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Using large-scale computer simulations, we thoroughly study the minimum energy required to ther-

mally induced magnetization switching (TIMS) after the application of a femtosecond heat pulse in

transition metal-rare earth ferrimagnetic alloys. We find that for an energy efficient TIMS, a low

ferrimagnetic net magnetization with a strong temperature dependence is the relevant factor for the

magnetic system. For the lattice and electron systems, the key physics for efficient TIMS is a large

electron-phonon relaxation time. Importantly, we show that as the cooling time of the heated elec-

trons is increased, the minimum power required to produce TIMS can be reduced by an order of

magnitude. Our results show the way to low power TIMS by appropriate engineering of magnetic

heterostructures.VC 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4935416]

Manipulation of magnetization without the need for

magnetic fields has attracted much attention in the last few

decades in many fields, such as spintronics,1 electric field

manipulation of magnetism,2 acousto-magneto-plasmonics,3

caloritronics,4 or femtosecond laser physics.5 Driven by the

possibilities of low-power magnetization manipulation at the

ultrashort time scale, the laser induced magnetization switch-

ing, named all-optical switching (AOS),6 has recommend

itself as a promising technique for technological purposes,

from magnetic data storage7 to all-optical interconnects.8

The application of a single femtosecond laser pulse to ferri-

magnetic alloys reverses its magnetic state in the picosecond

time scale,6 where the underlying physical mechanism has a

purely thermal origin.7,9–11 As a consequence, it has been

called thermally induced magnetization switching

(TIMS).12,13 Moreover, it has been recently shown to be a

very low power mechanism for magnetic bit recoding with

prospective to consume as low as 10 fJ per 10 nm2 bit10 in

comparison to the low-power spintronic memories still in de-

velopment, where the spin transfer torque random access

memories (RAM) could consume as little as 100 fJ/bit, and

prospects indicate that electric-field-controlled magnetoelec-

tric RAM will consume around 10 fJ/bit.14 However, we note

here that differently to the slow magnetic-field driven mag-

netic reversal,15 the Landauer limit is still far from being

achieved in TIMS. Although the energy required to reverse

the magnetization is low, the temperature after the switching

remains for a few hundreds of picoseconds rather high, even

close to the Curie temperature (Tc), before complete dissipa-

tion to the environment. Thus, lowering the fluence required

to reverse the magnetic state of a material by TIMS will not

only allow one to realize an ultra-low power magnetic bit-

recording scheme but also to avoid the inconvenient long

lasting elevated temperatures.

To do so, one needs a good knowledge of the physical

mechanisms involved, non-equilibrium dynamics of the spin

system, electrons and lattice vibrations (phonons). However,

little is known about the effect of electron and phonon char-

acteristics on TIMS since previous theoretical works12,16–18

in the literature have focused on the fundamental question of

which magnetic mechanism produces TIMS.

The optimum properties of the magnetic system for

TIMS are still the subject of debate in the literature.19,20

Initial experimental observations highlighted the importance

of the magnetization compensation temperature,21 TM, where

the net magnetization, MnetðTÞ, of the magnet is zero but the

element specific magnetization remains finite. Further

experiments have shown that the existence of TM is not com-

pletely necessary, but low MnetðTÞ criteria is more

adequate.20,22 A theoretical work by Barker and co-work-

ers12 presented a microscopic view based on a non-

equilibrium energy transfer between the ferro- and antiferro-

magnetic like magnon branches, and suggests that TIMS is

not restricted to be around the compensation temperature

(low remanence); however, the laser energy needed to pro-

duce TIMS is minimum around TM. Atxitia et al.23 showed

that the distinct element specific demagnetization rate is

related to the shape of the equilibrium magnetization curve,

suggesting that a strong temperature dependence of the net

magnetization is necessary.

From these experimental and theoretical works, one can

extract three basic ingredients that lead to magnetization

switching in two element ferrimagnets: (i) AFM coupling,

(ii) low net magnetization at remanence, and (iii) distinct ele-

ment specific demagnetization dynamics. Recently, Mangin

and co-workers19 has been able to show all optical switching

with circularly polarized laser pulses in a range of materials,
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from alloys to rare earth free AFM coupled multilayers, par-

tially based on the above mentioned design rules. Thus, these

rules or criteria are very useful to find or engineer materials

showing TIMS; however, it is difficult to infer from them the

optimum properties for a low energy consuming TIMS. In

addition, no reference to the effect of the electron and lattice

dynamics is given by these criteria. In this work, we perform

a systematic study of the optimum properties of the spin,

electron, and lattice systems to obtain the magnetization

switching with the minimum laser energy possible.

We show that as the cooling time of the heated electrons

is increased, the minimum power required to produce TIMS

can be reduced by an order of magnitude. In particular, since

this cooling time is driven by the electron-phonon interac-

tion, materials with low electron-phonon coupling are there-

fore predicted to need much less laser fluence to exhibit

TIMS.

For the simulations of the spin dynamics, we use the at-

omistic stochastic Landau-Lifshitz-Gilbert equation resting

in a semi-classical spin Heisenberg Hamiltonian as pre-

sented and used in several previous works.9,24,25 The sys-

tem size was 100� 100� 100 spins on a simple cubic

lattice, and so, the errors in the switching probability are

quite low.

The effect of the femtosecond laser pulses on the elec-

tron and phonon dynamics is well described by the two-

temperature model (2TM)26 [see Table I for parameter

definition and values used for GdFeCo, and Fig. 1(a)]

Ce Teð Þ dTe
dt

¼ Gep Te � Tphð Þ þ P0 tð Þ; (1)

Cph

dTph

dt
¼ �Gep Te � Tphð Þ: (2)

The 2TM assumes that the energy from the laser pulse, rep-

resented by P0ðtÞ ¼ F0=sp
ffiffiffi

p
p

, is absorbed by the electron

system, which thermalizes to an internal quasi-equilibrium

distribution with a well-defined transient temperature TeðtÞ.
The initial temperature was set to ambient, T¼ 300K, since

it is convenient to work at room temperature for technologi-

cal purposes. The fluence P0 was varied to find the minimum

fluence, Fmin
0 ¼ Pmin

0 sp
ffiffiffi

p
p

required for switching, and the

data sets were averaged over 10 runs with different random

number seeds. Due to the usual low electron heat capacity,

the maximum temperatures could go up to thousands of

Kelvin. At the same time, the phonon temperature TphðtÞ
remains low; thus, the distortion of the electronic cloud and

the excitation of the phonon modes gives rise to a non-

equilibrium energy transfer between electrons and the lattice.

The electron-phonon coupling, Gep, drives both systems to a

common temperature in the time scale of a few picoseconds

[see Fig. 1(b)].

The minimum fluence Fmin
0 required to switch the mag-

netization, after a single laser pulse, depends significantly on

the alloy composition and a minimum appears at Gd concen-

trations around 30% [Fig. 2 (right)]. For a Gd concentration

of x ¼ 25%, the magnetization compensation point is located

at room temperature [see Fig. 2 (Left)], and thus satisfying

very closely the criteria of low net magnetization. The mini-

mum fluence to TIMS of the x ¼ 25% alloys is higher than

the required to switch alloys of x ¼ 30%. The x ¼ 30% alloy

has a compensation temperature far above room temperature,

TM ¼ 425K. This result is somehow contradictory in terms

of solely the low magnetization criteria. This apparent con-

tradiction can be resolved when one takes into account the

TIMS requirement of differential sublattice demagnetization

rates, related23 to the temperature dependence of MnetðTÞ.
Fig. 2 (left) shows that the temperature derivative of the

magnetization for x ¼ 30% is larger than that of x ¼ 25%,

suggesting that for x ¼ 30%, the non-equivalence between

sub-lattices is larger, compensating for the increased magnet-

ization value. For x ¼ 20%, although the net magnetization

is similar to x ¼ 30%, the Fmin
0 is a factor of 1.6 higher.

TABLE I. Parameters utilised in the two temperature model in Eqs. (1)

and (2).

TTM

Electronic heat capacity Ce ¼ ceTe; ce ¼ 2:25� 102 Jm3K�1

Phonon specific heat Cph ¼ 3:1� 106 Jm3

Electron-phonon coupling Gep variable

Laser duration sp¼ 50 fs

Laser energy input Pðt0; spÞ ¼ P0 expð�ðt=spÞ2Þ
Pulse fluence F0 ¼ P0sp

ffiffiffi

p
p

FIG. 1. (a) Schematic of the energy exchange between systems in the laser induced magnetization switching process. The laser energy Fmin
0 is absorbed by the

electron system. The excess of energy of the electron system is transferred to the phonon system at a rate defined by the electron-phonon coupling, Gep, and to

the spin system at a rate determined by the ratio between the damping constant, k, and the atomic magnetic moment, lFeðGdÞ. (b) (Top) Electron and phonon

temperature transients after the application of heat pulse, (bottom) and the element specific dynamics of the z� component of the magnetization showing the

magnetization switching.
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Again, the temperature dependence of MnetðTÞ in both cases

is very dissimilar, with x ¼ 20% showing a less pronounced

T dependence than x ¼ 30%. From our results, we conclude

that the non-equivalence criteria are relatively more impor-

tant for TIMS than the low magnetization one. So far, this

criterion has not been used to interpret experimental results

in the literature. We note that the temperature derivative of

the magnetization has been shown23 to qualitatively describe

the sublattice relaxation times, so here we choose to high-

light dMnetðTÞ=dT as a criterion for TIMS since it is a more

accessible measurement than the use of XMCD which was

used to establish the differential relaxation rates.25

To find ferrimagnets with enhanced differential sublat-

tice relaxation rates, for example, in synthetic ferrimagnets

or superlattices, the following recipe can be followed: the

intra-sublattice exchange of one species must be much

higher than the other, JAAij � JBBij whilst simultaneously pos-

sessing a significantly lower atomic magnetic moment,

lA < lB. This is indeed the case for rare earth (high l and

low J) coupled to transition metals (relatively low l and high

J), although upon alloying the values of JAAij and JBBij can

change and in the case of amorphous alloys become more

close to each other. This smearing out can be partially

avoided for a bilayer composed of pure elements at each

layer and therefore the differential sublattice demagnetiza-

tion will be enhanced with respect to the alloys. Experiments

on rare earth transition metal multilayers are still at an early

stage, the helicity dependent all-optical switching has been

observed in several rare-earth transition metal alloys.19 We

note that the inter-sublattice coupling should not be too

strong to avoid overly rigid motion of the sublattices.

We now focus our attention on the role of the electron

and phonon systems on the power required for reversing the

magnetization by a laser pulse. To do so, we consider the

magnetic system parameters fixed to those corresponding to

x ¼ 30% [see Fig. 2], which requires the lowest power to

switch the magnetization. We also fix the electron and pho-

non heat capacity. Whereas the values of the electron and

phonon specific heat are rather well known, it is not the case

for the electron-phonon coupling, Gep, in ferromagnetic met-

als, such as the transition metals Ni, Fe, Co, and alloys based

on them. The Gep is however better known in rare earth met-

als. The exact value of Gep for GdFeCo alloys is unknown;

however, in recent works,12,18,23 where the ultrafast magnet-

ization dynamics of GdFeCo was modelled, a value of

Gep ¼ 17:5� 1017 Wm�3K�1 has been consistently used.

Thus, no theoretical or computational result of the effect of

Gep has been presented so far in the literature. In our simula-

tions, the electron-phonon coupling is then varied from a

very low value of Gep ¼ 1� 1017 Wm�3K�1, consistent with

pure Gd,27 intermediate ones corresponding to Fe and Fe

alloys, to high values of Gep ¼ 35� 1017 Wm�3K�1 associ-

ated with Co and its alloys. This is consistent with ab-initio

calculations where it has been shown that the localized d

states feel stronger effect from the excitation of a phonon

mode,28 thus making the Gep for Co/Co alloys consistently

larger than those for Fe/Fe alloys. This trend can be observed

in Figure 3 (bottom) which shows the maximum and mini-

mum values for Gep collected from literature.

The minimum fluence Fmin
0 to switch the magnetization

increases almost linearly as a function of Gep [see Figure 3].

The electron-phonon coupling (Gep) controls the rate at

which the hot electrons cool by transferring energy to the

phonon bath. As Gep increases, this energy transfer becomes

faster and thus the electron cooling time is shortened; conse-

quently, the maximum temperature Tmax is also reduced.

FIG. 2. (Left) Equilibrium magnetiza-

tion gained from atomistic spin model

simulations of Gdx(FeCo)1�x alloys

with x¼ 20, 25 and 30%. The compen-

sation temperature, where MnetðTMÞ
¼ 0, lies around 425K for x ¼ 30%

and 300K for x ¼ 25%. (Right)

Minimal fluence required for magnetiza-

tion switching via TIMS as a function

of composition, damping parameter

k ¼ 0:02.

FIG. 3. (Top) Fmin
0 minimum as a function of Gep. (Bottom) Maximum (blue

squares) and minimum (red circles) values of Gep from literature: (a)

Reference 29, (b) Reference 27, (c) Reference 30, (d) Reference 31, (e)

Reference 28, and (f) Reference 32. In Ref. 28, instead of the macroscopic

electron-phonon coupling, Gep, the microscopic electron-phonon interaction,

ke�ph, is calculated. To transform from microscopic, ke�ph, to macroscopic,

Gep, we have used the relation Gep ¼ p�hkBke�phðhDðkB=�hÞÞ2gðEFÞ=2,30
where hD is the Debye temperature, and gðEFÞ the density of states at the

Fermi level.28
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Therefore, for high Gep, the thermal energy available to

the spin system is smaller; therefore, the minimum Fmin
0

increases in order to provide the same energy. This is in

agreement with the theoretical prediction by Barker et al.,12

where it is proven that a minimum amount of extra energy

from the laser is necessary to excite both the ferro- and

antiferro-magnetic like magnon branches, which ultimately

drives the magnetization reversal. This extra energy is more

efficiently pumped to the spin system if the electron tempera-

ture remains high for longer times. It remains a challenge to

find ferrimagnetic materials that demonstrate TIMS but have

low values of the electron-phonon coupling; however, still

little is know about the precise value of the electron-phonon

coupling in these complex ferrimagnetic alloys.

As well as investigating the effect of the composition

and electron-phonon coupling on the fluence required for

switching, we have also studied the minimum fluence Fmin
0

required for TIMS as a function of the microscopic coupling

to the thermal bath, k [Fig. 4]. In previous computational

works a value of k ¼ 0:02 was used, here we systematically

vary k around values consistent with experimental observa-

tions, k ¼ 0:01� 0:07. We observe that the reduction of the

required fluence with increasing damping [Fig. 4] is associ-

ated to the increase of the rate of exchange of energy by the

magnetic system and the heat-bath. Specifically, the presence

of higher damping values means an increase in the spin-flip

scattering rate33 and in terms of energy absorption by the

magnetic subsystems means that the excitation of non-

equilibrium states leading to TIMS12 can be accessed more

effectively with lower transient electron temperatures (laser

pulse energies).

To summarise, we have found clear and simple material

parameter criteria to excite TIMS for the important proper-

ties affecting the magnetic system (composition, tempera-

ture, and coupling), consistent with previous experimental

studies, to obtain an ultra-low energy TIMS. The magnetic

system, besides being ferrimagnetic, should present a low

net magnetization at operating temperature and the electron

and phonon systems should have a weak electron-phonon

interaction. Within these conditions, we can predict that Co

and Co-based alloys (or heterostructures) are not the best

candidates for an energy efficient TIMS due to the expected

high electron-phonon coupling. We note that pure cobalt has

a high Curie temperature, thus by fabricating multilayers of

Co and another low Curie temperature ferromagnet, the

proposed non-equivalence criteria (large M(T) temperature

derivative) could be easily fulfilled and even enhanced, lead-

ing to a low energy TIMS. As for Fe and Fe based materials,

our results suggest that these are well positioned for low

energy TIMS since they present an intermediate electron-

phonon coupling.

With this study, we have brought additional insights into

TIMS that could help with the optimisation of material and

laser parameters for low energy consuming and highly effi-

cient devices based on TIMS in nanomagnets. Importantly,

our study predicts that the electron-phonon coupling con-

stant, whose value is in general not accurately known,

becomes a vital factor in engineering materials and structures

for TIMS.
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