
Baltzer JournalsOn-Line Learning in Multilayer Neural NetworksDavid Saad 1 and Sara A. Solla 2 �1 Department of Physics, University of Edinburgh, Edinburgh EH9 3JZ, UK.2 CONNECT, The Niels Bohr Institute, Blegdamsvej 17, Copenhagen 2100, Denmark.We present an analytic solution to the problem of on-line gradient-descent learningfor two-layer neural networks with an arbitrary number of hidden units in bothteacher and student networks. The technique, demonstrated here for the case ofadaptive input-to-hidden weights, becomes exact as the dimensionality of the inputspace increases.Layered neural networks are of interest for their ability to implement input-output maps [1]. Classi�cation and regression tasks formulated as a map from anN -dimensional input space � onto a scalar � are realized through a map � = fJ(�),which can be modi�ed through changes in the internal parameters fJg specifyingthe strength of the interneuron couplings. Learning refers to the modi�cation ofthese couplings so as to bring the map fJ implemented by the network as close aspossible to a desired map ~f . Information about the desired map is provided throughindependent examples (��; ��), with �� = ~f(��) for all �.A recently introduced approach investigates on-line learning [2]. In this scenariothe couplings are adjusted to minimize the error after the presentation of eachexample. The resulting changes in fJg are described as a dynamical evolution,with the number of examples playing the role of time. The average that accountsfor the disorder introduced by the independent random selection of an exampleat each time step can be performed directly. The result is expressed in the formof dynamical equations for order parameters which describe correlations among thevarious nodes in the trained network as well as their degree of specialization towardsthe implementation of the desired task.Here we obtain analytic equations of motion for the order parameters in a generaltwo-layer scenario: a student network composed of N input units, K hidden units,and a single linear output unit is trained to perform a task de�ned through a teachernetwork of similar architecture except that its number M of hidden units is notnecessarily equal toK. Two-layer networks with an arbitrary number of hidden units�Work supported by EU grant ERB CHRX-CT92-0063.
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Author's Name(s)/Short Title Here 2have been shown to be universal approximators [1] for N -to-one dimensional maps.Our results thus describe the learning of tasks of arbitrary complexity (general M).The complexity of the student network is also arbitrary (general K, independent ofM), providing a tool to investigate realizable (K = M), over-realizable (K > M),and unrealizable (K < M) learning scenarios.In this paper we limit our discussion to the case of the soft-committee machine[2], in which all the hidden units are connected to the output unit with positivecouplings of unit strength, and only the input-to-hidden couplings are adaptive.Consider the student network: hidden unit i receives information from input unitr through the weight Jir , and its activation under presentation of an input pattern� = (�1; : : : ; �N) is xi = Ji � �, with Ji = (Ji1; : : : ; JiN) de�ned as the vector ofincoming weights onto the i-th hidden unit. The output of the student network is�(J; �) = PKi=1 g (Ji � �), where g is the activation function of the hidden units,taken here to be the error function g(x) � erf(x=p2), and J � fJig1�i�K is the setof input-to-hidden adaptive weights.Training examples are of the form (��; ��). The components of the indepen-dently drawn input vectors �� are uncorrelated random variables with zero meanand unit variance. The corresponding output �� is given by a deterministic teacherwhose internal structure is that of a network similar to the student except for apossible di�erence in the number M of hidden units. Hidden unit n in the teachernetwork receives input information through the weight vector Bn = (Bn1; : : : ; BnN ),and its activation under presentation of the input pattern �� is y�n = Bn � ��. Thecorresponding output is �� = PMn=1 g (Bn � ��). We will use indices i; j; k; l : : : torefer to units in the student network, and n;m; : : : for units in the teacher network.The error made by a student with weights J on a given input � is given by thequadratic deviation�(J; �) � 12 [ �(J; �)� � ]2 = 12 " KXi=1 g(xi)� MXn=1 g(yn) #2 : (1)Performance on a typical input de�nes the generalization error �g(J) �< �(J; �) >f�g through an average over all possible input vectors �, to be per-formed implicitly through averages over the activations x = (x1; : : : ; xK) and y =(y1; : : : ; yM). Note that both < xi >=< yn >= 0, while the components of thecovariance matrix C are given by overlaps among the weight vectors associated withthe various hidden units: < xi xk > = Ji � Jk � Qik, < xi yn > = Ji �Bn � Rin,and < yn ym > = Bn �Bm � Tnm. The averages over x and y are performed usinga joint probability distribution given by the multivariate Gaussian:P(x;y) = 1q(2�)K+M jCj exp��12(x;y)TC�1(x;y)� , with C = " Q RRT T # :(2)



Author's Name(s)/Short Title Here 3The averaging yields an expression for the generalization error in terms of theorder parameters Qik , Rin, and Tnm. For g(x) � erf(x=p2) the result is:�g(J) = 1�(Xik arcsin Qikp1 +Qii p1 +Qkk +Xnm arcsin Tnmp1 + Tnn p1 + Tmm�2 Xin arcsin Rinp1 +Qii p1 + Tnn) : (3)The parameters Tnm are characteristic of the task to be learned and remain �xed,while the overlaps Qik and Rin are determined by the student weights J and evolveduring training.A gradient descent rule for the update of the student weights results in J�+1i =J�i + �N ��i ��, where the learning rate � has been scaled with the input size N , and��i � g0(x�i ) hPMn=1 g(y�n)�PKj=1 g(x�j )i is de�ned in terms of both the activationfunction g and its derivative g0.The time evolution of the overlaps Rin and Qik can be explicitly written in termsof similar di�erence equations. The dependence on the current input �� is onlythrough the activations x and y, and the corresponding averages can be performedusing the joint probability distribution (2). In the thermodynamic limit N ! 1the normalized example number � = �=N can be interpreted as a continuous timevariable, leading to the equations of motion:dRind� = �8<:Xm I3(i; n;m)�Xj I3(i; n; j)9=; ;dQikd� = �8<:Xm I3(i; k;m)�Xj I3(i; k; j)9=;+ �8<:Xm I3(k; i;m)�Xj I3(k; i; j)9=;+�28<:Xn;m I4(i; k; n;m)� 2Xj;n I4(i; k; j; n)+Xj;l I4(i; k; j; l)9=; : (4)The two multivariate Gaussian integrals: I3 � < g0(u) v g(w) > and I4 � <g0(u) g0(v) g(w) g(z) > represent averages over the probability distribution (2). Theaverages can be performed analytically for the choice g(x) = erf(x=p2). Argumentsassigned to I3 and I4 are to be interpreted following our convention to distinguishstudent from teacher activations. For example, I3(i; n; j)� < g0(xi) yn g(xj) >, andthe average is performed using the three-dimensional covariance matrix C3 whichresults from projecting the full covariance matrix C of Eq. (2) onto the relevantsubspace. For I3(i; n; j) the corresponding matrix is:C3 = 0B@ Qii Rin QijRin Tnn RjnQij Rjn Qjj 1CA :



Author's Name(s)/Short Title Here 4I3 is given in terms of the components of the C3 covariance matrix byI3 = 2� 1p�3 C23(1 + C11)� C12C131 + C11 ; (5)with �3 = (1+C11)(1+C33)�C213. The expression for I4 in terms of the componentsof the corresponding C4 covariance matrix isI4 = 4�2 1p�4 arcsin� �0p�1p�2� ; (6)where �4 = (1 + C11)(1 + C22)� C212, and�0 = �4C34 � C23C24(1 + C11)� C13C14(1 + C22) + C12C13C24 + C12C14C23 ;�1 = �4(1 + C33)� C223(1 + C11)� C213(1 + C22) + 2C12C13C23 ;�2 = �4(1 + C44)� C224(1 + C11)� C214(1 + C22) + 2C12C14C24 :These dynamical equations provide a novel tool for analyzing the learning processfor a general soft-committee machine with an arbitrary number K of hidden units,trained to perform a task de�ned by a soft-committee teacher with M hidden units.This set of coupled �rst-order di�erential equations can be easily solved numerically,even for large values of K and M , providing valuable insight into the process oflearning in multilayer networks, and allowing for the calculation of the time evolutionof the generalization error [3].In what follows we focus on learning a realizable task (K = M) de�ned throughuncorrelated teacher vectors of unit length (Tnm = �nm). The time evolution of theoverlaps Rin and Qik follows from integrating the equations of motion (4) from initialconditions determined by a random initialization of the student vectors fJig1�i�K .Random initial norms Qii for the student vectors are taken here from a uniformdistribution in the [0; 0:5] interval. Overlaps Qik between independently chosenstudent vectors Ji and Jk, or Rin between Ji and an unknown teacher vector Bnare small numbers, of order 1=pN for N � K, and taken here from a uniformdistribution in the [0; 10�12] interval. We show in Fig. 1a-c the resulting evolutionof the overlaps and generalization error for K = 3 and � = 0:1.This example illustrates the successive regimes of the learning process. The sys-tem quickly evolves into a symmetric subspace controlled by an unstable suboptimalsolution which exhibits no di�erentiation among the various student hidden units.Trapping in the symmetric subspace prevents the specialization needed to achievethe optimal solution, and the generalization error remains �nite, as shown by theplateau in Fig. 1c. The symmetric solution is unstable, and the perturbation intro-duced through the random initialization of the overlaps Rin eventually takes over:the student units become specialized and the matrix R of student-teacher overlapstends towards the matrix T , except for a permutational symmetry associated with



Author's Name(s)/Short Title Here 5(a) (b)
(c) (d)

Figure 1: The overlaps and the generalization error as a function of � for athree-node student learning an isotropic teacher (Tnm = �nm). Results for � = 0:1are shown for (a) student-student overlaps Qik , (b) student-teacher overlaps Rin,and (c) the generalization error. The generalization error for di�erent values of thelearning rate � is shown in (d).the arbitrary labeling of the student hidden units. The generalization error plateauis followed by a monotonic decrease towards zero once the specialization begins andthe system evolves towards the optimal solution.Curves for the time evolution of the generalization error for di�erent values of �shown in Fig. 1d for K = 3 identify trapping in the symmetric subspace as a small� phenomenon. We therefore consider the equations of motion (4) in the small� regime. The term proportional to �2 is neglected and the resulting truncatedequations of motion are used to investigate a phase characterized by students ofsimilar norms: Qii = Q for all 1 � i � K, similar correlations among themselves:Qik = C for all i 6= k, and similar correlations with the teacher vectors: Rin = R forall 1 � i; n � K. The resulting dynamical equations exhibit a �xed point solutionat Q� = C� = 1=(2K� 1) and R� = pQ�=K = 1=pK(2K � 1). The correspondinggeneralization error is given by ��g = (K=�) ��=6�K arcsin �(2K)�1�	.A simple geometrical picture explains the relation Q� = C� = K(R�)2 at thesymmetric �xed point. The learning process con�nes the student vectors fJig to the



Author's Name(s)/Short Title Here 6subspace SB spanned by the set of teacher vectors fBng. For Tnm = �nm the teachervectors form an orthonormal set: Bn = en, with en �em = �nm for 1 � n;m � K, andprovide an expansion for the weight vectors of the trained student: J�i =PnRinen.The student-teacher overlaps Rin are independent of i in the symmetric phase andindependent of n for an isotropic teacher: Rin = R� for all 1 � i; n � K. Theexpansion J�i = R�Pn en results in Q� = C� = K(R�)2.The length of the symmetric plateau is controlled by the degree of asymmetryin the initial conditions [2] and by the learning rate �. The small � analysis pre-dicts trapping times inversely proportional to �, in quantitative agreement with theshrinking plateau of Fig. 1d. The increase in the height of the plateau with decreas-ing � is a second order e�ect [3], as the truncated equations of motion predict aunique value of ��g = 0:0203 at K = 3.Escape from the symmetric subspace signals the onset of hidden unit specializa-tion. As shown in Fig. 1b, the process is driven by a breaking of the uniformity ofthe student-teacher correlations [3]: each student node becomes increasingly special-ized to a speci�c teacher node, while its overlap with the remaining teacher nodesdecreases and eventually decays to zero. We thus distinguish between a growingoverlap R between a given student node and the teacher node it begins to imi-tate, and decaying secondary overlaps S between the same student node and theremaining teacher nodes. Further specialization involves the decay to zero of thestudent-student correlations C and the growth of the norms Q of the student vec-tors. The student nodes can be relabeled so as to bring the matrix of student-teacheroverlaps to the form Rin = R�in+S(1��in); the matrix of student-student overlapsis of the form Qik = Q�ik + C(1� �ik).The subsequent evolution of the system converges to an optimal solution withperfect generalization, characterized by a �xed point at (R�)2 = Q� = 1 and S� =C� = 0, with ��g = 0. Linearization of the full equations of motion around the asymp-totic �xed point results in four eigenvalues, of which only two control convergence.An initially slow mode is characterized by a negative eigenvalue that decreases mono-tonically with �, while an initially faster mode is characterized by an eigenvalue thateventually increases and becomes positive at �max = (�=K)[75�42p3]=[25p3�42],to �rst order in 1=K. Exponential convergence of R, S, C, and Q to their optimalvalues is guaranteed for all learning rates in the range (0; �max); in this regime thegeneralization error decays exponentially to ��g = 0, with a rate controlled by theslowest decay mode.References[1] G. Cybenko, Math. Control Signals and Systems 2, 303 (1989).[2] M. Biehl and H. Schwarze, J. Phys. A 28, 643 (1995).[3] D. Saad and S. A. Solla, Phys. Rev. Lett. 74, 4337, (1995); Phys. Rev. E 52, 4225, (1995).


