
The dynamics of a Genetic Algorithm for a simplelearning problemMagnus Rattray x and Jonathan L ShapiroComputer Science Department, University of Manchester, Oxford Road, ManchesterM13 9PL, UKTo appear in J. Phys A (accepted August 15th, 1996)Abstract.A formalism for describing the dynamics of Genetic Algorithms (GAs) usingmethods from statistical mechanics is applied to the problem of generalization in aperceptron with binary weights. The dynamics are solved for the case where a newbatch of training patterns is presented to each population member each generation,which considerably simpli�es the calculation. The theory is shown to agree closelyto simulations of a real GA averaged over many runs, accurately predicting the meanbest solution found. For weak selection and large problem size the di�erence equationsdescribing the dynamics can be expressed analytically and we �nd that the e�ects ofnoise due to the �nite size of each training batch can be removed by increasing thepopulation size appropriately. If this population resizing is used, one can deduce themost computationally e�cient size of training batch each generation. For independentpatterns this choice also gives the minimum total number of training patterns used.Although using independent patterns is a very ine�cient use of training patterns ingeneral, this work may also prove useful for determining the optimum batch size in thecase where patterns are recycled.1. IntroductionGenetic Algorithms (GAs) are adaptive search techniques, which can be used to �ndlow energy states in poorly characterized, high-dimensional energy landscapes [8, 11].They have already been successfully applied in a large range of domains [2] and a reviewof the literature shows that they are becoming increasingly popular. In particular, GAshave been used in a number of machine learning applications, including the design andtraining of arti�cial neural networks [7, 19, 28].In the simple GA considered here, each population member is represented by agenotype, in this case a binary string, and an objective function assigns an energyx email: rattraym@cs.man.ac.uk
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2to each such genotype. A population of solutions evolves for a number of discretegenerations under the action of genetic operators, in order to �nd low energy (high�tness) states. The most important operators are selection, where the population isimproved through some form of preferential sampling, and crossover (or recombination),where population members are mixed, leading to non-local moves in the search space.Mutation is usually also included, allowing incremental changes to population members.GAs di�er from other stochastic optimization techniques, such as simulated annealing,because a population of solutions is processed in parallel and it is hoped that thismay lead to improvement through the recombination of mutually useful features fromdi�erent population members.A formalism has been developed by Pr�ugel-Bennett, Shapiro and Rattray whichdescribes the dynamics of a simple GA using methods from statistical mechanics [14,15, 16, 17]. This formalism has been successfully applied to a number of simple Isingsystems and has been used to determine optimal settings for some of the GA searchparameters [21]. It describes problems of realistic size and includes �nite populatione�ects, which have been shown to be crucial to understanding how the GA searches.The approach can be applied to a range of problems including ones with multiple optima,and it has been shown to predict simulation results with high accuracy, although smallerrors can sometimes be detected.Under the statistical mechanics formalism, the population is described by a smallnumber of macroscopic quantities which are statistical measures of the population.Statistical mechanics techniques are used to derive deterministic di�erence equationswhich describe the average e�ect of each operator on these macroscopics. Since thedynamics of a GA is to be modelled by the average dynamics of an ensemble of GAs,it is important that the quantities which are used to describe the system are robustand self-averaging. The macroscopics which have been used are the cumulants of someappropriate quantity, such as the energy or the magnetization, and the mean correlationwithin the population, since these are robust statistics which average well over di�erentrealizations of the dynamics. There may be small systematic errors, since the di�erenceequations for evolving these macroscopics sometimes involve nonlinear terms which maynot self-average, but these corrections are generally small and will be neglected here.The statistical mechanics theory is distinguished by the facts that a macroscopicdescription of the GA is used and that the averaging is done such that uctuations canbe included in a systematic way. Many other theoretical approaches are based on theintuitive idea that above average �tness building blocks are preferentially sampled bythe GA, which, if they can be usefully recombined, results in highly �t individuals beingproduced [8, 11]. Although this may be a useful guide to the suitability of particularproblems to a GA, it is di�cult to make progress towards a quantitative description forrealistic problems, as it is di�cult to determine which are the relevant building blocks



3and which building blocks are actually present in a �nite population. This approachhas led to false predictions of problem di�culty, especially when the dynamic natureof the search is ignored [6, 9]. A rigorous approach introduced by Vose et al describesthe population dynamics as a dynamical system in a high-dimensional Euclidean space,with each genetic operator incorporated as a transition tensor [25, 26]. This methoduses a microscopic description and is di�cult to apply to speci�c problems of realisticsize due to high-dimensionality of the equations of motion. More recently, a numberof results have been derived for the performance of a GA on a class of simple additiveproblems [1, 12, 20]. These approaches use a macroscopic description, but assume aparticular form for the distribution of macroscopics which is only applicable in largepopulations and for a speci�c class of problem. It is di�cult to see how to transfer theresults to other problems where �nite population e�ects cannot be ignored.Other researchers have introduced theories based on averages. A description ofGA dynamics in terms of the evolution of the parent distribution from which �nitepopulations are sampled was produced by Vose and Wright [27]. This microscopicapproach provides a description of the �nite population e�ects which is elegant andcorrect. However, like other microscopic descriptions it is di�cult to apply to speci�crealistic problems due to the enormous dimensionality of the system. Macroscopicdescriptions can result in low-dimensional equations which can be more easily studied.Another formalism based on the evolution of parent distributions was developed by Peckand Dhawan [13], but they did not use the formalism to develop equations describing�nite population dynamics.The importance of choosing appropriate quantities to average is well-known instatistical physics, but does not seem to be widely appreciated in genetic algorithmtheory. In particular, many authors use results based on properties of the averageprobability distribution; this is insensitive to �nite-population uctuations and onlygives accurate results in the in�nite population limit. Thus, many results are onlyaccurate in the in�nite population limit, even though this limit is not taken explicitly.For example, Srinivas and Patnaik [23] and Peck and Dhawan [13] both produceequations for the moments of the �tness distribution in terms of the moments of theinitial distribution. These are moments of the average distribution. Consequently, theequations do not correctly describe a �nite population and results presented in thesepapers reect that. Other attempts to describe GAs in terms of population moments (orschema moments or average Walsh coe�cients) su�er from this problem. Macroscopicdescriptions of population dynamics are also widely used in quantitative genetics (see,for example, reference [5]). In this �eld the importance of �nite-population uctuationsis more widely appreciated; the in�nite population limit is usually taken explicitly. Usingthe statistical mechanics approach, equations for �tness moments which include �nite-population uctuations can be derived by averaging the cumulants, which are more



4robust statistics.Here, the statistical mechanics formalism is applied to a simple problem fromlearning theory, generalization of a rule by a perceptron with binary weights. Theperceptron learns from a set of training patterns produced by a teacher perceptron, alsowith binary weights. A new batch of training patterns are presented to each populationmember each generation which simpli�es the analysis considerably, since there areno over-training e�ects and each training pattern can be considered as statisticallyindependent. Baum et al have shown that this problem is similar to a paramagnetwhose energy is corrupted by noise and they suggest that the GA may perform wellin this case, since it is relatively robust towards noise when compared to local searchmethods [1]. The noise in the training energy is due to the �nite size of the training setand is a feature of many machine learning problems [7].We show that the noise in the training energy is well approximated by a Gaussiandistribution for large problem size, whose mean and variance can be exactly determinedand are simple functions of the overlap between pupil and teacher. This allows thedynamics to be solved, extending the statistical mechanics formalism to this simple, yetnon-trivial, problem from learning theory. The theory is compared to simulations of areal GA averaged over many runs and is shown to agree well, accurately predicting theevolution of the cumulants of the overlap distribution within the population, as well asthe mean correlation and mean best population member. In the limit of weak selectionand large problem size the population size can be increased to remove �nite training sete�ects and this leads to an expression for the optimal training batch size.2. Generalization in a perceptron with binary weightsA perceptron with Ising weights wi 2 f�1; 1g maps an Ising training pattern f��i g ontoa binary output,O� = Sgn NXi=1wi��i ! Sgn(x) = 8<: 1 for x � 0�1 for x < 0 (1)where N is the number of weights. Let ti be the weights of the teacher perceptron andwi be the weights of the pupil. The stability of a pattern is a measure of how well it isstored by the perceptron and the stabilities of pattern � for the teacher and pupil are��t and ��w respectively,��t = 1pN NXi=1 ti��i ��w = 1pN NXi=1wi��i (2)The training energy will be de�ned as the number of patterns the pupil misclassi�es,E = �NX�=1�(���t��w) �(x) = 8<: 1 for x � 00 for x < 0 (3)



5where �N is the number of training patterns presented and �(x) is the Heavisidefunction. In this work a new batch of training examples is presented each time thetraining energy is calculated.For large N it is possible to calculate the entropy of solutions compatible with thetotal training set and there is a �rst-order transition to perfect generalization as thesize of training set is increased [10, 22]. This transition occurs for O(N) patterns andbeyond the transition the weights of the teacher are the only weights compatible withthe training set. In this case there is no problem with over-training to that particularset, although a search algorithmmight still fail to �nd these weights. The GA consideredhere will typically require more than O(N) patterns, since it requires an independentbatch for each energy evaluation, so avoiding any possibility of over-training.De�ne R to be the overlap between pupil and teacher,R = 1N NXi=1witi (4)We choose ti = 1 at every site without loss of generality. If a statistically independentpattern is presented to a perceptron, then for large N the stabilities of the teacher andpupil are Gaussian variables each with zero mean and unit variance, and with covarianceR, p(�t;�w) = 12�p1�R2 exp �(�2t � 2R�t�w + �2w)2(1 �R2) ! (5)The conditional probability distribution for the training energy given the overlap is,p(EjR) = *�0@E � �NX�=1�(���t��w)1A+f��t ;��wg (6)where the brackets denote an average over stabilities distributed according to the jointdistribution in equation (5). The logarithm of the Fourier transform generates thecumulants of the distribution,�̂(�itjR) = Z 1�1dE p(EjR) etE= * �NY�=1 exp [t�(���t��w)]+= �1 + 1� (et � 1) cos�1(R)��N (7)The logarithm of this quantity can be expanded in t, with the cumulants of thedistribution given by the coe�cients of the expansion. The higher cumulants are O(�N)and it turns out that the shape of the distribution is not critical as long as � is O(1).



6A Gaussian distribution will be a good approximation in this case,p(EjR) = 1p2��2 exp �(E � Eg(R))22�2 ! (8)where the mean and variance are,Eg(R) = �N� cos�1(R) (9)�2 = �N� cos�1(R)�1 � 1� cos�1(R)� (10)Here, Eg(R) is the generalization error, which is the probability of misclassifying arandomly chosen training example (multiplied by the batch size for convenience). Thevariance expresses the fact that there is noise in the energy evaluation due to the �nitesize of the training batch.3. Modelling the Genetic Algorithm3.1. The Genetic AlgorithmInitially, a random population of solutions is created, in this case Ising weights of theform fw1; w2 : : : ; wNg where the alleles wi are the weights of a perceptron. The sizeof the population is P and will usually remain �xed, although a dynamical resizing ofthe population is discussed in section 7. Under selection, new population members arechosen from the present population with replacement, with a probability proportionalto their Boltzmann weight. The selection strength � is analogous to the inversetemperature and determines the intensity of selection, with larger � leading to ahigher variance of selection probabilities [3, 15]. Under standard uniform crossover,the population is divided into pairs at random and the new population is producedby swapping weights at each site within a pair with some �xed probability. Here,bit-simulated crossover is used, with new population members created by selectingweights at each site from any population member in the original population with equalprobability [24]. In practice, the weights at every site are completely shu�ed withinthe population and this brings the population straight to the �xed point of standardcrossover. This special form of crossover is only practicable here because crossover doesnot change the mean overlap between pupil and teacher within the population. Standardmutation is used, with random bits ipped throughout the population with probabilitypm. Each population member receives an independent batch of �N examples from theteacher perceptron each generation, so that the relationship between the energy and theoverlap between pupil and teacher is described by the conditional probability de�ned inequation (6). In total, �N�PG training patterns are used, where G is the total numberof generations and P is the population size (or the mean population size).



73.2. The Statistical Mechanics formalismThe population will be described in terms of a number of macroscopic variables, thecumulants of the overlap distribution within the population and the mean correlationwithin the population. In the following sections, di�erence equations will be derived forthe average change of a small set of these macroscopics, due to each operator. A moreexact approach considers uctuations from mean behaviour by modelling the evolutionof an ensemble of populations described by a set of order parameters [14]. Here, it isassumed that the dynamics average su�ciently well so that we can describe the dynamicsin terms of deterministic equations for the average behaviour of each macroscopic. Thisassumption is justi�ed by the excellent agreement between the theory and simulationsof a real GA, some of which are presented in section 8. Once di�erence equations arederived for each macroscopic, they can be iterated in sequence in order to simulate thefull dynamics.Notice that although we follow information about the overlap between teacher andpupil, this is of course not known in general. The only feedback available when trainingthe GA is the training energy de�ned in equation 3. Selection acts on this energy, andit is therefore necessary to average over the noise in selection which is due both to thestochastic nature of the training energy evaluation and of the selection procedure itself.Finite population e�ects prove to be of fundamental importance when modelling theGA. A striking example of this is in selection, where an in�nite population assumptionleads to the conclusion that the selection strength can be set arbitrarily high in orderto move the population to the desired solution. This is clearly nonsense, as selectioncould never move the population beyond the best existing population member. Twoimprovements are required to model selection accurately; the population should be �niteand the distribution from which it is drawn should be modelled in terms of more thantwo cumulants, going beyond a Gaussian approximation [15]. The higher cumulants playa particularly important role in selection which will be described in section 5.1 [16].The higher cumulants of the population after bit-simulated crossover are determinedby assuming the population is at maximumentropy with constraints on the mean overlapand correlation within the population (see Appendix A). The e�ect of mutation on themean overlap and correlation only requires the knowledge of these two macroscopics,so these are the only quantities we need to evolve in order to model the full dynamics.All other relevant properties of the population after crossover can be found from themaximumentropy ansatz. A more general method is to follow the evolution of a numberof cumulants explicitly, as in references [16, 17], but this is unnecessary here because ofthe special form of crossover used, which is not appropriate in problems with strongerspatial interactions.



83.3. The cumulants and correlationThe cumulants of the overlap distribution within the population are robust statisticswhich are often reasonably stable to uctuations between runs of the GA, so that theyaverage well [16]. The �rst two cumulants are the mean and variance respectively, whilethe higher cumulants describe the deviation from a Gaussian distribution. The third andfourth cumulants are related to the skewness and kurtosis of the population respectively.A population member, labelled �, is associated with overlap R� de�ned in equation (4).The cumulants of the overlap distribution within a �nite population can be generatedfrom the logarithm of a partition function,Z = PX�=1 exp(R�) (11)where P is the population size. If �n is the nth cumulant, then,�n = lim!0 @n@n logZ (12)The partition function holds all the information required to determine the cumulants ofthe distribution of overlaps within the population.The correlation within the population is a measure of the microscopic similarity ofpopulation members and is important because selection correlates a �nite population,sometimes leading to premature convergence to poor solutions. It is also importantin calculating the e�ect of crossover, since this involves the interaction of di�erentpopulation members and a higher correlation leads to less disruption on average. Thecorrelation between two population members, � and �, is q�� and is de�ned by,q�� = 1N NXi=1w�i w�i (13)The mean correlation is q and is de�ned by,q = 2P (P � 1) PX�=1 X�>� q�� (14)In order to model a �nite population we consider that P population members arerandomly sampled from an in�nite population, which is described by a set of in�nitepopulation cumulants, Kn [14]. The expectation values for the mean correlation andthe �rst cumulant of a �nite population are equal to the in�nite population values. Thehigher cumulants are reduced by a factor which depends on the population size,�1 = K1 (15a)�2 = P2K2 (15b)�3 = P3K3 (15c)�4 = P4K4 � 6P2(K2)2=P (15d)



9Here, P2, P3 and P4 give �nite population corrections to the in�nite population result(see reference [16] for a derivation),P2 = 1� 1P P3 = 1� 3P + 2P 2 P4 = 1� 7P + 12P 2 � 6P 3 (16)Although we model the evolution of a �nite population, it is more natural to follow themacroscopics associated with the in�nite population from which the �nite population issampled [14]. The expected cumulants of a �nite population can be retrieved throughequations (15a) to (15d).4. Crossover and mutationThe mean e�ects of standard crossover and mutation on the distribution of overlapswithin the population are equivalent to the paramagnet results given in [16]. However,bit-simulated crossover brings the population straight to the �xed point of standardcrossover, which will be assumed to be a maximum entropy distribution with the correctmean overlap and correlation, as described in Appendix A. To model this form ofcrossover one only requires knowledge of these two macroscopics, so these are the onlytwo quantities we need to evolve under selection and mutation.The mean overlap and correlation after averaging over all mutations are,Km1 = (1� 2pm)K1 (17a)qm = (1� 2pm)2q (17b)where pm is the probability of ipping a bit under mutation [16]. The higher cumulantsafter crossover are required to determine the e�ects of selection, discussed in the nextsection. The mean overlap and correlation are unchanged by crossover and the othercumulants can be determined by noting that bit-simulated crossover completely removesthe di�erence between site averages within and between di�erent population members.For example, terms like hw�i w�j ii6=j and hw�i w�j ii6=j are equal on average. After cancellingterms of this form one �nds that the �rst four cumulants of an in�nite population aftercrossover are,Kc1 = K1 (18a)Kc2 = 1N (1� q) (18b)Kc3 = � 2N2  K1 � 1N NXi=1hw�i i3�! (18c)Kc4 = � 2N3  1 � 4q + 3N NXi=1hw�i i4�! (18d)Here, the brackets denote population averages. The third and fourth order terms inthe expressions for the third and fourth cumulants are calculated in Appendix A by



10making a maximum entropy ansatz. The expected cumulants of a �nite populationafter crossover are determined from equations (15a) to (15d).5. The cumulants after selectionUnder selection, P new population members are chosen from the present populationwith replacement. Following Pr�ugel-Bennett we split this operation into two stages [14].First we randomly sample P population members from an in�nite population in orderto create a �nite population. Then an in�nite population is generated from this �nitepopulation by selection. The proportion of each population member represented in thein�nite population after selection is equal to its probability of being selected, whichis de�ned below. The sampling procedure can be averaged out in order to calculatethe expectation values for the cumulants of the overlap distribution within an in�nitepopulation after selection, in terms of the in�nite population cumulants before selection.The probability of selecting population member � is p� and for Boltzmann selectionone chooses, p� = e��E�PP e��E� (19)where � is the selection strength and the denominator ensures that the probability iscorrectly normalized. Here, E� is the training energy of population member �.One can then de�ne a partition function for selection,Zs = PX�=1 exp(��E� + R�) (20)The logarithm of this quantity generates the cumulants of the overlap distribution foran in�nite population after selection,Ksn = lim!0 @n@n logZs (21)One can average this quantity over the population by assuming each population memberis independently selected from an in�nite population with the correct cumulants,hlog Zsi =  PY�=1 Z dR� dE� p(R�) p(E�jR�)! log Zs (22)where p(EjR) determines the stochastic relationship between energy and overlap asde�ned in equation (6) which will be approximated by the Gaussian distribution inequation (8). Following Pr�ugel-Bennett and Shapiro one can use Derrida's trick andexpress the logarithm as an integral in order to decouple the average [4, 15].hlog Zsi = Z 10 dt e�t � he�tZsit= Z 10 dt e�t � fP (t; �; )t (23)



11where, f(t; �; ) = Z dR dE p(R) p(EjR) exp��te��E+R� (24)The distribution of overlaps within an in�nite population is approximated by a cumulantexpansion around a Gaussian distribution [16],p(R) = 1p2�K2 exp �(R�K1)22K2 !"1 + ncXn=3 KnKn=22 un R �K1pK2 !# (25)where un(x) = (�1)nex22 dndxne�x22 =n! are scaled Hermite polynomials. Four cumulantswere used for the simulations presented in section 8 and the third and fourth Hermitepolynomials are u3(x) = (x3 � 3x)=3! and u4(x) = (x4 � 6x2 + 3)=4!. This functionis not a well de�ned probability distribution since it is not necessarily positive, but ithas the correct cumulants and provides a good approximation. In general, the integralsin equations (23) and (24) have to be computed numerically, as was the case for thesimulations presented in section 8.5.1. Weak selection and large NIt is instructive to expand in small � and largeN , as this shows the contributions for eachcumulant explicitly and gives some insight into how the size of the training set a�ectsthe dynamics. Since the variance of the population is O(1=N) it is reasonable to expandthe mean of p(EjR), de�ned in equation (9), around the mean of the population in thislimit (R ' K1). It is also assumed that the variance of p(EjR) is well approximatedby its leading term and this assumption may break down if the gradient of the noisebecomes important. Under these simplifying assumptions one �nds,Eg(R) ' �N� 0@cos�1(K1)� (R �K1)q1�K21 1A (26)�2 ' �N� cos�1(K1)�1 � 1� cos�1(K1)� (27)Following Pr�ugel-Bennett and Shapiro [15], one can expand the integrand inequation (23) for small � (as long as � is at least O(1) so that the variance of p(EjR)is O(N)), fP (t; �; ) ' exp(�tP �̂1(�; )) 1 + Pt22 ��̂2(�; )� �̂21(�; )�! (28)where, �̂n(�; ) = Z dR dE p(R) p(EjR) en(��E+R) (29)



12We approximate p(EjR) by a Gaussian whose mean and variance are given inequations (26) and (27). Completing the integral in equation (23), one �nds anexpression for the cumulants of an in�nite population after selection,Ksn = lim!0 @n@n "log(P�1(k�; ))� e(��)22P  �2(k�; )�21(k�; )!# (30)where, �n(k�; ) = Z dRp(R)enR(k�+)= exp 1Xi=1 ni(k� + )iKii! ! (31)Here, a cumulant expansion has been used. The parameter k is the constant ofproportionality relating the generalization error to the overlap in equation (26) (constantterms are irrelevant, as Boltzmann selection is invariant under the addition of a constantto the energy).k = �N�q1 �K21 (32)For the �rst few cumulants of an in�nite population after selection one �nds,Ks1 = K1 +  1� e(��)2P ! k�K2 +O(�2) (33a)Ks2 =  1� e(��)2P !K2 +  1� 3e(��)2P ! k�K3 +O(�2) (33b)Ks3 =  1� 3e(��)2P !K3 � 6e(��)2P k�K22 +O(�2) (33c)The expected cumulants of a �nite population after selection are retrieved throughequations (15a) to (15d). For the zero noise case (� = 0) this is equivalent to selectingdirectly on overlaps (with energy �R), with selection strength k�. We will therefore callk� the e�ective selection strength. It has previously been shown that this parametershould be scaled inversely with the standard deviation of the population in order tomake continued progress under selection, without converging too quickly [16]. Asin the problems considered in reference [16], the �nite population e�ects lead to areduced variance and an increase in the magnitude of the third cumulant, related tothe skewness of the population. This leads to an accelerated reduction in varianceunder further selection. The noise due to the �nite training set increases the size of the�nite population e�ects. The other genetic operators, especially crossover, reduce themagnitude of the higher cumulants to allow further progress under selection.



136. The correlation after selectionTo model the full dynamics, it is necessary to evolve the mean correlation withinthe population under selection. This is rather tricky, as it requires knowledge of therelationship between overlaps and correlations within the population. To make theproblem tractable, it is assumed that before selection the population is at maximumentropy with constraints on the mean overlap and correlation within the population, asdiscussed in Appendix A. The calculation presented here is similar to that presentedelsewhere [17], except for a minor re�nement which seems to be important whenconsidering problems with noise under selection.The correlation of an in�nite population after selection from a �nite population isgiven by, qs = PX�=1 p2�(1� q��) + PX�=1 PX�=1 p�p�q��= �qd + q1 (34)where p� is the probability of selection, de�ned in equation (19). The �rst term is dueto the duplication of population members under selection, while the second term is dueto the natural increase in correlation as the population moves into a region of lowerentropy. The second term gives the increase in the correlation in the in�nite populationlimit, where the duplication term becomes negligible. An extra set of variables q�� areassumed to come from the same statistics as the distribution of correlations within thepopulation. Recall that the expectation value for the correlation of a �nite populationis equal to the correlation of the in�nite parent population from which it is sampled.6.1. Natural increase termWe estimate the conditional probability distribution for correlations given overlapsbefore selection p(q��jR�; R�) by assuming the weights within the population aredistributed according to the maximum entropy distribution described in Appendix A.Then q1 is simply the correlation averaged over this distribution and the distributionof overlaps after selection, ps(R).q1 = Z dq�� dR� dR� ps(R�)ps(R�)p(q��jR�; R�) q�� (35)This integral can be calculated for large N by the saddle point method and we �nd thatin this limit the result only depends on the mean overlap after selection (see AppendixB). q1(y) = 1N NXi=1  Wi + tanh(y)1 +Wi tanh(y)!2 (36)



14where, Ks1 = 1N NXi=1 Wi + tanh(y)1 +Wi tanh(y) (37)The natural increase contribution to the correlation q1 is an implicit function of Ks1through y, which is related to Ks1 by equation (37). Here,Wi is the mean weight at sitei before selection (recall that we have chosen the teacher's weights to be ti = 1 at everysite, without loss of generality) and for a distribution at maximum entropy one has,Wi = tanh(z + x�i) (38)The Lagrange multipliers, z and x, are chosen to enforce constraints on the mean overlapand correlation within the population before selection and �i is drawn from a Gaussiandistribution with zero mean and unit variance (see Appendix A).It is instructive to expand in y, which is appropriate in the weak selection limit. Inthis case one �nds,Ks1 = Kc1 + y(NKc2) + y22 (N2Kc3) + � � � (39)q1(y) = q � y(N2Kc3)� y22 (N3Kc4) + � � � (40)where Kcn are the in�nite population expressions for the cumulants after bit-simulatedcrossover, when the population is assumed to be at maximum entropy (de�ned inequations (18a) to (18d) up to the fourth cumulant). Here, y plays the role of thee�ective selection strength in the associated in�nite population problem, so for anin�nite population one could simply set y = k�=N , where k is de�ned in equation (32).To calculate the correlation after selection, we solve equation (37) for y and thensubstitute this value into the equation (36) to calculate q1. In general this must be donenumerically, although the weak selection expansion can be used to obtain an analyticalresult which gives a very good approximation in many cases. Notice that the thirdcumulant in equation (40) will be negative for K1 > 0 because of the negative entropygradient and this will accelerate the increased correlation under selection.6.2. Duplication termThe duplication term �qd is de�ned in equation (34). As in the partition functioncalculation presented in section 5, population members are independently averaged overa distribution with the correct cumulants,�qd = P  PY�=1 Z dR� dE� dq��p(R�) p(E�jR�) p(q��jR�; R�)! (1� q��)e�2�E�(P� e��E�)2= P  PY�=1 Z dR� � � �! (1� q��) exp(�2�E�) Z 10 dt t exp �tX� e��E�! (41)



15Here, q�� is a construct which comes from the same statistics as the correlations betweendistinct population members. The integral in t removes the square in the denominatorand decouples the average,�qd = PZ 10 dt t f(t) gP�1(t) (42)where, f(t) = Z dR dE dq p(R) p(EjR) p(qjR;R) (1 � q) exp(�2�E � te��E) (43)g(t) = Z dR dE p(R)p(EjR) exp(�te��E) (44)The overlap distribution p(R) will be approximated by the cumulant expansion inequation (25) and p(qjR;R) by the distribution derived in Appendix B. In general,it would be necessary to calculate these integrals numerically, but the correlationdistribution is di�cult to deal with as it requires the numerical reversion of a saddlepoint equation.Instead, we expand for small � and large N as we did for the selection calculationin section 5.1 (this approximation is only used for the term involving the correlation inequation (42) for the simulations presented in section 8). In this case one �nds,f(t) gP�1(t) ' �̂(2�) exp"�t (P � 1)�̂(�) + �̂(3�)�̂(2�)!#� �̂q(2�) exp"�t (P � 1)�̂(�) + �̂q(3�)�̂q(2�)!# (45)where, �̂(�) = Z dR dE p(R) p(EjR) e��E (46)�̂q(�) = Z dR dE p(R) p(EjR) Z dq p(qjR;R) q e��E (47)Completing the integral in equation (42) one �nds,�qd = �̂(2�)� �̂q(2�)P �̂2(�) +O� 1P 2� (48)We express �̂q(�) in terms of the Fourier transform of the distribution of correlations,which is de�ned in equation (B15),�̂q(�) = limt!0 @@t log�Z dR dE p(R) p(EjR)�̂(�itjR;R) e��E��̂(�) (49)The integrals can be calculated by expressing p(EjR) by the same approximate form asin section 5.1 and using the saddle point method to integrate over the Fourier transformas in Appendix B.



16 Eventually one �nds,�qd = e(��)2[1� q1(2k�=N)]�2(k�; 0)P�21(k�; 0) + O� 1P 2� (50)where q1(y) is de�ned in equation (36) and �n(k�; ) is de�ned in equation (31).It is instructive to expand in � as this shows the contributions from each cumulantexplicitly. To third order in � for three cumulants one �nds,�qd ' e(��)2P [1 � q1(2k�=N)] �1 +K2(k�)2 �K3(k�)3 +O(�4)� (51)The q1 term has not been expanded out since it contributes terms of O(1=N) less thanthese contributions for each cumulant. Selection leads to a negative third cumulant(see equation (33c)), which in turn leads to an accelerated increase in correlation underfurther selection. Crossover reduces this e�ect by reducing the magnitude of the highercumulants.7. Dynamic population resizingThe noise introduced by the �nite sized training set increases the magnitude of thedetrimental �nite population terms in selection. In the limit of weak selection and largeproblem size discussed in sections 5.1 and 6.2, this can be compensated for by increasingthe population size. The terms which involve noise in equations (30) and (50) can beremoved by an appropriate population resizing,P = P0 exp[(��)2] (52)Here, P0 is the population size in the in�nite training set, zero noise limit. Since theseare the only terms in the expressions describing the dynamics which involve the �nitepopulation size, this e�ectively maps the full dynamics onto the in�nite training setcase.For zero noise the selection strength should be scaled so that the e�ective selectionstrength k� is inversely proportional to the standard deviation of the population [15],� = �skp�2 (53)Here, k is de�ned in equation (32) and �s is the scaled selection strength andremains �xed throughout the searchy. Recall that �2 is the expected variance of ay This scaling of selection strength (equation (52)) requires overlap statistics which will not be knownin practice. However, the results do not rely on this choice and any �xed schedule for determining� each generation could be used. This choice corresponds to an appropriate schedule for the in�nitetraining set problem.



17�nite population, which is related to the variance of an in�nite population throughequation (15b). One could also include a factor of plogP to compensate for changesin population size, as in reference [16], but this term is neglected here. The resizedpopulation is then,P = P0 exp (�s�)2k2�2 != P0 exp �2s (1� �21) cos�1(�1)(� � cos�1(�1))�N�2 ! (54)Notice that the exponent in this expression is O(1), so this population resizing does notblow up with increasing problem size. One might therefore expect this problem to scalewith N in the same manner as the zero-noise, in�nite training set case, as long as thebatch size is O(N).Baum et al have shown that a closely related GA scales as O(N log22N) on thisproblem if the population size is su�ciently large so that weights can be assumed tocome from a binomial distribution [1]. This is e�ectively a maximumentropy assumptionwith a constraint on the mean overlap alone. They use culling selection, where the besthalf of the population survives each generation leading to a change in the mean overlapproportional to the population's standard deviation. Our selection scaling also leads toa change in the mean of this order and the algorithms may therefore be expected tocompare closely. The expressions derived here do not rely on a large population sizeand are therefore more general.In the in�nite population limit it is reasonable to assume N�2 ' 1��21 which is therelationship between mean and variance for a binomial distribution, since in this limitthe correlation of the population will not increases due to duplication under selection.In this case the above scaling results in a monotonic decrease in population size, as �1increases over time. This is easy to implement by removing the appropriate number ofpopulation members before each selection.A �nite population becomes correlated under selection and the variance of thepopulation is usually less than the value predicted by a binomial distribution. Inthis case the population size may have to be increased, which could be implementedby producing a larger population after selection or crossover. This is problematic,however, since increasing the population size leads to an increase in the correlationand a corresponding reduced performance. In this case the dynamics will no longer beequivalent to the in�nite training set situation.Instead of varying the population size, one can �x the population size and vary thesize of the training batches. In this case one �nds,� = �2s (1� �21) cos�1(�1)(� � cos�1(�1))N�2 log(P=P0) (55)



18 Figure 1 shows how choosing the batch size each generation according toequation (55) leads to the dynamics converging onto the in�nite training set dynamicswhere the training energy is equal to the generalization error. The in�nite trainingset result for the largest population size is also shown, as this gives some measure ofthe potential variability of trajectories available under di�erent batch sizing schemes.Any deviation from the weak selection, large N limit is not apparent here. To agood approximation it seems that the population resizing in equation (54) and thecorresponding batch sizing expression in equation (55) are accurate, at least as long as� is not too small.
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Figure 1. The mean overlap between teacher and pupil within the population is showneach generation for a GA training a binary perceptron to generalize from examplesproduced by a teacher perceptron. The results were averaged over 100 runs andtraining batch sizes were chosen according to equation (55), leading to the trajectoriesconverging onto the in�nite training set result where E = Eg(R). The solid curveis for the in�nite training set with P0 = 60 and the �nite training set results are forP = 90 (2), 120(�) and 163(4). The inset shows the mean choice of � each generation.The dashed line is the in�nite training set result for P = 163, showing that there issigni�cant potential variability of trajectories under di�erent batch sizing schemes.The other parameters were N = 279, �s = 0:25 and pm = 0:001.7.1. Optimal batch sizeIn the previous section it was shown how the population size could be changed toremove the e�ects of noise associated with a �nite training set. If we use this populationresizing then it is possible to de�ne an optimal size of training set, in order to minimizethe computational cost of energy evaluation. This choice will also minimize the total



19number of training examples presented when independent batches are used. This maybe expected to provide a useful estimate of the appropriate sizing of batches in moree�cient schemes, where examples are recycled, as long as the total number of examplesused signi�cantly exceeds the threshold above which over-training is impossible.We assume that computation is mainly due to energy evaluation and note that thereare P energy evaluations each generation with computation time for each scaling as �.If the population size each generation is chosen by equation (54), then the computationtime �c (in arbitrary units) is given by,�c = � exp �o� ! �o = �2s (1 � �21) cos�1(�1)(� � cos�1(�1))N�2 (56)The optimal choice of � is given by the minimum of �c, which is at �o. Choosing thisbatch size leads to the population size being constant over the whole GA run and foroptimal performance one should choose,P = P0 e1 ' 2:73P0 (57)� = �o (58)where P0 is the population size used for the zero noise, in�nite training set GA. Noticethat it is not necessary to determine P0 in order to choose the size of each batch, since�o is not a function of P0. Since the batch size can now be determined automatically,this reduces the size of the GA's parameter space signi�cantly.One of the runs in �gure 1 is for this choice of P and �, showing close agreement tothe in�nite training set dynamics (P = 163 ' P0e). In general, the �rst two cumulantschange in a non-trivial manner each generation and their evolution can be determinedby simulating the dynamics, as described in section 8.8. Simulating the dynamicsIn sections 4, 5 and 6, di�erence equations were derived for the mean e�ect of eachoperator on the mean overlap and correlation within the population. The full dynamicsof the GA can be simulated by iterating these equations starting from their initialvalues, which are zero. The equations for selection also require knowledge of the highercumulants before selection, which are calculated by assuming a maximum entropydistribution with constraints on the two known macroscopics (see equations (18a)to (18d)). We used four cumulants and the selection expressions were calculatednumerically, although for weak selection the analytical results in section 5.1 were alsofound to be very accurate. The largest overlap within the population was estimatedby assuming population members were randomly selected from a distribution with thecorrect cumulants [16]. This assumption breaks down towards the end of the search,



20when the population is highly correlated and the higher cumulants become large, sothat four cumulants may not describe the population su�ciently well.Figures 2 and 3 show the mean, variance and largest overlap within the populationeach generation, averaged over 1000 runs of a GA and compared to the theory. Thein�nite training set case, where the training energy is the generalization error, iscompared to results for two values of �, showing how performance degrades as the batchsize is reduced. Recall that �N new patterns are shown to each population member,each generation, so that the total number of patterns used is �N �PG, where P ispopulation size and G is the total number of generations. The skewness and kurtosisare presented in �gure 4 for one value of �, showing that although there are largeructuations in the higher cumulants they seem to agree su�ciently well with the theoryon average. It would probably be possible to model the dynamics accurately with onlythree cumulants, since the kurtosis does not seem to be particularly signi�cant in thesesimulations.
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�1N�2Figure 2. The theory is compared to averaged results from a GA training a binaryperceptron to generalize from examples produced by a teacher perceptron. The meanand variance of the overlap distribution within the population are shown, averagedover 1000 runs, with the solid lines showing the theoretical predictions. The in�nitetraining set result (3) is compared to results for a �nite training set with � = 0:65 (2)and � = 0:39 (4). The other parameters were N = 155, �s = 0:3, pm = 0:005 and thepopulation size was 80.These results show excellent agreement with the theory, although there is a slightunderestimate in the best population member for the reasons discussed above. This istypical of the theory, which has to be very accurate in order to pick up the subtle e�ectsof noise due to the �nite batch size. Unfortunately, the agreement is less accurate for low
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Figure 3. The maximumoverlap between teacher and pupil is shown each generation,averaged over the same runs as the results presented in �gure 2. The solid lines showthe theoretical predictions and the symbols are as in �gure 2.
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�4=�22�3=�3=22Figure 4. The skewness and kurtosis of the overlap distribution are shown averagedover the same runs as the results presented in �gure 2 for � = 0:65. Averages weretaken over cumulants, rather than the ratios shown. The solid lines show the theoreticalpredictions for mean behaviour.values of �, where the noise is stronger. This may be due to two simpli�cations. Firstly,we use a Gaussian approximation for the noise which relies on � being at leastO(1). Thiscould be remedied by expanding the noise in terms of more than two cumulants as wehave done for the overlap distribution. Secondly, the duplication term in section 6.2 uses



22the large N , weak selection approximation which also relies on � being O(1). The errordue to this approximation is minimized by only using the approximation for the terminvolving the correlation in equation (42), with the other term calculated numerically.It is expected that good results for smaller values of � would be possible for larger valuesof N , where the correlation calculation would be more exact.9. ConclusionA statistical mechanics formalism has been used to solve the dynamics of a GA for asimple problem from learning theory, generalization in a perceptron with binary weights.To make the dynamics tractable, the case where a new batch of examples was presentedto each population member each generation was considered. For O(N) training examplesper batch the training energy was well approximated by a Gaussian distribution whosemean is the generalization error and whose variance increases as the batch size is reduced.The use of bit-simulated crossover, which takes the population straight to the �xedpoint of standard crossover, allowed the dynamics to be modelled in terms of onlytwo macroscopics; the mean correlation and overlap within the population. The highercumulants of the overlap distribution after crossover were required to calculate the e�ectof selection and were estimated by assuming maximum entropy with respect to the twoknown macroscopics. By iterating di�erence equations describing the average e�ectof each operator on the mean correlation and overlap the dynamics of the GA weresimulated, showing very close agreement with averaged results from a GA.Although the di�erence equations describing the e�ect of each operator requirednumerical enumeration in some cases, analytical results were derived for the weakselection, large N limit. It was shown that in this limit a dynamical resizing of thepopulation maps the �nite training set dynamics onto the in�nite training set situation.Using this resizing it is possible to calculate the most computationally e�cient sizeof population and training batch, since there is a diminishing return in improvedperformance as batch size is increased. For the case of independent training examplesconsidered here this choice also gives the minimum total number of examples presented.In future work it would be essential to look at the situation where the patterns arerecycled, leading to a much more e�cient use of training examples and the possibility ofover-training. In this case, the distribution of overlaps between teacher and pupil wouldnot be su�cient to describe the population, since the training energy would then bedependent on the training set. One would therefore have to include information speci�cto the training set, such as the mean pattern per site within the training set. This mightbe treated as a quenched �eld at each site, although it is not obvious how one couldbest incorporate such a �eld into the dynamics.Another interesting extension of the present study would be to consider multi-layer



23networks, which would present a much richer dynamical behaviour than the single-layerperceptron considered here. This would bring the formalism much closer to problems ofrealistic di�culty. In order to describe the population in this case it would be necessaryto consider the joint distribution of many order parameters within the population. Itwould be interesting to see how the dynamics of the GA compares to gradient methodsin networks with continuous weights, for which the dynamics of generalization for a classof multi-layer architectures have recently been solved analytically in the case of on-linelearning [18]. In order to generalize in multi-layer networks it is necessary for the searchto break symmetry in weight space and it would be of great interest to understand howthis might occur in a population of solutions, whether it would occur spontaneously overthe whole population in analogy to a phase transition or whether components wouldbe formed within the population, each exhibiting a di�erent broken symmetry. Thiswould again require the accurate characterization of �nite population e�ects, since anin�nite population might allow the coexistence of all possible broken symmetries, whichis presumably an unrealizable situation in �nite populations.AcknowledgmentsWe would like to thank Adam Pr�ugel-Bennett for many helpful discussions and forproviding code for some of the numerical work used here. We would also like to thankthe anonymous reviewers for making a number of useful suggestions. MR was supportedby an EPSRC award (ref. 93315524).Appendix A. The maximum entropy distributionAfter bit-simulated crossover the population is assumed to be at maximum entropy withconstraints on the mean overlap and correlation within the population. This is a specialcase of the result derived for the paramagnet by Pr�ugel-Bennett and Shapiro [16] andthis discussion follows theirs closely.Let Wi be the mean weight at site i within the population,Wi = hw�i i� = 1P PX�=1w�i (A1)To calculate the distribution of this quantity over sites one imposes constraints on themean overlap and correlation with Lagrange multipliers x and z,zPK1 = zN PX�=1 NXi=1w�i = zPN NXi=1Wi (A2)(xP )22 q = x22N PX�=1 PX�=1 NXi=1w�i w�i = (xP )22N NXi=1W 2i (A3)



24Recall that we have chosen ti = 1 at each site without loss of generality. The correlationexpression is for large P and �nite population corrections can be included retrospectively.Without constraints, the fraction of positive weights at site i is given by a binomialcoe�cient, 
(Wi) = 12P  PP (1 +Wi)=2 ! (A4)So one can de�ne an entropy,S(Wi) = log[
(Wi)]� � P2 log(1�W 2i ) + PWi2 log�1�Wi1 +Wi� (A5)where Stirling's approximation has been used. One can then de�ne a probabilitydistribution for the fWig con�guration which decouples at each site,p(fWig) = NYi=1 p(Wi) = NYi=1 exp[S(Wi) + zPWi + (xPWi)2=2] (A6)p(Wi) = Z d�ip2� exp ��2i2 + PG(Wi; �i)! (A7)where G(Wi; �i) = S(Wi)=P + zWi + x�iWi (A8)The maximal value of G with respect to Wi gives the maximum entropy distribution forWi at each site. This leads to the expression,Wi = tanh(z + x�i) (A9)where �i is drawn from a Gaussian with zero mean and unit variance. The constraintscan be used to obtain values for the Lagrange multipliers,K1 = 1N NXi=1 tanh(z + x�i) (A10)q = 1N NXi=1 tanh2(z + x�i) (A11)The bars denote averages over the Gaussian noise which in general must be donenumerically.The third and fourth order terms in equations (18c) and (18d) can be found oncethe Lagrange multipliers have been determined,1N NXi=1hw�i i3� = tanh3(z + x�) (A12)1N NXi=1hw�i i4� = tanh4(z + x�) (A13)Again, the bars denote averages over the Gaussian noise.



25Appendix B. The distribution of correlationsRewriting equation (35) we have,q1 = Z dq�� dR� dR� ps(R�)ps(R�) p(q��jR�; R�) q��= limt!0 @@t log�Z dR� dR� ps(R�) ps(R�) �̂(�itjR�; R�)� (B14)where �̂(�itjR�; R�) is the Fourier transform of p(q��jR�; R�),�̂(�itjR�; R�) = Z dq�� p(q��jR�; R�)etq�� (B15)The conditional probability for correlations p(q��jR�; R�) can be de�ned if weights areassumed to come from the maximum entropy distribution de�ned in Appendix A. Inthis case one has,p(q��jR�; R�) = p(q��; R�; R�)p(R�; R�)= h�(q�� � 1N Piw�i w�i )�(R� � 1N Piw�i )�(R� � 1N Piw�i )ih�(R� � 1N Pi w�i )�(R� � 1N Pi w�i )i (B16)where the angled brackets denote averages over w�i and w�i . The weights at each siteare distributed according to,p(wi) = �1 +Wi2 � �(wi � 1) + �1 �Wi2 � �(wi + 1) (B17)Here, Wi is the mean weight per site, de�ned in equation (A9).We consider the Fourier transform of p(q��jR�; R�) since this appears in theappropriate generating function,�̂(�itjR�; R�) = �̂(�it; R�; R�)�̂(0; R�; R�) (B18)Writing the delta functions as integrals and noting that one of the integrals is removedby the Fourier transform, one �nds (ignoring multiplicative constants),�̂(�it; R�; R�) = �Z i1�i1dy�dy� exp(F )�fw�i ;w�i g (B19)F = �y�R� � y�R� + 1N NXi=1(y�w�i + y�w�i + tw�i w�i )Each site decouples and the average over sites can be taken by integrating over theweight distribution de�ned in equation (B17). The resulting integral can be computedfor large N by the saddle point method since the exponent can be made extensive byappropriate rescaling. Eventually one �nds (ignoring multiplicative constants),�̂(�it; R�; R�) = exp(�y�R� � y�R� +G) (B20)



26G = 1N NXi=1 log h(1 +Wi)2et+y�+y� + 2(1 �W 2i )e�t cosh(y� � y�) + (1�Wi)2et�y��y� iThe saddle point equations �x y� and y� as implicit functions of R�, R� and t,R� = @G@y� R� = @G@y� (B21)De�ne �̂(�it), whose logarithm is the generating function for q1,�̂(�it) = Z dR� dR� ps(R�) ps(R�) �̂(�itjR�; R�)= Z dR� dR� ps(R�) ps(R�) exp[G(t)�G(0)] (B22)We express the overlap distributions by their Fourier transformed cumulant expansions,ps(R�) = � i Z i1�i1da2� exp�X ann!Ksn � aR�� (B23)ps(R�) = � i Z i1�i1 db2� exp X bnn!Ksn � bR�! (B24)Now �̂(�it) is an integral over a, b, R� and R� which can again be computed by thesaddle point method. One �nds that as t ! 0, the saddle point equations are satis�edby, y� = y� = y (B25)R� = R� = Ks1 (B26)These are related through an implicit function for y in terms of mean overlap afterselection, Ks1 = 1N NXi=1 Wi + tanh(y)1 +Wi tanh(y) (B27)Then the natural increase contribution for the correlation after selection is given by,q1 = limt!0 @@t log �̂(�it)= 1N NXi=1  Wi + tanh(y)1 +Wi tanh(y)!2 (B28)References[1] Baum E B, Boneh D and Garret C 1995 COLT '95: Proc. of the 8th Annual Conf. onComputational Learning Theory (New York) p 230{239[2] Davis L 1991 Handbook Of Genetic Algorithms (Van Nostrand Reinhold, New York)[3] De la Maza M and Tidor B 1991 Proc. of the ORSA CSTS Conf. - Computer Science andOperations Research: New Developments in their Interfaces p 425{440
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