
1Bayesian Methods for Neural NetworksChristopher M. BishopNeural Computing Research GroupDept. of Computer Science and Applied MathematicsAston University, Birmingham, B4 7ET, U.K.C.M.Bishop@aston.ac.ukTechnical Report: NCRG/95/009Available from: http://www.ncrg.aston.ac.uk/AbstractBayesian techniques have been developed over many years in a rangeof di�erent �elds, but have only recently been applied to the problem oflearning in neural networks. As well as providing a consistent frameworkfor statistical pattern recognition, the Bayesian approach o�ers a numberof practical advantages including a potential solution to the problem ofover-�tting. This chapter aims to provide an introductory overview of theapplication of Bayesian methods to neural networks. It assumes the readeris familiar with standard feed-forward network models and how to trainthem using conventional techniques.1 IntroductionConventional approaches to network training are based on the minimization of anerror function, which itself might be derived from some underlying principle suchas maximum likelihood (see Ripley (1994, 1995) and also the chapter by Ripleyin this book). Such approaches can su�er from a number of de�ciencies, forexample the problem of determining the appropriate level of model complexity.More complex models (e.g. ones with more hidden units or with smaller values ofregularization parameters) give better �ts to the training data, but if the modelis too complex it may give poor generalization (the phenomenon of over-�tting).The usual approach is to set aside data to form a validation set and to optimizethe model complexity to give the best validation set performance.The Bayesian viewpoint provides a general and consistent framework for sta-tistical pattern recognition and data analysis. In the context of neural networks,a Bayesian approach o�ers several important features including the following:� The conventional approach to networks training, based on the minimizationof an error function, can be seen as a speci�c approximation to a fullBayesian treatment.� Similarly, the technique of regularization arises in a natural way in theBayesian framework.� For regression problems, error bars, or con�dence intervals, can be assignedto the predictions generated by a network.
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2 � For classi�cation problems, the tendency of conventional approaches tomake overcon�dent predictions in regions of sparse data can be avoided.� Bayesian methods allow the values of regularization coe�cients to be se-lected using only the training data, without the need to set data asidein a validation set. Thus the Bayesian approach avoids the problem ofover-�tting which occurs in conventional approaches to network training.Furthermore, it allows relatively large numbers of regularization coe�cientsto be used, which would be computationally prohibitive if their values hadto be optimized using cross-validation.� Similarly, the Bayesian approach allows di�erent models (e.g. networkswith di�erent numbers of hidden units, or di�erent network types such asmulti-layer perceptrons and radial basis function networks) to be comparedusing only the training data. More generally, it provides an objective andprincipled framework for dealing with the issue of model complexity, andavoids many of the problems which arise when using maximum likelihood.In this chapter we give an introductory account of Bayesian methods and theirapplication to neural networks. The focus here is on underlying principles ratherthan mathematical details. A more comprehensive introduction to the Bayesiantreatment of neural networks can be found in Chapter 10 of Bishop (1995).1.1 Bayes' TheoremWe are quite used to the idea of dealing with uncertainty in our everyday lives.For example, we might believe that it is unlikely to rain tomorrow if the last fewdays have been sunny. However, if we then discover that a cold front is about toarrive, we might revise our views and decide that it is in fact quite likely to rain.Here we are discussing subjective beliefs, and the way they are modi�ed whenwe obtain more information. We might seek to put such reasoning on a moreformal footing, and to quantify our uncertainty by encoding the degrees of beliefas real numbers. In a key paper, Cox (1946) showed that, provided we imposesome simple consistency requirements, then these numbers obey the rules of con-ventional probability theory. In other words, if we use a value of 1 to denotecomplete certainty that an event will occur, and 0 to denote complete certaintythat the event will not occur (with intermediate values representing correspond-ing degrees of belief), then these real values behave exactly like conventionalprobabilities.Once our beliefs have been represented as probabilities they can be manipu-lated using two simple rules. Consider a pair of random variables A and B eachof which can take on a number of discrete values. We denote by P (a; b) the jointprobability that A = a and B = b. Using the product rule this joint probabilitycan be expressed in the formP (a; b) = P (bja)P (a) (0.1)Here P (bja) denotes the conditional probability, in other words the probabilitythat B = b given that A = a. We can similarly consider a conditional probability



x1 INTRODUCTION 3of the form P (ajb). The quantity P (a) in (0.1) denotes the marginal probability,in other words the probability that A = a irrespective of the value of B. Thesecond relation between probabilities that we need to consider is the sum rulegiven by Xb P (a; b) = P (a) (0.2)where the sum is over all possible values of b. From the product rule we obtainthe following relation P (ajb) = P (bja)P (a)P (b) (0.3)which is known as Bayes' theorem. Using the sum rule, we see that the denomi-nator in (0.3) is given by P (b) =Xa P (bja)P (a) (0.4)and plays the role of a normalizing factor, ensuring that the probabilities on theleft hand side of (0.3) sum to one. For continuous rather than discrete variables,the probabilities are replaced by probability density functions, and summationsare replaced by integrations.We can consider P (a) to be the prior probability of A = a before we observethe value of B, and P (ajb) to be the corresponding posterior probability afterwe have observed the value of B. Posterior probabilities play a central role inpattern recognition, and Bayes' theorem allows them to be re-expressed in termsof quantities which may be more easily calculated.As we shall see, we can treat the problem of learning in neural networks froma Bayesian perspective simply by application of the above rules of probability.This leads to a unique formalism which is principle simple to apply, and whichcan lead to some very powerful results. We shall also see, however, that theapplication of Bayesian inference to realistic problems presents many di�cul-ties which require careful analytical approximations or sophisticated numericalapproaches to resolve.1.2 Model ComparisonAs we have already indicated, a Bayesian approach allows the model complexityissue to be tackled using only the training data. To gain some insight into howthis comes about, consider a hypothetical example of three di�erent models, H1,H2 and H3, which we suppose have steadily increasing exibility, correspondingfor instance to a steadily increasing number of hidden units. Thus, each modelconsists of a speci�cation of the network architecture (number of units, type ofactivation function, etc.) and is governed by a number of adaptive parameters.By varying the values of these parameters, each model can represent a range ofinput{output functions. The more complex models, with a greater number ofhidden units for instance, can represent a greater variety of such functions. Wecan �nd the relative probabilities of the di�erent models, given a data set D,
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p(D |H2)
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D
D0Fig. 1. Schematic example of three models, H1, H2 and H3, which have succes-sively greater complexity, showing the probability (known as the evidence) ofdi�erent data sets D given each modelHi. We see that more complex modelscan describe a greater range of data sets. Note, however, that the distribu-tions are normalized. Thus, when a particular data set D0 is observed, themodel H2 has a greater evidence than either the simpler model H1 or themore complex model H3.using Bayes' theorem in the formp(HijD) = p(DjHi)p(Hi)p(D) (0.5)The quantity p(Hi) represents a prior probability for model Hi. If we have noparticular reason to prefer one model over another, then we would assign equalpriors to all of the models. Since the denominator p(D) does not depend onthe model, we see that di�erent models can be compared by evaluating p(DjHi),which is called the evidence for the modelHi (MacKay, 1992a). This is illustratedschematically in Figure 1, where we see that the evidence favours models whichare neither too simple nor too complex.1.3 MarginalizationAn important concept in Bayesian inference is that of marginalization, whichinvolves integrating out unwanted variables. Suppose we are discussing a modelwith two variablesw and t. Then the most complete description of these variablesis in terms of the joint distribution p(t; w). If we are interested only in thedistribution of t then we should integrate out w as follows:p(t) = Z p(t; w) dw= Z p(tjw)p(w) dw (0.6)Thus the predictive distribution for t is obtained by averaging the conditionaldistribution p(tjw) with a weighting factor given by the distribution p(w). Weshall encounter several examples of marginalization later in this chapter.



x2 REGRESSION PROBLEMS 52 Regression ProblemsIn this section we discuss the application of Bayesian methods to `regression',i.e. the prediction of the values of continuous output variables given the valuesof some input variables. The application of Bayesian methods to classi�cationproblems is described in MacKay (1992b). We consider a feed-forward networkmodel (for example a multi-layer perceptron) which maps an input vector x toan output value1 y, and which is governed by a vector w of adaptive parameters(weights and biases). The observed dataset D consists of N input vectors xnand corresponding targets tn, where n = 1; : : : ; N .2.1 Distribution of WeightsWe begin by �nding the distribution function p(wjD) of the weight vector wonce we have observed the dataset D. Note that this description of our state ofknowledge of the weights, in terms of a probability distribution, is in contrast tothe conventional approach in which the weights in a trained network take speci�cvalues. We shall see shortly that this conventional description corresponds to aparticular approximation to the Bayesian description.We can �nd the posterior distribution of weights through the use of Bayes'theorem in the form p(wjD) = p(Djw)p(w)p(D) (0.1)The conditional distribution of the data p(Djw) can be regarded as a function ofw in which case it is called the likelihood. We shall encounter a speci�c exampleshortly. The conventional approach to network training involves seeking a singleweight vector w� which maximizes the likelihood function.The picture of learning provided by the Bayesian formalism is as follows.We start with some prior distribution over the weights given by p(w). Sincewe generally have little idea at this stage of what the weight values should be,the prior might express some rather general properties such as smoothness of thenetwork function, but will otherwise leave the weight values fairly unconstrained.The prior will therefore typically be a rather broad distribution, as indicatedschematically in Figure 2. Once we have observed the data, this prior distributioncan be converted to a posterior distribution using Bayes' theorem in the form(0.1). This posterior distribution will be more compact, as indicated in Figure 2,expressing the fact that we have learned something about the extent to whichdi�erent weight values are consistent with the observed data.In order to evaluate the posterior distribution we need to provide expressionsfor the prior distribution p(w) and for the likelihood function p(Djw). One ofthe simplest choices for the prior is to assume that it is a zero-mean Gaussianfunction of the weights, of the formp(w) = 1ZW (�) exp���2 kwk2� (0.2)1The extension to multiple output variables is straightforward.
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wM P wFig. 2. Schematic plot of the prior distribution of weights p(w) and the pos-terior distribution p(wjD) which arise in the Bayesian inference of networkparameters. The most probable weight vector wMP corresponds to the max-imum of the posterior distribution. In practice the posterior distribution willtypically have a complex structure with many local maxima.in which the normalization factor ZW (�) is given byZW (�) = �2�� �W=2 (0.3)where W represents the total number of weight parameters. Since inverse vari-ance � of the Gaussian controls the distribution of other parameters (weightsand biases), it is called a hyperparameter. For the moment we shall assume thatan appropriate value for � is known, and we shall return to the problem of howto determine � in Section 2.3. In practice, more complicated priors are oftenused, which may contain multiple hyperparameters.Next we turn to the choice of likelihood function. This can be written downonce we have speci�ed a model for the distribution of target values for a giveninput vector. Again we consider a very simple example, namely a Gaussian withmean given by the output y(x;w) of the network, and variance governed by aparameter ��1 so thatp(tjx;w) = � �2��1=2 exp���2 fy(x;w) � tg2� (0.4)Again we will assume for the moment that the value of � is known. For thedata set D we assume that the patterns are drawn independently from thisdistribution, and hence that the probabilities are multiplicative, so thatp(Djw) = NYn=1p(tnjxn;w)= 1ZD(�) exp ��2 NXn=1fy(xn;w)� tng2! (0.5)



x2 REGRESSION PROBLEMS 7where the normalization factor ZD(�) is given byZD(�) = �2�� �N=2 (0.6)Our main interest in using neural networks is to predict the values of theoutput variable for new values of the input variables. From the discussion ofSection 1.3, we see that such predictions should be made by integrating over theweight variables, so thatp(tjx; D) = Z p(tjx;w)p(wjD) dw (0.7)If the posterior distribution p(wjD) is sharply peaked about a maximumwMP,as indicated schematically in Figure 2, then we can approximate the integral onthe right hand side of (0.7) by p(tjx;wMP). This corresponds to a conventionalapproach in which predictions are made with the weight vector set to a speci�cvalue. To make use of this in practice we need to determine the most probableweight vector wMP. Instead of �nding a maximum of the posterior probability,it is usually more convenient to seek instead a minimum of the negative loga-rithm of the probability which is generally called an error function (these twoprocedures are equivalent since the negative logarithm is a monotonic function).For the particular prior distribution (0.2) and likelihood function (0.5) we seethat, neglecting additive constant terms, the negative log probability is given byE(w) = �2 NXn=1fy(xn;w)� tng2 + �2 kwk2 (0.8)Up to an overall multiplicative factor, this is just the usual sum-of-squares errorfunction with a `weight decay' regularization term.2.2 Error BarsAs we have indicated, the Bayesian approach should take account not just of themost probable weight vector, but of the complete posterior distribution of weightvectors. In practice, the required integration over w is analytically intractable,and so we either need to use numerical techniques, as discussed in Section 4,or to make approximations. Here we consider an approach based on assumingthat the posterior can be represented as a Gaussian centred on wMP (MacKay,1992d). This will allow us to predict not only the most probable value of theoutput vector, but also to assign error bars to this prediction.We can make a Gaussian approximation to the posterior distribution by rep-resenting the error function E(w) in (0.8) by a Taylor expansion around wMPand keeping terms up to second order, so thatE(w) = E(wMP) + 12(w �wMP)TA (w �wMP) (0.9)where A is called the Hessian matrix and consists of the second derivatives of



8the error function with respect to the weights. Note that the �rst derivative termis absent from (0.9) since we are expanding around a local minimum of E(w).The Hessian matrix can be evaluated using an extension of the back-propagationprocedure (Bishop, 1992).Some partial justi�cation for this approximation comes from the result ofWalker (1969), which says that, under very general circumstances, a posteriordistribution will tend to a Gaussian in the limit where the number of data pointsgoes to in�nity. For very large data sets we might then expect the Gaussian ap-proximation to be a good one. However, the primarymotivation for the Gaussianapproximation is that it greatly simpli�es the analysis.Even with this Gaussian approximation we still cannot evaluate (0.7) analyt-ically. We therefore assume that the posterior distribution is relatively narrowand hence that the network function does not vary too much over the regionof signi�cant probability density. This allows us to approximate the networkfunction y(x;w) by its linear expansion around wMPy(x;w) = y(x;wMP) + gT�w (0.10)where �w = w �wMP and g � rwyjwMP (0.11)The integration in (0.7) now becomes Gaussian and can be evaluated analyticallywith the result p(tjx; D) = 1(2��2t )1=2 exp�� (t� yMP)22�2t � (0.12)where we have restored the normalization factor explicitly. This distribution hasa mean given by yMP � y(x;wMP), and a variance given by�2t = 1� + gTA�1g (0.13)The �rst term in (0.13) arises from the intrinsic noise on the data, and isgoverned by the parameter �. The second term arises from the uncertainty inthe weights, and would go to zero in the limit of an in�nite data set. We canuse (0.13) to assign error bars to network predictions, as illustrated for a toyproblem in Figure 3. It can be seen from Figure 3 that the error bars are largerin regions where there is little data (Williams et al., 1995), as we might expect.2.3 HyperparametersSo far we have assumed that the hyperparameters � and � are known2. Inpractice we will generally have little idea of what values these parameters shouldtake. The treatment of hyperparameters is not trivial since a straightforwardmaximum likelihood approach would give over-�tted models which have poor2Note that we will refer to � as a hyperparameter since, although it does not control thedistribution of other parameters in the way that � does, it can be treated by similar techniques.
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0.0 0.5 1.0Fig. 3. A simple example of the application of Bayesian methods to a `regres-sion' problem. Here 30 data points have been generated by sampling thefunction h(x) = 0:5 + 0:4 sin(2�x), and the network consists of a multi-layerperceptron with four hidden units having `tanh' activation functions, andone linear output unit. The solid curve shows the network function with theweight vector set to wMP corresponding to the maximum of the posteriordistribution, and the dashed curves represent the �2�t error bars calculatedusing (0.13).generalization. For example, the best �t to the data is obtained with a verysmall value of � allowing the network function to give over-�tted solutions.As we have discussed already, the correct Bayesian treatment for parameterssuch as � and �, whose values are unknown, is to integrate them out of anypredictions. For example, the posterior distribution of network weights is givenby p(wjD) = Z Z p(w; �; �jD) d�d�= Z Z p(wj�; �;D)p(�; �jD) d�d� (0.14)Note that we have extended our notation to include dependencies on � and �explicitly in the various probability densities.In general the integrations required by (0.14) will be analytically intractable.Two practical analytically-based approaches to the treatment of hyperparame-ters have been discussed in the literature. The �rst of these is called the evidenceapproximation (MacKay, 1992a; MacKay, 1992d), and is based on techniques de-veloped by Gull (1988, 1989) and Skilling (1991). It is computationally equiva-lent to the type II maximum likelihood (ML-II) method of conventional statistics(Berger, 1985).Let us suppose that the posterior probability distribution p(�; �jD) for thehyperparameters in (0.14) is sharply peaked around their most probable values



10�MP and �MP. Then (0.14) can be writtenp(wjD) ' p(wj�MP; �MP; D) Z Z p(�; �jD) d�d� (0.15)= p(wj�MP; �MP; D): (0.16)This says that we should �nd the values of the hyperparameters which maximizethe posterior probability, and then perform the remaining calculations with thehyperparameters set to these values.In order to �nd �MP and �MP, we need to evaluated the posterior distributionof � and �. This is given byp(�; �jD) = p(Dj�; �)p(�; �)p(D) (0.17)which requires a choice for the prior p(�; �). Since this represents a prior overthe hyperparameters, it is sometimes called a hyperprior. We see that the dis-tribution of weight parameters, for example, is governed by a hyperparameter �which itself is described by a distribution. Schemes such as this are called hierar-chical models and can be extended to any number of levels. If we have no idea ofwhat would be suitable values for � and �, then we should choose a prior whichin some sense gives equal weight to all possible values. Such priors are callednon-informative and are discussed at length in Berger (1985). Since the denom-inator in (0.17) is independent of � and �, we see that the maximum-posteriorvalues for these hyperparameters are found by maximizing the likelihood termp(Dj�; �). This term is called the evidence for � and �.If we make the dependences on � and � explicit, then we can write theevidence in the formp(Dj�; �) = Z p(Djw; �; �)p(wj�; �) dw (0.18)= Z p(Djw; �)p(wj�) dw (0.19)where we have made use of the fact that the prior is independent of � and thelikelihood function is independent of �. Using the exponential forms (0.2) and(0.5) for the prior and likelihood distributions, together with (0.8), we can writethis in the form p(Dj�; �) = 1ZD(�) 1ZW (�) Z exp (�E(w)) dw (0.20)If we now make use of the Taylor expansion (0.9) the integration over w becomesa Gaussian integral and can be evaluated analytically. We omit the detailshere. The resultant expression can then be maximized with respect to � and�. This gives expressions for �MP and �MP in terms of the eigenvalues of theHessian matrix A. Thus, the problem of �nding the most probable values forthe hyperparameters requires little additional calculation beyond that needed to
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Fig. 4. This shows a plot of the log evidence for � versus ln�, correspondingto the example of Figure 3. The noise parameter � has been set to its truevalue. We see that small values of � as well as large values are less probablethan some intermediate value.evaluate the error bars. Figure 4 shows a plot of the log evidence versus � forthe toy problem used in Figure 3.For suitable choices of the hyperprior, it is possible to perform the integra-tions in (0.14) analytically (Buntine and Weigend, 1991; Wolpert, 1993; MacKay,1994b; Williams, 1995). Since integration is formally the correct procedure, wemight expect that this would be superior to the evidence approximation discussedabove. However, MacKay (1994b) has argued that in practice the evidence ap-proximation will often be expected to give superior results. The reason that thiscould in principle be the case, even though formally we should integrate overthe hyperparameters, is that in practice with exact integration the remainderof the Bayesian analysis cannot be carried through without introducing furtherapproximations, and these subsequent approximations can lead to greater in-accuracies than the evidence approach. Typically, these approximations wouldinvolve �nding the maximum posterior weight vector wMP by a standard non-linear optimization algorithm, and then �tting a Gaussian approximation aroundthis value (Buntine and Weigend, 1991). Clearly the integration approach is ca-pable of �nding a true value for wMP, and so the value found within the evidenceapproximation must be in error (to the extent that the two approaches di�er).However, MacKay (1994b) has argued that the Gaussian approximation foundby the evidence approach �nds a better representation for most of the volume ofthe posterior probability distribution.3 Model Comparison RevisitedAs discussed in Section 1.2, the Bayesian approach automatically penalizes highlycomplex models and so is able to pick out an optimal model without resorting tothe use of independent data as in methods such as cross-validation. Models can



12be compared using the evidence (the probability of the observed data set underthe given model), which can be evaluated by usingp(DjHi) = Z Z p(Dj�; �;Hi)p(�; �jHi) d�d�: (0.1)The quantity p(Dj�; �;Hi) is just the evidence for � and � which we consideredearlier (with the dependence on the model again made explicit). The integrationin (0.1) can be performed by making a Gaussian approximation for p(Dj�; �;Hi)as a function of � and � around their most probable values. This leads to anexpression for the model evidence which involves the determinant of the Hessianmatrix.In practice the accurate evaluation of the evidence can prove to be verydi�cult. One of the reasons for this is that the determinant of the Hessian isgiven by the product of the eigenvalues and so is very sensitive to errors in thesmall eigenvalues. This was not the case for the evaluation �MP and �MP sincethese depend on the sum of the eigenvalues.Since the Bayesian approach to model comparison incorporates a mechanismfor penalizing over-complex models, we might expect that the model with thelargest evidence would give the best results on unseen data, in other words thatit would have the best generalization properties. MacKay (1992d) and Thodberg(1993) both report observing empirical (anti) correlation between model evidenceand generalization error. However, this correlation is far from perfect. Althoughwe expect some correlation between a model having high evidence and the modelgeneralizing well, the evidence is not measuring the same thing as generalizationperformance. In particular, we can identify several distinctions between thesequantities:� The test error is measured on a �nite data set and so is a noisy quantity.� The evidence provides a quantitative measure of the relative probabilitiesof di�erent models. Although one particular model may have the highestprobability, there may be other models for which the probability is stillsigni�cant. Thus the model with the highest evidence will not necessarilygive the best performance. We shall return to this point shortly when wediscuss committees of networks.� If we had two di�erent models which happened to give rise to the samemost-probable interpolant, then they would necessarily have the same gen-eralization performance, but the more complex model would have have asmaller evidence. Thus, for two models which make the same predictions,the Bayesian approach favours the simpler model.� The generalization error, in the form considered above, is measured usinga network with weights set to the maximum of the posterior distribution.The evidence, however, takes account of the complete posterior distributionaround the most probable value.� The Bayesian analysis implicitly assumes that the set of models underconsideration contains the `truth' as a particular case. If all of the models



x3 MODEL COMPARISON REVISITED 13are poorly matched to the problem then the relative evidences of di�erentmodels may be misleading. MacKay (1992d) argues that a poor correlationbetween evidence and generalization error can be used to infer the presenceof limitations in the models.An additional reason why the correlation between evidence and test error maybe poor is that there will be inaccuracies in evaluating the evidence. Thesearise from the use of a Gaussian approximation to the posterior distribution,and are particularly important if the Hessian matrix has one or more very smalleigenvalues, as discussed above.Further insight into the issue of model complexity in the Bayesian frameworkhas been provided by Neal (1994) who has argued that, provided the completeBayesian analysis is performed without approximation, there is no need to limitthe complexity of a model even when there is relatively little training data avail-able. Many real-world applications of neural networks (for example the recogni-tion of handwritten characters) involve a multitude of complications and we donot expect them to be accurately solved by a simple network having a few hid-den units. Neal (1994) was therefore led to consider the behaviour of priors overweights in the limit as the number of hidden units tends to in�nity. He showedthat, provided the parameters governing the priors are scaled appropriately withthe number of units, the resulting prior distributions over network functions arewell behaved in this limit. Such priors could in principle permit the use of verylarge networks. In practice, however, we may wish to limit the complexity inorder to ensure that Gaussian assumptions are valid, or that Monte Carlo tech-niques (discussed in Section 4) can produce acceptable answers in reasonablecomputational time.In our discussions of regression problems in Section 2, we approximated theposterior distribution of weights by a single Gaussian centred on a maximumof the distribution. In practice, we know that the posterior distribution will bemulti-modal and that there will often be many local maxima (corresponding tolocal minima of the error function). To take account of this we can consideran approximation consisting of a Gaussian centred on each of the local maximafound by our optimization algorithm. The posterior distribution of the weightscan be represented asp(wjD) = Xi p(mi;wjD)= Xi p(wjmi; D)P (mijD) (0.2)where mi denotes one of the local maxima. This distribution is used to determineother quantities by integration over the whole of weight space. For instance, themean network output is given byy = Z y(x;w)p(wjD) dw



14 = Xi P (mijD) Z�i y(x;w)p(wjmi; D) dw= Xi P (mijD)yi (0.3)where �i denotes the region of weight space surrounding the ith local maximum,and yi is the corresponding network prediction averaged over this region. Thuswe see that the overall prediction is given by a linear combination of the pre-dictions of each of the local solutions separately. Such combinations of multipletrained networks are known as committees. In practice, the coe�cients are dif-�cult to evaluate accurately (since they correspond to model evidences) and sothe committee coe�cients may be simply set equal to 1=L where L is the totalnumber of minima, or may be chosen using cross-validation.4 Monte Carlo MethodsIn the conventional (maximum likelihood) approach to network training, thebulk of the computational e�ort is concerned with optimization, in order to �ndthe minimum of an error function. By contrast, in the Bayesian approach, thecentral operations require integration over multi-dimensional spaces. For exam-ple, the evaluation of the distribution of network outputs involves an integralover weight space given by (0.7). Similarly, the evaluation of the evidence forthe hyperparameters also involves an integral over weight space given by (0.19).So far in this chapter, we have concentrated on the use of a Gaussian approxima-tion for the posterior distribution of the weights, which allows these integrals tobe performed analytically. This also allows the problem of integration to be re-placed again with one of optimization (needed to �nd the mean of the Gaussian).If we wish to avoid the Gaussian approximation then we might seek numericaltechniques for evaluating the required integrals directly.Many standard numerical integration techniques, which can be used success-fully for integrations over a small number of variables, are totally unsuitable forintegrals of the kind we are considering, which involve integration over spaces ofhundreds or thousands of weight parameters. For instance, if we try to sampleweight space on some regular grid then, since the number of grid points growsexponentially with the dimensionality, the computational e�ort would be pro-hibitive. We resort instead to various forms of random sampling of points inweight space. Such methods are called Monte Carlo techniques.The integrals we wish to evaluate take the formI = Z F (w)p(wjD) dw (0.1)where p(wjD) represents posterior distribution of the weights, and F (w) is some



x4 MONTE CARLO METHODS 15integrand. The basic idea is to approximate (0.1) with the �nite sumI ' 1L LXi=1 F (wi) (0.2)where fwig represents a sample of weight vectors generated from the distributionp(wjD).We must therefore face the task of generating a sample of vectors w repre-sentative of the distribution p(wjD), which in general will not be easy. To do ite�ectively, we must search through weight space to �nd regions where p(wjD) isreasonably large. This can be done by considering a sequence of vectors, whereeach successive vector depends on the previous vector as well as having a randomcomponent. Such techniques are calledMarkov chain Monte Carlomethods, andare reviewed in Neal (1993). The simplest example is a random walk in which atsuccessive steps we have wnew = wold + � (0.3)where � is some small random vector, chosen for instance from a spherical Gaus-sian distribution having a small variance parameter. Note that successive vectorsgenerated in this way will no longer be independent. As a result of this depen-dence, the number of vectors needed to achieve a given accuracy in approximatingan integral using (0.2) may be much larger than if the vectors had been inde-pendent. We can arrange for the distribution of weight vectors to correspondto p(wjD) by making use of the Metropolis algorithm (Metropolis et al., 1953),which was developed to study the statistical mechanics of physical systems. Theidea is to make candidate steps of the form (0.3), but to reject a proportionof the steps which lead to a reduction in the value of p(wjD). This must bedone with great care, however, in order to ensure that resulting sample of weightvectors represents the required distribution. In the Metropolis algorithm this isachieved by using the following criterion:if p(wnewjD) > p(woldjD) acceptif p(wnewjD) < p(woldjD) accept with probability p(wnewjD)p(wold jD) (0.4)In the case of the Bayesian integrals needed for neural networks, however, thisapproach can still prove to be de�cient due to the strong correlations in theposterior distribution, as illustrated in Figure 5.This problem can be tackled by taking account of information concerningthe gradient of p(wjD) and using this to choose search directions which favourregions of high posterior probability. For neural networks, the gradient informa-tion is easily obtained using standard back-propagation (recall that � lnp(wjD)is an error function). Great care must be taken to ensure that the gradient in-formation is used in such a way that the distribution of weight vectors which isgenerated corresponds to the required distribution. A procedure for achievingthis, known as hybrid Monte Carlo, was developed by Duane et al. (1987), and
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Fig. 5. When the standard Metropolis algorithm is applied to the evaluation ofintegrals in the Bayesian treatment of neural networks, a large proportion ofthe candidate steps are rejected due to the high correlations in the posteriordistribution. Starting from the point wold, almost all potential steps (shownby the arrows) will lead to a decrease in p(wjD). This problem becomes moresevere in spaces of higher dimensionality.was applied to the Bayesian treatment of neural networks by Neal (1992, 1994).By using the hybrid Monte Carlo algorithm it is possible to generate a suit-able sample of weight vectors wi for practical applications of neural networksin reasonable computational time. For a given test input vector x, the corre-sponding network predictions y(x;wi) represent a sample from the distributionp(yjx; D). This allows the uncertainties on the network outputs, associated witha new input vector, to be assessed. Hyperparameters can be integrated over atthe same time as the weights, using the technique of Gibbs sampling.The estimation of the model evidence, however, remains a di�cult prob-lem. Another signi�cant problem with Monte Carlo methods is the di�culty inde�ning a suitable termination criterion. Despite these drawbacks, Monte Carlotechniques o�er a promising approach to Bayesian inference in the context ofneural networks.5 Additional TopicsThere are many aspects of Bayesian methods which we have not had space todiscuss at length here. For example, Bayesian methods allow choices to be madeabout where in input space new data should be collected in order that it be themost informative (MacKay, 1992c). Such use of the model itself to guide thecollection of data during training is known as active learning. Also, the relativeimportance of di�erent inputs can be determined using the Bayesian techniqueof automatic relevance determination (MacKay, 1994a, 1995; Neal, 1994), basedon the use of a separate hyperparameters for each input. If a particular hyper-parameter acquires a large value, this indicates that the corresponding input is
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