
Accepted for presentation at ICONIP'96Using Ancillary Statistics in On-Line Learning AlgorithmsHuaiyu Zhu and Richard RohwerDept of Computer Science and Applied MathematicsAston University, Birmingham B4 7ET, UKEmail: H.Zhu@aston.ac.uk, R.J.Rohwer@aston.ac.ukAbstract| Neural networks are usually curved statistical models. They do not have �nite dimen-sional su�cient statistics, so on-line learning on the model itself inevitably loses information. Inthis paper we propose a new scheme for training curved models, inspired by the ideas of ancillarystatistics and adaptive critics. At each point estimate an auxiliary at model (exponential family) isbuilt to locally accommodate both the usual statistic (tangent to the model) and an ancillary statistic(normal to the model). The auxiliary model plays a role in determining credit assignment analogousto that played by an adaptive critic in solving temporal problems. The method is illustrated with theCauchy model and the algorithm is proved to be asymptotically e�cient.1 IntroductionNeural network (NN) training algorithms are essentially statistical estimators since they maprandom samples to some general rules or distributions underlying these samples. The maindi�erence between NN models and classical statistical models is that NN models are in generalnon-linear, which in statistical terms means non-exponential family models. We shall call themcurved models. This creates two problems, local minima and loss of information. The former iswell known in NN community and will not be addressed here. The latter is less well known andoften confused with the former. This is the issue considered here.For a deterministic optimisation problem, including a stochastic problem in batch learning mode,the optimal choice of steplength is determined by the Hessian. For a at statistical model, theoptimal choice of steplength is determined by the variance, or equivalently by the sample size.Here we deal with on-line stochastic training of a curved model, so we must take into accountthe interplay between these two e�ects.We have previously shown [14, 13, 12] that any statistical inference problem can be decomposed,at least in theory, into two problems: computing an ideal estimate in a at model and projectingit onto the curved model. The �rst step does not involve curvature, while the second step isdeterministic. The trouble is that the ideal estimate is usually in�nite dimensional, so computingit is tantamount to retaining the whole data set.It was an old idea of R. A. Fisher [5] that by keeping a �nite dimensional ancillary statisticwe ought to be able to construct an asymptotically e�cient algorithm. This amounts to locallyexpanding the model to a at model of higher dimension, spanned by the tangents and normalsof the original model. The estimate in the tangent direction corresponds to the usual statistics,while that in the normal direction is called an ancillary statistic. The estimate is projectedonto the model so a new auxiliary model can be constructed. The process is iterated untilconvergence. Fisher showed that if one starts from a consistent estimator, a single extra stepwill give an e�cient estimator. This is still not an on-line method.One of the best known on-line learning algorithms is the adaptive critic algorithm for learningin temporal problems. It can be explained as an auxiliary statistical model, although thisis generally not recognised due to the special form of the curved model, composed of iteratedconditional distributions in a Markov chain. The \moving target" method [10] can be interpretedas an adaptive critic method for structural credit assignment. The moving targets correspondto the point estimate in the auxiliary model, which unfortunately has to be in�nite dimensionalsince the auxiliary model is �xed. 1
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In this paper we combine all these ideas together to construct a method which is on-line, �nitedimensional and asymptotically e�cient, even when applied to models without a �nite dimen-sional su�cient statistic. As far as we are aware, this is the �rst example of this kind in either thestatistical literature or the neural network literature. The basic idea is to let the �nite dimen-sional auxiliary model move with the current estimate, thus forming a moving frame along themodel [7], and to transfer the moving target from one frame to its successor without projectingonto the main model.In this paper we shall illustrate this method on the Cauchy model, a one dimensional modelwhose minimum su�cient statistic is in�nite dimensional. This makes it a relatively simplemodel for illustrating the non-trivial aspects of more general NN models.2 Statistical background and outline of the algorithmConsider a sample space X and the space of probability distributions P on X . If X is ofin�nite size P forms an in�nite-dimensional manifold. A statistical model is a �nite dimensionalsubmanifold Q � P . We shall also consider the space eP of �nite measures on X . It is also anin�nite dimensional manifold, containing P as a smooth submanifold. See [4, 1, 2, 6, 14, 12].It has been shown [14, 12] that in general a statistical inference problem can be speci�ed bya prior P (p) on P , the information divergence D�(p; q), � 2 [0; 1], and the model Q. For agiven sample x, there exists a unique ideal estimate, called the �-estimate, bp 2 eP , given bybp� = Rp P (pjx)p�. The optimal estimate in the model, bq 2 Q, is given by the �-projection of bponto Q, which minimises D�(bp; q). It is important to note that this only works if we allow bp 2 ePto be unnormalised.Here we shall only consider maximum likelihood estimates (MLE), which are equivalent to 1-estimates with a 0-uniform prior. In this case the ideal estimate bp is simply the empiricaldistribution, and the optimal estimate bq 2 Q is solution to Minq2QK(bp; q), where the generalisedKL-divergence is given by D1(p; q) = K(p; q) := R �q � p+ p log pq�. If both p; q are normalised,ie., if R p = R q = 1, then we get the usual K(p; q) = R p log(p=q).To avoid complicated notation, in this paper we
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l1q 2 Q is the current estimate. l1 and l2 arethe tangent and normal of Q at q. r 2 R isthe current auxiliary estimate. The entitieswith superscript + correspond to the updatedversion.Figure 1: Schematic illustration of theadaptive critic method
shall only consider one-dimensional models Q,ie. smooth curves Q 2 eP. As observed by Fisher [5],the reason behind the information loss of curvedmodels is the turning of the tangent in the log-likelihood space when the estimate moves. To holdall the information in the sample relevant for statis-tical estimation on model Q, we need a at modelR � eP spanned by Q. If the smallest such R is in-�nite dimensional, then it is impossible to do so ex-actly without keeping an increasing amount of data.This is the case for the Cauchy distribution model.Locally, however, a curve only turns in the directionof its normal. The basic idea of our proposed algo-rithm is to construct an R to hold information bothin the tangent and normal directions of the model.This guards against the information loss caused bythe turning of tangent within the osculating plane. The residual information loss is due to non-zero torsion, the fact that the osculating space itself is also turning. We shall show that thisonly gives a higher order term so the algorithm is asymptotically e�cient. The outline of thealgorithm is as follows (cf. Figure 1). 2



1. Find an estimate q 2 Q parameterised by �.2. Construct tangent l1 := @� log q and normal l2 := @2� log q of the model Q at point q. De�nethe auxiliary model as the exponential family (not normalised) spanned by [l1; l2],R := nr : r = q exp(�1l1 + �2l2); � 2 R2o ; (2.1)3. Update the MLE r 2 R parameterised by [�1; �2], in light of new data.4. Compute new estimate q+ 2 Q by projecting r onto Q. Compute the new frame [l+1 ; l+2 ].Project r onto r+ 2 R+, the new auxiliary model spanned by [l+1 ; l+2 ]. This is accomplishedby computing [�+1 ; �+2 ].5. Transfer statistics from R to R+, and calculate the e�ective sample size.6. Go back to step 3.3 DetailsThe relevant geometry for a statistical model in IID
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θ1q 2 Q is the current estimate, with tangent l1and normal l2. r 2 R is the current auxiliarypoint, with auxiliary coordinates �1 and �2.The new estimate on Q is q+, with tangentl+1 and normal l+2 . The auxiliary point r isunchanged and is represented in the new aux-iliary coordinates as �+1 and �+2 , where �+1 = 0.Figure 2: Change of coordinates causedby curvature

training is the exponential geometry, a special caseof information geometry [4, 1, 2, 6]. Roughly speak-ing, it is de�ned by the Fisher information met-ric, which speci�es an inner product on the tangentspace, and the exponential a�ne connection, whichspeci�es that exponential families are to be consid-ered at submanifolds. Note that as we are consid-ering geometry for the whole eP , exponential fam-ilies are not normalised, and the metric is de�nedby the correlation huviq, instead of the covariancehu; viq. [12]Locally, a curve looks like a helix up to third orderapproximation. It is characterised by its metric �21,curvature �2 and torsion �3. For the Cauchy model,it can be calculated that �21 = 1=2, �22 = 7=2, �23 =20=7. The value of �2 is the absolute curvature in eP. The relative curvature in P was calculatedby [5, 4] as �022 = 5=2, using covariance in place of correlation. The di�erence �22 � �022 is thesquare of normal curvature of P in eP , which is unity for any direction in P [11]. The calculationof torsion for the Cauchy model appears to be original.Doing statistics on the exponential family R can be easily accomplished by projecting bp to r 2 Rwith Newton's method (denoting @i := @=@�i)[��i] = � [@i@jK(bp; r)]�1 [@jK(bp; r)] = �Z rlilj��1 �Z bplj � Z rlj� ; (3.1)where R rlilj and R rlj are functions of � and can be computed without knowing the sample, andR bplj is simply the sample mean of lj which can be accumulated easily.Up to second order approximation, Q can be locally identi�ed with the osculating circle, and Rwith the osculating plane. The new estimate q+ and auxiliary estimate r+ can be calculated byprojecting r onto them (Figure 2).�� = �K = 1K atan� �1K1� �2K2� ; (3.2)�+1 = 0; �+2 = 1K2 �1�q(�1K)2 + (1� �2K2)2� ; (3.3)3



where K := �1�2 is the rate the tangent turns relative to the parameter �.
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4 (h) n = 513The upper part of each sub-plot depicts p (dashed line) and r (solid line). The lower part of eachsub-plot depicts the expected squared error (smoother line) and the true squared error (rougher line),both multiplied by the sample size.Figure 3: A typical run of the algorithmThe crucial point of this algorithm is using R rl+j in place of R bpl+j for the new auxiliary model.That is, the previous information as summarised by r 2 R is projected onto r+ 2 R+, sothat the algorithm is on-line. Because the osculating plane is also turning, there is inevitableinformation loss as r is replaced by r+. This is determined by the angle by which the osculatingplane turned, � = T��, where T := �1�3 is the rate of direction change of the osculatingplane in the � coordinate. It can be shown that, asymptotically, the one-step e�ciency �, theproportion of information retained, is at least cos2 �. Since the direction change of the osculatingplane is orthogonal to the model, the actual information loss is even less. Numerical experimentsshow that � = cos� is more accurate. This is used to update r+ 2 R+. In any case the exactrate is irrelevant asymptotically, since all these reduce to � = 1 � a�s2, where a is a constantand s is the arc-length parameter. The overall information loss after n samples can be shownto be a logn+O(1), even if we have used � = 1� b�s, with b 6= a. The asymptotic e�ciency ofthe algorithm is thereforeen = 1� a lognn �O� 1n�! 1; (n!1): (3.4)The initial estimate can be obtained by using a good classical estimator on a small sample, suchas the optimal L-estimator [8]. We �nd that a sample of size �ve is good enough in our case.4



4 Experiments and DiscussionOne typical run of the algorithm is shown in Fig-
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The upper line is the expected loss of informa-tion �23 log n; the lower line is the observed lossaveraged over 20 runs. They are shifted andsuperimposed to show the asymptotic equiva-lence.Figure 4: Expected and actual loss of in-formation
ure 3. Note that r is markedly non-Cauchy ini-tially. The bimodal shape is caused by the tangentand the normal. The normalised expected squarederror n�21 (� � �0)2 approaches 1 as n ! 1 sincethe algorithm is asymptotically e�cient. The ac-tual squared error is �21 distributed (of which this�gure only gives one sample), since the Cauchy dis-tribution is locally one dimensional.The expected and actual loss of information areplotted in Figure 4, showing that our calculationof asymptotic information loss is correct. It shouldbe pointed out that there is an additional loss of asmall sample used for the initial estimate.The novelty of this algorithm is that the auxiliaryinformation is retained and transferred at each step.Intuitively speaking, this means that \If you don'tknow which unimodal model to estimate, then use a multi-modal model". By allowing r to beoutside Q, or even outside P , we are able to represent whatever information as simply the pointr, which need not be outside eP . Furthermore, locally or asymptotically, it is enough for r to bein a two dimensional exponential R.Recently Leen and Orr [9] proposed a stochastic search method to avoid inverting the stochasti-cally updated Hessian. It appears that their method is intuitively equivalent to using (comparewith (3.2)) �� � �1(1 + (�2K2) + (�2K2)2 + : : : ); (4.1)Since in our method the \denominator" is maintained this problem does not occur. It would beinteresting to see how their method performs on the Cauchy model.Most of the interesting curved models, including the Cauchy model and most tanh-type NNssuch as the MLP, BM and Hop�eld net, are mixture-of-exponential models. The best knownmethod for such models is the EM algorithm, which has recently been given an information-geometric interpretation [3]. It would also be interesting to elucidate the relation between ourmethod and the EM method. Our current understanding is that EM is more like Fisher's originalalgorithm which is not on-line.For multilayer networks with an m-dimensional weight space, the tangent space is m-dimensional, but the normal space becomes m2-dimensional. The method described here canstill be applied, with more complicated di�erential-geometric notation. This will appear else-where. In many interesting cases using the diagonal of the normal tensor would be reasonablygood so the algorithm requires keeping a 2m-dimensional statistic. At present we do not knowthe asymptotic e�ciency of such a diagonal approximation.5 ConclusionWe have proposed and analysed an on-line training algorithm for curved models. It is asymptot-ically e�cient even for models without �nite dimensional su�cient statistics. This removes theneed for any ad hoc adjustable parameters in training algorithms, such as a momentum term andstep-length. The idea and performance of the algorithm is illustrated with the Cauchy model.It is expected that this method will have a signi�cant impact in the area of on-line training5
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