used in (Rattray, 1995)).

4.4.1 Natural Increase Term

We estimate the conditional probability distribution for correlation given two fitness values before
selection p(qαβj fα; fβ) by assuming the alleles within the population are distributed according to the
maximum entropy distributiondescribed in the appendix. Then q∞ is simply the correlation averaged
over this distribution and the distribution of fitness after selection, ps( f ).

q∞ = Z
dqαβ dfα dfβ ps( fα)ps( fβ)p(qαβj fα; fβ)qαβ: (33)

This integral can be calculated for large l by the saddle point method4 and we find that in this limit
the result depends only on the mean fitness after selection (Rattray, 1995),

q∞(y) = 1
l

l

∑
i=1

�
τi + tanh(y)

1+ τi tanh(y)�2 ; (34a)

where y is implicitly related to the mean fitness after selection through,

Ks
1 = l

∑
i=1

τi + tanh(y)
1+ τi tanh(y) : (34b)

Here, τi is the mean allele at site i before selection and for a distribution at maximum entropy one
finds (see equation (59) in the appendix),

τi = tanh(z+ xηi):
The Lagrange multipliers, z and x, are chosen to enforce constraints on the mean overlap and corre-
lation within the population before selection and ηi is drawn from a Gaussian distribution with zero
mean and unit variance.

4For weak selection the large l restriction can be dropped (Rattray, 1996).



It is instructive to expand in y, which is appropriate in the weak selection limit. In this case one finds,

Ks
1 = Kc

1 + yKc
2 + y2

2
Kc

3 + y4

3!
Kc

4 + � � � (35a)

q∞(y) = q� y
l

Kc
3 � y2

2l
Kc

4 + � � � ; (35b)

where Kc
n are the cumulants after bit-simulated crossover, when the population is assumed to be at

maximum entropy (defined in equations (31a) to (31d) up to the fourth cumulant). Recall the ex-
pression for the mean fitness after selection given in equation (22a). By comparing this to the above
expressions, notice that y plays the role of selection strength in the associated infinitepopulationprob-
lem, so for an infinite population one could simply set y = β.

To calculate q∞ we solve equation (34b) for y and then substitute this value into equation (34a). In
general this must be done numerically, although the weak selection expansion gives a very good ap-
proximation in many cases. The third cumulant in equation (35b) will be negative for K1 > 0 because
of the negative entropy gradient and this will accelerate the increased correlation under selection.

4.4.2 Duplication Term

The duplication term ∆qd is defined in equation (32). As in the selection calculation presented in
section 3.1, population members are independently averaged over a distribution with the correct cu-
mulants to calculate the expectation value of this quantity. In general the expressions must be com-
puted numerically, but the results can be expanded in 1=N for sufficiently weak selection (Rattray &
Shapiro, 1996). In this case one finds,

∆qd = e(βσ)2 [1�q∞(2β)]ρ(2β)
Nρ2(β) + O

�
1

N2

� ; (36)

where q∞(y) is defined in equation (34a) and ρ(β) is the characteristic function defined in equa-
tion (5). Notice that the factor involving the noise here is the same as in the cumulant result presented
in equation (21). The effects of noise is therefore removed by the same population size increase as
described in equation (23).

It is instructive to expand in β as this shows the contribution from each cumulant explicitly. To third
order in β for three cumulants one finds,

∆qd ' e(βσ)2
N

�
1�q∞(2β)��1+K2β2�K3β3 +O(β4)� : (37)

Selection leads to a negative third cumulant (see equation (22c)), which in turn leads to an accel-
erated increase in correlation under further selection. Crossover reduces this effect by reducing the
magnitude of the higher cumulants.

4.5 SIMULATIONS

The dynamics of the GA can be simulated by iterating the expressions in the preceding sections. In
figure 1 the theoretical results are compared to simulation results from a GA averaged over 1000
samples for a typical choice of parameters. The trajectories are shown for the mean and variance
of the fitness distribution. The zero noise case is compared to noisy one-max with σ2 = 6κ2 and
σ2 = 12κ2, showing how increased noise leads to reduced performance. The theoretical results show



excellent agreement. The noise was measured in terms of κ2 because this provides the most natural
units for measuring noise (for example, any breakdown in the theory might be expected to occur for
a particular value of σ2=κ2). This may seem rather unnatural, although in many cases the noise will
fall off as fitness increases. For example, this is the case in the binary perceptron problem which
is considered in the next section. In view of this, a fixed noise level might be an equally artificial
construction. These considerations are not of critical importance here, however, as the aim is to verify
the theory and a more realistic situation is introduced in the next section.
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Figure 1: The theory for noisy one-max is compared to results averaged over 1000 runs of a GA. The
mean (κ1) and variance (κ2) are shown, with solid lines showing theoretical predictions. The result
for zero noise (3) is compared to results with additive Gaussian noise of strength σ2 = 6κ2 (2) and
σ2 = 12κ2 (4). The other parameters were l = 155, βs = 0:3, pm = 0:005, N = 100 and bit-simulated
crossover was used.

Notice that the strength of the noise is greater than the population’s standard deviation in this exam-
ple, which emphasizes how robust the GA is even with high levels of noise. For very high levels
of noise the theory breaks down, probably because the weak selection, low noise approximation is
required to calculate the duplication contribution to the correlation after selection. There may well
be a better approximation for this term, although the approximation used here seems to be accurate
for reasonable levels of noise. It may also be the case that when noise levels are high the dynamics
do not average well, since there are large fluctuations from mean behaviour. In this case it might be
necessary to follow an ensemble of populations, as described in (Prügel-Bennett, 1996).

5 GENERALIZATION IN THE BINARY PERCEPTRON

One of the key questions in learning theory is when and how one might generalize to learn a rule
from a set of training examples. A simple example of this is the case where a perceptron with binary
weights is trained on patterns generated from a teacher perceptron, also with binary weights. The
statistical mechanics formalism was applied to this problem in (Rattray & Shapiro, 1996) and here



we review these results in order to show how this work may be of relevance to problems from machine
learning.

The perceptron has weights Si 2 f�1;1g and maps a binary vector with components ζµ
i 2 f�1;1g

onto a binary output,

Oµ = sgn

� l

∑
i=1

Siζµ
i

�
; sgn(x) = � 1 x� 0�1 x < 0: (38)

Let Ti be the weights of the teacher perceptron and Si be the weights of the student. The stability of
a pattern is a measure of how well it is stored by the perceptron and the stability of pattern µ for the
teacher and student are Λµ

t and Λµ
s respectively,

Λµ
t = 1p

l

l

∑
i=1

Tiζµ
i Λµ

s = 1p
l

l

∑
i=1

Siζµ
i : (39)

The training error will be defined as the number of patterns the pupil misclassifies,

E = λl

∑
µ=1

Θ(�Λµ
t Λµ

s ) ; Θ(x) = � 1 x� 0
0 x < 0; (40)

where λl is the number of training patterns presented in a batch. To simplify the analysis a new batch
of training examples is presented each time the training error is calculated.

The GA processes a population of student weight vectors and the training energy acts as a negative
fitness (this is the measured, noisy fitness). Define the ideal fitness f to be the overlap between the
weight vectors of the teacher and the student. We choose Ti = 1 at every site without loss of generality,
in which case the overlap associated with population member α is fα and is defined,

fα = 1
l

l

∑
i=1

Sα
i : (41)

This is simply the one-max fitness measure defined in equation (24), normalized to be of order unity
(the nth cumulant is now typically of O(l1�n) rather than O(l)). Thus, this problem is equivalent to a
noisy version of one-max and the only difference is in the conditional probabilitydistributionrelating
training error to the overlap between teacher and student. This can be determined and if the size of
each batch is O(l) then p(Ej f ) is well approximated by a Gaussian distribution (Rattray & Shapiro,
1996),

p(Ej f ) = 1p
2πσ2

exp
��(E�Eg( f ))2

2σ2

� ; (42)

where the mean and variance are,

Eg( f ) = λl
π

cos�1( f ) (43a)

σ2( f ) = Eg( f )�1� Eg( f )
λl

� : (43b)

Here, Eg( f ) is the generalization error, which is the probability of misclassifying a randomly chosen
training example multiplied by the batch size (errors are chosen proportional to l here). The variance
expresses the fact that there is noise in the training error (negative fitness) evaluation due to the finite
size of the training set.



5.1 SELECTION

If the training error is considered to be a negative fitness (E =�F) then equation (17) generates the
cumulants for the overlap distribution after selection. As before, the integrals have to be computed
numerically. Notice that the mean and variance of p(Ej f ) are non-linear functions of the overlap
f , so this problem is not exactly equivalent to the noisy one-max problem which was considered in
section 4.

For weak selection and large l it is possible to apply the weak selection expansion which was intro-
duced in section 3.3. Since the variance of overlaps within the population is O(1=l) one can expand
the mean of p(Ej f ) around the mean of the population in this limit ( f ' K1). It is also assumed that
the variance of p(Ej f ) is well approximated by its leading term in this limit. Under these simplifi-
cations one finds,

Eg( f ) ' λl
π

0@cos�1(K1)� ( f �K1)q
1�K2

1

1A (44a)

σ2 ' λl
π

cos�1(K1)�1� 1
π

cos�1(K1)� : (44b)

Now the mean of p(Ej f ) is a linear functionof f and the problem is very similar to selection corrupted
by Gaussian noise. The cumulants after selection are found to be,

Ks
n = lim

γ!0

∂n

∂γn

"
∞

∑
i=1

(γ+ kβ)iKi

i!
� e(βσ)2

2N
exp

 
∞

∑
i=1

(2i�2)(γ+ kβ)iKi

i!

!# ; (45)

where

k = λl

π
q

1�K2
1

: (46)

This is equivalent to selecting on f directly (see equation (21)) where kβ is the effective selection
strength and σ=k is the effective standard deviation of the noise. The correlation result can similarly
be calculated by generalizing the noisy one-max result in section 4.4 and one finds that the results
are equivalent under the same effective selection strength and noise. A more thorough discussion of
these results is given in (Rattray & Shapiro, 1996).

5.2 RESIZING THE POPULATION

The noise introduced by the finite sized training set increases the magnitude of the detrimental finite
population terms in selection. In the limit of weak selection and large problem size discussed in the
preceding section, the effects of noise can be removed by increasing the population size according to
equation (23). This maps the trajectory of the finite training set GA onto the trajectory of the GA in
the zero noise, infinite trainingset situation. This expression is valid if the effective selection strength
kβ is independent of batch size (which determines the noise strength). For this to be the case β must
be chosen proportional to 1=λ, which is the most natural scaling in any case because the training error
is proportional to λ. It is then convenient to rewrite equation (23),

N = N0 exp

�
λo

λ

� ; (47)



where,

λo = λ(βσ)2 = (λβ)2l
π

cos�1(K1)�1� 1
π

cos�1(K1)� : (48)

Here, λo is independent of λ because of the β scaling described above. Choosing N according to this
expression removes the effects of noise due to the finite batch size and maps the dynamical trajectory
onto the infinite training set dynamics (where E =Eg( f )) for a GA with populationsize N0. Typically
β is of order 1=pl and this population resizing will not blow up with increases in problem size (for
fixed λ). This is consistent with the result in (Baum et al, 1995), although they provide a rigorous
proof for the scaling of their algorithm.

Both selection strength and noise variance will change over time, and it would therefore be necessary
to change the population size each generation in order to apply the above expression. However, this
is problematic when the population size has to be increased, as this leads to an increased correlation5.
In this case the dynamics will no longer exactly map onto the infinite training set situation.

Instead of varying the population size, one can fix the population size and vary the size of each train-
ing batch. In this case one finds,

λ = λo

log(N=N0) : (49)

Figure 2 shows how choosing the batch size each generation according to this expression leads to the
dynamics converging onto the infinite training set trajectory of a GA with a smaller population. The
infinite training set result for the largest population size is also shown, as this gives some measure of
the potential variability of trajectories available under different batch sizing schemes. Any deviation
from the weak selection, large l limit is not apparent here.

In this work the effective selection strength was scaled inversely to the standard deviation of overlaps
(β = βs=k

p
κ2). This is a rather artificial choice, as it requires information about overlap statistics

which would not be known in practice. However, the population resizing in equation (47) and the
corresponding batch sizing expression in equation (49) are valid given any fixed schedule for deter-
mining selection strength. The choice of selection scaling used here is equivalent (on average) to an
appropriate schedule for the infinite training batch problem.

5.3 OPTIMAL BATCH SIZE

In the previous section it was shown how population size can be increased in order to remove the
effects of noise associated with a finite training batch. Fitzpatrick and Grefenstette also identified
the existence of such a tradeoff between population size and batch size, and they suggest that there is
often an optimal choice of batch size (or measurement accuracy) (Fitzpatrick & Grefenstette, 1988).
If the population resizing in equation (47) is used, then it is possible to identify such an optimal batch
size, which minimizes the computational cost of training error evaluations. This choice of batch size
will also minimize the total number of training examples presented when independent batches are
used.

5This is a problem for a real GA which produces a finite population after selection. The theoretical model
described in section 3 does not have this problem, as the population size is infinite after selection. In a real GA
one might overcome this by creating a large but finite population after selection, some members of which could
be discarded before the next round of selection.
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Figure 2: The mean overlap between teacher and student within the population is shown each gener-
ation, averaged over 100 runs of a GA training a binary perceptron to generalize from examples pro-
duced by a teacher perceptron. Training batch sizes were chosen according to equation (49), leading
to trajectories converging onto the infinite training set result where E = Eg( f ). The solid curve is for
the infinite training set result with N0 = 60 and finite training set results are for N = 90 (2), 120(�)
and 163(4). The inset shows the mean choice of batch parameter (λ) each generation. The dashed
line is the infinite training set result for N = 163, showing that there is significant potential variability
of trajectories under different batch sizing schemes. The other parameters were l = 279, βs = 0:25
and pm = 0:001.

It is assumed that computation is mainly due to error evaluation and that other overheads can be ne-
glected. There are N error evaluations each generation with computation time for each scaling as λ.
If the population size each generation is chosen by equation (47), then the computation time τc is
related to batch size by,

τc(λ) ∝ λ exp

�
λo

λ

� : (50)

The optimal choice of λ is given by the minimum of τc, which is at λo (defined in equation (48)).
Choosing this batch size leads to the population size being constant over the whole GA run and for
optimal efficiency one should choose,

N = N0 e1 ' 2:73N0 (51a)

λ = λo; (51b)

where N0 is the population size used for the zero noise, infinite training set GA with the same dy-
namical trajectory. Notice that it is not necessary to determine N0 in order to choose the size of each
batch, since λo is not a function of N0 (see equation (48)). One of the runs in figure 2 is for this choice
of N and λ, showing close agreement to the infinite training set result (N = 163 ' N0e).

Unfortunately, the optimal batch size is a function of the mean overlap within the population, which
would not be known in general (although it could be estimated from training error statistics). How-



ever, the initial optimal batch size provides an upper bound, since the variance of noise decreases as
the mean overlap increases (see equation (44b)). Setting K1 = 0 in equation (48) provides this bound,

λo � 1
4(λβ)2l: (52)

Recall that β is proportional to 1=λ, so that the right hand side of this expression is independent of λ.
This is a somewhat intuitive result, as it shows how more effort should be expended in determining
fitness (through increasing the batch size) when the resulting decisions are more critical (through
stronger selection). The selection strength β is typically of order 1=pl so that the optimum batch
size is typically of order l (recall that the batch size is λl).

5.4 SIMULATIONS

The dynamics can be modelled by combining the selection results from section 5.1 with the expres-
sions for mutation and crossover derived in section 4. Figures 3 and 4 show the trajectories of the
mean and variance of the overlap distribution as well as the maximum overlap, averaged over 1000
runs of a GA for a typical choice of search parameters. The infinite training batch result, where
E = Eg( f ), is compared to results for two fixed batch sizes, showing how performance degrades
as the batch size is reduced. The theoretical curves show excellent agreement to simulation results.
The theoretical estimate for the maximum overlap was obtained by assuming populationmembers are
randomly sampled from a population with the correct cumulants (Prügel-Bennett & Shapiro, 1995).

There is a slight systematic error in the curves for the smallest batch size and as the batch size is
reduced further the theory breaks down. This is probably because a weak selection, low noise ap-
proximation was required to calculate the duplication contribution to the correlation after selection,
as was also the case for the noisy one-max problem. It is also possible that the Gaussian approxima-
tion for p(Ej f ) breaks down for small λ, in which case it would be necessary to expand the noise
in terms of more cumulants. Results for the higher cumulants also agree with high significance, as
shown in (Rattray & Shapiro, 1996).

6 CONCLUSION

A theory which describes selection on a finite population under a general stochastic fitness measure
has been applied to two related problems, showing excellent predictive power. The problems consid-
ered were the one-max problem corrupted by Gaussian noise and a simple learning problem, general-
ization by a perceptron with binary weights. This work significantly extends the scope of a statistical
mechanics formalism for describing the averaged dynamics of the GA and shows how important it
is to correctly account for finite population effects.

In the limit of weak Boltzmann selection, the expressions describing the effect of selection on each
fitness cumulant can be expressed analytically and we find that an increased population size removes
the effects of noise in this limit. This may have important implications in learning theory, where
there is often noise in fitness evaluation due to incomplete training data. Indeed, it is shown how this
population sizing can be used to determine the optimal batch size in the binary perceptron problem,
which minimizes computation time, as well as the total number of training examples required when
independent batches are used.
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Figure 3: The theory is compared to averaged results from a GA training a binary perceptron to gen-
eralize from examples produced by a teacher perceptron. The mean and variance of the overlap dis-
tribution are shown averaged over 1000 runs, with solid lines showing theoretical predictions. The
infinite training set result (3) is compared to results for a finite training set with λ = 0:65 (2) and
λ = 0:39 (4). The other parameters were l = 155, βs = 0:3, pm = 0:005, N = 80 and bit-simulated
crossover was used. Adapted from (Rattray & Shapiro, 1996).
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Figure 4: The maximum overlap between teacher and pupil is shown each generation, averaged over
the same simulations as the results presented in figure 3. The solid lines show the theoretical predic-
tions and symbols are as in figure 3.
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MAXIMUM ENTROPY DISTRIBUTION

After bit-simulated crossover the population is assumed to be at maximum entropy with constraints
on the mean fitness and correlation within the population. This is a special case of the result derived
in (Prügel-Bennett & Shapiro, 1995) for the paramagnet and this discussion follows theirs closely.

Let τi be the mean allele at site i within the population,

τi = hSα
i iα = 1

N

N

∑
α=1

Sα
i : (53)

To calculate the distribution of this quantity over sites one imposes constraints on the mean overlap
and correlation with Lagrange multipliers x and z,

zNK1 = z
N

∑
α=1

l

∑
i=1

Sα
i = zN

l

∑
i=1

τi (54a)

1
2(xN)2q = x2

2l

N

∑
α=1

N

∑
β=1

l

∑
i=1

Sα
i Sβ

i = (xN)2

2l

l

∑
i=1

τ2
i : (54b)

The correlation expression is for large N and finite population corrections can be included retrospec-
tively.

Without constraints, the fraction of allele configurations which are compatible with mean allele τi is
given by a binomial coefficient,

Ω(τi) = 1
2N

�
N

N(1+ τi)=2

� : (55)

One can then define an entropy,

S(τi) = log[Ω(τi)] � �N
2

log(1� τ2
i )+ Nτi

2
log

�
1� τi

1+ τi

� ; (56)

where Stirling’s approximation has been used. The probability distribution for allele configurations
decouples at each site,

p(fτig) = l

∏
i=1

p(τi) = l

∏
i=1

exp[S(τi)+ zNτi+(xNτi)2=2]: (57)

A Gaussian integral removes the square in the exponent,

p(τi) = Z
dηip

2π
exp

��η2
i

2
+NG(τi;ηi)� ; G(τi;ηi) = S(τi)=N + zτi + xηiτi: (58)



The maximal value of G with respect to τi gives the maximum entropy distribution for τi at each site,

τi = tanh(z+ xηi); (59)

where ηi is drawn from a Gaussian with zero mean and unit variance. The constraints can be used to
obtain values for the Lagrange multipliers,

K1 = l

∑
i=1

tanh(z+ xηi) q = 1
l

l

∑
i=1

tanh2(z+ xηi): (60)

Bars denote averages over the Gaussian noise which in general must be done numerically (Gauss-
Hermite quadrature was used here (Press et al, 1992)).

The third and fourth order terms in equations (31c) and (31d) can be found once the Lagrange mul-
tipliers have been determined,

l

∑
i=1
hSα

i i3α = l tanh3(z+ xη) l

∑
i=1
hSα

i i4α = l tanh4(z+ xη): (61)

Again, bars denote averages over the Gaussian noise.
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