
Good{Turing estimation for the Frequentistn-tuple Classi�erMicha l Morciniec and Richard RohwerDept. of Computer Science and Applied MathematicsAston UniversityBirmingham, UK B4 7ETAbstractWe present results concerning the application of the Good{Turing (GT) estimation methodto the frequentist n-tuple system. We show that the Good-Turing method can, to a certainextent rectify the Zero Frequency Problem by providing, within a formal framework, improvedestimates of small tallies. We also show that it leads to better tuple system performance thanMaximum Likelihood estimation (MLE). However, preliminary experimental results suggestthat replacing zero tallies with an arbitrary constant close to zero before MLE yields betterperformance than that of GT system.1 IntroductionThe frequentist n-tuple system can be obtained from the original, binary system by setting thetally truncation threshold � to1 instead of the more usual 1. This allows one to use full tallies toestimate low-order conditional feature densities and apply a Bayesian framework to the classi�cationproblem [6].Given p(cj�), the probability of class c conditioned on feature vector � (the set of all memorylocations addressed by an unknown pattern), optimal classi�cation results can be obtained byassigning the unknown pattern to the most probable class. Because estimates of conditional featuredensities arise naturally in the n-tuple system, Bayes' rule is applied to obtain class probabilities.The likelihood and evidence for the full feature vector are impossible to compute directly, but thesecan be estimated from low order densities using independence assumptions. The most commonapproach [11] assumes that p(�ijc) as well as p(�i) are independent1 , where �i is the address of thepattern in n-tuple i. The conditional class density can then be approximated byp(cj�) � p(c)Yi p(�ijc)p(�i) :(1)However implausible this assumption may appear, there have been reports of reasonable resultsobtained with this method [3, 2]. The major advantage of frequentist systems is that they do notsu�er from saturation. This makes them superior for small n-tuple sizes n, but the advantage tends1It often goes unnoticed that it turns out to be highly restrictive to demand both of these conditions together, adi�culty we presume to be dwarfed by the inaccuracy of each assumption individually.1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aston Publications Explorer

https://core.ac.uk/display/78877534?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


to disappear as n is increased, due to worsening probability estimates based on diminishing talliesin each of the increasingly numerous memory locations [12]. It would be desirable to modify thefrequentist system in such a way as to retain its robustness for any tuple size n.2 Weakness of the Maximum Likelihood Estimate (MLE)The maximum likelihood estimate (MLE) has been routinely [3] [11] [13] applied for the frequentistn-tuple system. In this approach, estimate p̂ of the true probability p of an event is approximatedas the ratio of the event's tally r to the sample size N ; p̂ = rN . Under the assumption that eachtally value is binomially distributed (with unknown probability p that the feature is present in apattern of class c and 1 � p that it is not) the ratio rN is the maximum likelihood estimate of p.The uncertainty of the tally can be de�ned as its standard deviation, which can be estimated as�r = qNp(1� p) � qNp̂(1� p) = qr(1� p):(2)In an n-tuple with n inputs, p is one of 2n � 1 other multinomial parameters which sum to 1.Therefore, p is typically much less than 1, so�r � pr:(3)Equation 3 shows that the accuracy of MLE is limited for the events with small tallies. Therelative tally uncertainty �rr , grows with diminishing tallies and becomes unde�ned for zero tally.It should be noted that the fact that a tally r = 0 for some event doesn't imply that theprobability of the event is also zero. It merely states that the event has not taken place in a �nitesample of size N . This problem is known in the literature [14] as the \Zero Frequency Problem".Various unprincipled, ad hoc techniques exist which try to rectify it. The most common one is toadd an arbitrary small constant to each zero tally. However, the choice of a particular constant isdi�cult to justify formally. We make some experimental observations concerning this MaximumLikelihood system with zero tally correction (MLZ) in section 5.3 Good-Turing Estimate (GTE)An alternative method of density estimation has been originally proposed by Turing and researchedin detail by Good [4] in the context of species frequencies in a mixed population. It has also beenapplied in linguistics for n-gram probability estimation [5] and statistical text compression [14].The advantage of GTE over MLE is improvement of the accuracy of the probability estimatesderived from non-zero tallies. Moreover, an estimate for objects not present in the sample can alsobe provided.Suppose we draw a random sample of size N from the population of objects. We record nr , thenumber of distinct objects that were represented exactly r times in the sample, so thatN = 1Xr=1 rnr:(4) 2
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rz rFigure 1: A) Original distribution of frequencies of tallies in class 0 of \tsetse" database. B) distribution afteraveraging transform has been applied. The solid line denotes the polynomial curve �tted.Let p̂GTr denote the Good{Turing estimate of the population probability of an arbitrary object thatoccured r times in the sample. This entails the assumption that all events which occured r timeshave the same probability pr. The Good{Turing theorem states that the expected value of pr foran event with tally r in one particular sample is rGT =N where the smoothed tally rGT can beapproximated as rGT � (r+ 1)nr+1nr r � 0:(5)Various derivations [7] of this theorem exist. The values of nr are most accurate for small values ofr and become increasingly noisy for larger tallies. In this respect GTE complements MLE which,as mentioned earlier, becomes less precise for smaller tallies.4 Smoothing GTEsThe major problem with the Good{Turing theorem is that the distribution fn0; n1; n2; : : :g tendsto be sparse and requires smoothing. Moreover, for large values of r there are \gaps" in thedistribution of nr. This suggests that we should average a non-zero nr value with the zero nrvalues surrounding it. We use the transform proposed by Church and Gale [5]zr = 2nrt � q(6)where t, r, q are the successive indices of non-zero nr . Averaging occurs for larger values of r only,because if there are no \gaps" the transformation has no e�ect.After averaging we still have to smooth the zr. This is accomplished by �tting a log polynomialonto the data. Unlike Church and Gale who used polynomial of order one (a straight line) we foundthat polynomials of higher orders are required to obtain a satisfactory �t to the data. Consequently,we smoothed tally frequency distributions zr with polynomials of order 4, giving a new smoothedtally rSGT , rSGT = (r + 1)e nPi=1 ai lni r+1r r � 1(7) 3
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rr�Figure 2: A) Relative adjusted tally r� for class 0 of the \tsetse" dataset. B) Illustration of the smoothed tallyr� combined from tallies rGT and rSGT . The error-bars on rGT are 1:65� �(rGT ). The switch from GTE to SGTEtakes place at r = 3.with parameters a1; a2; : : : ; a4 determined from the data. Figure 1 shows the original nr , andaveraged zr distributions with the �tted polynomial curve.The smoothed Good{Turing estimate (SGTE) may be quite di�erent from the original Good{Turing estimate (GTE) for small values of r. We would therefore prefer to use GTE for small rand then switch to SGTE and keep on using this estimate for the remaining tally values. The new,composite smoothed tally r� is equal to rGT if jrSGT � rGT j > 1:65� �(rGT ). When the di�erencebecomes insigni�cant we use SGTE for the remaining tallies. Gale gives the approximation of thevariance of rGT as �2(rGT ) � (r + 1)2nr+1n2r (1 + nr+1nr )(8)The probability estimates computed using the corrected tallies have to be normalised because twodi�erent methods (GTE and SGTE) of estimation are employed. We compute the probability p̂normrfor the tally r using unnormalised probabilities p̂�r = r�N as8>>><>>>:n0 6= 0 p̂normr = (1� n1N ) p̂�rPr0�1nr0 p̂r0� r � 1; p̂norm0 = n1n0Nn0 = 0 p̂normr = p̂�rPr0 nr0 p̂r0� r � 1(9)5 Application of GTE for the Frequentist n-tuple SystemWe used several real{world datasets which have been used in the European Community StatLogproject [10]. The attributes of the data are in most cases real-valued and pre-processing techniqueshave been applied [1, 9, 8], providing binary input for the classi�er.In order to obtain probabilities p(�ijc) normalised within a tuple node one would have to applyGood{Turing estimation for each tuple in each class c separately. This is hardly possible becausethe distribution nr is very sparse, especially for small tuple sizes n. Therefore, the estimation has4
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Figure 3: A) Performance of binary and frequentist systems with 100 tuples on the \tsetse.tst". The test setcomprises of 1499 patterns. Systems were trained using 3500 training samples. The error-bars are of size onestandard deviation computed for 10 random tuple mappings. B) Performance of frequentist Good{Turing systemcompared with MLZ system using zero tally correction � = 10�150.been carried out collectively for all T tuples within a class c, i.e., for the population of T2n features.Consequently, the probabilities p(�ijc) are normalised within each discriminator c and each zerotally is smoothed by the same amount regardless of the tuple which generated it.Figure 2A shows the relative composite smoothed tally r�=r computed for the �rst discriminatorof the n-tuple system trained on the \tsetse" dataset [10]. The construction of the combinedsmoothed tally r� is given on �gure 2B. We observe that for the �rst three tallies GTE was chosenwhereas SGT was used for the remaining tallies. The adjusted zero tally was r�0 = 0:0452.We measured the performance of the binary, frequentist ML and GT n-tuple systems againsteach other. The benchmarking studies were carried out for several STATLOG databases [10].Figure 3A shows a representative plot for a run on the \tsetse" database. Both frequentist systemsperform better than the binary version for small values of n, because they do not su�er from thesaturation e�ect. Unlike the frequentist system with MLE, the GT version retains the performancewith increasing n. However, it eventually becomes inferior to binary system. It seems that for nlarge enough any technique other than zero tally counting (which is equivalent to setting the tallytruncation threshold � to one) is less e�ective.We also compared the performance of the GT system to that of MLZ which is technically anML system with zero tallies substituted by arbitrarily chosen constant �. Preliminary experimentalresults plotted on Figure 3B suggest that if � is small enough then MLZ will outperform GT system,especially for large n. This can be explained by observing that MLZ with � ! 0 will make exactlythe same classi�cation decision as the binary system, except for the patterns that are tied (have thesame score) in the binary version. For large n, the saturation is very low, as is the probability of atie. Consequently, the performance of MLZ must be equal to the performance of a binary systemwithin a margin �DtiedD where D is test set size and Dtied number of tied patterns.5
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