
Baltzer Journals March 16, 1996Capacity of the Upstart AlgorithmAnsgar H. L. West1;2 and David Saad21Department of Physics, University of Edinburgh,May�eld Road, Edinburgh EH9 3JZ, United KingdomE-mail: A.H.L.West@ed.ac.uk2Neural Computing Research Group, Aston University,Aston Triangle, Birmingham B4 7ET, United KingdomE-mail: D.Saad@aston.ac.ukThe storage capacity of multilayer networks with overlapping receptive �elds is in-vestigated for a constructive algorithm within a one-step replica symmetry break-ing (RSB) treatment. We �nd that the storage capacity increases logarithmicallywith the number of hidden units K without saturating the Mitchison-Durbinbound. The slope of the logarithmic increase decays exponentionally with thestability with which the patterns have been stored.1 IntroductionSince the ground breaking work of Gardner [1] on the storage capacity of the per-ceptron, the replica technique of statistical mechanics has been successfully usedto investigate many aspects of the performance of simple neural network models.However, progress for multilayer feedforward networks has been hampered by theinherent di�culties of the replica calculation. This is especially true for capac-ity calculations, where replica symmetric (RS) treatments [2] violate the upperMitchison-Durbin bound [3] derived by information theory. Other e�orts [4] breakthe symmetry of the hidden units explicitly prior to the actual calculation, butthe resulting equations are approximations and di�cult to solve for large net-works. This paper avoids these problems by addressing the capacity of a class ofnetworks with variable architecture produced by a constructive algorithm. In thiscase, results derived for simple binary perceptrons above their saturation limit [5]can be applied iteratively to yield the storage capacity of two-layer networks.Constructive algorithms (e.g., [6, 7]) are based on the idea that in generalit is a priori unknown how large a network must be to perform a certain clas-si�cation task. It seems appealing therefore to start o� with a simple network,e.g., a binary perceptron, and to increase its complexity only when needed. This
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A. H. L. West and D. Saad / Capacity of the Upstart Algorithm 2procedure has the added advantage that the training time of the whole network isrelatively short, since each training step consists of training the newly added hid-den units only, whereas previously constructed weights are kept �xed. Althoughconstructive algorithm seem therefore rather appealing, their properties are notwell understood. The aim of this paper is to analyse the performance of one con-structive algorithm, the upstart algorithm [7], in learning random dichotomies,usually referred to as the capacity problem.The basic idea of the upstart algorithm is to start with a binary perceptronunit with possible outputs f1,0g. Further units are created only if the initialperceptron makes any errors on the training set. One unit may have to be createdto correct wrongly on errors (where the target was 0 but the actual outputis 1) another to correct wrongly off errors (where the target was 1 but theoutput is 0). If these units still cause errors in the output of the network, moreunits are created in the next generation of the algorithm until all outputs arecorrect. Di�erent versions of the upstart algorithm di�er in the way new unitsare connected to the old units and to the output unit. The original upstartalgorithm produces a hierarchical network where the number of hidden units tendsto increase exponentionally with each generation. Other versions of the upstartalgorithm[7] build a two-layer architecture and show only a linear increase of thenumber of units with each generation, which is in general easier to implement.We have therefore analysed a non-hierarchical version of the upstart algo-rithm. Within a one-step replica symmetry breaking (RSB) treatment [8], net-works constructed by the upstart algorithm show a logarithmic increase of the ca-pacity with the number of nodes in agreement with the Mitchison-Durbin bound(�c / lnK= ln 2), whereas the simpler RS treatment violates this bound. Fur-thermore, the algorithm does not saturate the Mitchison-Durbin bound for zerostability. We further �nd that the slope of the logarithmic increase of the capacityagainst network size decreases exponentionally with the stability.2 Model description and framework2.1 De�nition of the upstart algorithmThe upstart algorithm �rst creates a binary perceptron (or unit) D0 which learnsa synaptic weight vector W 2 RN and a threshold � which minimize the erroron a set of p input-output mappings �� 2 f�1; 1gN ! �� 2 f0; 1g (� = 1; : : : ; p)from an N{dimensional binary input space to binary targets. The output of thebinary perceptron is determined by�� = �� 1pNW��� � �� = �(h�)



A. H. L. West and D. Saad / Capacity of the Upstart Algorithm 3where �(x) is the Heavyside stepfunction, which is 1 for x � 0 and 0 otherwise,and h� is the activation of the perceptron. The error is de�ned asE =X� � [�� 2(�� � 1)h�] ;where � is the stability with which we require the patterns to be stored. A suitablealgorithm (e.g., [9]) will converge to a set of weightsW which minimizes the aboveerror. If the set of examples is not linearly separable with a minimum distance� of all patterns to the hyperplane, the binary perceptron will not be able toclassify all patterns correctly, i.e., �� 6= �� for some �'s and the upstart algorithmhas to create further daughter units an a hidden layer to realize the mapping. Theupstart algorithm therefore creates a binary f0; 1g output unit O with thresholdone and the initial perceptron D0 and all further daughter units to be built bythe algorithm will form the hidden layer. The �rst perceptron is then connectedto O with a +1 weight, i.e., O has initially the same outputs as D0.The basic idea of the upstart algorithm is to create further daughter units D+and D� in the hidden layer to correct wrongly off and wrongly on errorsrespectively. Consider, for example, the creation of the new hidden unit D�, whichis connected with a large negative weight to O, whose role is to inhibit O. D�should be active (1) for patterns for which O was wrongly on and inactive (0)for patterns for which O was correctly on. Similarly, D� ought to be 0 if Owas wrongly off, in order to avoid further inhibition of O. However, we do nothave to train D� on patterns for which O was correctly off, since an active D�would only reinforce O's already correct response. The resulting training sets andthe targets of both daughter units are illustrated in Table 1. More formally wede�ne the algorithm upstart II by the following steps which are applied recursivelyuntil the task is learned:Step 0: Follow the above procedure for the original unit D0 and the creationof the output unit O. Evaluate the number of wrongly off andwrongly on errors.Step 1: If the output unit O of the upstart network of i generations makes morewrongly off than wrongly on errors, a new unit D�i+1 is createdTable 1: The targets of theupstart II algorithm depend-ing on the requested target �and the actual output � of theoutput unit O. The target\�" means that the patternis not included in the trainingset of D�. � = 1 � = 0correctly on wrongly on� = 1 D+ � D+ 0D� 0 D� 1wrongly off correctly off� = 0 D+ 1 D+ 0D� 0 D� �



A. H. L. West and D. Saad / Capacity of the Upstart Algorithm 4and trained on the training set and targets given in Table 1. If thereare more wrongly on than wrongly off errors, a new unit D+i+1is created with training set and targets also given in Table 1. If bothkind of errors occur equally, two units D�i+1 and D+i+1 are created withtraining sets and targets as above.Step 2: The new units are trained on their training sets and their weights arefrozen. The units D+i+1, D�i+1 are then connected with positive, negativeweights to the output unit respectively. The modulus of the weights areadjusted so that D�i+1 overrules any previous decisions if active. Thetotal number of wrongly off and wrongly on errors of the upstartnetwork of generation i+ 1 is then reevaluated. If the network stillmakes errors the algorithm goes back to Step 1.The algorithm will eventually converge as a daughter unit will always be able tocorrect at least one of the previously misclassi�ed patterns without upsetting anyalready correctly classi�ed examples.2.2 Statistical mechanics framework for calculating the capacity limitSince the upstart algorithm trains only perceptrons, we can apply knowledge ofthe capacity limit and of the error rate of perceptrons above saturation derived ina statistical mechanics framework to calculate the capacity limit of the upstart IIalgorithm for an arbitrary number of generations. Below, we briey review thisstatistical mechanics calculation and refer the reader to [5] and to previous work [1]for a more detailed treatment.In the capacity problem the aim is to �nd the maximum number p of ran-dom input-output mappings of binary N{dimensional input vectors �� to targets�� 2 f0; 1g, which can be realized by a network on average. We assume that eachcomponent of the input vectors �� is drawn independently with equal probabil-ity from f�1; 1g. The distribution of targets is taken to be pattern independentwith a possible bias b: P (�) = 12(1 + b)�(1� �) + 12(1� b)�(�). We will here onlyconsider an unbiased output distribution for the intial perceptron. The targetdistributions for daughter units however will in general be biased.Each binary perceptron is trained stochastically and we only allow weightvector solutions with the minimal achievable error. The error rate, i.e., the num-ber of errors divided by the total number of examples, is assumed to be self-averaging with respect to the randomness in the training set in the thermodynamiclimit N ! 1. In this limit the natural measure for the number of examples pis � = p=N . With increasing � the weight space of possible solutions shrinks,leaving a unique solution at the capacity limit of the binary perceptron. Abovethe capacity limit many di�erent weight space solutions with the same error arepossible. In general the solution space will be disconnected as two solutions can



A. H. L. West and D. Saad / Capacity of the Upstart Algorithm 5possibly missclassify di�erent patterns. As � diverges, the solution space becomesincreasingly fragmented.The replica trick is used to calculate the solution space and the minimal errorrate averaged over the randomness of the training set. This involves the replica-tion of the perceptron weight vector, each replica representing a di�erent possiblesolution to the same storage problem. In order to make signi�cant progress, onehas further to assume some kind of structure in the replica space. Below the ca-pacity limit, the connectedness of the solution space is reected by the correctnessof a replica symmetric (RS) ansatz. Above the capacity, the disconnectedness ofthe solution space breaks the RS to some degree. We have restricted ourselves toa one-step replica symmetry breaking (RSB) calculation, which is expected to beat least su�cient for small error rates. The form of the equations for the errorrate resulting from the RS and one-step RSB calculations are quite cumbersomeand will be reported elsewhere [5, 10]. For the perceptron, the error rate is afunction of the output bias b and the load � only.3 Results of the upstart algorithmThe capacity of an upstart network with K hidden units can now be calculated.The initial perceptron is trained with an example load of � and an unbiasedoutput distribution b = 0. The saddlepoint equations and the wrongly on andwrongly off error rates are calculated numerically. These error rates determinethe load and bias for the unit(s) to be created in the next generation. Now its(their) error rates and the errors of the output unit can in turn be calculated bysolving the saddlepoint equations. This is iterated until K units have been built.If the output unit still makes error, we are above the capacity limit of the upstartnet with K hidden units and � has to be decreased. On the other hand, if theoutput unit makes no errors, � can be increased. The maximal � for which theoutput unit makes no errors de�nes the saturation point of the network. Thecapacity limit, de�ned here as the maximal number of examples per adjustableweight of the network, then becomes simply �c(K) = �=K.In Fig. 1a we present the storage capacity as a function of the number ofhidden units for both a one-step RSB and a RS treatment at zero stability ofthe patterns (� = 0). Whereas one-step RSB predicts a logarithmic increase�c(K) / ln(K) for large networks, in agreement with the Mitchison-Durbin bound,the results for the RS-theory violate this upper bound1, i.e., the RS theory failsto predict the qualitative behaviour correctly.In Fig. 1a we also show that the storage capacity still increases logarithmicallywith the number of units K for non-zero stability, but with a smaller slope .1The violation occurs for K � 180 and the largest networks in the RS case were K = 999.
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(a) (b)�c K
�=0�=0:1�=0 (RS)  �(�)Figure 1: (a) Within the one-step RSB theory, the capacity �c increaseslogarithmically with the number of hidden units K for large K for thestabilities � = 0 (0:1), i.e., �c / 0:3595 (0:182) lnK (see superimposed asymp-totics). The RS theory violates the Mitchison-Durbin bound (third asymptotic:�c / lnK= ln 2) for K � 180. (b) The slope  of the logarithmic increase of thecapacity decreases exponentionally with the stability �.Fig. 1b shows the dependence of the slope  as a function of the stability �for one-step RSB. The maximal slope for zero stability  = 0:3595� 0:0015 doesnot saturate the Mitchison-Durbin bound  = 1= ln 2 � 1:4427, but is about fourtimes lower. With increasing stabilities � this slope decreases exponentionally / exp(�6:77� 0:02 �).4 Summary and DiscussionThe objective of this work has been to calculate the storage capacity of multilayernetworks created by the constructive upstart algorithm in a statistical mechanicsframework using the replica method. We found that the RS-theory fails to predictthe correct results even qualitatively. The one-step RSB theory yields qualitativelyand quantitatively correct results over a wide range of network sizes and stabilities.In the one-step RSB treatment, a logarithmic increase with slope  of thecapacity of the upstart algorithm with the number of units K was found forall stabilities. The slope decreases exponentionally [ / exp(�6:77�)] with thestability �. It would be interesting to investigate if this result carries over toother constructive algorithms or even to general two-layer networks.For zero stability the slope of this increase is around four times smaller thanthe upper bound (1= ln 2) predicted by information theory. We suggest that thisindicates that the upstart algorithm uses its hidden units less e�ectively than



A. H. L. West and D. Saad / Capacity of the Upstart Algorithm 7a general two-layer network. We think this is due to the fact that the upstartalgorithm uses the hidden units to overrule previous decisions, resulting in an ex-ponential increase of the hidden layer to output unit weights. This is in contrast togeneral two-layer networks which usually have hidden-output weights of roughlythe same order and can therefore explore a larger space of internal representations.For the upstart algorithm a large number of internal representations are equiva-lent and others cannot be implemented as they are related to erroneous outputs.However, it would be interesting to investigate how other constructive algorithms(e.g., [6]) perform in comparison. A systematic investigation of the storage ca-pacity of constructive algorithms may ultimately lead to a better understanding,and thus possibly to novel, much improved algorithms.AcknowledgementsAHLW would like to acknowledge gratefully �nancial support by the EPSRC.This work has been supported by EU grant ERB CHRX-CT92-0063.References[1] E. Gardner. J. Phys. A, 21:257{270, 1988.[2] E. Barkai, D. Hansel and H. Sompolinsky. Phys. Rev. A, 45:4146{4161, 1992.[3] G. J. Mitchison and R. M. Durbin. Biological Cybernetics, 60:345{356, 1989.[4] D. Saad. J. Phys. A, 27:2719{2734, 1994.[5] A. H. L. West, and D. Saad, submitted to J. Phys. A, 1996.[6] M. M�ezard and J.-P. Nadal. J. Phys. A, 22:2191{2203 1989.[7] M. Frean. Neural Computation, 2:198{209, 1990.[8] For an overview, see e.g., M. M�ezard, G. Parisi and M. G. Virasoro, Spin Glass Theory andBeyond , World Scienti�c, Singapore, 1987.[9] M. Frean. Neural Computation, 4:946{957, 1992, and references therein.[10] A. H. L. West and D. Saad. in preparation, 1996.


