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AbstractLatent variable models represent the probability density of data in a space of several dimensionsin terms of a smaller number of latent, or hidden, variables. A familiar example is factor analysiswhich is based on a linear transformations between the latent space and the data space. In thispaper we introduce a form of non-linear latent variable model called the Generative TopographicMapping for which the parameters of the model can be determined using the EM algorithm. GTMprovides a principled alternative to the widely used Self-OrganizingMap (SOM) of Kohonen (1982),and overcomes most of the signi�cant limitations of the SOM. We demonstrate the performance ofthe GTM algorithm on a toy problem and on simulated data from ow diagnostics for a multi-phaseoil pipeline.
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GTM: The Generative Topographic Mapping 21 IntroductionMany data sets exhibit signi�cant correlations between the variables. One way to capture suchstructure is to model the distribution of the data in terms of latent, or hidden, variables. Afamiliar example of this approach is factor analysis, which is based on a linear transformationfrom latent space to data space. In this paper we show how the latent variable framework canbe extended to allow non-linear transformations while remaining computationally tractable. Thisleads to the GTM (Generative Topographic Mapping) algorithm, which is based on a constrainedmixture of Gaussians whose parameters can be optimized using the EM (expectation-maximization)algorithm.One of the motivations for this work is to provide a principled alternative to the widely used `self-organizing map' (SOM) algorithm (Kohonen 1982) in which a set of unlabelled data vectors tn(n = 1; : : : ; N) in a D-dimensional data space is summarized in terms of a set of reference vectorshaving a spatial organization corresponding to a (generally) two-dimensional sheet. While thisalgorithm has achieved many successes in practical applications, it also su�ers from some signi�cantde�ciencies, many of which are highlighted in Kohonen (1995). They include: the absence of acost function, the lack of a theoretical basis for choosing learning rate parameter schedules andneighbourhood parameters to ensure topographic ordering, the absence of any general proofs ofconvergence, and the fact that the model does not de�ne a probability density. These problems canall be traced to the heuristic origins of the SOM algorithm1. We show that the GTM algorithmovercomes most of the limitations of the SOM while introducing no signi�cant disadvantages.An important application of latent variable models is to data visualization. Many of the modelsused in visualization are regarded as de�ning a projection from the D-dimensional data spaceonto a two-dimensional visualization space. We shall see that, by contrast, the GTM model isde�ned in terms of a mapping from the latent space into the data space. For the purposes ofdata visualization, the mapping is then inverted using Bayes' theorem, giving rise to a posteriordistribution in latent space.2 Latent VariablesThe goal of a latent variable model is to �nd a representation for the distribution p(t) of data in aD-dimensional space t = (t1; : : : ; tD) in terms of a number L of latent variables x = (x1; : : : ; xL).This is achieved by �rst considering a function y(x;W) which maps points x in the latent spaceinto corresponding points y(x;W) in the data space. The mapping is governed by a matrixof parameters W, and could consist, for example, of a feed-forward neural network in whichcase W would represent the weights and biases. We are interested in the situation in which thedimensionality L of the latent-variable space is less than the dimensionality D of the data space,since we wish to capture the fact that the data itself has an intrinsic dimensionality which is lessthan D. The transformation y(x;W) then maps the latent-variable space into an L-dimensionalnon-Euclidean manifold S embedded within the data space2. This is illustrated schematically forthe case of L = 2 and D = 3 in Figure 1.If we de�ne a probability distribution p(x) on the latent-variable space, this will induce a corre-sponding distribution p(yjW) in the data space. We shall refer to p(x) as the prior distribution ofx for reasons which will become clear shortly. Since L < D, the distribution in t-space would be1Biological metaphor is sometimes invoked when motivating the SOM procedure. It should be stressed that ourgoal here is not neuro-biological modelling, but rather the development of e�ective algorithms for data analysis, forwhich biological realism need not be considered.2We assume that the matrix of partial derivatives @yk=@xi has full column rank.
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Figure 1: The non-linear function y(x;W) de�nes a manifold S embedded in data space givenby the image of the latent-variable space under the mapping x! y.con�ned to the L-dimensional manifold and hence would be singular. Since in reality the data willonly approximately live on a lower-dimensional manifold, it is appropriate to include a noise modelfor the t vector. We choose the distribution of t, for given x and W, to be a radially-symmetricGaussian centred on y(x;W) having variance ��1 so thatp(tjx;W; �) = � �2��D=2 exp���2 ky(x;W)� tk2� : (1)Note that other models for p(tjx) might also be appropriate, such as a Bernoulli for binary variables(with a sigmoid transformation of y) or a multinomial for mutually exclusive classes (with a`softmax', or normalized exponential transformation of y (Bishop 1995)), or even combinations ofthese. The distribution in t-space, for a given value ofW, is then obtained by integration over thex-distribution p(tjW; �) = Z p(tjx;W; �)p(x) dx: (2)For a given a data set D = (t1; : : : ; tN ) of N data points, we can determine the parameter matrixW, and the inverse variance �, using maximum likelihood. In practice it is convenient to maximizethe log likelihood, given by L(W; �) = ln NYn=1 p(tnjW; �): (3)Once we have speci�ed the prior distribution p(x) and the functional form of the mapping y(x;W),we can in principle determine W and � by maximizing L(W; �). However, the integral over x in(2) will, in general, be analytically intractable. If we choose y(x;W) to be a linear function ofW, and we choose p(x) to be Gaussian, then the integral becomes a convolution of two Gaussianswhich is itself a Gaussian. For a noise distribution p(tjx) which is Gaussian with a diagonalcovariance matrix, we obtain the standard factor analysis model. In the case of the radiallysymmetric Gaussian given by (1) the model is closely related to principal component analysis sincethe maximum likelihood solution for W has columns given by the scaled principal eigenvectors.Here we wish to extend this formalism to non-linear functions y(x;W), and in particular to developa model which is similar in spirit to the SOM algorithm. We therefore consider a speci�c form forp(x) given by a sum of delta functions centred on the nodes of a regular grid in latent spacep(x) = 1K KXi=1 �(x� xi) (4)
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Figure 2: In order to formulate a latent variable model which is similar in spirit to the SOM,we consider a prior distribution p(x) consisting of a superposition of delta functions,located at the nodes of a regular grid in latent space. Each node xi is mapped to acorresponding point y(xi;W) in data space, and forms the centre of a correspondingGaussian distribution.in which case the integral in (2) can again be performed analytically. Each point xi is then mappedto a corresponding point y(xi;W) in data space, which forms the centre of a Gaussian densityfunction, as illustrated in Figure 2. From (2) and (4) we see that the distribution function in dataspace then takes the form p(tjW; �) = 1K KXi=1 p(tjxi;W; �) (5)and the log likelihood function becomesL(W; �) = NXn=1 ln( 1K KXi=1 p(tnjxi;W; �)) : (6)For the particular noise model p(tjx;W; �) given by (1), the distribution p(tjW; �) correspondsto a constrained Gaussian mixture model (Hinton, Williams, and Revow 1992) since the centresof the Gaussians, given by y(xi;W), cannot move independently but are related through thefunction y(x;W). Note that, provided the mapping function y(x;W) is smooth and continuous,the projected points y(xi;W) will necessarily have a topographic ordering in the sense that anytwo points xA and xB which are close in latent space will map to points y(xA;W) and y(xB ;W)which are close in data space.2.1 The EM AlgorithmIf we now choose a particular parametrized form for y(x;W) which is a di�erentiable function ofW (for example, a feed-forward network with sigmoidal hidden units) then we can use standardtechniques for non-linear optimization, such as conjugate gradients or quasi-Newton methods, to�nd a weight matrixW�, and an inverse variance ��, which maximize L(W; �).However, our model consists of a mixture distribution which suggests that we might seek anEM (expectation-maximization) algorithm (Dempster, Laird, and Rubin 1977; Bishop 1995). Bymaking a suitable choice of model y(x;W) we will see that the M-step corresponds to the solutionof a set of linear equations. In particular we shall choose y(x;W) to be given by a generalized



GTM: The Generative Topographic Mapping 5linear regression model of the form y(x;W) =W�(x) (7)where the elements of �(x) consist of M �xed basis functions �j(x), and W is a D �M matrix.Generalized linear regressionmodels possess the same universal approximation capabilities as multi-layer adaptive networks, provided the basis functions �j(x) are chosen appropriately. The usuallimitation of such models, however, is that the number of basis functions must typically growexponentially with the dimensionality L of the input space (Bishop 1995). In the present contextthis is not a signi�cant problem since the dimensionality is governed by the number of latentvariable variables which will typically be small. In fact for data visualization applications wegenerally use L = 2.The maximization of (6) can be regarded as a missing-data problem in which the identity i of thecomponent which generated each data point tn is unknown. We can formulate the EM algorithmfor this model as follows. First, suppose that, at some point in the algorithm, the current weightmatrix is given by Wold and the current inverse noise variance is given by �old. In the E-stepwe use Wold and �old to evaluate the posterior probabilities, or responsibilities, of each Gaussiancomponent i for every data point tn using Bayes' theorem in the formRin(Wold; �old) = p(xijtn;Wold; �old) (8)= p(tnjxi;Wold; �old)XKi0=1p(tnjxi0 ;Wold; �old) : (9)We now consider the expectation of the complete-data log likelihood in the formhLcomp(W; �)i = NXn=1 KXi=1 Rin(Wold; �old) ln fp(tnjxi;W; �)g : (10)Maximizing (10) with respect to W, and using (1) and (7), we obtainNXn=1 KXi=1 Rin(Wold; �old) fWnew�(xi)� tng�T(xi) = 0: (11)This can conveniently be written in matrix notation in the form�TGold�WTnew = �TRoldT (12)where � is a K �M matrix with elements �ij = �j(xi), T is a N �D matrix with elements tnk,R is a K �N matrix with elements Rin, and G is a K �K diagonal matrix with elementsGii = NXn=1Rin(W; �): (13)We can now solve (12) for Wnew using standard matrix inversion techniques, based on singularvalue decomposition to allow for possible ill-conditioning. Note that the matrix � is constantthroughout the algorithm, and so need only be evaluated once at the start.Similarly, maximizing (10) with respect to � we obtain the following re-estimation formula1�new = 1ND NXn=1 KXi=1 Rin(Wold; �old) kWnew�(xi)� tnk2 : (14)The EM algorithm alternates between the E-step, corresponding to the evaluation of the posteriorprobabilities in (9), and the M-step, given by the solution of (12) and (14). Jensen's inequality



GTM: The Generative Topographic Mapping 6can be used to show that, at each iteration of the algorithm, the objective function will increaseunless it is already at a (local) maximum, as discussed for example in Bishop (1995). Typicallythe EM algorithm gives satisfactory convergence after a few tens of cycles, particularly since weare primarily interested in convergence of the distribution and this is often achieved much morerapidly than convergence of the parameters themselves.If desired, a regularization term can be added to the objective function to control the mappingy(x;W). This can be interpreted as a MAP (maximum a-posteriori) estimator corresponding to achoice of prior over the weightsW. In the case of a radially-symmetric Gaussian prior of the formp(Wj�) = � �2��MD=2 exp8<:��2 MXj=1 DXk=1w2jk9=; (15)where � is the regularization coe�cient, this leads to a modi�cation of the M-step (12) to give(�TGold�+ �I)WTnew = �TRoldT (16)where I is the identity matrix.2.2 Data VisualizationOne application for GTM is in data visualization, in which Bayes' theorem is used to invert thetransformation from latent space to data space. For the particular choice of prior distributiongiven by (4), the posterior distribution is again a sum of delta functions centred at the latticepoints, with coe�cients given by the responsibilitiesRin. These coe�cients can be used to providea visualization of the posterior responsibility map for individual data points in the two-dimensionallatent space. If it is desired to visualize a set of data points then a complete posterior distributionfor each data point may provide too much information and it is often convenient to summarize theposterior by its mean, given for each data point tn byhxjtn;W�; ��i = Z p(xjtn;W�; ��)x dx (17)= KXi=1 Rinxi: (18)It should be borne in mind, however, that the posterior distribution can be multi-modal in whichcase the posterior mean can give a very misleading summary of the true distribution. An alternativeapproach is therefore to evaluate the mode of the distribution, given byimax = argmaxfig Rin: (19)In practice it is often convenient to plot both the mean and the mode for each data point, assigni�cant di�erences between them can be indicative of a multi-modal distribution.2.3 Choice of Model ParametersThe problem of density estimation from a �nite data set is fundamentally ill-posed, since there existin�nitely many distributions which could have given rise to the observed data. An algorithm fordensity modelling therefore requires some form of `prior knowledge' in addition to the data set. Theassumption that the distribution can be described in terms of a reduced number of latent variables
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Figure 3: Examples of manifolds generated by sampling from the prior distribution over Wgiven by (15), showing the e�ect of the choice of basis functions on the smoothnessof the manifold. Here the basis functions are Gaussian with width � = 4s in theleft-hand plot (where s is the spacing of the basis function centres), and � = 2sin the right-hand plot. Di�erent values of � simply a�ect the linear scaling of theembedded manifold.is itself part of this prior. In the GTM algorithm, the prior distribution over mapping functionsy(x;W) is governed by the prior over weights W, given for example by (15), as well as by thebasis functions. We typically choose the basis functions �j(x) to be radially symmetric Gaussianswhose centres are distributed on a uniform grid in x-space, with a common width parameter �,whose value, along with the number and spacing of the basis functions, determines the smoothnessof the manifold. Examples of surfaces generated by sampling the prior are shown in Figure 3.In addition to the basis functions �i(x), it is also necessary to select the latent-space sample pointsfxig. Note that, if there are too few sample points in relation to the number of basis functions,then the Gaussian mixture centres in data space become relatively independent and the desiredsmoothness properties can be lost. Having a large number of sample points, however, causes nodi�culty beyond increased computational cost. In particular, there is no `over-�tting' if the numberof sample points is increased since the number of degrees of freedom in the model is controlled bythe mapping function y(x;W). One way to view the role of the latent space samples fxig is asa Monte Carlo approximation to the integral over x in (2) (MacKay 1995; Bishop, Svens�en, andWilliams 1996a). The choice of the number K and location of the sample points xi in latent spaceis not critical, and we typically choose Gaussian basis functions and set K so that, in the caseof a two-dimensional latent space, O(100) sample points lie within 2� of the centre of each basisfunction.Note that we have considered the basis function parameters (widths and locations) to be �xed, witha Gaussian prior on the weight matrix W. In principle, priors over the basis function parameterscould also be introduced, and these could again be treated by MAP estimation or by Bayesianintegration.We initialize the parametersW so that the GTM model initially approximates principal componentanalysis. To do this, we �rst evaluate the data covariance matrix and obtain the �rst and secondprincipal eigenvectors, and then we determine W by minimizing the error functionE = 12Xi kW�(xi)�Uxik (20)where the columns of U are given by the eigenvectors. This represents the sum-of-squares error



GTM: The Generative Topographic Mapping 8between the projections of the latent points into data space by the GTM model and the corre-sponding projections obtained from PCA. The value of ��1 is initialized to be the larger of eitherthe L+ 1 eigenvalue from PCA (representing the variance of the data away from the PCA plane)or the square of half of the grid spacing of the PCA-projected latent points in data space.Finally, we note that in a numerical implementation care must be taken over the evaluation ofthe responsibilities since this involves computing the exponentials of the distances between theprojected latent points and the data points, which may span a signi�cant range of values.2.4 Summary of the GTM AlgorithmAlthough the foregoing discussion has been somewhat detailed, the underlying GTM algorithmitself is straightforward and is summarized here for convenience.GTM consists of a constrained mixture of Gaussians in which the model parameters are determinedby maximum likelihood using the EM algorithm. It is de�ned by specifying a set of points fxig inlatent space, together with a set of basis functions f�j(x)g. The adaptive parameters W and �de�ne a constrained mixture of Gaussians with centres W�(xi) and a common covariance matrixgiven by ��1I. After initializing W and �, training involves alternating between the E-step inwhich the posterior probabilities are evaluated using (9), and the M-step in which W and � arere-estimated using (12) and (14) respectively. Evaluation of the log likelihood using (6) at the endof each cycle can be used to monitor convergence.3 Experimental ResultsWe now present results from the application of this algorithm �rst to a toy problem involvingdata in two dimensions, and then to a more realistic problem involving 12-dimensional data arisingfrom diagnostic measurements of oil ows along multi-phase pipelines. In both examples we choosethe basis functions �j(x) to be radially symmetric Gaussians whose centres are distributed on auniform grid in x-space, with a common width parameter chosen equal to twice the separation ofneighbouring basis function centres. Results from a toy problem for the case of a 2-dimensionaldata space and a 1-dimensional latent space are shown in Figure 4.3.1 Oil Flow DataOur second example arises from the problem of determining the fraction of oil in a multi-phasepipeline carrying a mixture of oil, water and gas (Bishop and James 1993). Each data point con-sists of 12 measurements taken from dual-energy gamma densitometers measuring the attenuationof gamma beams passing through the pipe. Synthetically generated data is used which modelsaccurately the attenuation processes in the pipe, as well as the presence of noise (arising fromphoton statistics). The three phases in the pipe (oil, water and gas) can belong to one of threedi�erent geometrical con�gurations, corresponding to laminar, homogeneous, and annular ows,and the data set consists of 1000 points drawn with equal probability from the 3 con�gurations.We take the latent-variable space to be two-dimensional, since our goal is data visualization.Figure 5 shows the oil data visualized in the latent-variable space in which, for each data point,we have plotted the posterior mean vector. Each point has then been labelled according to its
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Figure 4: Results from a toy problem involving data (`�') generated from a 1-dimensional curveembedded in 2 dimensions, together with the projected latent points (`+') and theirGaussian noise distributions (�lled circles). The initial con�guration, determined byprincipal component analysis, is shown on the left, and the converged con�guration,obtained after 15 iterations of EM, is shown on the right.

Figure 5: The left plot shows the posterior-mean projection of the oil ow data in the la-tent space of the GTM model, while the plot on the right shows the same data setvisualized using principal component analysis. In both plots, crosses, circles andplus-signs represent strati�ed, annular and homogeneous multi-phase con�gurationsrespectively. Note how the non-linearity of GTM gives an improved separation ofthe clusters.



GTM: The Generative Topographic Mapping 10multi-phase con�guration. For comparison, Figure 5 also shows the corresponding results obtainedusing principal component analysis.4 Relation to the Self-Organizing MapSince one motivation for GTM is to provide a principled alternative to the self-organizing map, itis useful to consider the precise relationship between GTM and SOM. We focus our attention onthe batch versions of both algorithms as this helps to make the relationship particularly clear.The batch version of the SOM algorithm (Kohonen 1995) can be described as follows. A set of Kreference vectors zi is de�ned in the data space, in which each vector is associated with a node ona regular lattice in a (typically) two-dimensional `feature map' (analogous to the latent space ofGTM). The algorithm begins by initializing the reference vectors (for example by setting them torandom values, by setting them equal to a random subset of the data points, or by using principalcomponent analysis). Each cycle of the algorithm then proceeds as follows. For every data vectortn the corresponding `winning node' j(n) is identi�ed, corresponding to the reference vector zjhaving the smallest Euclidean distance kzj � tnk2 to tn. The reference vectors are then updatedby setting them equal to weighted averages of the data points given byzi = Pn hij(n)tnPn hij(n) : (21)in which hij is a neighbourhood function associated with the ith node. This is generally chosen tobe a uni-modal function of the feature map coordinates centred on the winning node, for examplea Gaussian. The steps of identifying the winning nodes and updating the reference vectors arerepeated iteratively. A key ingredient in the algorithm is that the width of the neighbourhoodfunction hij starts with a relatively large value and is gradually reduced after each iteration.4.1 Kernel versus Linear RegressionAs pointed out by Mulier and Cherkassky (1995), the value of the neighbourhood function hij(n)depends only on the identity of the winning node j and not on the value of the corresponding datavector tn. We can therefore perform partial sums over the groups Gj of data vectors assigned toeach node j, and hence re-write (21) in the formzi =Xj Kijmj (22)in which mj is the mean of the vectors in group Gj and is given bymj = 1Nj Xn2Gj tn (23)where Nj is the number of data vectors in group Gj . The result (22) is analogous to the Nadaraya-Watson kernel regression formula (Nadaraya 1964; Watson 1964) with the kernel functions givenby Kij = hijNjPj0 hij0Nj0 : (24)Thus the batch SOM algorithm replaces the reference vectors at each cycle with a convex combi-nation of the node means mj, with coe�cients determined by the neighbourhood function. Notethat the kernel coe�cients satisfy Pj Kij = 1 for every i.
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Figure 6: Example of the e�ective kernel Fij plotted as a function of the node j for a givennode i, for the oil ow data set after 3 iterations of EM. This kernel function isanalogous to the (normalized) neighbourhood function in the SOM algorithm.In the GTM algorithm, the centres y(xi;W) of the Gaussian components can be regarded asanalogous to the reference vectors zi of the SOM. We can evaluate y(xi;W) by solving the M-stepequation (12) to �nd W and then using y(xi;W) =W�(xi). If we de�ne the weighted means ofthe data vectors by �i = PnRintnPnRin (25)then we obtain y(xi;W) =Xj Fij�j (26)where we have introduced the e�ective kernel Fij given byFij = �T(xi)��TG���1 �(xj)Gjj : (27)Note that the e�ective kernel satis�es Pj Fij = 1. To see this, we �rst use (27) to show thatPj Fij�l(xj) = �l(xi). Then if one of the basis functions l corresponds to a bias, so that �l(x) =const:, the result follows.The solution for y(xi;W) given by (26) and (27) can be interpreted as a weighted least-squaresregression (Mardia, Kent, and Bibby 1979) in which the `target' vectors are the �i, and theweighting coe�cients are given by Gjj .Figure 6 shows an example of the e�ective kernel for GTM corresponding to the oil ow problemdiscussed in Section 3.From (22) and (26) we see that both GTM and SOM can be regarded as forms of kernel smoothers.However, there are two key di�erences. The �rst is that in SOM the vectors which are smoothed,de�ned by (23), correspond to hard assignments of data points to nodes, whereas the correspondingvectors in GTM, given by (25), involve soft assignments, weighted by the posterior probabilities.This is analogous to the distinction between K-means clustering (hard assignments) and �tting astandard Gaussian mixture model using EM (soft assignments).The second key di�erence is that the kernel function in SOM is made to shrink during the course ofthe algorithm in an arbitrary, hand-crafted manner. In GTM the posterior probability distributionin latent space, for a given data point, forms a localised `bubble' and the radius of this bubbleshrinks automatically during training, as shown in Figure 7. This responsibility bubble governsthe extent to which individual data points contribute towards the vectors �i in (25) and hencetowards the updating of the Gaussian centres y(xi;W) via (26).
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Figure 7: Examples of the posterior probabilities (responsibilities) Rin of the latent spacepoints at an early stage (left), intermediate stage (centre) and late stage (right)during the convergence of the GTM algorithm. These have been evaluated for asingle data point from the training set in the oil-ow problem discussed in Section 3,and are plotted using a non-linear scaling of the form p(xjtn)0:1 to highlight the vari-ation over the latent space. Notice how the responsibility `bubble', which governsthe updating of the weight matrix, and hence the updating of the data-space vectorsy(xi;W), shrinks automatically during the learning process.4.2 Comparison of GTM with SOMThe most signi�cant di�erence between the GTM and SOM algorithms is that GTM de�nes anexplicit probability density given by the mixture distribution in (5). As a consequence there isa well-de�ned objective function given by the log likelihood (6), and convergence to a (local)maximum of the objective function is guaranteed by the use of the EM algorithm (Dempster,Laird, and Rubin 1977). This also provides a direct means to compare di�erent choices of modelparameters, and even to compare a GTM solution with another density model, by evaluating thelikelihood of a test set under the generative distributions of the respective models. For the SOMalgorithm, however, there is no probability density and no well-de�ned objective function whichis being minimized by the training process. Indeed it has been proven (Erwin, Obermayer, andSchulten 1992) that such an objective function cannot exist for the SOM.A further limitation of the SOM, highlighted in Kohonen (1995, page 234), is that the conditionsunder which so-called `self-organization' of the SOM occurs have not been quanti�ed, and so inpractice it is necessary to con�rm empirically that the trained model does indeed have the desiredspatial ordering. In contrast, the neighbourhood-preserving nature of the GTM mapping is anautomatic consequence of the choice of a continuous function y(x;W).Similarly, the smoothness properties of the SOM are determined indirectly by the choice of neigh-bourhood function and by the way in which it is changed during the course of the algorithm, andis therefore di�cult to control. Thus, prior knowledge about the form of the map cannot easilybe speci�ed. The prior distribution for GTM, however, can be controlled directly, and propertiessuch as smoothness are governed explicitly by basis function parameters, as illustrated in Figure 3.Finally, we consider the relative computational costs of the GTM and SOM algorithms. Forproblems involving data in high-dimensional spaces the dominant computational cost of GTMarises from the evaluation of the Euclidean distances from every data point to every Gaussian centrey(xi;W). Since exactly the same calculations must be done for SOM (involving the distances ofdata points from the reference vectors �i) we expect one iteration of either algorithm to takeapproximately the same time. An empirical comparison of the computational cost of GTM andSOM was obtained by running each algorithm on the oil ow data until `convergence' (de�nedas no discernible change in the appearance of the visualization map). The GTM algorithm took



GTM: The Generative Topographic Mapping 131058 sec. (40 iterations) while the batch SOM took 1011 sec. (25 iterations) using a Gaussianneighbourhood function. With a simple `top-hat' neighbourhood function, in which each referencevector is updated at each iteration using only data points associated with nearby reference vectors,the CPU time for the SOM algorithm is reduced to 305sec. (25 iterations). One potential advantageof GTM in practical applications arises from a reduction in the number of experimental trainingruns needed since both convergence and topographic ordering are guaranteed.5 Relation to Other AlgorithmsThere are several algorithms in the published literature which have close links with GTM. Herewe review briey the most signi�cant of these.The elastic net algorithm of Durbin and Willshaw (1987) can be viewed as a Gaussian mixturedensity model, �tted by penalized maximum likelihood. The penalty term encourages the centresof Gaussians corresponding to neighbouring points along the (typically one-dimensional) chain tobe close in data space. It di�ers from GTM in that it does not de�ne a continuous data spacemanifold. Also, the training algorithm generally involves a hand-crafted annealing of the weightpenalty coe�cient.There are also similarities between GTM and principal curves and principal surfaces (Hastie andStuetzle 1989; LeBlanc and Tibshirani 1994) which again involve a two-stage algorithm consistingof projection followed by smoothing, although these are not generative models. It is interesting tonote that Hastie and Stuetzle (1989) propose reducing the spatial width of the smoothing functionduring learning, in a manner analogous to the shrinking of the neighbourhood function in theSOM. A modi�ed form of the principal curves algorithm (Tibshirani 1992) introduces a generativedistribution based on a mixture of Gaussians, with a well-de�ned likelihood function, and is trainedby the EM algorithm. However, the number of Gaussian components is equal to the number ofdata points, and smoothing is imposed by penalizing the likelihood function with the addition ofa derivative-based regularization term.The technique of parametrized self-organizingmaps (PSOMs) involves �rst �tting a standard SOMmodel to a data set and then �nding a manifold in data space which interpolates the referencevectors (Ritter 1993). Although this de�nes a continuous manifold, the interpolating surfacedoes not form part of the training algorithm, and the basic problems in using SOM, discussedin Section 4.2, remain.The SOM has also been used for vector quantization. In this context it has been shown howa re-formulation of the vector quantization problem (Luttrell 1990; Buhmann and K�uhnel 1993;Luttrell 1994) can avoid many of the problems with the SOM procedure discussed earlier.Finally, the `density network' model of MacKay (1995) involves transforming a simple distributionin latent space to a complex distribution in data space by propagation through a non-linear network.A discrete distribution in latent space is again used, which is interpreted as an approximate MonteCarlo integration over the latent variables needed to de�ne the data space distribution. GTMcan be seen as a particular instance of this framework in which the sampling of latent space isregular rather than stochastic, a speci�c form of non-linearity is used, and the model parametersare adapted using EM.



GTM: The Generative Topographic Mapping 146 DiscussionIn this paper we have introduced a form of non-linear latent variable model which can be trainede�ciently using the EM algorithm. Viewed as a topographic mapping algorithm, it has the keyproperty that it de�nes a probability density model.As an example of the signi�cance of having a probability density, consider the important practicalproblem of dealing with missing values in the data set (in which some components of the datavectors tn are unobserved). If the missing values are missing at random (Little and Rubin 1987)then the likelihood function is obtained by integrating out the unobserved values. For the GTMmodel the integrations can be performed analytically, leading to a simple modi�cation of the EMalgorithm.A further consequence of having a probabilistic approach is that it is straightforward to considera mixture of GTM models. In this case the overall density can be written asp(t) =Xr P (r)p(tjr) (28)where p(tjr) represents the rth model, with its own set of independent parameters, and P (r) aremixing coe�cients satisfying 0 � P (r) � 1 and Pr P (r) = 1. Again, it is straightforward toextend the EM algorithm to maximize the corresponding likelihood function.The GTM algorithm can be extended in other ways, for instance by allowing independent mix-ing coe�cients �i (prior probabilities) for each of the Gaussian components, which again can beestimated by a straightforward extension of the EM algorithm. Instead of being independent pa-rameters, the �i can be determined as smooth functions of the latent variables using a normalizedexponential applied to a generalized linear regression model, although in this case the M-step ofthe EM algorithm would involve non-linear optimization. Similarly, the inverse noise variance� can be generalized to a function of x. An important property of GTM is the existence of asmooth manifold in data space, which allows the local `magni�cation factor' between latent anddata space to be evaluated as a function of the latent space coordinates using the techniques ofdi�erential geometry (Bishop, Svens�en, and Williams 1996b). Finally, since there is a well-de�nedlikelihood function, it is straightforward in principle to introduce priors over the model parameters(as discussed in Section 2.1) and to use Bayesian techniques in place of maximum likelihood.Throughout this paper we have focussed on the batch version of the GTM algorithm in which allof the training data are used together to update the model parameters. In some applications it willbe more convenient to consider sequential adaptation in which data points are presented one at atime. Since we are minimizing a di�erentiable cost function, given by (6), a sequential algorithmcan be obtained by appealing to the Robbins-Monro procedure (Robbins and Monro 1951; Bishop1995) to �nd a zero of the objective function gradient. Alternatively, a sequential form of the EMalgorithm can be used (Titterington, Smith, and Makov 1985).A web site for GTM is provided at:http://www.ncrg.aston.ac.uk/GTM/which includes postscript �les of relevant papers, a software implementation in Matlab (a C im-plementation is under development), and example data sets used in the development of the GTMalgorithm.
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