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Information GeometricMeasurements of GeneralisationHuaiyu Zhu and Richard RohwerDept of Computer Science and Applied MathematicsAston University, Aston Triangle, Birmingham B4 7ETEmail: zhuh@aston.ac.uk, rohwerrj@aston.ac.ukAugust 31, 1995AbstractNeural networks can be regarded as statistical models, and can be analysed in aBayesian framework. Generalisation is measured by the performance on independenttest data drawn from the same distribution as the training data. Such performancecan be quanti�ed by the posterior average of the information divergence between thetrue and the model distributions. Averaging over the Bayesian posterior guaranteesinternal coherence; Using information divergence guarantees invariance with respectto representation.The theory generalises the least mean squares theory for linear Gaussian models togeneral problems of statistical estimation. The main results are: (1) the ideal optimalestimate is always given by average over the posterior; (2) the optimal estimate withina computational model is given by the projection of the ideal estimate to the model.This incidentally shows some currently popular methods dealing with hyperpriorsare in general unnecessary and misleading.The extension of information divergence to positive normalisable measures revealsa remarkable relation between the � dual a�ne geometry of statistical manifolds andthe geometry of the dual pair of Banach spaces L1=� and L1=(1��). It therefore o�ersconceptual simpli�cation to information geometry.The general conclusion on the issue of evaluating neural network learning rulesand other statistical inference methods is that such evaluations are only meaningfulunder three assumptions: The prior P (p), describing the environment of all theproblems; the divergence D�, specifying the requirement of the task; and the modelQ, specifying available computing resources.1



1 IntroductionA neural network (either deterministic or stochastic) can be regarded as a parameterisedmodel [Whi89] P (yjx;w);(1.1)where x 2 X is the input, y 2 Y is the output and w 2 W is the weight matrix (Figure 1).In an environment with an input distribution P (x), it is also equivalent to P (x; yjw) orsimply P (zjw), where z := [x; y] 2 Z := [X;Y ] denotes the combined input and output asdata. This framework also includes unsupervised learning.
yx wFigure 1: A neural network as a black boxLearning, or training, is the task of inferring w from z. Therefore it is a typical statisticalinference problem in which a neural network model acts as a likelihood function [Fis25,Zac71, CH74, KS79].It is obvious that there can always be in�nitely many w which could have generated z andit is logically impossible to select w unless other information not contained in z is available.In a Bayesian framework such auxiliary information is represented in the form of a priorP (w), the distribution of w before the data z is seen. By the Bayes TheoremP (wjz) = P (zjw)P (w)=P (z);(1.2)a posterior distribution of w can be obtained, which contains the combined information ofboth the prior and the likelihood function. Nothing is lost by working in a Bayesian frame-work, since it is well known that, under mild regularity conditions, whatever the optimalitycondition is, for any given learning rule, there is always a Bayes learning rule which is notworse than the original learning rule under all circumstances [Fer67]. Sample-orientedstatistics can often be interpreted as Bayesian statistics with improper priors [Aka80],although extra caution is needed dealing with improper priors [DSZ73].The reason one can obtain a posterior about w is that it is uniquely associated with adistribution by w $ p := P (�jw). Since w does not have separate meaning apart frombeing a coordinate of p, it is natural to identify w with p. With this view, both the priorand posterior are distributions of distributions, as noted in [Fis36, p. 247], and the BayesTheorem can be more generally written asP (pjz) = P (zjp)P (p)=P (z):(1.3) 2



Let P be the space of probability distributions over Z. Those distributions which can berepresented by the neural network with a particular weight form a subspace Q � P. Therelation between Z, P, Q and W are illustrated in Figure 2.
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PFigure 2: The relation between Z, P, Q and W .A neural network training algorithm � : Z !W must �x one distribution, say q, which ina sense approximates all the distributions p which are possible a posteriori. 1 The relationbetween the learning rule and the Bayes theorem is shown in Figure 3.How does one choose a particular q from the posterior P (pjz)? Naturally, one wants thechosen q to be closest to the true p considered over the posterior. However, the metric inthe space W does not have an intrinsic meaning, as shown in Figure 4. What we need isa measure of \divergence" D(p; q)(1.4)between two distributions, p and q, which should be de�ned on the space of distributions P,and should be invariant under reparameterisation. This is what exactly has been o�eredby the theory of information geometry (See [Ama82, Ama85, BNCR86, ABNK+87, Kas89]for introductions, backgrounds and references), in which a parameterised family of dis-tributions, P, is regarded as a di�erentiable manifold, where the parameters w act as1Even those Bayesian methods which do not make a point estimate use an implicit point estimate whenthe network is applied. We shall come across this later.3



P(w|z)

P(w)

W w

z Z

P(q|z)

P(q)

q

τ

P

Q

τ

Figure 3: The role of Bayes Theorem on learning rulescoordinates. Each point in P represents a distribution. The word \geometry" capturestwo aspects of the theory: it studies quantities which can be measured with real num-bers, in contrast to topology; and the measurements are independent of the coordinates,in contrast to algebra.
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P(w) P(w’)Figure 4: Weight space is not invariantMean and mode will change with a weight space transform.To an uninitiated mind, it is quite surprising to know that with information geometryone can regard distributions as points, and talk about the length, angle, curvature, etc.,of geometrical objects composed of distributions. One of the major contributions frominformation geometry which is particularly relevant to our current aim is that there is aone-parameter family of \divergences" de�ned on the space of distributions, which possess4



properties enabling them to be regarded as generalisations of the squared distances whichhave been so important in linear theory.It will be shown that in order to develop a theory as comprehensive as that of linear regres-sion, it is necessary to extend information geometry from the manifold P of all probabilitymeasures to the manifold eP of all the positive de�nite measures. This generalisation followssuggestions in [Ama85].The main thesis of this paper is that generalisation should be measured as the posteriorexpected divergence between the true distribution and the model distribution. Using theBayesian posterior guarantees that the optimal learning rule is a Bayes rule, which givesoptimal estimates for almost all the data. Using the information divergence guaranteesthat the criterion of optimality is invariant of representation. That is, it remains the sameunder any invertible transforms on the input, output and weight spaces.The theory presented here generalises least mean square estimation for linear Gaussianmodels to any statistical estimation problems, in that there is always a unique optimalestimate which is obtained by appropriate average of the posterior, and that the optimalestimate within a model can be obtained by an appropriate projection of the ideal optimalestimate onto the model. The added complexity is comparable to, and related to, that ofthe generalisation from Hilbert spaces to Banach spaces.A condensed version of this report was presented at the MANNA conference, 1995 [ZR95c].2 Information Geometry | Basic ConceptsThis section is basically a review of the part of information geometry immediately relevantto our current study. Most of our notation on information geometry follows [Ama85,Ama87], although for technical convenience, we use � = (1 � �)=2 instead of �, following[Hou82, Kas84]. The latter references also give interpretations of � in the sense of classicalstatistics. The proof of results stated in this section can all be found in [Ama85], the �rstpart of which is perhaps still the best introduction to information geometry to-date.Let Z be a sample space with a base measure �. We shall only consider measures whichare absolutely continuous with respect to �. With this in mind we can identify positivemeasures with density functions, in the sense of the Radon-Nikodym Theorem [HS49]. Thispoint will always be implicitly assumed throughout this paper, while the base measure isoften implicit. Denote by P the space of all the probability measures on Z. Each p 2 P isa distribution and can be denoted as P (�jp). Following [Ama85], we denote by eP the spaceof all positive normalisable measures on Z, ie., all the positive measures with a �nite mass.Probability distributions are characterised by the fact that their mass is unity. Intuitively,P can be thought of as a section of a sphere, while eP can be thought of as a cone.For each p 2 P, denote the log-likelihood function l := log p. The space P can be regardedas an (in�nite dimensional) manifold in the sense to be introduced below. 2 Here we shall2Some regularity conditions are needed for these considerations to be meaningful; they are often trivially5



only consider the �nite dimensional case. This is technically easier to manage, intuitivelymore tractable, and provides motivation for our later de�nition for the in�nite dimensionalcase. For any �nite dimensional submanifold Q parameterised by �i, the tangent spacecan be identi�ed with the linear space TQ spanned by Fisher's \score functions" @il. Eachtangent vector is a random variable, a function of the sample z, with zero mean.hui = 0; 8u 2 TQ:(2.1)Alternatively, TQ can be considered as a linear subspace of measures on Z.A Riemannian metric can be introduced on P through the Fisher information matrixgij := h@il@jli :(2.2)The inner product for u; v 2 TP is denoted as hu; vi. This symbol is also used to denotecovariance. Obviously there is no conict between these two usages here.The skewness tensor is a symmetric tensor of order three, de�ned asTijk := h@il@jl@kli :(2.3)Let � 2 [0; 1], the �-connection on P is de�ned through corresponding Christo�el symbols,��ijk := h@i@jl@kli+ �Tijk:(2.4)A whole bunch of related concepts, such as �-geodesic, �-parallel translate, �-curvature,�-atness, �-convex, can be de�ned in the conventional way [Ama85]. It turns out that Pis �-at for � 2 f0; 1g but not for � 2 (0; 1). This will lead us, in sections to follow, to anextension of the �-geometry to eP, the space of positive measures.For a distribution p 2 eP, its �-representation (coordinate) is a measure given by�l(p) := ( p�=�; � > 0;log p; � = 0:(2.5)Denote by 1=�l the inverse mapping of �l. Let � := 1=�. The image of the mapping �l(p) is amember of the Banach space L�(Z), the space of all the �th power integrable functions onZ, since k�l(p)k�� = Z (�l(p))� = Z p=�� <1:(2.6)If this is regarded as an (in�nite dimensional) di�eomorphism, eP can be identi�ed with thepositive cone of Banach space L�(Z), while P corresponds to the positive sector of a spheresatis�ed by commonly used families of probability distributions. We shall not consider regularity conditionsin this report, except that we shall always make sure that we are not studying properties of members ofthe empty set. 6



(in the norm k � k�). The 0-representation is usually called the exponential representation(e-representation), while the 1-representation is usually called the mixture representation(m-representation). They are also called the likelihood function and the log-likelihoodfunctions, respectively.Example 2.1 Consider a sample space of only three points, Z = f1; 2; 3g. Any function on Zcan be identi�ed with a vector in R3. Any positive measure on Z can be identi�ed with a \positivevector" in R3+. Consider a particular distribution p 2 P on Z, de�ned by p(1) = 1=2; p(2) =1=3; p(3) = 1=6. It can be denoted as p = [1=2; 1=3; 1=6]. This notation, however, is exactlythe 1-coordinate, if, as usually the case, the base measure is chosen as � = [1; 1; 1]. That is,1l(p) = [1=2; 1=3; 1=6]. Other representations are also legitimate. The 0-coordinate, for example,is 0l(p) = [� log 2;� log 3;� log 6].Through the �-representation, the Riemannian metric and the �-divergence can be ex-pressed as gij = Z @i�l @j1��l ;(2.7) ��ijk = Z @i@j�l @k1��l :(2.8)The � and (1��) divergences are dual to each other with respect to the Riemannian metricurhv;wi = *u �rv;w++ *v; u1��rw+ :(2.9)The symbol r at the left hand side is the uniquely de�ned covariant derivative operator.It is independent of the a�ne connections since hv;wi is a scalar �eld. The � = 1=2connection is self-dual, and is therefore the Levi-Civita connection corresponding to thegiven Riemannian metric. The following holds as a consequence of the duality.Theorem 2.1 There are dual-a�ne coordinates [�i; �i] and dual potential �elds � and  ,such that �i = @i ; gij = @i�j;(2.10) �i = @i�; gij = @i�j ;(2.11)where @i := @=@�i and @i := @=@�i. The potentials � and  are related by the Legendrerelation  + � = �i�i:(2.12)Many of the interesting dualities between � and (1 � �) geometries on P [Ama85] can beattributed to the duality between corresponding Banach spaces, as we shall see below.7



The �-divergence between two distributions p; q 2 P is de�ned asD�(p; q) :=  (p) + �(q)� �i(p)�i(q):(2.13)It turns out that D�(p; q) = 1�(1� �) �1� Z p�q1��� :This is obviously invariant of the �-representation. Let r be any measure absolutely con-tinuous with respect to p + q, thenZ p�q1�� = Z r(p=r)�(q=r)1��;(2.14)where p=r and q=r are the Radon-Nikodym derivatives. The corresponding divergences for� 2 f0; 1g are de�ned through limits. It turns out that D1 is the cross entropy, D0 is thereverse cross entropy, and D1=2(p; q) is the Hellinger distance.Not only can the �-divergence be de�ned in terms of the �-connections, the converse is alsotrue by way of the Eguchi relations [Egu83]. The �-divergence is unique in a certain sense,as discussed in [Ama85, p.96{100]: By some invariance considerations, the most generalde�nition of information divergence is the f -divergence. However, since �-connections arethe only invariant connections, the �-divergence is unique if the Eguchi relations are tohold.These conditions are weaker than Shannon's conditions for the de�nition of entropy[Sha48].If an additive constraint is added to the de�nition of �-divergence, then � = 1, and thede�nition of cross entropy is obtained [Kul59]. A further constraint relating to the uniformdistribution gives Shannon's de�nition of entropy (with a linear transform).The most important consequence of these de�nitions is the \Generalised PythagoreanTheorem"[Ama85]. It can be presented in many forms, an important one of them is asfollows.Theorem 2.2 (Generalised Pythagorean Theorem) Let P be a �-at manifold. LetQ be (1��)-convex submanifold of P. Then for an arbitrary point p 2 P, there is a uniquepoint bq 2 Q which minimises D�(p; bq). This is called the �-projection of p onto Q. Forany q 2 Q, D�(p; q) = D�(p; bq) +D�(bq; q):(2.15)This is analogous to the linear projection of quadratic distance. In fact, we shall see laterthat it is a proper generalisation to the later.8



3 Coherent Invariant Measurements of GeneralisationGiven sample space Z, consider the space P := P(Z) of all the probability measures onZ. 3 Each p 2 P, corresponding to P (�jp), is a distribution from which the data could havebeen drawn.A statistical model is a subspace Q of P. In the case of neural networks, Q is alwaysa proper subspace of Q, restricted by the fact that input distribution P (x) cannot befreely changed, and that not all conditional distributions P (yjx) can be represented by thenetwork.A sample, or a data set, of size n, is a point zn = [z1; : : : ; zn] 2 Zn. We shall only beinterested in independent data in this paper. That is, we shall always assume P (znjp) =Qi P (zijp). 4 Since the sample size n is always available, there is a trivial one-one corre-spondence between P (znjp) and P (zijp). Therefore, to avoid excessive use of complicatednotation, we shall suppress explicit distinction between these two. The formulas in the restof this paper, except in the following paragraph acting as an example, look as if both thetraining data and the test data consist of only a single point, although they are applicableto the general case, and it is always quite obvious how to write them in full detail.A learning rule is a mapping � : Z !Q;(3.1)which maps the observed data z 2 Z generated by an unknown distribution p 2 P tothe estimated distribution q = � (z) 2 Q. In view of the convention on notation justintroduced, this de�nition actually means the following. LetZ := 1[n=1Zn;(3.2)A learning rule is a mapping � : Z ! Q. For each data size n and each observed data setzn 2 Zn, generated by pn 2 Pn, where pn is de�ned by P (znjpn) = Qi P (zijp), the learningrule � maps zn to an estimate q = � (zn) 2 Q. Such explanation will not be repeated inthe rest of the paper. See [Ama87] for notation in which the sample size is explicit. Theabove discussion is schematically illustrated in Figure 5.How does one measure the performance of a learning rule? It is obvious that the per-formance should be measured on test data which is independent of the training data, forotherwise a learning rule which uses the \empirical distribution" of the training data asthe estimate would be regarded as optimal [GBD92]. However, the test data is a random3As mentioned before, we only consider measures which are absolutely continuous with respect to abase measure � on Z4The case of non-independent data is usually called \temporal learning", and requires techniques suchas the adaptive critic [BSA83, BSW90]. The mathematical formulation is di�erent, although statisticalestimators can act as modules in an adaptive critic architecture [Zhu93].9
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QFigure 5: Relation between weight space, learning rule, and Bayes Theoremvariable. Any particular sample test data cannot be directly used to measure the perfor-mance, for that will label a learning rule which always produces the same test data asthe optimal one, although admittedly such a learning rule is very unlikely to be hit uponbefore the test data is known. Therefore it is clear that what we really want is to calculatethe \divergence", between the true distribution which will generate all the future test dataand the model distribution given by the learning rule. Of course the true distribution isnot known. Therefore we take the posterior average of the divergence as a performancemeasure for the learning rule. In other words, a learning rule should not only be able tomake a good prediction by training on a particular data set; It should be able to do so forany training set which naturally arises in a given environment. These considerations leadto the following de�nition.De�nition 3.1 (Generalisation error) The measurement of generalisation of learning rule� is de�ned as the expected divergence between the true distribution p and the modeldistribution q = � (z) given by the rule, averaged over any possible true distribution p anddata z, E�(� ) := hD�(p; � (z))i = Zp P (p) Zz P (zjp)D�(p; � (z)):(3.3)A learning rule � which minimises E�(� ) is called a �-optimal learning rule (estimator). Itis denoted �� if it is unique.Given some observed data z, we also want to choose an estimate that minimises the pos-10



terior expected divergence between the true distribution p and the model distribution q,averaged over all possible p,E�(qjz) := hD�(p; q)iz = Zp P (pjz)D�(p; q);(3.4)An estimate q 2 Q which minimises E�(qjz) is called a �-optimal estimate based on z.It is important to note that the de�nitions of E�(� ) and E�(qjz) depend on the priorP (p). A learning rule which is optimal in one environment may not be good in anotherenvironment.It is easy to verify that these two criteria are compatible with each other in the sense ofthe following theorem.Theorem 3.1 (Coherence of optimality of estimators and estimates) A learning rule� is �-optimal if and only if for any data z, excluding a subset of zero probability, � (z) isa �-optimal estimate based on z.Proof: By applying Bayes' rule, we haveE�(� ) = Zz P (z) Zp P (pjz)D�(p; � (z)) = Zz P (z)E�(� (z)jz)(3.5)The conclusion then directly follows the fact that the divergence is non-negative.The inferences by Bayes rule, and only such inferences, are coherent, in the sense that theinformation carried in the posterior is exactly the combined information carried in the priorand the data (equivalently in the likelihood function). An estimator is regarded as optimalif and only if it gives optimal estimates for almost all the data. The �-divergences areinvariant with respect to invertible transforms in W and Z. Therefore the generalisationmeasurement de�ned above is both coherent and invariant. This resolves the controversyin [Mac92, Wol93, Mac93]. We shall come back to this point later (x8).Theorem 3.2 (Projected Average Theorem) Let Q be a �-at manifold. Let P (p) bea prior on Q. Then 8q 2 Q, 8z 2 Z,E�(qjz) = E�(bpjz) +D�(bp; q);(3.6)where bp is the �-optimal estimate in Q.Proof: Let (�; �) be the (�; 1� �)-dual coordinates. Then the theorem is equivalent tothe vanishing of the following entity,hD�(p; q)�D�(p; bp)�D�(bp; q)iz = D(�i(p) � �i(bp))(�i(bp)� �i(q))Ez(3.7)De�ne qt by its � coordinates, for t in a small neighbourhood of 0,�(qt) := �(bp) + t(�(q)� �(bp)):(3.8) 11



Then qt 2 Q. For jtj � 1, since D�(bp; qt) is quadratic in t, and non-negative[Ama85],hD�(p; qt)�D�(p; bp)ix = D�(bp; qt) + D�i(p) � �i(bp)Ex (�i(bp)� �i(qt))� At2 +Bt � 0;it follows that B = 0, or equivalentlyD�i(p) � �i(bp)Ex � (�i(bp)� �i(q)) = 0:(3.9)This shows that the quantity (3.7) is identically zero. This completes the proof.This theorem is a direct generalisation of the well-known corresponding result for leastsquares estimates. Let p and q be Gaussians with means a and b, respectively, and thesame �xed variance. Let ba be de�ned by minimising hka� bak2iz. Then the above theoremreduces to the following Dka� bk2Ez = Dka� bak2Ez + kba� bk2:(3.10)The above proof itself is also a generalisation of the usual proof for the least squaresestimate.4 Optimal Estimators on the Whole Probability SpaceAs was mentioned previously, neural network models are proper subspaces of P. However,in order to gain some intuition about the above abstract de�nitions, it is bene�cial to �ndout the �-optimal estimates for the unrestricted case. That is, in this section, we assumeQ = P.Theorem 4.1 Given a prior P (p) on P, and data z, the �-optimal estimate q based on zcan be obtained by taking the average of the �-representations of the true distribution overthe posterior as the �-representation of q and then normalising the results. That is,Minq2P E�(qjz) () q � 1=�l  *�l(p)+z! ;(4.1)for any data z excluding a set of zero probability, where h�iz denotes the posterior expecta-tion.Proof: This is proved in [ZR95a], by a variational argument.The reason that the �-optimal estimate is only proportional to the positive measure ob-tained by averaging the �-coordinates over the posterior is that probabilities are normalised.Later we shall extend the �-geometry to the space of normalisable positive measures, eP. Itwill be seen that the mathematics become much simpler, and the intuition much clearer.The unfamiliar �-geometry will be connected with the familiar geometry of the Banach12



space L1=�. It will be shown that projection from eP to P is always achieved by renormali-sation, so that the above theorem becomes a simple corollary.It is interesting to observe that for � = 1, the �-estimate reduces to q = hpiz. In otherwords, the 1-optimal estimate is simply the posterior marginal distribution. The MonteCarlo method proposed by R. Neal[Nea93] consists of sampling from the posterior of w foreach instance of z, which gives a predictive distribution of z which is exactly the posteriormarginal distribution.Two examples from classical statistics will help to clarify these discussions. The detailedderivations are given in [ZR95b, ZR95a].Example 4.1 Consider the multinomial family of distributionsM(mjp); m 2 Nn; p 2 P = �n�1;(4.2)with a Dirichlet prior D(pja); a 2 Rn+:(4.3)The posterior is also a Dirichlet distribution D(pja+m). The �-optimal estimate bq 2 P is givenby (bqi)� � (ai +mi)�;(4.4)where (a)b := �(a+ b)=�(a). In particular,bqi = (mi + ai)=Xj (mj + aj); � = 1;(4.5) bqi � exp(	(ai +mi)); � = 0;(4.6)where 	 is the the digamma function, the logarithmic derivative of � function.Example 4.2 Consider the Gaussian family of distributionsf(zj�) = N(z � �jh); z; � 2 R; h 2 R+;(4.7)with �xed variance �2 = 1=h. Let the prior be another Gaussianf(�) = N(�� a0jn0h); a0 2 R; n0 2 R+:(4.8)Then the posterior after seeing the sample zk = [z1; : : : ; zk] is also a Gaussianf(�jz) = N(�� ak jnkh); ak = (X z + n0a0)=(n0 + k);(4.9)where a1 is also the posterior least squares estimate. The �-optimal estimate bq is given by thedensity f(z0jbq) = N �z0 � ak���� h1 + �=nk� :(4.10)This show that if we are only interested in estimating the mean of a Gaussian, then the leastsquares estimate should be used, whatever the choice of �. Note that the �-optimal estimate isnot a member of the original Gaussian family (h0 6= h) unless � = 0, since this family is only0-at. 13



The entities jaj for the Dirichlet prior and n for the Gaussian prior are e�ective previoussample sizes. This fact was of course well known since Fisher's time. In a restricted model,the sample size might not be well reected, and some ancillary statistics, as introduced byFisher, may be used for information recovery.5 Information Geometry | Extension to Positive MeasuresAs alluded in the previous section, the procedure for obtaining the �-optimal estimate isnot entirely aesthetically appealing. Intuitively, from the Averaged Projection Theorem,the �-estimate should be obtained simply by averaging the �-coordinates. However, sincewe have been seeking �-optimal estimates in P, the space of positive measures with totalmass of unity, a renormalisation is necessary. Intuitively, the space P looks like a (veryhigh dimensional) sphere. Averaging on the sphere will in general result in a point in theinterior of the ball. (Figure 6) Renormalisation is the projection back onto the sphere. If weare ready to accept all positive measures as possible candidates of a statistical estimationproblem, the mathematical machinery becomes much simpler. There is nothing lost in thischange of concept, since in practice only the proportionality of measures are necessary forapplications of probability theory. 5 A renormalisation can always be performed at the�nal stage if such an answer is sought, but it will be seen that positive measures providea more versatile tool to hold intermediate results. 6
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^Figure 6: The �-average of the posterior is not on PThe extension of �-geometry to eP follows suggestions in [Ama85]. The resulting theoryis surprisingly elegant. It also provides an explicit link between the duality between the5This is evident from all the Monte Carlo algorithms, such as Gibbs samplers.6One of the most important techniques in stochastic computation, the Gibbs sampler [MRR+53,KGV83, GG84, Yor92], only requires a detailed balance [Ami89], which is expressible as ratios betweenprobability distributions. 14



geometry of statistical manifolds, and the thoroughly studied duality between Banachspaces (complete normed linear spaces).We shall present the theory for a �nite sample space Z. The general situation is quitesimilar, although the notation will be more abstract. 7 We shall state the correspondingresults for an in�nite sample space, however, without rigorous proof.Following [Ama85], the extension to eP is most conveniently carried out through the �-representatives. We shall �rst consider � 2 (0; 1), and then extend the results to � 2 f0; 1g.Note that the tangent vectors of eP are no longer zero mean random variables. If a vectoru 2 T eP has a positive mean, for example, it points in the direction of increasing totalmass, and vice versa.For p 2 eP, let [�; �] be the [�; 1� �]-dual coordinates,�i := �li = p�i� ; �i := 1��l i = p1��i1� � :(5.1)It follows easily that @i�j = 1ji ; @i�j = p1�2�i 1ij:(5.2)The Riemannian metric is de�ned asgij := Z @i�l @j1��l = @j�i = p1�2�i 1ij:(5.3)Note that the alternative formula gij = �h@i@jli, which depends on h@ili = 0, is no longertrue.For any parameterisation, the �-connection �r is de�ned through*u �rvw+ : = Z u@(v@�l)w@1��l= Z ui@i(vj@j�l)wk@k1��l= Z  ui@ivj@j�l + uivi@i@j�l! wk@k1��l= D�ui@ivj@jl + uivi@i@jl + �ui@ilvi@jl� wk@klE= ui@ivjwkgjk + uivjwk ��ijk= ui �rivkwk;7Finite dimensional linear algebra can be conveniently presented in either coordinate-dependent orcoordinate-free fashion. The in�nite dimensional counterpart can only be reasonably well presented ina coordinate-free fashion. However, such description might obscure the geometric meaning to those notfamiliar with such presentations. 15



where ��ijk := h(@i@jl + �@il@jl) @kli ; �rivk := @ivj + vj ��ijk:(5.4)It has simple formula under the �-representation,*u �rvw+ = Z ui@i(vj@j�l)wk@k1��l= Z  ui@ivj@j�l + uivi@i@j�l! wk@k1��l= Z ui@ivj@j�l wk@k1��l= ui@ivjwj:This implies ��ijk = 0. Therefore the coordinate curves of �-representation are �-geodesics,@i@j�k = 0 =) ei �rej = 0:(5.5)Since the space eP is �-a�ne, the �-potential  can be obtained by integration (p) = Z �k(p)d�k(p) = Z Xk p1��k1 � � dp�k� = Z Xk 11� � dpk = Pk pk1� � :(5.6)It can be veri�ed that this indeed satis�es (by @ipi = p1��i )@i = �i:(5.7)Since [�; �] are [�; 1� �] dual a�ne coordinates with potentials (p) = Pk pk1 � � ; �(p) = Pk pk� ;(5.8)the �-divergence between two distributions p; q 2 eP is well de�ned, 8D�(p; q) :=  (p) + �(q)� �i(p)�i(q) = P p1� � + P q� � P p�q1���(1� �) :In the case of continuous distributions, the sum should be replaced by integration, and wede�ne the �-divergence between p; q 2 eP(Z) for any measurable space Z to beD�(p; q) := R p1� � + R q� � R p�q1���(1� �):8We were informed during the MANNA conference that Prof. S. Amari had independently obtainedresults of the same nature, which, after all, is a simple corollary from his book.16



The corresponding divergences for � 2 f0; 1g are de�ned through limits. It is easy to verifythat lim�!0 1�(1� �) ��p+ (1� �)q � p�q1��� = p � q + q log qp:(5.9)Therefore the correct generalisation of the Kullback-Leibler-divergence to eP isK(p; q) := Z  q � p+ p log pq! :(5.10)It can be easily veri�ed that D� is invariant with respect to the base measure. It is alsoobvious that this de�nition is compatible to the previous de�nition for p; q 2 P, since inthis situation, R p1 � � + R q� = 1� + 11 � � = 1�(1� �) :We shall prove in the next section that D�(p; q) is approach the same quadratic form whenp and q are close to each other, independent of �. This de�nes a topology on eP. SinceD1=2 is a squared Hilbert-norm, eP becomes an in�nite dimensional manifold modelled ona Hilbert space [AMR83]. Similar ideas for considering eP as in�nite dimensional manifoldappeared more or less explicitly in [Ama85, Ama87].By de�ning the �-divergence this way, we have largely avoided the issue of regularityconditions. In the following sections we shall prove several theorems which would be quitedi�cult under a more general treatment of in�nite dimensional manifolds, but are quiteelementary under the current de�nition. On the other hand, the �-divergence obviouslyintroduces a topology on eP, by which �l are di�eomorphisms. The Banach spaces L1=� can beviewed as tangent spaces. It is not clear to us at the moment in what sense transformationsamong these Banach spaces can be viewed as di�eomorphisms, but we note that most ofthe commonly used Banach spaces are isomorphic to each other [Tri83].The drawback is that we cannot discuss the uniqueness or generality of such a de�nition.It is adopted merely because it is useful. With such a de�nition of �-divergence, we canwork backwards and de�ne the Riemannian metric and �-connections by using the Eguchirelations[Egu83] hu; vi := urp vrq D�(p; q)���q=p;(5.11) *u �rv;w+ := urp vrp wrq D�(p; q)���q=p;(5.12)where ur, etc., are Frechet derivatives in Banach spaces. We have not studied the detailsof the regularity conditions required for these formal manipulations to be rigorous. Sinceour main objective here is to �nd a de�nition of information divergence, we shall not beconcerned with the exact meaning of other aspects of information geometry.17



6 Properties of Information Divergence on fPTheorem 6.1 The following properties hold for � 2 (0; 1) and p; q 2 eP.1. The �-divergence is non-negative: D�(p; q) � 0:(6.1)2. The �-divergence of two measures is zero if and only if they are identical to eachother, D�(p; q) = 0 () p = q:(6.2)3. The �-divergence is approximately quadratic when two distributions are close to eachother, independent of �. D�(p; p +�p) � 12 Z �p2p ;(6.3)where right hand side is usually called the �2 distance [Kas89].4. The � and (1 � �)-divergences are dual to each other:D�(p; q) = D1��(q; p):(6.4)5. The �-divergence is invariant of reparameterisation. That is, D�(p; q) does not dependon the base measure � implicit in its de�nition.6. The �-divergence is homogeneous in both arguments.D�(ap; aq) = aD�(p; q); 8a 2 R+:(6.5)Proof:1. The integrand in the de�nition of the �-divergence is a positive measure, since it is thedi�erence between an arithmetic mean and a corresponding geometric mean, hencealway positive. The situation for � = 1 is also easy to prove, using the inequalitygiven in Figure 7.2. The mass of a positive measure is zero only when the measure is itself zero. Thedi�erence between the arithmetic mean and geometric mean of p and q can only bezero when p = q.3. Expansion in terms of �p gives�p+ (1 � �)(p+�p)� p�(p+�p)1�� � �(1� �)2 Z �p2p +O0@ �pp !31A :(6.6) 18



4. Obvious from de�nition.5. Use (2.14).6. Obvious from de�nition.This completes the proof of the theorem.
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Figure 7: Positiveness of q=p � 1� log(q=p)The positiveness of the integrand in the de�nition of the �-divergence has the additionaladvantage of not only telling us the total divergence between any two positive measures,but also telling us the divergence on each event (measurable subsets of Z). For example,in Figure 8, it is possible to speak of the divergence between p and q over E.
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EFigure 8: Divergence between two measures on a eventSince the space eP is �-at for any �, the Projected Average Theorem automatically holds.However, it has a more conventional proof which is analogous to the corresponding theoremfor linear models. In fact, it is a direct generalisation of the corresponding proof for � = 1=2Theorem 6.2 (Projected Average Theorem) Let P (p) be a distribution on eP. Letq 2 eP. Then hD�(p; q)i = hD�(p; bp)i+D�(bp; q);(6.7) 19



where bp is the �-average of p de�ned asbp� := Dp�E :(6.8)Proof: This is proved by straightforward evaluation. In doing the following calculations,it is important to remember that p is a random quantity while bp and q are not. From thede�nition of bp, it is easy to show that�(1� �) hD�(p; bp)i = � Z hpi + (1� �) Z bp� Z Dp�E bp1��= � Z hpi + (1� �) Z bp� Z bp� bp1��= � Z hpi � � Z bp:Therefore, �(1� �) hD�(p; q)i = � Z hpi + (1 � �) Z q � Z Dp�E q1��= � Z hpi � � Z bp+ � Z bp+ (1 � �) Z q � Z bp�q1��= �(1� �) hD�(p; bp)i + �(1� �)D�(bp; q):This proves the theorem.Corollary 6.3 Given sample z 2 Z and a prior P (p) over eP, the �-estimate q = � (z) ineP is given by the �-average over the posterior,q� = Dp�Ez :(6.9)Proof: Substitute the posterior P (pjz) into the previous theorem.This generalises the classical result that the least mean square estimate is given by ba = haiz.Therefore we immediately obtains an extension of the Kalman �lter to any �-at statisticalmodels. The drawback is that, as a Kalman �lter requires a matrix inversion at each step,the generalised algorithm requires the use of Bayes' rule at each step. How di�cult this isdepends on the exact model.Example 6.1 Return to the multinomial family of distributions as considered before. The �-optimal estimate q 2 P is given by(qi)� = (ai +mi)�=(ja+mj)�;(6.10)where jaj :=Pi ai. In particular,qi = (ai +mi)=ja+mj; � = 1;(6.11) log qi = 	(ai +mi)� 	(ja+mj); � = 0:(6.12) 20



7 Optimal Estimators for Restricted ModelsAs said earlier, neural networks are statistical models such that Q is a proper subspaceof P. In this section we shall discuss such situations.Theorem 7.1 (Decomposition of errors) Let Q � eP be a (1� �)-convex submanifold.Let P (p) be a prior on P � eP. Denote by bp and bq the �-optimal estimates in eP and Q,respectively, based on data z 2 Z. ThenE�(qjz) = E�(bpjz) +D�(bp; q)(7.1) = hD�(p; bp)iz +D�(bp; bq) +D�(bq; q):(7.2)This is an immediate generalisation of least mean square estimates for linear models.Consider the family of normal distributions with a �xed covariance matrix �. Let k � k bethe norm associated with the inner product de�ned by ��1. Then the above reduces toDka� bk2Ez = Dka� bak2Ez + kba� bk2(7.3) = Dka� bak2Ez + kba� bbk2 + kbb� bk2;(7.4)where a; b; ba; bb are posterior mean of p; q; bp; bq, respectively.The practical interpretations of these quantities can be summarised as follows:� The manifold P is the mathematical model. It is usually in�nite dimensional.� The manifold Q is the computational model. It is always �nite dimensional.� p 2 P is the true distribution which generates the data. It is random even whenconditional on the data. In other words, it is unknown even after the data is observed.� bp 2 eP is the ideal �-estimate, which is not random conditional on the data. It is the�-average of the posterior P (pjz).� bq 2 Q is the �-estimate within the model. It is the �-projection of bp onto Q.� q 2 Q is the estimate which is actually computed.By the theorem for the decomposition of errors, the total error of an estimate consistsof three \orthogonal" components: the statistical error hD�(p; bp)iz caused by the lack ofknowledge about the true p from �nite sample z; the approximation errorD�(bp; bq) caused bythe fact that the ideal estimate is not representable by the given model; and the avoidableerror D�(bq; q). It follows that the most one can do is to reduce D�(bq; q). This is shown inFigure 9.In summary, we introduce the following terms:21
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Figure 9: Decomposition of errors� E�(qjz) = hD�(p; q)iz | total error.� E�(bpjz) = hD�(p; bp)iz | statistical error, intrinsic uncertainty (minimumtotal error).� D�(bp; q) | additional error.� D�(bp; bq) | approximation error (minimum additional error for the model).� D�(bq; q) | Avoidable error.It appears that many commonly used statistical techniques can be expressed in terms ofthese concepts:� \Test of signi�cance", \alternative-free" test | Compare additional error with in-trinsic error.� \Classi�cation", \test among two alternatives", \goodness of �t test" | Comparetotal error of several models.� \Model adequacy" | Compare approximation error.� \Cross validation" | Sample estimate of total error.Since multilayer neural networks are usually not �-convex for any �, there may exist localoptima of E�(�jz) on Q. Let p 2 P be the environmental distribution. Let q 2 Q be thenetwork distribution, parameterised by w. A practical learning rule is usually a gradientdescent rule which moves w in the direction which reduces E�(qjz).22



Example 7.1 To optimise the 1-divergence is equivalent toMinq K(p; q) () �w � �@w0l(q)�p � �@w0l(q)�q(7.5)This can be approximately implemented as a supervised learning rule, the Boltzmann machinelearning rule [AHS85].Example 7.2 To minimise the 0-divergence is equivalent toMinq K(q; p) () �w � �@w0l(q); 0l(p)� 0l(q)�q(7.6)This can be approximately implemented as a reinforcement learning rule, the simulated annealingreinforcement learning rule for stochastic networks[Zhu93]. 9The above should, in theory, be averaged over the posterior. However, since in neuralnetwork situations the prior is usually very week, the empirical distribution of z can beused in place of p. The result will approach the correct result in the long run, which is toconverge to a point where the generalisation error has a (local) minima.Rather than simply regarding neural networks as non-at models, some further structuremay be used. Many neural networks, such as multilayer perceptrons, can be viewed as mix-ture models, for which a very powerful learning rule, the EM algorithm, exists [DL77]. TheEM algorithm is recently re-analysed in light of information geometry [Ama94, Ama95].If the model Q is further restricted such that neurons are independent of each other, thenQ can be parameterised by the mean state of each neuron, resulting in a mean �eld model.This immediately gives the corresponding learning rules for feed-forward perceptrons and(continuous) Hop�eld nets [Zhu93].8 A Hyperprior is UnnecessaryIn the proper Bayes framework, there is no di�erence between the prior and hyperprior. Ifthe distribution of a variable in to change with new data, this variable is called parameter.Let z be the data which we can observe directly. Let p be a parameter which we cannotobserve but would like to infer from the observation of z. Then by de�nition, the prior P (p)is the unconditional distribution of p while the posterior is the conditional distribution.The change from prior to posterior is e�ected by the Bayes rule through the likelihoodfunction which is dependent on the data. Therefore any attempt to infer about the priorfrom the data is fundamentally wrong and breaks the coherence only enjoyed by Bayesmethods. Technically speaking, coherent use of probability theory requires the assignmentof joint distributions, and Bayes rule is a method which enables one to achieve this.9Let e(z) be an evaluation function speci�ed by the environment. De�ne the environmental distributionby 0l(p)(z) = �e(z), where � is usually called the reciprocal temperature.23



It is well known that due to Cox's Lemmas[Cox46], the only coherent method of real valuedinference is through probability, which means, in particular, through the application ofBayes Theorem. All the other procedures will yield incoherent results sooner or later in along chain of inference. Therefore, even if an approximation is valid at some stage from thepoint of view of certain applications, its validity is unlikely to hold if other consequencesare derived from it. The incoherence will manifest itself, for example, if there is no learningrule which is optimal for almost all given data.In the sense of pure mathematics, there is only one unique theory of probability, thatde�ned by Kolmogorov's Axioms [Kol56], which speci�es what kinds of operations withprobability distributions are logically coherent, without any restriction on the possibleinterpretations. Although various statistical methodologies assign di�erent meanings toprobability, they can be divided into two categories: either it is possible to assign a jointdistribution of all the objects under consideration, or it is not. If it is possible, then forany two objects, the probabilities of ajb, bja, a and b cannot be given arbitrarily; theymust be related by the Bayes' rule. If it is not possible to assign a joint distribution,then it is always possible to �nd a counterexample, in which the probability of an object,whatever its meaning, can be di�erent depending on the way it is calculated, even allowingin�nitely accurate calculations. Therefore we shall restrict our discussion to the Bayesianframework.The objects which are called hyperparameters in the literature are actually a mixture ofdi�erent things. The reason to treat hyperparameters di�erently than the ordinary param-eters is not always clear, and is sometimes wrong. Here we shall provide an unambiguousde�nition of the term \hyperparameter". Then we shall show that if a parameter is quali-�ed as such then it should always be integrated out before analysing the data.Now suppose the parameter p can be decomposed into two parts [w; r] such that P (zjp) =P (zjw), ie. the r part is not contained in the likelihood function. Then we call r a\hyperparameter". This appears to be the intended usages in [LS72] when the term was�rst introduced. Decomposing the prior into P (p) = P (w; r) = P (wjr)P (r), the jointdistribution of z;w; r is given byP (z;w; r) = P (zjw)P (wjr)P (r);(8.1)from which all the marginal and conditional distributions of combinations of these threevariables are well de�ned. In particular, this is equivalent to the conditional independenceof z and r given w, de�ned by any of the following three relations,P (z;wjr) = P (zjw)P (wjr);(8.2) P (r; wjz) = P (rjw)P (wjz);(8.3) P (z; rjw) = P (zjw)P (rjw):(8.4)For a highly stimulating discussion of the concepts of conditional independence in statisticssee [Daw79], where the notation z?rjw was also introduced to denote any of the aboverelations. 24



Given data z, The �-optimal estimate P�(z0jz) for the distribution of new data z0 is givenby P�(z0jz)� = Zw;r P (w; rjz)P (yjw)�(8.5) = Zw P (wjz) Zr P (rjw)P (z0jw)� = Zw P (wjz)P (z0jw)�(8.6) = Zr P (rjz) Zw P (wjr; z)P (z0jw)� = Zr P (rjz)P�(z0jr; z)�:(8.7)From (8.6), it is seen that the optimal estimate is determined by the prior distribution ofw, obtained by marginalising out r. The hyperparameter r only serves as a tool in thede�nition of prior P (w) and is otherwise irrelevant.It is usually the case that P (w) is analytically more troublesome to deal with than P (wjr).This might prompt one to do Bayes inference by conditioning on a particular value of r.However, from (8.7), it is clearly seen that such results should then be integrated over theposterior of the hyperparameter, P (rjz), which is monstrously more di�cult to deal withanalytically. Furthermore, there is no hope that P (rjz) would be more concentrated thenP (r), at least for the purpose of estimating w, due to the conditional independence of rand z. If to the required precision a certain representative value of r can be chosen fromP (rjz), then a similar one can be chosen from P (r), so that P (wjr) can be used as the priorof w. Therefore there is no circumstance in which it would be bene�cial to keep a truehyperparameter in an inference process. This is also con�rmed by numerical simulationsof controlled experiments [Zhu95].For those parameters which are usually called hyperparameters but nonetheless do appearin the likelihood function, one has no other choice but to give them a full Bayesian treat-ment, as if they are part of w. Indeed, any attempt to separate such parameters from theweight w is arti�cial.The above analysis completely resolves the controversy in [Mac92, Wol93, Mac93]. Theconclusion is that one can and should obtain an estimate which is both coherent andinvariant, by employing both the Bayes rule and the information divergence criteria. Thereis no conict between treating all parameters in Bayesian framework and using an invariantcriteria to select an optimal estimate.9 Optimal Solutions to Classi�cation ProblemsIn this section subscripts are used to represent classes instead of sample points. Such usageis di�erent from the rest of the paper.Suppose there are several classes i 2 I, each with a distribution of data pi 2 P. Supposethere is a prior P (pi) for each class i and a data set zi is observed for class i. From thesethe posterior P (pijzi) and �-optimal estimate bpi of class i are well de�ned.25



Suppose there is a new data set z0, with prior P (p0). The posterior of the distribution ofobserved data is also well de�ned, together with its (1� �) optimal estimate.Suppose we want to �nd the class i whose true distribution pi is closest, in terms of �-divergence, to the true distribution p0 which generates the new data z0, averaged over theposterior. That is, we want to �nd the �-optimal classi�cation, i, which minimiseshD�(pi; p0)iz1;:::;zn ;z0 = hD�(pi; bpi)izi +D�(bpi; bp0) + hD�(bp0; p0)iz0 :(9.1)It is obvious that the third term, which represents intrinsic uncertainty about the truedistribution of the class which generates the new data, is independent of i. Therefore the�-optimal classi�cation i is obtained by minimisinghD�(pi; bpi)izi +D�(bpi; bp0):(9.2)Classi�cation Algorithm:1. Given data set z1; : : : ; zn, Find the �-optimal estimate bp1; : : : ; bpn. Compute hD�(pi; bpi)izifor each class.2. For any new data set z0, �nd the (1� �)-optimal estimate p0. Compute D�(bpi; bp0) foreach class.3. Assign class i to z0 in order to minimise hD�(pi; bpi)izi +D�(bpi; bp0).It is important to note that in order to obtain the �-optimal classi�cation i, it is necessary to�nd the (1� �)-estimate of p0, instead of the �-optimal estimate. In most applications, themodel space is exponential, and the class information is kept in 1-estimates bpi. Thereforefor each new data set to be classi�ed, a 0-optimal estimate is required. If a symmetricalformula is required, the 1=2 estimations for pi and p0 are required. In any case, this showsclearly that �-optimal estimates for � other than 1 are useful.In practice, the model space Q is a subset of P. It is in general impossible to expressthe optimal solution in Q. Suppose we compute the �-projection of bpi to Q as bqi, and the(1� �) projection of bp0 to Q as bq0, then the following holds,hD�(pi; p0)iz1;:::;zn;z0 � hD�(pi; bpi)izi +D�(bpi; bqi) +D�(bqi; bq0) +D�(bq0; bp0) + hD�(bp0; p0)iz0 :(9.3)The reason that the above is an inequality is that D�(bpi; bqi) and D�(bq0; bp0) may actuallycancel each other. However, if the model is large enough so that both terms are smallenough, it is sensible to ignore them altogether. This leads to the following algorithm.Restricted Classi�cation Algorithm:1. Given data set z1; : : : ; zn, Find the �-optimal estimate bp1; : : : ; bpn. Find the �-projectionbqi of bpi onto Q. Compute hD�(pi; bpi)izi for each class. Compute D�(bqi; bq0) for eachclass. 26



2. For any new data set z0, �nd the (1 � �)-optimal estimate p0. Find the (1 � �)projection bq0 of bp0 onto Q.3. Assign class i to z0 in order to minimise hD�(pi; bpi)izi +D�(bqi; bq0).Note that this will not always result in the �-optimal classi�cation. However, the proce-dure is well behaved when the model reasonably adequately represents the classes. Thismeans that the projection error is small compared with the the \intra-class uncertainty"hD�(pi; bpi)izi and the \inter class divergence" D�(bpi; bp0).In applications the data set z0 often contains a single point, but this only simpli�es thematter.It might appear that the prescription given here for solving classi�cation problems is non-Bayesian, since one might expect that a Bayesian treatment would assign a prior distribu-tion to the classes which appears to be missing from the above treatment. This is not thecase since the estimate bp0 depends on the prior P (p0), which can be speci�ed in an arbitraryfashion. If the prior knowledge is such that z0 is drawn from a distribution belonging to oneof the classes, as is usually the case, then the prior of p0 is a mixture of the priors of pi, andis therefore dependent on the mixing distribution. The general treatment here also allowsthe situations in which the class frequency in the test data is known to be di�erent fromthat of the training data. This happens in practice if one tries to spend more computingresources training on more di�cult classes, while the test set comes from applications witha di�erent frequency.10 Summary and ConclusionsThe problem of �nding a measurement of generalisation is solved in the framework ofBayesian inference, with machinery developed in the theory of information geometry.By working in the Bayesian framework, this ensures that the measurement is internallycoherent, in the sense that a learning rule is optimal if and only if it produces optimal esti-mates for almost all the data. By adopting an information geometric measure of divergencebetween distributions, this ensures that the theory is independent of parameterisation.To guarantee a unique and well de�ned solution to the learning problem, it is necessaryto generalise the concept of information divergence to the space of all the normalisablepositive measures. This development reveals certain elegant relations between informationgeometry and the theory of Banach spaces, showing that the dually-a�ne geometry ofstatistical manifolds is in fact intricately related to the dual linear geometry of Banachspaces.The framework and main results are summarised as the following:� Neural networks are parameterised statistical models. Weights are coordinates.Learning rules are estimators. 27



� Bayes Rule gives a posterior over the distributions.� Information geometry de�nes a divergence between two arbitrary distributions.� Generalisation is measured by the posterior expected divergence between the truedistribution and the estimated distribution.� An estimator is optimal if and only if it almost always produces an optimal estimate.� The ideal �-estimate is the �-average of the posterior.� The �-estimate within a model Q is given by the �-projection of the ideal �-estimateonto Q.� The error of an estimate is the sum of the intrinsic uncertainty in the ideal estimateand the divergence between the ideal estimate and the actual estimate.� Hyperparameters should be integrated out before statistical inference is performed.The ideal optimal solution thus de�ned summaries, together with a statistic indicating thedata size, all the information contained in the prior and data. The extension of informationgeometry to eP also o�ers a new perspective to the understanding of ancillary statistics.This theory generalises linear Gaussian regression theory to general statistical estimationand function approximation problems.The implication of this theory on the various methodologies for comparing neural networklearning rules and other statistical inference methods is that a meaningful evaluation canand only can be achieved under three assumptions:� A prior P (p), describing the environment of all the problems.� A divergence D�, specifying the requirement of the task.� A model Q, specifying available computing resources.Any evaluation not having these three assumptions either assumes them implicitly, or theevaluation itself is inuenced by uncontrollable random chances, which would be similarto evaluating the behaviour of gambling based on whether one actually wins.A Relation with the Geometry of L1=�There are great conceptual simpli�cations when the �-geometry of eP(Z) is associatedwith the geometry of L1=�(Z), the space of (1=�)th power integrable functions on Z. Mostmaterial in this section is not presented in a rigorous manner. Some of it is even speculative.28



It does not form an integral part of this report, but provides intuitive explanations whichalso serve as a motivation for future research.The condition for D�(p; q) = 0 is easily seen from the following inequalities [HLP52],Z p�q1�� � �Z p�� �Z q�1�� � � Z p + (1� �) Z q:(A.1)The �rst inequality becomes equality only when p and q are proportional to each other.The second inequality becomes equality only when p and q have the same mass.In view of the �-representations, the �-divergence is a generalisation of squared distancefrom Hilbert spaces to a dual pair of Banach spaces,D�(p; q) = ��(p) � �(p) + (1� �)�(q) � �(q)� �(p) � �(q):(A.2)For � = 1=2, the space L1=� = L2 is a self-dual Banach space, hence a Hilbert space. Corre-spondingly the connection 1=2r is a self-dual connection, hence the Levi-Civita connection.The 1=2-divergence is the Hellinger distance,D1=2(p; q) = 12k�(p)� �(q)k22 = 12k�(p) � �(q)k22 = 2 Z (pp�pq)2 ;(A.3)since �(p) = �(p), and �(q) = �(q).For � = 1, we obtain the cross entropy (Kullback-Leibler-divergence), given byD1(p; q) = Z  q � p+ p log pq! :(A.4)Similarly, D0 is the reverse cross entropy.The space eP can be identi�ed with L1=� through the one-one correspondence p $ �l(p).This is possible only through the use of an (arbitrarily chosen) base measure �. A propertyof eP de�ned through the �-coordinate is called invariant if it remains the same when adi�erent � is chosen.It is easily seen that �l(P) is the positive sector of a sphere centred at the origin, with radius1=�, in the sense of the Banach norm k � k1=�. The a�ne geometry of eP de�ned by the�-connection corresponds to the natural a�ne geometry of L1=� as a linear space, whichis also induced by any inner product on L1=�. 10 The space of probability distributions P10Although this is only possible for some subspace of L1=�, we shall not worry too much about thispoint. In any case the discussion below will always be valid for D, the space of in�nitely smooth functionswith compact support, which is dense in any function space [Aub79]. Therefore by a continuity argumentmost properties under discussion will hold for some substantial subspace of L1=� satisfying some generalregularity conditions. From an application's point of view, we are not really concerned with geometry inin�nite dimensional spaces. What we are really interested in is whether a given property is valid for allthe �nite dimensional subspaces. To de�ne a property on an in�nite dimensional space is a way to ensurethat the de�nitions in overlapping subspaces are compatible with each other.29



is a smooth surface in this inner product space. It is not necessarily a sector of a sphere,because the inner product is not given by the (1=�)-norm unless � = 1=2.The inner product introduces an (in�nite dimensional) Riemannian geometry on eP. Itinduces a Riemannian geometry on P, which is not at unless � = 1, since P is not ana�ne subspace of eP. This induced geometry depends both on the inner product A chosenfor the space eP, and the base measure � used to de�ne the �-coordinate �l. However, allthe di�erent inner products on eP thus de�ned induce the same a�ne geometry on eP, thatde�ned by the �-connections.If the canonical inner product on eP, de�ned by the norm Z �l(p)2!1=2(A.5)is used, the induced geometry is called �-geometry. The �-metric is not invariant unless� = 1=2, but the �-a�ne connections are invariant. Therefore, the statement that �-connections are not metric [Ama85] should be interpreted as meaning that they are notinduced by the only invariant metric, the 1=2-metric.It is interesting to know the expressions for �-geometry in the �-coordinate system, where� 6= �. This will clarify the above discussions. To avoid discussion of regularity conditions,we shall only consider the case where Z is �nite.Let �i := �li, �i := 1=�l i, and �a := �la. Then, by de�nition,@ia = p���a 1ia; @abi = (� � �)p��2�a 1abi;(A.6) �gij = 1ij; ��ijk = 0:(A.7)Therefore �gab = @ia@jb �gij = p2(���)a 1ab;(A.8) ��abc = @abi �gij@jc = (� � �)p2��3�a 1abc;(A.9) ��abc = (� � �)p��a 1abc:(A.10)This speci�es the �-geometry in the �-coordinates. The above formulas are of course com-patible with the Eguchi relations1=2g ab = @a�i@b�i = p1�2�a 1ab;(A.11) 1=2g cd ��dab = @ab�i@c�i = (� � �)p1�3�a 1abc:(A.12)The Christo�el symbols for di�erent � are proportional to each other. This does not meanthat they are induced by metrics which are proportional to each other, since Christo�elsymbols are not tensors. 11 Indeed, the proportionality coe�cients � � � depends on the11We would like to thank Prof. S. Amari for clarifying this potentially confusing point.30



particular coordinate system through the presence of �.In multinomial models, the volume di�erential element associated with �g isrdet[�gab] =Yi p���i :(A.13)This de�nes a density on eP which can be called the �-uniform density. In the coordinatesystem with � = 1, it is easily seen that this is exactly the Dirichlet prior with parameter�1 = [�; : : : ; �], rdet[�gab] = p�1�1 � D(pj�1):(A.14)These densities, especially for � = 1=2, are called \non-informative priors" [Jef61, DeG70,BT73, Ber85]. Although the �-metric is not invariant, the �-densities are proportional toeach other in di�erent coordinate systems. The �-uniformity is therefore invariant. This isof course very natural, considering that the inner product is invariant under the Lie groupassociated with an a�ne space. The non-informative priors were in fact �rst introduced byJe�reys [Jef61] through invariance properties. See [Kas89] for more on the relation betweennon-informative priors and a�ne structure.The existence of invariant non-informative priors removes a major reason for reluctanceto use the Bayes methods [Fis30, Fis34, Fis36]. This �-uniform prior is well de�ned forany �nite dimensional �-a�ne submanifold of eP. However, for higher dimensional casesmany non-Bayesian statistics corresponds to Bayesian statistics with improper priors whichare not non-informative [DSZ73, Aka80]. We do not know whether the concept of Haarmeasure is applicable to a non-locally compact group.One should not insist on choosing the 1=2-uniform prior as the only non-informative prior,since it is readily observed that the maximum likelihood estimate for the multinomialdistribution is the 1-optimal estimate with a 0-uniform prior. It is commonly acceptedthat the maximum likelihood estimate is among the best estimate based on informationfrom the data alone. It is very likely that most of the desirable properties of the maximumlikelihood estimate also hold for any �-optimal estimate with �-uniform prior, for any�; � 2 [0; 1].The relation between the dual a�ne geometry of statistical manifolds and the dualitybetween Banach space pairs opens a fascinating front for mathematical research. Oneobvious question to ask is whether any dual a�ne statistical manifolds in the sense ofLauritzen[Lau87] are associated with Banach space pairs, and whether the converse is true.In the theory of function spaces[Ada75, Aub79, Tri83], the index � can be interpreted asa coe�cient (multiplied on dimensionality) of orders of smoothness for the functions in afunction space. It is another interesting question whether this interpretation has anythingto do with �-divergence.Another interesting issue worthy of further exploration is the relation between the �-optimal31
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