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Bayesian Invariant Measurements of Generalisationfor Discrete DistributionsHuaiyu Zhu Richard RohwerDepartment of Computer Science and Applied MathematicsAston University, Aston Triangle, Birmingham B4 7ETAugust 31, 1995AbstractNeural network learning rules can be viewed as statistical estimators. They shouldbe studied in Bayesian framework even if they are not Bayesian estimators. General-isation should be measured by the divergence between the true distribution and theestimated distribution. Information divergences are invariant measurements of thedivergence between two distributions.The posterior average information divergence is used to measure the generalisationability of a network. The optimal estimators for multinomial distributions withDirichlet priors are studied in detail. This con�rms that the de�nition is compatiblewith intuition. The results also show that many commonly used methods can be putunder this uni�ed framework, by assume special priors and special divergences.Contents1 Introduction 22 Example: The Binomial Distribution with Beta Prior 42.1 The statistical model : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 42.2 Bayesian methods : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 52.3 Beta distribution prior : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 52.4 Information divergence : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 62.5 Optimal D1 estimator for binomial distribution : : : : : : : : : : : : : : : 72.6 Optimal D0 estimator for binomial distribution : : : : : : : : : : : : : : : 91



3 Generalisation Measure for Discrete Distributions 103.1 Kullback-Leibler distance and information divergence : : : : : : : : : : : : 103.2 Generalisation measure for estimators and estimates : : : : : : : : : : : : : 113.3 Optimal estimators and estimates : : : : : : : : : : : : : : : : : : : : : : : 124 Optimal Estimators for Multinomial Distribution 134.1 Multinomial distribution with Dirichlet prior : : : : : : : : : : : : : : : : : 134.2 �-Optimal estimator for multinomial distribution : : : : : : : : : : : : : : 155 Conclusions and Discussions 15A Properties of Gamma and Beta Functions 16B Multivariate Beta Function and Dirichlet Distribution 18B.1 Multinomial coe�cients : : : : : : : : : : : : : : : : : : : : : : : : : : : : 18B.2 Multivariate Beta Function : : : : : : : : : : : : : : : : : : : : : : : : : : : 18B.3 Normalised multivariate Beta function : : : : : : : : : : : : : : : : : : : : 20B.4 Partial increments of order � : : : : : : : : : : : : : : : : : : : : : : : : : : 201 IntroductionMost NN learning rules can be considered as estimating an unknown probability distri-bution based on �nite data taken from that distribution. Fundamental to any of suchmethods is a notion of optimal estimation: given two estimations obtained by two di�erentmethods from the same data, on what ground shall we evaluate their relative merits?Let us discuss this in more details. A neural network can be viewed as a parameterisedstatistical model [Whi89], where the parameters, ie. weights w, are to be estimated fromtraining data z 2 Z. Each weight vector w will decide a unique member q from the familyQ of probability distributions over Z representable under a given network architecture. Alearning rule � is therefore an adaptive method of point estimation of probability distribu-tions from �nite data.In statistical terms, a neural network corresponds to a statistical manifold Q. The weightvector w 2 W correspond to coordinates on Q. A learning rule � : Z ! Q corresponds toan estimator. A trained model q 2 Q is an estimate.Obviously, there are in general in�nitely many di�erent parameters values w which couldhave given rise to the same set of training data z. It is well established that Bayesian2



methods can be used to derive posterior distributions of parameters, Pr(wjz), given a prioron the parameters Pr(w) and the likelihood function of the data, Pr(zjw). The fundamentalproblem to be addressed here is to decide a unique set of parameters bw which representsoptimal generalisation in a certain sense. From now on we shall talk about the estimate qinstead of the weight w.We stipulate that generalisation should be measured by the performance of the estimatoron independent data drawn from identical distribution, averaged over the prior distributionof training problems.It is obvious that generalisation should be tested on independent data, otherwise to repeatwhat is in the training data might be a good strategy to get good score. It is not widelyrecognised, but is as important, that it should be tested on data drawn from identicaldistribution. Otherwise a biased (in a broad sense) estimator might get a better score onaverage. Furthermore, the very idea of a learning rule requires that the performance shouldbe measured on average over all the possible problems this rule is to be applied to.The next question to be settled is the meaning of \good performance". It should in someway measure the \divergence" between the true but unknown distribution p and the modeldistribution q. This is well studied in information geometry (See [Ama85, Ama87] andreferences given therein). It is known that there is a family of \information divergences"which measures the di�erence between any two probability distributions. These diver-gences are unique in many important properties they enjoy, including invariance underreparameterisation and one-one transformations in the sample space. This gives a familyof generalisation measures for neural network training problem or any statistical estimationproblem where a point estimation is required from �nite data.In other words, we shall consider Bayesian decision theory with the information divergencesas loss functions.In this report, the �rst of three installments, we shall concentrate on �nite sample spaces.Explicit formulas of the optimal estimates will be derived for multinomial distributionwith Dirichlet priors; they have close relations with well established statistical estimators.They are su�cient statistics. The technical reason will be apparent when the space of allpositive measures, not just that of probability measures, is considered [ZR95b]. The casefor continuous distributions will be studied in [ZR95a].Since the model space representable by a certain neural network class usually does notcontain the intended probability distribution, there is a further problem of approximatingthe \optimal estimations" de�ned by any of the criteria considered here. The problemof \approximation" will be discussed elsewhere [ZR95b]. In other words, in this notewe generally assume that the space of probability distributions contains all the possibleprobability distributions of the \world".In x2, we derive the results for binomial distributions with Beta prior. This serves as anillustration of what our more general results will look like, and motivates the more involvedmathematical derivations for the more general results.3



In x3, some important results of Bayesian methods and information geometry are collectedand recasted in a form convenient for our requirements. The generalisation measure basedthereon is de�ned and its optimal estimate is derived in a general form.The family of multinomial distributions with its natural conjugate prior, Dirichlet distri-bution, is analysed in x4.Discussions and conclusions are in x5.2 Example: The Binomial Distribution with Beta Prior2.1 The statistical modelConsider an imaginary \coin-ipping machine", which has a lever on a scale labelled [0; 1].For each position p 2 P = [0; 1] of the lever, the machine will toss coins in a sequencez = [zk : k = 1; 2; : : : ] with identical independent distribution Pr fzk = 1g = p, wherezk 2 Z = f0; 1g is the result of the kth toss and \head/tail" is represented by \1/0".Denote ZN(m) := nz 2 ZN : jzN j = mo, where we use jAj to denote the number of ele-ments in a �nite set A. Then jZN(m)j = C(m;n). Denote m := jzj = Pi zi, n := N �m.The mathematical description of the above setup is a Bernoulli experiment with parameterp 2 P, data zN 2 ZN , and likelihood functionPr(zN jp) = pm(1� p)n:The output count m is a su�cient statistics (when N is known) with binomial distributionPr(mjp) = C(m;n)pm(1 � p)n:The learning task we shall consider is the following: Given a �nite sample zN = [z1; : : : ; zN ]generated from an unknown p, compute q = � (z) 2 Q = [0; 1] which is a \good estimation"of p in some sense. The following terms will be used throughout this document.zN 2 ZN : : : : : : : zN is the \training data", or \sample". It is a random variable. Z is thesample space.N : : : : : : : : : : : : : the \data size".p 2 P : : : : : : : : : : p is the \state of world", the \true parameter". It is the (unknown)distribution of z. P is the \world" or \world model". It is the set of allthe possible world states p.q 2 Q : : : : : : : : : : q is the \estimate", or the \trained model". It is a distribution intendedto be a good approximation of p in some sense. Q is the \model", theset of all the estimates q. It is usually a subset of P.4



� : ZN !Q : : : � is the \learning method", or \training method", or \estimator". Itmaps samples to estimates. The intention is that q = � (zN) will be agood approximate of p, which will be better as N tends to in�nity.2.2 Bayesian methodsIt is obvious that there are in�nitely many p which could have possibly produced zN ,whatever N is. To make a probabilistic statement about p, one must assume a priorPr(p) which describes the distribution of the position of the lever before one sees anydata. We shall not go into the argument as why prior is necessary for the evaluation oflearning rules [Zhu95], but it is worth pointing out that many methods which appear tohave assumed no prior in fact �t in this framework by assuming a particular prior. Thisincludes the maximum likelihood method.For a given prior Pr(p), the Bayesian formula for posterior Pr(pjzN) isPr(zN) = Zp Pr(p) Pr(zN jp); Pr(pjzN ) = Pr(zN jp) Pr(p)=Pr(zN ):(2.1)It is important to note that the posterior is a distribution of the unknown worlds, notan estimate. Statistical problems in general, and neural network training problems inparticular, require a speci�c estimate q of the unknown world p. Obviously, there arein�nitely many possible choices, so the question \which is the optimal" remains to beanswered.This question cannot be dismissed by insisting on giving Pr(pjzN ) as the �nal answer, sincein that case we are faced with the new problem of representing Pr(pjzN ) explicitly, a taskimmensely more di�cult than representing q directly. If, on the other hand, we were torepresent Pr(pjzN ) approximately by some parameterised model, we are faced with thesame types of question, albeit on a much more complicated level.2.3 Beta distribution priorAlthough Bayes formula will give a posterior for any prior, even when the prior is not aproper distribution, there are certain families of distributions which have nice mathematicaland computational properties as priors for a given family of distributions. They are suchthat the posterior is also a member of the family. Among them the natural conjugate priors[RS68, DeG70, BT73, Ber85] are such that the prior can be conveniently as representingprevious empirical knowledge. It is to be noted that not all knowledge is necessarilyempirical knowledge. However, it is usually bene�cial to examine the consequence of astatistical method on the natural conjugate prior �rst.The natural conjugate prior of binomial distribution is the Beta distributionPr(p) = pa�1(1� p)b�1B(a; b) :(2.2) 5



The likelihood function isPr(zN jp) = pm(1� p)n: Pr(mjp) = C(m;n)pm(1� p)n:(2.3)The data distribution isPr(zN ) = B(a+m; b+ n)B(a; b) : Pr(m) = C(m;n)B(a+m; b+ n)B(a; b) :(2.4)The posterior is Pr(pjzN ) = Pr(pjm) = pa+m�1(1 � p)b+n�1B(a+m; b+ n) :(2.5)It is quite obvious that [a; b] is su�cient statistics for the prior, [m;n] is su�cient statisticsfor the likelihood, and [a+m; b+ n] is su�cient statistics for the posterior.In the rest of this document we shall suppress explicit notations for the sample size N .This means that the notation z denote a sample of size N , instead of size 1, for example.2.4 Information divergenceWhat is one going to do with a Bayes posterior Pr(pjz), which is a distribution of dis-tributions? This question is usually not systematically studied in the majority of Bayesmethods, except in decision theories where an externally imposed loss function is assumed.As we shall see later, most Bayes methods can be regarded as using a \representative distri-bution" q as the �nal answer. Several examples from recent neural networks literature willillustrate this point. The evidence method of D. MacKay [Mac92] uses an approximation.D. Wolpert [Wol93] takes the maximumposterior distribution. R. Neal [Nea93] uses MonteCarlo simulations which is equivalent of sampling from posterior marginal distribution.Now we come to the second important theme of this paper: to �nd an invariant measureof \divergence" D(p; q) between the two distributions p and q, and demanding q to beclosest to p averaged over the posterior Pr(pjz). In this section we shall only considerthe most commonly used \divergences", the Kullback-Leibler divergence (also called crossentropy). In later sections we shall consider all the invariant divergences, in the sense thatit is invariant under parameterisation of both p and z.The Kullback divergence between two distributions p; q 2 [0; 1] isK(p; q) = p log pq + (1 � p) log 1� p1� q :(2.6)It is one instance of the family of �-divergences in information geometry [Che72, Ama85].For technical reasons we �nd it more convenient to use � = (1 � �)=2, following [Hou82,6



Kas84]. Denoting p1 = p; p2 = 1� p, the �-divergence is de�ned 8� 2 [0; 1] :D�(p; q) := 1�(1� �)  1�Xi p�i q1��i ! ; 8� 2 (0; 1):(2.7) D0(p; q) := lim�!0D�(p; q) = K(q; p):(2.8) D1(p; q) := lim�!1D�(p; q) = K(p; q):(2.9)It is obvious that the �-divergence is independent of the way the distribution is parame-terised. It is often more convenient to use other parameterisations in computations, suchas log(p=(1 � p)), for example. The invariance of the divergence means that the distri-bution which minimises the expected divergence from the true distribution conditional onthe observations is independent of the parameterisation. However, there is a family of pa-rameterisations which are quite convenient in subsequent developments. These are called�-coordinates and are de�ned byl�(p) := p�=�; l0(p) = log p:(2.10)The 1-coordinate is called mixture coordinate, while the 0-coordinate called the exponentialcoordinate [Ama85].Given a sample z and prior Pr(p), the �-(optimal) estimate is de�ned as the distribution qsuch that D�(p; q) is minimal on average over the posterior distribution Pr(pjz).2.5 Optimal D1 estimator for binomial distributionWe �rst consider the binomial case, with � = 1.The learned model q := � (z) is dependent upon the data. Suppose the world p is known,we want to �nd an optimal learning method to minimise the expected divergenceE1(� jp) :=Xz Pr(zjp)D1(p; � (z)):(2.11)There is obviously a unique solution to this problem, � (z) = p, with the absolute minimumE1(� jp) = 0. The fact that the solution q = � (z) is independent of the data z is notsurprising, since we have assumed that p is known. This kind of learning rule is of no usesince it is only good when it happens to hit upon the true state of the world, and if thathappens there is nothing to be \learned".Now in reality p is unknown with a distribution Pr(p). Therefore we seek to minimise theexpected divergence for the whole learning rule,E1(� ) := Zp Pr(p)E1(� jp):(2.12)Such a � is called the 1-(optimal) estimator. Using the Bayes theorem this can be rewrittenas E1(� ) =Xz Pr(z)E1(qjz);(2.13) 7



where E1(qjz) := Zp Pr(pjz)D1(p; q):(2.14)This shows that to minimise the prior expected divergence of the learning rule, E1(� ), it isequivalent to minimise the posterior expected divergence of the estimate, E1(qjz), for eachpossible sample z, Pr(z) > 0. Such a q is called the 1-(optimal) estimate based on data z.These (expected) divergences are di�erentiable with respect to q,@qD1(p; q) = 1 � p1� q � pq = q � p(1� q)q ;(2.15) @qE1(qjz) = Zp Pr(pjz) q � p(1� q)q = q � hpiz(1� q)q ;(2.16)where hpiz is the expectation of p conditional on z, de�ned byhpiz := Zp Pr(pjz)p:(2.17)Therefore the 1-estimate is given by q = hpiz. This also completely speci�es the 1-optimalestimator up to a set of data with zero probability. As said earlier, q is in fact a distribution,instead of simply a real number. In more details, let z0 be any test data, then the 1-estimateq is de�ned as a distributionPr(z0jq) = Zp Pr(pjz) Pr(z0jp) = Pr(z0jz):(2.18)The right hand side is exactly the posterior marginal distribution, which is widely used inmany Bayes methods, such as the Monte Carlo method [Nea93].It is interesting to observe the relation between the 1-optimal estimate and the 1-coordinates:Let q = � (z) be the estimate given by the learning rule � . Then q is 1-optimal estimate ifand only if l1(q) is the posterior expectation of l1(p) conditional on z. We shall see that avariant of this statement is true in general for any � and any distribution family.The formula for computing q is very simple for the Beta distribution prior Pr(p) � pa�1(1�p)b�1. Denoting C := a+ b, it is easy to show thathpiz = a+mC +N :(2.19)If one considers the prior as representing a \previous set of data" of size C with a 1's and b0's, then the optimal estimate is simply the arithmetic mean of the \total data set". Since qis a su�cient statistic conditional on the \ancillary" C+N , the learning rule � : z! � (z)is adaptive in the sense that q+ = q + NC +N �mN � q� :(2.20) 8



2.6 Optimal D0 estimator for binomial distributionNow let us consider another important case, � = 0. The 0-divergence between two distri-butions p; q 2 [0; 1] isD0(p; q) = K(q; p) = (1� q) log 1 � q1� p + q log qp:(2.21)Similar to the case of � = 1, we have the following corresponding de�nitions.E0(� jp) :=Xz Pr(zjp)D0(p; � (z)):(2.22) E0(qjz) := Zp Pr(pjz)D0(p; q):(2.23) E0(� ) := Zp Pr(p)E0(� jp) =Xz Pr(z)E0(qjz):(2.24)The concepts of 0-(optimal) estimates and estimators are similarly de�ned. The gradientscan also be similarly derived, as@qD0(p; q) = log qp � log 1 � q1� p = log q1 � q � log p1 � p;(2.25) @qE0(qjz) = Zp Pr(pjz) log q1 � q � log p1� p! = log q1 � q � *log p1� p+z :(2.26)Therefore the 0-estimate q is given byq1� q = exp*log p1� p+z :(2.27)Let l1=� denote the inverse of the mapping l�. The above is equivalent toq � l1=0 Dl0(p)Ez :(2.28)The corresponding result for � = 1 can also be expressed in the same formq � l1=1 Dl1(p)Ez :(2.29)This can be generalised to any � in the following sections.For the Beta distribution prior Pr(p) � pa�1(1� p)b�1, we have*log p1 � p+z = Zp pa+m�1(1� p)b+n�1B(a+m; b+ n) log p1 � p = 	(a+m)�	(b+ n);(2.30)where 	 is the digamma function. See Appendix A for de�nition and properties. Itis known (See, eg., [Fer67, p. 180], which cites [JF45].) that for su�ciently large m,9



exp	(m) � m � 1=2. Therefore q = � (z) � (a + m � 1=2)=(C + N � 1), which isasymptotically equivalent to the 1-optimal estimate.This also leads to an adaptive method. Let � = log(q=(1 � q)). Suppose that su�cientstatistic a; b is kept. Then the method is described byz = 1 =) a+ = a+ 1; b+ = b; �+ = � + 1=a+;(2.31) z = 0 =) a+ = a; b+ = b+ 1; �+ = � � 1=b+:(2.32)3 Generalisation Measure for Discrete DistributionsInstead of continuing with more special examples, we now turn to the task of de�ning gen-eralisation measure for all discrete distributions, and �nd out the formula for correspondingoptimal estimators.Note that discrete distributions are characterised by the fact that they are dominated by ameasure with a countable support. In other words, sum can be used in place of integration.3.1 Kullback-Leibler distance and information divergenceLet Z be a �nite sample space and jZj = n. Then it can be identi�ed with Nn. The spaceP of distributions on Z can be identi�ed with the standard (n� 1)-simplex�n�1 := (p : Xi pi = 1; pi � 0) � Rn:(3.1)De�nition 3.1 (Information divergence) Let p; q 2 �n�1. The Kullback-Leibler diver-gence K(p; q) :=Xi pi log piqi :(3.2)Let � 2 (0; 1). The �-divergence is de�ned byD�(p; q) := 1�(1� �)  1�Xi p�i q1��i ! ;(3.3) D0(p; q) := lim�!0D�(p; q) = K(q; p);(3.4) D1(p; q) := lim�!1D�(p; q) = K(p; q):(3.5)It is easy to verify that that D1=2(p; q) = 2Xi (ppi �pqi)2 :(3.6)The family of �-divergences was discovered several times in both information theory andstatistics. It is essentially the same as various information measures, including \Renyi's10



information" and \Cherno� distance". In practice, � 2 f0; 1=3; 1=2; 2=3; 1g have distinctstatistical interpretations [Hou82, Kas84]. Among many other names, D1 and D0 arecalled the cross entropy (Kullback-Leibler divergence) and the reversed cross entropy, re-spectively. D1=2 is the Hellinger distance. See [AD75, p.208] and [Ama85, Ama87] for morebackgrounds and references.It is proved by [Che72] that in the case of �nite sample space, the �-connections are theonly family of invariant connections. It was conjectured in [Ama85] that this is also truefor general sample space. The �-divergence are intrinsically related to the �-connections,both through the �-a�ne coordinates, the Generalised Pythagorean Theorem, and throughthe Eguchi relations [Egu83]. The relation between �-divergence and the L1=� space shedsome light on the duality between � and (1� �). This will be discussed elsewhere [ZR95b]3.2 Generalisation measure for estimators and estimatesLet Z be a sample space. Consider the information manifold P, the space of probabilitydistributions. Suppose the world is represented by an unknown distribution p 2 P, with aprior Pr(p). Suppose in an experiment a sample z is observed, with likelihood Pr(zjp). Theposterior distribution Pr(pjz) can be obtained from the Bayes rule. A learning method is amapping � : z ! q = � (z), which maps each observed set of data z to a unique distributionq 2 P.De�nition 3.2 (Generalisation error)E�(� jp) :=Xz Pr(zjp)D�(p; � (z)): E�(� ) := Zp Pr(p)E�(� jp):(3.7) E�(qjz) := Zp Pr(pjz)D�(p; q):(3.8)Note that both q and p are distributions in a common family, while � itself is a mappingfrom a set of data to this family of distributions.Corollary 3.1 The performance of an estimator is the expected performance of estimatesit gives. E�(� ) =Xz Pr(z)E�(� (z)jz):(3.9)These functionals measure the expected divergence of the learned distribution from thetrue distribution for a given estimator, which is invariant under reparameterisation.Suppose it is known exactly that the world distribution is p, then using an estimator �would result in an average �-divergence of E�(� jp). So the optimal estimator is � (z) = p,independent of z. In general the true distribution p is unknown. Suppose we have a priorPr(p) of possible worlds p. Then on average the generalisation error is E�(� ).11



De�nition 3.3 (Optimal estimator) An estimator � is called an �-optimal estimator if itis the solution of the following optimisation problemMin�(z)2PE�(� ):(3.10)De�nition 3.4 (Optimal estimate) A probability distribution p is called an �-optimal es-timator from data z if it is the solution of the following optimisation problemMinq2P E�(qjz):(3.11)It is often argued that an optimal estimator should not be de�ned as one that gives the bestaverage performance on all the possible data, but one that gives the the best performanceon each data that actually occur [Lor90]. The relation between E�(� ) and E�(pjz) showsthat these two criteria are in fact equivalent.Theorem 3.2 An estimator is �-optimal if and only if for any data, except a set ofprobability zero, the result of the estimator is a �-optimal estimate.In other words, to minimise prior expected divergence is equivalent to minimise the poste-rior expected divergence for all possible sample. This means to �nd the optimal estimatorwe only need to �nd the estimate for each possible sample.3.3 Optimal estimators and estimatesSuppose we have sample z and want to �nd out the �-optimal estimate q, which can beregarded as a vector in Rn if we consider �n�1 as the standard simplex embedded in Rn.Therefore the problem of �nding the optimal q is a constrained minimisation problem, andcan be solved by the Lagrange multiplier method. De�neF := E�(qjz)� � Xz0 qz0 � 1! :(3.12)Intuitively, the data z is the one which actually observed, while z0 is an arbitrary datawhose probability the estimator must predict.From equation (3.3), it can be derived that@D�(p; q)@qz0 = �1�  pz0qz0 !� :(3.13) @E�(qjz)@qz0 = Zp Pr(pjz)@D�(p; q)@qz0 = �1� Dp�z0Ezq�z0 :(3.14)Therefore, the �-estimate q is given by@F@qz0 = �1� Dp�z0Ezq�z0 � � = 0 () q�z0 � Dp�z0Ez :12



The proportionality constant is the partition function. Translating back to distributions,q is the �-estimate, which is itself a distributions, if and only ifPr(z0jq)� � Zp Pr(pjz) Pr(z0jp)�:(3.15)For � = 1, this reduces to the posterior marginal distribution,Pr(z0jq) = Pr(z0jz):(3.16)For � = 0, the result can be arrived at by taking limit,log Pr(z0jq) = hlog Pr(z0jp)iz � C;(3.17)where C is the logarithm of the partition function, which depends on z but is independentof z0.Denote by l1=� the inversemapping of l�. The above is summarised in the following theorem.Theorem 3.3 (�-optimal estimate of discrete distributions) For discrete distribu-tions, given observed data z, the �-optimal estimate is given byq = ��(z) � l1=� �Dl�(p)Ez�(3.18)The right hand side is called �-average over the posterior Pr(pjz). 1 This means that the�-optimal estimate can be obtained in three steps: use the �-representation of p, averageover the posterior, and renormalise.4 Optimal Estimators for Multinomial DistributionIn this section we shall derive explicit formula for the �-optimal estimators for the multi-nomial distribution.4.1 Multinomial distribution with Dirichlet priorConsider a multinomial distribution with n possible outcomes. Denote the total numberof experiments as N . Let zki be the ith component of the result of kth experiment. In eachexperiment exactly one event occurs, jzkj = 1. This means z 2 ZN , where Z := Nn(1).The number of event i occurs inN experiments is denotedmi := jzij. Som := [m1; : : : ;mn] 2Nn(M), and N = jmj = jzj =Pi jzij = Pk jzkj. We have, 8z 2 (Nn(1))N , m 2 Nn(N).The natural conjugate prior for the multinomial distribution is the Dirichlet distribution,which generalises the Beta distribution on the unit interval to the standard simplex in1Also called weighted H�older �-means [HLP52]. This usage is essentially the same as [AD75].13



any �nite dimensional space [DeG70, Ber85, Car77]. Most of relevant properties are sum-marised in Appendix B.Then the likelihood function isPr(zjp) = pm :=Yi pmii ; Pr(mjp) = C(m)pm:(4.1)The Dirichlet prior is 8a 2 Rn+ Pr(p) = pa�1B(a) = D(pja);(4.2)The joint distribution of data and parameter isPr(z; p) = pa+m�1B(a) = pmD(pja); Pr(m; p) = C(m)pa+m�1B(a) :(4.3)The prior marginal distribution of data isPr(z) = B(a+m)B(a) ; Pr(m) = C(m)B(a+m)B(a) :(4.4)The posterior is Pr(pjz) = Pr(pjm) = pa+m�1B(a+m) = D(pja +m):(4.5)The posterior marginal data distribution isPr(z0jz) = B(a+m+m0)B(a+m) :(4.6)Since m is a su�cient statistic for z, it is only necessary to derive formulas for m insteadof z. It is easy to see that these formulas reduce to corresponding ones for binomialdistribution when n = 2.Corollary 4.1 The data distribution is multivariate hypergeometric distribution(?)Pr(m) = C(m;a� 1)C(jmj; jaj � 1) :(4.7) 14



4.2 �-Optimal estimator for multinomial distributionSee Appendix B for the notations used in this section. It is straight forward to derive, fromthe general formula for �-optimal estimator and the posterior of multinomial distributionthatTheorem 4.2 Let � 2 (0; 1]. The �-optimal estimate q = ��(z) for multinomial distribu-tion M(mjp) with Dirichlet prior B(pja), data z with statistic mi := jzij, is given by(qi)� � L�i (a+m) = (ai +mi)�(ja+mj)� � (ai +mi)�:(4.8)In particular, for � = 1,qk = B(a+m+ �k)=B(m+ a) = (mk + ak)=jm+ aj:(4.9)This can be intuitively interpreted as the arithmetic mean of the \combined data set"composed of the observed data with su�cient statistics m and a set of \previous data"with su�cient statistics a.For the case of � = 0, we have the following theorem.Theorem 4.3 The 0-optimal estimate q = �0(m) for multinomial distribution M(mjp)with Dirichlet prior B(pja) is given bylog qi + C = L0i (a+m) = 	(ai +mi)�	(ja+mj);(4.10)where 	 is the logarithmic derivative of � function (also called the digamma function), andC is a constant. Equivalently, qi � exp	(ai +mi):(4.11)These formulas speci�es the �-estimate for multinomial distributions with Dirichlet priors.They also speci�es the �-estimators uniquely up to a set of data with zero probability.5 Conclusions and DiscussionsWe have combined the Bayesian decision theory with information geometry to providea theory for the evaluation of statistical estimators, de�ning a measure of generalisationwhich enables selection from the Bayes posterior a unique representation which is optimalin the sense of information geometry. It is shown that the �-optimal estimates are char-acterised by the fact that their �-coordinates proportional to posterior expectation of the�-coordinates of the true distributions.It is coherent in the sense that the optimal estimator is characterised by the fact that itgives the optimal estimates for almost all the the data. It is invariant under transformationsboth in the sample space and in the parameter space.15



We have argued that the result of statistical estimator should be a point estimate. Althoughthe �-optimal estimates are points in the posterior, no information is lost when they areused as representatives of the posterior, since each of them is a su�cient statistic. The 1-optimal estimate is the posterior marginal distribution, which is the distribution e�ectivelyused in the Monte Carlo simulate methods [Nea93].The Dirichlet prior Pr(pja1) is a-uniform distribution over �n�1, ie. uniform distributionover a-coordinates, and can be regarded as non-informative priors. The 1-estimate with0-uniform prior coincide with the maximum likelihood estimator, which act as a represen-tative \data point" in Amari's theory of information geometry for exponential families.As far as we are aware, this is the �rst attempt to combine the Bayesian framework andinformation geometry. Detailed formula for multinomial distributions provide �rst hand,intuitively accessible knowledge about the consequences of this theory. A more generalapproach is pursued in [ZR95b].The major contribution of these explorations is to show that it is possible to de�ne gen-eralisation in a way which is both coherent and invariant, thereby overcoming a majorobstacle to Bayesian methods of inference. This therefore act as a reference point for thecomparison of all the learning methods.A Properties of Gamma and Beta FunctionsMost of the materials here are standard. The main purpose of this appendix is to �xnotations.The Gamma function is de�ned as�(a) := Z 10 e�tta�1dt = Z 10 (� log u)a�1du:(A.1)The Beta function is de�ned asB(a; b) := Z 10 pa�1(1� p)b�1dp:(A.2)It has the well known Gamma representationB(a; b) = �(a)�(b)�(a+ b) :(A.3)The Psi function, also called the digamma function, is logarithmic derivative of Gammafunction, de�ned as 	(a) := Pr(log �(a)) = @�(a)=�(a):(A.4) 16



It has the following interesting representations	(x) +  = 1Xk=0� 11 + k � 1x+ k�= Z 10 e�t � e�xt1� e�t dt = Z 10 1� ux�11 � u du; 8x 2 R+:(A.5) 	(x)�	(y) = 1Xk=0� 1z + k � 1x+ k�= Z 10 uz�1 � ux�11 � u du; 8x; y 2 R+:(A.6) 	(n) = � + n�1Xk=1 1k ; 8n 2 N+:(A.7) 	(0) = �1; 	(1) = �;  � 0:577215:(A.8) exp	(x) � x� 1=2; 8x� 1:(A.9)Notation. The Pochhammer symbol (a)b and the Appell symbol (a; b) are de�ned as(a)b := (a; b) := �(a+ b)=�(b):(A.10)We do not use the Appell symbol. In particular,(a)1 = a; (a)n = a(a+ 1) � � � (a+ n� 1); (1)n = n!:(A.11)Notation. We use the following notation for binomial coe�cientsC(m;n) : = Cmm+n =  n+mm != 1(n+m+ 1)B(m+ 1; n + 1) = (m+ 1)n(1)n :(A.12)Notation. The Beta distribution with parameter a; b is given by the pdfD(pja; b) := pa�1(1 � p)b�1B(a; b) :(A.13)Its maximum is located at p = (b� 1)=(a + b� 2). Its �-moment isZp D(pja; b)p� = B(a+ �; b)B(a; b) = (a)�(a+ b)� :(A.14)Theorem A.1 Let a; b 2 R+.L(a; b) := @a logB(a; b) = Z 10 dpD(pja; b) log p = 	(a)�	(a+ b):(A.15) T (a; b) := Z 10 dpD(pja; b) log p1 � p = 	(a)�	(b):(A.16) 17



Proof: From the integral representation of Beta function we obtain the integral repre-sentation of L(a; b), and from the Gamma representation of the Beta function we obtainthe Psi representation of L(a; b). This proves the identity for L(a; b). The identity forT (a; b) is obtained by noticing that T (a; b) = L(a; b)� L(b; a).B Multivariate Beta Function and Dirichlet DistributionMany of the results presented here are standard [DeG70, Car77], but we shall present themin a set of concise notation.B.1 Multinomial coe�cientsNotation. Let a; b 2 Rn+, p 2 �n�1, m 2 Nn:pa :=Yi paii ; m! :=Yi mi!;(B.1) (a)b :=Yi (ai)bi; �(a) :=Yi �(ai):(B.2)De�nition B.1 The multinomial coe�cients are de�ned 8m;k 2 Nn:C(m) := jmj!m! : C(m;k) :=Yi C(mi; ki):(B.3)Notation. Let n;M 2 N. ThenNn(M) := fm 2 Nn : jmj = Mg ;(B.4) NM := fm 2 N : m �Mg ;(B.5) NnM := NM � � � � � NM = fm 2 Nn : mi �Mg ;(B.6)Lemma B.1 jNn(N)j = C(n� 1; N).Theorem B.2 (Multinomial expansion) Let x 2 Rn, N 2 N. Then Xi xi!N = Xm2Nn(N)C(m)xm:(B.7)B.2 Multivariate Beta FunctionDe�nition B.2 The multivariate Beta function is de�ned 8a 2 Rn+:B(a) := Z�n�1 dp pa�1;(B.8)where dp := dp1 � � � dpn�1, with pn = 1� (p1 + � � �+ pn�1).18



De�nition B.3 (Dirichlet distribution) Let a 2 Rn+. Then 8p 2 �n�1:D(pja) := pa�1B(a):(B.9)Theorem B.3 (Symmetry) The multivariate Beta function is symmetric with regardto its arguments.Theorem B.4 (Recursive formula) Let i 2 Nn. Denote I := Nn n i. Then 8a 2 Rn+:B(a) = B(aI)B(ai; jaI j):(B.10)Proof: Denote q := pI=jpI j 2 �n�2, b := aI 2 Rn�1+ . By de�nition of the Beta functionand multivariate Beta function, we haveB(a) = Z�n�1 pa�1dp= Z 10 dpi pai�1i Z(1�pi)�n�2 dq qb�1= Z 10 dpi pai�1i (1 � pi)jbj�1 Z�n�2 dq qb�1= B(ai; jbj)B(b):In the above, the multiple integration is substituted by iterated integration.Theorem B.5 (Gamma representation)B(a) = �(a)�(jaj) :(B.11)Proof: Denoting b = aNn�1, it follows the recursive formula thatB(a) = B(b)B(an; jbj) = �(b)�(jbj) �(an)�(jbj)�(jaj) = �(a)�(jaj):Corollary B.6 Let 1 := [1; : : : ; 1]T 2 Rn. ThenB(1) = Z�n�1 dp = 1�(n) :(B.12) 19



B.3 Normalised multivariate Beta functionThe Beta function is normalised in a certain sense since the measure of the unit intervalis unity. This is not so for the multivariate Beta functions when n > 2. It is sometimesconvenient to use a normalised version of Beta function, de�ned as B 0(a) := B(a)=B(1).Theorem B.7 The following holds 8a 2 Rn+;m 2 Nn:B(a+ 1)(jaj+ 1)n�1C(a) = 1: B 0(m+ 1)C(m)C(jmj; n� 1) = 1:(B.13)For n = 2 the these reduce to B(a+ 1) = B 0(a+ 1) = 1=(jaj+ 1)C(a).Theorem B.8 The following holds:Xm2Nn(N)C(m)B(m+ 1) = 1�(n) : Xm2Nn(N)C(m)B 0(m+ 1) = 1:(B.14)Proof: Two proofs are available. (1) As a corollary of the above thereon and jNn(N)j =C(n� 1; N). 2) Use multinomial expansion theorem on the de�nition of B(m+ 1).B.4 Partial increments of order �Theorem B.9 Let a; b 2 Rn+. ThenLb(a) := Z�n�1 dpD(pja)pb = B(a+ b)B(a) = (a)b(jaj)jbj :(B.15)Notation. Denote by 1i 2 Rn the ith unit vector.Corollary B.10 Let i 2 Nn, a 2 Rn+. Let � 2 (0; 1]. ThenL�i (a) := Z�n�1 dpD(pja)p�i = B(a+ �1i)B(a) = (ai)�(jaj)� :(B.16)Theorem B.11 The following is true 8i 2 Nn, a 2 Rn+L0i (a) := Z�n�1 dpD(pja) log pi = 	(ai)�	(jaj) = � jaj�1Xk=ai 1k :(B.17)Proof: Consider @i logB(a). It equals the integral representation of L0i (a) followingthe de�nition of B(a), while equals the Psi function representation following the Gammarepresentation of B(a). 20
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