
Benchmarking the n-tuple Classi�erwith StatLog datasetsRichard Rohwer and Micha l MorciniecDept. of Computer Science and Applied MathematicsAston UniversityBirmingham, UK B4 7ETAbstractThe n-tuple recognition method was tested on 11 large real-world data sets and its per-formance compared to 23 other classi�cation algorithms. On 7 of these, the results show nosystematic performance gap between the n-tuple method and the others. Evidence was foundto support a possible explanation for why the n-tuple method yields poor results for certaindatasets. Preliminary empirical results of a study of the con�dence interval (the di�erence be-tween the two highest scores) are also reported. These suggest a counter-intuitive correlationbetween the con�dence interval distribution and the overall classi�cation performance of thesystem.1 IntroductionThe n-tuple classi�cation system is one of the oldest neural network pattern recognition methods [5],and there have been many reports of its successful application in various domains [10, 4, 12, 11, 6].The major advantage of the method is its lightning speed. Learning is accomplished by recordingfeatures of patterns in a random-access memory, which requires just one presentation of the trainingset to the system. Similarly, recognition of a pattern is achevied by checking memory contents ataddresses given by the pattern.It is prudent to suspect that relatively poor performance will accompany the speed and simplicityof the n-tuple algorithm. We therefore carried out a large-scale experiment [7] in which the n-tuplemethod was tested on 11 real-world datasets previously used by the European Community ESPRITStatLog project [8] in a comparison of 23 other classi�cation algorithms including the most popularneural network methods. The results, reviewed below, show the n-tuple method to be a strongperformer, except in a few cases for which we can o�er explanations.Statistics were also recorded on the con�dence intervals (the di�erences between the two high-est scores). Preliminary results suggest that two types of distribution occur, and performance iscorrelated to the distribution type. 1
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2 Selection and pre-processing of StatLog data setsThe StatLog project was designed to carry out comparative testing and evaluation of classi�cationalgorithms on large scale applications. About 20 data sets were used to estimate the performanceof 23 procedures. These are described in detail in [8]. This study used 11 large data sets, selectedas described in [7]. A speci�c random division into training and test sets was supplied for eachdata set.The attributes of the patterns in the StatLog data sets are mostly real numbers or integers.Therefore each attribute was rescaled into an integer interval, quantised, and converted into a bitstring by the method of Kolcz and Allinson [2], [3] based on CMAC and Gray coding techniques.The prescription for encoding integer x is to concatenateK bit strings, the jth of which (countingfrom 1) is x+j�1K , rounded down and expressed as a Gray code. The Gray code of an integer i canbe obtained as the bitwise exclusive-or of i (expressed as an ordinary base 2 number) with i=2(rounded down). This provides a representation in aK bits of the integers between 0 and (2a�1)Kinclusive, such that if integers x and y di�er arithmetically by K or less, their codes di�er byHamming distance jx � yj, and if their arithmetic distance is K or more, their correspondingHamming distance is at least K. The resulting bit strings are concatenated together, producing aninput vector of length L = aKA, where A is the number of attributes.3 Benchmarking resultsThe benchmark tests used preprocessor parameters a = 5 and K = 8, so each attribute was scaledto the interval [0; 248] and coded in 40 bits. (Test set attributes falling outside this range under thescaling based on the training set were truncated.) The recogniser used 1000 n-tuples of size n = 8,with 1 bit of memory at each address. In the event of a `tie', meaning that the highest-scoring classhad the same score as one or more other classes, the class among these with the highest a prioriprobability was selected.Results from the benchmarking exercise are shown together with the Statlog results for otheralgorithms in Figure 1. Table 1 is a key to the symbols representing the various algorithms in this�gure. Classi�cation performance is normalised to the probability of the most common class, whichequals the success rate obtainable by the trivial algorithm of always guessing that class.The results show no systematic bias against the n-tuple method, except on the 4 data sets whichtended to be the most problematic for the other algorithms. The geometric properties of the n-tuplemethod provide insight into the problematic cases.
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RAMnets(�) n-tuple recogniser Discriminators(|) 1-hidden-layer MLP. (�) Radial Basis Functions.(~) Cascade Correlation. (�) SMART (Projection pursuit).(
) Dipol92 (Pairwise linear discrim.). (	) Logistic discriminant.(�) Quadratic discriminant. (�) Linear discriminant.Methods related to density estimation(�) CASTLE (Prob. decision tree). (�) k-NN (k nearest neighbours).() LVQ (Kohonen). (�) Kohonen Topo. map.(") NaiveBayes (Indep. attributes). (�) ALLOC80 (Kernel functions)Decision trees(a) NewID (Decision Tree) (b) AC2 (Decision Tree)(c) Cal5 (Decision Tree) (d) CN2 (Decision Tree)(e) C4.5 (Decision Tree) (f) CART (Decision Tree)(g) IndCART (CART variation) (h) BayesTree (Decision Tree)(i) ITrule (Decision Tree)Table 1: Synopsis of Algorithms with symbols used in Figure 1.4 Counting HypercubesIt is well established that the tuple distance between two patterns (the expected number of tupleson which they di�er) decays exponentially with Hamming distance according to�(H) � N �1� e� nLH� (1)to a good approximation [1, 9]. Therefore each training pattern de�nes an A-dimensional hypercubewith edges of Hamming length roughly aK=n in each attribute, over which it can contribute to thescore of a test pattern. The preprocessor gives Hamming distances linear in arithmetic di�erencesup to Hamming distance K of a possible aK per attribute, corresponding to arithmetic di�erenceK of a possible (2a � 1)K. Demanding this linearity throughout the region of near tuple distancegives K > Ka=n, ora < n: (2)The input region corresponding to a training pattern's hypercube consists of scalar di�erences upto �K in each attribute, which is the fraction 2K(2a�1)K or about 21�a of the maximum separation(2a � 1)K. Therefore each training pattern generalises to an input space hypercube whose volumeis fraction 2�(a�1)A of the total input space. Assuming a Gaussian distribution for the data, itis then possible to estimate the number of hypercubes need to cover the input region where datais likely to occur. The estimate is the product of the eigenvalues of the training data covariancematrix, in units of hypercube edge length, rounded up.1 The results are shown in �gure 2.1Only the eigenvalues smaller than the edge length were rounded up; ie., they were dropped from the product.Neglecting to round the others does not a�ect the order of magnitude of the result.3
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Figure 1: Results for N-tuple (�) and other algorithms. Classi�cation error rates increase from left to right, andare scaled separately for each data set, so that they equal 1 at the error rate of the trivial method of always guessingthe class with the highest prior probability, ignoring the input pattern. The arrows indicate the few cases in whichperformance was worse than this.Evidently the data sets on which the n-tuple method fails are those requiring astronomicalnumbers of hypercubes to cover the data. The exceptions are \Technical" which is covered by just1 hypercube, and \DNA" which is unusual in that originally Boolean attributes were treated asintegers.It is not easy to �x this problem by tuning parameters. The \generalisation length" aK=n canbe increased by increasing a or K, or decreasing n. These alterations on a and n run into di�cultywith (2). Increasing K gives longer representations of the patterns, which may in turn require theuse of more N-tuples to adequately sample them.4
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Figure 2: The number of hypercubes required to cover the space occupied by data. The datasets on which n-tupleclassi�er performed poorly are printed in bold face. A star denotes the existence of skewed priors. The DNA datasethad a highly redundant representation of its attributes and most of the data for Technical was concentrated in onehypercube.5 Con�dence intervals
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Figure 3: A) Average Con�dence intervals as a function of tuple size n for several StatLog datasets. B) distributionof relative con�dence intervals for tuple size n = 12.The n-tuple system classi�es a pattern to the class c that yields maximal tuple proximity (score)with discriminator Dc. The di�erence of maximal and next maximal score (the con�dence interval)varies with the pattern. The mean con�dence interval as a function of tuple size n is plotted inFigure 3A. The n-tuple system with 100 tuples was applied to the classi�cation of several StatLogdatasets. Two of them, Belgian II and Cut20, pose problems to the classi�er (see section 3). Thecon�dence interval increases with n, as higher-order correlations become available to the classi�er.However, there seems to be no correlation between the size of the con�dence interval and thepercentage of correct classi�cations made.Figure 3B presents the distribution of con�dence intervals for the tuple size n = 12. It appearsthat the distributions tend to follow two forms: one approximately symmetrical, with a very lowcount of small con�dence intervals, the other asymmetric with a considerable number of smallscore di�erences. The datasets on which the n-tuple classi�er scores poorly seem to possess thesymmetrical distribution. 5



This preliminary data seems to suggest, oddly, that the n-tuple classi�er gives correct classi�-cations with small con�dence intervals, whereas mistakes are made \con�dently".6 ConclusionsA large set of comparative experiments shows that the n-tuple method is highly competitive withother popular methods, and other neural network methods in particular, except on data sets of highvolume relative to the volumes naturally associated with the n-tuple method. Preliminary resultssuggest that con�dence interval distributions fall into two categories, and that these are correlatedwith classi�cation performance.7 AcknowledgementThe authors are grateful to Louis Wehenkel of Universite de Liege for useful correspondence andpermission to report results on the BelgianI and BelgianII data sets, Trevor Booth of the AustralianCSIRO Division of Forestry for permission to report results on the Tsetse data set, and RezaNakhaeizadeh of Daimler-Benz, Ulm, Germany for permission to report on the Technical, Cut20and Cut50 data sets.References[1] N.M. Allinson and A. Ko lcz. Distance relationships in the n-tuple mapping. submitted to Pattern Recognition.[2] N.M. Allinson and A. Ko lcz. Enhanced n-tuple approximators. Weightless Neural Network Workshop, pages38{45, 1993.[3] N.M. Allinson and A. Ko lcz. Application of the cmac input encoding scheme in the n-tuple approximationnetwork. IEE Proceedings on Comput. Digit. Tech., 141(3):177{183, 1994.[4] W.W. Bledsoe and C.L. Bisson. Improved memory matrices for the n-tuple recognition method. IRE JointComputer Conference, 11:414{415, 1962.[5] W.W. Bledsoe and I. Browning. Pattern recognition and reading by machine. Proceedings of the Eastern JointComputer Conference, pages 225{232, 1959.[6] R. Rohwer and D. Cressy. Phoneme classi�cation by boolean networks. Proceedings of the European Conferenceon Speech Communication and Technology, 2:557{560, 1989.[7] R. Rohwer and M. Morciniec. The theoretical and experimental status of the n-tuple classi�er. Technical ReportNCGR/4347, Aston University Neural Computing Research Group, Aston Triangle Brimingham B4 7ET UK,1995.[8] D. Michie D.J. Spiegelhalter and C.C. Taylor, editors. Machine Learning, Neural and Statistical Classi�cation.Prentice{Hall, 1994.[9] G. D. Tattersall and R. D. Johnson. Speech recognisers based on n-tuple sampling. In Proc. Institute of Acoustics-Spring Conference, pages 405{413, 1984.[10] I. Aleksander W.V. Thomas and P.A. Bowden. Wisard a radical step forward in image recognition. SensorReview, pages 120{124, 1984.[11] J.R. Ullmann. Experiments with the n-tuple method of pattern recognition. IEEE Transactions on Computers,18(12):1135{1137, 1969.[12] J.R. Ullmann and P.A. Kidd. Recognition experiments with typed numerals from envelopes in the mail. PatternRecognition, 1:273{289, 1969. 6


