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Bayesian Invariant Measurements of Generalisationfor Continuous DistributionsHuaiyu Zhu and Richard RohwerDepartment of Computer Science and Applied MathematicsAston University, Aston Triangle, Birmingham B4 7ETAugust 31, 1995AbstractA family of measurements of generalisation is proposed for estimators of con-tinuous distributions. In particular, they apply to neural network learning rulesassociated with continuous neural networks. The optimal estimators (learning rules)in this sense are Bayesian decision methods with information divergence as loss func-tion. The Bayesian framework guarantees internal coherence of such measurements,while the information geometric loss function guarantees invariance. The theoreticalsolution for the optimal estimator is derived by a variational method. It is appliedto the family of Gaussian distributions and the implications are discussed.This is one in a series of technical reports on this topic; it generalises the resultsof [ZR95a] to continuous distributions and serve as a concrete example of a largerpicture [ZR95d].Contents1 Introduction 22 General Theory 42.1 Bayes Rules : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 42.2 Information Divergences for Continuous Distributions : : : : : : : : : : : : 52.3 Generalisation and Optimal Learning Rules : : : : : : : : : : : : : : : : : 62.4 Optimal learning rules on the whole probability space : : : : : : : : : : : : 73 Gaussians With Conjugate Priors 83.1 Normal, Gamma t and F distributions : : : : : : : : : : : : : : : : : : : : 91



3.2 Natural conjugate prior of Gaussians : : : : : : : : : : : : : : : : : : : : : 113.3 Su�cient statistics for Gaussians : : : : : : : : : : : : : : : : : : : : : : : 123.4 Information Divergence between Two Gaussians : : : : : : : : : : : : : : : 154 Optimal Estimators for Gaussians 174.1 When both the mean and the variance are unknown : : : : : : : : : : : : : 174.2 Optimal estimator when the variance is known : : : : : : : : : : : : : : : : 195 Conclusions and discussions 211 IntroductionThe study of optimal statistical estimation and inference has a long history [Fis22, Fis25,Fis34]. It can be cast in (Bayesian) decision theory [Fer67, DeG70]. For discussions ofstatistical inference in relation to other statistical methods see also [KS79, CH74, BT73,Ber85].The problem of optimal statistical estimation has gained more importance recently dueto the rapidly expanding research on neural networks. Neural networks can be describedas statistical models [Whi89], where a learning rule acts as a statistical estimator and atrained network as an estimate. The task of learning, or any statistical estimation, is to �nda most representative distribution among all the distributions which could have possiblygenerated the observed data. 1 The comparison of two learning rules is therefore a par-ticular example of the comparison of two statistical estimators, and therefore a particularinstance of decision theory.We shall con�ne our attention to Bayesian decision theory for the following two reasons.First, under some regularity conditions, the set of all \good" (admissible) decision rulesessentially coincides with the set of all the Bayesian rules. 2 Therefore any decision rulecan be considered as a (either perfect or approximate) Bayesian decision rule. Secondly,many of the classical non-Bayesian theories can be regarded as special examples of Bayesiantheory with a particular non-informative prior [Aka80].There is a further, more philosophical, argument in support of a Bayesian theory. TheBayes Theorem is implied in the mathematical theory of probability [Kol56], which is aslogically consistent as arithmetic, and is applicable to any interpretation of probability. Allconsistent mathematical descriptions of probabilistic models must be Bayesian, in the sensethat all the variables, known or unknown, deterministic or random, must be described asrandom variables, hence having probability distributions. Some of them are selected as1This is also true of the learning rules which give the posterior as the result, as will be seen later.2There are many exceptions, but they are more technical than the problems of current concern in neuralnetworks. 2



observables. The (unconditional) distribution of a random variable is called a prior, whileits distribution conditional on the observables is called the posterior. On the other hand,it is known that any de�nition of reasonable belief of events is equivalent to Kolmogorov'saxioms [Cox46], but this argument is not as convincing to someone who does not considerthe particular value of a parameter as an event [Fis34]. We shall not pursue this argumentany further.Statistical inference problems are special decision problems in that the \loss function" mustcharacterise the di�erence between the true distribution and the estimated distribution.Many such loss functions have been proposed over the years, such as the mean squarederror proposed by Gauss, the cross entropy (Kullback-Leibler divergence) [KL51] and theHellinger distance. The advent of neural network models calls for the study of measuresof \divergence" between two probability distributions which are invariant with respect tothe way the model is represented in order for it to be applied universally, since the weightsin neural networks usually do not possess distinct external interpretation apart from beingparameters to a family of distributions. We also require that they are invariant withrespect to one-one input/output transforms, since we are only concerned with the amountof information captured by the learning algorithm which, unlike the content of information,should not depend on a renaming of the samples. Such information divergences havebeen studied extensively in the theory of information geometry [Che72, Ama82, Ama85,Ama87], See also [Egu83, BN86, Lau87, CMS93]. For more background see [Hou82, Kas84,BNCR86, Kas87, Kas89]. The main result of information geometry particularly relevantto our current enquiry is that there is a unique one-parameter family of \informationdivergences" satisfying the above invariance conditions and possessing some importantproperties making them as important to statistics as the Euclidean distance is to functionalanalysis.In [ZR95a], Bayesian decision theory was combined with information divergence to de�nea family of measurements of generalisation error for discrete distributions. It is coherent inthe sense that an optimal estimator thus de�ned gives optimal estimates for almost all thedata. It is invariant of the parameterisation, and input-output space transforms. Explicitresults on the problem of estimating multinomial distributions were derived which con�rmits intuitive interpretation. This gives a more satisfactory framework than the \empiricalerror" used by many authors [GBD92], and avoids the \bias/variance trade-o�" altogether.In this report we generalise these results to models with continuous distributions. Theoptimal estimators are derived using a variational argument so that it is applicable to anyfamily of distributions absolutely continuous with respect to a base measure x2.This theory is then applied to the family of Gaussian distributions, properties of whichare reviewed and collated in x3. The results (x4) coincide with the well known resultsfor this particular family; it shows that least mean squares is the only reasonable methodfor Gaussian models. The optimal estimates can be represented as t distributions and �2distributions, revealing the Bayesian assumptions behind the classical statistical tests.3



The results in these two reports are applicable to problems in which the computationalmodel coincides with the mathematical model. A more general and mathematically rig-orous development will be given in [ZR95d], allowing the computational model to be aproper submanifold of the mathematical model, as is the case with neural networks.An application of this theory to the problem of sequentially �tting a regression curve isgiven in [ZR95c].Discussions and conclusions are given in x5.2 General TheoryIn this section we shall generalise the results obtained in [ZR95a] to an arbitrary familyof distributions dominated by a base measure. This is particularly useful for continuousdistributions, which are distributions dominated by the Lebesgue measure. Most of thederivations will be similar to the corresponding ones for discrete distributions [ZR95a],except that instead of taking the derivative of the Lagrange function we need to take avariation of it.2.1 Bayes RulesConsider a sample space Y . Let y be a random variable taking values in Y . We areinterested estimating the distribution p of y. 3 Now consider the set P of distributionson Y dominated by a carrier measure (also called a base measure) r, ie. P is the set ofall possible distributions p on Y such that p is absolutely continuous with respect to r.This is equivalent to say that every member of P can be represented as an inde�niteintegral of a density function with respect to r. The density function is unique up toa set of r-measure zero, and is called the Radon-Nikodym derivative of p with respectto r [HS49]. In the sequel we shall assume that the carrier measure is �xed so thatprobability distributions can be identi�ed with density functions. The set P forms an\in�nite dimensional manifold" [ZR95d]. Our task is to infer p = P (�jp) from a sample ofy.In the Bayesian framework, we need to de�ne a prior P (p) over P, which is the uncondi-tional distribution of p. For example, we might de�ne P (p) to be the \uniform distributionover all the Gaussians", in the sense of non-informative prior, which will be explainedlater. 4 The prior P (p) and the sample y, or, more accurately, the likelihood functionP (yjp), are combined by the Bayes formula to give a posterior P (pjy), the distribution of3How this is represented is not important at the moment. We can either guess a form of the distributionof y, and estimate its parameters, or we can implement a machine which draws samples from Y with thesame distribution as y[Nea93], among many other possibilities.4This is a \uniform distribution over a subspace of P", so the prior is a distribution over distributions.It should not be confused with the unrelated concept of `the uniform distribution over Y " which is onlyone particular degenerate Gaussian (with in�nite variance).4



p conditional on the observation y.P (pjy) = P (p)P (yjp)=P (y):(2.1)The posterior is still a distribution of p, not a single-valued estimate of p. What we reallyneed is an estimate q 2 P, which is thought to be closest to p, given all the relevantinformation. A learning method is a mapping � : y ! q = � (y) 2 P, which mapseach observed set of data y 2 Y to a unique distribution q 2 P. The requirement ofa single estimator instead of a posterior does not impose any restriction on the generalapplicability of the theory: On the one hand, all the known applications of the posteriorcan be transformed into an application of an estimate; On the other, more importantly, the\optimal estimator" together with a few ancillary statistics indicating sample size turnsout to be su�cient statistics for the posterior, so that any optimal decisions or inferenceshould be a function of the optimal estimator.In the terminology of decision theory, we are looking for optimal decision rules � whichwill make \good decisions" q, where the objective is that q should approximate the \trueparameter" p. Technically, this requires the speci�cation of a \loss function" D(p; q) de-scribing the \divergence" between the two distributions, the posterior mean of which iscalled the \risk function". An estimator is optimal if it minimises the risk. The lossfunctions we are interested in are the information divergences developed in the theory ofinformation geometry.2.2 Information Divergences for Continuous DistributionsWe shall use interchangeably the notation of a distribution p with the notation of a con-ditional distribution P (�jp). This enables us to write the de�nition of Kullback-Leiblerdivergence between two distributions p and q as 5K(p; q) := Z p log pq = Zy2Y P (yjp) log P (yjp)P (yjq):(2.2)As in [ZR95a], we use � = (1 � �)=2 instead of � as in [Ama82, Ama85]. This usage wasadopted from [Hou82, Kas84].De�nition 2.1 (�-divergence) Let p; q 2 P. The �-divergence is de�ned as,D�(p; q) := 1�(1� �) �1� Z p�q1��� :(2.3) D0(p; q) := lim�!0D�(p; q); D1(p; q) := lim�!1D�(p; q);(2.4)The family of �-divergences was discovered many times in the history of information theory(See, for example, [AD75, p. 208] and earlier references cited therein) and statistical5We adopt the notation := for \de�ned as" and =: for \denoted by", following [AD75, p. 3].5



theories (See [Ama85, p.????] and earlier references cited therein). Special cases of the�-divergences are well-known [Ama85]D0(p; q) = K(q; p);(2.5) D1=2(p; q) = 2 Z �q1=2� p1=2�2 ;(2.6) D1(p; q) = K(p; q):(2.7)They are the cross entropy, the Hellinger distance, and the reversed cross entropy, respec-tively.Information divergences have various important properties ([Ama85, Egu83, Lau87]) whichgive them the same status in statistics as that enjoyed by the Lp norms in functionalanalysis. In fact �-divergence is closely related to the L1=� norm [ZR95d].We shall take the \risk function" de�ned using any particular \information divergence" asa measurement of \generalisation".2.3 Generalisation and Optimal Learning RulesLet Y be a sample space. Let P be the manifold of a dominated family of probabilitymeasures on Y . Let P (p) be a prior over p 2 P. The posterior P (pjy), ie. the conditionaldistribution of p given y 2 Y , is well de�ned by the Bayes rule. Let � : Y ! P be alearning rule. Note that both p and q are points on a manifold P of distributions, while �itself is a mapping from sample space Y to this manifold of distributions.De�nition 2.2 (Measurement of Generalisation) The estimator error E�(� ) of � , and theestimate error E�(qjy) of each estimate q 2 P for a given y 2 Y , are de�ned as,E�(� ) := Zp2P P (p) Zy2Y P (yjp)D�(p; � (y)):(2.8) E�(qjy) := Zp2P P (pjy)D�(p; q):(2.9)Corollary 2.1 The error of a learning rule � is the expected error of estimates it gives,averaged over all possible data.E�(� ) = Zy2Y P (y)E�(� (y)jy):(2.10)De�nition 2.3 (Optimal learning rule) A learning rule � is called an �-optimal learningrule (or �-estimator) if it is the solution of the following optimisation problemMin�(y)2PE�(� ):(2.11)De�nition 2.4 (Optimal estimate) A probability distribution q 2 P is called an �-optimalestimate from data y if it is the solution of the following optimisation problemMinq2P E�(qjy):(2.12) 6



Theorem 2.2 (Coherence) A learning rule � is �-optimal if and only if for any data y,except a set of probability zero, the result given by the learning rule � (y) is a �-optimalestimate.This result in the general decision theory setting is well known in Bayesian decision the-ory [Fer67, DeG70, Zac71] and is considered to be one of the fundamental advantages ofBayesian methods by advocates of Bayesian statistics [Lor90].2.4 Optimal learning rules on the whole probability spaceSuppose we are allowed to choose a learning rule which gives an arbitrary distributionas an estimate. That is, we consider the whole set of estimators which maps the samplespace into the distribution space. It is desirable to �nd the learning rule which minimisesthe generalisation error (with respect to a particular prior and a particular informationdivergence). The solution to this problem can be obtained by the Lagrange multipliermethod (See any good textbook on optimisation or variational methods). The only thingwhich is di�erent from the discrete case discussed in [ZR95a] is that instead of usingderivatives, we shall use variations. We �rst consider � 2 (0; 1].Following the coherence theorem, it is only necessary to �nd optimal estimates for anygiven data. Consider y 2 Y . Consider P as a manifold embedded in the linear space ofpositive measures. De�ne the LagrangianF := E�(qjy)� ��Z q � 1�(2.13)Now we take variations with �q. From equation (2.3), it can derived that�D�(p; q) = �1� Z �q pq!� :(2.14) �E�(qjy) = �1� Z �qDp�Eyq� :(2.15) �F = Z �q0B@�1� Dp�Eyq� � �1CA :(2.16)Therefore �F = 0 if and only if q� � Dp�Ey ;considered as density functions. An analogous derivation for � = 0 gives similar results,with p� replaced by log p. Therefore, we have proved the following theorem.Theorem 2.3 (�-optimal estimate) Let Y be a measurable space. Let P be the spaceof all probability measures on Y . Let P (p) be a prior over P. Given a sample y 2 Y , the7



posterior P (pjy) is given by the Bayes rule. Let q = ��(y) 2 P be the �-optimal estimatorof p based on the sample y. Then q is given byq � 8<: �Rp2P P (pjy)p��1=� ; for � > 0;exp �Rp2P P (pjy) log p� ; for � = 0:(2.17)Let us de�ne the �-coordinate (�-representation) �l(p) := p�=�. Denote by 1=�l the inverse of�l. The above theorem can be expressed more concisely as��(y) � 1=�l 0@*�l(p)+y1A :(2.18)We call the right hand side side the �-average of p over the posterior P (pjy). This usage isessentially the same as adopted in [AD75, p. 158]. The above two theorems can be sum-marised as the following: the �-estimate is the renormalised �-average over the posterior,and the �-estimator is an estimator which gives the �-estimate for almost all the data. Ifwe do not distinguish between estimators which are almost always equal to each other,then the �-estimator is unique.The above are derived under the assumption that �q is free to vary over P. In the casewhere q is restricted to a smooth manifold Q, we obtain instead that@�F = Z @�q0B@�1� Dp�Eyq� � �1CA = 0;(2.19)where � is a coordinate of the manifold. This implies that Dp�Ey=q� � � is normal to Q.The optimisation problem can only be solved by gradient methods.These results generalise classical results on least squares: The solution in the whole linearspace can be obtained analytically by inverting a matrix, while the solution restricted to asubmanifold can only be obtained by gradient methods in general. A least squares problemcan always be viewed in this way by considering it as estimating the mean of a Gaussianwith unit spherical variance. This will be discussed elsewhere [Zhu95].3 Gaussians With Conjugate PriorsConjugate priors are of particular importance to Bayesian theories. They were developedin [RS68]. See also [Dem69, DeG70, BT73, KS79, Ber85]. In a Bayesian framework,priors can always be considered as previous information, which may or may not be due toprevious statistics. However, \natural conjugate priors" are unique in that they can alwaysbe interpreted as information supplied by previous experiments. Non-conjugate priors can8



always be approximated by mixture of conjugate priors and explained by hidden variables.For this reason here we shall only consider Gaussians with conjugate priors.Many of the results collected in this subsection are standard [RS68, Dem69, DeG70]. How-ever, we present them in a uni�ed and concise notion which will be convenient for laterdevelopment.3.1 Normal, Gamma t and F distributionsNotation. Denote by �(a) and B(a; b) the Gamma and Beta functions. Denote (a)b :=�(a+ b)=�(a).De�nition 3.1 Fix the Lebesgue measure as the carrier measure. The normal distributionis represented by the pdfN(xjb) := (2�)� 12 b 12 exp � b2x2! ; x 2 R:(3.1)The Gamma distribution is represented by the pdfG(xjm; b) := 1�(m)x(bx)m exp(�bx); x 2 R+:(3.2)The Student's t distribution is represented by the pdfT (xjm; b) := 1B(m2 ; 12)  bm! 12  1 + bmx2!�m+12 ; x 2 R:(3.3)The F distribution is represented by the pdfF (xjm;n; b) = 1B(m2 ; n2 )x �mxnb �m2 �1 + mxnb ��m+n2 ; x 2 R+:(3.4)Notation. DenoteG2(xjm; b) := G x�����m2 ; m2b! = 1�(m2 )x �mx2b �m2 exp��mx2b � :(3.5)The standard t distribution with m degrees of freedom is T (xjm; 1). The Cauchy distribu-tion is T (xj1; 1). The exponential distribution is G(xj1; �). The �2m distribution with mdegrees of freedom is G2(xjm;m). The distribution �2m=m is G2(xjm; 1). The following isalso true N(xjb) = limm!1 T (xjm; b);(3.6) G2(xjm; b) = limn!1 F (xjm;n; b);(3.7) N(xjb) = G2(x2j1; 1b );(3.8) T (xjm; b) = F (x2j1;m; 1b ):(3.9) 9



Theorem 3.1 The kth moments of these distributions are given byZx xkG(xjm; b) = (m)kbk ; Zx xkG2(xjm; b) = �m2 �k  2bm!k ;(3.10) Zx x2kT (xjm; b) = �m2 ��k �12�k �mb �k ;(3.11) Zx x2kN(xjb) = �12�k �2b�k :(3.12)The following two theorems are very useful when Bayes theorem is applied.Theorem 3.2 Let x; a1; a2 2 R, b1; b2 2 R+. ThenN(x� a1jb1)N(x� a2jb2) = N(x� a3jb3)N(a1 � a2jb0);(3.13)where b3 = b1 + b2; 1b0 = 1b1 + 1b2 ; a3 = b1a1 + b2a2b1 + b2 :(3.14)Theorem 3.3 Let x 2 R, h; b;m; n 2 R+. ThenN(xjnh)G2(hjm; b) = G2(hjm1; b1)T (xjm;nb);(3.15)where m1 = m+ 1; m1b1 = mb + nx2:(3.16)The following results are useful for deriving �-optimal estimators.Theorem 3.4 Let x 2 R, m; b 2 R+, � 2 (0; 1). ThenN(xjb)� � b ��12 N(xjb�);(3.17) G(xjm; b)� � G(xjm; b�);(3.18) x�G(xjm; b) = (m)�b��G(xjm+ �; b);(3.19) x�G2(xjm; b) = �m2 ��  2bm!� G2(xjm+ 2�; (1 + 2�=m)b);(3.20) T (xjm; b)� � T (xj�1m; �1b) ;(3.21)where �1 := � + (� � 1)=m,cT (cxjm; b) = T (xjm; bc2); cN(cxjb) = N(xjbc2):(3.22) 10



3.2 Natural conjugate prior of GaussiansThe following notation makes it easy to refer to joint, marginal, and conditional distribu-tions at the same time.Notation. Suppose a1; : : : ; an are n easily distinguished factors. Suppose the same holdsfor b1; : : : ; bn. We use the notation a1 � � � an n= b1 � � � bn to denote that ai = bi for all i, andthe whole expression is also used to denote the product of these factors.Let f denote probability density function of random variables x; y; z. Then,f(x; y; z) : 3= f(xjy; z)f(yjz)f(z):(3.23)The notation f(x; y; z) simultaneously supplies expressions for f(x; y; z), f(x; yjz), f(xjy; z),f(y; z), f(yjz) and f(z). Analogous notation can also de�ned for any number of variables.Theorem 3.5 If any one of the expressions (3.24{3.29) for joint distribution of x; �; h istrue, then all the identities implied (total 30) in the whole formula are true.f(x;�;h) 3= N(x� �jh)N(� � ajnh)G2(hjm; b)(3.24) =f(�;x;h) 3= N(�� a1jn1h)N(x� ajn0h)G2(hjm; b)(3.25) =f(�;h;x) 3= N(�� a1jn1h)G2(hjm1; b1)T (x� ajm;n0b)(3.26) =f(h;�;x) 3= G2(hjm2; b2)T (�� a1jm1; n1b1)T (x� ajm;n0b)(3.27) =f(h;x;�) 3= G2(hjm2; b2)T (x� �jm1; b01)T (�� ajm;nb)(3.28) =f(x;h;�) 3= N(x� �jh)G2(hjm1; b01)T (�� ajm;nb);(3.29)where m1 = m+ 1; m2 = m1 + 1;(3.30) n1 = n+ 1; n0 = n=n1;(3.31) a1 = na+ xn + 1 = a+ x� an1 :(3.32) 1b01 = 1m1 �mb + n(�� a)2� ;(3.33) 1b 1 = 1m1 �mb + n0(x� a)2� ;(3.34) 1b 2 = 1m2 �m1b1 + n1(�� a1)2� = 1m2  m1b01 + (x� �)2! :(3.35)Proof: The equivalence of every two consecutive lines can be proved by repeated ap-plication of Theorem 3.2 and Theorem 3.3. The identities implied are six of the form11



f(x; y; z), six of the form f(x; yjz), three of the form f(xjy; z), six of the form f(y; z), sixof the form f(yjz), and three of the form f(z).This theorem summarises all that is known about functional relationships between densityfunctions for univariate Gaussians with natural conjugate priors, where the likelihood isf(xj�; h) = N(x� �jh);(3.36)and the prior is f(�; h) = N(� � ajnh)G2(hjm; b):(3.37)All the prior, posterior, joint, conditional and marginal distributions can be directly reado� these identities. Many of these identities appeared in the literature, but it appears thatnot all of them have previously been collected together.The equations (3.34), (3.33) and (3.35) can be alternatively represented in the followinguseful form. m1b1 = mb + n0(x� a)2;(3.38) m1b01 = mb + n(� � a)2;(3.39) m2b2 = m1b1 + n1(�� a1)2 = m1b01 + (x� �)2:(3.40)The case of Gaussians with �xed variance is of special interest since it is the basis of leastmean square methods. This can be obtained by setting m = 1 in Theorem 3.5, whichimplies that b1; b2; b01 ! b;(3.41) G2(hjm; b)! �(h� b);(3.42) T (xjm;h)! N(xjh);(3.43)and Theorem 3.5 reduces a corresponding theorem for �xed h.Theorem 3.6 If either of the expressions (3.44{3.45) for joint distribution of x; � is true,then all the identities (total 6) implied in the whole formula is true.f(x;�) = N(x� �jh)N(� � ajnh)(3.44) f(�;x) = N(� � a1jn1h)N(x� ajn0h):(3.45)3.3 Su�cient statistics for GaussiansThe family of Gaussian distributions with unknown mean � and precision h has a twodimensional su�cient statistic [a; b], with corresponding ancillary statistic [n;m].12



A su�cient statistic summarises all the information in the sample. The remaining vari-ations within a sample can be considered as pure noise. An ancillary statistic does notcontain any information about the sample. It instead contains information about theexperimental settings. In this context, the ancillary statistic describes the sample size.The concept of su�cient statistics was proposed and studied by Fisher [Fis22, Fis25, Fis34].It was shown that under suitable regularity conditions the existence of su�cient statisticsof �xed dimension is the de�ning property of exponential family [Dar35, Koo36, Pit36].Rigorous measure theoretical de�nition of su�cient statistics was given by [HS49]. A wholechapter of [Zac71] is devoted to su�cient statistics. Ancillary statistics was �rst studiedby [Fis34] and clari�ed in [Ama85, Ama87]. See also [KL51, Fra56, Fra63, CH74, KS79,Kas89].In the case of Gaussians, there are many di�erent formulas to update the statistics. Theyhave been comprehensively documented since [RS68, Dem69, DeG70]. Here we shall adopta particular set of notations which is capable to summarise these results in a more system-atic way, which is also useful for our later developments. Note that for conjugate priors itis also meaningful to talk about the su�cient statistics for the prior, the likeliwhichhood,and the posterior. The classical meaning of su�cient statistics is that of likelihood, whsmeaningful for both Bayesian and non-Bayesian theories. Our usage of the term will alwaysbe clear from the context.Notation. With reference to Theorem 3.5. Denotef(�;hjn;m; a; b) : 2= N(�� ajnh)G2(hjm; b);(3.46)interpreted as specifying the prior. Let xk := [x1; : : : ; xk] be a sample of size k. Theposterior is denoted as f(�;hjn;m; a; b; xk):(3.47)Theorem 3.7 Consider the likelihood f(xj�; h) with prior f(�;hjn;m; a; b). Then for asample xk, the posterior is given byf(�;hjn;m; a; b; xk) = f(�;hjnk;mk; ak; bk):(3.48)where nk = n+ k;(3.49) mk = m+ k;(3.50) nkak = na+Xx;(3.51) nka2k +mk=bk = na2 +m=b+Xx2:(3.52)Proof: It is easy to see from the expressions for f(�;h) and f(�;hjx) in Theorem 3.5,that after sampling one point, the posterior is expressed in exactly the same form as the13



prior, with the parameters updated as followsn1 = n+ 1;(3.53) m1 = m+ 1;(3.54) n1a1 = na+ x;(3.55) n1a21 +m1=b1 = na2 +m=b+ x2:(3.56)This can obviously be generalised to a sample of size k by applying mathematical inductionon k.Lemma 3.8 With the notations de�ned as in Theorem 3.5, the following holds,x� a11 = a1 � an = x� an+ 1 :Lemma 3.9 With the notations de�ned as in Theorem 3.5, the following holds,na2 + x2 � n1a21 = nn1 (x� a)2 = (x� a)(a1 � a)= n(x� a1)(x� a) = n1(x� a1)(a1 � a)= n1n (a1 � a)2 = nn1(x� a1)2:Corollary 3.10 The updating rule for bk can also be written in the following forms,mk=bk �m=b = na2 +X x2 � nka2k= nn+ kX(x� a)2 + kn+ k X (x� x)2= nn+ k �a2 � a2k�+ kn+ k �x2 � a2k�= nn+ k (a� ak)2 +X (x� ak)2= nkn+ k (x� a)2 + k �x2 � x2� :Many of these updating rules are used in di�erent text books, but they do not appear tohave previously been collected in a single formula.The updating rule clearly shows that given nk and mk, the statistics ak and bk are su�cient,with the following intuitive interpretation. The ancillary statistics nk and mk are theamount of information with regard to � and h, respectively, measured in the unit of samplesize. The su�cient statistics ak and bk are the contents of the information. The posteriorinformation about � is the algebraic sum of the prior and sample information, weighted bythe ancillary. The posterior information about h is not expressible as a simple sum of theprior and sample information, since the information about � is also involved. It is easy tosee that the posterior information about hx2i = �2 + 1=h is an algebraic sum of prior andsample information. 14



Theorem 3.11 For any given parameter � and h, the statistics ak and bk are consistentestimators of � and h. That is, ak ! � and bk ! h, as k!1.Theorem 3.12 For any given sample xk ,h�ik = ak; D�2Ek = 11� 2mk 1nkbk = h�2ink :(3.57) hhik = bk; Dh2Ek = �1 + 2mk� b2k;(3.58) hh; hik = 2b2kmk ; D�2Ek = h1=hik = 1bk 11 � 2mk :(3.59)The posterior variances of � and h are of orders 1=nk and 1=mk, respectively.The non-informative prior [Jef61, BT73, DeG70] is given by m = 0, n = 0. Correspond-ingly, the ancillary and su�cient statistics arenk = k;(3.60) mk = k;(3.61) ak = x;(3.62) 1=bk = x2 � x2 = (x� x)2:(3.63)The statistics ak and bk are exactly the maximum likelihood estimates of � and h.3.4 Information Divergence between Two GaussiansThis subsection is intended to provide some concrete examples illustrating the meaningof information divergence. Let pi � N(�ijhi), i 2 f1; 2g be two Gaussian distributions.Denote d0(h1; h2) :=  h�1h1��2�h1 + (1� �)h2!1=2 ;(3.64) d1(�jh) := exp �h2�2! :(3.65)It follows that 0 � d0 � 1; 0 � d1 � 1;(3.66)and d0(h1; h2) = 1 () h1 = h2:(3.67) d1(�jh) = 1 () � = 0:(3.68)(3.69) 15



It is also easy to verify thatZ p�1p1��2 = d0(h1; h2)d1(�1 � �2jH);(3.70)where 1H = 1�h1 + 1(1� �)h2 :(3.71)Therefore the �-divergence is given byD�(p1; p2) = 1�(1� �)�1 � d0(h1; h2)d1(�1 � �2jH)�:(3.72)It vanishes if and only if h1 = h2, �1 = �2. The special forms of d0 and d1 have intimateconnections with the tests of similarity between two Gaussian samples.When �1 = �2 = �, D�(p1; p2) = 1�(1� �) (1 � d0(h1; h2)) ;(3.73)independent of �. When h1 = h2 = h,D�(p1; p2) = 1�(1� �) (1 � d1(�1 � �2jH)) ;(3.74)where H = �(1 � �)h. This is a monotonic function of the squared di�erence between �1and �2, and was considered in [LS72]. This is also true in general multidimensional case.Therefore mean square theory of approximation is a special case of the present theory byidentifying the inner product with the information matrix. The details are omitted.The two extreme cases, � = 0 and � = 1, correspond to the cross entropy (KL distance) andthe reversed cross entropy, which play important roles in information theory. Let � ! 0.Then d0(h1; h2) = 0B@ �h1h2 ��1 + � �h1h2 � 1�1CA!  h1h2!�=2 exp �2  h1h2 � 1!! :(3.75)Therefore, as � ! 0,�1� log d0(h1; h2)! 12  � log h1h2 + h1h2 � 1! ;(3.76) �1� log d1(�1 � �2jH)! h12 (�1 � �2)2;(3.77) D0(p1; p2)! �1� (log d0(h1; h2) + log d1(�1 � �2jH))! 12  log h2h1 + h1h2 � 1 + h1(�1 � �2)2! ;(3.78) 16



This is of course the reverse cross entropyK(p2; p1) between p1 and p2. Similarly,D1(p1; p2)is the cross entropy K(p1; p2) between p1 and p2.When p1 and p2 are close to each other�1; �2 � �; h1; h2 � h;(3.79)all the �-divergences approach the quadratic form de�ned by Fisher information matrix,D�(p1; p2) � 14  �hh !2 + h2 (��)2 :(3.80)This formula can be given directly by simple di�erential geometry calculations (See [Ama85,Ex.2.3]).4 Optimal Estimators for GaussiansWe derive the �-optimal estimators for the families of Gaussian distributions, by applyingthe general theory of �-optimal estimators to the explicit formulas for su�cient statisticsfor Gaussians. We consider separately the cases of �xed or variable variances, althoughthe former is a limiting case of the latter.4.1 When both the mean and the variance are unknownThe �-optimal estimates of Gaussian distributions with natural conjugate priors are sum-marised in the following theorem. It connects the concepts of maximum likelihood es-timator, the t test and �2 tests, the su�cient statistics, and the conjugate priors in astraight-forward manner.Theorem 4.1 Consider the class of Gaussians with conjugate priors f(�;hjn;m; a; b). Letxk = [x1; : : : ; xk] be a sample of size k. Then the �-optimal estimate q = ��(n;m; a; b; xk)is given by the pdf f(yjq) = f�(yjxk) = T  y � ak�����mk� ; bk1 + �=nk! :(4.1)
17



Proof: It follows from Theorem 2.3, Theorem 3.5 and Theorem 3.4 thatf�(yjxk)� � Z�;h f(yj�; h)� f(�;hjxk)= Z�;hN(y � �jh)�N(� � akjnkh)G2(hjmk; bk)� Z�;hN(y � �jh�)h(��1)=2N(� � akjnkh)G2(hjmk; bk)� Z�;hN(�� �j�)N(y � akjnk�h)G2  h�����mk�; mk�mk bk!= ZhN(y � akjnk�h)G2  h�����mk�; mk�mk bk!= ZhG2(hj�; �)T  y � ak�����mk�; mk�nk�mk bk!= T  y � ak�����mk�; mk�nk�mk bk!� T  y � ak�����mk� ; bk1 + �=nk!� ;where 1nk� := 1nk + 1� ; mk� := mk + � � 1:This completes the proof, by noting that the t distribution is normalised.Corollary 4.2 The following limits hold for the �-optimal estimateslim�!0 f�(yjxk) = N(y � akjbk):(4.2) lim�!1 f�(yjxk) = T  y � ak�����mk; bk1 + 1=nk! :(4.3) limn!1 f�(yjxk) = T  y � a0�����mk� ; bk! : limn!1 ak = a0:(4.4) limm!1 f�(yjxk) = N  y � ak����� b01 + �=nk! : limm!1 bk = b0:(4.5)Several observations can be made from these results:� The �-optimal estimate incorporates all the su�cient statistics ak and bk, given theancillary statistics nk and mk. They are \minimum su�cient", or \necessary andsu�cient". 18



� For � = 0, the 0-optimal estimate N(y � akjbk) is the posterior optimal estimate inthe sense of classical statistics. The �-estimators for � > 0 do not map to the originalmanifold (the support of the prior).� Assuming the non-informative prior n0 = 0, m0 = 0, the 0-optimal estimator isexactly the maximum likelihood estimator, ak = x, 1=bk = x2 � (x)2. 6� For � > 0, the ancillary statistic mk is also given by the estimator. However, thesu�cient statistic bk is merged with nk. Therefore, the estimator is a su�cientstatistic only when nk is known. This is a simple example showing the necessity ofancillary statistics for certain kinds of estimators.� All the �-optimal estimators are obtained by averaging the �-coordinates and renor-malisation. For � = 1 the renormalisation is redundant since the 1-optimal estimatoris simply the posterior marginal distribution. 7The limit mk !1 directly gives results for Gaussians with known variance. Since this isa very common special case, we shall give explicit formulas in the next subsection.4.2 Optimal estimator when the variance is knownAs a special case, which is intimately related to the practice of least mean squares, let usconsider estimating Gaussians with �xed variance. This situation is equivalent to settingm =1 in Theorem 3.5. We shall give direct proofs since this case is of particular interest,and the proof is much simpler than that of the case with unknown variance.Theorem 4.3 Consider the class of Gaussian distributions of �xed variance, with naturalconjugate priors as speci�ed by Theorem 3.6. Let xk := [x1; : : : ; xk] be a sample of size k.Then the �-optimal estimate is given by the densityf�(yjxk) = N  y � ak����� h1 + �=nk! :(4.6)6It is an interesting conjecture that most of the nice properties attributed to ML estimators, most ofthem discovered by Fisher in the early half of this century, are also present for any �-optimal estimatorswith �-uniform priors.7It is e�ectively the distribution used by the Monte Carlo methods proposed by [Nea95].
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Proof: Use Theorem 2.3, Theorem 3.6 and Theorem 3.4,f�(yjxk)� � Z� f(yj�)�f(�jxk)= Z�N(y � �jh)�N(� � akjnkh)� Z�N(y � �j�h)N(�� akjnkh)= N(y � ak���nk�h);� N  y � ak����� h1 + �=nk!� ;where nk� is given by 1nk� := 1nk + 1� :This completes the proof.Corollary 4.4 Assuming the non-informative prior m = 0, n = 0, the �-optimal estimateis f�(yjxk) = N �y � x���h= (1 + �=k)� :(4.7)Two special cases are of particular interest.� When � = 0, the optimal estimate N(y � xjh) is the conditional distribution withmaximum likelihood estimate.� When � = 1, the optimal estimate N(y � xjh=(1 + 1=k)) is the posterior marginaldistribution.Therefore, the �-optimal estimators provide a smooth interpolation between \optimising"and \integrating" over the posterior. All the �-optimal estimates are internally coherent,and invariant with respect to parameter and sample space transforms.It is interesting to note that the �-optimal estimates are not members of the model describedby the prior unless � = 0. The situation for � = 0 is di�erent since the th Gaussian family,being an exponential family, is 0-
at.On the other hand, the projection of these optimal estimates onto the allowed familycoincide with the 0-optimal estimate. This means that the �-optimal estimates restrictedto the allowed manifold are identical to each other for any �, and are identical to themaximum likelihood estimator. This provides a justi�cation for using least mean squaresto estimate Gaussian means. This also suggests that least mean square estimates for other20



distributions, for which squared distances between the parameters are not equivalent to thedivergences between distributions, are not expected to have the similarly nice properties.It can be shown, using the formulas derived so far, that asymptotically, ie. as k !1,E�(��) = DD�(p; ��(xk))Ek � 1k :(4.8)We conjecture that a similar result also holds for the �-estimate of a Gaussian with bothunknown mean and variance. We have not veri�ed this conjecture since it appears torequire an explicit formula for the �-divergence between the normal and t distributions,the derivation of which is likely to be quite tedious.5 Conclusions and discussionsWe have shown that it is possible to de�ne a generalisation measure which enables selectionfrom the Bayes posterior a unique representative which is optimal in the sense of infor-mation geometry. It is shown that the �-optimal estimates are characterised by the factthat their �-coordinates are proportional to the posterior expectation of the �-coordinatesof the true distributions. This is shown to be true for an arbitrary dominated family ofdistributions, either continuous or discrete, or mixed.The explicit formulas for �-optimal estimators are given for normal distributions as exam-ples. The �-optimal estimators are su�cient statistics. The 0-optimal estimate coincideswith the optimal Bayesian estimate. With a non-informative prior, this reduces to the dis-tribution with the maximum likelihood estimate of its parameters. The 1-optimal estimateis the posterior marginal distribution.The maximum likelihood estimators in general are invariant with respect to the parameter-isation. This is quite clear in this special case, since the �-optimal estimates are invariant.The least mean square estimates, or the unbiasedness of an estimator, are not invariant.In this special case, it can be seen that the least mean square estimate is equivalent to the�-optimal estimate only for the mean of a Gaussian.These results show that it is possible to use invariant information theoretic criteria in con-junction with a Bayesian theory. Learning rules can therefore be viewed as approximationto the �-optimal estimators. This uni�es classical results based on various di�erent pointsof view, showing their intrinsic relations.It would be of particular interest to continue this research into the optimal estimationof multivariate Gaussians, the Bayesian updating formulas are readily available [Dem69,DeG70]. This will be important in its own right, since it will provide a basis for leastmean squares and the regressions. It will also be of theoretical importance since it willprovide a means of uni�cation with the theory of function approximation in Hilbert spaces.Finally, it will o�er some insight to theoretical statistics in general in light of the asymptoticnormality of most estimators. 21



Even more interesting would be direct applications to non-Gaussian continuous distri-butions. For exponential families, which are exactly the distribution families admittinga su�cient statistic of �xed dimension [Dar35, Koo36, Pit36], the procedure would bequite similar. For curved exponential families [Efr75], one of the possible routes of ex-ploration is to assume an exponentially-uniform prior on the whole exponential family,and consider the �-estimates restricted to the curved submanifold [Ama85]. It is expectedthat this will reduce to the results of information geometry for curved exponential fami-lies [Ama85, Ama87], but anomalies might appear because of the improper prior [DSZ73].At the moment, we are unclear as to what kind of results can be derived for families notadmitting �xed �nite dimensional su�cient statistics, although one way of approximatingthe optimal estimator in the Gaussian (generalised) linear regression context is developedin [ZR95b].In some applications, speci�c error functions might be used in place of the �-divergence.They are, however, dependent on the given problem which assigns speci�c meaning to theparameters or the sample points. Since the �-estimates are su�cient statistics, an optimalestimator in such special cases must be functions of ��. It is itself a su�cient statistic ifand only if the function is invertible.Acknowledgements This work was partially supported by EPSRC grant GR/J17814.We would like to thank people in the Neural Computing Research Group for interestingdiscussions. In particular, we would like to thank C. Williams, C. Bishop, C. Qazaz forvaluable comments, interesting suggestions, and stimulating discussions.References[ABNK+87] S. Amari, O. E. Barndo�-Nieldon, R. E. Kass, S. L. Lauritzen, and C. RRao, editors. Di�erential Geometry in Statistical Inference, volume 10 of IMSLecture Notes Monograph. Inst. Math. Stat., Hayward, CA, 1987.[AD75] J. Acz�el and Z. Dar�oczy. On measures of information and their characteristics.Academic Press, New York, 1975.[Aka80] H. Akaike. The interpretation of improper prior distributions as limits of datadependent proper prior distributions. J. Roy. Stat. Soc., B, 42(1):46{52, 1980.[Ama82] S. Amari. Di�erential geometry of curved exponential families|curvature andinformation loss. Ann. Stat., 10(2):357{385, 1982.[Ama85] S. Amari. Di�erential-Geometrical Methods in Statistics, volume 28 ofSpringer Lecture Notes in Statistics. Springer-Verlag, New York, 1985.[Ama87] S. Amari. Di�erential geometrical theory of statistics. In Amari et al.[ABNK+87], chapter 2, pages 19{94.22
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