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Abstract

The problem of evaluating different learning rules and other statistical estimators is analysed.
A new general theory of statistical inference is developed by combining Bayesian decision theory
with information geometry. It is coherent and invariant. For each sample a unique ideal estimate
exists and is given by an average over the posterior. An optimal estimate within a model is given
by a projection of the ideal estimate. The ideal estimate is a sufficient statistic of the posterior,
so practical learning rules are functions of the ideal estimator. If the sole purpose of learning is
to extract information from the data, the learning rule must also approximate the ideal estimator.
This framework is applicable to both Bayesian and non-Bayesian methods, with arbitrary statistical
models; and to supervised, unsupervised and reinforcement learning schemes.

Keywords: Information geometry, Bayesian decision theory, optimal learning rule, model effect, neural

networks.

1 Introduction

We are concerned with the problem of evaluat-
ing and comparing neural network learning rules
among themselves and with other statistical meth-
ods. To this end we shall outline a new theory
of statistical inference by combining Bayesian de-
cision theory with information geometry. We shall
first present the main definitions and results in a
mathematical form. Then we shall use a simple
example to illustrate the meaning of these results.
Finally we shall explain briefly why this framework
is suitable for statistical inference in general, and
neural network learning rules in particular, and
discuss its implications.

2 Bayesian Decision Theory

Consider a sample space Z, the points of which are
the states of the “visible neurons”, for example. !
To avoid measure-theoretic concerns, one may con-
veniently consider Z to be finite; the more general
case requires more dedicated mathematics than
space here allows. Denote by P the space of prob-
ability distributions on Z. It forms a differential
manifold [1, 2], which may be infinite-dimensional

if 7 1s infinite. Consider a statistical model on 7,
such as a neural network, parameterised by w € W.
Each particular value of “weight” w corresponds
to a distribution ¢, the totality of which forms a
submanifold @ C P. One can think of w as coor-
dinates of ¢.

A statistical estimator (learning rule) is a mapping
T: Z — . A learning problem is a distribution
p =: P(:|p) € P. The purpose of an estimator is
to provide, for each training set z sampled from
p, an estimate ¢ = 7(z) which approximates p.
This whole framework i1s schematically illustrated
in Figure 1.

The normal practice of evaluating the performance
of 7, such as by cross validation, 1s to compare
q = 7(z) with some “test data” z’ € Z generated
from the same distribution p but independently of
z. It 1s reasonable to hope that such evaluations
get more accurate as the size of 2z’ increases, and
that at the infinite size limit one ends up evalu-
ating D(p, ¢), a measure of “divergence” between
the true distribution p and the estimated distribu-
tion ¢. The “optimal learning rule” in this setting
is obviously 7(z) = p, which learns nothing from
the data z. This is also true if the ensemble of pos-

1We follow the standard practice of also using z € Z to refer to an 11D sample of these states, without explicit reference

to the sample size.
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Figure 1: Relation between weight space, learning rule, and Bayes Theorem

sible data sets is considered, since in that case one
1S minimising

(1) B(rlp) = / P(:Ip)D(p. 7(=)).

Therefore it is clear that such procedures, although
quite valid for evaluating the estimate ¢, fail com-
pletely to evaluate the estimator 7. The reason
for the failure is that only one fixed problem p is
considered, for which there is no way to distinguish
“hard working” learning rules which learn from the
data from “genius” learning rules which happen to
have guessed correctly. Although in practice one
does not normally know p, by evaluating learn-
ing rules in this way one is always (often uncon-
sciously) requiring a good learning rule to ignore
the data.

The only proper way to evaluate the “learning abil-
ity” of an estimator is to evaluate its average per-
formance over a distribution of problems, the prior

P(p), by

o B(r)= [ PWEGD),

P

so that any good estimator has to extract some in-
formation from the training data. An estimator
is said to be optimal if it minimises F(r).

Given a prior P(p), it is also possible to obtain
the posterior P(p|z) by way of the Bayes rule
P(p|z) = P(z|p)P(p)/P(z). One may also demand
that a learning rule should give the best estimate
for each individual data set based on that knowl-
edge alone; ie., to minimise

3) E(gle) = / P(pl2)D(p. 0),

for each z. An estimate ¢ is said to be optimal
based on data z if it minimises F(q¢|z).

All this leads naturally into the domain of Bayesian
decision theory [3, 4, 5], where D(p, q) acts as the
“loss function”; one of its most important contri-
bution is the following well-known theorem.

Theorem 2.1 (Coherence) An estimator 7 is
optimal if and only if for any data z € 7, exclud-
ing a subset of zero probability, T(z) is an optimal
estimate based on z.

3 Information Divergence

In the general framework of decision theory the
“loss function” D(p, q) is externally supplied. One
may ask what is the appropriate “loss function” if
the sole utility is to extract information from the
data. An answer to this question comes from in-
formation geometry [1, 6, 7], which defines a fam-
ily of related geometries and related divergencies
indexed by o € [—1,1] [1]. For technical conve-
nience we shall use & = (1 — «)/2 € [0, 1] instead
of Amari’s a. We shall also consider the space

efror fres)

of normalisable positive measures on 7, in which P
forms a submanifold defined by [ p = 1. The most

(4)

natural “information divergence” between p,q € P

is defined by [1, 8]

(5)
Ds(p, q) = 6(171_6) / (6p+(1—8)g—p°g"™7).



One of the most important criteria of informa-
tion divergence is invariance. Well-known special
cases include the (extended) cross entropy (KL-
distance) [9, 8]

(6) Di(p,q) = K(p,q) =/ (q—p+plog§),

the reversed cross entropy Dy(p, q) = K(q,p), and
the Hellinger distance [1]

(7) men@=2/«@—¢®?

When p and ¢ are close to each other, it is approx-
imately the y? distance [7, 8]

(8)

1 fAp? 1
Ds(p,p+ Ap) ~ 3] 5 F §/p(A10gp)2~

The quadratic form of the y? distance can be rep-
resented by the Riemannian metric given by the
Fisher information matrix [10, 1, 7], although for
infinite 7 these are all infinite dimensional ob-
jects. Using é-divergence as the loss function in
a Bayesian decision framework leads to our main
result [8]:

Theorem 3.1 (Ideal estimate) Given a prior
P(p) over P, let z € Z. Then, with expectation
conditional on z denoted as {-)

9)

where p is called the é-estimate given by the §-
average over the posterior

o |

This reduces to the well-known “MSFE = VAR +
BIAS?” formula for linear Gaussian models with
6 € {0,1}, but the general form is applicable to
any statistical model, which may be non-linear
and non-Gaussian. In general the é-estimate for
8 € [0,1) is not necessarily a probability distribu-
tion since it may not be normalised, but it will be
shown that the optimal estimator within a proba-
bility model can be obtained simply by renormali-
sation.

27

(Ds(p,q)), = (Ds(p, D)), + Ds(p, q),

=00, se(],
logp = (logp),, &=

It can also be shown that with natural conjugate
priors [3], p is a sufficient statistic for the com-
monly used statistical models, such as multinomi-
als [11], Gaussians [12], and uniform distributions.
We conjecture that this is always true, even for
non-exponential families.

4 Optimal Estimators

For exponential families the é-estimate can be rep-
resented simply by the sufficient statistics. For
more general problems, however, we might have to
be content with representing the estimate within a
restricted model. As the é-estimate p is a member

of P, all the inference problems within a model Q
can be achieved by projecting p onto @. Therefore
the whole armoury of information geometry can
be brought into force, which studies the asymp-
totic behaviour, the model deficiency, the curva-
ture of the model and the estimator, etc. In par-
ticular, the following generalised Pythagorean the-
orem holds [1].

Theorem 4.1 (Optimal estimate) Suppose
that Q is a (1 —é)-convexr submanifold of P. Then

(11)

where ¢ is the 6-projection of p onto Q.

Dé(ﬁa Q) = Dé(ﬁa@) +D§(§, Q)a

Theorem 3.1-4.1 are illustrated in Figure 2.

Theorem 4.2 The optimal esttmator within a
probability model, ie. with [q =1, is given by re-
normalising the ideal estimator. That is, if @ = P,

then
a:g//ﬁ

Example 4.1 Consider the multinomial family of dis-
tributions M (m|p) with a Dirichlet prior D(p|a), where
m € N, p e A" .= {pER’_f_: Zipizl}, a €
RY. The posterior is also a Dirichlet distribution
D(pla + m). The 6-estimate is given by

(12)

(13) P! = (@i + mi)s/(la + m|)s,
where |a| := Zl ai, (a)p :=T'(a+b)/T(a), and T'(a) :=
Hi I'(ai). In particular,

(14)

pi = (mi +ai)/|m 4+ af,
(15)

pi = exp(¥(a; +mi) — ¥(Ja + ml)),

§=1,
§=0,

where W is the the digamma function, the logarithmic
derivative of I' function. One can define the é-uniform
prior by way of the §-affine connections [1, 8], and it
can be shown that in this case it is D(p|é1). Therefore
the maximum likelihood estimator p; = m;/|m| is the
l-estimator with O-uniform prior.



Figure 2: Decomposition of errors

5 Discussion and Summary

We outline here how various learning rules fit in
this general framework.

A neural network (either deterministic or stochas-
tic) can be regarded as a parameterised model
P(y|z, w) where # is input, y is output and w is
weight [13]. With input distribution P(z), it is
also equivalent to P(z|w), where z := [z,y] € 7 :=
X xY.

Bayesian methods which give the whole posterior
P(p|z) as an answer still fit in this framework, for
either the posterior is analytically represented or
it 1s simulated by a random process. In the former
case one 1s faced with the same question as stud-
ied here. The latter case is equivalent to giving the
posterior marginal distribution P(z'|z) as the an-
swer, which is exactly the l-estimate P(z|r(z)).

Many non-Bayesian estimators, such as the maxi-
mum likelihood estimator, can be regarded as gen-
eralised Bayesian estimators with improper pri-
ors [4, 5]. For multidimensional models there may
be many different improper priors, not all of which
are non-informative, giving rise to a variety of dif-
ferent non-Bayesian methods [14, 15].

The general conclusion from this study is that
learning rules should be compared with each other
only if the following three things are specified:
(1) the prior P(p), (2) the divergence D(p,q), and
(3) the model Q. Tf the sole purpose of learning
is to extract information from the data, then the
information divergence should be used. These as-

sumptions in turn guarantee the coherence and in-
variance of the evaluations, resolving the contro-
versy in [16, 17, 18, 19]. Furthermore, any decision
problem where external utility functions are given
can be decomposed into two problems, the estima-
tion problem which gives the optimal estimate, and
the decision problem which is solely based on the
optimal estimate.
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