
To appear in Neural Processing LettersBayesian Invariant Measurements of GeneralisationHuaiyu Zhu and Richard RohwerNeural Computing Research GroupDept of Computer Science and Applied MathematicsAston University, Birmingham B4 7ET, UKEmail: zhuh@aston.ac.uk, Fax: +44 121 333 6215November 17, 1995AbstractThe problem of evaluating di�erent learning rules and other statistical estimators is analysed.A new general theory of statistical inference is developed by combining Bayesian decision theorywith information geometry. It is coherent and invariant. For each sample a unique ideal estimateexists and is given by an average over the posterior. An optimal estimate within a model is givenby a projection of the ideal estimate. The ideal estimate is a su�cient statistic of the posterior,so practical learning rules are functions of the ideal estimator. If the sole purpose of learning isto extract information from the data, the learning rule must also approximate the ideal estimator.This framework is applicable to both Bayesian and non-Bayesian methods, with arbitrary statisticalmodels, and to supervised, unsupervised and reinforcement learning schemes.Keywords: Information geometry, Bayesian decision theory, optimal learning rule, model e�ect, neuralnetworks.1 IntroductionWe are concerned with the problem of evaluat-ing and comparing neural network learning rulesamong themselves and with other statistical meth-ods. To this end we shall outline a new theoryof statistical inference by combining Bayesian de-cision theory with information geometry. We shall�rst present the main de�nitions and results in amathematical form. Then we shall use a simpleexample to illustrate the meaning of these results.Finally we shall explain brie
y why this frameworkis suitable for statistical inference in general, andneural network learning rules in particular, anddiscuss its implications.2 Bayesian Decision TheoryConsider a sample space Z, the points of which arethe states of the \visible neurons", for example. 1To avoid measure-theoretic concerns, one may con-veniently consider Z to be �nite; the more generalcase requires more dedicated mathematics thanspace here allows. Denote by P the space of prob-ability distributions on Z. It forms a di�erentialmanifold [1, 2], which may be in�nite-dimensional
if Z is in�nite. Consider a statistical model on Z,such as a neural network, parameterised byw 2W .Each particular value of \weight" w correspondsto a distribution q, the totality of which forms asubmanifold Q � P. One can think of w as coor-dinates of q.A statistical estimator (learning rule) is a mapping� : Z ! Q. A learning problem is a distributionp =: P (�jp) 2 P. The purpose of an estimator isto provide, for each training set z sampled fromp, an estimate q = � (z) which approximates p.This whole framework is schematically illustratedin Figure 1.The normal practice of evaluating the performanceof � , such as by cross validation, is to compareq = � (z) with some \test data" z0 2 Z generatedfrom the same distribution p but independently ofz. It is reasonable to hope that such evaluationsget more accurate as the size of z0 increases, andthat at the in�nite size limit one ends up evalu-ating D(p; q), a measure of \divergence" betweenthe true distribution p and the estimated distribu-tion q. The \optimal learning rule" in this settingis obviously � (z) � p, which learns nothing fromthe data z. This is also true if the ensemble of pos-1We follow the standard practice of also using z 2 Z to refer to an IID sample of these states, without explicit referenceto the sample size. 1
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QFigure 1: Relation between weight space, learning rule, and Bayes Theoremsible data sets is considered, since in that case oneis minimisingE(� jp) := Zz P (zjp)D(p; � (z)):(1)Therefore it is clear that such procedures, althoughquite valid for evaluating the estimate q, fail com-pletely to evaluate the estimator � . The reasonfor the failure is that only one �xed problem p isconsidered, for which there is no way to distinguish\hard working" learning rules which learn from thedata from \genius" learning rules which happen tohave guessed correctly. Although in practice onedoes not normally know p, by evaluating learn-ing rules in this way one is always (often uncon-sciously) requiring a good learning rule to ignorethe data.The only proper way to evaluate the \learning abil-ity" of an estimator is to evaluate its average per-formance over a distribution of problems, the priorP (p), by E(� ) := Zp P (p)E(� jp);(2)so that any good estimator has to extract some in-formation from the training data. An estimator �is said to be optimal if it minimises E(� ).Given a prior P (p), it is also possible to obtainthe posterior P (pjz) by way of the Bayes ruleP (pjz) = P (zjp)P (p)=P (z). One may also demandthat a learning rule should give the best estimatefor each individual data set based on that knowl-edge alone; ie., to minimiseE(qjz) := Zp P (pjz)D(p; q);(3)

for each z. An estimate q is said to be optimalbased on data z if it minimises E(qjz).All this leads naturally into the domain of Bayesiandecision theory [3, 4, 5], where D(p; q) acts as the\loss function"; one of its most important contri-bution is the following well-known theorem.Theorem 2.1 (Coherence) An estimator � isoptimal if and only if for any data z 2 Z, exclud-ing a subset of zero probability, � (z) is an optimalestimate based on z.3 Information DivergenceIn the general framework of decision theory the\loss function" D(p; q) is externally supplied. Onemay ask what is the appropriate \loss function" ifthe sole utility is to extract information from thedata. An answer to this question comes from in-formation geometry [1, 6, 7], which de�nes a fam-ily of related geometries and related divergenciesindexed by � 2 [�1; 1] [1]. For technical conve-nience we shall use � = (1 � �)=2 2 [0; 1] insteadof Amari's �. We shall also consider the spaceeP := �p � 0 : Z p <1�(4)of normalisable positive measures on Z, in which Pforms a submanifold de�ned by R p = 1. The mostnatural \information divergence" between p; q 2 ePis de�ned by [1, 8]D�(p; q) = 1�(1� �) Z ��p + (1� �)q � p�q1��� :(5)2



One of the most important criteria of informa-tion divergence is invariance. Well-known specialcases include the (extended) cross entropy (KL-distance) [9, 8]D1(p; q) = K(p; q) = Z �q � p+ p log pq� ;(6)the reversed cross entropy D0(p; q) = K(q; p), andthe Hellinger distance [1]D1=2(p; q) = 2 Z (pp�pq)2 :(7)When p and q are close to each other, it is approx-imately the �2 distance [7, 8]D�(p; p+�p) � 12 Z �p2p � 12 Z p (� logp)2 :(8)The quadratic form of the �2 distance can be rep-resented by the Riemannian metric given by theFisher information matrix [10, 1, 7], although forin�nite Z these are all in�nite dimensional ob-jects. Using �-divergence as the loss function ina Bayesian decision framework leads to our mainresult [8]:Theorem 3.1 (Ideal estimate) Given a priorP (p) over P, let z 2 Z. Then, with expectationconditional on z denoted as h�iz,hD�(p; q)iz = hD�(p; bp)iz +D�(bp; q);(9)where bp is called the �-estimate given by the �-average over the posterior� bp� = 
p��z ; � 2 (0; 1];log bp = hlogpiz ; � = 0:(10)This reduces to the well-known \MSE = V AR +BIAS2" formula for linear Gaussian models with� 2 f0; 1g, but the general form is applicable toany statistical model, which may be non-linearand non-Gaussian. In general the �-estimate for� 2 [0; 1) is not necessarily a probability distribu-tion since it may not be normalised, but it will beshown that the optimal estimator within a proba-bility model can be obtained simply by renormali-sation.It can also be shown that with natural conjugatepriors [3], bp is a su�cient statistic for the com-monly used statistical models, such as multinomi-als [11], Gaussians [12], and uniform distributions.We conjecture that this is always true, even fornon-exponential families.

4 Optimal EstimatorsFor exponential families the �-estimate can be rep-resented simply by the su�cient statistics. Formore general problems, however, we might have tobe content with representing the estimate within arestricted model. As the �-estimate bp is a memberof eP , all the inference problems within a model Qcan be achieved by projecting bp onto Q. Thereforethe whole armoury of information geometry canbe brought into force, which studies the asymp-totic behaviour, the model de�ciency, the curva-ture of the model and the estimator, etc. In par-ticular, the following generalised Pythagorean the-orem holds [1].Theorem 4.1 (Optimal estimate) Supposethat Q is a (1� �)-convex submanifold of eP. ThenD�(bp; q) = D�(bp; bq) +D�(bq; q);(11)where bq is the �-projection of bp onto Q.Theorem 3.1{4.1 are illustrated in Figure 2.Theorem 4.2 The optimal estimator within aprobability model, ie. with R q = 1, is given by re-normalising the ideal estimator. That is, if Q = P,then bq = bp�Z bp:(12)Example 4.1 Consider the multinomial family of dis-tributions M(mjp) with a Dirichlet prior D(pja), wherem 2 Nn, p 2 �n�1 := �p 2Rn+ : Pi pi = 1	, a 2Rn+. The posterior is also a Dirichlet distributionD(pja+m). The �-estimate is given bybp�i = (ai +mi)�=(ja+mj)�;(13)where jaj :=Pi ai, (a)b := �(a+ b)=�(a), and �(a) :=Qi �(ai). In particular,bpi = (mi + ai)=jm+ aj; � = 1;(14) bpi = exp(	(ai +mi)�	(ja+mj)); � = 0;(15)where 	 is the the digamma function, the logarithmicderivative of � function. One can de�ne the �-uniformprior by way of the �-a�ne connections [1, 8], and itcan be shown that in this case it is D(pj�1). Thereforethe maximum likelihood estimator bpi = mi=jmj is the1-estimator with 0-uniform prior.3
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Figure 2: Decomposition of errors5 Discussion and SummaryWe outline here how various learning rules �t inthis general framework.A neural network (either deterministic or stochas-tic) can be regarded as a parameterised modelP (yjx;w) where x is input, y is output and w isweight [13]. With input distribution P (x), it isalso equivalent to P (zjw), where z := [x; y] 2 Z :=X � Y .Bayesian methods which give the whole posteriorP (pjz) as an answer still �t in this framework, foreither the posterior is analytically represented orit is simulated by a random process. In the formercase one is faced with the same question as stud-ied here. The latter case is equivalent to giving theposterior marginal distribution P (z0jz) as the an-swer, which is exactly the 1-estimate P (z0j�1(z)).Many non-Bayesian estimators, such as the maxi-mum likelihood estimator, can be regarded as gen-eralised Bayesian estimators with improper pri-ors [4, 5]. For multidimensional models there maybe many di�erent improper priors, not all of whichare non-informative, giving rise to a variety of dif-ferent non-Bayesian methods [14, 15].The general conclusion from this study is thatlearning rules should be compared with each otheronly if the following three things are speci�ed:(1) the prior P (p), (2) the divergence D(p; q), and(3) the model Q. If the sole purpose of learningis to extract information from the data, then theinformation divergence should be used. These as-
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