
Estimating Conditional Volatility with Neural NetworksIan T Nabney� H W Chengy
1 IntroductionIt is well known that one of the obstacles to e�ective forecasting of exchange rates is het-eroscedasticity (input dependent conditional variance). The autoregressive conditional het-eroscedastic (ARCH) model and its variants have been used to estimate a time dependentvariance for many �nancial time series. However, such models are essentially linear in formand we can ask whether a non-linear model for variance can improve forecasting results justas non-linear models (such as neural networks) for the mean have done.In this paper we consider two neural network models for variance estimation. MixtureDensity Networks [1, 15] combine a Multi-Layer Perceptron (MLP) and a mixture modelto estimate the conditional data density. They are trained using a maximum likelihoodapproach. However, it is known that maximum likelihood estimates are biased and lead toa systematic under-estimate of variance. More recently, a Bayesian approach approach toparameter estimation in such models has been developed [3] that shows promise in removingthe maximum likelihood bias. However, up to now, this model has not been used for timeseries prediction.Here we compare these algorithms with two other models to provide benchmark results: alinear ARIMA model and a conventional neural network trained with a sum-of-squares errorfunction. In both these cases, the model estimates the conditional mean of the time serieswith a constant variance noise model. This comparison is carried out on daily exchange ratedata for �ve currencies.In this paper we are concerned with models that predict the conditional variance for thenext time step. The conditional variance can be used to provide `error bars' (also known as`prediction intervals' in the regression literature) around the conditional mean. When thesize of the error bars increases, then the value of the next forecast is less certain. This isless useful for options pricing than longer term variance forecasts, but the information canbe incorporated into trading rules. For example, the size of error bars is a measure of howlikely the predicted price movement is likely to be accurate. We are interested in comparingthe generalisation performance of di�erent models and use log likelihood on out of sampledata with one step ahead prediction to compare results.The rest of this paper is organised as follows. In section 2 the various di�erent modelsthat we employ are described and contrasted. Section 3 describes the methodology that�Neural Computing Research Group, Aston University, Birmingham, B4 7ET, UK. Correspondence to�rst author at this address or by email at i.t.nabney@aston.ac.ukyFaculty of Business Administration, University of Macau, Macau1

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Aston Publications Explorer

https://core.ac.uk/display/78877683?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

is used in the empirical trials and then discusses the results. In the �nal section we drawtogether the main conclusions of this study and suggest future avenues of research.2 ModelsIn this section we shall describe the main features of the models that we are comparing.Throughout this paper we shall use zt to denote the target values (the actual time seriesvalues) and yt to denote predictions made by models. For simplicity, we shall assume thatthe time series is univariate, although all the methods can be extended to multivariate timeseries.2.1 ARIMA modelThe autoregressive-integrated-moving average scheme (ARIMA) is a linear model that ex-presses an output rt at time t in terms of previous outputs and random e�ects (or `noise')�t, which are the residuals (i.e. yt� zt, the di�erence between predicted and actual values attime t) of the model at earlier time steps.yt = � + pXi=1 �iyt�i + �t � qXj=1 �j�t�j (1)Often a time series may be di�erenced to remove trends. A model of the form given byequation (1) that is applied to a time series that has been di�erenced d times is said to beof orders p, d and q, written ARIMA(p; d; q). The � term is a constant drift term.The parameters �, �i, �j are estimated from a training dataset. We used the followingmethod to determine the model structure (de�ned by the integers p, d, and q).� If the partial autocorrelation function (PACF) of the di�erenced series displays a sharpcuto� and/or the lag�1 autocorrelation is positive | i.e., if the series appears slightly`underdi�erenced' | then we tried adding an AR term to the model. The lag at whichthe PACF cuts o� is the indicated number of AR terms.� If the autocorrelation function (ACF) of the di�erenced series displays a sharp cuto�and/or the lag � 1 autocorrelation is negative | i.e., if the series appears slightly`overdi�erenced' | then we tried adding an MA term to the model. The lag at whichthe ACF cuts o� is the indicated number of MA terms.� It is possible for an AR term and an MA term to cancel each other's e�ects, so if amixed ARMA model seems to �t the data, we also tried a model with one fewer ARterm and one fewer MA term, particularly if the parameter estimates in the originalmodel require more than 10 iterations to converge.If we assume that the random e�ects �t have a Gaussian distribution N(0; �2) with zeromean and constant variance, then we can compute the log likelihood of the actual targetvalue once we have estimated �2. This can be done by calculating the sample average ofthe residuals on the training set. It is then straightforward to estimate the parametersusing a maximum likelihood approach. Thus the ARIMA scheme is a linear model for theconditional mean with a constant noise variance.2

2.2 MLP with constant varianceThe multi-layer perceptron (MLP) is a neural network model that can be used for regression(as here) or classi�cation. In the case of regression, each network output is the linearcombination of the activations of n so called hidden units, each of which is a nonlinearfunction applied to a linear combination of the inputs. If, for the sake of simplicity, weassume that the output is one dimensional, we can write this model in the formy = f(x;w) = nXi=1 ai�(uTi x + bi) (2)where x is the input vector, w denotes the set of parameters (or weights) in the model, uiare the weights from the inputs to hidden unit i, bi is the bias for the ith hidden unit, and aiare the hidden to output weights. The function � is the activation function, and is chosen tobe nonlinear (for example tanh). When applied to time series forecasting, the input vectorx is typically a vector of previous values from the time series, which makes the network anon-linear auto-regressive model. Some work has been done on incorporating past residualsas inputs for �nancial time series forecasting [4] with some success, but we will not pursuethis approach here (partly because we are interested in using the residuals to model theconditional variance of the time series).The ARIMA model is parametric in that a speci�c functional form (linear in this case)is assumed and the parameters are then �tted from the data. In contrast, the MLP can beviewed as a nonlinear (due to the activation function) semi-parametric data model. This isbecause the MLP allows a very general class of functional forms (in fact, the MLP approxi-mates any continuous function of its inputs to an arbitrary accuracy: see [5, 7, 6]) in whichthe number of adaptive parameters (which is governed by n in equation 2) can be varied ina systematic way to build ever more exible models, and where this number is independentof the training data set size.In the usual approach to regression, the sum of squares error function is used:E = 12 NXk=1 [f(xk;w)� zk]2 (3)where the index k runs over the N training patterns. Then it is well know (see [2]) that theoptimal function (in the sense of minimising the error) isf(x;w� = hzjxi (4)the conditional mean of the target z given x. It can also be shown that at the globalminimum of the error function, its residual value is the average variance of the target valuearound its conditional average. We can represent the conditional distribution of the targetdata by a Gaussian function with centre (depending on the input x) given by f(x;w�) anda constant variance determined by the residual error.The use of a least squares error function does not require the conditional distribution ofthe target data to be Gaussian, but it cannot distinguish between a Gaussian distributionand any other distribution with the same conditional mean and constant variance. If we3

do assume that the target has a Gaussian conditional distribution, then the sum of squareserror function arises naturally through a maximum likelihood approach, assuming that thedata is drawn independently from some �xed distribution. The error function in equation 3is given by E = � lnL+ c where c is a constant (which can be ignored when minimizing E)and L, the data likelihood, is given byL = NYk=1 p(zkjxk)p(xk) (5)Time series data is not an independent sample, but Williams has shown in [18] how a similardecomposition can be achieved under the assumption that the conditional density at eachtime step depends only on a �xed number of previous values from the time series.p(xtjxt�1; : : : ; x0) = p(xtjxt�1; : : : ; xt�T) (6)Despite the constant variance constraint, MLPs have been used with great success for anumber of forecasting problems.To train a neural network, it is necessary to minimise the value of E by adjusting theparameter vector w. This can be done with a number of di�erent non-linear optimisationalgorithms: however, most of these require the partial derivatives@E@w (7)to speed up the search in high dimensional parameter space. One of the reasons for choosinga model of the form 2 is that these partial derivatives can be computed e�ciently using theback-propagation algorithm. In our experiments we used quasi-Newton methods with theBFGS update formula (see [16] for an implementation), or scaled conjugate gradient [12].Of course, a maximum likelihood approach with no regularisation to penalise overly-complex solutions is prone to over-�tting, where the noise in the �nite training dataset is�tted, rather than the underlying generator of the data (the true conditional mean). In thisstudy, rather than use a Bayesian regularisation method to solve this [9], we simply usedearly stopping (as in [13]). This method is based on the fact that during a typical trainingsession, the training set error decreases monotonically. However, the error measured withrespect to independent data, the validation set, often shows a decrease at �rst followed byan increase as the network starts to over-�t. Training can therefore be stopped at the pointswhere the validation set error increases: this network is expected to have good generalisationperformance.There are two drawbacks of this approach with �nancial time series. Firstly, the amountof noise (and indeed, the likely non-stationarity of the underlying data generator) mean thatearly stopping may stop too early, with an under-trained network. Secondly, the validationset has to be independent from the training data, and so if we select contiguous blocksof data (to minimise the correlation between datasets), this means that the test datasetis separated by a longer interval of time from the training set (assuming that the order istraining: validation: test). This increases the likelihood of poor generalisation caused bynon-stationarity. 4

2.3 Mixture Density NetworksThe MLP provides a very exible model for predicting the conditional mean of an unknownfunction. However, the constant variance assumption is often unrealistic. In �nancial data,for example, many time series are known to exhibit heteroscedasticity, and it is thereforelogical to extend the simple MLP framework to estimate the conditional variance of thetarget data in addition to the conditional mean. This variance can be used to give a moreaccurate estimate of the noise model.A maximum likelihood approach to this problem is quite straightforward. For each targetvalue, the neural network has two outputs, each of which is connected to all the hidden units:one represents the target value (the conditional mean, in fact), while the other representsthe conditional variance. The conditional mean is a linear combination of the hidden unitsas in equation 2. However, the variance must be a non-negative quantity. It is convenientto use an exponential function to constrain the network output to the correct values.�2(x) = exp " nXi=1 ai�(uTi x+ bi)# (8)It is a straightforward exercise in calculus to calculate the relevant partial derivatives of thenegative log likelihood of the data, and then optimisation algorithms can be used to trainthe network parameters. In our experiments, we used a quasi-Newton algorithm with theBFGS update method for training and early stopping to regularise the network. Similarmodels have been applied to predicting time series before. In [15] a pair of networks weretrained with a more complicated procedure.If the output is multi-dimensional then this approach can be generalised to a multi-variateGaussian noise model, where the network predicts the conditional mean and the covariancematrix. In [18] this approach is used to model the correlations between multiple currencymarkets.This model simply extends the MLP by allowing the variance of a Gaussian representingthe conditional density to be input dependent. However, by using more complex conditionaldensities (for example, mixture models) with parameters estimated by the network, it ispossible to model arbitrary conditional distributions [1]. The probability density of thetarget data is represented by a linear combination of kernel functions of the formp(tjx) = mXj=1 �j(x)�i(tjx) (9)where the mixing coe�cients �j satisfy the following constraints�j(x) � 0 and mXj=1 �j(x) = 1 8x (10)Various choices for the kernel functions � are possible. In this paper we have chosen Gaus-sians with input dependent means and variances. For a good model, the relationship of themixing coe�cients and the kernel parameters on the input vector x may be non-linear. Ittherefore makes sense to use a neural network to model this relationship.5

2.4 Bayesian Inference of Noise LevelsInstead of using a maximum likelihood approach to estimating the model coe�cients (orweights), which attempts to �nd a single optimal set of values, the Bayesian approach gener-ates a probability distribution function in parameter space representing the relative degreesof belief in di�erent values for the parameter vector. This function is initially set to someprior distribution p(w). Once the training data D has been observed, the prior is con-verted into a posterior distribution p(wjD) through the use of Bayes' theorem and the datalikelihood p(Djw).In principle we make predictions and estimate �2(x) by averaging the predictions madeby all possible networks weighted by their corresponding posterior posterior probability.However, as this posterior distribution tends to be very complex, this procedure requirescomputationally intensive methods such as Markov Chain Monte Carlo. A more practicalapproach is to select a single network given by the mode of the posterior distribution (i.e.the parameter vector wMP that maximises p(Djw). Because we estimate the probabilitydistribution of the parameter estimates, we can also give error bars on our forecasts thattake into account the uncertainty in the weight vector.It is well known that the maximum likelihood estimate of variance is biased (it tendsto underestimate variance). The regularisation methods that we have described above havedrawbacks for �nancial time series, and so it is of interest to apply a Bayesian approach tolearning as this should, in theory, give rise to unbiased estimates.Although the Bayesian framework is very attractive from a theoretical point of view, itcan be di�cult to apply in practice. MLP networks give rise to posterior weight distributionsthat are di�cult to evaluate [9]. Instead we use a generalised linear regression model (whichis basically equivalent to a radial basis function (RBF) network) as in [3]. The regressionoutput is given by y(x;w) = wT�(x) (11)where � represents a vector of basis functions (one of which is a constant �0 = 1 and is thebias term). It turns out to be convenient to use two separate networks: one for regressionand one for the variance. The inverse variance model is given by�(x;u) = exp(uT (x)): (12)The basis functions � and are chosen to be Gaussians (in this instance; other choices arepossible, see [8]) and are parameterised so that they model the unconditional probabilitydensity of the input data using the EM algorithm to train a mixture model with the samenumber of centres [2].The algorithm involves a hierarchical approach to modelling with `hyperparameters' tocontrol the prior distributions that are estimated from the data. Between each re-estimationof the hyperparameters the most probable value of the weight vectors w and u is found.The optimisation of w turns out to be straightforward, as the error for this network (basedon penalised negative log likelihood) is quadratic in the weights, and so can be solved bystandard techniques from linear algebra. (This is another reason for choosing an RBFnetwork in place of an MLP). The error function for u is not quadratic, so we use a standard6

0 500 1000 1500 2000 2500 3000 3500
0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

Time

P
ric

e

0 50 100 150 200 250 300 350 400 450 500
0.69

0.7

0.71

0.72

0.73

0.74

0.75

0.76

0.77

Time

P
ric

e
Figure 1: Datasets for US dollar/Canadian dollar: training/validation (left) and test (right).non-linear optimisation algorithm. In the work reported here, the scaled conjugate gradientalgorithm was used [12].The algorithm described involves computing the Hessian matrix (the matrix of secondorder partial derivatives). Some of the intermediate steps of this computation require thestorage of matrices of size O(N2), where N is the number of training points. Even onworkstations, this put an upper limit on the size of dataset that can be used for training. Inour experiments, we used training sets of size at most 600. Because the Bayesian approachto training provides regularisation (and thus controls network complexity), there is no needfor a validation set, so we sub-sampled the combined training and validation sets.3 Experiments3.1 MethodologyWe used data from �ve currency markets: US dollar/Canadian dollar (CAD); US dol-lar/sterling (GBP); US dollar/Deutsche Mark (DEM); US dollar/Swiss Franc (CHF); USdollar/Japanese Yen (JPY). The daily closing prices in the period June 1, 1973 to May 21,1987 were used, giving 3505 time periods in total. For the neural network models, each inputpattern consisted of the �ve previous prices, and the price for the next time step and theconditional variance were the outputs. The structure of the ARIMA models was determinedusing the method described in section 2.1. We used the �rst 2505 patterns as a training set,the next 500 for a validation set (where relevant for early stopping) and the last 500 as thetest set. Where early stopping was used, the validation set performance was evaluated every50 cycles of the training algorithm.We are interested in the generalisation performance of the di�erent models, so they werecompared on the basis of the negative log likelihood of the test set (i.e. `out of sample'7

0 500 1000 1500 2000 2500 3000 3500
0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

Time

P
ric

e

0 50 100 150 200 250 300 350 400 450 500
0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

Time
P

ric
e

Figure 2: Datasets for US dollar/Swiss Franc: training/validation (left) and test (right).

0 500 1000 1500 2000 2500 3000 3500
0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

Time

P
ric

e

0 50 100 150 200 250 300 350 400 450 500
0.3

0.35

0.4

0.45

0.5

0.55

0.6

Time

P
ric

e

Figure 3: Datasets for US dollar/Deutsche Mark: training/validation (left) and test (right).
8

0 500 1000 1500 2000 2500 3000 3500
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

Time

P
ric

e

0 50 100 150 200 250 300 350 400 450 500
1.25

1.3

1.35

1.4

1.45

1.5

1.55

1.6

1.65

1.7

Time

P
ric

e

Figure 4: Datasets for US dollar/British pound: training/validation (left) and test (right).

0 500 1000 1500 2000 2500 3000 3500
3

3.5

4

4.5

5

5.5

6
x 10

−3

Time

P
ric

e

0 50 100 150 200 250 300 350 400 450 500
3.5

4

4.5

5

5.5

6

6.5

7

7.5
x 10

−3

Time

P
ric

e

Figure 5: Datasets for US dollar/Japanese Yen: training/validation (left) and test (right).
9

testing). Of course, as there is no on-line adjustment of parameters on the test set, all themodels are vulnerable to the e�ects of non-stationarity in the test sets.Following [17] we can identify the following sources of variation when evaluating thegeneralisation performance of di�erent algorithms:1. Random selection of test cases.2. Random selection of training set.3. Random initialisation of learning method.4. Stochastic elements in the training algorithm.5. Stochastic elements in the predictions from a trained method (e.g. Monte Carlo esti-mates from the posterior predictive distribution).Rasmussen goes on to describe procedures to estimate the e�ects of these causes of variationin order to measure statistically the true signi�cance of di�erences in generalisation perfor-mance. Unfortunately, these rely on being able to select training and test data from thesame distribution independently, something which clearly breaks down for time series data.Hence we will not be able to give results of signi�cance tests for the di�erences betweenthe generalisation performance of di�erent algorithms. This is something that we intend toinvestigate in the future.3.2 ResultsWe used very simple data pre-processing: the training data was normalised to zero meanand unit variance for the neural network models. The test data was normalised with thesame linear transformation. Although most work in this �eld models log returns (i.e. log zt�log zt�1), we found that this gave worse results for the ARIMA models (some of which failedto converge) so we modelled raw prices throughout. Table 1 contains the generalisationperformance of each model tested.We had little di�culty with training any of the models with the exception of the Bayesiantreatment of input dependent noise. These networks often converged to local minima, andwhen the size of the regression network was increased to 40 hidden units, the Hessian becamesingular and the weight vector overowed. The results in table1 were obtained for a regressionmodel with 30 hidden units, and a noise model with 10 hidden units.The generalisation results demonstrate the the Mixture Density Network method per-forms best on all markets. There is a slight improvement in performance for a model with amixture of three Gaussians at the output. Early stopping had very little e�ect on generali-sation performance.The results on the Japanese Yen data were much more varied than for the other currencies.This was particularly so in the case of the Bayesian treatment, where the log likelihood forthe test set was usually in the order of 105. The �gure given in table 1 is very much anoutlier. This was because the regression network performed very poorly towards the end ofthe test set, where the range of inputs lies well outside that in the training data. This is aparticular problem for the RBF network when local basis functions (like Gaussians) are used,10

CAD CHF DEM GBP JPYARIMA �2271:2 �1910:4 �1947:8 �1525:8 �4114:0MLP �2118:6 �1251:6 �1889:4 �1251:6 �4321:0MDN 1 centre �2307:0 �1928:3 �2034:66 �1527:8 4780:1MDN 3 centres �2342:0 �1937:8 �2050:0 �1518:6 �4207:2MDN 5 centres �2360:4 �1945:5 �1816:4 �1519:3 �3180:3Bayesian model �1553:0 �1127:5 �1119:0 �1440:0 �67:9Table 1: Negative log likelihood of test data

0 50 100 150 200 250
0

1

2

3

4

5

6

7
x 10

17

Time

V
ar

ia
nc

e

250 300 350 400 450 500
0

1

2

3

4

5

6

7

8

9

10
x 10

21

Time

V
ar

ia
nc

e

Figure 6: Predicted test data variance for US dollar/Japanese Yen: �rst 250 points (left)and second 250 points (right).since these will extrapolate extremely poorly outside the range of data they were trained onas their response will be zero. An MLP, which uses linear combinations of its inputs, willextrapolate in a somewhat more predictable and reasonable fashion. The best answer to thisproblem is to detect novel data, and re-train (or adjust) the parameters in the model. Evenfor the best model, the predicted test data variance contained some extremely large values,as can be seen in �gure 6. The variance results for the other currencies (�gures 7 and 8 aremore in line with expectations.The structure of the ARIMA models, and the variance parameter for the ARIMA andMLP models are given in table 2. It is rather surprising to see that the variance for theARIMA model (which is the average training set residual) is less than that for the MLP. Itseems likely that this is due to the moving average terms making a signi�cant contributionto the accuracy of the conditional mean prediction.Because all the ARIMA models used di�erencing, we experimented with pre-processingthe data for the neural network models by taking the di�erence (i.e. zt � zt�1), but it did11

0 50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

Time

V
ar

ia
nc

e

0 50 100 150 200 250 300 350 400 450 500
0

0.05

0.1

0.15

0.2

0.25

Time

V
ar

ia
nc

e

Figure 7: Predicted test data variance for US dollar/Canadian dollar (left) and US dol-lar/Swiss Franc (right).

0 50 100 150 200 250 300 350 400 450 500
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
x 10

−4

Time

V
ar

ia
nc

e

0 50 100 150 200 250 300 350 400 450 500
0

0.005

0.01

0.015

Time

V
ar

ia
nc

e

Figure 8: Predicted test data variance for US dollar/Deutsche Mark (left) and US dol-lar/British pound (right).
12

CAD CHF DEM GBP JPYARIMA order (5; 1; 2) (6; 1; 1) (6; 1; 2) (9; 1; 0) (7; 1; 2)ARIMA variance 4:90� 10�6 1:57� 10�5 1:39� 10�5 1:32� 10�4 9:59� 10�10MLP variance 2:76� 10�5 9:20� 10�4 6:66� 10�5 9:20� 10�4 4:96� 10�9Table 2: Model structurenot change generalisation performance to any noticeable degree.4 ConclusionsThis paper has demonstrated that more complex models for the conditional variance forcurrency markets can improve generalisation performance. Mixture Density Networks, whichin their most general form can model non-Gaussian conditional probability distributions gavethe most accurate results. Early stopping had little e�ect on generalisation performance,which suggests that more principled forms of regularisation may be required. This was whya Bayesian approach, which has been used successfully on other regression problems, wastried on this data, but the results proved to be disappointing. This seemed to be mainlybecause of the di�culty of �tting the RBF networks: it is likely that the use of non-localbasis functions (as in [8]) would improve this.There is still scope for improving the models that we use for this problem. Some issuesthat we intend to address are:� Including moving average terms in the neural network models. The only technical dif-�culty with this is calculating the relevant partial derivatives e�ciently, as the networkstructure becomes recursive.� On-line estimation of variance to cope with non-stationary data. In [14, 11] constructiveon-line algorithms based on RBFs were used to predict the next price in the DeutscheMark/French Franc market. These models were able to correct their forecasts aftermajor shocks much better than a range of alternatives. Generalising this to estimatingthe conditional variance as well would give a better assessment of risk shortly aftermajor changes in market conditions, and would also cope with more gradual shifts inbehaviour.� Developing methods for deciding a good structure for the variance model. When pre-dicting the conditional mean, we can use the ACF and PACF (as for ARIMA modelling)to give some clues to the optimal model structure. We know of no such methods forconditional variance. It is possible that Automatic Relevance Determination (ARD),which is a Bayesian approach that has been used for regression problems [10].It is also likely that high frequency data would exhibit more `interesting' (i.e. less Gaussian,with a skew or even multi-modal distribution) conditional densities.
13

References[1] C. M. Bishop. Mixture density networks. Technical Report NCRG/4288, Neural Com-puting Research Group, Aston University, U.K., 1994.[2] C. M. Bishop. Neural Networks for Pattern Recognition. Oxford University Press, 1995.[3] C. M. Bishop and C. S. Qazaz. Bayesian inference of noise levels in regression. InC. von der Malsburg, W. von Seelen, J. C. Vorbruggen, and B. Sendho�, editors,ICANN, volume LNCS 1112, pages 59{64. Springer-Verlag, 1996.[4] A. N. Burgess and A. N. Refenes. The use of error feedback terms in neural networkmodelling of �nancial time series. In C. Dunis, editor, Forecasting Financial Markets,chapter 12, pages 261{274. John Wiley, 1996.[5] G. Cybenko. Approximation by superposition of a sigmoidal function. Math. Control,Signals and Systems, 2:303{314, 1989.[6] K. Funahashi. On the approximate realization of continuous mapping by neural net-works. Neural Networks, 2:183{192, 1989.[7] K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward networks are uni-versal approximators. Neural Networks, 2:359{355, 1989.[8] D. Lowe. On the use of nonlocal and non positive de�nite basis functions in radial basisfunction networks. In IEE ANN 1995, pages 206{211, 1995.[9] D. J. C. Mackay. A practical Bayesian framework for back-propagation networks. NeuralComputation, 4:448{472, 1992.[10] D. J. C. Mackay. Bayesian methods for backpropagation networks. In E. Domany,J. L. van Hemmen, and K. Schulten, editors, Models of Neural Networks III, chapter 6.Springer-Verlag, 1994.[11] Alan McLachlan. Online modelling of time series with resource allocating neural net-works. To appear in Proceedings of the 4th IMA Conference on Mathematics in SignalProcessing, 1996.[12] M. M�ller. A scaled conjugate gradient algorithm for fast supervised learning. NeuralNetworks, 6:525{533, 1993.[13] I. T. Nabney, C. Dunis, R. Dallaway, S. Leong, and W. Redshaw. Leading edge forecast-ing techniques for exchange rate prediction. In C. Dunis, editor, Forecasting FinancialMarkets, chapter 10, pages 227{244. John Wiley, 1996.[14] I. T. Nabney, A. McLachlan, and D. Lowe. Practical methods of tracking non-stationarytime series applied to real world data. In SPIE Conference on the Applications andScience of Arti�cial Neural Networks, pages 152{163, 1996.14

[15] D. A. Nix and A. S. Weigend. Learning local error bars for nonlinear regression. InAdvances in Neural Information Processing 7, pages 486{496. MIT Press, 1995.[16] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical Recipesin C: The Art of Scienti�c Computing. Cambridge University Press, 2nd edition, 1992.[17] C. E. Rasmussen. Evaluation of Gaussian Processes and Other Methods for Non-linearRegression. PhD thesis, Dept. of Computer Science, University of Toronto, 1996. Avail-able from http://www.cs.utoronto.ca/~carl/.[18] P. M. Williams. Using neural networks to model conditional multivariate densities.Neural Computation, 8:843{854, 1996.

15

