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Abstract— Neural networks are usually curved statistical models. They do not have finite dimen-
sional sufficient statistics, so on-line learning on the model itself inevitably loses information. In
this paper we propose a new scheme for training curved models, inspired by the ideas of ancillary
statistics and adaptive critics. At each point estimate an auxiliary flat model (exponential family) is
built to locally accommodate both the usual statistic (tangent to the model) and an ancillary statistic
(normal to the model). The auxiliary model plays a role in determining credit assignment analogous
to that played by an adaptive critic in solving temporal problems. The method is illustrated with the
Cauchy model and the algorithm is proved to be asymptotically efficient.

1 Introduction

Neural network (NN) training algorithms are essentially statistical estimators since they map
random samples to some general rules or distributions underlying these samples. The main
difference between NN models and classical statistical models is that NN models are in general
non-linear, which in statistical terms means non-exponential family models. We shall call them
curved models. This creates two problems, local minima and loss of information. The former is
well known in NN community and will not be addressed here. The latter is less well known and
often confused with the former. This is the issue considered here.

For a deterministic optimisation problem, including a stochastic problem in batch learning mode,
the optimal choice of steplength is determined by the Hessian. For a flat statistical model, the
optimal choice of steplength is determined by the variance, or equivalently by the sample size.
Here we deal with on-line stochastic training of a curved model, so we must take into account
the interplay between these two effects.

We have previously shown [14, 13, 12] that any statistical inference problem can be decomposed,
at least in theory, into two problems: computing an ideal estimate in a flat model and projecting
it onto the curved model. The first step does not involve curvature, while the second step is
deterministic. The trouble is that the ideal estimate is usually infinite dimensional, so computing
it is tantamount to retaining the whole data set.

It was an old idea of R. A. Fisher [5] that by keeping a finite dimensional ancillary statistic
we ought to be able to construct an asymptotically efficient algorithm. This amounts to locally
expanding the model to a flat model of higher dimension, spanned by the tangents and normals
of the original model. The estimate in the tangent direction corresponds to the usual statistics,
while that in the normal direction is called an ancillary statistic. The estimate is projected
onto the model so a new auxiliary model can be constructed. The process is iterated until
convergence. Fisher showed that if one starts from a consistent estimator, a single extra step
will give an efficient estimator. This is still not an on-line method.

One of the best known on-line learning algorithms is the adaptive critic algorithm for learning
in temporal problems. It can be explained as an auxiliary statistical model, although this
is generally not recognised due to the special form of the curved model, composed of iterated
conditional distributions in a Markov chain. The “moving target” method [10] can be interpreted
as an adaptive critic method for structural credit assignment. The moving targets correspond
to the point estimate in the auxiliary model, which unfortunately has to be infinite dimensional
since the auxiliary model is fixed.
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In this paper we combine all these ideas together to construct a method which is on-line, finite
dimensional and asymptotically efficient, even when applied to models without a finite dimen-
sional sufficient statistic. As far as we are aware, this is the first example of this kind in either the
statistical literature or the neural network literature. The basic idea is to let the finite dimen-
sional auxiliary model move with the current estimate, thus forming a moving frame along the
model [7], and to transfer the moving target from one frame to its successor without projecting
onto the main model.

In this paper we shall illustrate this method on the Cauchy model, a one dimensional model
whose minimum sufficient statistic is infinite dimensional. This makes it a relatively simple
model for illustrating the non-trivial aspects of more general NN models.

2 Statistical background and outline of the algorithm

Consider a sample space X and the space of probability distributions P on X. If X is of
infinite size P forms an infinite-dimensional manifold. A statistical model is a finite dimensional
submanifold @ C P. We shall also consider the space P of finite measures on X. It is also an
infinite dimensional manifold, containing P as a smooth submanifold. See [4, 1, 2, 6, 14, 12].

It has been shown [14, 12] that in general a statistical inference problem can be specified by
a prior P(p) on P, the information divergence Ds(p,q), 6 € [0,1], and the model Q. For a
given sample x, there exists a unique ideal estimate, called the é-estimate, p € 75, given by
P = fp P(p|z)p®. The optimal estimate in the model, ¢ € Q, is given by the §-projection of p

onto @, which minimises Dg(p, ¢). It is important to note that this only works if we allow p € P
to be unnormalised.

Here we shall only consider maximum likelihood estimates (MLE), which are equivalent to 1-
estimates with a O-uniform prior. In this case the ideal estimate p is simply the empirical
distribution, and the optimal estimate ¢ € Q is solution to Min,eo K (p, ¢), where the generalised

KL-divergence is given by Dy(p,q) = K(p,q):= [ (q —p+plog 2—7) If both p, ¢ are normalised,
ie., if [p= [q =1, then we get the usual K(p,q)= [ plog(p/q).

To avoid complicated notation, in this paper we
shall only consider one-dimensional models Q,
ie. smooth curves Q € P. As observed by Fisher [5],
the reason behind the information loss of curved
models is the turning of the tangent in the log-
likelihood space when the estimate moves. To hold
all the information in the sample relevant for statis-
tical estimation on model Q, we need a flat model
RCP spanned by Q. If the smallest such R is in-

. . finite dimensional, then it is impossible to do so ex-
Zhee t%ngeﬁleaigr;eonr;zslt?fmée.a tllq.aI;delz)Rari: actly without keeping an increasing amount of data.
the current auxiliary estimate. The entities This is the case for the Cauchy distribution model.

with superscript + correspond to the updated Locally, however, a curve only turns in the direction
version.

of its normal. The basic idea of our proposed algo-
rithm is to construct an R to hold information both
in the tangent and normal directions of the model.
This guards against the information loss caused by
the turning of tangent within the osculating plane. The residual information loss is due to non-
zero torsion, the fact that the osculating space itself is also turning. We shall show that this
only gives a higher order term so the algorithm is asymptotically efficient. The outline of the
algorithm is as follows (cf. Figure 1).

Figure 1: Schematic illustration of the
adaptive critic method



1. Find an estimate ¢ € Q parameterised by p.

2. Construct tangent [y := J,log ¢ and normal [, := 82 log g of the model Q at point ¢. Define
the auxiliary model as the exponential family (not normalised) spanned by [l1, l3],

R = {7‘ = qexp(0111 + 02[2), 0 € RZ}, (21)

3. Update the MLE r € R parameterised by [y, 65], in light of new data.

4. Compute new estimate ¢t € Q by projecting r onto Q. Compute the new frame [, 5]
Project r onto rT € RT, the new auxiliary model spanned by [li", l;’] This is accomplished
by computing [0, 65 ].

5. Transfer statistics from R to RT, and calculate the effective sample size.
6. Go back to step 3.
3 Details

The relevant geometry for a statistical model in 11D
training is the exponential geometry, a special case
of information geometry [4, 1, 2, 6]. Roughly speak-
ing, it is defined by the Fisher information met-
ric, which specifies an inner product on the tangent
space, and the exponential affine connection, which

specifies that exponential families are to be consid-

ered flat submanifolds. Note that as we are consid-

ering geometry for the whole P, exponential fam- ¢ € Q is the current estimate, with tangent 0y
and normal lz. 7 € R is the current auxiliary

} . ) point, with auxiliary coordinates #; and 6.
by the correlation (uv)_, instead of the covariance The new estimate on Q is ¢¥, with tangent

<uvv>q‘ [12] v It and normal .l;'. The auxﬂiary point 7 is

unchanged and is represented in the new aux-
Locally, a curve looks like a helix up to third order iliary coordinates as 6} and 65, where 6} = 0.
approximation. It is characterised by its metric k%,
curvature ko and torsion k3. For the Cauchy model,
it can be calculated that x3 = 1/2, k3 = 7/2, k3 =
20/7. The value of k3 is the absolute curvature in P. The relative curvature in P was calculated
by [5, 4] as k54? = 5/2, using covariance in place of correlation. The difference ky? — k42 is the
square of normal curvature of P in 75, which is unity for any direction in P [11]. The calculation

of torsion for the Cauchy model appears to be original.

ilies are not normalised, and the metric is defined

Figure 2: Change of coordinates caused
by curvature

Doing statistics on the exponential family R can be easily accomplished by projecting ptor € R
with Newton’s method (denoting 9; := 0/0y,)

801 = 0k oo Bk = [ ] " [[on- [r]. e

where [ rl;l; and [ rl; are functions of § and can be computed without knowing the sample, and
S pl; is simply the sample mean of [; which can be accumulated easily.

Up to second order approximation, Q can be locally identified with the osculating circle, and R
with the osculating plane. The new estimate ¢t and auxiliary estimate 7+ can be calculated by
projecting r onto them (Figure 2).

« 1 0, K
Ap= — = —atan [ —— 2
H="T =~ x> (1 - 021(2) ’ (3.2)
=0, 6= (1 —Jemr (- 921(2)2) , (3.3)

3




where K := k1k9 is the rate the tangent turns relative to the parameter p.
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The upper part of each sub-plot depicts p (dashed line) and r (solid line). The lower part of each
sub-plot depicts the expected squared error (smoother line) and the true squared error (rougher line),
both multiplied by the sample size.

Figure 3: A typical run of the algorithm

The crucial point of this algorithm is using frl}" in place of fﬁl;’ for the new auxiliary model.
That is, the previous information as summarised by r € R is projected onto r* € RT, so
that the algorithm is on-line. Because the osculating plane is also turning, there is inevitable
information loss as r is replaced by 7. This is determined by the angle by which the osculating
plane turned, a = TApu, where T := kK3 is the rate of direction change of the osculating
plane in the u coordinate. It can be shown that, asymptotically, the one-step efficiency ¢, the
proportion of information retained, is at least cos? a. Since the direction change of the osculating
plane is orthogonal to the model, the actual information loss is even less. Numerical experiments
show that € = cosa is more accurate. This is used to update r* € RT. In any case the exact
rate is irrelevant asymptotically, since all these reduce to € = 1 — aAs?, where a is a constant
and s is the arc-length parameter. The overall information loss after n samples can be shown
to be alogn + O(1), even if we have used € = 1 — bAs, with b # a. The asymptotic efficiency of
the algorithm is therefore

enzl_“bg”—oG) 1, (n— o). (3.4)

n n

The initial estimate can be obtained by using a good classical estimator on a small sample, such
as the optimal L-estimator [8]. We find that a sample of size five is good enough in our case.
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4 Experiments and Discussion

One typical run of the algorithm is shown in Fig-

ure 3. Note that r is markedly non-Cauchy ini- 0
tially. The bimodal shape is caused by the tangent
and the normal. The normalised expected squared -
error :?(u — 1i0)? approaches 1 as n — oo since
the algorithm is asymptotically efficient. The ac- e
tual squared error is x7 distributed (of which this 15
figure only gives one sample), since the Cauchy dis-
tribution is locally one dimensional. a0
0 100 200 300

The expected and actual loss of information are

plotted in Fjlg}ll’e 4, showmg t,hat our calculation The upper line is the expected loss of informa-
of asymptotic information loss is correct. It should  {jon x21og n; the lower line is the observed loss
be pointed out that there is an additional loss of a averaged over 20 runs. They are shifted and

small sample used for the initial estimate superimposed to show the asymptotic equiva-
) lence.

The novelty of this algorithm is that the auxiliary
information is retained and transferred at each step.
Intuitively speaking, this means that “If you don’t
know which unimodal model to estimate, then use a multi-modal model”. By allowing r to be
outside Q, or even outside P, we are able to represent whatever information as simply the point
r, which need not be outside P. Furthermore, locally or asymptotically, it is enough for r to be
in a two dimensional exponential R.

Figure 4: Expected and actual loss of in-
formation

Recently Leen and Orr [9] proposed a stochastic search method to avoid inverting the stochasti-
cally updated Hessian. It appears that their method is intuitively equivalent to using (compare

with (3.2))
Ap a0y (1+ (B,K%) + (0K +...), (4.1)

Since in our method the “denominator” is maintained this problem does not occur. It would be
interesting to see how their method performs on the Cauchy model.

Most of the interesting curved models, including the Cauchy model and most tanh-type NNs
such as the MLP, BM and Hopfield net, are mixture-of-exponential models. The best known
method for such models is the EM algorithm, which has recently been given an information-
geometric interpretation [3]. It would also be interesting to elucidate the relation between our
method and the EM method. Our current understanding is that EM is more like Fisher’s original
algorithm which is not on-line.

For multilayer networks with an m-dimensional weight space, the tangent space is m-
dimensional, but the normal space becomes m?-dimensional. The method described here can
still be applied, with more complicated differential-geometric notation. This will appear else-
where. In many interesting cases using the diagonal of the normal tensor would be reasonably
good so the algorithm requires keeping a 2m-dimensional statistic. At present we do not know
the asymptotic efficiency of such a diagonal approximation.

5 Conclusion

We have proposed and analysed an on-line training algorithm for curved models. It is asymptot-
ically efficient even for models without finite dimensional sufficient statistics. This removes the
need for any ad hoc adjustable parameters in training algorithms, such as a momentum term and
step-length. The idea and performance of the algorithm is illustrated with the Cauchy model.
It is expected that this method will have a significant impact in the area of on-line training
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of non-linear models. This also shows the importance of rigorous statistical theory, especially
information geometry, in this active area.
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