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THE UNIVERSITY OF ASTON IN BIRMINGHAM

Topographic Mappings and Feed-Forward
Neural Networks

MICHAEL E. TIPPING

Doctor Of Philosophy, 1996

Thesis Summary

This thesis is a study of the generation of topographic mappings — dimension reducing transforma-
tions of data that preserve some element of geometric structure — with feed-forward neural networks.

As an alternative to established methods, a transformational variant of Sammon’s method is pro-
posed, where the projection is effected by a radial basis function neural network. This approach is
related to the statistical field of multidimensional scaling, and from that the concept of a ‘subjective
metric’ is defined, which permits the exploitation of additional prior knowledge concerning the data
in the mapping process. This then enables the generation of more appropriate feature spaces for the
purposes of enhanced visualisation or subsequent classification.

A comparison with established methods for feature extraction is given for data taken from the 1992
Research Assessment Exercise for higher educational institutions in the United Kingdom. This is a
difficult high-dimensional dataset, and illustrates well the benefit of the new topographic technique.

A generalisation of the proposed model is considered for implementation of the classical multidi-
mensional scaling (CMDS) routine. This is related to Oja’s principal subspace neural network, whose
learning rule is shown to descend the error surface of the proposed CMDS model.

Some of the technical issues concerning the design and training of topographic neural networks
are investigated. It is shown that neural network models can be less sensitive to entrapment in the
sub-optimal global minima that badly affect the standard Sammon algorithm, and tend to exhibit
good generalisation as a result of implicit weight decay in the training process. It is further argued
that for ideal structure retention, the network transformation should be perfectly smooth for all inter-
data directions in input space.

Finally, there is a critique of optimisation techniques for topographic mappings, and a new train-
ing algorithm is proposed. A convergence proof is given, and the method is shown to produce lower-
error mappings more rapidly than previous algorithms.

Keywords: Information Processing, Feature Extraction, Sammon Mapping, Multidimensional
Scaling, Research Assessment Exercise
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Chapter 1

Introduction

Where is the knowledge we have lost in information?

T.S. Eliot — The Rock (1934).

It is often said that we are living in the information age. The technological revolution of the latter half of
the twentieth century has placed previously undreamt-of quantities of information at our fingertips.
The maturity of the digital computer with its continual exponential growth in both power and storage
capacity, allied with the emergence of multi-media and the dramatic recent expansion of global con-
nectivity known rather grandiloquently as the ‘digital information super-highway’, offers unprece-
dented access to vast amounts of data, all over the world, for millions of users.

However, as the ease of access to information increases, so, inevitably, do the accompanying difficul-
ties in its interpretation and understanding. It is very easy to become overwhelmed by the sheer vol-
ume available. One particular on-line information resource is the data collected for the 1992 Research
Assessment Exercise for higher educational institutions in the United Kingdom. Even the small frac-
tion of this large dataset that is studied later in this thesis contains over thirty-two thousand numbers
and there is clearly little to be gained by study of the naked data alone; the knowledge remains locked
away, impenetrably it may sometimes seem, behind the anonymous digits.

The key, therefore, lies in information processing. Whether for the purposes of visualisation, exploratory
analysis or for subsequent computation, it is essential that the information be manipulated into a form
which facilitates its ultimate use. The emphasis has thus shifted from the problem of the acquisition
of information, to that of its exploitation for the purposes of deriving useful knowledge.

The type of information, or data, that will be considered in this thesis is that in numeric form. Data
will, characteristically, be comprised of a set of measurements concerning a corresponding set of ob-
jects. For example, Fisher’s familiar ‘Iris’ dataset contains measurements of sepal length, sepal width,
petal length and petal width for fifty samples of each of three different varieties of iris flower. The
previously mentioned Research Assessment data comprises nearly one-hundred-and-fifty different
variables for over four thousand invidual departments from every university in the United Kingdom
— variables which describe such quantities as the number of staff, the number of Ph.D. students and
the number and value of research grants. This numeric form lends itself naturally to a vector-space
interpretation, such that in the Iris dataset, each set of four sample measurements can be considered a
distinct vector in four-dimensional space. In general, then, for all such datasets with p different fields,
the data may be considered as a collection of similar point vectors in a p-dimensional space.

Given this interpretation, information processing can often be intuitively posited as a dimensionality
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reduction problem. For visualisation, human perception is attuned to two- or three-dimensional im-
ages, and real-world numeric data, which is generally of naturally high dimension, must be processed
into more readable forms without loss of salient detail. In data-modelling applications, the sizable
number of variables implied by high-dimensional data can be seriously disadvantageous. Sensible
pre-processing of the data before the model-building stage can help alleviate these problems.

This thesis concerns one particular approach to extracting knowledge that is concealed within infor-
mation. It is an investigation into the use of feed-forward neural networks to effect a particular class
of dimension-reducing information-processing strategies — topographic mappings. Exactly what a to-
pographic mapping is, why a neural network should be used to produce one and what is the relevant
contribution of this thesis, are questions considered during the remainder of this introduction.

1.1 What is a Topographic Mapping?

Topographic mappings are a class of data-processing mechanisms which seek to preserve some no-
tion of the geometric structure of the data within the reduced-dimensional representation. The term
‘geometric structure’ will be used in this thesis in the sense that distance relationships are important,
so that points that lie close together in the data space will appear similarly close together in the map1,
and equally, under certain interpretations, points that are more distant in data space will, after map-
ping, remain likewise separated.

This latter question of interpretation exemplifies that, in practice, there may be alternative emphases
placed on the nature of the structure preservation. One emphasis is that all distance relationships
between data points are important, which implies a desire for global isometry between the data space
and the map space. Alternatively, it may only be considered important that neighbourhood relationships
are maintained, such that points that originally lie close together are likewise preserved in the map,
and this is referred to as topological ordering.

While the word ‘topological’ is often used in certain contexts as a substitute for ‘topographic’, it is
important to make the distinction between the distance-based criteria considered in this thesis and
the notion of topological invariance in its strictly mathematical sense. Indeed, “spaces which appear
quite different — geometrically for instance — may still be topologically equivalent.” [Gamelin and
Greene 1983]. In this thesis, ‘topographic’ will be considered synonymous with ‘geometric’, in that it
is desired that all distance relationships be preserved in the mapping.

Perhaps the most intuitive, and certainly the most literal, example that may be given of a topographic
map is that of the projection of the naturally spherical surface of the Earth down onto a two dimen-
sional plane. Such a projection is shown in figure 1.1 below.

This simple illustration also serves to demonstrate an important principle — that when data under-
goes a reduction in dimension, some structure is inevitably lost. In practical applications this is an
important point, as for high-dimensional datasets the map will normally be of a much lower dimen-
sion compared to the original data, and this dimensional imbalance tends to accentuate that problem.
In order to represent the topography of the surface of a three-dimensional globe on a two-dimensional
plane in figure 1.1, it is necessary to introduce some distortion. While much structure is still retained
— consider the interior geography of Europe, for example — at extremes of latitude distances in the
map are considerably exaggerated, and even more severely, the left and right longitudinal edges of the
map have been drastically separated. Hence the development of various alternatives to Mercator’s
technique within the field of cartography, such as the Cylindrical Equal Area and Peters’ projections,
with each introducing its own particular class of distortion.

1Throughout this thesis, the word “map” will be used in its intuitive visual sense to refer to the image of the mapping pro-
cess, rather than in its mathematical sense, as a synonym for transformation.
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1.2 Why Use a Feed-Forward Neural Network?

Figure 1.1: A Mercator’s projection of the spherical Earth down to a two-dimensional map.

As is evident from the geographical example above, topographic maps can be highly valuable as tools
for visualisation and data analysis. Structure-retaining maps can generally be interpreted quite intu-
itively, and, as will be seen later, often much more so than other reduced-dimension representations.
Many important relationships between the data points can be inferred by viewing the map — no-
tably the detection of clusters, or sets of points closely grouped in the data space and which should be
similarly adjacent in the projection. However, as will be discussed later in this thesis, under certain
conditions, apparent structure exhibited in a map may in fact be artefactual, and not be representa-
tive of the true geometry in data space. The potential for such phenomena should always be borne in
mind when interpreting topographic mappings.

1.2 Why Use a Feed-Forward Neural Network?

There are already some well-established methods for topographic mapping. From the domain of engi-
neering, there is the Sammon mapping, or Nonlinear Mapping, [Sammon 1969] which is closely related to
some of the techniques from the statistical field of multidimensional scaling [Davison 1983]. While still
in popular use, both approaches possess several inherent disadvantages, the most significant being
that when a map has been generated, it effectively acts as a look-up table such that there is no poten-
tial for projecting new, previously unseen, data. Importantly, this implies that there is no facility for
generalisation, a principal feature of neural networks and one which, after a given network has been
trained, enables prospective inferences to be drawn and predictions to be made concerning new data.

There is also an existing neural network architecture designed specifically for topographic mapping,
and that is Kohonen’s ubiquitous self-organising feature map [Kohonen 1995], which exploits implicit
lateral connectivity in the output layer of neurons. This neuro-biologically inspired scheme, how-
ever, also exhibits several disadvantages and this thesis will propose an alternative paradigm which
exploits the standard feed-forward network architectures.

Feed-forward neural networks are now well established as tools for many information-processing
tasks — regression, function approximation, time series prediction, nonlinear dimension-reduction,
clustering and classification are examples of the diverse range of applications. (See [Haykin 1994]
for a comprehensive coverage.) Divorced from their neuro-biological foundation, the major attrac-
tion of neural network models is that certain classes thereof have been shown to be universal function
approximators, such that they are capable of modelling any continuous function over a bounded do-
main, given sufficient network complexity. This property implies that, given appropriate design and
training, neural networks can be employed as semi-parametric models, and thus require fewer prior
assumptions about the underlying relationships in the data.
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It would be attractive, then, to generate topographic mappings using such architectures. That is, the
function that transforms the vectors in the data space to a corresponding set of image vectors in the
map will be effected by a feed-forward neural network. This concept is illustrated in figure 1.2.

MAP SPACENEURAL NETWORKDATA SPACE

Ò Ò
p q

Figure 1.2: A neural network effecting a topographic transformation.

On initial consideration, the training of such a topographic transformation might appear problematic.
In the majority of neural network applications, for example regression or classification, there are a
set of target vectors, corresponding to the set of input vectors — effectively a set of desired outputs
that the network is trained to reproduce. This scenario is a referred to as a supervised problem. In the
unsupervised topographic case, for each input datum there is no such specific target information, and
alternative training algorithms must be developed, based on structural (distance) constraints.

The specific neural network model introduced in this thesis, for reasons of textual brevity, will be
known as ‘NEUROSCALE’, as it is a neural network ‘scaling’ procedure. NEUROSCALE utilises a ra-
dial basis function neural network (RBF) [Broomhead and Lowe 1988; Lowe 1995] to transform the p-
dimensional input vector to the q-dimensional output vector, where, in general, p � q. An RBF com-
prises a single hidden layer of h neurons, as exhibited by the network in figure 1.2, which represents a
set of basis functions, each of which has a centre located at some point in the input space. The number
of such functions is generally chosen to be fewer than the number of data points, and their corre-
sponding centres are initially distributed (and are generally fixed) amongst the data, such that their
distribution approximates that of the data points themselves. The output of each hidden node for a
given input vector is then calculated as some function (e.g. Gaussian) of the distance from the data
point to the centre of the function. In this way the basis functions are radially symmetric. The out-
put of the network is then calculated as a weighted, linear summation of the hidden nodes, which
for supervised problems with sum-of-squares error functions, permits the weights to be trained by
standard linear algebraic methods [Strang 1988]. So mathematically, for a p-dimensional input vector
x � (x1� x2� � � � � xp), the q-dimensional output vector y � (y1� y2� � � � � yq) is given by:

yi �
hX

j�1

wij�j(kx� �j k)� (1.1)

where �j(�) is the jth basis function with centre �j, and wij is the weight from that basis function to
output node i. An important result concerning this particular type of network is that it is capable of
universal approximation [Park and Sandberg 1991].

The training algorithm for the RBF constrains vectors in the output space to be located such that they
preserve, as optimally as possible, the distance relationships between their corresponding vectors in
the input space. This is in contrast to Kohonen’s approach, in which the distribution of the output
vectors is approximately representative of the data density. This can be one of the disadvantages of
the latter approach, particularly in applications where global relationships are considered important.
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1.3 Plan of This Thesis

A further important feature of the NEUROSCALE approach to topographic mapping is the inclusion
of a unique mechanism for incorporating preferential information. This enables additional knowledge
concerning the data (for example class labels or other relevant measurements) to be exploited for the
purposes of enhancing clustering, improving group separation or even to impose some additional
global ordering upon those groups. Such a facility can be considered as adding a supervisory com-
ponent to the otherwise unsupervised feature extraction process, and this interpretation provides an
appropriate basis for comparison with other established information-processing paradigms.

That this supervisory mechanism is of tangible benefit, and that NEUROSCALE in general is an ef-
fective tool for the exploratory analysis of data, will be shown in an application to one particularly
complex dataset. The data in question is taken from the 1992 Research Assessment Exercise for higher
educational institutions in the United Kingdom and is typical of real-world datasets. The data itself
is high-dimensional and polluted by noise, and there is additional information available in terms of a
class label (“research rating”) that is biased by the subjective opinion of an assessment panel. Never-
theless, this extra knowledge will be exploited to generate improved visualisation spaces which can
be used as a basis for subsequent prediction of unclassified data.

The NEUROSCALE approach as detailed in this thesis is an incremental development of recent research
effort directed at exploiting neural networks to perform structure-retaining mappings. The author is
unaware of any significant theoretical investigation into the training and application of such models,
and a considerable portion of this thesis is devoted to such detailed analysis.

1.3 Plan of This Thesis

Chapter 1 is this introduction.

Chapter 2 will describe standard approaches to topographic mapping — Kohonen’s self-organising
feature map, the Sammon mapping and multidimensional scaling — and consider the key distinctions
between the three, along with their respective advantages and disadvantages.

Chapter 3 introduces the NEUROSCALE model and relates it to previous work, giving examples of
its application to various datasets. These illustrate both the topographic property of the neural net-
work transformation and the facility to exploit additional knowledge.

Chapter 4 is a detailed study of data taken from the 1992 Research Assessment Exercise. Data from
the subject areas of physics, chemistry and biological sciences is analysed, both by NEUROSCALE and
by other established feature extraction techniques. The emphasis of this chapter is on the visualisation
and exploratory analysis of the high-dimensional data, but there are additional results presented for
classification experiments, including the use of NEUROSCALE as a pre-processor in prediction models.

Chapter 5 describes a generalisation of the NEUROSCALE approach to classical multidimensional
scaling. This is closely related to other neural networks specifically designed for generating principal
component projections, notably Oja’s principal subspace network, and the parallels are analysed.

Chapter 6 is a study of some of the underlying theoretical aspects of training neural networks to
effect topographic mappings. The problem of local minima is considered, and the dynamics of the
relative supervision learning algorithm investigated. Analysis is presented concerning the necessary
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form and smoothness for topographic transformations which is highly relevant to the question of gen-
eralisation.

Chapter 7 considers the optimisation of topographic transformations. Standard techniques are com-
pared, and alternative heuristic strategies also reviewed. An efficient new training algorithm for net-
works linear in their weights is presented, and its properties studied.

Chapter 8 concludes the thesis with a summary of the significant results therein and suggests direc-
tions for future research.

The content of this thesis represents original research. The work within has not previously appeared elsewhere,
with the exception of those research papers produced during the normal course of its preparation. Material from
Chapters 3 and 4 has appeared in [Lowe and Tipping 1995; Lowe and Tipping 1996], while a paper based on
Chapter 5 has been submitted for future publication [Tipping 1996].

1.4 Notation

In general, throughout this thesis, the notation below in table 1.1 will be adopted:

Symbol Meaning

N The number of data points

p The dimension of input space

q The dimension of the map, or feature, space

h The number of hidden units in a neural network

xi A point vector in the input space

X The matrix of row-vector input points, (x1� x2� � � � � xN)T

yi A point vector in the feature space

Y The matrix of row-vector mapped points, (y1� y2� � � � � yN)T

AT The transpose of matrix (or vector) A

tr �A� The trace of matrix A

jAj The determinant of matrix A

kvk The (L2) norm of vector v

uk The k-th eigenvector of some matrix

�k The corresponding eigenvalue

➀,➁, � � � A numbered list of items

➊,➋, � � � A sequential algorithm

Table 1.1: Notation
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Chapter 2

Established Techniques for
Topographic Mapping

2.1 Introduction

This chapter considers three particular established schemes for the generation of mappings that pre-
serve some notion of topography or geometric structure — the Kohonen Self-Organising Feature Map
(Section 2.2), the Sammon Mapping (2.3) and the statistical field of Multidimensional Scaling (2.5). Each
of these approaches is individually described, comparisons between them are drawn and respective
advantages and disadvantages outlined.

2.2 The Kohonen Self-Organising Feature Map

The archetypal topographic neural network is Kohonen’s self-organising feature map (often simply
referred to as the ‘Kohonen Map’ or abbreviated to ‘SOFM’) [Kohonen 1982; Kohonen 1990; Kohonen
1995]. The motivation for Kohonen’s model is neuro-biological and was developed as an abstraction
of earlier work in the field of ordered neural connections by Willshaw and von der Malsburg [1976].

The SOFM can be viewed as a neural network comprising a set of input neurons and a set of output
neurons, each of which is connected by a weight vector w, in the standard manner, to the input. How-
ever, in contrast to the standard single-layer model — the simple perceptron — there is an inherent
additional structure within the output layer. These neurons may be considered to form a fixed lattice,
usually one- or two-dimensional, with associated lateral connectivity in addition to the connection
to the input layer. In the most common two-dimensional case, the output of the SOFM network is a
‘sheet’ of interconnected neurons in a rectangular or hexagonal configuration. Such an architecture is
illustrated in figure 2.1.

When successfully trained, such a network will exhibit the property that adjacent neurons in this lat-
tice structure respond to similar (nearby) input vectors, or features, and the map is then said to be
topologically ordered. This ordered mode of neural response has been observed on the neocortex in
the brains of higher animals, notably the auditory [Suga and O’Neill 1979], the visual [Blasdel and
Salama 1986] and somatosensory [Kaas et al. 1979] cortices. For example, on the human auditory
cortex, there is a near-logarithmic frequency ordering of responsive cells — this is the so-called tono-
topic map — such that nearby neurons on the cortex respond to sounds of a similar pitch. This, and
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Input Layer

Output Lattice

w

x

{
Figure 2.1: A schematic of the architecture of a two-dimensional output layer Kohonen network. For

clarity, only the weight connections from the input to a single neuron are shown.

other mappings within the brain, involve a vast number of similar cortical connections (estimated at
around 1013), and this almost certainly precludes the possibility that this topological ordering is genet-
ically determined, thus suggesting that these properties evolve during brain development according
to some alternative systematic process. The learning procedure for the Kohonen SOFM is a gener-
alised abstraction of such a potential mechanism, and the model has been successfully applied across
a considerable variety of distinctly non-biological domains. Good examples include speech recog-
nition, image processing, interpretation of EEG traces and robot arm control, and these, and other
applications, are comprehensively reviewed (with references) in [Kohonen 1995]. In addition, there
is a large on-line biography (� 1630 references) available concerning theory and applications of the
self-organising map [Anonymous 1996].

To construct the SOFM, consider a network as outlined above with inputs from some p-dimensional
space connected to a q-dimensional output lattice of K neurons with associated weight vectors wi,
each of which effectively defines a point in the input space. The Kohonen algorithm is thus:

➊ Choose the dimension, size and topology of the map according to the prior knowledge of the
problem. Some preprocessing of the data may also be necessary as the map is sensitive to scaling
of the input features.

➋ At time step t � 0 initialise all the weight vectors wi to random values.

➌ Present an input pattern xt to the network, drawn according to the input distribution defined
by the probability density function f (x).

➍ Determine the “winning” neuron, v(xt), whose weight vector wi is closest to the input point xt.
That is

v(xt) � argmin
i

kwi � xtk

➎ Adjust the weight vector of the winning neuron, and those of its neighbours, in a direction to-
wards the input vector. That is

wi � wi � �(t)�[i� v(xt)](xt �wi)�

where �(t) is a learning-rate parameter. The function �[i� v(xt)] is the neighbourhood function, and
is described in detail below.
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2.2 The Kohonen Self-Organising Feature Map

➏ Repeat from step ➌ until the map has stabilised.

The key to the topographic nature of the mapping is the neighbourhood function, �(i� v(x)). This is
some function defined over the output lattice space which is generally non-negative and decreases
with the distance (in the lattice space) between the winning neuron v(x) and any other neuron i. This
implies that the weight vector of the winning neuron receives maximum perturbation, while the cor-
responding vectors of more distant neurons are adjusted to a lesser extent. Popular choices for this
function are the Gaussian, �(r) � exp(�r2�2�2) — where r is the distance from the winning neuron
to another neuron — and the ‘bubble’, which is simply a constant value over a fixed neighbourhood
width �. The parameter � therefore controls the degree of weight adjustment with distance, a prop-
erty that is sometimes referred to as the “stiffness” of the lattice.

Thus, when an input pattern is presented to the network, the nearest, winning, neuron will be moved
in the direction of that input vector along with its neighbours by an amount that decreases with their
distance (within the lattice) from the winning neuron. In this way, the weights for nearby neurons will
converge to the same region of input space, thus exhibiting the characteristic topological ordering.
The ‘width’ of this neighbourhood function, the parameter �, is t-dependent. It is usually set to a
relatively high value (as much as half the lattice width or greater) at initialisation, and decreases with
time. This allows the coarse global structure of the map to be formed in the early stages of training,
while the local structure is fine-tuned later. The learning-rate �(t) also varies with time, decreasing
monotonically to some arbitrarily small value when the map is “frozen”.

Three example plots taken during the training of a SOFM are illustrated in Figure 2.2 below. These
show the evolution of the output lattice for input data sampled uniformly at random from within a 2-
dimensional unit square. The weight vectors wi are plotted in the input space, and those correspond-
ing to adjacent nodes in the neuron lattice are shown connected. Note that these connections are not
explicit within the SOFM architecture; it is the action of the neighbourhood function that implicitly
inter-connects all the output layer neurons to some degree.

Figure 2.2: A 2-D Kohonen map of data sampled uniformly at random from the unit square. The final
map is after 5,000 time steps.

For a neighbourhood function of zero width, there is no topological ordering in the map and the
algorithm becomes equivalent to a vector quantisation (VQ) scheme (specifically, the LBG algorithm
of Linde, Buzo, and Gray [1980]), where the weights wi are analogous to the codebook vectors of VQ.
It is also, therefore, closely related to the k-means technique for data clustering [MacQueen 1967].

Ideally, it would be convenient if the density of the distribution of the wi in the input space were di-
rectly representative of the input probability density f (x). This, however, is not the case. An exact
result has been derived only for the single-dimensional feature map which reveals that the density of

15



Established Techniques for Topographic Mapping

the wi, m(w), is in fact given by [Ritter and Schulten 1986; Ritter 1991]:

m(w) � f (x)�� with (2.1)

	 �
2
3
�

1
3[�2 � (� � 1)2]

� (2.2)

where � is the number of neurons to each side of the winning neuron that are adjusted at each training
step. For � � 0, this is equivalent to VQ, and m(w) � f (x)1�3.

In this case, and in general for higher dimensions, the Kohonen SOFM over-emphasises regions of low
input density at the cost of under-emphasising those of high density. An illustration of this effect may
be seen later in Section 2.4.

One important feature of the SOFM is that it exists only at the algorithmic level. It has been shown
[Erwin, Obermayer, and Schulten 1992] that the above procedural description of the Kohonen Map
cannot be interpreted as minimising a single energy (or error) function. This implies that there is no di-
rect measure of “quality” of a map, although several indirect alternatives have been proposed [Bauer
and Pawelzik 1992; Bezdek and Pal 1995; Goodhill, Finch, and Sejnowski 1995].

There have been several extensions made to the basic SOFM model since its introduction. For appli-
cation to classification problems, there are the Learning Vector Quantisation (LVQ) schemes [Kohonen
1990], where sets of weight vectors are allocated exclusively to a single class and the learning algo-
rithm adjusted such that inter-class decision boundaries are emphasised. There have also been vari-
ants of the map proposed which permit arbitrary and dynamic output layer topology, such as the neu-
ral gas of Martinetz and Schulten [1991] and the growing cell structures of Fritzke [1994]. Such schemes
permit a better match between the network topology and that of the data distribution, but consider-
ably complicate the generation of convenient visualisations, such as that illustrated for the standard
SOFM in Section 2.4. This restriction makes these approaches less suitable for data analysis, and they
will not be considered further in this thesis.
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2.3 The Sammon Mapping

2.3 The Sammon Mapping

If the definition of a topographic mapping is to be understood as implying a retention of global met-
ric relationships, then the Sammon Mapping [Sammon 1969], sometimes referred to as the Non-Linear
Mapping or NLM, is the most intuitive basis for its definition. In contrast to the Kohonen mapping,
the Sammon mapping may be determined by the optimisation of an error, or ‘STRESS’, measure which
attempts to preserve all inter-point distances under the projection. The Sammon STRESS is defined as

Ess �
1P

i
P

j�i d�ij

X
i

X
j�i

[d�ij � dij]2

d�ij
� (2.3)

where d�ij is the distance kxi � xj k between points i and j in the input space Rp , and dij is the distance
kyi�yj k between their images in the map, or feature, spaceRq . These distance measures are generally
Euclidean but need not strictly be so.

The [d�ij � dij]2 term is clearly a measure of the deviation between corresponding distances, and the
Sammon STRESS thus represents an optimal, in the least-squares sense, matching of inter-point dis-
tances in the input and map spaces. The first fractional term in the expression is a normalising con-
stant which reduces the sensitivity of the measure to the number of input points and their scaling. The
inclusion of the d�ij term in the denominator of the sum serves to moderate the domination of errors in
large distances over those in smaller distances, and renders the overall measure dimension-less. The
inclusion of this term is not justified in the original paper, and has the effect of making the mapping
more sensitive to absolute (though not proportional) errors in local distances.

Given this STRESS measure Ess, it is straightforward to differentiate with respect to the mapped co-
ordinates yi and optimise the map using standard error-minimisation methods. Setting the constant
c �

P
i
P

j�i d�ij for simplification gives


Ess


yi
�
�2
c

X
j

(d�ij � dij)

d�ijdij
(yi � yj)� (2.4)

All the points yi in the configuration can thus be simultaneously iteratively adjusted to minimise the
error. It should be noted that each partial derivative requires N cycles of computation and therefore
to calculate the entire set of derivatives will require a double sum over the data. (In fact, N(N � 1)�2
loops.) Sammon used a simple gradient-descent technique in his original paper, but less naive meth-
ods may be employed, and a conjugate-gradient routine [Press, Teukolsky, Vetterling, and Flannery
1992] was found to be considerably more effective.

The Sammon mapping originated in the engineering field and was designed as a computational tool
for data structure analysis and for visualisation, and indeed, its use is still popular in many domains
— Domine et al. [1993] provide a good review of applications in the field of chemometrics. Feature
space dimension, q, is thus naturally chosen as either 2 or 3. Because of the metric nature of the map,
clusters of data points tend to be retained under the projection and are manifest in the feature space.
In addition to this local clustering structure, the inter-cluster global relationships are also preserved to
some extent. Sammon emphasised this latter feature in the paper, giving several illustrative examples
where a linear projection onto the first two principal axes (the orthogonal axes that maximise the vari-
ance under projection) confused multiple distinct clusters in contrast to the Sammon mapping which
maintained their separation.

While minimisation of Ess implies preservation of the input geometry, the extent to which the integrity
of the structure of the input space can be retained is dependent both upon the intrinsic dimensionality
of the data, and also upon its topology. In the process of dimension reduction, some information, in
all but the most degenerate cases, will be lost, and furthermore, apparent structure may be elucidated
which is truly artefactual in nature. A minor example of such structure will be seen for spherical data
in the next chapter, and reference to a more controversial case will be made shortly in discussion of
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multidimensional scaling. Some investigation of artefactual structure was undertaken by Dzwinel
[1994]. One particular illustration was given for data generated uniformly at random from within a
100-dimensional hypercube, which resulted in a circular configuration when mapped down to two
dimensions. The cause of this particular configuration was actually explained by the author, with
reference to the “curse-of-dimensionality”, but this and other such projections may often appear in-
consistent to the human observer because “our intuitive notions of low dimensions don’t carry over
well to high dimensions” [Friedman 1995].

Despite the simple, intuitive appeal of the Sammon Mapping, there are, however, some significant
disadvantages and limitations to its application.

➀ The mapping is generated iteratively and has been observed to be particularly prone to sub-
optimal local minima.

➁ The computational requirements scale with the square of the number of data points, making its
application intractable for large data sets.

➂ There is no method to determine the dimensionality of the feature space a priori.

➃ The map is generated as a ‘look-up table’ — that is, there is no way to project new data without
re-generating the entire map with the new data points included.

Sammon himself appreciated the restriction posed by item ➁ above, conceding that with the comput-
ing facilities available at that time, a practical upper limit of 200 data points was imposed. To partially
overcome this, he proposed applying some a priori clustering process to extract prototypes, and then
mapping these with the algorithm. This, and other approaches to the computational problem, will be
considered in Chapter 7, with an investigation of problem ➀, local minima, in Chapter 6. A consid-
erable part of this thesis will be concerned with approaches to the problem posed by item ➃, and this
will be considered in more detail in the following chapters.

2.4 Comparison of the Kohonen SOFM and the Sammon
Mapping

It has already been stated that, unlike the Sammon mapping, the generation of a Kohonen SOFM can-
not strictly be interpreted as the minimisation of a single energy or cost function [Erwin, Obermayer,
and Schulten 1992]. Aside from this, there is a more fundamental underlying difference between the
two methods. It is the mechanism of the local neighbourhood function in the Kohonen map that af-
fords the topographic nature of the scheme. However, there is no explicit retention of global structure,
and indeed, the emphasis of the algorithm is to model the density of the underlying input data dis-
tribution. This contrast between the two techniques may be illustrated by the following simplistic
example.

Both the SOFM and Sammon’s algorithm are applied to the mapping of a synthetic dataset comprising
three clusters in three dimensions. The clusters, C1, C2 and C3, are centred at (0� 0� 0), (1��1� 0) and
(4� 5� 0), and contain 50, 100 and 50 points respectively. Each cluster is dispersed uniformly at random
inside a cube centred at each point, with the size of each edge of the cube for C3 being double that
of C1 and C2. This distribution of data is illustrated via two orthogonal projections in figure 2.3. A
(12�10) Kohonen Map of this data and the corresponding Sammon mapping are shown in figure 2.4.
For comparison, the first two principal components of the data are plotted in figure 2.5.

This particular distribution of data was chosen deliberately to emphasise the differences in the meth-
ods. As illustrated in figure 2.4, the Sammon mapping offers a good representation of the original
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topography. The variation of inter-cluster separation is still clear, and the increased dispersion of
C3 is also evident. The Kohonen SOFM has retained the local topology, but because it is a density-
driven approach, fails to capture both the global relationships between the clusters and the local dis-
persion of C3. Underlining this behaviour, the concentration of neurons in the region of class C2,
which contained twice the point density of the other classes, is also evident. The number of nodes
activated for each of the three classes is 23, 40 and 27 respectively, which indicates that the map has
over-represented the lower density clusters. That the cluster C3 is significantly larger than C1 and C2
is not evident, and neither is its greater distance from those clusters.

In this simple case, a principal component projection is apparently adequate for retaining the topogra-
phy (although close inspection will reveal better dispersion within the three clusters in the case of the
Sammon Mapping). For real, higher-dimensional, datasets, this linear technique is generally limited
in its application, as will be illustrated in Chapter 4.

An additional phenomenon inherent in the SOFM is the introduction of some topographic distortion
due to the fixed topology of the lattice of output neurons. As asserted by Li, Gasteiger, and Zupan
[1993], “global topology distortions are ... inevitable” in all but the most trivial situations. This effect
is a result of mismatch between the topology of the lattice and that of the input data. This conclusion
is also confirmed by Bezdek and Pal [1995] who claim that “the Sammon method preserves metric re-
lationships much better than [the SOFM].” This assertion is a result of assessing the alternative map-
pings according to a measure of metric topology preservation, derived from Spearman’s rank coefficient.
With respect to this criterion, the Sammon mapping scored higher for all datasets tested.

The distortive aspect may be demonstrated by the example in figures 2.6 and 2.7. This illustrates a
(12�12) 2D-sheet mapping of data points lying on three concentric 3-dimensional spheres, with radii
0,1 and 2 units respectively. Fifty points were distributed at random over each of the spheres and a
small amount of Gaussian random noise was added, making the centre sphere effectively a cluster.
The diagram in figure 2.6 shows the map, with its inevitable discontinuities, and below, in figure 2.7,
is an illustration of the form of the sheet embedded in the input space — the ‘frustration’ in the lattice
is clearly visible in this latter diagram. When such mismatch occurs, it may also induce poor perfor-
mance from a clustering point of view. Such degradation, in comparison with the standard ’k-means’
procedure, has been observed by Balakrishnan, Cooper, Jacob, and Lewis [1994].

Regarding these criticisms it should be noted that Kohonen’s SOFM was developed as an analogue of
observed neuro-biological behaviour, rather than being explicitly motivated by the criterion of faith-
ful preservation of universal topography. In addition, in stark contrast to Sammon’s technique, it has
the attractive feature of good computational behaviour. It is this tractability for sizable datasets which
makes the Kohonen SOFM a popular topographic mapping tool. However, on the basis of the discus-
sion in this section, for applications in data analysis and visualisation, the Sammon mapping should
be preferred for smaller datasets.
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Figure 2.3: Synthetic data distributed in 3 clusters in 3-dimensional space.
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Figure 2.4: Kohonen and Sammon Mappings of the 3 clusters.
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Figure 2.5: Projection onto the first two principal axes of the 3 clusters.
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0 2 4 6 8 10 12
0

2

4

6

8

10

12

Figure 2.6: A Kohonen Mapping of data on 3 concentric spheres.

Figure 2.7: The Kohonen lattice embedded in the original space.
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Established Techniques for Topographic Mapping

2.5 Multidimensional Scaling

2.5.1 The Underlying Principle

Multidimensional Scaling (MDS) is described by Davison [1983] as

...a set of multivariate statistical methods for estimating the parameters in, and assessing
the fit of, various spatial distance models for proximity data.

This definition is a relatively narrow one, and some authors (e.g. Carroll and Arabie [1980]) accept
a broader view and include other methods for modelling multivariate proximity data (such as factor
analysis or cluster analysis) within the scope of MDS. However, it is the topographic properties of
MDS that are relevant in this context, so the spatial distance definition is the most appropriate here.

The raw data to which MDS is applied is proximity data. This is generally in the form of a square sym-
metric (N � N) matrix, where each row and column enumerates a set of objects and the elements of
the matrix are measures of the relative proximity of those respective objects. In this context, proximity
may refer to either similarity or dissimilarity of objects. It is then the purpose of MDS techniques to rep-
resent the structure of the proximity matrix in a more simple and perspicuous geometrical model. The
classic example is that, given a matrix of road-distances (which can be considered analogous to dis-
similarities) between cities, the data can be modelled by a two-dimensional map (e.g. see Krzanowski
and Marriott [1994], pp113). In this instance, the scaling procedure greatly facilitates visualisation of
the data and eliminates the redundancy in the description.

For the case of the road-distances, the geometric interpretation is intuitive and clearly valid. Typically,
however, the proximity data processed by MDS models will have been gathered in a more subjective
manner, often by means of psychological experiment where human subjects are asked to assess the
likeness, or similarity, of each pair of objects, or stimuli. The fundamental assumption underlying the
application of MDS in these contexts is that these empirical observations can be meaningfully fitted to
a set of points in some metric space, where the distance between the points representing each pair of
stimuli corresponds to their perceived dissimilarity. (The measure of ‘dissimilarity’ may be simply de-
rived from that of ‘similarity’, for example, by subtracting from a constant.) This basic principle was
originally proposed by Richardson [1938]. Given this assumption, it is then hoped that such a fitted
configuration will aid visualisation of the data and also provide insight to the processes that gener-
ated it. These techniques have been successfully applied in a variety of fields — the behavioural and
social sciences, psychology, acoustics, olfactory analysis, education and industrial relations are exam-
ples. A comprehensive list of many such applications is given by Davison [1983]. MDS remains a very
popular tool, with a search of citation indices revealing relevant annual publications in the hundreds.
A prominent, recent, and controversial example of the application of MDS techniques is in the study
of connectivity of regions in the visual cortex of the macaque monkey [Young 1992]. This has pro-
voked some significant debate over the validity of the structure inferred from such a model [Goodhill,
Simmen, and Willshaw 1995], as to whether it is artefactual or truly representative of the underlying
relationships in the data.

One particularly good illustration of MDS applied to psychological data concerns a study of colour
vision. In this experiment, performed by Ekman [1954], participants estimated the similarity of all
combinations of pairs of 14 different sample colours presented to them. An MDS technique was used
to convert these similarity measurements into a configuration of points in two dimensions, where they
were found to lie in a spectrally ordered manner on an annular, horseshoe, structure. This ‘bending’
of the colour line is a result of the phenomenon that many subjects (reasonably) perceive similarity
between the two extreme ends of the spectrum — red and violet. The similarity data and the resulting
mapping, which is clearly informative in this case, are given in figures 2.8 and 2.9 respectively.
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Figure 2.8: The proximity matrix for Ekman’s colour data. Each value is a normalised, averaged, mea-
sure of observed similarity between 14 distinct sample colours.
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Figure 2.9: The resultant map, with wavelength shown for each sample, for Ekman’s colour data.
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2.5.2 Scaling Algorithms

The measured dissimilarity between a pair of objects (i� j), known as a stimulus pair, can be formalised
as the variable �ij, which is an element of the (N�N) dissimilarity matrix�. It is the purpose of MDS
to turn this data into a (N� q) configuration matrix Y. In general, and in common with the Sammon
Mapping, the dimension of the feature space q is unknown a priori.

The configuration of points yi � i � f1 � � �Ng must be determined such that the values �ij match some
distance function, d(i� j), defined over all possible pairs of points (yi� yj). For d(i� j) to be a distance func-
tion, the following four axioms must hold:

d(a� b) �0� (2.5)
d(a� a) �0� (2.6)
d(a� b) �d(b� a)� (2.7)

d(a� b) � d(b� c) �d(a� c)� (2.8)

In a psychological context (e.g. consider the colour data), these first three axioms, (2.5)-(2.7) appear in-
tuitively reasonable, although there is no apparent support or contradiction for (2.8), known as the tri-
angular inequality axiom. Whilst much experimental work corroborates the distance model for psy-
chological data, the results of some tests appear to violate some of the axioms (e.g. Rothkopf 1957).
However, this is just one aspect of the application of MDS — in other contexts these contradictions are
not manifest.

Usually, the metric employed in the configuration space is the standard Euclidean, although general
Minkowski distances have been used in particular applications.

There are two main branches of MDS models — the metric and the nonmetric methods. In the former,
the dissimilarities should correspond as closely as possible to the inter-point distances in the gener-
ated configuration. In the latter scheme this constraint is relaxed, with psychological justification,
such that the ordering of the dissimilarities should correspond to the ordering of the distances. The
metric techniques, originally developed by Torgerson [1952] as classical MDS, have been superseded
by the more flexible and effective nonmetric models. The following two subsections cover these meth-
ods in more detail.

2.5.3 Classical Multidimensional Scaling (CMDS)

One of the first MDS algorithms was proposed by Torgerson [1952, 1958]. By definition as a metric
method, it assumes the identity relationship between distance in the feature space and corresponding
object dissimilarity:

�ij � d(i� j)� (2.9)

As such, it requires somewhat restrictive assumptions, and is seldom used in its original form, al-
though many more developed algorithms build on it. It does, however, have the advantage of an
analytical derivation.

The CMDS procedure is as follows:

➊ From the dissimilarity matrix�, generate the double-centred inner product matrix B�, given by:

B� � �
1
2

H�2H� (2.10)

with�2 the matrix whose elements are the square of those of�. That is,�2 � f�2
ijg. The matrix

H is the centring matrix, given by I� 1�N, where 1 is the square matrix whose elements are all
1.
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2.5 Multidimensional Scaling

➋ Factorise B� into:

B� � U�UT� (2.11)
� YYT� (2.12)

The matrix � is the diagonal matrix of eigenvalues of B�, with U the corresponding matrix of
eigenvectors.

➌ The matrix Y � U�1�2 is the configuration of points in p � N dimensions that satisfies exactly
the dissimilarity measures specified in�. To reduce to q dimensions, select the q columns of U
corresponding to the q largest eigenvalues, giving an (N � q) data matrix Yq.

There are several points to be noted about the CMDS procedure:

� The points Y are centred at the origin, so
PN

i yi � 0.

� Calculation of �1�2 requires that B� is positive semi-definite. Techniques adopted for dealing
with the problem of negative eigenvalues are typically heuristic. One is to ignore the small,
negative eigenvalues. Another is the trace criterion, where the sum of the discarded negative
eigenvalues should equal the sum of the positive discards, so the sum of the remaining eigen-
values is still equal to the trace of the matrix. A large negative eigenvalue is nevertheless a major
problem. Mardia [1978] proposed “goodness of fit” measures for such non-Euclidean data.

� If B� is positive semi-definite, then� is a Euclidean distance matrix. That is, the dissimilarities
�ij correspond exactly to the Euclidean distances between a set of points embedded in at most
(N� 1) dimensions.

� If B� is positive semi-definite, then the points yi are referenced to their principal axes. (That is,
YTY is diagonal). Furthermore, if the elements of� are the inter-point Euclidean distances of a
given set of data points, then the CMDS solution in q dimensions is identical to a projection onto
the first q principal axes of the data. Indeed, CMDS is sometimes known, after Gower [1966], as
principal co-ordinates analysis.

� For a similarity matrix S, where 0 	 sij 	 1 and sii � 1 (such as that given for the colour data in
figure 2.8), then a corresponding dissimilarity matrix can be formed by �ij �

p
(1� sij). In that

case,� is a Euclidean distance matrix [Gower and Legendre 1986].

2.5.4 Nonmetric Multidimensional Scaling (NMDS)

In Nonmetric, or ordinal, Multidimensional Scaling (NMDS) the requirement that distances in the pro-
jected space optimally fit the dissimilarities is relaxed so that only the ordering of distances is retained.
That is, the two most dissimilar stimuli should also be the two most distant points in the configura-
tion and the second most dissimilar pair of stimuli be the second most distant pair of points etc. It is
therefore not necessary for all corresponding pairs of distances and dissimilarities to be identical. In
fact, the ordinal constraint implies that it is only necessary that the dissimilarities be some arbitrary
monotonically increasing function of the distances.

Thus in contrast to equation (2.9), for nonmetric models the relationship between dissimilarity and
spatial distance becomes

�ij � f (dij) � f

�X
k

(xik � xjk)2

	1�2

� (2.13)

where f is a monotone function such that


i� j� i�� j� � dij � di�j� � f (dij) � f (di�j� )� (2.14)
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Note that the function f need never be known explicitly, although its form may be recovered after the
scaling procedure.

As well as adhering to the first three Euclidean distance axioms, this concept preserves many intuitive
psychological properties and in many cases permits the generation of more useful, lower-dimension,
lower-STRESS mappings. Furthermore, in some experiments, only ordinal data is available, notably
where human subjects are required to rank various stimuli in order of merit or preference.

In contrast to the classical method, these ordinal configurations are generated by minimisation of a
particular cost function, or STRESS measure, and must be generated iteratively via some nonlinear
optimisation procedure. Because of the ordinal constraint, generating a configuration is particularly
computationally expensive due to the additional requirement of a monotonic regression step.

The first nonmetric scheme was proposed by Shepard [1962a, 1962b], in response to experimental evi-
dence that in certain applications, observed dissimilarities were related to some nonlinear function of
the spatial distances in a putative model (e.g., Shepard 1958). These methods were further and more
formally developed by Kruskal and that work remains the basis of modern implementations. Kruskal
[1964a] formalised the method by defining a measure of goodness-of-fit. The proposed MDS technique
is thus to determine a point configuration Y that optimises this. A practical computer implementation
of the algorithm is described in a companion paper [Kruskal 1964b]. To clarify the NMDS technique,
consider the following description of Kruskal’s procedure.

Given a set of experimentally obtained dissimilarity data �ij and a configuration of N points in q di-
mensions, the dissimilarities can be ranked according to their magnitude

�i1j1 � �i2j2 � ��� � �iMjM (2.15)

where M � N(N � 1)�2. It is then possible to determine a set of disparities �dij that are “nearly equal”
to dij, whilst still retaining monotonicity with respect to the corresponding �ij. That is:

�di1j1 	
�di2j2 	 ��� 	 �diMjM (2.16)

The �dij are said to be monotonically related to the dij, and the fitting of those values is a monotonic re-
gression of distance upon dissimilarity. The multi-pass procedure for the determining the disparities
is as follows.

At each monotonic regression phase, the disparities�dij are initialised as the distances dij, and are listed
such that their corresponding dissimiliarities �ij are in ascending order. In the first pass, each pair of
adjacent (list-wise) disparity values is compared and if the two variables are not correctly ordered,
they are combined into a ‘group’ with a common disparity value equal to the arithmetic mean of the
combined values. Subsequent passes are then similar, except previously combined groups may be
compared together as well as with other adjacent groups and/or single disparity values. The pro-
cedure terminates when no further groupings are required and the listed disparities are either equal
(within groups) or in the requisite ascending order.

Kruskal then defined an objective measure based on these disparities:

STRESS �

vuutP
i�j(dij � �dij)2P

i�j d2
ij

� (2.17)

where the denominator again normalises for the number and scaling of the dissimilarities.

The monotonic regression step occurs first, determining the�dij, following which those calculated val-
ues are used in a gradient-descent minimisation step of equation (2.17). These alternate steps are then
repeated until a local minimum of STRESS is attained. Inevitably this procedure is computationally de-
manding and prone to finding sub-optimal local minima. Also, there is again no indication of choice
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2.6 Comparison of MDS and the Sammon Mapping

of dimensionality q, so it is usually necessary to generate several configurations in a number of di-
mensions for comparative purposes.

The modern approach to NMDS is the Alternating Least Squares procedure, ALSCAL, and is available in
the popular SPSS software package [Young and Harris 1990]. Since their introduction, the nonmetric
schemes have become the dominant scaling models, with the classical procedure now rarely used.

2.6 Comparison of MDS and the Sammon Mapping

In Sammon’s original paper he briefly mentioned the connection to MDS methods, and this relation-
ship was further clarified by Kruskal [1971].

Sammon’s mapping is effectively a metric, but nonlinear, scaling method. As such, its exact analogue
does not exist in the MDS domain. Whilst all these latter scaling techniques may be applied to dis-
similarities generated directly from a set of points, doing so defeats the primary motivation behind
their development which is to produce such a spatial configuration from non-spatial data. Neverthe-
less, comparison of equations (2.17) and (2.3) indicates that the operation of the Sammon mapping,
ignoring normalisation terms, is identical to a nonmetric scaling procedure without the monotonic
regression step.

Algorithmically, MDS and the Sammon Mapping are effectively identical; it is only the difference in
the source of the input data that differentiates between the two schemes. Conceptually, this is illus-
trated in figure 2.10 below.
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Figure 2.10: A schematic of the operation of the Sammon Mapping and MDS, emphasising the con-
ceptual distinction between the two.
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2.7 Conclusions

This chapter has described the standard methods for topographic feature extraction in both the neural
network and statistical domains. The next chapter will introduce an alternative, feed-forward neural
network approach to topographic mapping, which will be based on Sammon’s projection. The em-
phasis of the particular method proposed is for the purposes of visualisation or exploratory data anal-
ysis, and this has motivated the choice of the latter technique as the basis for its design. As illustrated
in Section 2.4, Sammon’s approach to topographic mapping retains significantly more of the salient
global data structure than the SOFM paradigm.

The key principle from MDS outlined in Section 2.5 — that informative configurations of points can be
generated via topographic constraints from non-spatial data — will be incorporated into the method
to enable the exploitation of additional subjective knowledge.

A generalisation of this neural network model to classical MDS in particular will be examined in Chap-
ter 5, in the context of principal components analysis with neural networks.
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Chapter 3

NEUROSCALE

3.1 Introduction

The distance-preserving criteria for determining topographic mappings such as the Sammon map-
ping, or the majority of the multidimensional scaling models, are intuitively appealing. Simple STRESS
measures of the form

P
ij(d

�
ij � dij)2 explicitly embody the notion of structure-retention with their ten-

dency to retain distance relationships on both local and global scales.

However, one major restrictive property of both the Sammon and MDS methods is that there is no
transformation defined from the input space to the feature space. Configurations are generated by the
direct iterative adjustment of their component vectors, and once determined, act effectively as look-
up tables. There is no mechanism to project one or more new data points without expensively re-
generating the entire configuration from the augmented dataset. In the neural network vernacular,
there is no concept of generalisation for defined mappings.

For example, in a discriminatory application, a Sammon mapping might be constructed for a large
dataset in order to reveal inherent clustering which may correspond to membership of particular
classes. It would then be of benefit to project new data (of unknown class) and so permit inferences
to be drawn concerning class membership from that projection, rather than undergoing the compu-
tationally expensive task of re-mapping the entire dataset with the new points included.

This problem has recently motivated several researchers to develop transformational variants of both
the Sammon mapping and of certain MDS procedures. The transformation may be effected by a neural
network, taking as its input the raw data, and generating the topographic configuration at its output.
Such a model, when trained, can then be used to project novel data in the obvious manner by forward
propagation through the network.

As an extension of this earlier work, this chapter introduces “NEUROSCALE” — an implementation
of the Sammon mapping utilising a Radial Basis Function (RBF) feed-forward neural network. Such a
model is a potentially powerful alternative to the established neural network paradigm, the Kohonen
Self-Organising Feature Map (SOFM), and can be expected to offer several advantages over that latter
approach. These advantages will be discussed in Section 3.2, along with a description of the training
algorithm for the network.

An important feature of NEUROSCALE is its capacity to exploit additional available knowledge about
the data, and to allow this to influence the mapping. This permits the incorporation of supervisory
information in a technique which is strictly unsupervised, and this concept will be considered in depth
in Section 3.3. The basic principles of the technique are then illustrated for some, mainly synthetic,
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datasets in Section 3.4. (An application to the visualisation and exploratory analysis of a difficult,
real-world dataset will be presented in detail in the next chapter.)

This new approach is a development of previous work in the fields of topographic mapping, neural
networks and feature extraction. The key research papers in these areas will be reviewed at the end
of the chapter, and related to the NEUROSCALE technique.

3.2 Training a Neural Network Sammon Mapping

3.2.1 Relative Supervision

Clearly the training algorithm for a neural network implementation of the Sammon mapping is non-
trivial. In a conventional supervised training scenario, there is an explicit ‘target’ for each input data
point to be mapped to; in the case of a topographic transformation, only a measure of relative distance
from all the other data points is available. A standard, supervised training algorithm cannot therefore
be applied in this instance. This has led to the development of what has been termed a relative super-
vision algorithm [Lowe 1993], for the purposes of optimising error measures similar to the Sammon
STRESS. This permits calculation of the weight derivatives required by most optimisation routines.
Recall that the expression for the Sammon STRESS, ignoring normalisation terms, is of the form

E �

NX
i

NX
j

(d�ij � dij)2� (3.1)

The standard Euclidean distance metric will be assumed unless otherwise indicated (this is a sensible
choice as it implies that configurations of points are rotationally invariant with respect to their STRESS
measure), so

dij �kyi � yj k� (3.2)

�


(yi � yj)T(yi � yj)

�1�2
� (3.3)

and similarly for d�ij. In the standard Sammon mapping, STRESS is minimised by adjusting the location
of the points yi directly, according to a gradient-descent scheme. However, if each point yi is defined
as a parameterised nonlinear function of the input, such that yi � f(xi�w) where w is a parameter, or
weight, vector, then the STRESS becomes

E �
NX
i

NX
j

(d�ij� kf(xi�w)� f(xj�w)k)2� (3.4)

This expression may be differentiated with respect to the parameters w (rather than the actual points
themselves in the case of the traditional Sammon mapping) and these parameters adjusted in order
to minimise E. Weight derivatives are then calculated for pairs of input patterns, and the weights may
be updated on-line, pattern-pair by pattern-pair, or may be subsequently updated in a batch fashion,
after the presentation of all (N�1)N�2 possible combinations. Note that this concept is entirely general
and not restricted to the neural network domain. The transformation function f(�) may represent any
arbitrary, continuous, differentiable function (even linear) and need not be a neural network model.

The formulation of a topographic mapping model in this manner has several advantages:

➀ As underlined previously, the existence of the transformation f(�) permits the projection of un-
seen data, and affords the mapping a generalisation property. This is of major benefit as it allows
the network to be used as a tool for future prediction and inference.
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3.2 Training a Neural Network Sammon Mapping

➁ The number of free parameters in the mapping may be reduced. For a Sammon mapping of
N points to q dimensions, the number of adjustable parameters is (N � q), and is determined
by the abundance of data alone. Effecting the mapping as a parameterised function allows the
number of parameters to be determined according to the complexity of the problem. It would
be intuitively expected that fewer than (N� q) parameters would be required in order to obtain
reasonable performance in terms of generalisation.

➂ A side-effect of this parameter reduction is that the nonlinear optimisation procedures employed
to minimise the STRESS measure become more efficient. Some schemes, for example the quasi-
Newton BFGS [Press et al. 1992], require memory storage that scales badly with the number of
parameters.

3.2.2 Calculating Weight Derivatives

For the purposes of most nonlinear optimisation routines, the derivatives of the STRESS measure with
respect to each parameter wk are required. These may be calculated as follows.

Considering equations (3.1), (3.2) and (3.4) and applying the chain rule gives:


E

wk

�

NX
i


E

yi

�

yi


wk
� (3.5)

�

NX
i


E

yi

�

f(xi�w)

wk

� (3.6)

The first term is simply that from Sammon’s derivation and may be obtained by direct differentiation
of equation (3.1) above to give


E

yi

� �2
NX

j��i

�
d�ij � dij

dij


(yi � yj)� (3.7)

The derivatives of the second term are also calculable directly and depend on the form of the function
f(�). In the case of a multilayer perceptron, the derivatives are those which are implicitly calculated
using the familiar back-propagation procedure [Rumelhart, Hinton, and Williams 1986]. Alternatively,
for a model linear in the weights, such as a radial basis function network with fixed centres, they may
be directly derived in a straightforward fashion.

An illustrative code fragment of an implementation of this algorithm is given in figure 3.1. Note that
although the algorithm must loop O(N2) times, the (potentially computationally expensive) forward
and back-propagation through the network is only required N times.

Given the values of these derivatives, the network may be trained via any of the popular nonlinear
optimisation algorithms — gradient-descent (with momentum), conjugate-gradient and BFGS are ex-
amples. (See [Bishop 1995, Ch. 7] for a detailed overview of those and other algorithms.)
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// Relative Supervision Algorithm
//
// For training a Neural Network to effect a Sammon Mapping

// Initialise the weight changes vector to zero as in a standard ‘batch’ algorithm.
//
sumDerivatives = 0;
// Generate the set of output pattern vectors and zero the relative error vector
// for each point
//
for (n=0; n<numberOfPatterns; n++)
{

relativeErrorVector[n] = 0;
networkOutput[n] = networkForwardPropagate(inputPattern[n]);

}

for (i=0; i<numberOfPatterns; i++)
{
for (j=i+1; j<numberOfPatterns; j++)
{
d = distance(networkOutput[i], networkOutput[j]);
if (d!=0)
{
// Calculate the relative error for points i and j
// Note that the distance matrix dStar may be calculated in advance
//
tempVector = ((dStar(i,j) - d) / d) * (networkOutput[i]-networkOutput[j]);
// Update the relative error for both points
//
relativeErrorVector[i] += tempVector;
relativeErrorVector[j] -= tempVector;

}
}
// Forward propagate through the network in order to back-propagate the
// total relative error vectors, which are equivalent to dE/dy
// in standard, supervised, back-propagation
//
networkForwardPropagate(inputPattern[i]);
sumDerivatives += networkBackPropagate(relativeErrorVector[i]);

}

Figure 3.1: A code fragment to implement the relative supervision algorithm.
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3.3 Exploiting Additional Knowledge

The relative supervision training algorithm as described in the previous section is a purely unsuper-
vised procedure, in that no extra information concerning the data is utilised in the mapping. The net-
work learns a transformation from the input space to the feature space, with the constraints on the
output configuration imposed by the Euclidean distance function over the input vectors. This dis-
tance measure will be referred to as the objective metric, and its corresponding metric space, the objec-
tive space. Networks based on this objective metric have been developed previously [Webb 1992; Jain
and Mao 1992; Tattersall and Limb 1994; Mao and Jain 1995], and will be reviewed later in Section 3.5.

This ‘objective’ nomenclature has been chosen deliberately in order to distinguish the conventional
spatial (Euclidean) interpretation from what will be referred to as the subjective metric and correspond-
ing subjective space. The motivation for this dichotomy, and the important distinction between the sub-
jective and objective spaces, will be developed in the remainder of this section.

3.3.1 Class Knowledge

For a given set of data, accompanying the explicit spatial information — perhaps referred to as the
input data, the sensor data, the measurement variables or the explanatory variables — there is often
additional related information. Probably the most common such form this may take is that of class
labels, where each data point has an associated label of membership of one of a number of distinct
classes.

Now, if one purpose of the topographic mapping is to discriminate between classes or to enhance
relevant clusters, then the information provided by class labels may be usefully incorporated. This
can be achieved through the mechanism of minimising a modified STRESS measure:

E� �

NX
i

NX
j

(�ij� kyi � yj k)2� (3.8)

which is identical to the simplified Sammon STRESS with the exception that the inter-point distance in
the data space d�ij is replaced by the variable �ij. The variable �ij can incorporate the class information
if

�ij �

�
d�ij if xi and xj are in the same class�
d�ij � k otherwise�

(3.9)

Thus, the inter-point distances for pairs of points in different classes are modified by the addition
of some constant term k, such that their separation should be exaggerated in the resultant map. An
alternative formulation is

�ij �

�
0 if xi and xj are in the same class�
d�ij otherwise�

(3.10)

which tends to enhance clustering of points belonging to identical classes.

These class-based modifications have been incorporated in mapping schemes by Koontz and Fuku-
naga [1972], Cox and Ferry [1993] and Webb [1995], and will be reviewed further in Section 3.5.

3.3.2 Generalised Knowledge and the Subjective Metric

The use of class labels to enhance clustering as described above is simplistic in that it blindly treats all
classes identically. In many problems there may be further knowledge available regarding class rela-
tionships, and one particularly convenient mechanism for encapsulating this is within a framework
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of what may be termed subjective dissimilarity. This is best explained by reference to one particular
example in the literature [Lowe 1993], once again described in Section 3.5.

In this application, there are 11 distinct classes, representing concentrations of ethanol in water of 0%,
10%, 20%, and so on to 100%. Because these classes are both ordered and ‘linear’, there is an implied
notion of dissimilarity between them, independent of the sensor information associated with each
measurement datum. For example, it is natural to consider that in terms of concentration, the 60%
class is twice as ‘distant’, or dissimilar, from the 80% or 40% classes as it is from the 70% or 50% classes.
Because it is only the relative dissimilarities that are important, such values may be assigned arbitrar-
ily, as long as the relationships previously defined still hold. It would be most intuitive, though, to
assign a dissimilarity of 10 to classes 60% and 70%, and a dissimilarity of 20 to classes 60% and 80%.
These simple examples may be obviously extended to derive a value of subjective dissimilarity for every
class-pair.

This assignment of class dissimilarity means that for every pair of data points (assuming they are all
labelled), in addition to the objective dissimilarity, there is a dual measure of subjective dissimilarity. This
latter measure will be denoted by sij, corresponding to each d�ij.

It should be emphasised that this concept of subjective dissimilarity is not limited to class-labelled
data alone, but is intended to embody alternative knowledge in general, particularly where there are
no convenient discrete class groupings. For the example of the ethanol/water classes above, rather
than the value of concentration being controllable, it may be a variable and so need to be measured
during the experiment, in which case it will take on a continuous range of values. In such circum-
stances, despite the absence of any discrete class groupings, there still exists a natural measure of
dissimilarity — the absolute difference between two concentration values. Another example might
be in photo-chemistry, where certain measured chemical properties result in a particular colouration
response. In this instance, the subjective dissimilarity between data points might be derived as the
inter-response distance within the RGB colour cube.

The existence of a set of subjective dissimilarities sij, consistent with the additional knowledge related
to the data, can be naturally interpreted as an alternative metric implicitly defined over the input space
— the previously introduced subjective metric. (Note that for this interpretation to be strictly appro-
priate, the values of sij should be consistent with the axioms of equations (2.5)-(2.8) given in Section
2.5 in the previous chapter.) It is this metric that is variably incorporated in the NEUROSCALE model
and provides a measure of supervisory input.

3.3.3 NEUROSCALE

The NEUROSCALE technique is effected by a feed-forward radial basis function network which trans-
forms the p-dimensional input space into the q-dimensional feature space (generally, q � p). As this
technique is mainly relevant to the visualisation and exploratory analysis of data, the dimension of the
feature space q will generally be 2 or 3. The network is trained by the relative supervision algorithm,
outlined in Section 3.2, and minimises the STRESS measure:

Ens �

NX
i

NX
j�i

(�ij� kyi � yj k)2� (3.11)

where

�ij � (1� )d�ij � sij� (3.12)

The parameter ‘’, where 0 	  	 1, therefore controls the degree to which the subjective metric
influences the output configuration, and can be considered as defining an interpolation between an
unsupervised mapping and a supervised variant.
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Thus, from the perspective of the neural network, the input data vectors, the transformation mecha-
nism and the form of the topographic constraint remain identical for all values of . The relative su-
pervision algorithm of 3.1 is constant, the only alteration to the procedure is to adapt the pre-calculated
elements of the input space distance matrix (‘dStar’ in the algorithm of figure 3.1), to take account of
the particular value of . Adjustment of that parameter may therefore be interpreted as re-defining
the metric over the input space. (It is trivial to see that if the measures d�ij and sij are metrics, then �ij is
also.) With  � 0, the network is effecting a parameterised Sammon mapping. With  � 1�0, the out-
put configuration is no longer explicitly determined by the spatial distribution of the input vectors,
but is controlled by the subjective metric alone.

How this latter metric is formulated depends both upon the knowledge of the data, of course, but
also on the intended purpose of the mapping process. It may be considered, therefore, that the sub-
jective, or supervisory, element of NEUROSCALE is an expression of preference on the topology of the
extracted feature space. For example, if clustering is important, then defining intra-class dissimilar-
ities to be zero will emphasise that aspect in the mapping. Alternatively, if a particular inter-class
global structure is preferred, that influence may also be applied. Selecting an intermediate value of 
will both retain some of the objective (spatial) topology, and impose some measure of preference onto
the configuration. That there is real merit in such a hybrid feature space will be demonstrated in the
next chapter.

To minimise Ens, various optimisation algorithms were employed, and these are evaluated in Chapter
7. The network weights may be initialised at random, or alternatively, for  � 0, may be set such that
the initial network outputs are the first two principal components of the data. For  �� 0, the starting
configuration can be initialised as the CMDS mapping of the data. However, this procedure requires
calculation of the eigenvectors of a (N�N) matrix, so for large N, it can be more efficient to initialise
at random.

The operation of NEUROSCALE may then be summarised by the schematic of figure 3.2 below.

OBJECTIVE SPACE

FEATURE SPACE

SUBJECTIVE SPACE

RBF

ÀÅ½À×

�éê

óéê

øé øê
ä
�

éê × ùé
ùê

äéê

STRESS

Figure 3.2: A schematic of the operation of NEUROSCALE.

Some of the underlying issues concerning the application of the RBF network — such as the choice
of basis functions, local minima behaviour and the effect of optimisation strategy — are considered
in Chapters 6 and 7. The following section, however, illustrates the application of NEUROSCALE to
some mainly synthetic datasets.
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3.4 Examples of Application

3.4.1 The ‘Iris’ Data

This is a well-known real dataset, used by Fisher [1936] for the development of his linear discriminant
function. The data comprises 50 examples of each of three varieties of iris, with each example de-
scribed by four physical measurements. This data was used by Jain and Mao [1992], and a similar ex-
periment to that reported in their paper can be repeated here. Figure 3.3 illustrates the 2-dimensional
feature space generated by NEUROSCALE for 75 patterns chosen from the dataset (25 of each class).
Figure 3.4 shows the trained network when applied to the entire 150-pattern dataset, and demon-
strates an apparently good generalisation capability. Note that the RBF utilised for the projection com-
prised 75 basis functions (that is, as many basis functions as patterns), yet, counter-intuitively, there
is no explicit evidence of ‘over-fitting’. Why this is so is considered in Chapter 6.
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NeuroScale trained on 75 patterns from the IRIS dataset

Figure 3.3: The resulting projection when NEUROSCALE is trained on 75 patterns of the Iris dataset.
The STRESS for this configuration is 0.00275.
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Figure 3.4: The projection when the trained NEUROSCALE network of the previous figure is tested on
all 150 patterns of the Iris dataset. The STRESS for this configuration is 0.00325.
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3.4.2 Four ‘Linear’ Gaussian Clusters

This is a synthetic data set, comprising four Gaussian clusters in four dimensions, centred in a line at
(xc� 0� 0� 0), where xc � f1� 2� 3� 4g. The Gaussians have diagonal covariance matrices and the common
variance in all dimensions was 0.5. A NEUROSCALE RBF was trained on a subset of the data — the
three clusters 1,2 and 4 — and the output configuration is shown in figure 3.5. The trained network
was then tested on all four clusters, and the resulting plot given in figure 3.6. This illustrates remark-
ably excellent generalisation to data that is not sampled from the same distribution as the training set.
Again, discussion of this phenomenon may be found in Chapter 6.
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Figure 3.5: The resulting projection when NEUROSCALE is trained on 3 of 4 linear clusters. The
STRESS for this configuration is 0.00515.
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Figure 3.6: The projection when the trained NEUROSCALE network of the previous figure is tested on
all 4 clusters. The STRESS for this configuration is 0.00532.
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3.4.3 Data on Adjacent Surfaces

For this example, 50 data points were distributed uniformly at random over each of two adjacent sur-
faces. Each surface was formed by taking a plane of height 5 units and width 2 units, and then curving
it through an angle of 30�. The two surfaces were then placed in the input space such that they were
parallel and offset by 0.5 units. A cross-sectional illustration of this arrangement is shown in figure 3.7.
Figure 3.8 shows the unsupervised (� 0) mapping. With the loss of a dimension under the projec-
tion, the minimum STRESS solution requires that both planes are confused, and this behaviour would
be likewise exhibited by both principal component and SOFM projections. Figure 3.9, however, gives
the projection for �0�5 where each plane is considered to represent a separate class of points, with
the subjective dissimilarity between the two classes set to unity. Incorporation of this additional in-
formation now means that the resulting feature space exhibits a good separation between classes and
additionally retains much of the local topology in each plane. This is emphasised by the two overlaid
grids in the plot.

Figure 3.7: Cross section of the two adjacent
surfaces.

Figure 3.8: An RBF topographic projection of
two adjacent surfaces with � � 0.

Figure 3.9: An RBF topographic projection of two adjacent surfaces with � � 0�5. A grid indicating
lines of constant ‘height’ and ‘width’ is superimposed.
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3.4.4 Data on Three Concentric Spheres

To further illustrate the principle of the NEUROSCALE method, consider the problem of 150 data points
in 3-dimensional space, comprising 3 sets of 50 points, each set lying on one of three concentric spheres.
All spheres were centred at the origin with radii 0,1 and 2 units respectively and some Gaussian noise
added, so that the innermost sphere is effectively a cluster. The data points xi�(xi1� xi2� xi3)T were gen-
erated by the formula

xi � (rk � �i)�

�
�cos�isin�i

sin�isin�i
cos�i

�
� � (3.13)

where rk is the radius (rk � f0� 1� 2g), �i is a Gaussian random variable with zero mean and variance
0.05, and �i,�i are uniform random variables in the ranges [0� 2�) and [0� �) respectively. This collection
of points will be referred to as the SPHERES 3 dataset.

All points on each sphere were considered to belong to a single class and two different schemes for
subjective dissimilarities were considered. In the first, each sphere is a distinct class with the subjec-
tive dissimilarities simply characterised by the difference in radii. So, the matrix of subjective dissim-
ilarities between spheres is naturally given by

C1 �

�
�0 1 2

1 0 1
2 1 0

�
� �

where the columns are ordered from the innermost sphere to the outermost sphere. In the second case
the innermost and outermost spheres are considered to be the same class, so the matrix becomes

C2 �

�
�0 1 0

1 0 1
0 1 0

�
� �

Values of sij can therefore be determined for every pair of points, given the knowledge of which spheres
they lie on, by referring to one of the above matrices.

The SPHERES 3dataset is a problem for which a topographic projection based on a Kohonen network
is unsuitable. The unsupervised Kohonen feature map of this data was shown in figure 2.6 in the
previous chapter, and illustrates the difficulty of projecting the three distinct surfaces within the data.

A NEUROSCALE transformation was trained for both class models and for values of  of 0, 0.5, 0.75
and 1.0. The resulting projections are given in figures 3.10 and 3.11, for each subjective dissimilarity
matrix respectively. These results were obtained using a network with 50 Gaussian basis functions.

The plot for � 0 in figure 3.10, displaying the ‘opening out’ of the spheres, is characteristic of such
structure preserving transformations. The inter-sphere distance errors, rather than the intra-sphere
errors, tend to dominate the STRESS, and these distances are optimally retained by the circular con-
figurations observed. The mapping of a single sphere results in a less ‘severe’ transformation, as seen
in [Webb 1995]. Although no subjective class information has been exploited, there is still a natural
separation of the spheres. As  is increased, the spheres are gradually ‘folded’ until at �1, the RBF
has optimally mapped all the data points in each sphere approximately to a single point. A similar
phenomenon is evident in figure 3.11, where the middle sphere is extracted and the other two spheres
eventually merged. The combination of both topographic and subjective constraints can be seen in the
�0�5 plot, as some of the spherical structure is still evident.
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Figure 3.10: Projections of the 3-Spheres data for subjective matrix C1.
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Figure 3.11: Projections of the 3-Spheres data for subjective matrix C2.
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3.5 A Survey of Previous Related Work

The underlying concept of exploiting a neural network model to implement a STRESS-constrained
topographic mapping has been suggested independently by more than one researcher. This previ-
ous work is summarised in the following three subsections, which group the various approaches into
purely topographic mappings, those using binary class dissimilarities and that using a more gener-
alised measure of dissimilarity.

3.5.1 Purely Unsupervised Mappings

Jain and Mao [1992]

The authors originally introduced their model in 1992, applying both 2 and 3 hidden-layer multilayer
perceptrons to produce the Sammon mapping, deriving the weight derivatives in a direct fashion,
rather than exploiting the derivatives available from standard back-propagation. The output layer
neurons were sigmoidal (thus bounding the maximum inter-point distance in the output configura-
tion), so the input patterns had to be normalised a priori to presentation to the network. They found
the 2-layer network to be the more effective, and gave example projections of the ubiquitous Iris data,
including a plot, similar to figure 3.4, illustrating the generalisation capability of the model.

This work was extended in a subsequent journal paper [Mao and Jain 1995], which comprised a sur-
vey of feature extraction methods using neural networks. As well as the above Sammon technique,
comparison was made with principal components analysis, linear discriminant analysis, the Koho-
nen SOFM and nonlinear discriminant analysis. These methods were all applied to 4 synthetic and 4
real datasets.

The Sammon model was still implemented by an MLP, with sigmoidal outputs, and was trained by
gradient-descent with momentum. A development in this case is that the network is initially trained
to produce a PCA projection “because when all the inter-pattern distances in a data set are maximally
preserved, the variance of the data is also retained to a very high degree.” There is indeed a relation-
ship between variance maximisation and distance preservation, and this is considered in Section 5.2.

One of the key features of this approach is the mechanism to present data to the network. The authors
chose to select pairs of patterns at random, and adjust the network weights ‘on-line’ for each such
pair, rather than accumulating weight changes in a ‘batch’ fashion. The latter method is that exem-
plified by the algorithm of figure 3.1 earlier. While for large datasets this stochastic approach would
appear sensible, it may be seen to be computationally inefficient. To understand why, consider the
learning cycle for N�2 pattern pairs. This requires N forward and backward propagations through
the network, along with N additional STRESS derivative calculations. For the example algorithm of
figure 3.1, a similar number of propagations are required to train the network for N(N� 1)�4 pattern
pairs, although an additional N(N � 2)�2 STRESS derivative calculations are involved. For equiva-
lent numbers of patterns, these latter calculations will be much less computationally expensive than
the additional network propagations, so for datasets of a reasonable size, the presented batch algo-
rithm should offer a much better return on computational investment. This will be illustrated more
quantitatively in a study of training methods as part of Chapter 7.

Webb [1992]

The concept of a neural network transformation within MDS was introduced by the author in 1992.
This approach utilised a two-layer MLP (with linear outputs) incorporated within the standard non-
metric MDS procedure, and therefore also required the monotonic regression stage. Although the ben-
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efits of generalisation to new data were alluded to, no illustration of this capability was given.

Tattersall and Limb [1994]

This again was a two-layer MLP (sigmoid outputs) implementation, deriving the weight adaptation
equations in the same fashion as Jain and Mao [1992], and also on an on-line, pattern-pair by pattern-
pair, basis. The authors name this approach the “hidden target mapping”.

An additional feature within the implementation was the inclusion of a “locality control”. Having
derived equation (3.7), the denominator dij was replaced with the term �dij� (1��), where 0 	 � 	 1.
The motivation for this is that the implicit weighting in the error measure between larger, global, and
smaller, local distances can be controlled. It is noted that “the mapping becomes much more sensitive
to errors in mapping points which are close together rather than far apart” because “if two points are
close together in the map, dij is very small and tends to amplify the value of the error derivative.”

This assertion is, however, erroneous. The factor dij may be divided into the term (yi � yj) to give an
expression


E

yi

� �2
X
j��i

�
d�ij � dij

�
�rij� (3.14)

where �rij is a unit vector in the direction (yi � yj). The magnitude of this derivative is determined
solely on the residual distance error, d�ij � dij, and is independent of the distance between points i and
j in the mapped space.

3.5.2 Simple ‘Binary’ Mapping of Class-Labelled Data

The most common form of prior knowledge associated with data is that of class labels. Each data point
xi is considered to belong to one of a finite number of classes, usually conveniently labelled with an
integer such that the class of point xi is given by �i.

In applications where topographic mappings are to be employed in the projection of class-labelled
data, this information may be exploited in the generation of the projection in order to increment its
utility with respect to some classification or clustering criterion. Variations on this approach have
been adopted by the following.

Koontz and Fukunaga [1972]

This nonlinear feature extraction procedure, motivated in part by MDS ideas, was developed in 1972.
In order to generate mappings with improved class separability in the feature space, the authors op-
timised a combined criterion incorporating both structural and discriminatory elements:

J � JSE � �JSP� (3.15)

where JSE is a separability criterion, and JSP the usual structure preservation measure. (There is a clear
parallel with the objective and subjective nomenclature utilised in the description of the NEUROSCALE
model earlier.) The constant � determines the relative contributions towards the STRESS of the two
criteria. The structure preservation term is then given by

JSP �
X

i

X
j�i

ij[d�ij � dij]2� (3.16)
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where ij, a constant for each point pair, is from standard NMDS and is

ij �
1�d�ijP

i
P

j�i d�ij
� (3.17)

The separability term is

JSE �
X

i

X
j�i

�(�i� �j)ijd2
ij� (3.18)

where �(�i� �j) is defined as

�(�i� �j) �

�
0 �i �� �j�

1 �i � �j�
(3.19)

with �i being the class label associated with data point xi. Hence this term tends to minimise the inter-
class scatter by penalising patterns that are in the same class but map to distant points in the output
configuration.

The algorithm derived for the projection, the distance-difference mapping, was highly heuristic, requir-
ing some expert knowledge and certain assumptions. Nevertheless, it was illustrated how nonlinear
transformations based on spatial criteria could be beneficially adapted to include class information.

Cox and Ferry [1993]

These authors also exploited an identical form of class information used above, but in a standard
NMDS procedure. The elements of the dissimilarity matrix, � � f�ijg, were adjusted according to
the classes of stimuli i and j, and in this case,

�ij �

�
��ij if �i �� �j�

�ij �i � �j�
(3.20)

This embodies an alternative philosophy for discrimination to that adopted by Koontz and Fuku-
naga. Here, different classes are intended to be more distant in the configuration, rather than identical
classes to be more close.

In order to produce a transformational variant of this mapping, a simple linear or quadratic model
was fitted to the configuration a posteriori, rather than generating that model implicitly in the scaling
procedure as incorporated by Webb [1992].

Webb [1995]

This paper represented an extension of work in the earlier paper [Webb 1992], described previously.
In contrast to that implementation, the monotonic regression phase was discarded and a radial ba-
sis function network was used to effect the transformation, as suggested by Lowe [1993]. A further
extension of the procedure was to include a mechanism for discrimination, similar to that employed
by Koontz and Fukunaga above. Instead of minimising the standard stress measure, the author em-
ployed one of the form

J � (1� �)JSE � �JSP� (3.21)

where the two criteria JSE and JSP were those as used by Koontz and Fukunaga. The parameter � (0 	
� 	 1) allows a mixing of the two criteria. The hybrid STRESS measure, J, was then minimised via
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the iterative majorisation method, as employed in the popular ALSCAL procedure [Young and Harris
1990].

The discriminance property of the transformation was illustrated for the Iris data, with a contraction
of the three classes evident in the projection for � � 0�1.

3.5.3 General Mapping of Class-Labelled Data

Lowe [1993]

This paper described the development of an ‘artificial nose’, employing a relative supervision algo-
rithm to train a radial basis function network performing a topographic transformation. The input
data was taken from a number of chemical vapour sensor responses to samples of varying discrete
concentrations (0%, 10%, � � � , 100%) of ethanol in water. However, rather than optimise the stress
of the output configuration in terms of the inter-point distances in the sensor space, the values d�ij
were derived from the alternative knowledge of the data. This is based on the concept of the metric
in concentration space, rather than in data space. This metric could be reasonably expected to have
the property that points corresponding to samples of 40% concentration would be twice as distant, or
dissimilar, from those of 20% and 60% than those of 30% and 50%. This implies an ordering of, and
linearity between, samples in concentration space, and may be encapsulated in a simple illustration
thus:

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

The entries in the dissimilarity matrix, �ij were thus set by

�ij � j�i � �jj� (3.22)

where �i is the concentration value associated with point xi. Although input for the RBF was the raw
sensor data, in spirit the procedure was more akin to MDS than the Sammon mapping, as the structure
of the feature space was based exclusively on the subjective dissimilarities.

Thus a nonlinear mapping was defined from the input data space to a feature space, with the config-
uration therein constrained by a set of dissimilarity values consistent with the additional knowledge
of the concentration data. New data could then be projected onto this derived concentration ‘line’,
such that the network might be considered to be mimicking an interpolating classifier. In that it uses
the class information associated with the data, this approach can be considered to be of a supervised
nature, even though it is effected via a strictly unsupervised topographic mapping procedure.

3.5.4 Relationships with NEUROSCALE

The artificial nose application is a good practical example that illustrates the utility of permitting ad-
ditional information to influence the topographic mapping procedure. The definition of subjective
dissimilarity measures is an appropriate mechanism for encapsulating this knowledge such that it is
conveniently assimilated by the mapping algorithm and, importantly, combined in a consistent man-
ner with the spatial metric.

In general, these subjective dissimilarities are assigned according to the knowledge of the problem.
Those chosen for the concentration data, and similarly for the research ratings in the next chapter,
correspond to intuitive preference. Alternatively, in the true spirit of MDS, the dissimilarities may be
those obtained by psychological experiment. In the concentration coding experiment the mapping
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is determined entirely by this alternative knowledge. In contrast, previous techniques either used
spatial input relations alone, or augmented this with some class separability criterion. In analogous
manner to the use of the parameter � in equation 3.21 to combine spatial and separability criteria, a
similar parameterisation has been exploited in the NEUROSCALE model to control the influences of
objective and subjective knowledge in the ultimate mapping.

3.6 Conclusions

This chapter has introduced the NEUROSCALE model, a neural network approach closely related to
MDS methods and the Sammon mapping. Such a scheme is a natural extension of recent work to
develop alternative neural network approaches to topographic mapping, and which, importantly, in-
corporate a capacity for generalisation.

The NEUROSCALE approach views the problem as one of constructing a transformation such that the
topography of the transformed space reflects the metric information inherent in both the objective and
subjective spaces. The weight ascribed to either of these two criteria may be controlled and will de-
pend on the exact purpose of the map, and in addition, might be influenced by the expected reliability
of the additional knowledge.

The concept of the subjective metric is clearly shown in the projections derived from the artificial ex-
amples. However, a more effective exposition of the model will be given when applied to a difficult,
real-world dataset in Chapter 4, where it will be compared with other established techniques for fea-
ture extraction.

To summarise the advantageous features of NEUROSCALE:

� The technique produces a transformation of the data, rather than just a simple mapping as in
the case of standard Sammon mapping or MDS models. Thus new data may be projected.

� It permits the incorporation of varying degrees of subjective knowledge which can be allowed
to influence the extracted feature space.

� The number of parameters in the non-linear optimisation process scales only with the size of the
network, rather than with the number of patterns. This is of particular benefit when employ-
ing memory-hungry optimisation routines (such as BFGS). In fact, reduction in training time of
some 40% (compared to a standard Sammon mapping) was observed for 200 patterns projected
to two dimensions using the conjugate-gradient optimisation routine. Such improvements are
more exaggerated as the number of patterns increases.

� Extracted feature spaces are often more ‘representative’ of the problem than the space extracted
by a Kohonen network (e.g. the SPHERES 3 problem).

� Again, in contrast to the SOFM, there is a cost function associated with a particular configuration.
This permits the integrity of individual maps to be assessed, and alternatives to be compared.

There nevertheless remain some limitations:

� The computational requirements of the technique still scale with the square of the number of
patterns (although the RBF component of the procedure, in terms of the transformation of pat-
terns and calculation of derivatives 
y�
wk, only scales linearly). This limits the number of
training patterns that can be used to produce a transformation.
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� Problems of local minima are inherent in nonlinear local optimisation procedures, and STRESS-
based mappings have been observed to be particularly bad in this respect. In the case of NEU-
ROSCALE, sub-optimal local minima were not found to be problematic, and further considera-
tion of this limitation forms a significant part of Chapter 6.

� A choice of parameter  is necessary. Appropriate values can only be ascertained on a trial and
error basis, and depend upon the preference and knowledge of the user. The effect of a particu-
lar value of  is also very much dependent on the order of magnitude of distances in the input
space and of the subjective dissimilarities applied, so some scaling of the latter quantities may
need to be taken into account.
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Chapter 4

Feature Extraction and the 1992
Research Assessment Exercise

4.1 Introduction

This chapter is a study of the application of NEUROSCALE to a subset of data from the 1992 United
Kingdom Research Assessment Exercise (RAE), which has recently been made publicly available
[Higher Education Funding Council for England 1994]. This is a ‘difficult’, high-dimensional, real-
world database and offers a good illustration of the potential for visualisation and exploratory anal-
ysis provided by the feed-forward neural network topographic approach introduced in the previous
chapter.

In the next section some background and details concerning the RAE database are given, followed by a
consideration of the NEUROSCALE technique from the perspective of feature extraction. This will then
be the basis for a comparison of various projections of the dataset obtained both by NEUROSCALE,
and by more established methods. To accompany this analysis, there is a description and discussion
of classification experiments undertaken on the data presented in Sections 4.4.2 and 4.5.

4.2 The RAE Dataset

4.2.1 Background to the Research Assessment Exercise

One of the major factors determining centralised research funding for university departments1,
through the higher education funding councils in the United Kingdom, is the research rating, awarded
to each such department as a result of a Research Assessment Exercise (RAE). Such an exercise has
been held in 1989 and 1992, with the next one taking place in 1996. In the last exercise, in 1992, there
were five integer research ratings, ranging from 1 (lowest quality) to 5 (highest quality). (For the 1996
exercise there will be an expansion to 7 ratings.) Funding varies across subject areas as, generally, the
humanities receive less financial support than science or engineering, and is also in proportion to the

1The word ‘department’ is used here as a convenience. The actual individual entities that are assessed are termed ‘Units of
Assessment’, and may, at some institutions, encompass more than one department or alternatively, a single department may
have more than one relevant Unit of Assessment.
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department size. These factors being equal, research funding is then allocated according to that de-
partment’s research rating. A department with a research rating of ‘1’ receives no funding at all, a
rating of ‘5’ is rewarded with four times the funding of a ‘2’. So, taking these influences into account,
for a given subject area, approximately, funding � (rating� 1)� size.

For the purposes of the 1992 RAE, each higher educational institution supplied numerous quantita-
tive measures of their research activity for 72 different subject areas, and each such department was
required to supply the variables listed in table 4.1. The submitted data was then intended to be a com-
prehensive record of the research activity subsequent to the previous exercise in 1989.

Institution No. No. of student[ship]s from others
Unit of assessment No./No.+letter No. of grants from ABRC res. councs et al
No. of selected staff No. of grants from UK based charities
No. of staff not selected No. of grants from UK central government
No. of postdocs No. of grants from UK local government
No. of postgrads No. of grants from UK public corporations
No. of technicians No. of grants from UK industry & commerce
No. of scientific officers No. of grants from UK health & HAs
No. of experimental officers No. of grants from EC
No. of other staff No. of grants from other overseas
No. of selected staff No. of grants from PCFC/NAB initiatives
FTE of selected staff No. of grants from TC schemes - RCs
No. of staff funded from general income No. of grants from TC schemes - company
No. of staff funded from other income No. of grants from other
No. of staff in post throughout Value of grants from ABRC res. councs et al
No. of category A staff Value of grants from UK based charities
No. of category B staff Value of grants from UK central government
No. of category C staff Value of grants from UK local government
No. of category D staff Value of grants from UK public corporations
No. of publications Value of grants from UK industry & commerce
No. of research assistants Value of grants from UK health & HAs
No. of postgrad research students Value of grants from EC
No. of cited authored books Value of grants from other overseas
No. of cited edited books Value of grants from PCFC/NAB initiatives
No. of cited short works Value of grants from TC schemes - RCs
No. of cited refereed conferences Value of grants from TC schemes - company
No. of cited other conferences Value of grants from other
No. of cited editorships Usage of reseach council facilities (pounds)
No. of cited articles for academic journals No. of published authored books
No. of cited articles for professional journals No. of published edited books
No. of cited articles for popular journals No. of published short works
No. of cited reviews of academic books No. of published refereed conferences
No. of cited other publications No. of published other conferences
No. of cited misc publications No. of published editorships
No. of cited pubs classified as applied research No. of published art.s for academic journals
No. in FT research No. of published art.s for profess. journals
No. in PT research No. of published art.s for popular journals
No. of Doctorates No. of published reviews of academic books
No. of Masters No. of published other publications
No. of FTE postgrad students No. of published misc publications
No. of student[ship]s from ABRC res. counc.s etc No. of staff producing publications
No. of student[ship]s from UK based charities No. of selected staff on payroll
No. of student[ship]s from UK central government No. of staff on payroll
No. of student[ship]s from UK local authorities Proportion of staff submitted (letter)
No. of student[ship]s from UK public corporations FTE staff submitted
No. of student[ship]s from UK industry & commerce Research rating for applied research
No. of student[ship]s from UK health & HAs Research rating
No. of student[ship]s from other overseas

[ Note: FT=full-time; PT=part-time; FTE=full-time-equivalent; TC=Teaching Company ]

Table 4.1: The variables supplied by each department for the 1992 RAE. Note that some of the fields
had to be supplied for individual years.

There are in the order of 95 distinct data types, and with some types (such as the numbers of publi-
cations) being supplied for individual years, there is a total of nearly 150 fields in the database. The
research rating for each specific subject area at each institution is also supplied with the data.

The award of the research rating is partly dependent on this quantitative data, but critically, the final
decision depends on the judgement of an assessment panel, composed of a number of experts in the
relevant fields. In addition to the numerical data, each institution supplied two specimen publica-
tions per academic for consideration. This peer assessment component may be regarded as adding
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considerable noise to the data, with respect to the prediction of research ratings from the quantitative
indicators alone.

Some statistical studies of this data have been previously published, both for the 1989 exercise [Johnes,
Taylor, and Francis 1993] and for that of 1992 [Taylor 1994; Taylor 1995]. The data available from the
1989 exercise is less comprehensive and reliable than that from 1992. Johnes, Taylor, and Francis [1993]
nevertheless observe that size has a positive influence on research quality, and also note a ‘halo’ effect,
where a particular department at an institution is awarded a higher research rating than might other-
wise be justified by the quantitative data alone and where other departments at that same institution
have obtained justifiably high ratings. The analysis of Taylor [1994] was based upon the 1992 data
and was restricted to Business and Management schools. This was later extended to all subject areas
[Taylor 1995]. Again, size was found to be a statistically significant explainer of rating, along with
three other variables: the number of articles in refereed academic journals per capita, the number of
full-time equivalent postgraduates per capita and the amount of research council grants per capita.

It should be emphasised that the research rating is intended as a measure of the quality of research, and
not its quantity. For a given research rating, departmental funding is proportional to the number of
active research staff, so funding will be related to the size of the department even though the award of
the research rating should not be. There is therefore no inherent reason for a large department to score
more highly than a smaller one. Nevertheless, the observations of the previous paragraph still apply,
that “research quality improves with size” [Taylor 1994] and suggested explanations for this effect are
offered by Taylor [1995]. Further evidence for this assertion was also derived through a factor analytic
study by Barrett [1995].

From an academic perspective, the RAE has aroused great interest, debate and not inconsiderable con-
troversy, with much comment passed that it is wasteful of resources, unfair, will ultimately erode
quality through its quantitative emphasis, and encourages short-termism. Indeed, there has been
considerable discussion in the national press, for example [Crace 1995; MacLeod 1995], on its im-
plications. This chapter is not able to address these wider issues, but can question the value of the
quantitative data and whether it is truly informative given the various panels’ ultimate qualitative
assessments through the ratings awarded.

4.2.2 Extracting Experimental Data from the RAE Database

It is of natural interest to investigate the relationships and structure within the RAE database. The
prospect of being able to predict the value of research rating from the quantitative data alone, and thus
infer which indicators are salient, has been the prime motivation for its statistical study. Furthermore,
it is in the interest of the assessment bodies to confirm that the data that is being collected (at the cost
of considerable time and expense) is both valid and a useful contribution to the exercise. Indeed, the
funding councils themselves have commissioned research on the data.

The challenge of elucidating structure from within the raw RAE dataset is actually quite demanding.
If all the departments are included together, there are over 4000 data points in close to 150 dimen-
sions. However, treating these points as one large monolithic dataset is not a sensible approach to
data analysis. Firstly, the distribution of the data will vary significantly across subject areas, which
is evident from simple examination of the raw data values. For example, consider the likely contrast
between “number of published authored books” and “value of grants from health authorities” for
subjects such as Celtic Studies and Biological Sciences. Secondly, the importance of these individual
variables in determining ratings will also exhibit considerable differences from department to depart-
ment, as a separate assessment panel sits in each case. Statistical evidence for these effects has been
offered by Taylor [1995].

It is thus appropriate to study the database on a department-by-department basis. Unfortunately, for
each subject are there are limited exemplars (typically 50-90 in most cases), which represents fewer
data points than dimensions. This is a major disadvantage, particularly if it is desired to build a clas-
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sifier of the data. A sensible approach, therefore, would be to seek a number of subject areas which
exhibited similar structure in the data, and where the relationships between the variables and the
awarded research ratings were fairly constant. Correlation analysis by the Joint Performance Indi-
cators Working Group [1994] indicates that one such appropriate grouping would be to combine the
data from Physics, Chemistry and Biological Sciences, which gives a dataset of 217 examples that has
been chosen for analysis within this chapter. In addition, data from Applied Maths is also well corre-
lated (although to a lesser degree), and these 67 examples will also be utilised as a test sample for the
purposes of assessing generalisation of various models.

Although it was desired that no prejudice be exerted over the choice of variables to be retained for
any subsequent projection, it was possible to remove several redundant and repeated indicators. It
was also determined to agglomerate those variables given for individual years over the period they
encompassed. This approach reduced the dimensionality of the input data to 80, which is nevertheless
high, particularly in comparison with only 217 available examples.

The data was standardised for size by dividing throughout by the number of staff in the department
(specifically CATEGORY A + CATEGORY B staff). This is intuitively sensible and has been the ap-
proach adopted in other studies, including that of the Joint Performance Indicators Working Group
[1994]. The variables thus become of the form ‘number of published short works per researcher’, for
example. This is an imposition of the prior knowledge that research ratings are quality-based. Al-
though empirical evidence exists that research rating is related to size, this is likely to be an indirect
effect, as hinted at by Taylor [1995]. For example, larger departments may be more productive due to
economies of scale, or may have expanded as a result of research success attracting new funding and
boosting staff levels.

Finally, because of the inhomogeneity of the input variables, and the wide ranges thereof, each such
variable was normalised to zero mean and unit variance.

4.3 Feature Extraction, Neural Networks and NEUROSCALE

In practical application neural networks can fulfil a variety of rôles. Common examples are for clas-
sification, nonlinear regression, function approximation, auto-encoding, topographic mapping (as in
the case of NEUROSCALE) or time series prediction. In all of these diverse incarnations, the neural
network can be viewed as performing some variety of feature extraction process. This interpretation
provides a helpful unifying perspective when comparing neural network approaches with more clas-
sical techniques.

‘Feature extraction’ is a term for the process of deriving alternative (and usually lower-dimensional)
representations of data that are more appropriate for a given specific application. While it might ap-
pear intuitive that access to more input features should improve performance, the inclusion of noisy
or redundant features in a model can easily lead to a degradation thereof [Weiss and Kulikowski 1991].
For example, in the case of limited data, an additional feature that is irrelevant (in terms of classifi-
cation, say) will simply exacerbate over-fitting as it can be interpreted as acting as a key to a look-up
table.

One example of feature extraction is in a classification scenario where data may be projected linearly
onto those axes that best separate the classes according to some criterion. This is a case of a linear, su-
pervised extraction process, and it is convenient to group feature extraction techniques in general ac-
cording to their linear–nonlinear and supervised–unsupervised nature. This categorisation has been
adopted in three recent studies [Mao and Jain 1995; Lowe and Tipping 1995; Lowe and Tipping 1996].

The classical linear, unsupervised feature extraction technique is principal components analysis (PCA)
[Jolliffe 1986]. The first q principal components of a set of data points are those obtained by the pro-
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jection of the p-dimensional data onto the q orthogonal axes that retain the maximum variance. The
projection vectors may be easily found as the dominant eigenvectors of the data (sample) covariance
matrix, or alternatively, there are numerous neural network architectures specifically designed to ex-
tract principal components and subspaces (see Chapter 5 for some examples). There are also nonlin-
ear extensions of PCA, both within the neural network domain [Saund 1989; Kramer 1991] and from
a statistical viewpoint [Hastie and Stuetzle 1989; LeBlanc and Tibshirani 1994], as well as a hybrid of
the two [Dong and McAvoy 1996]. A more complex class of unsupervised methods are those incorpo-
rated in projection pursuit [Friedman and Tukey 1974; Huber 1985]. These schemes look to maximise
alternative criteria under projection, for example, higher-order statistics such as skew and kurtosis.

All the techniques mentioned in the above paragraph utilise the data in isolation, without any explicit
class information, and are thus considered to be unsupervised. If alternative information is available,
most commonly in the form of class labels, then this may be exploited in the extraction process to
produce supervised feature spaces more appropriate for subsequent classification. This concept was
originally considered by Fisher [1936] in the search for a linear projection of the measured variables
that maximised the separation of two classes, or groups, from within the Iris dataset. His empirical
approach was to maximise the quotient of the squared group-mean difference and within-group vari-
ance in the projection. This may be formulated as (aTSba)�(aTSwa), where Sb and Sw are the weighted
between-group covariance matrix and within-group pooled covariance matrix respectively, with a the pro-
jection vector. This ratio may be maximised by setting a to the dominant eigenvector of S�1

w Sb. The
resultant projection is known Fisher’s linear discriminant function, and although it was designed simply
to be “sensible” and makes no explicit assumptions of the form of the class conditional densities, it
may be shown to be equivalent to a maximum likelihood discriminant rule for two classes characterised
by normal distributions with identical covariance matrices [Mardia, Kent, and Bibby 1979].

Fisher’s approach was generalised to the discrimination of more than two groups by Rao [1948] and
Bryan [1951]. In the case of generalised linear discriminant analysis (LDA), an appropriate criterion for

discrimination is tr
h
�S�1

w
�Sb

i
, where �Sw is now the within-group pooled covariance in the transformed

space, and likewise, �Sb is the transformed counterpart of Sb. Such a criterion naturally increases as
the within-group variances become smaller and the between group variances become larger. For this
measure, the projection vectors ai may be found by solution of the generalised eigenvector equation
�Sbai � ��Swai, and the resultant discriminant axes are often referred to as the canonical variates. For a
k-class problem, all the discriminatory information, as measured by tr

h
�S�1

w
�Sb

i
, may be retained by

projection onto min(p� k� 1) eigenvectors.

In the neural network domain, it has been demonstrated by Gallinari et al. [1991] that the hidden
layer space of a linear neural network trained as a classifier maximises the criterion j�Sbj�j�Stj, where
�St � �Sw � �Sb is the total covariance matrix measured in the feature space, which generates an equiva-

lent projection to tr
h
�S�1

w
�Sb

i
[Fukunaga 1990]. Again, there are nonlinear extensions of this approach,

with the hidden unit space of a linear output-layer multi-layer perceptron having been shown to max-

imise the network discriminant function tr
h
�S�t �Sb

i
for a particular target coding scheme [Webb and Lowe

1990]. This again gives an equivalent projection to the tr
h
�S�1

w
�Sb

i
criterion [Fukunaga 1990].

Topographic mappings, such as those generated by the Kohonen or Sammon Maps, may be viewed
as nonlinear, unsupervised feature extraction processes. Here the criterion for selection of features
is not to maximise variance or class separability, but rather that the topology, or geometric structure,
of the data be preserved in the feature space. Naturally, NEUROSCALE with  � 0 also fits into this
category. Alternatively, as discussed in Chapter 3, NEUROSCALE with  � 1 may be considered a
supervised technique, as full subjective (or class) information is exploited in the mapping. However,
only with  � 1, and in certain special cases, may it be interpreted as a form of discriminant analysis.
For example, consider a mapping with subjective dissimilarities set to zero for data points in the same
class (�ij � 0 � �i � �j) and set to some constant value for data points in different classes (�ij � � �
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�i �� �j). In this case, the STRESS measure is

X
ij

(�ij � dij)2 �
X
�i��j

d2
ij �

X
�i ���j

(�� dij)2� (4.1)

�
X
�i��j

d2
ij �

X
�i ���j

(�2 � 2�dij � d2
ij)� (4.2)

�
X

ij

d2
ij � 2�

X
�i ���j

(dij � k)� (4.3)

� 2Ntr �St�� 2�

�
�X
�i ���j

[(yi � yj)T(yi � yj)]1�2 � k

�
A � (4.4)

where k � 1
2

P
�i ���j

� and is constant. Equation (4.4) is very similar to one particular discriminant
criterion, tr �St� � �(tr �Sb� � c), where � and c are constants [Fukunaga 1990, pp447]. The presence
of the square root in equation (4.4) unfortunately prevents any further simplification with respect to
this standard measure, but it may be heuristically interpreted as minimising the total covariance while
retaining some measure of the between-group spread at a constant value.

However, in general even for  � 1, there is not such a close relationship to discriminant analysis, as
the subjective dissimilarities will not be as simplistic as in the above example.

It can therefore be intuitive to view the parameter  as interpolating in some manner between an un-
supervised mapping and a supervised variant — a variant which is related closely to the philosophy
of multidimensional scaling because the topography of the feature space is then determined by the
subjective information, and not explicitly by the spatial distribution of the data.

The collection of techniques discussed above may be related by the taxonomy in figure 4.1, which
categorises some of the aforementioned feature extraction schemes and places the NEUROSCALE ap-
proach in that context also. The techniques illustrated in that diagram will be applied to the analysis
of the RAE dataset in the following section.

L-DA

PCA
SAMMON
KOHONEN
NL-PCA

Supervised

Unsupervised

Linear Nonlinear

NL-DA (NN)

MDS

NeuroScale

α=0

α=1

Figure 4.1: A schematic of feature extraction approaches.
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4.4 Experiments on the RAE Data

For the purposes of brevity in this section, the combined Physics, Chemistry and Biological Science
set of 217 data points will be referred to as the RAE PCB dataset, with the 67 example data points from
Applied Maths referred to as RAE AM.

4.4.1 Principal Components Analysis

As the data in RAE PCB is 80-dimensional, a sensible first step is to perform a principal components
analysis (PCA). If the data is actually residing for the most part in a lower dimensional linear sub-
space, then this will be exposed by PCA, and the data may be projected down onto a reduced number
of principal axes, without significant loss of information. These axes are the principal eigenvectors
of the sample covariance matrix of the data, with the variance projected onto each axis given by the
corresponding eigenvalue. Axes along which the projected variance is deemed negligible, where the
eigenvalues are small compared with the principal eigenvalues, may be judiciously discarded.

The eigenvalues of the covariance matrix of the RAE PCB dataset are given in figure 4.2.
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Figure 4.2: The eigenvalues of the RAE PCB covariance matrix.

After the first two principal eigenvalues, there is a gradual decay in magnitude, with even the 32-
nd dimension contributing greater than 1% of the overall variance. The large principal eigenvalue
is characteristic of covariance matrices where the majority of variables are positively correlated, and
can be considered a measure of the size of those variables [Chatfield and Collins 1980]. This is the case
for the RAE PCB dataset, as can be seen by the illustration of the sample covariance matrix in figure
4.3. This effect aside, in both the linear and logarithmic eigenvalue plots, the data does not exhibit
the characteristic fall-off associated with inherently lower-dimensional data and there is no suggested
cut-off point for discarding dimensions.

The feature space defined by a projection onto the two principal axes is given in figure 4.4. Very little
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Covariance matrix of the RAE_PCB dataset
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Figure 4.3: A schematic of the covariance matrix of the RAE PCB dataset. White squares are positive
elements, black squares negative.

information concerning the data can be elucidated from this plot, apart from the existence of some
outliers with rating ‘1’ at one extreme of the distribution. The linear nature of the projection implies
that most of the structure in the data will be lost, particularly as over 78% of the variance is present
in the remaining components. This is the major restriction of PCA, particularly when applied to such
high-dimensional data, and in general it is best employed to seek degeneracies in the data as a pre-
liminary to other techniques.
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Figure 4.4: Projection onto first two principal axes of RAE PCB.
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4.4.2 Classification of the Data

Before considering alternative spatial representations of the data, it is of interest to consider a classi-
fication of RAE PCB with respect to the research rating. Is it possible to make reliable predictions of
the research rating awarded by the panel from the quantitative data alone? Even more importantly,
is there any relationship at all between research rating and the gathered data?

Three different prediction models were considered, all fully connected to the 80 inputs and trained to
produce a 1-of-5 output coding:

➀ Linear Model,

➁ Multilayer Perceptron Neural Network (MLP),

➂ Radial Basis Function Neural Network (RBF).

The results for each model are given below, in terms of prediction error and misclassification matri-
ces for both training and test sets. Each row of a misclassification matrix represents the actual class,
and each column the prediction. So in the first such matrix below, the ‘1’ in row 2 column 4 indicates
a university that actually received a research rating of 2 but was predicted to gain a 4. Note that, for
accurate estimating of prediction error of a model, the test set should be sampled from the same distri-
bution as the training set [Lowe and Webb 1990; Lippmann 1994]. (That is, the prior probabilities for
the respective classes should be identical for each set.) This assumption will be made for the RAE PCB
and RAE AM datasets here, although study shows that, compared to RAE PCB,RAE AM has an exagger-
ated number of rating ‘1’s and a reduced proportion of ’2’s. The class sizes are, in order, for RAE PCB:
(42,42,62,44,27) and for RAE AM: (6,21,18,14,8). However, to alter the model based on this knowledge
(through a weighting of the error function) would be “cheating” in this instance.

➀ Linear Model

The classification results were:

� Training Set : LINEAR MODEL �

MSE per output: 0.0360696
Patterns Misclassified: 33 (out of 217)
Percentage Correct: 84.8%

Classification Matrix
=====================
40 2 0 0 0
4 35 2 1 0
3 5 51 2 1
0 2 3 36 3
0 0 1 4 22
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■ Test Set : LINEAR MODEL ■

MSE per output: 0.106999
Patterns Misclassified: 41 (out of 67)
Percentage Correct: 38.8%

Classification Matrix
=====================

5 1 0 0 0
6 6 7 1 1
1 6 7 4 0
1 2 5 3 3
0 0 1 2 5

➁ Multilayer Perceptron

The architecture of the MLP was 80-h-5, where h is the number of hidden units in the network. The
hidden-unit activation functions were hyperbolic tangents (tanh) and the output neurons were linear.
To determine a near-optimal number of hidden units, training and test errors were evaluated for 1-
12 units, with the errors averaged over 25 runs with different random initial weight configurations.
Weights were optimised with a conjugate-gradient routine. Plots of sum-of-squared training errors
and test misclassification rate against number of hidden units is given in figure 4.5 below. Standard
deviation error-bars are also shown.
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Figure 4.5: An MLP classifier trained on the RAE PCB data and tested on the RAE AM set.

In terms of misclassification rate, a network with 2 hidden units is optimal in this experiment:
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� Training Set : MLP (2) �

MSE per output: 0.0402512
Patterns Misclassified: 37 (out of 217)
Percentage Correct: 82.9%

Classification Matrix
=====================
42 0 0 0 0
3 39 0 0 0
0 1 61 0 0
0 0 6 38 0
0 0 0 27 0

■ Test Set : MLP (2) ■

MSE per output: 0.0802902
Patterns Misclassified: 35 (out of 67)
Percentage Correct: 47.8%

Classification Matrix
=====================

5 0 0 1 0
7 12 0 2 0
5 4 8 1 0
0 1 6 7 0
0 0 1 7 0

For a network with 12 hidden units, to illustrate over-fitting.

� Training Set : MLP (12) �

MSE per output: 0.00207232
Patterns Misclassified: 0 (out of 217)
Percentage Correct: 100%

Classification Matrix
=====================
42 0 0 0 0
0 42 0 0 0
0 0 62 0 0
0 0 0 44 0
0 0 0 0 27

■ Test Set : MLP (12) ■

MSE per output: 0.190793
Patterns Misclassified: 42 (out of 67)
Percentage Correct: 37.3%

Classification Matrix
=====================
4 1 0 1 0
5 6 8 0 2
1 5 8 4 0
0 0 7 4 3
0 0 2 3 3

➂ Radial Basis Function Network

For the radial basis function network, the linearity of the training problem implied by choosing fixed
centres permits an efficient implementation of ‘leave-one-out’ cross-validation [Weiss and Kulikowski
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1991] for model-order selection. In figure 4.6 below, the leave-one-out cross-validation error on the
RAE PCB dataset is calculated for networks with 1 to 20 basis functions. The error when generalising
to the data in RAE AM is also plotted. The basis functions used were ‘thin-plate splines’ (r2 log r), and
they were positioned at random over points in the dataset and then adjusted by the batch version of
the K-means algorithm [MacQueen 1967; Moody and Darken 1989]. In this algorithm, the centres are
initially located at random on the data points. At each iteration, every data point is ‘assigned’ to its
nearest centre, after which the centres are then adjusted such that each lies at the mean of the data
points which were previously assigned to it. This procedure is then repeated until there is no change
in the centre positions. K-means is often described as a “greedy” approach to vector quantisation, in
that it is fast and generates a fairly good, although generally not globally optimal, solution, by per-
forming an equivalent local Newton minimisation of the quantisation error [Bottou and Bengio 1995].

All error values were averaged over 100 runs. To reduce confusion, error-bars have not been plotted
on the graph, but the standard deviations were in the order of 0.008 for the training set and 0.011 for
the test set.
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Figure 4.6: An RBF classifier trained on the RAE PCB data and tested on the RAE AM set. Training error
is calculated using leave-one-out cross-validation.

The classification performance of a typical RBF network, with 10 basis functions, is:

� Training Set : RBF �

MSE per output: 0.0620856
Patterns Misclassified: 97 (out of 217)
Percentage Correct: 55.3%

Classification Matrix
=====================
40 1 1 0 0
16 7 14 3 2
4 1 44 13 0
1 2 19 20 2
0 0 8 10 9
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■ Test Set : RBF ■

MSE per output: 0.0712626
Patterns Misclassified: 37 (out of 67)
Percentage Correct: 44.8%

Classification Matrix
=====================
6 0 0 0 0
9 2 8 2 0
0 1 14 3 0
0 0 7 5 2
0 0 3 2 3

Discussion of Classification Results

The linear model appears to perform well on the training dataset, classifying nearly 85% of the pat-
terns correctly. However, there are very few available examples compared to their dimensionality
(217 against 80), so the linear problem is not well-constrained and an apparently ‘good’ classification
might be expected regardless of the suitability of the model. The considerably degraded performance
on the test set confirms this. Note that simply ‘guessing’ a rating of ‘3’ (the most prevalent class in the
training set) on the test set would give 27% accuracy and is thus a good baseline for comparison.

A notable feature of the training/test error curves in figures 4.5 and 4.6 is the very low implied op-
timal classifier complexity. The number of hidden units in the MLP for lowest test set error was the
minimum, 1, and the optimal number of basis functions appears to be 10. This apparently low num-
ber is a manifestation of a problem often referred to as the curse of dimensionality (a term originally
coined by Bellman [1961], and an excellent exposition of its significance is given by Friedman [1994]).
For genuinely high dimensional data (which the PCA results indicate is certainly the case for the RAE
data considered here), the number of sample data points required to allow a faithful approximation
of any underlying function is massive. In cases of inadequate data, such as for the RAE PCB dataset,
generalisation effectively becomes extrapolation (rather than interpolation), as it is highly improbable
that any training data should be in the vicinity of any given test data point. In the absence of sufficient
data, considerable smoothness constraints must be imposed on the model — hence the limited num-
ber of basis functions, and MLP hidden units, found to give optimal generalisation. This behaviour is
an example of what is often termed the bias-variance dilemma [Geman, Bienenstock, and Doursat 1992].
It is necessary to bias the model (through the smoothness constraints), or the resulting function will
be highly sensitive to the noise, and thus exhibit high variance over individual datasets.

The (nonlinear) neural network models perform better than their linear counterpart, classifying 45-
48% of the test set correctly, compared to that of 39% of the linear classifier, which indicates that a more
faithful model of the underlying relationship between data and research rating has been constructed.
However, the generally poor observed performance may be seen as reinforcing the suspicion that the
operation of the assessment panel would effectively introduce noise into the data, when viewed from
a classification perspective. This will be considered further in Section 4.5, where an explicit feature
extraction stage will be incorporated prior to classification.

4.4.3 Sammon Mapping

A Sammon mapping of the RAE PCB dataset is illustrated in figure 4.7. The equivalent NEUROSCALE
projection with  � 0 is also illustrated (figure 4.8). The two plots should be identical if one basis func-
tion per point was used in the RBF projection; in this example, only 70 basis functions were utilised,
and consequently, the STRESS of the NEUROSCALE projection is marginally greater. For this dataset, it
was observed that ‘thin-plate-spline’ basis functions offered better (lower-STRESS) results than Gaus-
sians, and these were used for all the NEUROSCALE projections within this chapter.
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There is some notable similarity between the Sammon Mapping and the PCA projection, particularly
with regard to the position of outliers. The nonlinearity of the topographic mapping algorithm en-
ables significantly more structure to be visible, particularly along the direction of the vertical axis.
Some coarse clustering of research ratings is now evident, although the classes overlap to the extent
that prediction would be highly unreliable.

−25 −20 −15 −10 −5 0 5 10 15 20
−25

−20

−15

−10

−5

0

5

10

15

20

➌

➍
➊

➋

➍
➋

➎
➍

➍
➊

➊
➋➌

➍
➍ ➌➌

➊

➌
➋

➌

➍

➋
➍

➌

➋

➍ ➋

➌

➌

➎
➎

➌

➋

➎

➋

➊

➋

➌

➍ ➋ ➋

➍

➌

➋

➎

➌ ➋

➊

➊

➊

➋

➌

➋

➊

➋

➊
➍

➊

➌ ➊

➋

➎

➊➎

➊

➍

➎

➌

➌

➌

➋

➍

➎

➊

➌

➋

➊

➊

➍
➌

➌

➋

➌➌

➌
➌

➍

➍

➋

➍

➋

➎ ➎
➍

➋

➍
➊

➋

➌

➊

➋ ➌

➊➊

➍

➋

➌

➊

➍
➌

➎

➌

➌

➌

➌
➊

➍➌

➋

➍ ➊➎

➋

➎

➋

➊➊➍
➊

➌

➍
➎

➊

➋

➎

➌
➍

➌

➌

➊

➋

➍ ➌➋

➊

➊
➍

➌ ➊

➊➋➌

➌

➌

➍

➊

➎

➌
➎

➊
➎

➌

➍

➍

➋

➋

➌

➌

➌

➌

➍

➊

➎

➋

➎

➋

➊

➎

➌

➍

➌

➍

➋

➊

➍

➌

➋

➌

➎

➋

➊

➎

➌

➊

➌

➌

➌
➍

➍

➌

➎

➌

➎

➍

➊

➌

➍

➍

➎

➊

➌

➍

➍

➌

➍

➋

Sammon Mapping

Figure 4.7: A Sammon Mapping of the RAE PCB data. Final STRESS value = 1.118
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Figure 4.8: The NEUROSCALE equivalent projection for the Sammon mapping. Final STRESS value = 1.181
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4.4.4 The Kohonen Self-Organising Feature Map

A 10x8 Kohonen map was applied to the RAE PCB dataset, and the visualisation obtained using the
SOM PAK code [SOM Programming Team 1995] is displayed in figure 4.9. The nearest-neighbours to
each data point in the two dimensional sheet are plotted, with multiple classes at any one node having
an added displacement for the purposes of improving clarity.
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Figure 4.9: A visualisation of a Kohonen map applied to the RAE PCB data.

The Kohonen map, like the Sammon mapping, displays little structure and considerable confusion of
classes. At some nodes on the array, departments with four different research ratings are co-incident.

4.4.5 Discriminant Analysis

While the class labels of each data point are illustrated on both the principal component and Sam-
mon projections, this information has not been exploited in the extraction of the feature spaces. If
the separation of these classes is desired in feature space, then the methods of discriminant analysis
may be applied. The plot in figure 4.10 is a plot onto the first two linear discriminant axes (these axes
may also be termed the first two canonical variates). This represents a non-rigid linear projection which
maximises the discriminant criterion tr



S�1

w Sb
�
, as defined in Section 4.3 earlier.

A nonlinear extension of this technique may be illustrated by considering the hidden unit space of a
multi-layer perceptron trained as a 1-of-5 classifier [Webb and Lowe 1990]. This plot is given in figure
4.11. Note that while the feature space was constructed to maximise the criterion tr



S�t Sb

�
, the matrix

Sb is not the traditional weighted between-group covariance matrix for the target coding employed
here. In fact, Sb �

P5
k�1 n2

k(mk � 	m)(mk � 	m)T, where mk is the mean of the hidden unit outputs
for patterns from class k, 	m is the overall mean of the hidden unit outputs, and nk is the number of
patterns in class (with research rating) k. The conventional Sb matrix is only weighted by the factor
nk, and not the squared value.

The linear discriminant plot reveals some considerable structure in the data. Significantly more dis-
tinct clustering is evident, when compared with previous unsupervised feature spaces, although there
is still considerable mixing of research ratings at the borders. Furthermore, there is a visible structural
ordering of classes within the plot.
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Figure 4.10: A plot of the first two canonical variates of the RAE PCB data.

In the nonlinear case, to maximise the discriminant criterion the points have been approximately
mapped to the corners of the -1/1 square. Some general misclassification is evident and points for
research rating ‘4’ and ‘5’ occupy the same corner. The network discriminant function seeks to max-
imise the total covariance, while minimising a measure of the between-class covariance. Total covari-
ance will be maximised by placing the classes as mutually distant as possible — in the corners — but,
because there are only two hidden units in the MLP, only four such classes can be so placed without
reducing the between-class covariance. The need to maximise the total covariance dominates in this
case and hence the confusion of two classes. It is interesting to note that one of the pair is the least rep-
resented class, the research rating ‘5’, because, according to Webb and Lowe [1990], “networks trained
with a one-from-n coding bias strongly in favour of those classes with largest membership”.

Note that the interpretation of this plot can be aided by referring to the equivalent misclassification
matrix based upon the illustrated hidden unit space which is given in Section 4.4.2.
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Figure 4.11: The hidden unit space of a MLP classifier trained on the RAE PCB data.
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4.4.6 NEUROSCALE with Supervisory Information

To incorporate some supervisorial, or preferential, input to the topographic projection, it is necessary
to define the set of subjective dissimilarities for every pair of data points. These may in turn be derived
from some measure of dissimilarity of the respective research ratings. The dissimilarities between re-
search ratings are chosen to reflect both the prior knowledge concerning the assessment process and
what is considered to be the preferred structure of the feature space. Based on the information avail-
able regarding the criteria for the assignment of ratings, it is intuitive to consider that a department
with a rating of ‘2’ is as dissimilar from a ‘1’ as it is from a ‘3’, and furthermore, a ‘3’ is twice as dissim-
ilar from a ’1’ as it is from a ’2’. These assumptions imply a geometrically linear ordering of research
ratings thus:

➊ ➋ ➌ ➍ ➎

which in addition, also reflects the resultant funding, since funding � (rating�1). This in turn implies
that a simple matrix may serve to characterise the subjective dissimilarities between research ratings:

C �

�
�����

0 1 2 3 4
1 0 1 2 3
2 1 0 1 2
3 2 1 0 1
4 3 2 1 0

�
����� �

so that cij � ji� jj is the subjective dissimilarity between points of rating i and j. Note that the scaling
of this matrix is arbitrary, as it is only the relative differences that are of interest. Thus for example,
entries c24 � 2 and c25 � 3 mean that the relative difference between departments with ratings ‘2’ and
‘4’ is 2, while the relative difference between departments with ratings ‘2’ and ‘5’ is 3. This consid-
ered, it is then sensible to scale the values in the matrix C such that the average inter-point subjective
dissimilarity is equal to the average inter-point Euclidean distance. The matrix C then provides suffi-
cient information to calculate a value of subjective dissimilarity, sij, between every pair of input data
points, thus defining the subjective metric.

To illustrate a feature space influenced by both the objective (Euclidean distance in input space) and
subjective metrics, figure 4.12 is a plot of the NEUROSCALE projection with  � 0�5. Because of the
scaling of the matrix C, a choice of  � 0�5 implies a (very) approximate balance between the twin,
objective and subjective, metrics.

The influence of the subjective metric is clearly evident by simple comparison with the Sammon Map-
ping. There is now a clear ordering of research ratings in a similar topology to that of the LDA projec-
tion. In contrast to that linear supervised feature space, careful examination shows that the inter-class
boundaries are more pronounced in the NEUROSCALE plot. This may be expected, as the subjective
metric element seeks to explicitly separate, nonlinearly, points with different research ratings.

The observations in the above paragraph concern the effect on the projection of the additional, super-
visorial, knowledge. In addition to this subjective element, and because of the intermediate value of 
(0.5), some of the geometric structure of the original data is retained in the feature space. This implies
that useful information may be inferred from the locations of individual points in that space, as this
structure reflects to some degree the topology of the input space. For example, in the plot of RAE PCB
in figure 4.12, it may illuminate potential anomalies in the awarding of research ratings. This consid-
ered, the plot in figure 4.13 highlights four particular departments in the projection. Each department
appears to have received a rating incompatible with its position on the map, judged by consideration
of the ratings awarded to its immediate neighbours in the feature space.

These departments are, from left to right on the plot:
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Figure 4.12: A feature space extracted by the NEUROSCALE technique with supervisorial influence.

➀ Physics at Heriot Watt University, Edinburgh, which has received a ‘5’ while lying amongst a
cluster of ‘4’s.

➁ Physics at Queen’s University, Belfast, which has also received a ‘5’ while lying amongst depart-
ments awarded ‘4’s and ‘3’s.

➂ Physics at Stirling University, which received a ‘4’ while lying amongst a cluster of ‘3’s.

➃ Physics at the University of Westminster which was awarded a ‘3’, while apparently located on
the border between ratings ‘1’ and ‘2’.

In the case of a purely supervised plot, for example the nonlinear discriminant analysis in figure 4.11,
the location of individual points with respect to their neighbours is largely artefactual. Due to the
topographic constraint upon the feature space of figure 4.12, there will be an element of structural
information therein. In the cases of the individual points highlighted above, further evidence for the
structural meaning can be elucidated by considering the classification results of section 4.4.2. Table
4.2 below shows the predicted ratings of the four departments above according to the best linear, MLP
and RBF models.

In general, and particularly for the neural networks which demonstrated lower error on the test set,
the classifier predictions support the evidence from the NEUROSCALE plot. In this example, the rel-
ative location of points in the feature space has proved informative. Although these four particular
classifications may appear anomalous, there may well be good explanations. Firstly, it is noticeable
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Figure 4.13: The� � 0�5 feature space extracted by NEUROSCALE,with four departments highlighted
whose awarded ratings appear anomalous.

that all four departments are of the Physics unit of assessment. The panel which awarded the ratings
for this subject may have had slightly different criteria to those for Chemistry and Biological Sciences.
Equally, the panel has access to additional qualitative information which, in the case of these four de-
partments, may have influenced its judgement.

As a final example feature space generated by the NEUROSCALE technique, the illustration in figure
4.14 shows a plot for  � 1. This feature space is no longer influenced (explicitly) by the spatial dis-
tribution of the input data, but is determined by the subjective metric alone. Thus the feature space
should represent the preferential knowledge embodied in that metric, and should take the form of
five point clusters distributed along a straight line.

The smearing out of the points along that line is a result of the RBF approximation to the Sammon
mapping/scaling procedure. As the number of basis functions in the transformation is considerably
fewer than the number of points, there is not sufficient flexibility in the model to precisely locate the
points and satisfy the subjective metric constraint.

Actual Rating Linear MLP RBF

Physics, Heriot-Watt 5 5 4 3
Physics, Queen’s 5 4 4 3
Physics, Stirling 4 4 4 3
Physics, Westminster 3 1 2 1

Table 4.2: Predicted and actual ratings for ‘inconsistent’ departments.
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Figure 4.14: A feature space extracted by the NEUROSCALE technique determined by the subjective
metric alone. This may be considered a fully supervised variant of the projection.

4.4.7 Generalisation to the Test Dataset

One of the key benefits of the NEUROSCALE approach to both topographic mapping and Sammon’s
projection is that the definition of the transformation, as effected by the RBF, permits new, unseen,
data to be projected. Such a projection is illustrated in figure 4.15, for the  � 0�5 experiment trained
on the RAE PCB dataset and tested on the RAE AM set. As comparison, in figure 4.16, a projection of
the test data onto the linear discriminant axes of figure 4.10 is also given.

As in the case of the training plot, for the RAE PCB dataset, the NEUROSCALE projection exhibits bet-
ter clustering and separation of research ratings. While there is still significant confusion at the bor-
ders, there is sufficient structure present in the plot to allow judicious inference of research ratings.
Subjectively, the NEUROSCALE test projection appears to retain more of the structure of its respective
training plot than the linear discriminant counterpart, indicating that this latter linear technique had
not constructed such a good representation of the data. This contrast will be made more explicit in
the next section.
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Figure 4.15: TheRAE AM test dataset transformed by the NEUROSCALE,� � 0�5, technique previously
trained on the RAE PCB data.
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Figure 4.16: The RAE AM test dataset projected onto the first two linear discriminant axes.
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4.5 NEUROSCALE Pre-Processing for Classification

The emphasis of the previous two subsections was on the use of NEUROSCALE as a data analytic tool.
However, in the discussion of Section 4.3, it was mentioned that in classification problems, for optimal
performance, it is often better to extract, or select, an appropriate subset of features from the data
prior to the classification stage. In fact, many texts include a schematic of a conventional prediction
system similar to that shown in figure 4.17 below [Duda and Hart 1973; Fukunaga 1990; Weiss and
Kulikowski 1991; Bishop 1995], which incorporates an explicit data pre-processing stage.

FEATURE

EXTRACTION

CLASSIFIER

(Neural Network)

Input
Variables

PredictionsFeatures

Figure 4.17: Schematic of a general classifier system.

This section considers the construction of an RBF classifier for the RAE data again, whose inputs are
no longer taken from the complete set of raw variables as in Section 4.4.2, but instead from the feature
spaces illustrated in the previous section as extracted by the following techniques:

➀ Generalised Linear discriminant analysis

➁ NEUROSCALE:  � 0

➂ NEUROSCALE:  � 0�5

➃ NEUROSCALE:  � 1

4.5.1 Experimental Prediction Models

The neural network used for classification was an RBF with thin-plate spline basis functions (r2logr),
with the centres located within the data by the k-means algorithm, detailed in Section 4.4.2. The num-
ber of centres was chosen individually for each prediction model using leave-one-out cross-validation.
For each pre-processing method, classification results are shown for ‘typical’ networks (specifically,
the network that gave the median error over 10 runs of each model).
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4.5 NEUROSCALE Pre-Processing for Classification

➀ Generalised Linear Discriminant Analysis

� Training Set �

MSE per output: 0.0359165
Patterns Misclassified: 59 (out of 217)
Percentage Correct: 72.8%

Classification Matrix
=====================
41 1 0 0 0
4 27 11 0 0
0 7 49 6 0
0 1 11 28 4
0 0 0 14 13

■ Test Set ■

MSE per output: 0.0641893
Patterns Misclassified: 32 (out of 67)
Percentage Correct: 52.2%

Classification Matrix
=====================
4 2 0 0 0
6 11 3 1 0
0 6 8 4 0
1 1 5 7 0
0 0 0 3 5

➁ NEUROSCALE :  � 0

� Training Set �

MSE per output: 0.0592697
Patterns Misclassified: 107 (out of 217)
Percentage Correct: 50.7%

Classification Matrix
=====================
32 8 2 0 0
11 16 12 0 3
4 3 42 8 5
1 0 23 14 6
0 0 11 10 6

■ Test Set ■

MSE per output: 0.0657081
Patterns Misclassified: 35 (out of 67)
Percentage Correct: 47.8%

Classification Matrix
=====================
6 0 0 0 0
5 9 6 1 0
1 2 11 3 1
0 0 9 4 1
0 0 3 3 2
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➂ NEUROSCALE :  � 0�5

� Training Set �

MSE per output: 0.0293056
Patterns Misclassified: 38 (out of 217)
Percentage Correct: 82.5%

Classification Matrix
=====================
38 4 0 0 0
2 32 8 0 0
0 4 52 6 0
0 0 5 38 1
0 0 0 8 19

■ Test Set ■

MSE per output: 0.0484208
Patterns Misclassified: 20 (out of 67)
Percentage Correct: 70.1%

Classification Matrix
=====================

5 1 0 0 0
1 18 2 0 0
0 4 14 0 0
0 1 7 6 0
0 0 0 4 4

➃ NEUROSCALE :  � 1�0

� Training Set �

MSE per output: 0.0323057
Patterns Misclassified: 51 (out of 217)
Percentage Correct: 76.5%

Classification Matrix
=====================
39 3 0 0 0
3 32 7 0 0
0 6 49 7 0
0 0 8 30 6
0 0 2 9 16

■ Test Set ■

MSE per output: 0.0497819
Patterns Misclassified: 26 (out of 67)
Percentage Correct: 61.2%

Classification Matrix
=====================

4 2 0 0 0
0 18 3 0 0
0 4 14 0 0
0 1 7 3 3
0 0 0 6 2

4.5.2 Discussion

The results of the various feature extraction approaches for pre-processing the data can be summarised
by the histogram in figure 4.18 below, which illustrates the classification performance of the tech-
niques ➀-➃ above and compares them with the direct methods of Section 4.4.2.
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Figure 4.18: A histogram comparing the relative performance of various classifiers on the RAE data.
The left-hand three models are those constructed directly from the data. The right-hand
models are RBFs applied after a feature extraction stage.

The prediction rates illustrated by figure 4.18 confirm the proposition that additional input informa-
tion can reduce classifier quality, particularly in the case of limited data. The classification rate on the
test set for the worst predictor using pre-processed data (NEUROSCALE with  � 0) is exactly equiv-
alent to the best predictor applied to the entire set of input variables. Clearly, the feature extraction
stage is highly appropriate for this particular task. Furthermore, effecting this pre-processing with
the NEUROSCALE,  � 0�5, network, produced the best results, classifying 70.1% of the test dataset.

That the hybrid supervised/unsupervised model ( � 0�5) was optimal, of the three variants tested
here, is particularly interesting. For the unsupervised version ( � 0), it should be clear from study-
ing the configuration of figure 4.8 earlier that considerable misclassification was inevitable based on
those extracted features, both for the training and test sets. Note that the test error is only marginally
greater than the training error for this model. Further insight into this phenomenon will be provided
in Chapter 6.

The purely supervised NEUROSCALE variant ( � 1), which might naively have been expected to
generate the best results, is outperformed by a model that incorporates some element of topographic
information ( � 0�5). The solution configuration for  � 1 is a straight line, which is closely ap-
proximated in figure 4.14, and the addition of some structural component evidently provides useful
information in the second dimension. This further prompts the question of which dimensionality of
feature space might be optimal in this pre-processing application, and is an obvious area for more
detailed study.

Further insight into the dependence of classifier performance on the value of  is given in figure 4.19
below. This illustrates the classification rate of a typical classifier for values of  from 0 to 1 in steps
of 0.1. Note that although these values are for a single run (averaging over many such runs of both
the scaling and classification procedure would be highly computationally expensive), there is still an
evident trend which implies that there is some mid-range value of  which leads to optimal perfor-
mance.
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Figure 4.19: Variation of classification performance with �.

It is possible to generate a two-dimensional  � 1 supervised feature space by altering the subjective
dissimilarities. For example the matrix of inter-class (research-rating) dissimilarities

C� �

�
�����

0 1 1 1 1
1 0 1 1 1
1 1 0 1 1
1 1 1 0 1
1 1 1 1 0

�
����� �

will produce such a space. The matrix C� simply attempts to cluster points from identical classes and
separate those from different classes by the unit distance. There is therefore no implied ordering, as
embodied in the matrix C used for earlier NEUROSCALE projections, and the resultant  � 1 config-
uration is of a circular nature. However, in this experiment, there was no significant improvement in
classification error observed when using such a matrix.

This implies that retention of some level of structure in the feature extraction phase is of benefit to
later classification, and may in fact be more useful than a particular explicit discrimination criterion.
This confirms a major advantage of a topographical transformation such as NEUROSCALE, since con-
ventional approaches to structure-preservation, such as the Sammon mapping, do not possess a gen-
eralisation property, which precludes their inclusion in a predictive model.

The author is only aware of two examples in the literature where experiments have been conducted
that exploit subjective class information within a parameterised topographic map before the discrimi-
nation process. Koontz and Fukunaga [1972] considered simple two-dimensional two-class problems,
mapped also to two dimensions using their ‘distance-difference’ mappings. It was observed that clas-
sification performance improved as the discriminating element (JSE) of the mapping was increased, for
both separable and non-separable problems. Cox and Ferry [1993] also employed similar and “some-
what contrived” datasets to illustrate the efficacy of their MDS-based mapping. Additionally, they
applied the method to a real 15-dimensional two-class dataset and showed that applying the MDS
mapping prior to discrimination with Fisher’s function improved classification accuracy compared
to direct application of that function to the original data. This, however, should be expected as the
pre-processing implies that additional nonlinear behaviour may be exploited in the discrimination
process, whilst Fisher’s discriminant is of linear character.
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4.6 Conclusions

4.6.1 Exploratory Data Analysis

Analysing data taken from the 1992 Research Assessment Exercise is a particularly interesting, and
difficult, problem. The data is of very high dimension, and this, coupled with the “noise” implied
by the subjective peer assessment component of the exercise, makes the research ratings difficult to
predict from the quantitative data alone. This was underlined in section 4.4.2, where, with the models
investigated, it was found to be impossible to predict more than half of an unseen test set correctly.

With respect to visualising the data in two dimensions, several illustrative feature spaces, of linear–
nonlinear and supervised–unsupervised character, produced by standard methods were generated.
Of the linear techniques, the principal component projection failed to elucidate any useful structure
from the data, while by exploiting the associated class information, the linear discriminant space sep-
arated the research ratings into approximate clusters. This latter technique could then project previ-
ously unseen data, although the clustering was less pronounced.

Of the nonlinear techniques, the Sammon Mapping is an improvement upon the unsupervised PCA
projection, exhibiting more structure, but again offered little promise for exploratory analysis. Equally
so is the feature space produced by the NEUROSCALE technique with  � 0, although this latter ap-
proach would permit subsequent projection of the test data set. The established neural network ap-
proach to topographic mapping, the Kohonen map, proved to be ill-matched to the topology of the
data and thus of limited utility in this application.

The most effective visualisation of the data presented in this chapter was that obtained from NEU-
ROSCALE with an intermediate value of  � 0�5, illustrated in section 4.4.6. The merit of combining
both unsupervised and supervised — or structural and subjective — flavour in the feature space is
made explicit. The subjective knowledge imposes a clustering and ordering constraint that facilitates
analysis with respect to classification of departments. The generalisation capability of this approach
was also clearly shown, illustrating a better projection than that achieved by LDA, and which showed
potential (see below) for subsequent decision making or inference. Previously unseen data, which is
transformed by the network, may be analysed in that space. The supervisorial content of the projec-
tion allows a prospective prediction to be made, and the structural content implies that the confidence
of that prediction can be gauged according to the proximity of the test point to other clusters.

Equally, by retaining some of the structure of the original data, it is also possible to highlight appar-
ent anomalies and inconsistencies in the assessment process, and this evidence was supported by the
results of the previous classification experiment.

4.6.2 Data Pre-processing for Classification

The results from Section 4.5 confirm that improved classifier performance can be attained by extract-
ing an appropriate set of features from the data a priori. Given this approach, it was possible to cor-
rectly predict the rating awarded to 70% of the Applied Mathematics departments (and 82% of those
awarded ratings 1, 2 and 3). Note that these ratings were determined by a distinct assessment panel
from the Physics, Chemistry and Biological Science departments (the data upon which the classifier
was trained), and that it had access to additional qualitative information in making its decision. De-
spite this, and the large number of available input variables, it is evident that considerable structure
is present in the data, in terms of the relationship to the research rating ultimately awarded. This con-
clusion supports the argument that, from the perspective of the funding councils, collection of the
research data is, in part at least, a worthwhile exercise. However, as considered by Taylor [1995], this
chapter has not addressed the question of which of the large number of variables are relevant.
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It would be interesting to attempt, using the best model above, to predict the outcome of the 1996
exercise for those relevant departments. Unfortunately, changes in the assessment process and the
supplied data would probably render this exercise somewhat difficult and ineffective.

Of particular interest from the pre-processing experiments, is the fact that the optimum feature ex-
traction method, of those investigated, was the NEUROSCALE transformation with  � 0�5. This
approach outperformed its purely unsupervised and purely supervised relatives. Clearly, the struc-
tural influence upon the projection is beneficial to classification, and, counter-intuitively, more effec-
tive than supervisorial criteria alone, whether linear (LDA) or nonlinear (MLP and NEUROSCALE with
 � 0). The questions of exactly which value of  and output dimension q are optimal in this experi-
ment remain open.

Two similar investigations into such topographic pre-processing in the literature are too simplistic
for serious comparison, and the results for NEUROSCALE on the RAE data would appear significant.
However, the primary focus of this thesis is concerned with topographic mappings for generic feature
extraction, rather than tailored extraction for the purposes of any specific prediction or classification
task. There thus remains much scope for further investigation of this aspect of NEUROSCALE.
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Chapter 5

Classical Multidimensional Scaling
and the Principal Subspace Network

5.1 Introduction

Chapter 3 introduced the ‘NEUROSCALE’ technique and reviewed recent research effort into exploit-
ing the properties of neural network models for producing similar classes of topographic mappings.
These approaches either implemented a Sammon mapping, a nonlinear MDS scheme or in the case of
NEUROSCALE, what may be considered to be a hybrid of the two.

In this chapter, a generalisation of the NEUROSCALE concept to the classical multidimensional scaling
(CMDS) procedure is proposed. Considering the established limited utility of CMDS discussed in Sec-
tion 2.5.3 previously, this may not appear a fruitful avenue for further investigation. However, anal-
ysis of a neural network CMDS scheme reveals a close and illuminating relationship with the field of
neural network principal components analysis and the principal subspace network [Oja 1989] in partic-
ular.

The CMDS procedure is briefly summarised in the next section, where its topographic properties are
analysed. This emphasises that for Euclidean input data (dissimilarities), CMDS is equivalent to prin-
cipal components analysis (PCA). A relative supervision algorithm is then developed in Section 5.3
to train a neural network model to effect the procedure. By considering purely objective ( � 0) map-
pings only, the learning rule that emerges from this approach is then compared with that of the prin-
cipal subspace network, as described in Section 5.4. Considerable effort is evident in the literature
concerning analysis of the global behaviour of the weight update rule for Oja’s network, and an im-
portant result of this chapter is to demonstrate that such a rule descends the STRESS cost surface of
the related CMDS network.

5.2 Classical Multidimensional Scaling Revisited

5.2.1 The CMDS Procedure

Under the metric MDS model, given a (N � N) matrix of dissimilarities, �, it is desired to produce
a set of points, generally in a low dimension, whose inter-point distances, dij, optimally fit the corre-
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sponding dissimilarities, �ij. One method for generating a set of points Y is the ‘classical’ procedure
developed by Torgerson [1958], covered previously in section 2.5.3, the optimality properties of which
will be discussed shortly. This mapping is effectively linear and makes more constrictive assumptions
of the data than the nonmetric methods, but has the advantage of being analytic in its derivation.

The procedure is summarised as follows:

➊ Generate the matrix of squared dissimilarities�2 � f�2
ijg.

➋ From this, generate the (N � N) double-centred inner-product matrix, B� � � 1
2 H�2H, where H

is the centring matrix (H � I � 1�N). If B� is being generated from an explicit set of points,
rather than from subjective dissimilarities, then it can be given directly by B� � XXT, under
the assumption that the points X are centred at the origin. (This assumption implies no loss of
generality and will be retained for the remainder of this chapter.)

➌ If� represents a Euclidean distance matrix, then B� will be positive semi-definite.

➍ Spectrally decompose B� into U�UT � YYT, where � is the diagonal matrix of eigenvalues of
B� and U is the corresponding matrix of column eigenvectors. Hence Y � U�1�2 is the config-
uration of points, still in p dimensions.

➎ Choose the q dimensions (columns of Y) corresponding to the q largest eigenvalues of B�. This
gives a final configuration of Yq � Uq�

1�2
q , which is also centred at the origin.

Whilst MDS methods are traditionally applied to measures of dissimilarity, they may of course be
applied directly to a matrix of Euclidean distances, and the classical technique is no exception. In
fact, if the dissimilarities in� correspond to a set of Euclidean distances between data points in some
spaceRp , then a q-dimensional CMDS configuration is identical to a projection onto the first q principal
eigenvectors of the covariance matrix of those data points. Indeed, CMDS is also known as principal
co-ordinates analysis [Gower 1966]. In this spatial case, the derived matrix B� is positive semi-definite
(it has rank p) and is equal to XXT. Note that B� � XXT is a (N � N) matrix with eigenvectors U and
at most p non-zero eigenvalues, while XTX is a (p� p) matrix with the same set of p eigenvalues but
different eigenvectors.

5.2.2 Optimality Properties

Because of the equivalence with PCA, the CMDS configuration may be generated as a linear projection
of the original data, where Yq � XW with W a p � q weight matrix whose columns are the principal
eigenvectors of the covariance matrix of X. In terms of a topographic property, the CMDS linear pro-
jection solution has been previously shown [Mardia, Kent, and Bibby 1979] to be optimal with respect
to the distance-retaining STRESS measure

E �
X

i

X
j

(d�ij)
2 � (dij)2� (5.1)

under the constraint that the columns of W are orthonormal. The error terms here need not be squared
as the orthonormality of the projection ensures that all inter-point distances are contracted. This op-
timality property was shown by Mardia et al. [1979], but a more efficient derivation is given below.
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Proof. Let U � (W�V) where U is orthogonal such that UTU � I and W is the projection matrix
whose q columns are orthonormal. V is a matrix whose (p�q) columns complete the orthonormal set
in U. Then

(d�ij)
2 � (xi � xj)T(xi � xj)�

�


UT(xi � xj)

�T
UT(xi � xj)�

�

pX
k�1



uT

k(xi � xj)
�2
�

and in corresponding form,

(dij)2 �

qX
k�1



wT

k(xi � xj)
�2
�

Thus E can be given by:

E �
X

ij

pX
k�q�1



vT

k(xi � xj)
�2
�

�
X

ij

pX
k�q�1

vT
k(xi � xj)(xi � xj)Tvk�

�

pX
k�q�1

vT
k

�
�X

ij

(xi � xj)(xi � xj)T

�
� vk�

� 2N2
pX

k�q�1

vT
kCvk�

where C � E[xxT] is the sample covariance matrix of the points x.

For orthonormal vk, this is minimised by the vk spanning the space of the (p � q) eigenvectors of C
corresponding to the smallest eigenvalues. Thus, the optimal W is a projection in the q largest principal
components of the data X, which gives the Classical MDS solution in q dimensions.
�

However, the apparent topographic property of the projection can be misleading. The distance term
(d�ij)

2 from equation (5.1) can be expanded as

(d�ij)
2 � (xi � xj)T(xi � xj)

� xT
i xi � xT

j xj � 2xT
i xj�

and similarly for (dij)2. Since the points are centred,
P

ij xT
i xj � 0 (and correspondingly for y), and the

expression for E becomes

E � 2N
X

i

(xT
i xi � yT

i yi)�

Minimisation of this error effectively results in a maximisation of the
PN

i yT
i yi term (under the con-

straint of orthonormality of the columns of W), and this is evidently a variance maximisation procedure.
A standard result in this respect is that the optimal W be the matrix of principal eigenvectors of the
covariance matrix of the data in X.

There is in fact a further cost measure that the CMDS configuration minimises [Mardia 1978]. Having
generated the matrix B�, a q-dimensional CMDS solution, Y, can be shown to produce an optimal (in
the least squares sense) fit to the inner-product matrix. That is,

E � tr


(B� � YYT)2� (5.2)
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is minimised.1

Proof. Equation (5.2) may be minimised with respect to Y by differentiating to find the stationary
points:


E

Y

� �4B�Y � 4YYTY�

So at the stationary points,

(B� � YYT)Y � 0� (5.3)

Equation (5.3) can obviously be satisfied if the inner product matrices are identical, but this solution
is unattainable if Y is of lower rank than B� (which will generally be the case since p � q). However,
other solutions to (5.3) are given by:

Y � Uq�
1�2
q R� (5.4)

where Uq is a matrix whose q column vectors are eigenvectors of B� and�q is a diagonal matrix con-
taining their corresponding eigenvalues. R is an arbitrary, orthogonal, rotation matrix, such that RTR �
RRT � I. That equation (5.4) is a solution is clear from:

(B� � YYT)Y � (B� �Uq�
1�2
q RRT

�
1�2
q UT

q)Uq�
1�2
q R

� B�Uq�
1�2
q R�Uq�qUT

qUq�
1�2
q R�

� Uq�
3�2
q R�Uq�

3�2
q R � 0�

Then the error is tr
h
B� �Uq�qUT

q

i2
, and by expanding it is easy to show that this is minimised when

�q contains the q largest eigenvalues of B�, and Uq the corresponding eigenvectors. To within the
equivalence defined by the rotation R, this represents a unique global minimum. Other combinations
of eigenvectors in Uq are saddle points on the cost surface.
�

This property is particularly appropriate to the context of NEUROSCALE and related models, as the
trace notation of equation (5.2) may be expanded as a sum of individual terms thus:

E �

NX
i

NX
j

(b�ij � bij)2� (5.5)

This may be seen to be of very similar form to the Sammon STRESS measure of equation (2.3). In fact,
the inter-point distance between two points i and j has now been replaced by their respective inner,
or scalar, product. (Compare this with the distinction between the methods for calculation of hidden
unit activations in MLPs and RBFs.) In the same manner that a neural network-based variant of the
Sammon mapping was developed from that latter measure, a similar approach may be adopted in
order to naively derive a relative supervision algorithm for a CMDS neural network implementation.

5.3 A Neural Network CMDS Transformation

By choosing a linear, single-layer, neural network to effect the CMDS transformation, such that yi �
WTxi, the cost function of equation (5.5) becomes

E �
1

4N2

NX
i

NX
j

(xT
i xj � yT

i yj)2� (5.6)

1This use of the trace notation in error measures is convenient since if E is a (not necessarily square) matrix of residual errors
then tr �ETE� � tr �EET� �

P
i

P
j e2

ij, and is thus the sum-of-squares error function.
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5.3 A Neural Network CMDS Transformation

with the constant term introduced for later convenience. This simple network is illustrated in figure
5.1 below.

Linear Output Layer

x y

wk l

(    neurons)q

k

l

Input Layer
(    neurons)p

W

Figure 5.1: A simple linear neural network to perform CMDS.

The derivative of this error measure with respect to a weight wkl from figure 5.1 is given by:


E

wkl

� �
1

N2

X
i

X
j

(xT
i xj � yT

i yj)yjlxik� (5.7)

These individual weight derivatives may be combined into a matrix 
E�
W thus:


E

W

� �
1

N2

X
i

X
j

(xT
i xj � yT

i yj)xiyT
j and expanding for yi� yj�

� �
1

N2

X
i

X
j

(xT
i xj � xT

i WWTxj)xixT
j W�

� �
1

N2

X
i

X
j

[xT
i (I�WWT)xj]xixT

j W�

� �
1

N2

X
i

X
j

xixT
i (I�WWT)xjxT

j W� (5.8)

Finally, summing separately over j and then i in equation (5.8) gives:


E

W

� �C(I�WWT)CW� (5.9)

where C is the sample covariance matrix of the data (x1� x2� � � � � xN). This expression might also have
been derived more simply by a direct differentiation of equation (5.2), but this would have obscured
the connection with the NEUROSCALE algorithm and the relative supervision approach.2 Deriving it
from equation (5.5) emphasises the correspondence between the two approaches. Thus, applying a
steepest-gradient minimisation method to the training of the network leads to a learning rule:


Wcmds � �C(I�WWT)CW� (5.10)

where � is a small constant.
2Note that Sammon’s algorithm cannot be derived from a trace error measure as the matrix of distances (or even squared

distances) cannot be expressed as a function of the data matrix X.
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Classical Multidimensional Scaling and the Principal Subspace Network

Because of the previously outlined properties of CMDS, a network trained in such a manner will pro-
duce a (rotated) principal component projection of the input data. In this respect, there is already a
considerable body of work concerned with the implementation of principal components analysis (PCA)
with neural networks. These are linear networks, usually trained via (nearly) local Hebbian algo-
rithms, to generate a reduced dimension principal component projection of the input data. Notable
developments are the single principal component analyser [Oja 1982], its generalisation to the Prin-
cipal Subspace Network [Oja 1989] which extracts the q-dimensional principal subspace, and the Gen-
eralised Hebbian Algorithm [Sanger 1989], which extracts the actual q principal components them-
selves. A good overview of these algorithms, the relationships between them and some of the theo-
retical issues that they raise, is given by Baldi and Hornik [1995].

Further investigation of the learning dynamics of the neural network CMDS algorithm implied by
equation (5.10) indeed reveals a close relationship to the Principal Subspace Network, and both net-
works are considered in more detail in the next section. This will review and clarify some of the prop-
erties of the weight adaptation rule of the latter and will show that such a rule minimises the cost
function for a neural network implementation of the CMDS procedure.

5.4 The Principal Subspace Network

Of the various neural network implementations for PCA, the Principal Subspace Network (PSN) of
Oja [1989] has perhaps been the most studied. The PSN is a single-layer neural network with linear
output activation functions, such that y � WTx, and is of identical architecture to the network depicted
in figure 5.1. Its simple weight adaptation rule and associated qualities of symmetry and homogeneity
are attractive from the neuro-biological perspective.

The PSN is generally trained on-line, pattern by pattern, with adjustments made to the weights ac-
cording to:


W � �(x�Wy)yT� (5.11)

which is often known as ‘Oja’s rule’. The first term represents a Hebbian weight reinforcement, and
the second term is a weight normalisation term which constrains WTW  I.

It is clearer, and facilitates the analysis, to consider the averaged form of the weight update rule (which
assumes that the input data is drawn from a stationary distribution and that W changes slowly):


Wpsn � � (I�WWT)CW� (5.12)

where C � E[xxT] is the sample covariance matrix of the input data, which are again assumed to be
centred at the origin, and � is a small constant. This rule, and its associated differential equation, has
been analysed in [Williams 1985; Oja 1992; Karhunen 1994] with respect to the asymptotic stability
about its fixed points. Although any W comprised of eigenvectors of C are fixed points of equation
(5.12), only those W whose column vectors span the principal subspace of C are stable. (The other
combinations of eigenvectors represent saddle points.)

This analysis describes the local behaviour of the PSN algorithm about its fixed points in weight space.
Although experimental evidence implied that the algorithm was also globally convergent, only re-
cently has any theoretical insight been provided. Yan, Helmke, and Moore [1994] presented results
defining global convergence behaviour based on analysis of the related Riccati differential equation,
while Plumbley [1995] derived three Lyapunov functions that described the domains of convergence.

One particular approach to global analysis is to consider that if the PSN rule could be interpreted
as the gradient of a particular cost function, this would define the behaviour of the rule through all
space with respect to that cost surface. Unfortunately, equation (5.12) cannot be formulated in such a
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5.4 The Principal Subspace Network

manner, as its implied Hessian is asymmetric [Baldi and Hornik 1995]. However, Oja’s rule has been
shown to be a gradient system in the transformed co-ordinates Z � C1�2W [Wyatt and Elfadel 1995],
although the earliest such gradient relationship was exposed by Xu [1993] with further appreciation
afforded by Karhunen and Joutsensalo [1994]. They showed that equation (5.12) is a descent direction
on the surface of a cost function of the form

Erec �
X

i

kxi �WWTxi k
2 � (5.13)

This measure can be interpreted as the mean-square error at the output of an auto-associative network
with a single hidden layer of q units, where the weight matrix from the hidden layer to the output is
constrained to be the transpose of that from the inputs to the hidden layer. As such, equation (5.13)
represents an optimal linear reconstruction criterion whose implied error surface is well characterised
[Baldi and Hornik 1989], and it is known that this measure is minimised when the hidden-layer space
is the principal subspace of the input data. Thus, if W(t�1) � Wt �
Wpsn implies that Erec is mono-
tonically decreasing with t, then Oja’s rule will converge on the principal subspace.

That this is so may be shown as follows (in a more concise and intuitive form than that given by Xu
[1993]).

Equation (5.13) may be expressed in matrix trace notation as:

Erec �
1

2N
tr �(X� XWWT)T(X� XWWT)� � (5.14)

with the constant term again introduced for convenience.

Minimising this cost by taking a step 
Wrec in the direction of steepest descent gives


Wrec � ��

E

W�

�
�

N
(I�WWT)XTXW �

�

N
XTX(I�WWT)W�

� �VCW � �CVW� (5.15)

where V � (I�WWT). It is evident that the first term is simply the learning rule for the PSN, and it is
this term that dominates equation (5.15) after the initial few training steps. This may be understood
by noticing that the second term XTX(I � WWT)W � 0 as WTW � I, whilst the first (Oja) term only
tends to the null matrix as WTW� I and the columns of W span the principal eigenspace of C. The
imbalance between these two terms is accentuated as (p � q) increases. If the columns of W are ini-
tially orthogonal, the off-line (batch) form of Oja’s update rule and the gradient-based minimisation of
(5.13) become almost equivalent. (To the extent that Oja’s rule is formulated to retain WTW � I�O(�2),
and while WTW � I the non-PSN term is zero.)

It is possible to determine whether the weight adaptation prescribed by the PSN rule (the first term)
will increase or reduce the reconstruction error (5.13) by calculating its scalar product, r1, with the
(downhill) gradient 
Wrec on the cost surface of the associated error measure. A positive value of
scalar product implies that the weight adjustment according to the PSN rule is a descent direction on
that surface. The quantity r1 is given by vec[�VCW]Tvec[
Wrec], where ‘vec[�]’ is the operator that
converts a matrix into a vector by stacking its columns one above each other, and thus has the property
that vec[A]Tvec[A] � tr �ATA�. (This operation serves to convert the parameters in the matrix W into
a single vector in the objective space of equation (5.13).) Therefore

r1 � � tr �WTCV(
Wrec)� �

� �2 tr �WTCV(VCW � CVW)� �

� �2 tr �WTCVVCW � WTCVCVW� �

� �2
qX
i

wT
i [CV2C � (CV)2]wi� (5.16)
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Classical Multidimensional Scaling and the Principal Subspace Network

The matrix CV2C is clearly positive (semi-)definite (indeed, it must be so as it represents the inner-
product of the PSN term with itself), but more importantly, so is the second matrix (CV)2. Even though
that matrix is asymmetric, it may still possess a definite-ness property, which is shown as follows.

Proof. Let (CV) have eigenvalues �i with corresponding eigenvectors ui � xi � iyi. Then (VC) has
the same eigenvalues �i and eigenvector Vui [e.g. see Mardia et al. 1979, pp 468].

Consider a single eigenvalue � � a � ib:

(CV)u � (CV)x � i(CV)y�
� ax � iay � ibx� by�

Equating the real parts gives:

(CV)x � ax� by� (5.17)

Similarly,

(VC)Vu � (VC)Vx � i(VC)Vy�

� aVx � iaVy � ibVx� bVy�

and equating imaginary parts gives:

(VC)Vy � aVy � bVx� (5.18)

From (5.17), premultiplying by yTV gives:

yTV(CV)x � ayTVx� byTVy� (5.19)

From (5.18), premultiplying by xT gives:

xT(VC)Vy � axTVy � bxTVx� (5.20)

Because (VC)T � (CV) and VT � V, transposing (5.20) and subtracting from (5.19) gives b � 0.

Therefore all the eigenvalues of (CV) are real, and the eigenvalues of (CV)2 are all non-negative.
�

The definite-ness properties of both these terms implies that r1 must be positive for all possible values
of 
W (except for the highly pathological case where all the wi initially lie in the null-space of C) and
so the the weight adaptation for the principal subspace network performs gradient descent on the
surface defined by the cost function of equation (5.13), for sufficiently small �.

5.5 The Relationship between the PSN and CMDS Learning
Rules

In addition to the result of the previous section, it may also be shown that the weight update for the
PSN minimises the cost function, derived from equation (5.5), for a neural network implementation of
CMDS. That the PSN and CMDS are equivalent (to within a rigid rotation) is self-evident, as both net-
works generate a principal subspace of the input data. However, comparison of the averaged forms
of the learning rules offers further insight into the global behaviour of the PSN rule.

It was shown from equation (5.10) in section 5.3 that the weight update rule for the CMDS network
was �C(I�WWT)CW. This is similar, by a factor C, to the rule for the PSN of equation (5.12). To inves-
tigate the behaviour of the PSN rule, the inner-product of its weight update and that of the direction
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5.5 The Relationship between the PSN and CMDS Learning Rules

of steepest descent for the CMDS cost function (5.5) is again calculated. The inner-product is simply
r2 � vec[
Wpsn]Tvec[
Wcmds]. Now,

r2 � vec[
Wpsn]Tvec[C
Wpsn]�

� tr
h

WT

psnC
Wpsn

i
�

�

qX
i


wT
i C
wi� (5.21)

Since the covariance matrix C is positive (semi-)definite, the value of r2 will be positive for all 
W,
excepting again the case where all wi lie in the null space of C. Therefore, for sufficiently small �, the
averaged weight adaptation for the PSN minimises the cost function of equation (5.5).

To reveal the underlying differences between the two algorithms, consider the perturbation of a single
weight vector 
w due to the PSN rule. It can be seen that in the CMDS network, pre-multiplication
by the covariance matrix C will move 
w more into the direction of the principal eigenvector. The
weight change determined by Oja’s rule may be expressed as a weighted sum of the eigenvectors of
C such that 
w �

Pp
i 	iui, where the 	i are some constants. Then C
w �

Pp
i �i	iui. The eigen-

vector components of 
w are multiplied by their corresponding eigenvalues, and so 
w will further
approach the direction of the principal eigenvector. However, the weight adaptation C
w will no
longer retain orthogonality of the columns of W in the same manner as the PSN algorithm. For the
PSN, if

W(t)TW(t) � I� and
W(t � 1) � W(t) �
Wpsn� then

W(t � 1)TW(t � 1)  I�

assuming that � is small and so ignoring the term in O(�2). In contrast, for the CMDS network

W(t � 1) � W(t) � C
Wpsn giving
W(k � 1)TW(k � 1)  I � 2�WTC(WWT � I)CW�

The second term will, however, tend to the null matrix as the columns of W approach the principal
eigenvectors of C, and so as equation (5.5) is minimised, WTW will converge on the identity matrix.

83



Classical Multidimensional Scaling and the Principal Subspace Network

5.6 Conclusions

In the MDS field and for application to dissimilarity data, the classical technique is now rarely em-
ployed, apart from its use as a ‘first guess’ to initialise the iterative procedures of other more effective
schemes. For application to explicit spatial data, as a form of ‘topographic’ mapping, its utility is even
more limited, as it is well known that in such applications, it is exactly equivalent to principal com-
ponents analysis. Its asserted topographic property, that it minimises the measure

P
i
P

j(d
�
ij)

2� (dij)2,
is, in truth, simply constrained variance maximisation in disguise — or PCA once more .

Development of a relatively supervised neural network CMDS model is therefore obviously of limited
practical value. Nevertheless, it is of interest to compare such a scheme to established neural network
strategies for implementing principal component projections.

One such approach, Oja’s principal subspace network, has seen significant study with respect to the
convergence properties of its learning rule. While experiment reveals that the network consistently
extracts the principal subspace of the input data, significant recent research effort has been directed to-
wards further understanding of the global behaviour of Oja’s rule. One initial approach was to show
that the learning rule descends a cost function implied by a linear reconstruction criterion. In this
chapter, it has been revealed that in addition, Oja’s learning rule descends the cost function associ-
ated with the CMDS neural network model, tr



(B� � YYT)2

�
. This result affords further appreciation

of the dynamics of the PSN, although the NEUROSCALE CMDS approach cannot be considered a re-
alistic competitor to that network as the learning rule requires a double loop over the input patterns
and cannot be implemented on-line.
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Chapter 6

The Form of Topographic
Transformations

6.1 Introduction

In many conventional applications which exploit neural networks — function approximation, classi-
fication and time-series prediction for example — there are several important design and implemen-
tation issues that must be considered, and these are equally relevant to neural networks which are to
be trained to effect topographic mappings.

In terms of network design, a fundamental decision is that of model order selection, which is related to
the trade-off between bias and variance as remarked upon in Section 4.4.2. It is necessary to determine
the sufficient network complexity that will permit good generalisation — that is, it is naturally desired
that projections of new data, drawn from the same distribution as that used to train the network, will
also have low STRESS.

With respect to implementation, a key problem is one of network weight optimisation. There are nu-
merous optimisation schemes available, and consideration of these will be deferred to the next chap-
ter. Furthermore, from the evidence of previous research with Sammon Mappings, sub-optimal local
minima may be expected to be highly problematic.

This chapter will examine the NEUROSCALE approach in terms of the form of the network transfor-
mation, with the emphasis on purely topographic, or objective, mappings (those with  � 0). Firstly,
the problem of local minima in network optimisation will be considered. While this may appear to be
more relevant to Chapter 7, it in fact proves to be a fruitful starting point for this chapter as the results
of that investigation lead naturally on to a discussion concerning the smoothness of the network trans-
formation, which is in turn closely related to the questions of model complexity and generalisation.
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6.2 Local Minima

6.2.1 The Sammon Mapping

The nonlinear optimisation procedures conventionally employed in the generation of Sammon map-
pings are local schemes (see Klein and Dubes [1989] and Hofmann and Buhmann [1995] for excep-
tions). When applied to the optimisation of the Sammon STRESS, the final configuration will be a local
minimum of the STRESS function. In such applications, it has been a general observation that many
of these minima, and respective configurations, are considerably sub-optimal. An empirical study of
local minima in two-dimensional scaling was undertaken by Mathar and Zilinskas [1993]. When ap-
plied to the (10�10) cola-testing data [Schiffman, Reynolds, and Young 1981], for example, the region
of attraction of the global solution was estimated at only 4.8%. Other starting configurations outwith
this region gave rise to sub-optimal minima with correspondingly higher values of STRESS.

A similar experiment may be undertaken for 45 patterns1 from the Iris data set [Fisher 1936], and the
results are given in figure 6.1. (This subset of the Iris data will be referred to as the IRIS 45 set.) This
presents a histogram of the number of runs of the Sammon mapping algorithm, out of a total of 1000,
that gave corresponding minimum STRESS values. The configurations were initialised at random, and
a conjugate-gradient minimisation routine employed.
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Figure 6.1: Histogram of number of final configurations with corresponding STRESS’s for 1000 runs
of the Sammon Mapping on 45 patterns from the Iris data set (IRIS 45).

It is clear that while the mode is at the global2 minimum of 0.0028, there are many sub-optimal local
minima. The proportion of runs which approached the global minimum was 21.3%, with the mean
and standard deviation of the final STRESS being 0.0051 and 0.0017 respectively. It should be noted
that the ‘global’ minimum found from random initialisation of the configuration was identical to that
minimum obtained via PCA initialisation.

6.2.2 Parameterised Transformations

An equivalent experiment to figure 6.1 may also be conducted for NEUROSCALE (with  � 0 to emu-
late the equivalent Sammon mapping). The results, for a radial basis function network with 10 Gaus-
sian basis functions, are given in figure 6.2. The global width parameter, �, of the basis functions was

1A representative subset of the full data was chosen in order to permit large numbers (� 1000) of runs of the scaling
algorithms.

2It is assumed, after many experiments, that this is indeed the global minimum, although this cannot be known for certain.
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set to 3�0, where the k-th basis function is given by �k(xi) � exp(� k xi � �k k
2 ��2), �k being the

respective centre.
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Figure 6.2: Histogram of number of final configurations with corresponding STRESS’s for 1000 runs
of NEUROSCALE, with � � 0, on the IRIS 45 dataset. The width of the 10 Gaussian basis
functions was 3.0.

The contrast between the standard Sammon Mapping and the NEUROSCALE RBF approach is striking.
In the case of NEUROSCALE, the minimum STRESS is 0.0038. This is notably higher than that for the
Sammon Mapping, which might be expected due to the reduced flexibility of the RBF model implied
by the use of only 10 basis functions. However, the maximum STRESS is only 0.0046, with the mean
and standard deviation 0.0039 and 0.000074 respectively. The underlying result is that there does not
appear to be a significant problem with sub-optimal local minima in the case of the NEUROSCALE
approach on this dataset. This supports the observation of Webb [1995], when performing MDS by
iterative majorisation with radial basis functions for the entire 150-pattern Iris data set, that “the value
of the loss [STRESS] to which the procedure converged was relatively insensitive to the initial weight
configuration.”

It is natural to also consider a more flexible RBF, and figure 6.3 gives the minima obtained when op-
timising a model with 45 Gaussian basis functions, also of width 3.0.
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Figure 6.3: Histogram of number of final configurations with corresponding STRESS’s for 1000 runs
of NEUROSCALE, with � � 0, on the IRIS 45 data set. The width of the 45 Gaussian basis
functions was 3.0.
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This gives a very similar distribution of minima to the 10 basis function plot, and with a similar min-
imum of 0.0037. In this case, however, the maximum value is only 0.0038 and the standard devia-
tion 2 � 10�5. Despite the fact that there are as many basis functions in the RBF as data points, the
network has still not attained the potential minimum STRESS value of 0.0028. Also, by comparison
with figure 6.1, it can be seen that the apparent minimum (and that exhibited in figure 6.2 for 10 basis
functions) does not correspond to one of the sub-optimal configurations generated by Sammon’s al-
gorithm. From this experiment, it is also retrospectively apparent that the relatively high minimum
value of STRESS observed in figure 6.2 was not a result of employing only 10 basis functions in that
network.

Further understanding of this phenomenon can be obtained by realising that there are two levels of
minima in the neural network implementation. The first level is the set of minima as generated by
Sammon’s method. The second level is the set of extra minima introduced by the mechanism of the
RBF model. To clarify this distinction, consider the equations for calculating the derivatives of STRESS
with respect to the weights in the NEUROSCALE model. The relevant equations are reproduced here
from Section 3.2:


E

wk

�

NX
i


E

yi

�

yi


wk
� where (6.1)


E

yi

� �2
X
j��i

�
d�ij � dij

dij


(yi � yj)� (6.2)

The derivatives 
E�
yi are exactly those determined in Sammon’s algorithm, and when these are all
zero, clearly so are all the 
E�
wk. This represents the first level of minima.

However, even if these derivative terms are non-zero, all the 
E�
wk may still be zero, given appro-
priate values of 
yi�
wk. To determine which such values give rise to minima, firstly the weights
wl � (w1�w2� � � � �wh)T for each output dimension, l, of the network are considered in isolation, as
each such weight vector only affects a single network output (and the subscript ‘l’ will be dropped
where it is unambiguous to do so). Then, equation (6.1) may be expressed in matrix form as:

rE � JT�� (6.3)

where
rE � (


E

w1

�

E

w2

� � � � �

E

wh

)T�

and J is the Jacobian matrix:

J �

�
����
�y1l
�w1

�y1l
�w2

� � � �y1l
�wh

�y2l
�w1

�y2l
�w2

� � �
�y2l
�wh

� � � � � � � � � � � �
�yNl
�w1

�yNl
�w2

� � �
�yNl
�wh

�
���� �

where yil is the value of output dimension l for pattern i, and

� � (

E

y1l

�

E

y2l

� � � � �

E

yNl

)T�

Thus local minima occur, for non-zero �, when � is orthogonal to the column-space of (or lies in the
null-space of) J. For an RBF with h basis functions, the Jacobian is given by

J �

�
���
�1(x1) �2(x1) � � � �h(x1)
�1(x2) �2(x2) � � � �h(x2)
� � � � � � � � � � � �

�1(xN) �2(xN) � � � �h(xN)

�
��� � (6.4)
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and remains identical whichever output l of the network is considered.

With 45 basis functions, this matrix should be full rank, and no such second level minima should be
present. However, for larger values of width parameter �, it is likely to be ill-conditioned. This is the
case for the example above, where the condition number (ratio of largest to smallest singular values)
is 9�45� 108. For an ill-conditioned Jacobian, if not singular and thus a true local minimum does not
exist, numerical round-off error may effectively generate an artefactual one. Even if not, should � ever
approach the subspace spanned by the eigenvectors corresponding to the very small eigenvalues, the
gradient will become extremely small and training will, for all intents and purposes, terminate.

To view this more explicitly, consider a single output dimension l of the network once more, for a sim-
ple gradient-descent error minimisation scheme. The vector of output neuron l for all the patterns will
be denoted zl � (y1l� y2l� � � � � yNl)T, and therefore represents the lth column of the output data matrix
Y. The weight update equation at time step t is then wt�1 � wt � �rE. This implies that

zt�1
l � Jwt�1� (6.5)

� J(wt � �rE)� (6.6)

� zt � �JJT�t� (6.7)

If there is a basis function located at each input point, then J is symmetric and may be decomposed as
U�UT, where U is the matrix of eigenvectors of J and� the corresponding diagonal matrix of eigen-
values. From this:

JJT � U�2UT� (6.8)

If � is then expressed as a weighted sum of those eigenvectors, such that � �
P

k 	kuk, then the corre-
sponding change in z is


z � zt�1 � zt� (6.9)

� ��
X

k

�2
k	kuk� (6.10)

Thus, 
z will be diverted from the direction �, such that its components in the directions of the prin-
cipal eigenvectors of J are accentuated in comparison to those of the minor eigenvectors. The magni-
tude of this effect is related to the condition number of the matrix J, and may be illustrated by figure 6.4
below. This figure provides a simple example of a two-dimensional quadratic error surface, where the
minimum lies at the origin. The evolution of the vectors zt are shown for an equivalent NEUROSCALE
gradient-descent scheme with (2�2) J, whose eigenvectors and squared eigenvalues are also given in
the figure. For comparison, the plot for the Sammon mapping is also illustrated, which is equivalent
to JJT � I.

In figure 6.4, the trajectory for the equivalent Sammon mapping converges on the minimum directly
as expected. By contrast, the effect of the �2

1 term in equation (6.10) above is to initially cause the
gradient-descent trajectory to approach the origin more rapidly than the Sammon trace. However,
� soon becomes near-perpendicular to u1, and the trajectory is dominated by the effect of the small-
est eigenvalue, �2

2 � 0�0225, causing convergence on the origin in the direction u2 to be dramatically
retarded.

Although the global surface of the STRESS cost function will be very different from the quadratic ex-
ample given above, in the vicinity of a minimum such an approximation may be quite reasonable.
(This assumption is indeed made implicitly by BFGS and other optimisation algorithms.)

By considering each output in isolation, if J is not full rank (for example, when there are fewer basis
functions than input data points), then the implication is that there will be a genuine local minimum
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Figure 6.4: Comparison of gradient-descent and Sammon Mapping algorithms on a quadratic error surface.

due to the null-space of J where the corresponding eigenvalues are zero. However, for multiple out-
puts, the situation is more complex than this. If the error for a given output dimension l is such that
JT�l � 0, then in general, JT�l� �� 0, for l� �� l. The output dimensions, l�, for which the weight changes
are non-zero will cause the the vector zl� , and thus the overall configuration Y, to change, which will
in turn result in modification of the inter-point distances dij. These distances are related to the � for
all output dimensions through equation (6.2), which implies that �l will be perturbed from the null-
space and there is thus an ‘escape route’ from the minimum. The capability of the algorithm to avoid
the minimum in such a manner is a side-effect of the existence of a set of multiple solutions which are
equivalent, with respect to STRESS, and may be generated by a arbitrary rotation and/or translation
of any one single solution.

The effects of the eigenvalues of J upon the convergence of the relative supervision algorithm suggests
that better convergence behaviour may be obtained through the selection of a relatively small value
of basis function width, �, and thus ensuring that J is well-conditioned. An identical plot to that of
figure 6.3, but with � � 0�01, is therefore given in figure 6.5.

The distribution of final minimum STRESS values is now very similar to the Sammon mapping given
in figure 6.1 earlier. The minimum value is again 0.0028 and 19.8% of runs approach this value. The
mean and standard deviation were 0.0052 and 0.0018 respectively. All the local minima observed also
now correspond to those observed from Sammon’s procedure, with the implication that there are no
longer any second level minima effects. Indeed, the condition number of the Jacobian is now 1.0. With
� � 0�1 it is 53.4, and with � � 1, it becomes 4�4� 107.

The two previous figures illustrate that there is an evident trade-off between levels of local minima
which may be controlled by the choice of basis function width. Decreasing � improves the condition-
ing of the Jacobian and can moderate the effective attenuation of learning rate that results from the
squared-eigenvalue terms in the update equation. However, this in turn permits the procedure to be
caught in level-1 local minima, because for a full complement of basis functions, as � � 0, J � I,
the identity matrix, and gradient-descent NEUROSCALE becomes an exact equivalent of Sammon’s
algorithm.

It is therefore clear why decreasing � should improve performance of the NEUROSCALE training algo-
rithm with respect to the level-2 minima effects. In the next section, reasons why increasing� improves
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Figure 6.5: Histogram of number of final configurations with corresponding STRESS’s for 1000 runs
of NEUROSCALE, with � � 0, on the IRIS 45 data set. The width of the 45 Gaussian basis
functions was 0.01.

performance with respect to level-1 minima are considered.
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6.3 Smoothness of Topographic Transformations

The experiments in the previous section indicated that, for moderate values of basis function width,
the NEUROSCALE technique is less plagued by sub-optimal level-1 local minima — those inherent
in the Sammon Mapping alone — than is the standard Sammon procedure itself. One potential ex-
planation for this observed behaviour is that the vast majority of such minima found by Sammon’s
algorithm are highly unsmooth transformations of the input data. The basins of attraction for these
poor minima in configuration space are likely to be very distant from the configurations attained by
random initialisation of the RBF weights with significant values of basis function width.3

Further evidence for this hypothesis may be obtained by the following experiment. The standard
Sammon Mapping algorithm was run, from random initialisations, 1000 times to generate an equal
number of configurations of points with an associated minimised STRESS value. An RBF, with 15
Gaussian basis functions, of width 1.0, whose fixed centres were chosen at random from the data
points, was then trained, in the conventional supervised (pseudo-inverse) manner, to generate each
of the previous Sammon configurations. If high-STRESS configurations are not easily realisable by the
RBF network, then they should give rise to significant residual sum-of-squares error. Figure 6.6 gives
this error, plotted against the STRESS minimum, for these 1000 runs. The residual error was averaged
over 25 runs of the RBF training process, as the centre selection was different on each run.
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Figure 6.6: Residual error against minimum STRESS for an RBF trained to produce the final configu-
ration of Sammon’s procedure a posteriori. The RBF comprised 15 basis functions of width
parameter 1.0.

The underlying trend in figure 6.6 supports this proposition, as, on average, higher value of min-
imised STRESS give higher values of residual error for an a posteriori4 RBF transformation.

A more direct measure of smoothness can be obtained by calculating a measure of the curvature of the
transformation effected by the RBF. That is, some measure of how much the gradient of y changes

3Gaussian basis functions have a width parameter, but, of course, there are other such functions utilised in radial basis func-
tion networks — cubics, thin-plate splines etc — that are not parameterised. In such cases there is an implicit global width
parameter determined by the scaling of the data.

4This terminology will be henceforth adopted for any RBF network that effects a topographic transformation having been
trained to reproduce a final configuration of a Sammon mapping, as distinct from being trained via a relative supervision
procedure.
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with x. One such measure is that given by the functional

EC �

NX
i

qX
l

pX
m

�

2yil


x2
m

�2

� (6.11)

where i ranges over the patterns, m over the input dimensions and l over the output dimensions. Thus
yil is the scalar value of the l-th output node for pattern i, and the overall expression is a measure of
the total magnitude of the second derivatives of the output with respect to the input, evaluated at all
the input points. Such a functional was used by Bishop [1991, 1993] for the regularisation of neural
networks in supervised learning problems.

This measure is evaluated in the graph of figure 6.7, which is otherwise identical to 6.6 with the ex-
ception that the vertical axis indicates the value of EC for each a posteriori-trained RBF, rather than the
residual error.
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Figure 6.7: Curvature against minimum STRESS for an RBF trained to produce the final configuration
of Sammon’s procedure a posteriori. The RBF comprised 15 basis functions of width pa-
rameter 1.0.

Both these plots indicate that higher local minima represent more unsmooth transformations from the
data space to the configuration space. While the spread of curvature values increases with increasing
STRESS, it is nevertheless clear that low STRESS generally implies lower curvature on average, and
with reduced variance in addition.

Further evidence that during the training of NEUROSCALE, curvature generally decreases with STRESS,
is presented in figure 6.8. This graph plots the curvature measure EC at each step of the training algo-
rithm for three different RBF models with 15, 30 and 45 basis functions respectively. After an initial
phase where the curvature increases over short sections of the training sequence, the measure de-
creases and stabilises.

Additional confirmation of this relationship is given for a single NEUROSCALE mapping of theRAE PCB
dataset from Chapter 4 in figure 6.9. In this experiment, a network with 40 Gaussian basis functions
was utilised.

The results of figure 6.8 are particularly interesting, as it is evident that the final curvature is not related
to the number of basis functions in the transformation. This is contrary to naive expectation, as might
arise from experience with conventional supervised training problems, which would assert that the
more flexible model implied by a greater number of basis functions would exhibit more curvature. To
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Figure 6.8: Curvature against time during the training of a NEUROSCALE mapping on the IRIS 45
data, for networks with 15, 30 and 45 basis functions.
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Figure 6.9: Curvature against time during the training of a NEUROSCALE mapping on the RAE PCB dataset.

help understand this apparent anomaly, the relationship between STRESS and curvature is considered
more formally in the next section.
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6.4 The Relationship between STRESS and Curvature

6.4 The Relationship between STRESS and Curvature

The plots in figures 6.8 and 6.9 illustrate experimentally that the curvature of the RBF transformation
from input space to configuration space generally decreases during the minimisation of STRESS.

To understand how the two quantities may be related, consider the diagram in figure 6.10, which illus-
trates a very simple example for a transformation from one-dimension to one-dimension. In practice,
this is unrealistically trivial, but enables an underlying interaction between STRESS and curvature to
be expressed mathematically.

The figure illustrates three input points fxi� xj� xkgmapped to three respective output points fyi� yj� ykg.
If any two points, for example the two extreme points fxi� yig and fxk� ykg, are correctly positioned,
such that yk � yi � xk � xi, then it is intuitive that any error in the placement of the third point, for
example fxj� yjg, must imply non-zero curvature at some point in the interval (xi� xk), whatever the
form of the interpolating transformation.

y=x
y=p(x)

xi xj xk

y
i

yj

y
k

Figure 6.10: A simple example mapping of three points from one-dimension to one-dimension.

This relationship between STRESS and curvature may be demonstrated more formally. Let the map-
ping from x to y be effected by a RBF transformation, such that yi � f (xi) etc. The three input points
can be considered to be ordered, such that xk � xj � xi, and are sufficiently local that the RBF function
f (x) can be approximated by a quadratic polynomial function p(x) � ax2 � bx � c.

The Lagrange polynomial [Plybon 1992] that interpolates the three points is:

p(x) � yi
(x� xj)(x� xk)
(xi � xj)(xi � xk)

� yj
(x� xi)(x� xk)
(xj � xi)(xj � xk)

� yk
(x� xi)(x� xj)

(xk � xi)(xk � xj)
(6.12)

The curvature of the RBF transformation, as given by the measure of equation (6.11) is [ f��(x)]2, which
for the quadratic approximation is identical evaluated at each data point and is simply 4a2, where a
is the coefficient of the x2 term:

a �
yi

(xi � xj)(xi � xk)
�

yj

(xj � xi)(xj � xk)
�

yk

(xk � xi)(xk � xj)
� (6.13)
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Now, the inter-point distance relationships can be summarised by:

d�ij � xj � xi� (6.14)

d�jk � xk � xj� (6.15)

d�ik � xk � xi� (6.16)

in the input space, and

dij � jyj � yij� (6.17)
djk � jyk � yjj� (6.18)

dik � jyk � yij� (6.19)

in the output space.

Substituting the input space inter-point distances into equation (6.13) gives the simplification:

a �
yi(d�jk � d�ik � d�ij)� d�ik(yj � yi) � d�ij(yk � yi)

d�ijd
�
ikd

�
jk

� (6.20)

�
d�ij(yk � yi)� d�ik(yj � yi)

d�ijd
�
ikd

�
jk

� (6.21)

since d�ij � d�jk � d�ik.

The above expression can be further simplified by considering that for a structure-preserving map-
ping, the scaling of the input points is effectively arbitrary, so d�ik may be set to 1. In addition, it is also
necessary to fix two of the output points, or the curvature can be minimised by collapsing them to a
single point. Therefore, consider that during optimisation of the overall configuration, it is the case
that (yk � yi) � d�ik � 1, leaving yj and thus dij (or djk) as free variables. Also, make the assumption
that yj � yi, such that dij � (yj� yi). While this assumption is unrealistic, it will be seen shortly that it
is not significant. Given this:

a �
d�ij � dij

d�ijd
�
jk

� (6.22)

and so

EC �
4

(d�ijd
�
jk)

2 (d�ij � dij)2� (6.23)

If yj � yi, then the first expression is no longer valid as indicated previously. However, if yj � yi then
yj � yk, which gives djk � yk � yj and so by alternative symmetric derivation:

EC �
4

(d�ijd
�
jk)

2 (d�jk � djk)2� (6.24)

Equation (6.23) in this simplified and constrained example backs up the intuition that minimisation
of STRESS implicitly reduces curvature, as it exactly corresponds to a term from the Sammon STRESS
measure, scaled by some constant. As a mapping is generated, and the inter-point distances become
approximately correct, the assumptions inherent in the above analysis become realistic, and it would
be expected that on local scales, curvature would decrease. This notion is intuitively extended to higher
dimensional, more realistic, mappings.

There is no such guarantee for global distance relationships, which may be exemplified by the
SPHERES 3 dataset. At the point in input space where the outer two spheres are ‘opened out’, the
curvature must be high as neighbouring points one one side of the ‘tear’ are still nearby in output
space, but neighbours on the other side of the partition become relatively highly distant.
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6.5 Contrast Between NEUROSCALE and A Posteriori Fitting of an RBF Transformation

Even in the single dimension case considered, if the distances between points in the input space are
sufficiently large such that the quadratic approximation to the RBF transformation is invalid, then it is
possible for there to be zero STRESS (locally), whilst still non-zero curvature. A simple such example
is given for a cubic interpolant in figure 6.11.

Figure 6.11: A correct mapping of three points from one-dimension to one-dimension, interpolated by a cubic.

The overall result from this analysis and discussion is that, in general, higher STRESS implies higher
curvature, while lower STRESS implies lower curvature on local scales for sufficiently smooth inter-
polating functions. This summary has implications for the desired form of the neural network trans-
formation, which will be considered in Section 6.6 shortly.

In fact, the reduction of curvature during training is an inherent property of networks trained by rel-
ative supervision algorithms which is not shared by their architecturally identical, but a posteriori-
trained, counterparts. This distinction is investigated further in the following section, and its cause
subsequently explained in Section 6.6.

6.5 Contrast Between NEUROSCALE and A Posteriori Fitting of
an RBF Transformation

It is, of course, possible to produce a transformational Sammon Mapping by generating a configu-
ration of points according to Sammon’s standard procedure, and then fitting some model to this a
posteriori. Indeed, this was the approach adopted by Cox and Ferry [1993] for discriminating future
observations where a linear or quadratic model was fitted to a previously generated non-metric mul-
tidimensional scaling configuration. This approach could similarly be applied to the training of a neu-
ral network model, and it is this method that has been used to generate the previous plot of STRESS
against curvature, for an RBF with 10 basis functions, in figure 6.7.

It is revealing to consider a similar a posteriori plot for an RBF with 45 basis functions, again with
� � 1�0, and superimpose a trace of the evolution of curvature of an identical RBF, during training
by the relative supervision procedure of NEUROSCALE. This comparison of curvature values is given
in figure 6.12. As the curvature of the transformation should be related to the generalisation perfor-
mance of the networks, a plot of the test error, for the same models, is given in figure 6.13. The test
dataset comprised a separate 45 patterns from the full Iris data.

The most significant feature of the two graphs in figures 6.12 and 6.13 is that configurations generated
during the training of NEUROSCALE exhibit significantly lower curvature, and hence lower test error
and better generalisation, than those configurations, with identical STRESS, generated by a posteriori
fitting to Sammon mappings. It should be emphasised that that the RBF models in both cases have
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Figure 6.12: Curvature of a posteriori-fitted RBF networks compared to that during training of a NEU-
ROSCALE model.

identical architectures and fixed basis functions; only the output layer weights are different.

Consider a NEUROSCALE configuration along the trace of figure 6.12, with STRESS 0.003325. The sum
of the squared weights is 79.56. For a similar, a posteriori trained RBF, with STRESS 0.003327, this figure
is 1�56� 108 — very considerably greater. It is the smoothness constraint within the RBF model, as a
result of the width parameter �, which causes the ensuing trajectory through configuration space to
be markedly different, in terms of curvature, to the corresponding trajectory of Sammon’s algorithm
— even though the STRESS values are comparable. The underlying cause of this alternative trajec-
tory will be made more explicit in Section 6.6.2 later, where two apparently identical configurations,
generated by NEUROSCALE and in a posteriori fashion, are shown to exhibit dramatically different
generalisation errors.

The configurations that NEUROSCALE generates during training are not local minima for Sammon’s
algorithm, and this may be demonstrated by initialising a Sammon mapping with the final config-
uration from the above figures, and running that algorithm on the points alone. At each step of the
mapping, the configuration is stored and an identical RBF to that of the NEUROSCALE model trained
a posteriori to reproduce this configuration The trajectory of the networks trained during this Sammon
procedure is thus superimposed on figure 6.14, and illustrates how curvature increases dramatically
for minimal improvement in STRESS.

The results of this section, particularly figure 6.13, show clearly that training a neural network to per-
form a topographic transformation by a relative supervision method leads to significantly superior
generalisation performance, on the IRIS 45 data set studied here, than that obtained by the a pos-
teriori fitting of an identical network to a Sammon mapping. The reason for this behaviour is quite
subtle, and will be revealed in the discussion of regularisation in the next section.
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Figure 6.13: Test error of a posteriori-fitted RBF networks compared to that during training of a NEU-
ROSCALE model.
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Figure 6.14: A Sammon Mapping, run after initialisation from the final configuration of the NEU-
ROSCALE model. The dashed line illustrates the evolution of curvature and STRESS dur-
ing NEUROSCALE training. At the minimum, training is stopped and the resultant con-
figuration used as the initial step for a Sammon Mapping. For each step in the optimisa-
tion of the Sammon Map, the resulting configuration is reproduced by an RBF, and the
network’s curvature plotted along with the STRESS of the configuration itself.
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6.6 Generalisation and Model Complexity

In many neural network applications, particularly function approximation and interpolation prob-
lems, the requirement of good generalisation is the salient design issue. In the general case of limited
data, which has inherent additive noise, it is necessary to impose some form of smoothness constraint
on the function. A model that fits all the training data in the presence of noise is likely to generalise, or
interpolate, poorly. In the case of a model that is over-fitted (fits all the noise), the model’s approxima-
tion of the function at a given test point will depend critically on the local noise in the training data. In
this sense, the interpolation problem is ill-posed [Tikhonov and Arsenin 1977], due to this sensitivity
to the noise.

There are two principal approaches to imposing smoothness, or limiting complexity, of a neural net-
work model. Firstly, it is possible to reduce the complexity of the network by constraining the number
of hidden nodes or basis functions, and this approach is known as structural stabilisation. Secondly,
some form of penalty term can be introduced to the network error function, such as that given by
the measure of equation (6.11) earlier, which discourages high-curvature models. This procedure is
termed regularisation, and the degree of smoothness in this case is controlled by a hyperparameter. In
either approach, the appropriate complexity of network transformation, and thus the number of basis
functions or the value of the hyperparameter, will, in general, be unknown at the outset and must be
determined from the data alone, often by employing some variety of cross-validation procedure.

6.6.1 Structural Stabilisation

With respect to structural stabilisation, the graph in figure 6.8, which illustrated the evolution of cur-
vature during training for RBFs with 15, 30 and 45 basis functions, suggested that curvature was largely
independent of the number of basis functions, indicating that generalisation performance might be
likewise insensitive. Indeed, the generalisation error for RBFs trained on the IRIS 45 dataset and
tested on another 45-pattern subset of the full Iris data is illustrated in figure 6.15. The RBFs com-
prised 5 to 45 basis functions, in steps of 5, and the error values were averaged over 25 runs.
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Figure 6.15: Training and test errors for NEUROSCALE RBFs with various numbers of basis functions.
Training errors are on the left, test errors are on the right.

From figure 6.15 it can be seen that training and test error are roughly constant across the range of basis
functions, 5 to the full complement of 45. There is no evidence of overfitting, and this is consistent
with the previous evidence from figure 6.8. Reasons for this behaviour will be developed in the next
subsection.
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6.6.2 Regularisation

In contrast to the usual function approximation scenario where model complexity is unknown in ad-
vance, in the case of NEUROSCALE, and related models effecting such a topographic transformation,
it may be reasoned that the smoothness of the optimal network function is known a priori.

While any particular arbitrary function with sufficient degrees of freedom may be fitted to a finite set
of data and optimally5 retain the topology (see the cubic in figure 6.11 for an example), it was shown
in Section 6.4, in the one-dimensional case, that only a perfectly smooth function, with no curvature
(or higher order terms), will exhibit optimal generalisation performance. This smoothness constraint
must either persist through the entire space, or may be relaxed to only include the subspace containing
the data, if this is known. This intuition may be extended to higher dimensions, where it should be
apparent that non-zero curvature must imply structural distortion.

For the simple one-dimensional case given earlier in figure 6.10, it is evident that the ideal transfor-
mation is of the class:

y � �x � c� (6.25)

where c is an arbitrary constant. The optimality property of this class of functions holds regardless of
the distribution of the data. It is intuitive in this simple one-dimensional case that any transformation
with gradient �1 will retain the distance relationships between all possible pairs of data points.

Given that the optimal transforming function has no second-order or higher derivative terms, it is
possible to more formally generalise the result for the simple one-dimensional example to higher di-
mensions, still with p � q. This permits an expression for the gradient, or first-order derivatives, of the
network function to be obtained. It can be shown that, for exact structure preservation, the following
relation must hold at each and every data point:


xm�m � f1 � � � pg �
qX

l�1

�

yil


xm

�2

� 1� (6.26)

That is, considering a point xi in input space and a point x� � xi � �, where � is an arbitrary vector,
then the distance between the corresponding image points yi and y� is k � k as required. This can be
seen by referring to the Taylor expansions (which contain no second or higher order terms) around
the point xi of each of the output functions for each dimension:


l� l � f1 � � � qg � y�l � yil � �Tgil� (6.27)

where gil is the gradient vector (
yil�
x1� � � � � 
yil�
xp)T evaluated at x � xi, and from this the inter-
point distances in the output space may be calculated thus:

ky� � yi k
2 �

qX
l�1

(y�l � yil)2� (6.28)

�

qX
l�1

(�Tgil)2� (6.29)

� �T

� qX
l�1

gilgT
il


�� (6.30)

� �TGi�� (6.31)

where the matrix Gi �
Pq

l�1 gilgT
il and is distinct for every data point. For the corresponding distances

to be retained, ky��yi k
2� �T�, and so Gi � I, the identity matrix, which leads directly to the equalities

of equation (6.26) above.

5The use of the term ‘optimally’ here is not intended to imply that all the distances are retained perfectly, but that the optimal
Sammon configuration, given the constraint imposed by reducing dimension, can be reproduced by the network.
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These gradient relationships can only hold exactly in the unrealistic case where there is no reduction
in dimension. In practical applications, where q � p, rank(Gi) � q and therefore Gi can never be equal
to the identity matrix. In such instances, a low generalisation error implies that the magnitude of the
residual �T(I�Gi)� should be minimised. In the Sammon mapping, and the NEUROSCALE algorithm,
the vectors � of interest are the combinations of inter-point vectors (xi� xj). It should therefore be the
case that, for low STRESS on the training set, all potential inter-point vectors � should lie in the range of
G. A simple example can be envisaged by considering data distributed over a 2-dimensional plane in
a 3-dimensional space, with the neural network transforming the data points down to 2 dimensions.
Here, the range of Gi at all the data points should be the linear subspace spanned by the plane. In
figure 3.6 in Chapter 3, excellent generalisation was observed for a single cluster of datapoints taken
from a set of four in a ‘linear’ configuration. Even though the significant Gaussian ‘noise’ component
implies that the data lies in four dimensions, the inter-cluster distances dominate in the STRESS min-
imisation. The range of the Gi would thus be expected to include the axial direction along which the
clusters are distributed, which would explain the low value of STRESS obtained when the test cluster
is incorporated and the intuitively good visualisation evident in the figure.

However, for real data, it is likely to be the case that the minimum STRESS configuration will exhibit
curvature at one or more points, with significantly different first derivatives, and thus Gis, in differ-
ent regions of the data. The nature of these matrices may be informative, and further experimental
inquiry might be appropriate for future research.

The following experiment included here, however, provides some insight into the above analysis and
also offers further evidence of the distinction between NEUROSCALE and a posteriori mappings. Fig-
ures 6.16 and 6.17 illustrate the final configurations of a topographic mapping of the IRIS 45 dataset
from the original four to two dimensions. The mappings have been aligned via a Procrustes rotation
[Mardia, Kent, and Bibby 1979], and the goodness-of-fit (sum-of-squared distances between corre-
sponding points) is 1�4492�10�5, such that the two configurations may be considered to be identical.
Superimposed on the plots is a colour scale which indicates a measure of the conformity of the map-
ping to the gradient constraint of equation (6.26), and is determined as follows.

For each point in the dataset, the unit vector to every other point, (xi � xj)�d�ij, was calculated, and
the projections of the gradients of both network outputs in the direction of that vector were derived,
then squared and summed. The squared deviation of this quantity from its ideal value of 1.0 was then
accumulated over every such unit vector. This then gives a measure of the closeness of the gradient
measure of equation (6.26) to unity along the directions of interest within the dataset. A simple inter-
polating surface6 has been fitted to, and passes through, all the points. This surface is artificial (in that
the interpolated values between the data points bear no real meaning) but it does permit a relatively
clear visualisation of the expected generalisation accuracy in the output space.

For both figures, an identical radial basis function network comprising 45 fixed centres, located at the
data points, was utilised. The basis functions were Gaussian with width � � 1, and the results were
generated by an identical segment of computer program, with the only difference between the two
plots being the weight matrix loaded. Despite the fact that both configurations are similar (apart from
reflection, rotation and translation), the NEUROSCALE transformation of figure 6.16 will clearly offer
better generalisation performance as the gradient expression is much closer to unity (average error =
0.0027) than for the a posteriori mapping (average error = 0.0369). This is confirmed by the values of
test error given in table 6.1.

The phenomenon that networks of identical architecture generating identical configurations (with
respect to STRESS) exhibit significantly different generalisation performance is again related to the
equivalence of solutions under rotation and translation. (This will be considered in more detail in
Section 6.7 shortly.) The solution generated by the Sammon Mapping is generally arbitrary, in terms
of rotation and translation, and the resulting RBF transformation fitted to this configuration can in
turn be expected to exhibit arbitrary generalisation error. However, it can be demonstrated that the
relative supervision learning algorithm should lead to better generalisation performance as it tends to

6This was automatically generated by the software package MATLAB using an inverse-distance method.
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NEUROSCALE A Posteriori
Training STRESS 0.00282294 0.00282294
Test STRESS 0.0037395 0.00866962
Curvature 417.495 11620.4
kWk2 2�1315� 107 1�0437� 108

Table 6.1: STRESS and curvature values for the two gradient mappings.

favour solutions with smaller weights.

Firstly, consider the expression for the update of a single dimension of the network output from Sec-
tion 6.2.2:

zt�1 � zt � �JJT�t� (6.32)

� zt �
X

k

�2
k	kuk� (6.33)

Now, if initially z0 is close to the origin, then because of the effect of the �2
k term, the final vector �z

will have generally larger projections onto the principal eigenvectors of JJT. So, if �z �
P

k �kuk, in general,
�k�1 � �k. Thus, of all the equivalent solutions, NEUROSCALE favours those�z which lie mainly in the
principal subspace of JJT. A very simple illustration of this effect is given in figure 6.18 for three output
points in two dimensions (for which a STRESS=0 solution exists), for full-rank, but ill-conditioned, J.
Plotted on the figure are the respective eigenvector components �k of zt as it evolves during training.
The smallest component does not visibly change, while the component in the direction of the principal
eigenvector becomes dominant.
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Figure 6.16: Two-dimensional topographic mapping of the IRIS 45 dataset, generated by NEU-
ROSCALE. At each point, the squared deviation of the gradient measure from the ideal
value of unity is superimposed with a colour scale.
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Figure 6.17: Two-dimensional topographic mapping of the IRIS 45 dataset, generated by a posteri-
ori fitting of an RBF to a Sammon Mapping. At each point, the squared deviation of the
gradient measure from the ideal value of unity is superimposed with a colour scale.
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Figure 6.18: Evolution of the eigenvector components of a solution trained by NEUROSCALE.

For the two final configurations of figures 6.16 and 6.17, the values of �2
k are given, for 20 	 k 	 45, in

figure 6.19 for both output dimensions. The relative supervision solution clearly exhibits lower values
of �k for larger k (the minor eigenvectors).
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Figure 6.19: Final eigenvector components of the solutions from figures 6.17 and 6.16.

A more dynamic exposition of this effect is given in figures 6.20 and 6.21, again for theIRIS 45dataset
with full-rank J. For the first of the two outputs of the network, the evolution of the (absolute) direc-
tion cosines of the vector z1 with the 45 eigenvectors uk is shown for both a Sammon Mapping and a
gradient-descent NEUROSCALE network. For the former, no discernable pattern amongst the direc-
tion cosines is visible during the 40 training cycles. For NEUROSCALE, the vector z1 is clearly evolving
such that it lies along the direction of the principal axes u1 and u2 of J, and is approximately orthog-
onal to all other eigenvectors.
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Now, for the single network output solution vector�z generated after training with arbitrary rank J,

Jw � �z� so (6.34)

w � J��z� (6.35)

� J�
X

k

�kuk� (6.36)

� VS�1UT
X

k

�kuk� by singular value decomposition� (6.37)

� VS�1�� (6.38)

where S is the diagonal matrix of singular values of J and � � (�1� �2� � � � � �h)T.

The sum-of-squared weights in w is:

kwk2 � wTw� (6.39)

� �TS�2�� (6.40)

�
X

k

�
�k

sk

�2

� (6.41)

and for the complete weight matrix W,

kWk2 �
X

l

kwl k
2� (6.42)

�
X

l

X
k

�
�kl

sk

�2

� (6.43)

So, for a given
P

kl �
2
kl, the sum-of-squared weights is minimised by distributing the ‘mass’ of �2

kl over
the largest singular values sk. However, since

P
kl �

2
kl �k Y k2, then

P
kl �

2
kl is minimised when the

points Y are centred at the origin, and this should also serve to reduce the norm on the weights. For
the a posteriori configuration in figure 6.17, k Y k2� 13�3, whereas for its NEUROSCALE counterpart
in figure 6.16, this measure is 59�9. This implies, from the observations in this chapter, that the ten-
dency of NEUROSCALE to distribute the �kl in the direction of the principal eigenvectors of J more
than compensates for the overall increase in the squared-magnitudes of those factors.

Thus, the relative supervision algorithm within NEUROSCALE must seek, amongst all candidate so-
lutions of the STRESS optimisation procedure, those with generally lower values of kWk2.

This norm on the weights is effectively a regularisation term, and in a supervised neural network
setting, is known as weight decay [Hinton 1989]. Such a term, when used as a penalty function in net-
work optimisation, generally reduces the curvature of the final transformation and improves gener-
alisation. This reduction in both sum-of-squared weights and curvature was indeed observed for the
example transformations given previously in this section, and listed in table 6.1.

The implication is that topographic transformations generated by the NEUROSCALE algorithms are
effectively self-regularising, in that they incorporate an implicit weight decay element. Because this
regularisation is a side-effect of the operation of relative supervision, there is no control over its mag-
nitude. However, given that it was reasoned previously that topographic transformations should be
as smooth as possible, any regularisation component in the algorithm should be beneficial in terms
of generalisation performance.
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Figure 6.20: Evolution of the direction cosines of one output dimension for a Sammon mapping of the
IRIS 45 dataset.
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Figure 6.21: Evolution of the direction cosines of one output dimension for NEUROSCALE on the
IRIS 45 dataset.
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6.6.3 Effect of Width of Gaussian Basis Functions

In the case of RBF networks as incorporated in NEUROSCALE, the global width parameter, �, em-
ployed by Gaussian basis functions is effectively a smoothing hyperparameter. The larger the value
of �, the smoother the resultant transformation will be. On the basis of the previous discussion in
this section, it would be anticipated that optimum generalisation performance should be expected for
larger values of �. There is a caveat, however, in that in the pathological case where the basis function
width is infinite, there is no discrimination between any of the data points. In addition, large values
of � would be expected to imply deteriorating performance due to the problems of finite numerical
accuracy in the practical computation.

Plots of training and test STRESS against basis function width, for the IRIS 45 data, are given in fig-
ures 6.22 and 6.23. The network employed comprised as many basis functions, 45, as patterns. The
error values given in these figures were obtained by the ‘shadow-targets’ training algorithm which
is presented in Section 7.3 in the next chapter, as this produces better minima. As was demonstrated
in Section 6.2.2, the final training STRESS using the standard relative supervision algorithm is depen-
dent on the value of �. The shadow-targets algorithm enables the minimum realisable STRESS value
to be obtained for all (reasonable) values of � and thus permits a fairer assessment of the effects of � on
test STRESS. The contrasts between these two approaches to training NEUROSCALE will be developed
further in the next chapter.

In the first plot, the range of � is from 0 to 100, while the latter plot is a larger scale version of the for-
mer, covering the range of values 0 to 20, and in addition, illustrating the values of � where successive
singular values of the matrix J become numerically zero. 7
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Figure 6.22: Training and test STRESS, for the IRIS 45 dataset, as a function of the basis function pa-
rameter �.

The plot of training STRESS in figure 6.22 demonstrates that this quantity is almost insensitive to the
choice of basis function width. There is a gentle increase in value with �, due to the reduced accuracy
of the computer arithmetic. In the case of test STRESS, it is apparent that after an intimal minimum at
� � 1�00, test STRESS actually increases and, after considerable oscillation, decreases to a value compa-
rable with the training error. Figure 6.23 indicates that the test error is smooth up to the point where
the smallest singular value of the Jacobian matrix is set to zero in the pseudo-inverse routine.

In general, the form of the test STRESS curve is consistent with the hypothesis that large width should
imply better generalisation. It is also evident that test error begins to increase again, slowly, at about

7Machine accuracy, �m, for double precision arithmetic on a SUN Sparc10 workstation is� 2�22�10�16. Any singular value
that is smaller than �m� the largest singular value is discarded in the pseudo-inverse algorithm.
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Figure 6.23: Training and test STRESS, for the IRIS 45 dataset, as a function of the basis function pa-
rameter �. The dotted vertical lines indicate points at which successive singular values
of the Jacobian become too small to be reliably computed and are thus set to zero.

� � 50, and this is likely to be the result of degrading numerical accuracy.

The initial segment of the test error curve, however, exhibits a definite increase in generalisation error.
One hypothesis to explain this shape is that this observed maximum may be due to the particular
distribution of the Iris data used in the experiment. However, figure 6.24 illustrates similar curves for
the topographic mapping of a simple spherical Gaussian cluster in three dimensions down to two.
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Figure 6.24: Training and test STRESS, for a spherical Gaussian cluster, as a function of the basis func-
tion parameter �.

For the single cluster, best generalisation is again obtained with larger �. Once more, however, there
is a characteristic maximum at a relatively low value of width parameter. The cause of this apparent
anomaly remains unknown and warrants further investigation.
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6.7 Rotation and Translation of Solutions

It is clear that STRESS is invariant under arbitrary rotation, reflection and and translation of an output
configuration Y. What is less obvious, is how these perturbations to the solution effect the weights
in the radial basis function network. As has already been noted, NEUROSCALE tends to select a solu-
tion which minimises the norm of the weight matrix, so this section will consider how this measure
changes under rotation and translation. (Reflection only changes the sign of the weights.)

In both cases, let the base-line solution and associated weights be defined by the equation:

J �W � �Y� (6.44)

implying that �W � J��Y.

Rotation

A rotated solution Y is given by Y � �YR, where R is an orthogonal rotation matrix. Then the new
weights W are given by W � J�(�YR), and the sum-of-squared weights is:

tr �WWT� � tr
h
J��YRRT�YT(J�)T

i
� (6.45)

� tr
h
J��Y�YT(J�)T

i
� (6.46)

� tr
h
�W �WT

i
� (6.47)

Therefore, rotation of the solution does not affect the (Frobenius) norm of the weight matrix.

Translation

For translation, each dimension of the output can be considered in isolation, as shifts along each axis
can be applied independently. Then for a single dimension, a translated solution z is given by z �
�z� k1, where k is a scalar determining the amount of translation and 1 is the N-vector of 1’s. Then the
weights w for that output dimension are:

w � J�(�z � k1)� (6.48)

� J��z � kJ�1� (6.49)
� �w � kj� (6.50)

where j � J�1.

Then the norm-squared weights are:

wTw � ( �w � kj)T( �w � kj)� (6.51)

� �wT �w � k2jTj � 2k �wTj� (6.52)

To minimise this measure, differentiation with respect to k gives:

d
dk

(wTw) � 2kjTj � 2 �wTj� (6.53)

and setting this equal to zero allows a value of k to be determined thus:

k � �
�wTj
jTj

� (6.54)
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that minimises the weight-norm, as the second derivative of equation (6.53) is positive. Substituting
this value back into equation (6.51) gives the minimum value of the weight norm:

(wTw)min � �wT �w�
�wTj
jTj

� (6.55)

It is therefore possible for a particular configuration, given the network Jacobian, to determine an-
alytically the translated solution that minimises the norm of the weight matrix. (This is only possi-
ble with a linear model where J is equivalent to the design matrix, and is therefore not possible with
an MLP where a nonlinear optimisation approach would be required.) However, it should be noted
from equation (6.55) that this minimum value depends upon �w, which is dependent upon rotation.
So while an arbitrary rotation does not affect the weight norm of a given configuration, it does alter
the class of translated solutions that may be obtained. Furthermore, there is no analytic solution for
the optimal �w, as the weight vectors for each output dimension are mutually dependent. To select
the rotation and translation parameters that produce the smallest weight-norm is therefore a difficult
nonlinear optimisation problem, but one which in theory could be tackled in order to produce an a
posteriori mapping with low weight values and, by implication, good generalisation.
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6.8 Conclusions

6.8.1 Local Minima

It is known that the generation of Sammon Mappings is considerably complicated by the tendency
of the algorithm to be captured in sub-optimal local minima. This is true even for simple problems,
which was illustrated for a subset of the Iris data in Section 6.2.1. These poor minima tend to represent
unsmooth transformations of the input data, as demonstrated in Section 6.3, which is why Gaussian
radial basis function networks with significant values of basis function width exhibit very few local
minima problems.

In fact, when exploiting such networks to minimise STRESS, two distinct classes of weight local min-
ima were discerned. The first class are those weights which give rise to configurations of points that
are local minima of STRESS and thus identical to those of the Sammon mapping. The theoretical sec-
ond class are those introduced by the network itself as a result of the null-space of the Jacobian matrix
(the matrix of basis function outputs for every pattern). However, the relative supervision algorithm
is not caught by this second class of minima, as there is an escape route offered by the set of multiple
rotated/translated solutions.

Nevertheless, NEUROSCALE was observed to effectively cease training before attaining the ‘global’
minimum. This was shown to be caused by the dynamics of the weight update equation, which dra-
matically slows the training process when the error vectors are in the direction of the eigenvectors of
the Jacobian matrix which have small eigenvalues relative to those of the principal eigenvectors. This
behaviour is therefore exaggerated as the condition number of the Jacobian increases.

The conditioning of this matrix is dependent upon the width of the basis functions. A relatively small
value of width, �, will eliminate those problems discussed in the previous paragraph, which become
more problematic as � is increased. However, increasing � additionally reduces the likelihood of cap-
ture in the first class of sub-optimal minima, as the majority of these are unsmooth and thus unreal-
isable by a network with high �. There is an evident trade-off here.

6.8.2 Model Complexity

There is a fundamental point to be made concerning the functional form of a neural network effecting
a topographic transformation. In Section 6.4 it was shown that in the case of a simple one-dimensional
mapping, minimisation of STRESS also implicitly reduces curvature in regions of data where the net-
work transformation can be usefully approximated by a quadratic. This notion can be generalised to
higher dimensions, where it is intuitive that for minimum-STRESS configurations, improved general-
isation error will be observed when curvature is minimised.

The issue of smoothness is highly relevant to the question of controlling model complexity. A signifi-
cant result from Section 6.6.1 was that generalisation error for NEUROSCALE was independent of the
number of basis functions in the network. In fact, it was argued in Section 6.6.2, that in contrast to
many other application domains of neural networks, the smoothness of the desired model in a topo-
graphic context is known a priori. It was reasoned that the network function should ideally have zero
second- and higher-order derivatives, and an expression for the optimal first-order, gradient, terms
was derived. The relevance of this result was demonstrated for two apparently identical training-set
configurations which nevertheless exhibited considerable differences in generalisation capacity for
the test set.

These observations have important implications. In a regression setting, with noise on the target (re-
sponse) variables, model complexity must be constrained through, for example, regularisation. The
best model, in terms of predictions for future data, will generally not fit all the data points. In the topo-
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graphic context, there are no explicit targets, but the relative targets that are generated from the input
data itself, can be considered as being noise-free. These targets are still precise even in the presence of
noise on the input variables.

Noise on the input variables does influence the mapping, and in certain circumstances, dramatically
so. A good example of this is the SPHERES 3 dataset, where to minimise STRESS, the outer sphere
is ‘opened out’ where the data is at its least dense on the sphere. Consider, then, data drawn from a
near-uniform distribution, such that there is a small region where the data is marginally less dense
and where the ‘tear’ in the sphere naturally forms. It can be seen that the location of the tear can be
highly sensitive to added input noise, and the problem of determining the transformation can be inter-
preted as being unstable [Tikhonov and Arsenin 1977]. However, in contrast to a regression problem,
this instability is not a result of too complex a model, as the form (curvature) of the topographic trans-
formation will remain similar to the ideal (based on the known input distribution) wherever the tear
occurs on the sphere; what is occurring is that the function is effectively ‘shifted’ in the input space.
There is therefore no sense in which regularisation, or other forms of limiting model complexity, can
satisfactorily stabilise the problem.

That considered, theSPHERES 3data is a notably pathological distribution, as the merit of topograph-
ically reducing the dimension of data which is near-uniformly distributed in a higher-dimensional
space is questionable. It is appropriate, therefore, that the ideal topographic transformation should
strictly ‘interpolate’ all the ‘target’ data points while being of minimal complexity, or alternatively, of
maximal smoothness. This implies that the use of as many basis functions as data points with large
values of basis function width (�) should give optimal performance, as seen in figure 6.22. Neverthe-
less, the use of fewer, but data-representative, basis functions may still be appropriate for computa-
tional reasons, although no significant investigation of this issue has been included in this thesis.

Experimentally, the curvature of the transformation produced by NEUROSCALE was observed to gen-
erally decrease during the training process. This is an inherent property of the weight-updating dy-
namics of the relative supervision algorithm which tends to implicitly reduce the sum-of-squared net-
work weights, and is thus effectively incorporating a weight decay component into the training.

However, for supervised training of a neural network, weight decay trades-off the squared-weights
penalty term for the error term. The net result of this is that the error on the training set increases from
its potential minimum, and the network no longer fits the data points, with the motivation that gen-
eralisation to unseen data will be improved. This is not the case in NEUROSCALE, where the weight
decay component enacts a different rôle. Remember that there is no single unique solution of the map-
ping process. Any rotation or translation of a particular solution is itself a solution, as it will exhibit
the same measure of STRESS. The function of weight decay in the topographic context, therefore, is
to select solutions with smaller weights, and by implication, generally lower curvature.

This is of particular relevance when considering a posteriori mappings, where a model is fitted, in the
standard supervised manner, to the output configuration previously generated by a Sammon Map-
ping procedure. In Section 6.5, it was illustrated that models fitted in such a manner exhibited higher
curvature and poorer generalisation than trained NEUROSCALE networks. The distinction was made
very clear in table 6.1, where otherwise identical, but rotated and translated, configurations exhibited
dramatic differences in STRESS on the test dataset. The NEUROSCALE approach was seen to be much
superior in this respect. In fact, it was shown in Section 6.7 how the sum-of-squared weights, and by
implication the curvature, depends on the rotation and translation of configurations. The preferred
values of these two factors could potentially be determined using a nonlinear optimisation approach
in order to produce a a posteriori-trained RBF that exhibited comparable generalisation to the equiva-
lent NEUROSCALE network. However, the relative supervision algorithm combined with the smooth-
ing of the RBF implicitly achieves a similar end via a single optimisation procedure, and offers the
potential to avoid local minima because of the smoothing element.
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6.8.3 Objective and Subjective Mappings

It should be emphasised that the above remarks concerning the model complexity are only relevant
to purely topographic, or objective mappings, as implemented by NEUROSCALE with  � 0. Of par-
ticular note is the earlier analysis concerning the gradient and curvature of topographic mappings, as
the incorporation of supervisorial influence implies regions of higher curvature at, for example, class
boundaries.

Nevertheless, the weight-decay implicit within NEUROSCALE will still be present in the extraction
of supervised feature spaces, and thus implies the presence of a smoothing effect even when class
information is allowed to influence the mapping. This phenomenon is one hypothesis for the good
generalisation observed when using an  � 0�5 NEUROSCALE projection as a pre-processing stage
in a prediction model in Chapter 4. This possible factor should be considered as part of any future
investigation in that direction.
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Chapter 7

Optimising Topographic
Transformations

7.1 Introduction

It has been previously noted that the storage and computational requirements of the Sammon map-
ping grow in the order of the square of the number of data points to be mapped. Any neural network
implementation will also suffer from this undesirable O(N2) scaling behaviour.

For an efficient implementation of Sammon’s algorithm, all the inter-point distances in the data space
are calculated a priori and stored in a (N � N) matrix. For a thousand data points, and only single
precision arithmetic, this would require 4 megabytes (MB) of storage. Even a machine with 64MB
of dedicated memory could only store a 4000-pattern distance matrix.1 For such large numbers of
patterns, the inter-point distances would need to be calculated, repeatedly, on-the-fly.

This in turn will impact on the already considerable computational demands. Each calculation of the
STRESS measure necessitates a loop of N(N� 1)�2 distance calculations. Calculation of the gradients
(for minimisation routines) requires a similar number of cycles, with additional vector operations.

There have been two characteristic approaches to alleviate the difficulties of training STRESS-based
mappings. Firstly, various optimisation schemes have been considered for standard mapping proce-
dures which will be covered in the next section. In Section 7.3, a new, and highly effective, algorithm
is proposed for the training of topographic models whose outputs are linear in their train-able param-
eters, such as radial basis function networks.

A popular second approach has been the development of alternative heuristic strategies for structure
preservation, based on Sammon’s algorithm or MDS. These schemes are reviewed, with comment, in
Section 7.4.

1Of course, virtual memory systems permit much larger matrices but the time spent retrieving the data from disc is pro-
hibitive and defeats the purpose of storing it in the first place.
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7.2 Optimisation Schemes for the Sammon Mapping

Sammon’s original algorithm adopted a Newton-Raphson-based steepest-gradient method for min-
imising the STRESS, which required the setting of a “magic factor” parameter, “determined empiri-
cally to be 0�3 or 0�4”. This was a ‘batch’ algorithm which calculated the derivatives over the entire
pattern set before adjusting any weights.

Mao and Jain [1995] used gradient-descent for their MLP approach, but updated the weights on a
pattern-by-pattern basis. This is an attempt to alleviate the computational demands associated with
large data sets. See section 3.5.1 for earlier comment on this particular approach.

In the NEUROSCALE model, in addition to the above two schemes, both a conjugate-gradient and the
quasi-Newton BFGS technique [Press, Teukolsky, Vetterling, and Flannery 1992] have been evaluated.
The relative efficiency of these optimisation strategies is illustrated in the figures below. Compara-
tive STRESS against time plots are given for an MLP trained according to Mao and Jain [1995] and by
conjugate-gradient and BFGS techniques. Also plotted are the latter two optimisation schemes ap-
plied to the RBF NEUROSCALE model.2 In figure 7.1, the data set used was the 150-point SPHERES 3
data, and the initial point configuration was the principal component projection. In figure 7.2, equiv-
alent plots are given for 300 data points from the same spherical distribution. The MLP network con-
tained 12 hidden units (tanh) with linear outputs while the RBF comprised 40 Gaussian basis functions
centred at random. These values were chosen to provide similar asymptotic STRESS minima. For the
on-line training of the MLP, some considerable time was required in hand-optimising the learning
rate and momentum term in order to obtain even adequate performance.
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Figure 7.1: Comparison of training times for two models and three optimisation schemes for neu-
ral network implementations of the Sammon Mapping. The dataset is the 150-point
SPHERES 3 set.

An example for some real, high-dimensional data is given in 7.3. The data comprise 217 points from
the 1992 RAE database (see Chapter 4), and each is composed of 80 input variables. This precludes
application of the BFGS technique in the case of the MLP, due to the large number of weight parame-
ters resulting from this high input dimension. However, in the case of an RBF with fixed centres, this
method may still be employed.

2The timings given were obtained on a 25-MFLOPS SUN Sparc-10/51 workstation.
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Figure 7.2: Comparison of training times for two models and three optimisation schemes for neural
network implementations of the Sammon Mapping. The data is the 300-point SPHERES 3
set.

Webb [1995] utilised the iterative majorisation method for minimisation of the STRESS [Heiser 1991].
This technique exploits the Cauchy-Schwarz inequality in order to minimise an upper bound on the
loss function. This still entails a double loop over the data points, but does not require any gradient
calculations. However, previous studies by de Leeuw [1988], of convergence in MDS applications,
concluded that the method “is reliable and very simple, but that it is generally slow, and sometimes
intolerably slow.”

Klein and Dubes [1989] applied the stochastic simulated annealing optimisation technique [Aarts and
Korst 1989] to the Sammon mapping. The authors assessed the performance of the scheme on three
data sets (real and synthetic) and their results corroborated earlier work by de Soete, Hubert, and
Arabie [1987] — simulated annealing procedures generate good (low-STRESS) configurations but run
times are very extended. Klein and Dubes thus concluded that the “computational cost [of simulated
annealing] makes it impractical, especially for small problems.”

This feature of exaggerated computational cost is often observed with the application of simulated an-
nealing to many problem domains [Aarts and Korst 1989]. Simulated annealing is particularly appro-
priate for problems either characterised by many sub-optimal local minima or where the computation
of the gradient of the cost function is either impossible or computationally prohibitive. In the case of
a simplified structure-preserving mapping with cost function

P
i
P

j(d
�
ij � dij)2, the gradient may be

calculated with little additional cost to that of calculating the STRESS. The number of floating-point
operations required to calculate the gradient of the STRESS is approximately 22% greater than that of
the STRESS alone, and some of the requisite distance calculations may be shared by both routines.

A statistical mechanics approach was also adopted by Hofmann and Buhmann [1995] for generating
MDS configurations. They exploited mean-field and saddle-point techniques in order to derive an al-
gorithm for approximation of the MDS problem based on the Expectation-Maximisation (EM) scheme.
The authors indicated an interest in bench-marking this method against standard approaches, but
have not yet done this [Hofmann 1995].

Again with respect to MDS, Tarazaga and Trosset [1993] considered the reformulation of the optimi-
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Figure 7.3: Comparison of training times for two models and three optimisation schemes for neural
network implementations of the Sammon Mapping. The data comprises 217 points from
the 1992 RAE database and has input dimension of 80.

sation problem in terms of functions of the matrix B � YYT (see Chapter 5 for the context of this).
This is a non-trivial task, as it requires managing constraints on the rank of B, and the authors do not
propose any specific solutions.
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7.3 An Improved Optimisation Algorithm for NEUROSCALE

Previous approaches to training neural networks to minimise STRESS-based measures have generally
treated the task as one of standard nonlinear optimisation. Derivatives of the error with respect to the
network weights were calculated and supplied to standard routines — gradient-descent, conjugate-
gradient and BFGS for example.

This section details a new algorithm for the training of models that are linear in their weights, such
as radial basis function neural networks. The advantage gained by using such networks in super-
vised problems with a sum-of-squares error function — that they could be trained via a single pass
pseudo-inverse approach — is lost in the relative supervision case where the STRESS measure intro-
duces quartic terms. The following algorithm effectively decomposes the training problem into a two-
step procedure, one step of which is linear and can be computed efficiently.

7.3.1 The Algorithm

The equations for calculating the derivatives in the NEUROSCALE model are:


E

wk

�

NX
i


E

yi

�

yi


wk
� where (7.1)


E

yi

� �2
X
j��i

�
d�ij � dij

dij


(yi � yj)� (7.2)

Equation (7.1) may be expressed in matrix form (for each separate output dimension) as:

rE � JT�� (7.3)

as demonstrated in Section 6.2.2.

The set of linear equations implicit in equation (7.3) above, for the gradient of the STRESS measure
with respect to the weights, is equivalent to the set of normal equations of a linear least-squares problem
[Strang 1988]. In such a supervised problem, the error E is given by E � 1

2

P
i k yi � ti k

2, where the
vectors ti are the targets, such that


E

yi

� (yi � ti)� (7.4)

In the relative supervision algorithm, there is an expression for 
E�
yi given by equation (7.2). This
equation may be combined with equation (7.4) above to give a set of vectors that can be considered
to represent estimated targets�ti:

�ti � yi �

E

yi

� (7.5)

� yi � 2
X
j��i

�
d�ij � dij

dij


(yi � yj)� (7.6)

The vectors�ti represent those exact targets for the network that would lead to an identical expression
for the weight derivatives in the RBF, in the least-squares supervised case, as those obtained from
the relative supervision approach. Of course, the problem cannot simply be solved in the one step as
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these targets�ti are not fixed, but are dependent upon the current outputs of the network, yi, and thus
the weights also.

For a fixed set of estimated targets�ti, the normal equations can be solved directly by

W � J��T� (7.7)

where �T � (�t1��t2� � � � ��tN)T and J� denotes the pseudo-inverse [Golub and Kahan 1965] of the Jacobian.

An approach, therefore, to minimising E would be to repetitively estimate a set of targets and then
for each successive set, solve the above least-squares problem directly. However, in the early stages
of training when STRESS is high, the targets given by equation (7.5) are poor and often lead to an in-
crease in STRESS. A more effective approach is to introduce a parameter �, which is initially small,
and estimate the targets as

�ti � yi � �

E

yi

� (7.8)

and increase � as STRESS decreases during the training procedure.

The training algorithm as implemented in NEUROSCALE then becomes:

➊ Initialise weights W to small random values.

➋ Initialise � to some small value.

➌ Calculate J�, where Jik � �k(xi).

➍ Calculate estimated targets�ti from equation 7.8.

➎ Solve for weights using W � J��T.

➏ Calculate STRESS.

➐ � If STRESS has increased, � � � � kdown where 0 � kdown � 1 is a constant.

� If STRESS has decreased, � � � � kup where kup � 1 is also a constant.

➑ If not converged, return to Step ➍.

Note that, for fixed basis functions, the potentially computationally expensive pseudo-inverse calcu-
lation need only be performed once and the (h � N) matrix J� stored. Appropriate values for kdown
and kup are, for example, 0.1 and 1.2 respectively. These values appeared acceptably robust for vari-
ous data sets.

7.3.2 Convergence Behaviour

It can be shown that this new scheme converges on a minimum of E.

At time step t let

JWt � Yt� and (7.9)

�Tt � Yt � �

E

Y

����
Y�Yt

� (7.10)

� Yt � ��t� letting �
t �


E

Y

����
Y�Yt

� (7.11)
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Then,

Yt�1 � JWt�1� (7.12)

� J(J��Tt)� (7.13)

� JJ�(Yt � ��t)� (7.14)

� Yt � �JJ��t� (7.15)

since JJ�Yt � Yt from equation (7.9). (Note that in general, JJ� �� I.)

Now, �t is the direction of steepest descent, in Y-space, on the STRESS surface. For the proposed
scheme to minimise STRESS, it is required that the change in weights, and thus in Y, implied by equa-
tion (7.15) represents a descent direction upon the cost surface. For this to be the case, the inner-product
of the term JJ��t and the direction of steepest descent�t must be positive. This inner-product is given
by

vec[�t]Tvec[JJ��t] � tr


(�t)T(JJ��t)

�
� (7.16)

�

qX
l�1

(�t
l)

T(JJ�)�t
l � (7.17)

where �t
l are the q component column vectors of the matrix�t.

Since by considering its singular value decomposition as J � USVT, (JJ�) is equal to UUT and is thus
positive semi-definite. The inner-product will then be non-negative for all�t. Indeed, it will be pos-
itive excepting when the subspace of�t lies in the null-space of (JJ�), which is identical to the null-
space of JJT. Thus the local minima of the cost surface descended by the shadow-targets algorithm
are identical to those of E.

7.3.3 Interpretation

Firstly, consider equation (7.8). The estimated target�ti is identical to the new point obtained after one
step of a gradient-descent optimisation of the standard Sammon Mapping. In this sense, the proposed
algorithm is effectively shadowing, step by step, the standard Sammon Mapping generation procedure.
For this reason, the algorithm will be subsequently referred to as the shadow-targets algorithm.

However, in contrast to the Sammon mapping, by reference to equation (7.15), the combination of re-
duced basis functions and smoothing parameter(s) in the RBF network serves to transform this stan-
dard optimisation step � to an alternative step, (JJ�)�. The matrix JJ� is effectively a projection
matrix (it is clearly idempotent) that projects the columns of the error matrix � onto the subspace
spanned by the columns of J. If there is a full complement of basis functions of sufficiently small �
(such that J is not ill-conditioned), then JJ� � I, and the algorithm effectively defaults to a repetitive
a posteriori fitting of an evolving Sammon map. Typically, however, either there will be fewer basis
functions than patterns or, as demonstrated in Section 6.6.3, the width parameter � of the basis func-
tions will be chosen such that JJ� is singular.

7.3.4 Performance Comparison

Speed of Training

Figure 7.4 illustrates typical plots of the evolution of STRESS during training for an RBF model trained
on the 150-point SPHERES 3 data set. The RBF comprised 40 Gaussian basis functions (� � 2�0), and
training performance is shown for the best standard non-linear optimisation technique, BFGS, and for
shadow-targets.
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Figure 7.4: Evolution of STRESS during training for both BFGS optimisation, and shadow-targets, on
the SPHERES 3 dataset. The upper plot (a) is for PCA initialisation, its partner (b) is for
random initialisation.

For the high input dimension data set RAE PCB, the illustration of STRESS minimisation is given in
figure 7.5. In this example, a plot is only given for PCA initialisation. There were 70 basis functions
in the network of type r2log(r).

Local Minima

In terms of the algorithm’s susceptibility to entrapment in sub-optimal local minima, an identical ex-
periment to that given in figure 6.3 is given in figure 7.6. For the IRIS 45 dataset, 1000 mappings
were generated with the shadow-targets algorithm, and a histogram of the final minimum STRESS
values plotted.

Because the shadow-targets algorithm follows the Sammon mapping, it is unsurprising to observe
that in figure 7.6, the minima in the plot correspond to those of the Sammon Mapping, the level-1
minima. In comparison to the standard BFGS optimisation technique, the algorithm exhibits a signif-
icant number of sub-optimal minima, although because of the apparent absence of level-2 minima, the
lowest STRESS obtained is now 0.0028, and on nearly 50% of the runs. This represents a very consider-
able improvement when compared directly to the Sammon Mapping histogram of figure 6.1, and is as
a result of the perturbing of the trajectory in Y space by the (JJ�) matrix, with its associated smoothing
effect.

It was shown in Section 7.3.2 that the shadow-targets algorithm was susceptible to the same level-2
minima as other minimisation methods. However, as noted in the above paragraph, figure 7.6 indi-
cates that the algorithm is not trapped by these minima, and the explanation given in Section 6.2.2 con-
cerning invariance of STRESS under rotation and translation once again applies. The major distinction
between the shadow-targets algorithm and those employed previously is that the effect of perturbing
solutions within the principal eigenspace of the network Jacobian J is no longer evident. More direct
evidence for this is given in figure 7.7, which plots the evolution of STRESS for two identical networks
from identical starting configurations. One of the networks is trained by simple gradient-descent, and
one by shadow-targets. In both cases, the learning rate � was identical and constant during training.
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Figure 7.5: Evolution of STRESS during training for both BFGS optimisation, and shadow-targets, on
the RAE PCB dataset.

The gradient-descent trained network exhibits the behaviour illustrated in figure 6.4 earlier, where
training is effectively terminated as the error vectors � are in the direction of the minor eigenvectors
of J. That the gradient-descent scheme initially exhibits faster convergence than its shadow-targets
counterpart is also consistent with the behaviour illustrated in that earlier figure. The trajectory of a
single output dimension of the configuration for gradient-descent is defined by


zgd � ��JJT� � ��
X

k

�2
k	kuk� (7.18)

as shown in Section 6.2.2. For shadow-targets, this is


zst � ��JJ�� � ��
X

k��k ��0

	kuk� (7.19)

and the trajectory is no longer perturbed towards the direction of the principal eigenvectors of JJT.

Curvature and Generalisation

As the shadow-targets algorithm effectively repetitively fits a Sammon mapping, and does not seek a
solution that implicitly reduces kWk2, it might be expected that values of curvature during training
should be significantly greater than for the BFGS training method. By contrast with figure 6.8, figure
7.8 illustrates the curvature of the RBF transformation during shadow-targets training on theIRIS 45
data set. For comparison, the equivalent plot for BFGS training, in figure 6.8, is also plotted. The RBFs
in both experiments had 45 Gaussian basis functions with width parameter � � 1�0, and the results
confirm the hypothesis that curvature is not significantly reduced. (Some reduction in curvature may
often be observed if the initial weights tend to be too large.)

The plot of the evolution of STRESS and curvature for the new algorithm is superimposed on that
for BFGS and a posteriori fitted RBFs and shown in figure 7.9. This illustrates that the curvature of a
network, trained by shadow-targets to a given value of STRESS, is in most cases lower than that of an
identical network, supervisorially trained to produce a standard Sammon configuration, although not
to the same extent as the BFGS-trained version.

An indication of the generalisation performance that may be obtained from networks trained by the
shadow-targets algorithm is given in figure 7.10. This illustrates, in a similar form to figure 6.13 on

123



Optimising Topographic Transformations

2 3 4 5 6 7 8 9 10

x 10
−3

0

50

100

150

200

250

300

350

400

450

500

Minimum STRESS

N
um

be
r 

of
 C

on
fig

ur
at

io
ns

Local Minima for Iris Data with New Algorithm

Figure 7.6: Histogram of number of final configurations with corresponding STRESS’s for 1000 runs
of NEUROSCALE, with � � 0, on the IRIS 45 dataset. The width of the 45 Gaussian basis
functions was 3.0. The NEUROSCALE model was trained with shadow-targets.
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Figure 7.7: Evolution of STRESS for identically initialised networks for gradient descent and shadow-
targets training.

page 99 of the previous chapter, the test STRESS that would be obtained by the network at each step
of the training algorithm. This is shown for three separate networks with values of � of 1,10 and 30,
and the equivalent plots for BFGS (where � � 1) and a posteriori networks are superimposed.

From figure 7.10, it is evident that the minimum training STRESS with shadow-targets is superior to
that of BFGS in all cases. However, for equivalent values of basis function width parameter (� � 1),
test STRESS is lower for the relatively supervised version. This is a result of the implicit weight decay
in the latter algorithm, and is consistent with the curvature plot of the previous figure. However, it can
be seen that for a higher value of width parameter, 30, both training and test STRESS are much lower
with shadow-targets. A network trained by BFGS with � � 30 would exhibit very high STRESS due
to the exceedingly poor conditioning of the matrix J. The plot for shadow-targets with � � 10 reflects
the unusual behaviour demonstrated in figure 6.22 in the previous chapter, where it was observed
that generalisation performance was relatively poor for certain intermediate values of basis function
width.
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Figure 7.8: Curvature against time during the shadow-targets training of a NEUROSCALE mapping
on the IRIS 45 data.
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Figure 7.9: Curvature of a posteriori fitted RBF networks compared to that during training of a NEU-
ROSCALE model by BFGS and shadow-targets methods.
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Figure 7.10: Test STRESS of a posteriori fitted RBF networks compared to that during training of a
NEUROSCALE model by BFGS and shadow-targets methods.
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7.4 Alternative Mapping Strategies

7.4.1 Review

Sammon [1969] himself remarked upon the undesirable scaling properties of his projection method
and suggested that some sort of data compression pre-processing might be appropriate. Specifically,
he utilised a clustering algorithm to determine a set (maximum 250) of data prototypes which may
then be mapped using the standard algorithm. This approach was further refined by Pykett [1978],
who mapped class centroids and superimposed circles on the map as an approximate indicator of
class dispersion.

Chang and Lee [1973] proposed two alternative strategies for mapping large numbers of pattern vec-
tors. The first, the “relaxation method” is really an optimisation technique and is designed to min-
imise the contribution to the overall STRESS of individual pairs of points. It is possible to directly per-
turb a pair of points yi and yj such that kyi � yj k� d�ij. This will naturally disrupt all other optimised
distances, and Chang and Lee proposed reducing this disruption by introducing a term into the algo-
rithm that attenuates the perturbation for increasing distance, and so making the mapping more local.
Iterated application of this algorithm should then produce a stable solution. In more extensive anal-
ysis, however, Siedlecki, Siedlecka, and Sklansky [1988] observed the algorithm to be often unstable
and to possess poor convergence properties.

Chang and Lee’s second strategy was the “frame method”. In this mapping, a subset of M of the origi-
nal N points are selected and mapped according to Sammon’s algorithm to generate a fixed frame. All
the remaining N � M points are then mapped, but are only constrained by the inter-point distances
to the M points in the frame, as distinct from the entire set of N data points. This is equivalent to the
mapping of a N�M distance matrix, and so clearly saves on storage and computational requirements.
(However, there is no reason given for the fixing of the M points first, in preference to simply scaling
the entire N�M distance matrix in one go.) The quality of this approximated mapping obviously de-
pends on both the characteristics of the data and on the M points in the frame. An example is given of
the frame method on a simple data set, but Siedlecki et al. [1988] question the evidence for the value
of this approximate mapping technique. However, in a paper on the representation of rigid structures
with minimal ‘connected-ness’ information, Levine and Kreifeldt [1994] discuss the potential of ex-
tending their work to the generation of MDS configurations from a partial set of distances and indicate
future research in this area.

Another approximation approach was the triangulation mapping of Lee, Slagle, and Blum [1977]. This
is based upon the fact that any three points may be placed in a plane such that all three inter-point
distances are preserved exactly. Thus in a single pass of the dataset, 2N � 3 distances (of the total
N(N � 1)�2) may be retained by locating each point sequentially such that the distances to two pre-
viously projected points are retained. There remains the choice of which of these distances to select
for preservation — the authors propose that a good criterion for selection is that the minimal spanning
tree (MST) of the data be maintained. (The minimal spanning tree [Gower and Ross 1969] is the tree
connecting all points, with no loops, that has the smallest span, defined by the sum of the inter-point
distances along the tree.) This entails the mapping of each point from the MST (in a breadth-first man-
ner) so that the distance to its nearest neighbour is fixed, plus one additional distance which may ei-
ther be selected as the second nearest-neighbour or some alternative reference point. This choice thus
allows the emphasis of the mapping to be either local or global, or indeed, offers the user a choice of
“perspective”. Siedlecki et al. [1988] illustrate how this selection can affect the clarity of clusters in
the final projection. Note that the construction of this mapping will be partially ambiguous as there
are two alternative solutions for the placing of any point in the plane with respect to any other two
points.

A modified form of the Sammon STRESS was adopted by Niemann and Weiss [1979]. The criterion
to be minimised was of the form

P
ij(s

�
ij)

r(s�ij � sij)2, where s�ij and sij were the squared Euclidean dis-
tances in the data and map space respectively. Choice of parameter r allowed greater emphasis to be
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placed on local or global structure. The authors also utilised a co-ordinate descent technique, which
involved adjusting a single parameter in the map at each step, by a fixed amount which was deter-
mined by the solution of a cubic equation. Siedlecki et al. [1988] observed this method to have very
good convergence properties, but that it generated considerable distortion.

The frame method and the triangulation mapping were combined by Biswas, Jain, and Dubes [1981],
to effect the Sammon-Triangulation technique. They proposed the generation of an M-point frame first,
followed by the mapping of all other points, via the triangulation method, to retain the distances to the
two nearest-neighbours from amongst the points within the frame. An additional step in the proce-
dure is required to ensure that the triangle equality is maintained for the projected points. The authors
claim that the frame method “leads to projections that greatly distort the data” while the Sammon-
Triangulation scheme “produces better results than the triangulation method because more global
information about the data set is retained”. For a large number of patterns, Biswas et al. reiterate
the suggestion of mapping only a prototypical subset of the patterns, or of performing some a priori
clustering.

The approach to reducing the storage and computational cost of Kakusho and Mizoguchi [1983] is to
only constrain the position of each point by the distances to the k nearest-neighbours (in data space).
This is another form of a localised Sammon mapping, and exploits a basic idea from NMDS dating
back to Shepard and Carroll [1966]. A similar concept is entertained by Schwartz, Shaw, and Wolf-
son [1989] for the mapping of the convoluted 3-dimensional primate visual cortex. The mapping of
a given point is again restricted to a local “patch”, with the remark that the distance matrix then be-
comes sparse and can be maintained as a collection of binary search trees. The patches were empiri-
cally chosen to represent around 10% of the total data area.

7.4.2 Comment

Apart from both the relaxation method of Chang and Lee [1973] and the co-ordinate descent technique
of Niemann and Weiss [1979], all the other approaches discussed above are effectively ad hoc meth-
ods for subset mapping. Furthermore, the majority of these schemes are based on retention of local
distances [Chang and Lee 1973; Lee, Slagle, and Blum 1977; Biswas, Jain, and Dubes 1981; Kakusho
and Mizoguchi 1983; Schwartz, Shaw, and Wolfson 1989].

It has already been emphasised that in general visualisation applications, global structure can be highly
informative — for example, the ordering of research ratings in the RAE data from Chapter 4. While
local mappings seek to maintain clusterings under the dimension-reduction process, the inter-cluster
structure is often equally, and sometimes more, important. Indeed, too much emphasis on local spa-
tial information can lead to confusion of clusters, a phenomenon observed by Siedlecki et al. [1988]. In
such cases, the original approach suggested by Sammon [1969], to select cluster prototypes for map-
ping, is actually the most sensible.

The requisite data pre-processing stage that this implies only transfers the scaling problem to one of
selecting either the best set of prototypes or the best subset of the distance matrix, and this is a non-
trivial question which is also likely to be computationally demanding. Of these two alternative strate-
gies, selecting M1 prototype points for individual mapping requires scaling a (M1�M1) matrix, while
selecting M2 points as a basis for scaling a subset of the distance matrix requires scaling a (N � M2)
matrix. Clearly, for similar computation, more prototypes can be selected in the first method than in
the second — M1 � M2 for large N. However, the second approach does permit the mapping of the
entire set of data points, albeit constrained by only a partial set of distances.

The use of a parameterised transformation, as exploited in NEUROSCALE, is an advantage when scal-
ing a subset of data points. Because it is now possible to project new data, all the remaining data points
may still be mapped by the transformation once it is defined. The network is effectively training on
the subset alone, and then generalising to the remaining data. Clearly, the subset of points must be
representative of the distribution of the data as a whole if a good projection is to be expected.
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One particular example approach might be to determine a set of K cluster centres, via the K-means
procedure [MacQueen 1967], and then scale these with the standard NEUROSCALE algorithm. Sub-
sequently, the entire dataset may be projected. Strictly, the STRESS calculation for the K means should
be adjusted to account for the number of data points that each mean represents.

The above algorithm is only one of many potential approaches for coping with the demands of large
datasets. Overall, this suggests, as intimated by Levine and Kreifeldt [1994], that the key issue is that
of choosing the subset of distances that, when scaled to generate the mapping, best approximates the
mapping obtained by scaling the complete distance matrix. This is clearly a very complex question,
and one that demands considerably more study than there is opportunity to include in the remainder
of this thesis. As such, it must remain an important area for future research.

7.5 Conclusions

The comparison of standard nonlinear optimisation procedures for both MLPs and RBFs revealed that
the quasi-Newton BFGS technique exhibited best performance in terms of minimising training time.
Furthermore, RBFs were better in this respect than MLPs, particularly where the input dimension was
high and the number of weights in the MLP precluded the use of BFGS. On-line training of an MLP
was significantly worse than all other optimisation approaches.

However, a new ‘shadow-targets’ training algorithm proposed in Section 7.3 for networks with out-
puts linear in the weights, such as RBFs, proved to be significantly better, in terms of speed of conver-
gence, than even BFGS, attaining the region of the local minimum an order of magnitude more quickly.
This algorithm was also shown to converge to the same classes of minima as the standard methods,
and still exhibit generally lower curvature and test STRESS than similar a posteriori mappings, due to
its inherent smoothing effect. However, for equivalent basis function smoothing parameter �, net-
works trained with the shadow-targets algorithm exhibited greater curvature than those employing
standard nonlinear optimisation techniques, as the former does not incorporate the implicit weight-
decay of the latter methods in the relative supervision context.

Importantly, however, when employing the shadow-targets algorithm it is possible to use larger val-
ues of � without suffering from the increased local minima effects discussed in Section 6.2.2 in the
previous chapter. This enables the efficient generation of low-STRESS training and test transforma-
tions, which are superior to the standard nonlinear-optimised versions. In this respect, the method of
choice for the training of a topographic transformation would be to utilise the shadow-targets algo-
rithm with an appropriately large �. This does necessitate, however, the determination of a suitable
value for the basis function width parameter, although from the results of Section 6.6.3, this choice
may be guided by the heuristic that “bigger is better”.

It should be noted that the shadow-targets training algorithm is equally appropriate to mappings
which incorporate some subjective element (i.e.  � 0) and can be expected to offer significant re-
ductions in the required training time for such applications. However, the argument that the trans-
formation should be maximally smooth no longer applies and this can be expected to complicate the
choice of �, which is now likely to be significantly data-dependent. Further investigation would be
appropriate in this direction.

Finally, in Section 7.4, some of the alternative approaches designed to ameliorate the computational
problems associated with the mapping of large datasets were reviewed. These may be seen as gener-
ally ad hoc approaches to clustering or subset selection, and as such pose equally non-trivial problems
which, for the purposes of topographic mappings, is still an open research issue.

128



Chapter 8

Conclusions

8.1 Overview

The introductory chapter of this thesis began by considering the generic problem of information pro-
cessing and more specifically, how dimension-reduction techniques could ease the interpretation of
complex data sets. Building on this theme, the objective of subsequent chapters has been two-fold —
firstly to motivate the development of a particular neural network approach to dimension-reducing
topographic mapping in the information-processing context, and secondly, to improve the theoretical
understanding of the design, training and application of such models.

8.2 Why NEUROSCALE?

In Chapter 2 it was reasoned that in data-analytic contexts, the Sammon Mapping was the most ef-
fective strategy for topographic dimension reduction. This is an important conclusion in itself, con-
sidering the widespread and often inappropriate application of the Kohonen self-organising feature
map. Established theoretical properties and experimental evidence, both in existing literature and
presented within this thesis, combine to support this argument. The main advantage of Kohonen’s
approach is computational, because realistically, application of the Sammon Mapping is restricted to
fewer than 1000 data points. However, the computational tractability of Kohonen’s algorithm should
not be allowed to disguise its flaws as an information processing paradigm.

The feed-forward neural network topographic mapping technique introduced in Chapter 3, NEU-
ROSCALE, was thus based upon the Sammon Mapping and utilises a radial basis function neural net-
work. Because of this neural network element, it offers the capability of generalisation to new data
— a feature absent from Sammon’s original algorithm which is effectively a look-up table approach.

An important extension embodied in NEUROSCALE is the capacity to exploit additional information
in the mapping process. In standard approaches to topographic mapping, the geometry of the out-
put space is determined solely according to some conventional metric (generally Euclidean) defined
over the data space. If alternative information is available — such as class labels — then this may be
allowed to influence the mapping (in order to emphasise clustering, for example). Previous imple-
mentations of this concept have been largely heuristic, whereas within NEUROSCALE, the extra in-
formation is embodied as an additional metric. This dual metric approach then allows the two classes
of information to be combined variably, and importantly, in a consistent manner. At one extreme is the
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purely unsupervised mapping, based exclusively on the geometry of the data in the input space, while
at the other extreme is a supervised variant based exclusively on the additional metric, which can be
considered to represent the ‘preference’ of the mapping process. As a result of this mechanism, en-
hanced visualisation spaces may be derived which can be considerably more informative than those
extracted utilising conventional topographic criteria.

That there is genuine merit in the generation of such hybrid supervised/unsupervised feature spaces
was demonstrated in Chapter 4, which comprised a study of data taken from the 1992 Research As-
sessment Exercise. When compared with other established feature extraction approaches on this dif-
ficult high-dimensional real-world dataset, the NEUROSCALE mapping that included an element of
class information gave the most useful visualisation. Instead of the confusion of the five classes of
interest, the use of a metric which preferred a linear ordering permitted considerably more structure
to be elucidated. However, because the mapping still contained a significant geometric element, it
was possible to discover apparent inconsistencies in the awarding of research ratings from the NEU-
ROSCALE projection of the training data — inconsistencies that were supported by independent clas-
sification experiments. The supervised component of the mapping also implied that the generalisa-
tion projection to previously unseen data offered better potential for subsequent prediction. Indeed,
a classifier based on this feature space was able to correctly predict the rating awarded to 70% of the
test set, which was superior to other illustrative classification examples.

On the basis of the results presented in Chapter 4 and elsewhere in the first half of this thesis, NEU-
ROSCALE offers considerable potential as a tool for the visualisation and exploratory analysis of data.
That this proposed topographic model utilises a feed-forward neural network naturally raises certain
specific questions concerning its application; questions which relate closely to neural networks em-
ployed in more conventional rôles. Of particular relevance is the need to determine effective training
techniques, appropriate model complexity and values of other model parameters, and these issues
were considered in the second half of the thesis.

8.3 Theoretical Issues

While the presented theoretical analysis should apply to general topographic RBF transformations,
all experiments utilised Gaussian radial basis functions. This is a reflection of the ease of differentia-
bility of that function, rather than any property specific to its use in the NEUROSCALE model. Also,
the emphasis of the final chapters was on exclusively objective mappings, although some results are
applicable to the case where subjective information is incorporated and these are indicated in the text.

Local minima. In terms of training the NEUROSCALE model, it is already well known that Sam-
mon’s STRESS measure exhibits many sub-optimal local minima for even the simplest of problems.
Further evidence of this effect was presented in Chapter 6, where it was seen that NEUROSCALE mod-
els with significant values of basis function width ‘�’ were seemingly unaffected by these minima. In
fact, it was shown that the local minima found by Sammon’s algorithm were generally unsmooth trans-
formations of the input data and unrealisable by the RBF within the NEUROSCALE architecture. This
result is very significant as the proliferation of sub-optimal local minima is a major practical disad-
vantage of Sammon’s technique.

However, by way of balance, NEUROSCALE was seen to introduce a new class of minima as a result
of those very smoothness properties of the network. When adopting a standard nonlinear optimisa-
tion approach to network training, the attained final STRESS minimum occurred at some higher value
than the best obtainable by the Sammon Mapping (although, in that latter approach, many runs might
have been necessary to find that particular minimum). This effect is directly related to the smooth-
ness of the RBF transformation, and as � � 0, it vanishes and NEUROSCALE tends to approximate the
Sammon mapping more directly and so becomes susceptible to all its associated local minima also.
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This reveals a clear trade-off. Large � gives few local minima problems, but the STRESS of the ultimate
solution is inferior to the best obtained by the Sammon Mapping. As � decreases, this optimal STRESS
value improves, but additional sub-optimal minima as exhibited by the Sammon Mapping are then
introduced.

Model complexity. A significant feature of the NEUROSCALE model is its facility for generalising to
previously unseen data. When applying neural network models in other domains, it is known that
over-complex models generalise poorly in the presence of noise, as they tend to over-fit the data. By
contrast, in Chapter 6, it was seen that test STRESS of NEUROSCALE models was relatively insensitive
to the number of basis functions within the network — even to the point where as many basis func-
tions as data points were utilised. There are two key underlying points which combine to explain this
counter-intuitive behaviour. Firstly, it is possible to derive significant insight into the necessary form
of the network function independent of the data. Secondly, there is a regularising component auto-
matically incorporated in the NEUROSCALE training algorithm which, given this knowledge of the
desired functional form, proves to be highly appropriate.

Taking the first point, for topographic mappings it was reasoned that for good generalisation the trans-
formation effected by the neural network (or indeed, any functional model) should ideally be smooth
(have zero second- or higher-order derivative terms) and an expression was determined for the nec-
essary gradient of the network function. To underline this, experimental evidence was presented
illustrating that for networks exhibiting identical training STRESS on a data set, those with higher
curvature (second-order terms) gave correspondingly higher errors on unseen test data. Most com-
pelling was an example where networks of differing curvature, producing apparently identical con-
figurations from a training set, exhibited considerable difference in error on an identical test set. The
key to this seemingly inconsistent behaviour is to understand that there are many configurations of
points that give rise to identical measures of STRESS, and these simply correspond to arbitrary rota-
tions and/or translations of any one particular configuration. Furthermore, the smoothness of any
particular transformation depends, nonlinearly, on this rotation and translation.

This is a highly relevant observation, as one existing approach to producing a transformational topo-
graphic mapping is to generate a configuration using Sammon’s standard procedure, and then fit a
parameterised model to the resulting solution a posteriori. However, the smoothness, and therefore
the quality of generalisation that might be expected, of such a network is generally arbitrary. By con-
trast, NEUROSCALE networks exhibited lower curvature and test STRESS than these a posteriori mod-
els in all examples. An important result therefore of Chapter 6 was to explain this behaviour in terms
of the learning dynamics of the relative supervision algorithm. It was seen that NEUROSCALE mod-
els trained in this way automatically tend to generate output configurations that reduce the sum-of-
squared weight values within the network. This effective weight decay or self-regularisation explains
why NEUROSCALE models had appeared largely insensitive to their complexity and were observed
to generalise better that identical a posteriori-trained networks. While the extent of this implicit regu-
larisation is not explicitly controllable (although it increases with �), it is important to underline that
its effect is not to reduce the squared-weights at the expense of increasing the training error, but rather
to minimise training error while at the same time seeking a rotation and translation of the final output
configuration with associated lower values of the weights.

Training Algorithms. This feature of the NEUROSCALE training algorithm is highly effective, and
explains the apparent ease with which test projections with low STRESS were obtained throughout
the thesis. However, this regularising effect is a function of the smoothness of the network and as
already observed, there is a penalty to be paid in having too large a value of � as the minimum ob-
tainable STRESS on the training set deteriorates. In Chapter 7, a new training method was presented
— the “shadow-targets” algorithm. Its name refers to the fact that the algorithm effectively shadows
Sammon’s mapping algorithm, but with the smoothness of the RBF incorporated at each step. An
unfortunate consequence of minimising a STRESS measure within NEUROSCALE is that the benefit of
linearity in the RBF model is lost as the error measure introduces quartic terms. The shadow-targets
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algorithm effectively decomposes the training problem into two steps — one of which is linear. Be-
cause of this approach, the new algorithm was an order of magnitude more efficient at reaching a
STRESS minimum, and was applicable to both unsupervised and supervised mappings, although it
did not incorporate the implicit weight decay of previous methods. However, the algorithm does not
suffer from the increased minimum problems also associated with those techniques and is therefore
able to reproduce the best observed minimum generated by the Sammon Mapping. While, for equiv-
alent values of �, generalisation was seen to be poorer than that illustrated for models trained using
relative supervision, this new approach allows large values of � to be chosen. Such values of basis
function width produce smoother transformations, and it was relatively simple to find a value of �
which gave lower training and test STRESS than that of previous approaches. From the evidence of
this thesis, the shadow-targets training algorithm should therefore be the best method for training a
topographic feed-forward neural network, given appropriate choice of �.

8.4 Directions for Future Research

Applications. As underlined by Friedman [1994], many computational learning methods can be
shown to be optimal under the appropriate circumstances. Therefore, while the results on the RAE
data in Chapter 4 showed considerable promise for the NEUROSCALE approach, there is always scope
for application to further datasets, particularly those with alternative forms of subjective information.

Relevance of theoretical results to subjective mappings. Much of the insight derived into the issue
of model complexity in Chapter 6 was on the basis of purely objective,  � 0, mappings. The assump-
tion that maximal smoothness leads to optimal generalisation no longer holds when an alternative
metric is permitted to influence the mapping. In a classification scenario, for example, curvature will
be necessarily high at class boundaries, and this will affect the choice of � in addition to requiring
greater consideration of the appropriate number of basis functions to use. Nevertheless, the implicit
weight decay element may still be of key benefit, but further study is necessary in this direction.

NEUROSCALE for classification. The use of particular feature spaces derived by NEUROSCALE as
the basis for a subsequent data classification in Chapter 4 proved very effective, although the exper-
iments were necessarily concise. This is an area that offers much potential for further study, partic-
ularly in terms of the effect of parameter ‘’, the number of features ‘q’ and the form of subjective
dissimilarities used. Another important question is whether the self-regularising component within
relatively supervised NEUROSCALE models is relevant to the classification context, and does this lead
to better prediction performance?

Radial basis functions. One adjustable element of the NEUROSCALE architecture is the type of basis
function that is utilised. Various types were used in experiments (Gaussian, thin-plate splines, zlogz
and cubic), with some being better than others for various datasets. However, no formal compari-
son/evaluation of basis function type has been undertaken. Additionally, the experiments in section
6.6.3 on the optimal width of Gaussian basis functions were generally consistent with predictions but
revealed an unexplained mid-range ‘bump’ in the test error profile, which warrants further investi-
gation. Furthermore, while parts of Chapter 6 described how generalisation did not deteriorate with
large numbers of basis functions, there was no consideration of the smallest number of such functions
that might be used (which would lead to computational improvements).

The scaling problem. The major drawback of NEUROSCALE is that the training time scales in the
square of the number of patterns in the dataset, and thus places a relatively low maximum limit thereon
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( 1000). Chapter 7 considered some of the previous effort directed at alleviating this problem, but it
was argued that most of the approaches were unprincipled and amounted to some form of heuristic
subset selection. A very recent development has been the formulation of a topographic map, related
to Kohonen’s paradigm, based on the concept of a generative model (one that maps from the feature
space to the data space) [Bishop, Svensén, and Williams 1996]. An adaptation of this model offers a
potential for application to a Sammon-like mapping, and one that would permit a reduction in com-
putation through the use of a constrained mixture-modelling approach. Indeed, an additional advan-
tage would be the defining of a density approximation in the data space, a measure that is absent in
Sammon’s algorithm. Because of the importance of the scaling problem, this would perhaps be the
most relevant, interesting and profitable direction for future research.
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