
Practical Assessment of Neural Network ApplicationsIan T Nabney� Mickael J S Paven� Richard C Eldridgey Clive LeeyAbstractThis paper reports the initial results of a joint research project carried out by Aston University andLloyd's Register to develop a practical method of assessing neural network applications. A set ofassessment guidelines for neural network applications were developed and tested on two applications.These case studies showed that it is practical to assess neural networks in a statistical pattern recognitionframework. However there is need for more standardisation in neural network technology and a widertakeup of good development practice amongst the neural network community.1 IntroductionNeural computing is a form of inductive programming : a task is performed by a general modelwhich is trained using data that represents the task. Such an approach is particularly appropriatewhen applied to problems that involve modelling complex systems. As the use of neural networksbecomes more common, with many live systems now commercially available, the question of howto assess and certify neural computing applications is becoming more important. In particular, ifneural networks are to be used in safety related systems, it is essential for there to be an assessmentmethodology that is sound and accepted by regulatory authorities, end users, and developers. Evenif neural networks are implemented in software on conventional computers, they correspond to avery di�erent way of viewing computer programs, so it is not obvious that the classical methodsused to develop and assess software are applicable to them. This paper reports the results of a jointresearch project carried out by the Neural Computing Research Group at Aston University andLloyd's Register to develop a practical method of assessing neural network applications. Lloyd'sRegister provides commercial safety and quality assessment, and have been active in the �eld ofsoftware assessment and certi�cation for many years. They provide the necessary experience andknowledge of assessment of conventional software.The work carried out on the project so far has necessarily been limited in scope. We haveonly addressed certain sorts of problems and certain neural network architectures, and we have notlooked at hardware issues. In particular, we have considered classi�cation or regression problemsthat are tackled using multi-layer perceptron (MLP) or radial basis function (RBF) networks (see(2) for a good survey of statistical pattern recognition and neural networks). Approximately 70{80% of applications in the process modelling, monitoring and control industries (which are those ofmost interest to Lloyd's Register, since they represent the bulk of safety critical applications) areof this type.In this paper we describe a practical method for assessing neural network applications based oncurrent best practice. Neural computing is a �eld of very active research, so while we expect most ofthe aims and principles we describe here to remain valid, the means by which the aims are achievedmay change in the future. Our work has also highlighted some new areas where further research isneeded to provide developers with credible and quantitative tests suitable for assessment. Duringthe project, we developed a set of guidelines and supporting technical information to allow people�Neural Computing Research Group, Aston University, Birmingham, B4 7ET. Correspondence to �rst author at this addressor by email at i.t.nabney@aston.ac.ukySafety Integrity and Risk Management, Lloyd's Register of Shipping, Lloyd's Register House, 29 Wellesley Road, CroydonCR0 2AJ 1
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trained in the assessment of conventional software systems to assess neural network applicationsas well. Two case studies (involving real neural computing applications: one of which is live,and the other of which is at the prototype stage) were used to test the assessment method. Toensure conformance with assessment practice for conventional software systems, the case studieswere carried out with the involvement of software assessors from Lloyd's Register.Earlier papers on this subject (6; 8) have raised some of the important issues in the developmentprocess, but have not considered recent theoretical developments in the �eld that allow us tomeasure the dependability of neural network outputs. They have also been addressing the problemfrom the developer's, rather than the assessor's, point of view.2 Neural ComputingWhile this paper is concerned with how to assess neural network applications and not with how todevelop them, it is nevertheless important to consider some of the key issues in application devel-opment. This is because assessment is concerned with process (`was the system built using soundengineering principles?') as well as product (`does this system perform to speci�cation?'). Theemphasis in this section is on the principal di�erences between neural computing and conventionalsoftware engineering.It is clear that neural computing represents a very di�erent approach from the conventional viewof software development, where an algorithmic solution can be speci�ed in advance of writing thesoftware. Because the performance and precision of the model cannot be determined in advance,the use of neural computing is best con�ned to applications where e�cient algorithmic solutionsare impossible or impractical. Such applications are typically complex, poorly understood, andimprecise. Understanding speech, reading hand-written documents, and modelling and control-ling non-linear systems are all domains where neural computing and other statistical techniquesoutperform algorithmic methods.2.1 A Comparison with Conventional Software EngineeringWe can compare neural computing with a conventional approach to software development by con-sidering a concrete example: the problem of developing a system model for a marine engine.A conventional approach would involve determining the physical processes governing the engine,analysing these to generate mathematical equations that represent the system, and then program-ming some software to simulate these equations and their solution. In principle, this method couldbe used without the use of a physical engine.An inductive approach involves gathering data from an engine and training a model (a neuralnetwork, for example) to reproduce the same relationships as are present in the data and determinea good approximation to the underlying function that has generated the data. The training processconsists of adjusting some variable parameters in the model using the data (`parameter estimation'in statistical terminology). In our view, this process is best studied from the statistical patternrecognition point of view, placing neural networks in the framework of linear regression, time seriesmodels, and other statistical methods.A consequence of the way in which neural networks are trained is that the parameters in themodel are the only part of the model which is speci�c to a given application. The interpretation byhumans of these parameters is considerably more di�cult and less precise than the interpretation ofalgorithmic high level source code. This implies that the assessment of neural computing systemsis necessarily statistical in nature. As safety cases are typically written in terms of limiting theprobability of failure, this may actually be an advantage.



In principle, inductive learning involves no software development, as the software to run andtrain the model is independent of the application and data. In some respects, this software isanalogous to a compiler in conventional software development, with the training process similar tocompilation, and the parameters of the trained model comparable to machine code. This softwareis entirely algorithmic, and so can be certi�ed for use in safety related applications with existingassessment methods. It is rather hard to develop high integrity compilers for languages of rea-sonable size (see (9) for an example); by comparison, neural network software is comparativelysmall and straightforward, so that it should be relatively straightforward to assess such softwareby conventional means.In practice, the distinction between the two development approaches may not be so clear cut.When modelling any complex real world system, some data from the actual system is nearly alwaysrequired, if only for model calibration and validation. Most of the issues discussed in this paperare relevant whenever real world data is used for such purposes. Equally, neural computing mayonly represent part of the solution to a problem: for example, conventional programming may beneeded to pre-process the data before �tting a model.Although there is little or no software development in a neural computing application, thereare other important tasks to be carried out which have no real equivalent in conventional softwareengineering.� Data collection. Adequate quantities of relevant data are essential.� Data pre-processing. It is rare that the best performance is achieved when the data is pre-sented in its raw form.� Network training. This has to be carefully monitored to ensure that a good solution is reached.� Performance assessment. The key question is not how well the network performs on the datait was trained on, but how well it generalises to unseen data.The assessment guidelines have as their focus sound practice and testing for these aspects of de-velopment.2.2 A Lifecycle ModelMost phases of a neural computing application development lifecycle will be familiar from thoseused for conventional software engineering. The main di�erences arise for three reasons:� a precise functional speci�cation is not possible at the start of development;� the use of data means that extra tasks must be carried out;� development is necessarily iterative.Although there is no de�nitive lifecycle model (just as for conventional software engineering), thefollowing is a principled approach which has been successfully used in practice.1. Problem De�nition: what are the aims? How can you measure success? This document iskey to credible performance assessment.2. Data collection: data sampled from the system to be modelled, cost measures, prior informa-tion (for example, how smooth the function should be, operational constraints on variables).In neural computing, particularly with a Bayesian approach, we attempt to quantify and



formalise the assumptions (or prior knowledge). This makes it easier to test whether theseassumptions are valid, and is an important part of verifying the performance of the trainedsystem.3. Preliminary data analysis: visualisation to understand the data, feature extraction, missingand corrupt data, pre-processing.4. Model development: model design is based on prior knowledge and data analysis. A rangeof models should be trained: simple models as benchmarks and more complex models toattempt to capture more features of the problem and to improve accuracy.5. Integration: interface with other software.6. Operation and maintenance: ongoing model validation and retraining.Note that data collection and pre-processing can take up to 40% of the development time (4). Thislifecycle model (see Figure 1) is quite general, and is similar to others in the literature (see, forexample, (8)). However, there are two important points to note about the lifecycle de�ned aboveand that are often omitted. Firstly, data is not just collected from the system to be modelled.Prior information can and should be used to structure and constrain the solution. Secondly, duringoperation, the model must be validated and retrained when necessary. Techniques recently devel-oped allow us to measure, and therefore monitor, the quality of neural network performance duringoperation. For example error bars (see (3) amongst others) allow us to assign a con�dence in theneural network prediction.2.3 Training and GeneralisationLearning for a neural network means adjusting the parameters (usually called `weights') to approx-imate an unknown function, based on a data set sampled from that function. The weights areadjusted during the training process by minimising an error (or cost) function. This error functionis a global measure of the discrepancy between the target values and the values predicted by theneural network.The error function is often very complex (since for neural networks it depends on the weightsin a highly non-linear way). Thus �nding the minimum is not easy. Most algorithms are basedon the fact that the global minimum of a function is a point where all the partial derivatives ofthe function equal zero. However, this is a necessary but not su�cient condition. These pointscan be local minima (i.e. at this point the function value is a minimum for a small region aroundthe point), local maxima, or other `at' regions. Being trapped in a bad local minimum impliesthat the solution is sub-optimal, which may result in non-compliance to the speci�cation. Mostoptimisation algorithms �nd a local minimum close to their starting point: thus it is important tocarry out multiple training runs with di�erent random starting points.Often the data used for training is corrupted by noise: for example, owing to the imprecisionof measuring instruments. The aim is to avoid learning the noise but to learn the underlyingstructure so that the model generalises to previously unseen inputs. Thus if a neural networklearns the training data and �ts it perfectly, it is said to over�t the training data. This usuallyleads to poor generalisation performance, as can be seen by testing the model on an independentset of data. Often over�tting is associated with a complex model for which the computed functionmay vary greatly between the training data points. We usually have a prior expectation that thefunction should vary in a relatively smooth fashion and this can be incorporated into the modeltraining (by regularisation techniques) and usually improves the generalisation of the trained model.



Figure 1: Lifecycle Model. The solid line denotes the main path through the lifecycle; dotted linesdenote points at which which more data may be required and the development may return to anearlier stage.2.4 Interpolation/Extrapolation and Data DensityUnderstanding the distinction between interpolation and extrapolation is fundamental to neuralnetwork reliability. Typically neural networks (and other data models) are much more accuratewhen interpolating than when extrapolating. The usual de�nitions of these terms (that the newdata point lies in the interior or exterior respectively of the region of input space containing thetraining data) are not accurate or easy to measure in more than one dimension.Instead, we say that areas of the input space where the training data density is high are interpo-lation regions, while areas of the input space where the training data density is low are extrapolationregions. Intuitively the idea is that in the areas where the model has a lot of information its be-haviour is constrained, while in areas where there is little or no information its functionality isunconstrained and therefore unreliable.Another way to measure the reliability of the neural network predictions is to generate `errorbars' which give an interval of `likely' values which take into account possible sources of variationaround the predicted output. There are di�erent sorts of error bars corresponding to di�erentsource of variation: input noise, output noise, and parameter uncertainty. The wider the error



bars, the less certain the network is about its output. It has been shown in (3) that Bayesian errorbars (which take into account the uncertainty of the network weights due to the use of a sample ofdata in training) are related to the input data density, which links error bars with novelty detection.We conclude that for safety critical neural network applications, the novelty of the input datashould be monitored (as suggested in (1)), so that outputs that are likely to be unreliable can beidenti�ed. This would form part of a monitoring system which would be a quantitative way ofassessing performance and testing the assumptions made during development on-line. In addition,most neural network systems make the assumption that the data generator is stationary (i.e. itdoes not change with time). This assumption can also be tested by monitoring the novelty of theinput data and assessing the accuracy of the network's output.3 Assessment GuidelinesThe basic principles of the assessment guidelines are the same as those in conventional software:� Check that the neural network function has been developed in a controlled and planned way(i.e. the quality of the processes and methodology used).� Check that the neural network function has successfully passed the tests and complies withits speci�cation.Neither of these two aspects, if applied alone, is su�cient to assess a neural system: the two arecomplementary. Although the principles of conventional software development methods still apply,their practical application may di�er. For example, repeatability means that random seeds usedin initialising models and splitting data must be recorded so that experimental results can becon�rmed at a later date.The fact that neural systems are data based has many implications for development and as-sessment. The data becomes part of the `program', and therefore needs to be subject to the samecontrol as other project documents. More fundamentally, the data needs to be of good quality,and representative of the problem. This can be di�cult to test (and therefore assess), as there arefew objective statistical tests for these properties. As in any system, certain assumptions are madeduring development. One advantage of neural networks is that it is possible to quantify many ofthese assumptions and test them before deployment.It should be noted that the assessment guidelines are not prescriptive: they do not, in general,mandate particular methods for developing applications. We can compare this with statement3.3.2.4 from the MISRA guidelines (5): \Many diverse methods may be used to assess stability.No one method may be identi�ed as preferred. It should not be assumed that similar results willbe obtained from di�erent methods for a given solution".Most of the issues in neural network development apply also to many systems already in use.For example, in control theory the stability of linear controllers for linear systems can be math-ematically analysed. However, developing a linear controller for a real system requires a systemmodel (involving some parameter estimation from data). This model is not exact (for example,it may be a linear approximation to a non-linear plant, and may ignore system noise) and thisinexactness a�ects the controller's performance: it will not exactly match theory and stability isno longer necessarily guaranteed. Thus practical systems are typically designed with large marginsfrom the boundary conditions predicted by theory. Thus `rules of thumb' are used now in safetycritical systems, and some of the questions raised about the use of neural networks and other newtechnologies can also be asked of conventional development practice.



4 Case Studies4.1 QuestarThe �rst case study was based on the Questar product developed by Oxford University in collab-oration with Oxford Instruments Ltd. The product monitors EEG traces to detect sleep disorders(7). It tracks the sleep/wake continuum on a 1 second time interval. Prior to the development ofthis instrument, a hypnogram would be constructed by hand from an EEG trace with a 30 sec-ond time interval. To analyse a whole night of sleep manually takes a considerable length of time(about 1 hour). Extensive trials have demonstrated that the system correctly automates a labourintensive process and improves the quality of the results (both through improved time resolutionand with consistent and repeatable analysis). An analysis of a night of data by Questar takes just10 seconds. The system is now used as a diagnostic aid for clinicians.The problem is expressed as a classi�cation problem (with 3 classes) which is mapped to awakefulness score in the range [�1; 1] which is the clinical users' preferred format. RBF networkswere used and compared with linear models, over which they showed a signi�cant improvement.The main �nding of the assessment was that although the development had generally beencarried out in a principled way, the documentation was not as complete as could be desired. TheFunctional Speci�cation had been written early in the project: however the performance targetswere only determined at the end of the project. The developers agreed that it would have beenuseful to set concrete targets earlier in the development. The users and scope of the system werenot explicitly de�ned: although end users had been consulted, particularly concerning the way inwhich the results should be presented, these reviews were not documented.Testing was commendably thorough, involving comparisons with hypnograms (using 7,200 testsamples) and diagnostic tests under clinical conditions. It has been shown to correlate with a by-hand analysis as well as one carried out by a second expert. The risks (i.e. misclassi�cation costs)have not been elicited from clinicians: this information is important to make optimal choices in thedecision theoretic framework.Con�dence measures, such as error bars, were constructed for the models, but they provednot to be robust (i.e. the con�dence intervals themselves did not generalise well). A knownproblem with the system is that novel data tends to be classi�ed as `wakefulness', but there is nospeci�c monitoring for novel data in the operational system. The assessors also had some concernsabout how representative the data is. For example, the e�ect of di�erent types of EEG recorderis unknown, and the impact of any variations has not been analysed. There was a good use ofvisualisation and a considerable body of prior knowledge from 30 years of clinical experience tounderstand the data and select relevant features. A systematic search over the order of the pre-processing AR model and the size of the network means that we can have con�dence that theselected architecture is near optimal. Good use was made of script �les so that all experiments arerepeatable.4.2 Engine Management SystemThe second case study is an ongoing project carried out by Aston University in collaboration witha company that manufactures engine management systems. At the time when the case study wascarried out, the project was only in its early stages: that is, its feasibility had been shown on asub-problem.In normal engine operation, away from idle speed, the ignition timing and fuel injection volume isdetermined from a set of look up tables as a function of several variables, such as load, speed, enginetemperature, etc. These look up tables are obtained on the basis of labour intensive experiments



which involve tuning engine parameters until the engineer is satis�ed that the engine is runningoptimally in a steady state. Typically, the input variables are quantised into 16 bands, and theresulting matrix is quite sparsely populated with experimental data. The criteria for `optimal'values are complex, involving tradeo�s between performance, emissions, economy and driveability.There are many such look up tables in modern engine management systems governing all parts of anengine operating envelope. Usually a simple linear interpolation method is used to estimate valuesaway from the measured data, which gives rise to unsmooth (non-di�erentiable) control surfaces.The aim of this project was to replace this interpolation scheme by a neural network.Overall there was a good level of conformance with the guidelines especially after taking intoaccount the early stage of development. The technical standard of the work was generally high,with a particularly thorough exploration of suitable error bars. The main �ndings were:� Speci�cation. The performance requirements were not fully speci�ed and although core ob-jectives had been identi�ed, there was no priority order. This is important since it stronglyinuences the choice of cost function.� Documentation. The activities and �ndings from the initial data collection and analysis weredistributed in notebooks and could usefully have been summarised in a report. This reportwould form part of the system speci�cation. It was also di�cult to trace design features tothe speci�cation requirements.� Testing of assumptions. An assumption of constant variance Gaussian noise was made (lead-ing to a sum of squares error function) but the validity of this assumption and the sensitivityof the neural network to it had not been investigated.5 DiscussionAs with conventional software, providing a formal proof of the correctness of a neural networkapplication is in general impractical. However, both case studies suggest that if a neural networkapplication is developed in a controlled and methodical way and properly tested, then it shouldbe possible to validate and verify it with an e�ectiveness comparable to conventional software. Inboth cases the technology had been applied in a principled and well engineered way. We note thatassessment of such applications requires a good understanding of the basic properties of neuralnetworks.Both case studies have shown that during the development of a neural network application, threeissues seem to be generally neglected: documentation, speci�cation and testing of assumptions.For instance, both applications no quantitative targets were de�ned in the speci�cation, and astandard noise model (leading to a sum of squares error function) was used without examining howappropriate this was for the data.The main reasons for this neglect are probably:1. The iterative nature of the development lifecycle and the fact that system performance cannotbe predicted in advance mean that it is often inappropriate to de�ne a concrete speci�cationat the start of the project. Lower limits on performance can be derived from safety argumentsand cost/bene�t analysis. After the feasibility stage the speci�cation should be reviewed tomake it more precise, but this often does not happen.2. As neural networks correspond to a novel way of viewing software, no standards currentlyexist. For instance, there is no clear de�nition of what should appear in a speci�cation for aneural network application.



3. Although neural network technology is currently moving from research to products, manyneural network applications are developed by academics. While they generally have a verygood understanding of the technology, they usually do not have the same objectives andexperience in software development as commercial software houses.However, we believe that these problems are temporary and are due to the relative youth of thetechnology. Furthermore, there are many conventional software applications that are poorly speci-�ed and documented, so these problems are by no means unique to neural networks.As was the case in the early days of conventional software development, there is a need forstandardisation for neural networks. There are several motivations for standardisation:1. Providing guidelines to develop successful neural network applications makes the technologymore accessible.2. Application development is easier to control if it is done in a systematic way. Moreover,better control over development is (usually) synonymous with higher dependability.3. A standardised development method enables veri�cation and validation to be standardisedas well. This is not completely achievable (even for conventional software), but is a goal toaim for.The two lead engineers on the case studies found the assessment useful and the procedure convinc-ing. As these are two of the leading neural network application developers in the UK, this suggeststhat the process we have proposed would meet with widespread acceptance in the technical com-munity.Our current work is addressing four areas:� Quantitative results. For some rules of good practice there is no standard technique to testtheir correct application in a quantitative way. So, for some aspects of the current guidelines,their assessment involves making sure that `rules of thumb' and accepted good practice havebeen applied. This is not desirable for applications requiring the highest levels of integrity,although it is tolerated by some existing standards (e.g. (5)).� Data quality and characterisation. This is essential for successful applications, but there arefew, if any, useful tests for determining any weaknesses in this regard.� Safety integrity levels. In principle, since neural networks are statistical models that makeprobabilistic predictions, they should be well suited to incorporation into safety cases. Weshall investigate how this could be done and what the implications for speci�cation of neuralnetwork systems are.� Neural controllers. Some applications use neural networks as part of a closed loop controlsystem. To train a neural network to perform this task is quite di�erent from the usualsupervised training regime we have considered up to now, and also raises questions of stability.6 AcknowledgementsWe are grateful to Lionel Tarassenko and James Pardey of Oxford University and David Lowe andChris Zapart of Aston University for their assistance with the case studies.
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