
Regularization and Complexity Controlin Feed-forward NetworksChristopher M. BishopNeural Computing Research GroupDept. of Computer Science and Applied MathematicsAston University, Birmingham, UK.c.m.bishop@aston.ac.ukTechnical Report: NCRG/95/022Available from: http://neural-server.aston.ac.uk/AbstractIn this paper we consider four alternative approaches to complexitycontrol in feed-forward networks based respectively on architecture se-lection, regularization, early stopping, and training with noise. We showthat there are close similarities between these approaches and we ar-gue that, for most practical applications, the technique of regularizationshould be the method of choice.1 IntroductionA central issue in the application of feed-forward networks is the determina-tion of the appropriate level of complexity for the network. The complexitydetermines the generalization properties of the model, since a network whichis either too simple or too complex will have poor generalization1. This can beeasily understood by analogy to the problem of curve �tting using polynomials.Consider a data set generated from a smooth underlying function with additivenoise on the target variables. A polynomial with too few coe�cients will beunable to capture the underlying function from which the data was generated,while a polynomial with too many coe�cients will start to model the noise onthe data (the phenomenon of over-�tting) and hence will again result in a poorrepresentation of the underlying smooth function. The order of the polynomialcontrols the number of degrees of freedom (i.e. the number of independentlyadjustable parameters) in the model, and there will be some optimum numberof coe�cients for which the �tted polynomial will give the best representationof the function. It is this polynomial which will, on average, give the best pre-dictions for new data. A similar situation arises in the application of neuralnetworks, where it is again necessary to match the complexity of the model tothe problem being solved.1Here we are adopting a frequentist viewpoint. From a Bayesian perspective there maybe, in principle at least, no need to limit model complexity [6].

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aston Publications Explorer

https://core.ac.uk/display/78877535?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 Complexity ControlIn this paper we consider four common approaches to complexity control basedrespectively on network architecture selection, regularization, early stopping,and training with noise. We show that there are relationships and similaritiesbetween these techniques, and we shall argue that, for the majority of applica-tions, the technique of regularization should be the method of choice. For eachof these techniques there is some parameter (number of hidden units, regular-ization coe�cient, number of training steps, or noise variance) which controlsthe model complexity. Its value is chosen to maximize the generalization per-formance of the model, using techniques such as cross-validation [2].2.1 Architecture SelectionThe complexity of a neural network model is governed by the number of degreesof freedom, which in turn is controlled by the number of adaptive parameters(weights and biases) in the network. Changes to the network architecture whichalter the number of parameters can therefore be used to control complexity. Oneof the simplest approaches involves the use of networks with a single hiddenlayer, in which the the number of parameters is controlled by adjusting thenumber of hidden units. Other approaches involve growing or pruning thenetwork structure as part of the training process itself.2.2 RegularizationNetwork training corresponds to the minimization of an error function E. Thetechnique of regularization encourages smoother network mappings by addinga penalty 
 to the error function to giveeE = E + �
 (1)where � is a parameter called a regularization coe�cient which controls themodel complexity. In a Bayesian context, the regularization function corre-sponds to the negative logarithm of the prior distribution of network weights.One of the simplest forms of regularizer is called weight decay and consistsof the sum of the squares of the adaptive parameters
 = 12kwk2 (2)where w denotes the vector of all weights and biases in the network. Regulariz-ers of this form encourage the network function to be smooth. In conventionalcurve �tting, the use of this form of regularizer is called ridge regression. Thegradient of the regularized error function is given from (1) and (2) byr eE = rE + �w (3)We can gain insight into the behaviour of the weight decay regularizerby considering the particular case of a quadratic error function. A generalquadratic error can be written in the formE = E0 + 12(w �w�)TH(w �w�) (4)



where the Hessian matrix H is positive de�nite and constant, and w� corre-sponds to the minimum of the error function. In the presence of the regu-larization term, the minimum moves to a point ew which, from (3) and (4),satis�es H(ew �w�) + � ew = 0 (5)We can better interpret the e�ect of the weight decay term if we rotate the axesin weight space so as to diagonalize the Hessian. This is done by consideringthe eigenvector equation for the Hessian given byHuj = �juj (6)We can now expand w� and ew in terms of the eigenvectors to givew� =Xj w�juj ew =Xj ewjuj (7)Combining (5) and (7), and using the orthonormality of the fujg, we obtainthe following relation between the minima of the original and the regularizederror functions ewj = �j�j + �w�j (8)The eigenvectors uj represent the principal directions of the quadratic errorsurface. Along those directions for which the corresponding eigenvalues arerelatively large, so that �j � �, (8) shows that ewj ' w�j , and so the minimumof the error function is shifted very little. Conversely, along directions forwhich the eigenvalues are relatively small, so that �j � �, (8) shows thatj ewjj � jw�j j, and so the corresponding components of the minimum weightvector are suppressed. This e�ect is illustrated in Figure 1. Thus only thosedirections for which �j � � contribute signi�cantly to �tting the data, withthe weight vector components in remaining directions being set to small valuesby the regularizer. The quantity =Xj �j�j + � (9)de�nes the e�ective number of parameters in the model [5]. Clearly as � isincreased so the e�ective number of parameters is reduced.The simple weight decay regularizer given by (2) su�ers from the problemof being inconsistent with known scaling properties of the network function[2]. For example, if a linear rescaling is applied to the input data, this canbe absorbed by a linear rescaling of the �rst-layer weights (and biases) suchthat the network outputs are unchanged. Similarly, a linear transformation ofthe output variables of the network can be achieved by linearly rescaling the�nal-layer weights (for a network with linear output units). The simple weightdecay regularizer, however, would arbitrarily favour con�gurations with smallerweight values. We should instead divide the weight and bias parameters intogroups and assign a separate regularizer (with its own regularization coe�cient)to each such group [2]. Appropriate groups could, for instance, consist of the�rst-layer weights, the �rst-layer biases and the second-layer weights.



w1

w2

w~
w*

Figure 1: Illustration of the e�ect of a simple weight decay regularizer ona quadratic error function. The circle represents a contour along which theweight decay term is constant, and the ellipse represents a contour of constantun-regularized error. The e�ect of the regularizer is to shift the minimum ofthe error function from w� to ew. This reduces the value of w1 at the minimumsigni�cantly since this corresponds to a small eigenvalue, while the value of w2,which corresponds to a large eigenvalue, is hardly a�ected [5].2.3 Early StoppingAnother well-known approach to controlling model complexity is called earlystopping. During a typical training session, the error measured with respectto the training data set decreases as a function of the number of iterations.However, the error measured with respect to independent data often shows adecrease at �rst, followed by an increase as the network starts to over-�t. Earlystopping aims to achieve the best generalization by setting the weight vectorto the value which gives the smallest error on new data.We can demonstrate a relationship between early stopping and regulariza-tion for the case of a quadratic error function of the form (4). Suppose theinitial weight vector w(0) is chosen to be at the origin, and is updated usingsimple gradient descent w(�) = w(��1) � �rE (10)where � denotes the step number, and � is the learning rate (which is assumedto be small). Substituting (4) into (10) and making use of (7) we then obtainw(�)j �w�j = (1� ��j)(w(��1)j � w�j ) (11)After � steps of gradient descent we then havew(�)j = f1� (1 � ��j)�gw�j (12)Note that, as � !1 this gives w(�) ! w� as expected, provided j1���jj < 1.Now suppose that training is halted after a �nite number � of steps. Then it



w1

w2

w(τ)

w*

Figure 2: A schematic illustration of why early stopping can give similar resultsto weight decay in the case of a quadratic error function.is easily seen that w(�)j ' w�j when �j � (�� )�1 (13)jw(�)j j � jw�j j when �j � (�� )�1 (14)Comparisonwith the corresponding result (8) obtained using weight decay regu-larization shows that early stopping and regularization lead to similar solutions,and that the quantity (�� )�1 is analogous to the regularization parameter �.This result also show that the e�ective number of parameters in the network,as de�ned by (9) with � replaced by (�� )�1, grows as the training progresses[9].The relationship between early stopping and regularization is illustratedin Figure 2. A weight vector which starts at the origin and moves accordingto the local error gradient will follow a trajectory shown by the curve. Bystopping training early, a weight vector w(�) is found which is qualitativelysimilar to that obtained with a simple weight decay regularizer as can be seenby comparing with Figure 1.2.4 Training With NoiseThe �nal technique which we consider for controlling the (e�ective) complexityof a feed-forward network is based on the addition of noise to the input vectorsduring training. A theoretical analysis of this technique [3] shows that, forsmall values of the noise variance, training with noise is equivalent to the useof regularization (and no added noise) where the regularizer depends on thederivatives of the network function. Here we summarize the analysis for thecase of a sum-of-squares error.For a network function y(x) with input vector x and a single output y thesum-of-squares error can be written in the formE = hfy(x) � tg2ix;t (15)



where t denotes the target variable and h�i denotes the expectation. Now sup-pose that each time an input vector x is presented to the network a randomvector � is added �rst. The error function is then given by an average over boththe distribution of data and the distribution of noise in the formeE = hfy(x + �)� tg2ix;t;� (16)For small values of � we can make use of a Taylor expansion of the formy(x + �) = y(x) + �Try(x) + 12�Trry(x)� +O(�3) (17)We now substitute (17) into (16) and assume that the noise distribution haszero mean, and a covariance matrix which is proportional to the unit matrix Iso that h�i = 0 (18)h��Ti = �I (19)We then obtain the e�ective error function in the form2 [10]eE = E + �hkryk2ix + �h(y � t)r2yix;t (20)We are interested in �nding the network function which minimizes this error.By functional di�erentiation of (20), and making use of (15), we see that thisfunction takes the form y(x) = htjxit +O(�) (21)where htjxit denotes the conditional average of the target data, also known asthe regression of the target variable. If we now back-substitute (21) into (20)we see that the term involving the second derivatives of the network functionvanishes to O(�). For a data set of input vectors xn and corresponding targetvalues tn (where n = 1; : : : ; N ) the e�ective error function can then be writtenin the form [3] eE = NXn=1fy(xn) � tng2 + � NXn=1kry(xn)k2 (22)We therefore see that, for su�ciently small values of the noise variance �, theminimization of a sum-of-squares error with noise added to the input data isequivalent to the minimization of the regularized error function (22) withoutthe addition of noise. For linear network models, the regularizer in (22) reducesto the weight-decay regularizer of (2) but with the bias parameters omitted.In Figure 3 we present an empirical comparison between training with noise(using ten copies of each data point and a Gaussian noise distribution) andthe use of the regularized error function (22). The required gradients of theregularized error were evaluated e�ciently by using an extended form of back-propagation [1]. These gradients were then used in a standard BFGS quasi-Newton non-linear optimization algorithm.2A similar analysis was considered by Reed et al. [7] who arbitrarily discard the secondderivative terms.



0.0

4.0

8.0

0.0 4.0 8.0 12.0

E ×103

−lnσ2Figure 3: A plot of training error versus � ln�2 (dashed curve) for training withnoise having input variance �2. Also shown on the same scale is the correspond-ing plot of training error versus � ln � (solid curve) for the regularized errorfunction given by given by (22) and noise-free data. The data set was takenfrom a problem concerned with the monitoring of oil ows along multi-phasepipelines [4].3 DiscussionIn this paper we have considered four approaches to the problem of complex-ity control in feed-forward networks. Network architecture selection changesthe actual number of adaptive parameters in the network, while regularizationcontrols the e�ective number of parameters. We have seen that early stop-ping also limits the e�ective number of parameters, while training with noiseis equivalent (at small noise variance) to a derivative-based regularizer. It isnatural to ask which of these four methods should be used in practice. Herewe argue that, for most applications, techniques based on regularization are tobe preferred Reasons for this include the following1. One way to view complexity control in feed-forward networks is in termsof the trade-o� between the bias and the variance of the network func-tion. Regularizers which exploit prior knowledge can lead to signi�cantreductions in variance while producing a relatively small increase in bias,thereby leading to improved generalization. For example, regularizers canbe constructed which encourage invariance to translations and rotationsin character recognition applications [8].2. When regularization is used the e�ective complexity is controlled by oneor more continuous parameters, which are generally much easier to opti-mize than a discrete quantity such as the number of hidden units. Forinstance, the evidence approximation to the Bayesian approach [5] allowsthe values of regularization parameters to be optimized (using simplere-estimation procedures) as part of the training algorithm, without theneed for separate validation data.



3. The technique of early stopping is largely ad-hoc, and the solution foundfor the weights will depend on the path through weight space which willin turn depend on the initial randomly chosen weight vector as well asthe parameters of the learning algorithm.4. Training with noise, if used with batch optimization algorithms, requiresthat the data set be replicated many times, and this leads to a substantialincrease in the computational cost of training the network. By contrast,direct minimization of a regularized error function leads to a relativelysmall increase in computational cost.5. As we discussed in Section 2.2, a practical application will typically re-quire the use of regularizers which are more sophisticated than simpleweight decay and which are controlled by several independent regulariza-tion coe�cients. The e�ects of such regularizers cannot easily be repli-cated using the other methods described in this paper.For most practical applications the technique of regularization will be thepreferred choice since it provides the most exible form of model complexitycontrol, it is computationally e�cient, and it allows prior knowledge to beincorporated directly into the network training procedure.References[1] C. M. Bishop. Curvature-driven smoothing: a learning algorithm for feedforwardnetworks. IEEE Transactions on Neural Networks, 4(5):882{884, 1993.[2] C. M. Bishop. Neural Networks for Pattern Recognition. Oxford University Press,1995.[3] C. M. Bishop. Training with noise is equivalent to Tikhonov regularization.Neural Computation, 7(1):108{116, 1995.[4] C. M. Bishop and G. D. James. Analysis of multiphase ows using dual-energygamma densitometry and neural networks. Nuclear Instruments and Methods inPhysics Research, A327:580{593, 1993.[5] D. J. C. MacKay. Bayesian interpolation. Neural Computation, 4(3):415{447,1992.[6] R. M. Neal. Bayesian Learning for Neural Networks. PhD thesis, University ofToronto, Canada, 1994.[7] R. Reed, R. J. Marks II, and S. Oh. Similarities of error regularization, sigmoidgain scaling, target smoothing, and training with jitter. IEEE Transactions onNeural Networks, 6(3):529{538, 1995.[8] P. Simard, B. Victorri, Y. Le Cun, and J. Denker. Tangent prop { a formalismfor specifying selected invariances in an adaptive network. In J. E. Moody,S. J. Hanson, and R. P. Lippmann, editors, Advances in Neural InformationProcessing Systems, volume 4, pages 895{903, San Mateo, CA, 1992. MorganKaufmann.[9] C.Wang, S. S. Venkatesh, and J. S. Judd. Optimal stopping and e�ective machinecomplexity in learning. In J. D. Cowan, G. Tesauro, and J. Alspector, editors,Advances in Neural Information Processing Systems, volume 6, pages 303{310.Morgan Kaufmann, 1995.[10] A. R. Webb. Functional approximation by feed-forward networks: a least-squaresapproach to generalisation. IEEE Transactions on Neural Networks, 5(3):363{371, 1994.


