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On-Line Learning in Multilayer Neural Networks

DAVID SaaDp ! AND SArRA A. SoLra 2 *
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2 CONNECT, The Niels Bohr Institute, Blegdamsvej 17, Copenhagen 2100, Denmark.

We present an analytic solution to the problem of on-line gradient-descent learning
for two-layer neural networks with an arbitrary number of hidden units in both
teacher and student networks. The technique, demonstrated here for the case of
adaptive input-to-hidden weights, becomes exact as the dimensionality of the input
space increases.

Layered neural networks are of interest for their ability to implement input-
output maps [1]. Classification and regression tasks formulated as a map from an
N-dimensional input space £ onto a scalar ¢ are realized through a map { = f5(§),
which can be modified through changes in the internal parameters {J} specifying
the strength of the interneuron couplings. Learning refers to the modification of
these couplings so as to bring the map fj implemented by the network as close as
possible to a desired map f. Information about the desired map is provided through

independent examples (£, ("), with ¢* = f(&*) for all p.

A recently introduced approach investigates on-line learning [2]. In this scenario
the couplings are adjusted to minimize the error after the presentation of each
example. The resulting changes in {J} are described as a dynamical evolution,
with the number of examples playing the role of time. The average that accounts
for the disorder introduced by the independent random selection of an example
at each time step can be performed directly. The result is expressed in the form
of dynamical equations for order parameters which describe correlations among the
various nodes in the trained network as well as their degree of specialization towards
the implementation of the desired task.

Here we obtain analytic equations of motion for the order parameters in a general
two-layer scenario: a student network composed of N input units, K hidden units,
and a single linear output unit is trained to perform a task defined through a teacher
network of similar architecture except that its number M of hidden units is not
necessarily equal to K. Two-layer networks with an arbitrary number of hidden units
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have been shown to be universal approximators [1] for N-to-one dimensional maps.
Our results thus describe the learning of tasks of arbitrary complexity (general M ).
The complexity of the student network is also arbitrary (general K, independent of
M), providing a tool to investigate realizable (K = M), over-realizable (K > M),
and unrealizable (K < M) learning scenarios.

In this paper we limit our discussion to the case of the soft-committee machine
[2], in which all the hidden units are connected to the output unit with positive
couplings of unit strength, and only the input-to-hidden couplings are adaptive.
Consider the student network: hidden unit ¢ receives information from input unit
r through the weight J;., and its activation under presentation of an input pattern
&= (&,....¢n)is a; = J; - & with J; = (Ja,...,Jiv) defined as the vector of
incoming weights onto the ¢-th hidden unit. The output of the student network is
o(J, &) = K g (J; - &), where ¢ is the activation function of the hidden units,
taken here to be the error function g(z) = erf(z/v/2), and J = {Jiti<i<k is the set
of input-to-hidden adaptive weights.

Training examples are of the form (&*,(*). The components of the indepen-
dently drawn input vectors £” are uncorrelated random variables with zero mean
and unit variance. The corresponding output ¢* is given by a deterministic teacher
whose internal structure is that of a network similar to the student except for a
possible difference in the number M of hidden units. Hidden unit n in the teacher
network receives input information through the weight vector B,, = (Bp1,..., Bun),
and its activation under presentation of the input pattern £ is y# = B,, - £*. The
corresponding output is (* = Zanl g (B, - &"). We will use indices ¢,j,k,[... to
refer to units in the student network, and n,m, ... for units in the teacher network.

The error made by a student with weights J on a given input £ is given by the
quadratic deviation

1 1T X M 2
(J,6) =510, -C) =3 Eg(wi)—z_:g(yn) : (1)

Performance on a typical input defines the generalization error €,(J) =
< €(J,€) >(¢ through an average over all possible input vectors £, to be per-
formed implicitly through averages over the activations x = (21,...,2x) and y =
(y1,--.,ym). Note that both < z; >=< y, >= 0, while the components of the
covariance matrix C are given by overlaps among the weight vectors associated with
the various hidden units: < z; 2 > = J; - Jp = Qip, < vy, > = J; - B, = Ry,
and < ¥, ym > = B, - B,, = T,n. The averages over x and y are performed using
a joint probability distribution given by the multivariate Gaussian:
1 Q R ]

1
P(x,y)= ——— ——(x,y) 7! (x, } ith € =
(%,¥) o] exp{ 5(xy) CT (xy) Wi [RT T

(2)
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The averaging yields an expression for the generalization error in terms of the
order parameters Q;x, R, and T,,,,. For g(z) = erf(x/ﬁ) the result is:

() = — arcsin + arcsin
Rin
_9 ; ) 3
2 aresin e +Tm} ®)

The parameters T, are characteristic of the task to be learned and remain fixed,
while the overlaps ;1 and R;, are determined by the student weights J and evolve
during training.

A gradient descent rule for the update of the student weights results in Jf"’l =
JE+ = 6% &*, where the learning rate n has been scaled with the input size N, and
o = g'(at) [Zanl gyt — S, g(x;‘)] is defined in terms of both the activation
function ¢ and its derivative ¢’.

The time evolution of the overlaps R;, and §);x can be explicitly written in terms
of similar difference equations. The dependence on the current input &£ is only
through the activations x and y, and the corresponding averages can be performed
using the joint probability distribution (2). In the thermodynamic limit N — oo
the normalized example number @ = u/N can be interpreted as a continuous time
variable, leading to the equations of motion:

dR;,

W 77{2[3(2,%,772)—2[3(27”7])} 9

d(?ozk n {Z]S(i, k,m)— ZIB(i’ k,j)} +n {Zlg(k, i,m)— ZI3(]€, i,j)} +
m J m J
7f{E:h@%;mnn—QE:LdLhﬂn)+§:LdLh$U}. (4)
M am 5l
The two multivariate Gaussian integrals: I3 = < ¢'(u) v g(w) > and I = <
g'(u) ¢'(v) g(w) g(z) > represent averages over the probability distribution (2). The
averages can be performed analytically for the choice g(z) = erf(z/v/2). Arguments
assigned to I3 and I, are to be interpreted following our convention to distinguish
student from teacher activations. For example, I3(i,n,j) = < ¢'(2;) y,, g(z;) >, and
the average is performed using the three-dimensional covariance matrix C's which
results from projecting the full covariance matrix C of Eq. (2) onto the relevant
subspace. For I5(¢,n,j) the corresponding matrix is:

Qi Rin Q
Qij Rjn @y
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I3 is given in terms of the components of the C'5 covariance matrix by

I3 =

2 1 Cas(1 4+ C11) — C12C43 5)
T

VA3 1+Ch ’

with A3 = (1+Cq1)(1+Cs3)—C%;. The expression for I in terms of the components
of the corresponding €4 covariance matrix is

I = i L arcsin (L)
1T A4 VAVAS)
where Ay = (14 C11)(1 + Caq) — Cf,, and

(6)

Ao = AyCs4— Co3C0(1 + Ci1) — C13C14(1 4+ Caz) + C12C13C04 + C12C14C53
Ay Ag(1 4+ Cs3) — 0223(1 + Ci1) — 0123(1 + Ca2) 4 2C12C15C3
Ay Ag(14 Cyq) — C3,(1+ C1y) — C3(1 + Cop) + 2C15C14C4

These dynamical equations provide a novel tool for analyzing the learning process
for a general soft-committee machine with an arbitrary number K of hidden units,
trained to perform a task defined by a soft-committee teacher with A hidden units.
This set of coupled first-order differential equations can be easily solved numerically,
even for large values of K and M, providing valuable insight into the process of
learning in multilayer networks, and allowing for the calculation of the time evolution
of the generalization error [3].

In what follows we focus on learning a realizable task (K = M) defined through
uncorrelated teacher vectors of unit length (7, = 8,,,,). The time evolution of the
overlaps R;, and @i, follows from integrating the equations of motion (4) from initial
conditions determined by a random initialization of the student vectors {Ji}lgigK-
Random initial norms ¢);; for the student vectors are taken here from a uniform
distribution in the [0,0.5] interval. Overlaps Q;; between independently chosen
student vectors J; and Jg, or R;, between J; and an unknown teacher vector B,
are small numbers, of order 1/\/N for N > K, and taken here from a uniform
distribution in the [0,107!?] interval. We show in Fig. la-c the resulting evolution
of the overlaps and generalization error for K = 3 and n = 0.1.

This example illustrates the successive regimes of the learning process. The sys-
tem quickly evolves into a symmetric subspace controlled by an unstable suboptimal
solution which exhibits no differentiation among the various student hidden units.
Trapping in the symmetric subspace prevents the specialization needed to achieve
the optimal solution, and the generalization error remains finite, as shown by the
plateau in Fig. 1c. The symmetric solution is unstable, and the perturbation intro-
duced through the random initialization of the overlaps R;, eventually takes over:
the student units become specialized and the matrix R of student-teacher overlaps
tends towards the matrix T', except for a permutational symmetry associated with
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Figure 1: The overlaps and the generalization error as a function of a for a

three-node student learning an isotropic teacher (7)., = 6, ). Results for n = 0.1
are shown for (a) student-student overlaps @k, (b) student-teacher overlaps R,
and (c) the generalization error. The generalization error for different values of the

learning rate 7 is shown in (d).

the arbitrary labeling of the student hidden units. The generalization error plateau
is followed by a monotonic decrease towards zero once the specialization begins and
the system evolves towards the optimal solution.

Curves for the time evolution of the generalization error for different values of 5
shown in Fig. 1d for K = 3 identify trapping in the symmetric subspace as a small
n phenomenon. We therefore consider the equations of motion (4) in the small
n regime. The term proportional to n? is neglected and the resulting truncated
equations of motion are used to investigate a phase characterized by students of
similar norms: ¢;; = ¢ for all 1 < ¢ < K, similar correlations among themselves:
Qi = C for all © # k, and similar correlations with the teacher vectors: R;, = R for
all 1 <2,n < K. The resulting dynamical equations exhibit a fixed point solution
at Q*=C*=1/(2K —1)and R* = \/Q*/K = 1/\/K(2K —1). The corresponding
generalization error is given by €& = (K /x) {7 /6 — K arcsin ((2K)7")}.

A simple geometrical picture explains the relation @* = C* = K(R*)? at the
symmetric fixed point. The learning process confines the student vectors {J;} to the
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subspace Sp spanned by the set of teacher vectors {B,,}. For T},,;, = 6., the teacher
vectors form an orthonormal set: B,, = e,,, with e,,-e,,, = 6,,,, for1 < n,m < K, and
provide an expansion for the weight vectors of the trained student: J* =5~ R;.e,.
The student-teacher overlaps R;, are independent of 7 in the symmetric phase and
independent of n for an isotropic teacher: R;, = R* for all 1 < ¢,n < K. The
expansion J7 = R*Y" e, results in Q* = C* = K(R*)?.

The length of the symmetric plateau is controlled by the degree of asymmetry
in the initial conditions [2] and by the learning rate 7. The small n analysis pre-
dicts trapping times inversely proportional to 7, in quantitative agreement with the
shrinking plateau of Fig. 1d. The increase in the height of the plateau with decreas-
ing 7 is a second order effect [3], as the truncated equations of motion predict a
unique value of €; = 0.0203 at K = 3.

Escape from the symmetric subspace signals the onset of hidden unit specializa-
tion. As shown in Fig. 1b, the process is driven by a breaking of the uniformity of
the student-teacher correlations [3]: each student node becomes increasingly special-
ized to a specific teacher node, while its overlap with the remaining teacher nodes
decreases and eventually decays to zero. We thus distinguish between a growing
overlap R between a given student node and the teacher node it begins to imi-
tate, and decaying secondary overlaps S between the same student node and the
remaining teacher nodes. Further specialization involves the decay to zero of the
student-student correlations C' and the growth of the norms ¢ of the student vec-
tors. The student nodes can be relabeled so as to bring the matrix of student-teacher
overlaps to the form R;, = Ré;, + 5(1 — 6;,); the matrix of student-student overlaps
is of the form Q;r = Qi + C(1 — b;1).

The subsequent evolution of the system converges to an optimal solution with
perfect generalization, characterized by a fixed point at (R*)? = @* = 1 and 5* =
C* =0, with €; = 0. Linearization of the full equations of motion around the asymp-
totic fixed point results in four eigenvalues, of which only two control convergence.
An initially slow mode is characterized by a negative eigenvalue that decreases mono-
tonically with », while an initially faster mode is characterized by an eigenvalue that
eventually increases and becomes positive at 9,4, = (7/K)[75 —42+/3]/[25v3 —42],
to first order in 1/K. Exponential convergence of R, 5, C', and @ to their optimal
values is guaranteed for all learning rates in the range (0, 7,q,); in this regime the
generalization error decays exponentially to €; = 0, with a rate controlled by the
slowest decay mode.
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