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Abstract 

The objective of this research is to develop an agent-based model of transactive memory systems 

(TMS - meta-knowledge of expertise and knowledge in a team) simulating software development 

teams using two different software development methodologies, Waterfall (a structured methodology 

with a series of large discrete phases) and the Agile, eXtreme programming (XP - more recent, 

dynamic, and tuned to change and flexibility). There does exist research relating to TMS; 

comparisons of software development methodologies; cognitive processes of software development 

teams; and also agent-based modelling of social and cognitive systems. This is interdisciplinary 

research spanning psychology and computer science aiming to consolidate these discrete streams of 

research.   

The model evaluated the parameters of small/large tasks, and working solo/in pairs to investigate the 

effect on TMS, knowledge and team output. Over three simulations, increasing in cognitive realism, 

the model introduced greater complexity and novelty to the agents’ work, and various initial 

conditions of team knowledge and team member familiarity.  

The results illustrated a number of differences in TMS, knowledge processes and output between XP 

and Waterfall teams. The main findings indicate that as the novelty and complexity of the task 

increases the use of some XP techniques can lower the reduction in output. Also the dependence on 

TMS accuracy for teams using some XP techniques in complex novel environments is high while the 

team knowledge distribution becomes much more homogenous. This contradicts the literature that 

asserts a positive relationship between TMS accuracy and knowledge heterogeneity. Results also 

suggest that XP techniques can compensate for the advantages relating to team members’ prior 

knowledge of each other allowing newly formed XP teams to perform better.  

The results contribute to understanding how knowledge and memory processes in software 

development teams affect team output, and how the adoption of XP practices can produce results that 

challenge the established TMS literature.    
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Chapter 1:  Introduction 

1.1 Overview 

This thesis brings together three discrete themes by developing an agent-based model to investigate 

the cognitive behaviour, specifically of transactive memory systems, of software development teams 

utilising two different software development methodologies. It is interdisciplinary research spanning 

both psychology and computer science, taking inspiration from research on team cognition, 

transactive memory systems, software development methodologies, software development teams, and 

agent-based modelling.  

Psychologists have studied individual cognition for many years but it is increasingly becoming 

accepted that an individual's cognition is a product of their social environment and interactions with 

others; therefore team cognition is of interest in order to optimise the benefit of effective teams to 

modern organisations. Team cognition is considered to be cognition at the team level over and above 

individuals' cognition (Klimoski and Mohammed, 1994, Theiner et al., 2010). Transactive memory, a 

particular facet of team cognition, is an individual's beliefs relating to "who knows what" in their 

team, and a transactive memory system is the transactive memory, communication, and coordination 

at team level (Wegner, 1995).  A transactive memory system allows members to gain access to a 

knowledge base larger and more complex than any one person alone could possess providing many 

benefits to a team. The transactive memory system helps team members compensate for one another, 

reduces cognitive load on individuals, decreases redundancy of effort, facilitates knowledge sharing 

and assists with the efficient allocation of resources in a team.  

A transactive memory system is particularly useful in environments where tasks can be complex and 

highly innovative. The work carried out by software engineering teams requires very specialist skills, 

is often creative, complex and unstructured, and requires teams with high levels of coordination and 

shared cognition. The study of cognitive processes and specifically transactive memory systems can 

contribute to understanding many aspects of software development team working. 

Since the development of computer systems became larger and more complex than one person could 

achieve in a short time, different methodologies have been utilised to formalise the process, ensure 

quality, and manage the production of a commercial product. The first such methodology was defined 
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by Winston Royce in 1970 (Royce, 1970) and became known as the Waterfall method. This is a 

formal method using a number of discrete phases, formal processes and copious documentation. In 

contrast a more recent, less formal, Agile (Beck et al., 2001) methodology known as eXtreme 

programming (Holcombe, 2008, Sommerville, 2004) has been developed which is growing in 

popularity. There are a number of studies comparing the two approaches however very little work has 

been done looking at the team cognition aspects of comparison.  

As social and cognitive processes cannot be observed directly researchers have had to develop new 

methods to allow them to study and understand team cognition. One of these is agent-based modelling 

which has been used many times as an effective alternative tool for investigating social cognition. It 

has been used for applications such as smoking behaviour in teenagers, cooperative behaviour, group 

conflict, crowd behaviour and bystander behaviour (Goldstone and Janssen, 2005, Smith and Conrey, 

2007) 

For systems or phenomena that are too complex or inaccessible often a simple theoretical model 

allows a scientist to understand how it works. Traditional models predict and describe a system but 

increasingly computational models have been used that can simulate behaviour in a system allowing it 

to be observed and measured over time. The use of agent-based modelling allows experiments to be 

designed and the results interpreted through examining the way the model behaves. 

All agent-based models work by synthetically constructing virtual versions of social phenomena from 

low-level descriptions of individual agents (Goldstone and Janssen, 2005). They are typically defined 

as having distributed resources, expertise and intelligence, no explicit global control, and operate by 

emphasising social agency. They are comprised of agents, which are small autonomous software 

programs that have internal memory and decision-making functions. The agents communicate with 

other agents and as they do so they exhibit behaviour that follows the rules encoded within their 

functions. As the individual agents operate, the system as a whole may exhibit emergent behaviour. 

So an agent-based model is a computational method that provides a simplified representation of social 

reality and allows researchers to create, analyse and experiment with models to answer questions 

posed about the social reality being modelled.  

As stated there is a body of research relating to transactive memory systems, there is also research 

comparing different software development methodologies; there is research into the cognitive 

processes of software development teams and also agent-based modelling of social systems. This 

research aims to consolidate these discrete streams of research and take an agent-based modelling 

approach to investigate the behaviour of knowledge and transactive memory systems for both 
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traditional Waterfall and eXtreme programming conditions in software development teams. The 

model compares knowledge, TMS and performance for both methodologies in situations relating to 

routine versus novel tasks and combinations of knowledge distribution.  

1.2 Approach and research objectives 

The primary approach and objectives of this research are: 

To develop agent-based models to simulate Transactive Memory Systems in software development 

teams using two different software development methodologies.  

To contribute to the understanding of how knowledge distribution and transactive memory systems 

affect the behaviour of software development teams under different conditions.  

To identify conditions that may improve the potential output of software development teams.  

A secondary research objective is to utilise the FLAME framework in an unconventional manner in 

order to test alternative uses of the framework. 

1.3 Structure of the thesis 

The thesis is structured as follows: 

Chapter 2. Software development methodologies: describes the two different software development 

methodologies, the traditional Waterfall method and the Agile methodology, XP.  

Chapter 3. Transactive memory systems: outlines the key concepts relating to the cognitive processes 

in teams, specifically, transactive memory systems; knowledge; and TMS in software development 

teams.   

Chapter 4. Agent-based modelling: describes agent-based modelling and discusses how it has been 

used for modelling social and cognitive systems.  

Chapter 5. Modelling environment: describes X-machines and the FLAME modelling environment. 

Chapter 6. The model: describes the model design and construction in detail. 

Chapter 7. Model validation: describes the initial validation of the model. 

Chapter 8. Aligning the model: describes an exercise to align the model with another model. 
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Chapter 9. Model Tabula Rasa: describes the initial experiment to investigate transactive memory 

systems and knowledge when comparing software approaches in a simple, routine environment. 

Chapter 10. Model Novelty: describes the next experiment introducing an environment of novelty and 

non-routine tasks to the previous model, more closely modelling innovative software development 

projects. 

Chapter 11. Model Differentiation: describes the experiment introducing further cognitive realism by 

varying conditions of initial knowledge and memory to the previous model.  

Chapter 12. Discussion: provides a summary of the results and findings of this research, and discusses 

limitations and further work.  

1.4 Contribution 

As this is interdisciplinary research spanning both psychology and computer science this thesis aims 

to contribute in a variety of ways. FLAME, the agent based modelling environment of choice for this 

research, has been used for many applications but not for modelling cognitive processes. Most 

commonly FLAME is used to model large numbers of agents spatially in a three dimensional 

environment. This research aims to use FLAME in a novel way by modelling small numbers of agents 

where the information of interest is in their memory and not in their position in space. Secondly, there 

is a body of research into transactive memory systems, however, there are fewer studies focussing on 

software development teams, therefore, this research also contributes to understanding the 

mechanisms of transactive memory systems and knowledge processes in software development teams. 

Finally, this research contributes to the XP development literature and to the understanding of factors 

that optimise the use of Agile techniques and to identify optimum conditions for best team output, for 

Agile software development methodologies.  

The model developed has illustrated a number of differences in TMS, knowledge processes and 

output between teams using different methodologies. The main findings indicate that the use of the 

XP technique of pair programming can help to insulate a software development team from the 

negative effects on output of additional complexity and novelty of tasks.  

Also the dependence on TMS accuracy for XP teams in more complex novel environments is high 

while the team knowledge distribution becomes much more homogenous. This contradicts the 

literature that asserts a positive relationship between TMS accuracy and knowledge heterogeneity. 

Results also suggest that XP techniques can compensate for the advantages relating to team members’ 
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prior knowledge of each other potentially allowing newly formed XP teams to perform better.  

The results contribute to our understanding of how knowledge and memory processes in software 

development teams affect team output, and how the adoption of some XP practices can produce 

results that challenge the established TMS literature.  Previous agent-based models of TMS have been 

theoretical and not set within a work context. This research describes an agent-based model used in a 

contextual manner within the software development industry, and simulating specific software 

development practices.    
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Chapter 2:  Software development methodologies 

2.1 Introduction 

This chapter describes the two software development methodologies used in the comparison by the 

agent-based model developed for this research. It proceeds to look at the advantages and 

disadvantages of each and outlines some of the literature comparing the two methodologies. This will 

give some basic understanding of each methodology and outline the issues relating to some of the 

factors that influence their comparison.  

Since the development of computer systems became larger and more complex than one person could 

achieve in a short time, different methodologies have been utilised to formalise the process, ensure 

quality, and manage the production of a commercial product. The first such methodology was defined 

by Winston Royce in 1970 (Royce, 1970) and became known as the Waterfall method. This 

traditional method was, and is, used extensively with numerous derivatives having been developed 

since its inception, such as the V method and the Spiral method, amongst others. 

Over time some members of the software development industry became frustrated with what they 

perceived to be the rigid methodologies that were being used and felt that there was a better way. In 

2001 a group of 17 software developers met in Utah, US and developed and subsequently published 

the Manifesto for Agile Software Development (Beck, 1999, Beck et al., 2001). Agility in software 

development is not a methodology; it is an approach. A number of different Agile methodologies have 

been developed that have embraced the Agile approach, such as eXtreme Programming (XP), 

Dynamic Systems Development Method, Feature-Driven Design, Crystal, Agile Modelling and 

SCRUM. 

XP (Holcombe, 2008, Sommerville, 2004), originally used in 1996, was developed and went on to 

become a widely used Agile methodology. It is based around five values and 12 activities which 

operate as a lightweight, low-risk, flexible, predictable, scientific and enjoyable way to develop 

software.  
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2.2 The Waterfall Method 

The Waterfall method (Balci et al., 2010, Sommerville, 2004) originated in the manufacturing and 

construction industry and the techniques were adopted for the burgeoning software development 

industry in the 1970s. This method is often used in large and complex software development projects 

with large project teams requiring high levels of organisation, coordination and cooperation.  

2.2.1 Description 

It follows a highly structured pattern, where development proceeds sequentially through a series of 

discrete phases with each phase necessarily complete and signed off before the next phase can 

commence. To aid this, each process in a Waterfall project is extensively documented in order that 

information on every aspect of the project is recorded and available. 

Ideally there are no feedback loops to revisit previous phases but in practice it does take place if new 

information is discovered or problems uncovered. Changes to the project after the phase in the 

Waterfall method life cycle has passed often prove to be very costly.  

2.2.1.1 Requirements analysis 

This phase is particularly important, as it is the cornerstone of the system that is about to be built. All 

possible requirements of the proposed system are captured in this phase by working with the customer 

to establish any requirements, and defining in clear terms the problem that the customer has that the 

system is expected to solve. It is essential that analysis be done to understand the customer's business 

and the wider context in which that customer operates. This phase must also define all functions that 

the system must perform and any performance requirements. Also, links with external systems, with 

which the system must be compatible, need to be specified. Finally, a Requirement Specification 

document is created, which is the input document for the next phase of the method. 

2.2.1.2 Design 

This step takes the requirements analysis from the previous phase and defines the hardware and 

software architecture, performance and security parameters, data storage, programming language and 

environment. This phase also establishes strategies to deal with issues such as exception handling, 

resource management and interface connectivity. This is also the stage at which user interface design 

is addressed, including issues relating to navigation and accessibility. The output of this stage is a 
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design specification document, which is used as input to the next phase of the method. 

2.2.1.3 Implementation 

This phase consists of the construction of the system as defined in the design specification developed 

in the previous phase. This part of the project is carried out by a team of programmers, interface 

designers and other specialists, using tools such as compilers, debuggers, interpreters and media 

editors. The output of this phase is the system, built according to a pre-defined coding standard and 

debugged, tested and integrated to satisfy the design requirements. Version control is often used for 

large projects to track changes and revert to previous versions in case of problems. 

2.2.1.4 Testing 

In this stage, both individual components and the integrated whole are methodically verified to ensure 

that they are error-free and fully meet the requirements outlined in the first phase. Three types of 

testing typically take place: unit testing of individual code modules; system testing of the integrated 

product; and acceptance testing, formally conducted by or on behalf of the customer. Defects are 

recorded and feedback provided to the implementation team to enable correction. This is also the 

stage at which product documentation, such as a user manual, is prepared, reviewed and published. 

2.2.1.5 Installation 

This phase occurs once the product has been tested and signed-off. It comprises preparing the system 

for installation at the customer site. The system is installed and is usually allocated a formal revision 

number to facilitate updates at a later date.  

2.2.1.6 Maintenance 

This is the final phase of the method and is typically a very long, if not never-ending one. In the event 

of change requests initiated by the customer, or defects uncovered during live use, modifications are 

made to the system. These changes may be minor with little effort required for a new interim release 

version, or in the case of major changes a new Waterfall project may be initiated culminating in a 

major system release version. Any new release will have an updated maintenance release number.  
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Figure 1: The Waterfall Method 

2.2.2 Advantages 

The structured approach of the Waterfall method is appealing to many in the software development 

industry. Each phase is explicitly defined and the project cannot move to the next one until it is 

completed, with progress identified through the use of milestones by both vendor and client. It is 

considered a simple and easy to understand approach that is disciplined and structured. For this reason 

it is often the first example of software development models used in Computer Science and Software 

Engineering courses and reference material.  

The emphasis on getting the requirements and design correct before writing a single line of code 

ensures minimal wastage of time and effort in future phases. It has been estimated that a requirements 

defect that is not discovered until construction or maintenance will cost between 50 and 200 times 

more to fix than if discovered during the requirements phase (McConnell, 1996). 

The emphasis on detailed documentation is seen as a strength to exponents of the Waterfall method. 

This takes the form of both detailed documentation in early phases of the model and the code itself in 

later phases. This insures the project against loss of knowledge should team members leave or be 

moved to other projects. New team members can simply read the documentation to learn about the 

system so far (Balci et al., 2010, Sommerville, 2004). 



Chapter 2. Software development methodologies   

11 

2.2.3 Disadvantages 

The greatest disadvantage of the Waterfall method is that until the final stage of the development 

cycle is complete, a working model of the software does not lie in the hands of the client. Typically, 

Waterfall projects take a long time to deliver a working system. There are a number of anecdotal 

stories of software development projects using the model, which after initial requirements capture, 

over very long software development cycles, potentially years, have delivered a system that is no 

longer required by the client.  

Moreover, customers often don't really know what they want at the start of the project and what they 

actually want emerges out of repeated two-way interactions over the course of the project. In this 

situation, the Waterfall method, with its emphasis on up-front requirements capture and design can be 

seen by customers as unable to cope with uncertainty and change within the real world.  

Further, given the changing nature of customer needs, estimating time and costs with any degree of 

accuracy is often extremely difficult. Therefore, the method is recommended for use in projects that 

are relatively stable, and where customer needs can be clearly identified at an early stage. 

Another criticism revolves around the method's implicit assumption that designs can be feasibly 

translated into real products, which sometimes causes problems when developers actually begin 

implementation. Often, designs that look feasible on paper turn out to be expensive or difficult in 

practice, requiring a re-design and hence destroying the clear distinctions between phases of the 

traditional Waterfall method (Balci et al., 2010, Sommerville, 2004). 

2.3 Agile philosophy 

2.3.1 The Agile Manifesto 

The Agile Manifesto (Beck et al., 2001) is an approach to software development, not a methodology.  

It consists of a high level set of principles that provide guidance for the development of Agile 

methodologies such as eXtreme programming.  

"In order to succeed in the new economy, to move aggressively into the era of e-business, 

e-commerce, and the web, companies have to rid themselves of their Dilbert 

manifestations of make-work and arcane policies. This freedom from the inanities of 

corporate life attracts proponents of Agile Methodologies, and scares the begeebers out 

of traditionalists. Quite frankly, the Agile approaches scare corporate bureaucrats, at 

least those that are happy pushing process for process, sake versus trying to do the best 
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for the "customer" and deliver something timely and tangible and "as promised", 

because they run out of places to hide." (Beck et al., 2001) 

2.3.1.1 The Agile principles 

The Agile principles are the fundamental building blocks of the Agile philosophy. They are (Beck et 

al., 2001): 

1. Our highest priority is to satisfy the customer through early and continuous delivery of 

valuable software. 

2. Welcome changing requirements, even late in development. Agile processes harness change 

for the customer's competitive advantage. 

3. Deliver working software frequently, from a couple of weeks to a couple of months, with a 

preference to the shorter timescale. 

4. Business people and developers must work together daily throughout the project. 

5. Build projects around motivated individuals. Give them the environment and support they 

need, and trust them to get the job done. 

6. The most efficient and effective method of conveying information to and within a 

development team is face-to-face conversation. 

7. Working software is the primary measure of progress. 

8. Agile processes promote sustainable development. The sponsors, developers, and users 

should be able to maintain a constant pace indefinitely. 

9. Continuous attention to technical excellence and good design enhances agility. 

10. Simplicity, the art of maximising the amount of work not done, is essential. 

11. The best architectures, requirements, and designs emerge from self-organising teams. 
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12. At regular intervals, the team reflects on how to become more effective, then tunes and 

adjusts its behaviour accordingly. 

"At the core, I believe Agile Methodologists are really about mushy stuff, about 

delivering good products to customers by operating in an environment that does more 

than talk about "people as our most important asset" but actually "acts" as if people 

were the most important, and lose the word "asset". So in the final analysis, the meteoric 

rise of interest in, and sometimes tremendous criticism of, Agile Methodologies is about 

the mushy stuff of values and culture." (Beck et al., 2001) 

2.4 EXtreme Programming (XP) 

2.4.1 Overview 

The previous Agile principles, as an approach, are used as the fundamental framework for eXtreme 

programming (Jeffries, 2011, Wells, 2009). One of the central pillars on which XP is built is 

recognising that people are central to the work, that they are all individuals, and have many different 

needs and behaviours. Another central ethos to XP is the idea of small steps that create a dynamic 

continuous flow of added value throughout the project. These fundamental principles underlie the 

disciplines and mechanisms of XP, namely the five values and the 12 basic practices (Beck, 1999, 

Holcombe, 2008).  

2.4.2 The five values 

The above fundamental principles lead on to the five values that form the basis of XP; they are good 

communication, simplicity, feedback, courage and respect (Beck, 1999, Holcombe, 2008, Jeffries, 

2011, Wells, 2009).  

2.4.2.1 Communication 

It is accepted that communication is important in any team venture and XP projects are no different. It 

is explicitly addressed as it is seen as being of paramount importance to implement all other aspects of 

XP. XP recognises a number of stakeholders in a project and effective communication between all 

stakeholders is enabled using a wide collection of procedures and activities. Stakeholders include: 

• Customers – managers, financial directors, marketing departments etc. 
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• Users – admin staff, the general public etc.  

• Developers – programmers, managers, financial directors etc. 

• Any other organisations that may have an interest such as media or government. 

XP makes it clear that communication is important, not only between these organisations but within 

them. Communication is encouraged not only within the team of developers but also with the 

customer and within the customer. This is to ensure that all views within the customer organisation 

are taken into account to produce the best system possible. Of course there are a number of XP 

practices that contribute to effective communication in all directions (Beck, 1999, Holcombe, 2008, 

Jeffries, 2011, Wells, 2009). 

2.4.2.2 Feedback 

This is closely allied to communication and again it is enabled by XP mechanisms designed to create 

effective feedback to all parties. Traditional Waterfall projects often go long periods before reporting 

back on the progress of working on the same large piece of work. XP has mechanisms for the client to 

see continuous results and to allow them to relate progress to their business needs. So regular 

meetings with the customer to show them small pieces of functionality contributes to the feedback for 

the developers and allows the project to maintain the right direction for the customer (Beck, 1999, 

Holcombe, 2008, Jeffries, 2011, Wells, 2009). 

2.4.2.3 Simplicity 

This refers to the need to maintain simplicity and to ensure that there is no unnecessary functionality 

built into the system being developed. It is easy to become seduced by greater and greater 

functionality and clever enhancements; however, the system must be only as complex as absolutely 

necessary for the business need. This will enhance user uptake and the longevity of the system as well 

as keeping development and maintenance costs low (Beck, 1999, Holcombe, 2008, Jeffries, 2011, 

Wells, 2009). 

2.4.2.4 Courage 

The courage to embrace change and to challenge the historical methodologies for software 

development is the basis of this value. Change is fundamental to the philosophy of XP and the 
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enthusiasm for change is one of a number of disciplined activities that make up the XP ethos. It also 

takes courage to eschew years of software development wisdom and to do things differently and 

confidently. This value also applies to the developers having the courage to throw away code and start 

again, contradicting more traditional practices of using and reusing code if possible. By rewriting 

code, developers can often abandon entrenched habits and write more innovative, efficient code 

(Beck, 1999, Holcombe, 2008, Jeffries, 2011, Wells, 2009). 

2.4.2.5 Respect 

As people lie at the centre of all XP projects this final but very important value relates to the 

relationships between all people connected with the team and, to some extent, the wider context such 

as families and other work colleagues. Problems in software development projects are often related to 

people issues, not technical issues, and by treating everyone with respect, hearing their point of view, 

and negotiating the way through problems, these issues can be minimised (Beck, 1999, Holcombe, 

2008, Jeffries, 2011, Wells, 2009). 

2.4.3 The twelve practices 

The above five values relate to the fundamental tenets of the XP methodology whereas the 12 basic 

practices of XP dictate the day-to-day activities during a project. They are described below (Beck, 

1999, Holcombe, 2008, Jeffries, 2011, Wells, 2009). 

2.4.3.1 Test first programming 

Testing is carried out continuously in an XP project, in fact the tests are written before the code and 

often the customer contributes to the testing regime. Of course the tests will fail but the discipline of 

testing is a central feature of XP and for practitioners it becomes second nature.  The test sets replace 

the specification and design thus presenting a rapid feedback mechanism that indicates how much 

code is correct. This practice relies on good tests being written and this is not always easy to do at the 

outset. Often tests are written informally from whatever information is available at the time but in a 

culture of test-first, as more information becomes available, the tests are consistently written before 

the code (Beck, 1999, Holcombe, 2008, Jeffries, 2011, Wells, 2009). 

2.4.3.2 Pair programming 

The tenet of this practice is that all code is written by two people working together, using one 
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machine. They take it in turns to use the keyboard while the other navigates and they continuously 

discuss the work. This ensures a process of continuous review, errors are less frequent and the code is 

open to constant quality control. In fact it is not only programming, but all activities that should be 

carried out in this way in an XP project, encouraging pooled expertise, knowledge and skills. Partners 

are regularly changed which enables information relating to the project to be disseminated quickly 

and efficiently around the team. Pair programming is also a very efficient method of increasing the 

knowledge and skills in a team as less experienced programmers can learn from the more experienced 

by them working together.  

Teams using pair programming are always talking, the communication value of XP, and with another 

value, respect, pair programming has been shown to be a very successful practice (Beck, 1999, 

Holcombe, 2008, Jeffries, 2011, Wells, 2009). 

2.4.3.3 On-site customer 

Ideally, but unusually, the customer is on site all of the time although more often representatives from 

the customer have a very close and frequent working relationship with the XP team. Their role will be 

to define functionality, set priorities and to guide the direction of the project. Numerous methods are 

utilised to garner the actual customer requirements, as sometimes they do not know themselves when 

they are asked. Methods include video, discussion, observation and studies of similar systems in other 

organisations. As with pair programming, this practice makes use of intense face-to-face 

communication (Beck, 1999, Holcombe, 2008, Jeffries, 2011, Wells, 2009). 

2.4.3.4 The planning game 

The customer looks at the requirements and creates a bank of stories relating to discrete parts of the 

required system. Each story corresponds to a small piece of working software and will typically be 

delivered within a week. The customer will review the stories, where they sit in relation to the big 

picture and will decide on the relative priority of each. For each story an estimate of the time, cost and 

resources required will be made.  

The test sets will be developed first and will address not only the functional but also the non-

functional requirements such as usability, efficiency or security (Beck, 1999, Holcombe, 2008, 

Jeffries, 2011, Wells, 2009). 
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2.4.3.5 System metaphor 

This is the organisation of a collection of classes and methods that will achieve the functionality 

described by the stories in development. To start with this may be quite vague as the problem is 

addressed with the customer but over time will become more detailed and can be documented more 

precisely. The system metaphor can be likened to a primitive architecture (Beck, 1999, Holcombe, 

2008, Jeffries, 2011, Wells, 2009). 

2.4.3.6 Small frequent releases 

The philosophy states that the developers should release early and release often. As soon as there is a 

functional implementation of a story that provides some business benefit then it will be installed in the 

customer business. This allows the users to start using it and provide feedback. This can take place in 

small time periods, as short as days or a week. As the stories are developed additional functionality is 

installed (Beck, 1999, Holcombe, 2008, Jeffries, 2011, Wells, 2009). 

2.4.3.7 Always use the simplest solution that adds business value 

As mentioned in the values, always use the simplest solution that adds value to the customer's 

business. The development team should not be tempted to add enhancements because they are clever, 

or pleasing, they should ask themselves, does the customer really need this feature? (Beck, 1999, 

Holcombe, 2008, Jeffries, 2011, Wells, 2009). 

2.4.3.8 Continuous integration 

The units of code are integrated into the system at least a few times every day, if not every few 

minutes. To be integrated, the units of code must have passed all the unit tests. Functional tests must 

pass after integration. This is an iterative method of slowly building a working system in very small 

steps and integrating everything continuously. Adding another trusted XP story (see 2.4.3.4 The 

Planning Game) to the fully tested system demands that all functional and system tests are carried out 

again. This is a disciplined process often carried out by the same pair every time.  Allowing anyone to 

do it at any time results in chaos and numerous different versions of the system (Beck, 1999, 

Holcombe, 2008, Jeffries, 2011, Wells, 2009). 
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2.4.3.9 Coding standards 

This practice defines the rules for shared code ownership and for communication between team 

members consisting of class and method naming conventions. At the start of the project standards for 

test sets, story cards, the metaphor and coding styles are defined and everyone is expected to abide by 

the standards. This has obvious benefits in terms of communication, understanding and quality (Beck, 

1999, Holcombe, 2008, Jeffries, 2011, Wells, 2009). 

2.4.3.10 Collective ownership of code 

Everyone in the team owns all the code and can change any part of it. This will rankle with many 

experienced developers who feel possessive of their own code. In an XP environment with high levels 

of communication and cooperation the concept of collective ownership of code works well. It has the 

additional benefit of shared knowledge of the system, which creates resiliency within the team in the 

event of staff turnover (Beck, 1999, Holcombe, 2008, Jeffries, 2011, Wells, 2009). 

2.4.3.11 Refactoring 

Refactoring is the restructuring of code without changing its functionality. The idea is to make it 

simpler and more understandable as the code is acting as part of the documentation for the system. 

Refactoring could include: 

• Moving methods used in several classes to a separate class 

• Extracting superclasses 

• Renaming classes, methods and functions 

• Simplifying conditional expressions 

• Reorganising data. 

Refactoring should also take into account the tests and these should also be changed to reflect the 

refactoring of code (Beck, 1999, Holcombe, 2008, Jeffries, 2011, Wells, 2009). 

2.4.3.12 Forty hour week 

As people are the most important part of any XP project it is important to maintain happy 
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programmers and this includes not expecting too much of them. Stressed and tired programmers 

produce poor code, make mistakes and are unhappy. XP is designed to minimise stress by producing 

results continuously without having to worry if the system will work at the eleventh hour. Proponents 

of XP claim that it allows a steady pace, increased quality, and improved job satisfaction. Thus it is no 

longer necessary to work around the clock (Beck, 1999, Cockburn and Highsmith, 2001, Holcombe, 

2008, Jeffries, 2011, Wells, 2009).  

 

Figure 2: Software development in XP (Wells, 2009) 

2.4.4 Advantages 

XP is designed as a holistic process and to try to implement individual features such as on site 

customer or pair programming in isolation often results in failure. One of the strengths of XP is that 

the values and practices work together to produce an effective development environment. 

XP helps achieve a high degree of customer satisfaction because customers notice that XP creates 

working software faster, and that software tends to have very few defects. XP meets the urgent need 

for a more responsive approach to software development for real people with real requirements and it 

allows the customer to change their mind regularly, with minimal cost, with no complaining from the 

developers (Begel et al., 2008, Macias et al., 2003, Syed-Abdullah et al., 2005, Syed-Abdullah et al., 

2006, Williams et al., 2000). Given that XP works on an iterative approach, it is much easier to be 

able to add features or modify these features based on reviews. XP delivers working software at lower 

cost, and the software is more likely to do what the end users actually need.  

For developers, XP allows the developers to focus on coding and avoid needless paperwork and 

meetings. It provides a more social atmosphere, more opportunities to learn new skills, and a chance 
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to go home at a sensible time each night. It gives very frequent feelings of achievement, and generally 

allows the developer to be proud of the code produced. XP projects reduce risk by reducing 

dependence on individual superstar programmers, and at the same time improving employee 

satisfaction and retention. XP encourages a high degree of teamwork, getting the entire team 

including the customer to work together in a room. Since software development is a people-intensive 

process, the principal measures concern people and for this reason an XP team is less stressed 

(Cockburn and Highsmith, 2001). 

XP projects reduce risk by providing the ability to abandon development at almost any time, and still 

have valuable functioning code, and probably even a valuable working (albeit incomplete) 

application. XP emphasises developing the most important features first, rapidly providing the 

customer with the functionality required and minimising the risk of total project failure. With a focus 

on testing, each line of code is tested thoroughly, and all code is reviewed thus ensuring a high level 

of quality. 

Finally, the whole development process is visible and accountable. It is very easy to measure 

performance against the planned schedule (Beck, 1999, Holcombe, 2008, Jeffries, 2011, Wells, 2009). 

2.4.5 Disadvantages 

With XP being relatively new and fairly contentious there are numerous perceived advantages and 

disadvantages due to the lengthy debate around the subject. XP proponents often defend criticism of 

XP by asserting that the very disadvantages that are cited by traditionalists are actually advantages of 

the method; it is just that the method is misunderstood.  

It takes a lot of cultural change to adopt eXtreme programming and often the migration is difficult. It 

can be difficult to get developers to accept the practices, and it takes discipline to continue doing them 

all. Also, customers, not used to such a high level of involvement in development can have problems 

adapting to the practice of being so involved and sometimes find the practice of frequent meetings can 

incur high expense (Beck, 1999, Begel et al., 2008, Holcombe, 2008, Jeffries, 2011, Wells, 2009).  

XP teams can be reluctant to agree to fixed-price, fixed-scope terms, because they know that change 

will happen. They believe that it is better to deliver what the customer needs at the end of the project 

than what he thought he wanted before the project began. It is impossible to develop realistic 

estimates of work effort needed to provide a quote, because at the beginning of the project no one 

knows the entire scope and requirements. This is used as a criticism that XP projects are a means to 

take larger amounts of money from customers through the lack of defining a deliverable. This can 
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lead to more difficult contractual negotiations (Watts, 2001). 

Agile is feature-driven which means the emphasis is on code rather than design, non-functional 

quality attributes are hard to be written as user stories. This has led to the criticism that XP 

incorporates insufficient software design. Although the lack of XP design practices might not be 

serious for small programs, it can be disastrous when programs are larger than a few thousand lines of 

code or when the work involves more than a few people. 

One criticism is scalability. Some critics claim that XP projects are not suited to large projects. 

Scalability does not just happen by accident.  It must be designed in, whether in a physical machine, 

executable software, or a work process for coordinating the activities of many people (Bollinger, 

2001). XP's focus on doing only what is immediately necessary can cause architectural design 

problems, especially in complex or larger systems.  Failure to take into account long-term goals early 

on in the lifecycle of a system can lead to project failure.   

2.5 Comparison of Waterfall and XP 

When comparing the efficacy of XP with that of the Waterfall method there are many factors that may 

influence the results including: number of lines of code produced; ratio of comments to lines of code; 

retrospective updating of original specification; number of test cases; hours spent writing code; 

number of bugs in the code; time taken to produce a working application; and wellbeing of 

programmers. One view posits that there is little difference in results for both methodologies, and 

some studies have endorsed this view by suggesting that the amount of code produced and features 

completed become interchangeable in terms of development cost (Canfora et al., 2005, Ji and Sedano, 

2011). 

Other research has found benefits to XP by asserting that professional collaborative programmers, 

who jointly developed algorithms and code, outperformed individual programmers (Macias, 2004, 

Nosek, 1998, Williams et al., 2000). However this study raises pertinent questions; can two average or 

less experienced workers collaborate to perform tasks that may be too challenging for each one alone? 

Can a company bring a product to market substantially earlier by using collaborative programming? 

Can collaborative programming offer a competitive edge?  

Williams et al. (2000) answered one of these questions when they found that pair programming does 

improve software quality and reduce time to market. They also found that both student and 

professional programmers consistently find pair programming more enjoyable than working alone 

(Williams et al., 2000). However, the situation is undoubtedly further complicated by factors such as 
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the expertise of the programmers, the length of time they have been working together, the complexity 

and the size of the project that is being addressed.  

A controlled experiment on pair programming (Arisholm et al., 2007), for complex and simple 

problems, did not support the hypotheses that pair programming in general reduces the time required 

to solve the tasks correctly, or increases the proportion of correct solutions. For the more complex 

system, the pair programmers had an increase in correct solutions but no significant difference in the 

time taken to solve the tasks correctly. For the simpler system, there was a decrease in time taken but 

no significant differences in correctness. However, the moderating effect of system complexity 

depends on the programmer expertise. The benefits of pair programming in terms of correctness on 

the complex system apply mainly to juniors, whereas the reductions in time to perform the tasks 

correctly on the simple system apply mainly to intermediates and seniors.  

A meta-analysis (Hannay et al., 2009) was carried out on the effects of pair versus solo programming. 

Results showed that pair programming is not uniformly beneficial or effective. The study found a high 

level of inter-study variance and recommended that the moderating factors of the effect of pair 

programming should be investigated further. In addition, the study reported central factors relating to 

pair programming and in support of Arisholm et al. (2007) they suggested that pair programming is 

beneficial for achieving correctness on highly complex projects and has time benefits on simpler 

projects.  Of course there is a trade-off, and they found that the higher quality required for complex 

tasks takes considerably higher effort while reduced time for simpler tasks results in lower quality.  

Another review of research with respect to the productivity of agile and traditional teams (Dyba and 

Dingsoyr, 2008) reported that three of the four comparative studies found that using XP increases 

productivity in terms of lines of code per hour. The review results also suggest that agile methods can 

improve job satisfaction, productivity, and customer satisfaction. The strongest, and probably most 

relevant evidence is from the studies of mature agile teams, which suggest that focusing on human 

and social factors is necessary to succeed. 

In summary, it is clear that the picture for XP is not clear with a number of moderating factors 

(Hannay et al., 2009) that affect the level of benefit of applying the XP methodology. The evidence 

suggests that agile methods aren't necessarily the best choice for large projects but more research is 

needed to better understand XP, its place in teams and the software development industry for greatest 

benefit. Dyba and Dingsoyr recommend that managers carefully study their projects' characteristics 

and make use of whichever method or combination of methods they believe is most appropriate for 

effective completion (Dyba and Dingsoyr, 2008).  
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Chapter 3:  Transactive Memory Systems 

3.1 Introduction 

One of the foci of this thesis is to understand transactive memory systems in software development 

teams. This chapter gives an overview of the current research relating to teams, team cognition, 

transactive memory systems, and finally research focussing on this in software development teams. It 

provides the necessary background and identifies the key issues that will be investigated by the agent-

based model. 

3.2 Teamwork 

In the modern world organisational teamwork is carried out in every type of business and teams are 

now expected to perform across functional, disciplinary, technological and geographical boundaries, 

which introduce new challenges. However, working as a team does not guarantee success and as 

organisations have grown the importance of effective and efficient teams has become clear. As the 

functioning of teams is a complex and dynamic subject relating to both social and cognitive processes, 

understanding how and why they function or not is an ongoing area of study. 

Cannon-Bowers and Salas (2001) defined teamwork as achieved when members interact 

interdependently and work together toward shared and valued goals. Further, teamwork involves the 

adaptation of coordination strategies through closed-loop communication and a sense of collective 

orientation so that they can reach those goals (Salas and Fiore, 2004). Teamwork can be described as 

the process of carrying out a joint task and it relates to the quality of interaction and collaboration in a 

team, which is often task independent. Teams and teamwork have been extensively studied from 

many different perspectives (Cooke et al., 2000, Cooke et al., 2003, Hoegl and Gemuenden, 2001, 

Hoegl and Parboteeah, 2007, Kang et al., 2006, Salas and Fiore, 2004, Salas et al., 2008) with team 

cognition often being a focal point (Salas and Fiore, 2004). 

3.3 Team cognition 

The additional complexity of working in a team requires an additional layer of cognitive demands for 
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team members to manage team processes such as planning, decision-making and problem solving 

(Cooke et al., 2003). It is increasingly becoming accepted that an individual's cognition is a product of 

their social environment and interactions with others (Salas et al., 2008). An obvious extension to this 

is the concept of shared, or team, cognition, which is considered to be cognition at the team level over 

and above individuals' cognition (Klimoski and Mohammed, 1994, Theiner et al., 2010).  

Team cognition has been described as rule based performance in fairly stable routine environments, 

and the term macro cognition has recently been used (Fiore et al., 2010) to distinguish a more 

complex collaborative cognition. Macro cognition emphasises expertise out of context, where novel 

tasks are addressed outside routine environments and new knowledge and performance processes are 

generated. It is distinct from team cognition in that it defines the generation or adaptation of rules to 

novel situations and externalises internal knowledge through individual and team knowledge-building 

processes. This may be particularly relevant for software development teams that often operate in 

novel and innovative environments.  

Understanding team cognition can be beneficial in three different ways. Firstly, it can explain how 

members of high performing teams interact with one another and therefore what differentiates high 

and low performing teams. Secondly, it can allow prediction of a team's ability to fulfil a given task, 

and thirdly it can allow the diagnosis of team problems and insight into how to solve them, leading to 

interventions to improve performance (Cannon-Bowers and Salas, 2001). 

A number of studies have linked team cognition with team performance (Ancona and Caldwell, 1992, 

Cooke et al., 2003, DeChurch and Mesmer-Magnus, 2010, Hoegl and Gemuenden, 2001, Rentsch and 

Klimoski, 2001).  Firstly team cognition is expected to directly influence task performance by 

affecting factors such as output, time and quality. Secondly, team cognition is expected to improve 

team processes resulting in enhanced communication and coordination leading to better team 

performance. Finally, more generic aspects of team functioning can be improved by team cognition 

such as morale, motivation and job satisfaction, which it is argued, are loosely related to team 

performance (Cannon-Bowers and Salas, 2001). 

Team cognition has been described in the literature in many different ways including shared mental 

models, team member schema agreement, team situation awareness, transactive memory systems, 

mutual knowledge and collective mind (Cooke et al., 2003, Klimoski and Mohammed, 1994, 

Levesque et al., 2001, Lewis, 2003, Lewis, 2004, Rentsch and Klimoski, 2001, Salas and Fiore, 2004) 

resulting in a broad definition of team cognition. Each construct has unique aspects but they all 

incorporate the effect of common knowledge between members with transactive memory systems 

focusing on the location of knowledge and expertise in a team.  
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3.4 Transactive memory systems 

"Knowledge is of two kinds. We know a subject ourselves, or we know where we can find 

information on it." 

Samuel Johnson (English author, critic, & lexicographer, 1709 - 1784) (Boswell, 1986) 

Transactive memory is an individual's beliefs relating to "who knows what" in their team and a 

transactive memory system (TMS) is the transactive memory, communication, and coordination at 

team level (Wegner, 1995). Over the course of a project, team members increase their beliefs about 

each other, allowing more efficient coordination and communication. A TMS allows members to gain 

access to a knowledge base larger and more complex than any one person alone could possess. 

Definition: Let there be N members of a team, and suppose that there are M areas of expertise that are 

relevant.  

 eij
k(t) represents the level of expertise of team member j at time time t in area k according to 

team member i, eij
k(t) ≥ 0. 

The TMS of the team at time t, is: 

T(t) = (T1(t), …..TN(t)) where Ti(t) = ((ei1
1(t),…ei1

M(t)), …., (eiN
1(t)),,…, eiN

M(t))) 

Transactive memory systems benefit teams in a number of ways (Akgun et al., 2005): 

• Help team members compensate for one another 

• Reduce each team member's cognitive load 

• Provide access to an expanded pool of knowledge and expertise 

• Decrease redundancy of effort 

• Facilitate sharing and dissemination of tacit knowledge relating to different knowledge 

domains 

• Allocate resources according to team member expertise. 
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The development of a TMS will be influenced by the initial conditions of the team and the task 

processes that the team undertakes. To respond to a task requirement a team must assess what 

knowledge is required, where that knowledge resides in the team and then bring that knowledge to 

bear. The mere presence of knowledge in a team is not sufficient for the efficient functioning of the 

team, the team members must know where knowledge is located and have the ability to utilise that 

knowledge when it is required (Faraj and Sproull, 2000, Yuan et al., 2007). 

Task interdependence and cooperative goal interdependence both have a positive relationship with 

TMS, which has been found to mediate the relationship between these factors and team performance 

(Zhang et al., 2007). Cognitive interdependence within a team is described as when an individual's 

contribution to the team is dependent on their own and at least one other's input (Hollingshead, 2001) 

and cooperative goal interdependence refers to team members' perceptions of how their goals are 

related to the goals of other team members. Cooperative goal interdependence occurs when team 

members believe that personal attainment of goals helps others achieve their goals and that this 

influences expectations, communication and performance within the team (Zhang et al., 2007). 

For cognitive interdependence to be essential the task requirements of the team must be sufficiently 

complex, and each team member needs to know about teammates' knowledge, have the ability to 

anticipate how the teammates will behave, and have trust in the influence that the teammates will 

exert on the outcome of the shared task (Akgun et al., 2005). The knowledge that each member of a 

team holds is likely to be useful to that team only if the other team members are aware of that 

knowledge. As group members start working together their knowledge of each other develops and this 

can increase the potential for cognitive interdependence resulting in improved team performance 

(Brandon and Hollingshead, 2004).  

A further essential element for cognitive interdependence is knowledge relating to team processes 

allowing the effective coordination of task fulfilment. Early research on TMS argues that team 

coordination is an important element of TMS and essential for team performance. The transactive 

memory system not only enhances a team's ability to respond to the task, but to respond to the 

processes required to coordinate the team in order to fulfil the task. It has been found that TMS and 

subsequently team performance are improved not only by training in task skills (Liang et al., 1995, 

Moreland, 1999) but also training in team skills (Prichard and Ashleigh, 2007). 

As the knowledge and expertise in a team develops there can be a tendency for experts to emerge as 

tasks are directed at the team member perceived to have expertise in a particular area. This is known 

as differentiation (Gupta and Hollingshead, 2010, Hollingshead, 2001). For differentiation structures 

to develop there must be cognitive interdependence and team members must have convergent 
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expectations that others will learn in areas of relative expertise. As team members' beliefs relating to 

each other's knowledge become more accurate and complete over time this produces consensus 

between teammates, resulting in convergent expectations. This means that, as well as developing 

differentiated knowledge structures, the team will also be developing a shared or integrated set of 

knowledge relating to “who knows what” (Brandon and Hollingshead, 2004). However, according to 

Faraj and Sproull (2000), the mere presence of differentiation is insufficient, accurately knowing the 

location of knowledge is essential. Accurate recognition of a differentiated knowledge base facilitates 

sharing of tasks, reduction of workload and more effective accomplishment of team goals.  

There is some dispute over the benefits of differentiation. Some research shows that diverse teams 

take longer and have more difficulty in solving problems and sharing information (Rico et al., 2008). 

Rico et al argue that if knowledge is similar then team members develop similar opinions and 

attitudes to the task and task processes but if knowledge is very diverse and discrete then the unique 

perspectives may introduce an unwillingness to accept new ideas or to exchange task critical 

information. An alternative, more prevalent view suggests that performance advantages deriving from 

TMS are greater when group members have higher differentiation (Austin, 2003, Larson, 2007, 

Lewis, 2004, Littlepage et al., 2008). Austin posits that differentiation means that it will be easier to 

recognise experts and as such the team members are more likely to agree on the distribution of 

expertise in the team. In support of this Lewis found that teams with initially diverse knowledge were 

better able to develop TMS than teams with overlapping knowledge and that a stronger TMS was 

positively related to team performance.   

One study found that, as a team worked together, differentiation increased such that their roles 

became increasingly specialised resulting in lower levels of interaction within the team (Levesque et 

al., 2001). Levesque et al. suggest that for temporary teams this divergence may be highly functional 

and lower interaction reduces losses from coordination and team processes. This, however, may not 

be the case for teams with longevity where low levels of differentiation, at least early in the project, 

may encourage interaction and improve team processes. It has been suggested that teams need to build 

a TMS early in the project lifecycle, during the planning phase, and develop a mature TMS during the 

implementation phase, in order to reap the rewards of an effective TMS later in the project (Lewis, 

2004). An expectation of continuing to work together has been shown to increase coordination and 

communication in a team, and an expectation of increased task difficulty affected how the team 

coordinate their efforts (Baumann and Bonner, 2011) suggesting that groups do not choose 

coordination strategies blindly; it is possible that they may consciously, or unconsciously choose good 

coordination strategies based on their expectations of the team. 
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The situation regarding differentiation may not be as simple as described above. Hollingshead (2001) 

found that the optimum level of differentiation for highest performance is dependent on the task 

requirements, the anticipated project outcome, work relationships, the motivation of the team 

members to learn different or similar knowledge and various other antecedent factors.  

Some previous studies have started to look at the antecedent factors to the development of transactive 

memory systems and hence team performance. Akgun et al. (2005) looked at task complexity, team 

stability, team member familiarity and interpersonal trust. Others include team structure and resources 

(Ren et al., 2006), task interdependence, cooperative goal interdependence and support for innovation 

(Zhang et al., 2007), experience (Reagans et al., 2005) and team process skills training (Prichard and 

Ashleigh, 2007). It has been found that team size has a negative relationship with TMS; smaller 

groups benefit more from TMS in terms of performance than do larger groups (Palazzolo et al., 2006). 

This list is not exhaustive and it demonstrates the complexity of the interdependencies that impact on 

transactive memory systems and ultimately team performance. 

Numerous studies have shown that a good TMS is positively related to team performance (Akgun et 

al., 2005, Alge et al., 2003, Austin, 2003, Jackson and Moreland, 2009, Lewis, 2004, Littlepage et al., 

2008, Maruping et al., 2009, Zhang et al., 2007) as TMS allows groups to utilize member expertise 

more effectively to achieve higher levels of performance. More specifically the aspects of accuracy 

and completeness of TMS appear to have an important positive influence on team performance 

(Austin, 2003, Lewis, 2004). 

In order to evaluate TMS research one has to be aware of the variation in its definition and 

measurement across different studies, and compare appropriately. Three methods have been utilised to 

determine its constitution: those of recall, observed behaviour and self-report about team members' 

expertise. Recall tests infer levels of TMS by measuring quantity, content and structure when team 

members are asked to remember information individually or as a team (Hollingshead, 1998). Other 

researchers claim that TMS can be measured from three factors observed from behaviour namely, 

specialisation (the differentiation of members' knowledge), credibility (the levels of belief in the 

reliability of members' knowledge) and the coordination of the team processes (Liang et al., 1995). 

More recently self-report measures have been developed that ask questions relating to perceived 

knowledge and processes within a team however these have to rely on accuracy and veracity.  

Using self-report measures Lewis (2003) and Austin (2003) measured TMS albeit each defining 

different elements. Focussing on the structure of the team knowledge, Lewis defined transactive 

memory systems within the three dimensions of specialised expertise, credibility and coordination; 

Austin, looked more at content and defined TMS as knowledge stock, knowledge specialization, 
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transactive memory consensus and transactive memory accuracy. Both Lewis (2003) and Austin 

(2003) found that transactive memory systems have a positive relationship with group performance 

and Austin found that transactive memory accuracy is the most significant predictor of team 

performance.  

Finally, it has been suggested that studies have portrayed an overly optimistic view of the benefits of 

TMS as much of the focus has been on performance. Less research has been carried out on the 

mechanisms that prevent TMS from forming and functioning in teams (Peltokorpi, 2008). 

3.5 Focus on software engineering teams 

The cognitive processes that take place in teams are well studied (Salas and Fiore, 2004) but less work 

has been carried out relating to the internal cognitive processes that are utilised by software 

development teams when solving complex problems.  

The work carried out by software engineering teams requires very specialist skills and is often 

creative, complex and unstructured, requiring teams with high levels of coordination and shared 

cognition. In fact, expertise coordination has been found to be more important to team performance 

than input characteristics, presence of expertise and administrative coordination in software 

development teams (Faraj and Sproull, 2000). This is an important finding implying that internal 

cognitive processes have a greater impact on team performance than demographic factors. This is 

supported in a study by Kang et al. kang 2006 who found that cognitive factors in software 

development teams had more impact on team effectiveness than the demographic factors of age, 

tenure and gender. 

The importance of teams in organisations that rely on creativity, knowledge and innovation has been 

documented (Akgun et al., 2005, Ancona and Caldwell, 1992, Faraj and Sproull, 2000, Kang et al., 

2006, Lewis, 2004). Team collaborative processes can influence the relationship of team processes, 

performance and team member satisfaction with creative skills. Creative processes during 

development need less collaboration but during discussion and elaboration they need more 

collaboration. This would indicate that team processes should include less collaborative sections to 

optimise the creative process (Hoegl and Gemuenden, 2001, Hoegl and Parboteeah, 2007).  

Software development projects can vary from highly innovative when designing and developing new 

products to relatively routine tasks such as maintenance and upgrades. There is some support to 

suggest that the innovativeness of the task determines whether collaboration is beneficial to 

performance (Hoegl et al., 2003), with high levels of innovativeness demanding high quality 
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collaboration for high performance. In fact the quality of early collaboration may be an early indicator 

of the success of the project. Hoegl and colleagues go so far as to suggest that there may even be a 

negative relationship between teamwork quality and performance for routine projects with low levels 

of innovativeness.   

Levesque (2001) looked at newly formed student software development teams and found that over 

time interaction and communication was reduced and each team member's role became increasingly 

specialised. They propose that the team adopted a black box approach where each team member had 

their own specialised deliverable for the project. This was identified as characteristic of temporary, 

task focused work teams who have not had the opportunity to develop strongly shared cognition, 

whereas teams with longer tenure develop increased levels of communication and interaction. This 

may be particularly applicable in the software industry where teams are often reformed for each 

project. 

There is a clear link between team cognition and team performance with processes including 

communication, coordination and cohesion being positively linked to team performance (Espinosa et 

al., 2007b, Hoegl and Gemuenden, 2001). In fact, more specifically it has been found that awareness 

of expertise location, shared task understanding and frequency of meetings all have positive and 

significant effects on team performance in software development teams (He et al., 2007), however, 

the benefits of team familiarity can be reduced with increasing task complexity (Espinosa et al., 

2007a). Moreover, the effects of familiarity fade over time with familiar teams and unfamiliar teams 

achieving the same levels of cognition (He et al., 2007). This implies that any TMS developed prior to 

forming the team due to the members being known to each other is superseded and that the TMS 

catches up in the unfamiliar teams. This is an important finding for the software development industry 

where teams are very often formed in a transient way for each particular project. Due to this common 

practice in the industry there is a need for more research into how the transient nature of software 

development teams affects the development of TMS and subsequently performance, particularly in 

highly innovative environments. 

There is very little research into the cognitive processes that take place in teams utilising different 

software development methodologies. Maruping et al. (2009) investigated how Agile development 

practices facilitate the coordination of expertise in software development teams, specifically focusing 

on two elements of XP. They found that knowing the location of expertise weakens with increasing 

levels of collective ownership of code and so argued that collective ownership of code substituted for 

expertise coordination (TMS). They also found that coding standards enhanced the effectiveness of 

expertise coordination (TMS). They question the work by Faraj and Sproull (2000) who reasoned the 
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coordination is especially important when teams perform complex and unpredictable tasks. Maruping 

et al. suggest that Faraj and Sproull did not consider internal team processes of roles and 

responsibilities and also how expertise coordination (TMS) is affected by standardisation of work. 

Their paper contributes to the TMS literature by arguing that critical contextual factors, such as XP 

practices, affect the efficacy of TMS in software development teams. This study provides some initial 

insight into the effect of using different software development techniques on TMS and knowledge 

structures within a team but more research is required. 

3.6 Conclusion 

In summary, there is a complex and not fully understood relationship between TMS, differentiation 

and team performance. The presence of differentiation is insufficient as it can only be useful if there is 

a well-developed TMS, but there is dispute regarding the optimum levels of differentiation for best 

performance.  

As much of TMS research has been carried out in routine, simple team and task environments it is 

particularly important to more fully understand the role of TMS and differentiation in the novel, more 

innovative environments of software development teams. Additionally the nature of the development 

of TMS, differentiation and performance of software development teams over time is of interest as a 

particular feature of the software industry is that teams are often transient and newly formed for 

particular projects. By understanding the mechanisms of cognition within these teams over time some 

insight can be gained to allow greater efficiency of team formation and operation. Additionally, the 

study of TMS and differentiation is scarce in the specific area of eXtreme programming. XP 

techniques may introduce factors that change the behaviour of TMS and differentiation that will, in 

turn, impact on performance; the agent-based models used in this research aim to investigate this. 
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Chapter 4:  Agent-based modelling 

4.1 Introduction 

Agent-based modelling is increasingly being used as an analytical tool in the social and cognitive 

sciences, and it is the methodology used for this research. This chapter gives an overview of the 

method, describes the property of emergence and provides some insight into the iterative process of 

agent-based modelling. Also, this chapter provides a basic review of some of the modelling 

environments that are being used in the literature, with a brief introduction to FLAME, the modelling 

environment of choice for this research.  Finally, this chapter considers previous research using agent-

based modelling to investigate social systems, cognition and transactive memory systems, and 

discusses the issue of cognitive realism in agent-based modelling.  

4.2 Background 

For a system or phenomenon that is too complex or inaccessible to observe in detail directly, often a 

simple model can allow a scientist to understand how it works. Examples include European 

economics (Deissenberg et al., 2008), social behaviour (Goldstone and Janssen, 2005), cognition 

(Palazzolo et al., 2006), and biological systems (Coakley et al., 2006a). Mathematical models have 

been used extensively to predict and describe a system and increasingly computational models are 

being used that can simulate behaviour in a system allowing it to be observed and measured over 

time. The use of agent-based modelling (ABM) allows experiments to be designed and the results 

interpreted through examining the way the model behaves. 

All ABMs work by synthetically constructing virtual versions of social phenomena from low-level 

descriptions of the individual agents (Goldstone and Janssen, 2005). 

Multi agent systems typically are defined as (Fan and Yen, 2004): 

• Having no explicit global control. 

• Having distributed resources, expertise, intelligence, and processing capabilities. 
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• Working in an open environment full of uncertainties. 

• Emphasising social agency and social commitments. 

An agent is a small autonomous software program that has internal memory and decision-making 

functions, which communicates with other similar agents. As they communicate with each other, 

agents exhibit behaviour that follows the rules encoded within their functions. The rules have to be 

defined carefully as the choice of rule selection scheme can have a large impact on the way the model 

works (Boero et al., 2008, Juran and Schruben, 2004, Phelan, 2002). As the individual agents operate, 

the system as a whole may exhibit emergent behaviour. 

The individual agents are said to be acting at the lower, micro level of a system and the emergent 

behaviour is said to be acting at the higher, macro level. Agents only act in their immediate 

environment, in their own interests. Agents may also experience a lifecycle comprising being created, 

learning, adapting, reproducing and dying. 

Agents are often described as having four features (Gilbert, 2008): 

• Autonomy: There is no global controller operating the agents, they operate independently 

within the parameters provided to the agent and its immediate environment. 

• Social ability: It is able to interact with other agents. 

• Reactivity: It can react appropriately to stimuli from its environment. 

• Proactivity: It has its own goals that it pursues according to its own rules. 

There are many benefits to ABMs (Fum et al., 2007). By modelling a system the modeller is forced to 

decompose the system being modelled and by extension needs to fully understand that system. 

Computers will not tolerate any vague or imprecise instructions therefore the model will be based on 

logical reason producing clarity and completeness. As a product of this any theoretical output will 

also be based on logical, clear statements (Gilbert, 2008). Secondly, ABMs enable researchers to 

experiment with highly complex or inaccessible systems. This can take place in a controlled manner 

without the messiness of the real world allowing isolation of the particular process being analysed 

(Gilbert, 2008). Additionally a model can provide data at both the agent level and the system level. 

And finally, the property of emergence is perhaps the major benefit to agent-based modelling, 



Chapter 4. Agent-based modelling   

35 

allowing new ways of understanding complex systems or phenomena that may have been unexpected. 

There are some limitations of ABMs that should be highlighted. Of course they are abstractions of 

human phenomena and the extent to which we believe the results depends on how well we feel the 

model simulates reality (Hutchins, 1992). Sometimes small changes to rules, seemingly irrelevant to 

the theory, will make large differences to the output of a model (Phelan, 2002) and of course, one 

must always be aware of Bonini's Paradox (Fum et al., 2007). This is the tendency of models, as they 

become more realistic, to become more and more complex, until they are so complex that they are as 

difficult to understand as the real world system being modelled. For this reason a trade-off has to be 

made between simplicity and realism, by creating a model with sufficient realism to provide a useful 

outcome but simple enough to allow analysis and interpretation of the results. Often complex models 

can produce huge amounts of output that are difficult to analyse, and it can take a long time to execute 

a simulation if you have many complicated agents. For this reason parsimony is crucial; it is 

important to select simple solutions that address the questions without additional complexity (Bryson 

et al., 2007). 

Agent-based models are highly specialised and therefore can be difficult to understand by, not only 

those unfamiliar with agent-based modelling, but potentially anyone not closely involved in the 

development. Nearly everyone can understand narrative but only those familiar with programming 

languages and environments may have the ability to understand the intricacies of a model. It is argued 

that in translating conceptual verbal theories into a computational model there are a number of 

degrees of freedom (Sun, 2009). All models have to be logically specified, with decisions made for 

every stage to ensure the model runs correctly. For this reason the implementation of a model from a 

verbal conceptual theory may not be a direct mapping of theory to model. Often there are gaps that 

require assumptions to be made resulting in minor 'enhancements' to the theory. Two models written 

independently using the same theory may very easily have differing assumptions built in culminating 

in different simulation results. Equally, a verbal conceptual theory can include terms such as trust that 

could be interpreted differently by different model designers. This is also likely to result in differing 

models and subsequently different output. Awareness of this risk is essential when comparing the 

output from two models purportedly modelling the same theory.  

ABMs have been used to simulate, amongst others, ants (Bicak, 2010, Gheorghe et al., 2001, Jackson 

et al., 2004), cells, (Fisher and Henzinger, 2007, Pogson et al., 2006, Walker et al., 2004, Walker et 

al., 2006) economics (Farmer et al., 2005) and the human immune system (Baldazzi et al., 2006). 
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4.3 Emergence 

Often models are used to investigate emergent behaviour. Emergence is the way that complex systems 

and patterns emerge out of many simple interactions with no central command or control. These 

complex patterns have their own behaviour that is characteristic of an autonomous entity. The 

emergent behaviour is grounded in, yet transcends, the behaviour of the contributory agents. 

The many simple entities that interact to generate emergent behaviour will operate according to 

simple rules. As the number of agents increases the number of potential interactions becomes very 

large indeed. Sometimes top down feedback takes place and the emergent behaviour will influence 

the individual agents to adapt, in turn affecting the emergent behaviour causing growth or evolution of 

the system. A simple demonstration of emergence was The Life Rules invented by John Conway in 

1970 (Resnick, 1996). This was a simple board based environment where counters were given simple 

rules on how to act. This gave rise to life-like structures and complex behaviours such as moving, 

growing, reproducing and evolving. 

There are examples of emergent behaviour everywhere, including nature, physics, biology, 

economics, and technology. The emergent effect of a Mexican wave at a football match is the 

individual actions of many people acting according to one simple rule; lift my arms up and down 

once, after the person to my left does the same. Termite mounds illustrate emergent behaviour; forms 

develop as a result of the actions of many, many termites; and there are examples of emergent 

behaviour online. The rising popularity of certain videos on YouTube, the links created to certain 

pages on the Internet, emerging trends on Amazon, and the maintenance and development of 

Wikipedia all exhibit properties of emergence where there is no central control but patterns arise out 

of the actions of many individuals. Other examples of emergent behaviour can be seen in ant colonies, 

flocks of birds, traffic behaviour, economic systems, consumer behaviour and weather. 

4.4 Cognitive realism 

A topic that is hotly discussed in agent-based modelling circles is cognitive realism. It has been 

argued that cognitive realism is important for modelling psychological processes in order to more 

closely capture human behaviour (Sun and Naveh, 2004). There are instances where complex models 

that purport to be cognitively realistic have produced results that are close to empirical results. Sun 

and Naveh (2004) created an agent-based model to model the growth of academic science by 

simulating authors of academic papers and the environment around the publication of journal papers. 

The agents in this model attempt to publish papers by using previously published papers, cognitive 

processes, learning and decision making to refine ideas and generate new work for publication. 
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Successful agents publish many papers and unsuccessful ones fade away, with measures of cognitive 

ability based on number of published papers. By varying factors relating to cognition the effect on 

performance can be said to be a function of cognition. 

It can be argued that a model can never realistically model human cognition in all the complexity, 

unpredictability and variety that it contains. It is not possible to model all the external factors relating 

to cognition in addition to the traditional factors of memory, language, judgement, creativity, emotion 

and perception (Eysenck and Keane, 2000). This would be an example of Bonini's Paradox (Fum et 

al., 2007), a model so complex that it would be as difficult to understand as the real world system 

being modelled.  

Relevancy can be obtained with agent-based models that are not necessarily close to reality but a 

reasonable abstraction, where the focus must be the relevancy of the questions being asked. Although 

realism in computational modelling is germane, parsimony is preferred for a number of reasons.  A 

model should be as complex as the question being asked requires and no more. Additional complexity 

introduces additional cost in financial and temporal terms, provides extraneous and overly complex 

output, and is more difficult for others to understand (Bryson et al., 2007, Burton and Obel, 1995). 

It is asserted here that it is not necessary to model highly complex models and that it is more 

productive to start with a simple model and gradually increase complexity and sophistication over 

subsequent development cycles of the model. It is possible to interpret and understand the cognitive 

and social properties of agents without developing, from the start, complex cognitive architectures, 

which are difficult to evaluate, use and analyse (Boero et al., 2008, Deng and Tsacle, 2006, Marks, 

2000).   

4.5 The modelling process 

At the start of the modelling process various parameters have to be identified to specify the agents, the 

environment, rules and data structures. Also, the behaviour of the agents, their goals and actions need 

to be defined. In order to do this the modeller requires a detailed understanding of the system being 

modelled and it is normal to start with an extremely simplistic model (Grimm, 1999). This allows the 

modeller to check that the basic concept is sound and gives some scope for initial tests of validity of 

the model. A simple model is easier to test and validate than a complex one. 

A simple hypothesis can be defined with a prediction of how the first simple model will behave. If the 

results are not as expected then either the model is faulty or there is some genuine emergent behaviour 

being exhibited. The reason for this can be pinned down by subtly altering some aspect of the model 
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to try and find the cause of the unexpected behaviour.  

From here the modelling process is an evolutionary one. Further complexity can be added to the 

model and it can be tested, hypotheses defined and results gathered. The next steps are to 

systematically vary the agent parameters to establish the sensitivity of the model and how it will 

behave under different circumstances over time. This builds an increasingly detailed picture of the 

system being modelled and allows experimentation to take place under known conditions.  

This process is iterative and as it is repeated the model will become more detailed and refined. In fact: 

"The model can serve as a kind of rough draft of the theory allowing a quick preliminary 

check on many of the consequences of a theory. If the model makes predictions that are 

obviously incorrect, that difficulty can often be uncovered in a less painful and time 

consuming fashion when simulating" (Lehman as cited in (Fum et al., 2007)) 

The relationship between model and empirical or academic research is not one-way. Empirical or 

academic data will validate the model but data from the model may open up new lines of research, 

which will in turn feed back into the model design. The relationship is a circular one. 

A model cannot generate facts but can test a hypothesis from which the model was developed. It 

allows the derivation of predictions that answer 'what if' questions, with alternative studies needed to 

validate the model. So the aim is to produce a dynamic simulation of a finite set of parameters that 

interact via a group of agents.  This allows the researcher to identify dependencies and effects, and go 

on to further refine the model.   

It is important to recognise that the model is not an end point to research but a tool that can generate 

phenomena and pose questions leading to further investigation. Computational models can highlight 

those aspects of a theory that would benefit from further theoretical development and investigation. 

4.6 Modelling social systems 

Agent-based modelling is useful in many domains but is increasingly being used for the analysis of 

complex social systems (Axtell et al., 2001, Bonabeau, 2002, Deng and Tsacle, 2006, Goldstone et al., 

2008, Panzarasa and Jennings, 2002, Purnomo et al., 2005, Rouchier et al., 2001, Smith and Conrey, 

2007, Sun, 2006). These applications include crowd behaviour, traffic management, stock market 

staff behaviour, operational risk in banking, social networking, social influence, population growth in 

disadvantaged societies, and forest management in Indonesia.  
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The ability of agent-based models (ABM) to demonstrate and deconstruct emergent behaviour is 

attractive to social scientists as this is often the focus of their work (Gilbert, 2008). ABMs are 

particularly useful for modelling social behaviour when: 

• It is unethical or illegal - for example riot behaviour or the spread of disease, in order to study 

behaviour. 

• It is not possible to examine behaviour due to financial or political constraints - for example 

social behaviour worldwide or in war torn countries. 

• What-if scenarios are not possible to create in reality - for example organisational behaviour 

under different extreme conditions that would jeopardise the business if attempted in reality. 

• When the population being studied is heterogeneous, complex and nonlinear - agent-based 

models can isolate the particular attributes being addressed and simplify the analysis whereas 

studying the population in reality would be difficult due to the complexity. 

Agent-based models of social behaviour do not attempt to model humans entirely as that would 

firstly, be impossible due to the complexity of humans and social networks, and secondly, the model 

would not be useful as it would be as complex as the system being modelled (Deng and Tsacle, 2006). 

So, models concentrate on the particular parameters or aspects that are the focus of the researcher's 

work (Gilbert, 2008). 

Models can simulate knowledge, communication, beliefs, attitudes, intentions, desires and opinion. 

Examples of agent-based models simulating social systems are:  

• Axelrod's culture model (Goldstone and Janssen, 2005) simulated cultural imitation or social 

influence and found explanations for bandwagon effects, clustering of opinions and 

spontaneous division of culture into subcultures. This model may be too simplistic to model 

real world patterns but it generates questions and suggests avenues for further research.  

• Another agent-based computation by Goldstone and colleagues (Goldstone et al., 2008) used 

an Internet based platform in real time to look at foraging behaviour in terms of beliefs, goals 

and cognitive capacities. They also found the emergence of bandwagon effects along with 

population waves and spontaneous specialisation.  

• Computational modelling of communication between networks (agents) by Hutchins 
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(Hutchins, 1992) found that even when the cognitive properties of the individuals in a group 

are held constant the group may display different cognitive properties if the communication 

within the group is organised in different ways. He concludes that the cognitive properties of 

a group are not only fashioned by the cognitive properties of the individuals in the group but 

also by the properties of the interactions between group members.  

Traditionally, psychologists support the scientific method of causation and explanation seeking 

covariation between variables through the application of statistics. Agent-based modelling can often 

provide a more detailed explanation and a deeper understanding of the specific mechanisms that cause 

an effect (Smith and Conrey, 2007). This is often preferable to social psychologists that are used to 

thinking conceptually of the underlying cognitive processes giving rise to behaviour or interpersonal 

activities that underlie social or group phenomena.  

Agent-based modelling is well suited to addressing some of the problems that social psychologists 

encounter in the following processes: 

• Intrapersonal - decision-making, memory, personality. 

• Interpersonal - social influence, liking, conflict, emotional contagion, social influence. 

• Group– leadership, commitment, status. 

• Intergroup – bias, discrimination, anxiety. 

• Social and cultural – social roles, influence, contagion. 

In fact one of the advantages of agent-based modelling is that it can bridge these theoretical levels and 

reveal interdependencies between them. This is particularly useful when looking at the relationships 

between individual and group cognition. 

There are criticisms of the ability of agent-based models to effectively model adaptive human 

behaviour. Although agent-based models have been, and continue to be, used successfully for 

analysing social systems it has to be recognised that there are issues related to modelling human 

beings. Unlike more predictable entities such as cells or economics, human beings have complex 

psychology and often exhibit irrational behaviour or make subjective choices. In this respect, 

modellers must be aware of the varying degrees of completeness of the input to the model in relation 

to the output of the model. This often cannot be quantitative and must be viewed qualitatively.  
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4.7 Modelling cognition 

For some time social scientists studied social systems using social simulation and psychologists 

studied cognition using cognitive modelling. More recently the two disciplines have integrated and 

ABMs have been developed that simulate social situations incorporating agents that are more 

cognitively realistic (Sun and Naveh, 2004). This can extend the advantages of cognitive modelling to 

allow the influences of social interaction to be studied alongside agents' internal processes.  

As it is not possible to observe cognition directly research has to observe behaviour and make 

inferences relating to the processes operating. This is relevant to cognitive science as traditionally 

cognition has been viewed as a property of an individual mind and there is a growing realisation that 

cognition can be a social phenomenon resulting in individuals' interaction with others. One of the 

strengths of agent-based modelling of collective cognition is the ability to find connections between 

individual cognition and interaction patterns, and then investigate the conditions under which these 

take place (Hazy, 2007, Panzarasa and Jennings, 2002, Phelan, 2002). ABMs of collective cognition 

allow the researcher a clearer picture of the relationships between individual cognition and collective 

cognition (Sun, 2006). 

Team cognition has been the subject of agent-based modelling (Dionne et al., 2010, Fan and Yen, 

2004, Ioerger and Johnson, 2001, Kang, 2007, Larson, 2007, Zhuge, 2003). Larson developed an 

agent-based model investigating the relationship between problem solving ability diversity and team 

performance mediated by levels of communication. He found that communication improves the 

performance of diverse groups and worsens the performance of homogeneous groups because, 

according to Larson, diverse groups are able to build on one another's success via communication but 

knowledge of another's success in homogeneous groups narrows the range of solution alternatives. 

Dionne et al. (2010) modelled team and leadership properties including social network structure, 

heterogeneity of agents' domains of expertise and levels of mutual interest. Results indicated that 

participative leadership only had positive effects on team performance under certain conditions and 

under other conditions leader-member exchange produced better team performance.  

A further team cognition model was developed simulating agents operating in the scenario of 

assessing the threat level of incoming aircraft (Kang, 2007). The hypothesis predicted that team 

interaction styles affect communication and team performance through enhancing or hindering 

knowledge sharing. Findings indicate that levels of cooperativeness and activeness have an effect on 

team efficiency and also that there are interaction effects of cooperativeness, activeness and 

information redundancy on team efficiency. Although the study was not focussed on transactive 

memory systems, Kang's model included agent meta-knowledge relating to the knowledge of other 
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team members so, in essence, a transactive memory system. 

4.8 Modelling transactive memory systems 

As discussed previously, the knowledge in a team and the accuracy of information relating to who 

knows what in a team is directly related to the performance of the team. As knowledge becomes more 

differentiated and dispersed amongst greater numbers of people it becomes increasingly difficult to 

know the location of knowledge. The paradigm of transactive memory systems allows us to 

understand how this process operates and to improve knowledge and expertise sharing in teams and 

thus organisations.  

There is a dearth of research using agent-based modelling to simulate transactive memory systems 

however there are at least two (Palazzolo et al., 2006, Ren et al., 2006).  Palazzolo et al. explored, 

using Blanche, how initial knowledge profile, initial accuracy of expertise recognition (TMS 

accuracy), and network (team) size affected the development of the TMS as mediated by 

communication. They simulated teams with high and low TMS accuracy, high and low initial 

knowledge, and team sizes of 4 and 20 members. The transactive memory development was measured 

as the degree to which team members accurately perceived each other’s knowledge and the extent of 

the differentiation of the team’s knowledge.  

The hypotheses considered the relationships between the three antecedent factors and communication 

and how communication affected the final differentiation and TMS accuracy. They expected that low 

initial differentiation, high TMS accuracy and small team size would result in higher communication 

density and that high communication density would result in higher TMS accuracy and 

differentiation.  

Their hypotheses were all supported and in addition they modified their theoretical model to 

incorporate additional relationships that were identified by the computational model. Firstly, that there 

is a direct positive relationship between the level of starting knowledge and the final TMS accuracy 

meaning that high initial knowledge results in better TMS accuracy regardless of communication 

density; and secondly, they found direct negative relationships between both the starting TMS 

accuracy and team size with final differentiation. In other words larger teams are less likely to 

differentiate than smaller teams and teams that start off with high TMS accuracy are less likely to 

finish with differentiated knowledge, both regardless of communication. 

This highlights a paradox in their results. The computational model showed a positive relationship 

between initial TMS and final differentiation mediated by communication, however, it also showed a 
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direct negative relationship between initial TMS and final differentiation. So does higher initial TMS 

result in higher or lower final differentiation?  Palazzolo et al (2006) do not posit an answer to this 

question but suggest that further investigation is required. 

The Palazzolo et al. model (2006) investigates a simple set of relationships and reveals some 

additional unexpected ones. It shows the impact of initial conditions on a TMS and in addition 

demonstrates some of the benefits of computational modelling to logically validate verbally described 

TMS theories. The authors do point out, however, that the model was based on three knowledge areas, 

which they assert, is overly simplistic but does provide a good starting point for research in this area.  

The other agent-based model exploring transactive memory systems (Ren et al., 2006) aimed to 

confirm previous research on TMS and extend it to apply further to more dynamic and diverse group 

settings. It is a more sophisticated model using ORGMEM, which is specifically designed to study 

how communication influences transactive memory and how the existence of transactive memory 

impacts group performance. This study used the parameters of low, medium or high task volatility 

(how frequently the tasks change), low, medium or high knowledge volatility (decay rates of 

knowledge) and as did Palazzolo et al. (2006), group size. The model simulated groups with little, 

moderate and extensive overlapping knowledge, and group size ranged from three members to 35. In 

addition they included conditions where group members had blank or complete initial TMS. This 

resulted in 108 different conditions for their model.   

The paper does not identify their expectations but they found that the effects of transactive memory 

are contingent on group characteristics such as group size and environment, and the measurement that 

is used for performance. Results differed when performance was measured by time than when 

measured by quality. The study found that a good TMS is generally beneficial on performance but for 

advantages of time it is more beneficial for large groups, groups in a volatile knowledge environment 

and groups in a volatile task environment. For better decisions, a good TMS is more beneficial for 

small groups. They suggest that groups such as software development teams, which operate in an 

environment of high task and knowledge volatility, a high quality TMS would be beneficial. The 

results from this study demonstrate that agent-based modelling can provide some useful insights into 

the mechanisms of TMS and provide avenues for further research.  

The two agent-based models focussing on TMS described above demonstrate initial forays into 

modelling TMS and each selected very specific avenues of research. Each paper took pains to point 

out that their model was a simple initial model and that it did not capture many aspects of TMS such 

as subjective judgement (Ren et al., 2006) and the ratio between numbers of knowledge topics and 

people (Palazzolo et al., 2006). Both papers assert that although their models were low in cognitive 
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realism they are a starting point to using agent-based modelling to take the research into TMS further 

and develop models with increasing cognitive realism. 

4.9 Conclusion 

This chapter has briefly described agent-based modelling, the modelling process and identified some 

popular agent-based modelling frameworks in use. It has also outlined previous social and cognitive 

research using agent based modelling and argued for parsimony in modelling cognitive systems.  

Increasingly agent-based models are successfully being used to simulate social and cognitive 

environments, however, modelling of transactive memory systems has attracted little interest with 

only two apparent previous models.   

The two models described investigated the development of TMS, differentiation, communication, 

group size and external environmental factors, and looked at some simple relationships between them. 

They provided some initial investigations into TMS theory and produced some interesting results but 

had limited applicability in reality. Both models highlighted a number of questions relating to the 

many factors that affect a group’s TMS and how that impacts on the group performance but there is 

much scope for further modelling of TMS and for that to be put into a more practical context. Unlike 

the previously described models, the agent-based model developed for this research places transactive 

memory systems in the realistic context of software development teams and looks at how TMS, 

differentiation and performance differ for teams using two different software development 

methodologies.  
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Chapter 5:  Modelling environment 

5.1 Introduction 

This chapter will introduce the framework chosen, FLAME, and describe it in more detail with the 

reasons for its use in this research.   

5.2 Some ABM frameworks  

There are many agent-based modelling frameworks available with a number of researchers 

developing idiosyncratic systems being used for simulating a variety of cognitive phenomena. These 

include: ACT-R (ACT-R), Soar (Soar), (Kang, 2007), Clarion (Clarion), Blanche (Blanche), 

(Palazzolo et al., 2006), ORGMEM (ORGMEM), (Ren et al., 2006), Seleste (Phelan, 2002), Swarm, 

Repast, Mason, NetLogo (Macal and North, 2006), SIGMA, Brahms (Sun, 2006), ValSeek (Larson, 

2007), CAST (Yen et al., 2003),  EPICURE (Goldstone et al., 2008) and StarLogo (Resnick, 1996). 

For a review of a number of modelling environments see Ashworth and Carley (Ashworth and Carley, 

2007). 

5.3 FLAME 

FLAME stands for Flexible Large-scale Agent-based Modelling Environment (Coakley, 2011)  and is 

a generic, highly flexible environment, which is being developed at the University of Sheffield, in 

collaboration with the Science and Technology Facilities Council (Coakley et al., 2006b). Modellers 

from various disciplines have used FLAME for subjects as diverse as cellular biology, ant foraging 

behaviour and the European economy (Bicak, 2010, Coakley et al., 2006a, Deissenberg et al., 2008, 

Gheorghe et al., 2001, Jackson et al., 2004, Kiran et al., 2008, Pogson et al., 2006, Walker et al., 2004, 

Walker et al., 2006).   

FLAME is based on a formal X-machines architecture (Coakley et al., 2006b, Holcombe et al., 2006). 

An X-machine is simply a device or model to describe a system that manipulates entities of type X, so 

for example, a word processor is an electronic-document-machine, and a calculator is a number-

machine (Stannett, 2005). X-machines are general computational machines that were introduced by 
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Eilenberg (Eilenberg, 1974) and extended by Holcombe (Holcombe, 1988). They employ a 

diagrammatic approach of modelling and are capable of modelling both the data and the control of a 

system. A specific type of X-machine has formed the basis for a specification and modelling language 

to define and validate software systems. It is defined as follows (Coakley et al., 2006b): 

Definition: A stream X-machine is an 8-tuple 

 

€ 

X = (Σ,Γ,Q,Φ,F,q0,m0 ) 

where: 

• 

€ 

Σ  and 

€ 

Γ  the input and output alphabets respectively. 

• 

€ 

Q is the finite set of states. 

• 

€ 

Φ, the type of the machine X, is a set of partial functions 

€ 

φ  that map an input and a memory 

state to an output and possible different memory state, 

€ 

φ :Σ×M→Γ×M  

• 

€ 

F  is the next state partial function, 

€ 

F :Q×φ →Q , which given a state and a function 

from the type  

€ 

φ  determines the next state. 

€ 

F  is often described as a state transition diagram. 

• 

€ 

q0 and 

€ 

m0 the initial state and initial memory respectively.  

(Coakley et al., 2006b) 

Further, communicating stream X-machines have been defined (Balanescu et al., 1999) and it was 

found that communicating X-machines could be used to formally model multi-agent systems 

(Eleftherakis et al., 2005). Describing agents as autonomous communicating X-machines allows 

agents to work in parallel, an essential component of multi-agent systems, and have the ability to 

process information and communicate. Figure 3 represents an X-machine agent.  It describes its 

memory, system states, input and output. The figure shows the transition between system state S1 (the 

initial state 

€ 

q0) and S2 via the transition function F1. This transition function contains rules that can 

change the agent’s memory, M to M’, and send and receive messages via the input and output ports. 

These in turn are connected to message boards used for communication between agents. Agents send 

messages to global message boards that can be read by all X-machine agents in the system, and by 

giving each message the ID of the targeted agent each message is directed to the agent to which it was 

intended. There is a different message board for each type of message. 
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Figure 3: X-machine agent 

The runs of a model are based on discrete time steps and each time step includes one transition 

function. The agents are processed in a random order so that no agent has priority over any other. The 

time step function receives any intended messages and after the function is processed, sends messages 

to respective message lists. Effectively the start and end of transition functions act as a way to 

synchronise the processing of X-machine agents and the communication of messages (Coakley et al., 

2006b). 

FLAME uses simple nested XML tags to describe the structure of the X-machine agents. This 

describes the environment with any constants in use in the model, the function files, and data types. It 

also includes a description of each agent with information relating to the transition function, start and 

end states, and input and output messages. Finally, it also includes a description of the message 

structures within the model. A simple structural example can be seen below: 

<xmodel> 
<environment> 

<constants></constants> 
<functionFiles></functionFiles> 
<dataTypes></dataTypes>  

</environment> 
<agents><xagent> 
  <name></name> 
  <memory></memory> 
  <functions><function> 
   <name></name> 
   <description></description> 
   <currentState></currentState> 
   <nextState></nextState> 
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   <inputs><input><messageName></messageName></input> </inputs> 
<outputs><output><messageName> </messageName></output> </outputs> 

  </function></functions> 
</xagent></agents> 
<messages><message> 
  <name> </name> 
  <description></description> 

<variables></variables> 
</message></messages> 
</xmodel> 

The transition functions are written in C. In addition a start-up file is required to specify each agent’s 

initial condition before a run of the model can start. This is also an XML file and defines the memory 

state of agents 

€ 

m0.  The core of FLAME constitutes of a specially developed parser that takes the X-

machine description, and the transition functions, and produces an executable C program that can 

process a start-up XML file, run the X-machine agents and implement the message boards (Coakley et 

al., 2006b). Information, case studies, publications, installation files and instructions for FLAME can 

be found online at www.flame.ac.uk (Coakley, 2011). 

The FLAME framework consists of a number of user-defined files, as follows: 

• Model.xml: This file contains an XML description of the X-machine agent, model 

descriptions, memory variables, and definition of functions and messages. 

• Functions.c: This file contains the c code that consists of the transition functions defined 

within the model.xml file.  

• 0.xml: This is the start-up that file contains the initial information defining each agent at the 

start of the simulation. It contains information such as the initial contents of agent memory 

and state details.  

This framework can be seen in Figure 4. 
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Figure 4: The FLAME framework (Bicak, 2010) 

The model runs through a prescribed number of iterations where the agents interact with each other. 

Every iteration produces an automatically generated XML file containing all the memory data and 

state information for every agent (Kiran et al., 2008).  

FLAME is the modelling environment of choice for this project for a number of reasons (Bicak, 

2010).  

• It has an extremely versatile testing environment with the facility to use various techniques.  

• It is also a highly configurable and generic environment that allows high levels of innovation, 

unlike other systems that can restrict the user.  

• As it is based on a formal X-machines method, specification and validation are inherently 

provided.  

• Stategraph output showing states and transitions in each agent cycle are generated 

automatically. 

• The syntax is based mainly on XML therefore it is easily extendable. 

• It was developed at the University of Sheffield so the developers are on site, and there are a 
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significant number of experienced users that can provide expert advice and assistance with its 

use. 

The conventional paradigm for using FLAME is to computationally outline a physical environment, 

where the agents are defined spatially, which then operate within three dimensions. In addition, the 

convention is to define large numbers of agents, potentially millions, for example cells, which can 

often require the use of High Performance Computing systems.  

The model described in this thesis uses FLAME in a novel manner. Firstly, the agents are not defined 

within a three dimensional environment, they are defined with memory depicting human memory and 

knowledge, and the functions describe less tangible cognitive processes that take place in human 

teams. This model defines very small numbers of agents, the number of members in the team, in this 

case four. The model developed, however, has the capability to define larger numbers of team 

members.  
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Chapter 6:  The Model 

6.1 Introduction 

This chapter will give a description of the model with a worked example to illustrate its operation. It 

will also detail a more formal structural description of the model in the form of tables including 

information held, messages sent and the logical flow of the functions. This chapter will also cover 

details of the verification and testing of the model.  

The model is defined such that every simulation models a single software project with one team. 

There are two types of agents, a controller agent that manages administration within the model and 

player agents, which represent the team members carrying out the work. The player agents can hold 

elements of knowledge and levels of expertise for that knowledge, and in addition can hold beliefs 

relating to the knowledge and expertise of the other player agents. Work is issued to the player agents 

in the form of tasks where one task is issued to each agent per iteration of the simulation. Agents 

develop their knowledge and expertise as a result of processing the tasks and this can be done as solo 

agents or working in pairs. During the processing of the tasks agents also develop their beliefs relating 

to the other agents knowledge and expertise, their TMS, by sharing information and subsequently the 

distribution of the tasks is influenced by the TMS of the player agents. The output value of each 

iteration is a function of the level of expertise of each agent processing its task, and other measures of 

TMS and differentiation are also calculated. 

6.2 Model description 

Various parameters are defined that determine the initial general parameters of the simulation. They 

are: 

• Task size - the number of elements of 'work' that are delivered to each agent per iteration. 

• Team size - the number of player agents in each simulation. 

• Random range - the range from which the tasks are randomly constructed from 1 to the 

random range. 



Chapter 6. The model   

52 

• Working mode - pair or solo programming 

Each player agent has the ability to have pairs of numbers in their memory. In each pair one number 

represents knowledge in a particular subject, and the other represents the level of expertise in that 

knowledge. The breadth of knowledge can grow as the player agents learn and the expertise levels can 

increase as they gain experience. Each player agent's memory also holds information relating to the 

knowledge and expertise of the other player agents in the simulation in the same way. This memory 

represents transactive memory and this can also develop over the course of a simulation as each 

player agent learns about other player agents' knowledge and associated expertise. The range of 

knowledge that a player agent can possess is limited by the random range; the task elements can be 

drawn from 1 to the random range. The player agents can start a simulation with no knowledge, 

expertise and transactive memory or can start with existing knowledge, expertise and transactive 

memory as predefined in the 0.xml file.  

Each task presented to a player agent comprises a randomly generated series of numbers within the 

knowledge range determined by the random range. This represents the knowledge required to 

complete the task. Before the task is fulfilled the tasks are redistributed around the team to fulfil the 

task for the greatest value to the team according to the beliefs of the team. This process utilises the 

transactive memory; player agents will offer their task to other player agents that they believe will 

fulfil the task to a higher value than them. So as transactive memory develops the tasks should be 

redistributed more efficiently around the team. 

For each player agent the task is fulfilled by calculating the task value, which is generated as a 

function of their expertise relating to the elements of the task.  

The value is calculated as follows: 

€ 

v = xki
i=1

ts

∑  

where: 

• 

€ 

v  is the value returned from an agent doing a task 

• 

€ 

x  is the experience value associated with knowledge element 

€ 

k  in the task at position 

€ 

i in 

the task 

• 

€ 

ts  is task size 
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This means that high expertise player agents and those with expertise in more elements of the task 

will generate higher values towards the team output. This contributes to the output value for the team. 

For conditions where pair programming is utilised, agents will work in pairs and pool their knowledge 

and expertise to fulfil the task. For pair programming each simulation will be run for double the 

number of iterations as only half the tasks are delivered per iteration. This ensures that the same 

amount of work is delivered for the entire simulation.  

As a task is fulfilled the agent increases expertise in the areas presented by the task. A number of 

methods of incrementing the expertise were tested including using percentages and various ranges of 

random numbers. Using a random number of thousandths between 0.001 and 1 produced sufficient 

randomness, and increments were not so large as to produce unmanageably large numbers by the end 

of a simulation. It also produced results that were plausible in terms of validating the model.  

For each task fulfilled the player agent is given some information relating to other player agents’ 

knowledge and expertise and updates its transactive memory accordingly. In pair programming 

conditions, if a player agent's partner is more expert in a task element the agent with the lower 

expertise will increase its knowledge by half the difference between the two levels of expertise. 

Again, a number of methods were tested and using half the difference provided results that were 

sensible in terms of validation. In reality this seems plausible, as working with a more expert person 

will increase skills substantially but is unlikely to improve skills sufficiently to match the expert. 

Each iteration produces measures of output, knowledge differentiation and TMS. The controller agent 

aggregates the output from each agent and calculates team level results. The task output values for 

team members are aggregated to give a score per iteration. The optimum output score is also 

calculated as if the tasks were perfectly distributed in the team for maximum output. The ratio of 

aggregate score and optimum aggregate score is used as the measure of success. This ratio is a 

measure of learning as well as team efficiency in matching tasks to agents.  

Differentiation is the variance of the knowledge within the team for each iteration. This relates to all 

team members across all knowledge streams and is a measure of the level of specialism in the team. 

High differentiation indicates the presence of specialists in the team and low differentiation indicates 

heterogeneous knowledge across the team. 
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Differentiation is calculated as follows: 

€ 

diff =
xi − x ( )

i=1

t×r

∑

t × r

2

 

where: 

• 

€ 

diff  is the differentiation: the variance of all expertise across all knowledge streams for all 

agents for one iteration 

• 

€ 

x  is expertise 

• 

€ 

x is the mean of expertise for all knowledge streams for all agents in one iteration 

• 

€ 

t  is team size 

• 

€ 

r  is random range 

TMS accuracy is the level of agreement of the team TMS with the actual knowledge of each team 

member. It is calculated by dividing the value of each belief in TMS by the actual knowledge to 

which it relates. The mean of these values is then calculated as the TMS accuracy for the team.  

TMS accuracy is calculated as follows: 

€ 

acc =

bi

xi=1

n

∑

n
 

where: 

• 

€ 

acc  is TMS accuracy 

• 

€ 

b is the belief in TMS of an agent relating to another agents’ expertise 

• 

€ 

x  is the actual expertise to which the belief pertains 

• 

€ 

n  is the number of elements of belief held in TMS in the team 

TMS completeness is a measure of the extent by which transactive memory in the team is filled. It is 
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calculated by dividing the number of entries in TMS by the maximum possible number of entries. 

Completeness is calculated as follows: 

€ 

c =
n

t 2 − t( )× r
 

where: 

• 

€ 

c  is completeness of TMS 

• 

€ 

n  is the number of elements of belief held in TMS in the team 

• 

€ 

t  is team size 

• 

€ 

r  is the random range 

6.3 Worked example 

This is an example of how one iteration of a simulation may take place. For this example, there are 

four team members, task size is also four and the random range is between 1 and 10. Each of the 

agents has already developed some knowledge and expertise and some TMS. 

1. The controller agent generates four tasks, each including four randomly generated numbers 

between 1 and 10.   

2. The controller agent distributes the tasks randomly to each agent. So: 

• Agent A receives – 1,4,6,5 

• Agent B receives – 5,7,10,2 

• Agent C receives – 3,4,8,3 

• Agent D receives – 9,5,1,4 

3. Each agent may decide to offer the current task to another agent if he believes that the other 

agent will fulfil the task to a higher value to the team. 
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• Following agent A, the knowledge, expertise and TMS is as follows: 

Knowledge	
   1	
   2	
   3	
   4	
   5	
   6	
   7	
   8	
   9	
   10	
  

Expertise	
   3.04	
   8.12	
   35.678	
   	
   	
   11.304	
   2.009	
   4.1	
   	
   15.6	
  

TMS	
  –	
  Agent	
  B	
   	
   	
   	
   11.67	
   10.12	
   	
   1.5	
   	
   	
   	
  

TMS	
  –	
  Agent	
  C	
   	
   	
   3.66	
   4.29	
   	
   	
   17.005	
   	
   23.5	
   	
  

TMS	
  –	
  Agent	
  D	
   12.4	
   	
   	
   	
   2.23	
   	
   	
   	
   	
   	
  

Table 1: Knowledge, expertise and TMS of Agent A 

• Agent A’s current task is 1,4,6,5 

• The value of agent A’s current task is (3.04+11.304) = 14.344. 

• The value of agent B doing agent A’s task according to the beliefs of agent A is 

(11.67+1.120) = 21.79. 

• The value of agent C doing agent A’s task according to the beliefs of agent A is 4.29. 

• The value of agent D doing agent A’s task according to the beliefs of agent A is 

(12.4+2.23) = 14.63. 

• Agent A offers the current task to agent B as there is more value to the team if agent 

B has the task.  

• Agent A is offered the task from agent C (3,4,8,3), which has a value to agent A of 

75.456 (35.68 + 4.1 + 35.678). 

4. Each agent assesses the value of each of each offer from other agents based on actual levels 

of knowledge. Each agent can accept one task offer, rejecting any others, keeping the task 

with the highest potential value to the team. 

• Agent B rejects the offer from agent A as they may have a better current task or have 

a better offer from another agent. 

• Agent A accepts the offer from Agent C as that has a higher value than the current 
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task. 

• Agent A has a surplus task so sends the current task to the controller for 

redistribution in the team. 

• The current task for agent A is now 3,4,8,3 giving a value of 75.456 (35.68 + 4.1 + 

35.678) to the team. 

5. The controller distributes any remaining unallocated tasks randomly to agents with no 

remaining task. After this optimisation of tasks all agents will have one task. 

6. Each agent calculates the value of their task by taking the sum of their expertise relating to 

each element of the task.  

• The value for the current task for agent A is 75.456 (35.68 + 4.1 + 35.678). 

• Likewise the other agents will calculate the value of their current task.  

7. Each agent increases its knowledge by increasing the value of expertise associated with each 

element of the task. The increase is a randomly generated value between 0.001 and 1. 

• The expertise for agent A is increased for knowledge streams 3, 4 and 8 randomly as 

follows: 

Knowledge	
   1	
   2	
   3	
   4	
   5	
   6	
   7	
   8	
   9	
   10	
  

Expertise	
   3.04	
   8.12	
   36.058	
   0.872	
   	
   11.304	
   2.009	
   4.92	
   	
   15.6	
  

Table 2: New knowledge and expertise of Agent A 

8. Each agent shares their expertise with other agents by sending a message to a randomly 

selected agent including a randomly selected piece of knowledge and associated expertise. 

This allows agents to update their transactive memory. 

• Agent A sends a message to Agent D with the information – Knowledge stream 10, 

expertise level 15.6. 
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• Agent A receives a message from agent B with the information – Knowledge stream 

2, expertise level 2.5. 

• Agent A can now update TMS to reflect the new information relating to agent B.  

9. The results of this iteration are sent to the controller agent who calculates the team measures 

for analysis. 

• Agent A sends the value of the task and the contents of knowledge, expertise and TMS 

to the controller agent. 

10. If pair programming pairs of agents will receive the same task.  The redistribution to optimise 

the tasks will still take place and then agents with the same tasks will partner up. The partner 

agents will share information exclusively with each other during the iteration and can thus 

update their TMS. 

6.4 Model verification 

The model was developed in an Agile fashion in that a small amount of functionality was developed 

initially. This was tested by examining the code manually, and the model was then unit tested by 

stepping through the code operation examining the values of variables at every stage (Pfleeger and 

Atlee, 2010, Sommerville, 2004). As the model produces random numbers it is not possible to predict 

the values of variables, only to check that the code is manipulating the variables correctly. 

All unit tests were carried out a number of times to carry out: 

• Statement testing – Every statement is in the component is executed at least once in at 

least one test. 

• Branch testing – For every decision point in the code, each branch is chosen at least 

once in at least one test. 

• Path testing – Every discrete path in the code is tested at least once in at least one test 

(Pfleeger and Atlee, 2010, Sommerville, 2004) 

The model was developed by gradually adding small pieces of additional functionality and continuing 

to test in the above manner. Throughout the verification process the model was checked for expected 
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or unexpected behaviour. 

6.5 Detailed model definition 

The following tables define the elements of the model in detail and describe the flow of the operation 

of each part of the model. 

6.5.1 Constants 

Name Type Description 

task_size int Number of elements in the task  

team_size int Number of  ‘player’ agents 

random_range int Range of random task numbers generated from 1 to 
random_range 

agile int 1 = pair programming, 0 = solo programming 

 

6.5.2 Agent types 

Name Description 

controller Controlling agent that issues tasks and holds team 
information  

player Team member agent 

 

6.5.3 Data types 

Name playertask 

Description A team id and the task they are assigned 

Elements 

Name Type Description 

playertask_id int ID for agent 

playertask_task int array Array containing task elements for agent. Array size 
is ‘task_size’. 
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Name kande 

Description Unit containing one knowledge element and 
associated expertise level 

Elements 

Name Type Description 

kande_know int Knowledge element 

kande_expertise float Expertise level for knowledge element 

 

Name means 

Description Unit containing one knowledge element and 
associated calculated value 

Elements 

Name Type Description 

means_know int Knowledge element 

means_expertise float Calculated value associated with knowledge element 

 

Name playermeans 

Description Unit containing agent id, knowledge and calculated 
values for one team member 

Elements 

Name Type Description 

playermeans_id int ID of agent 

playermeans_means means_array Dynamic array of data type ‘means’  
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Name playerknow 

Description Unit containing agent ID and a dynamic array of 
knowledge and expertise for one agent 

Elements 

Name Type Description 

playerknow_id int ID of agent 

playerknow_know kande_array Dynamic array of data type ‘kande’ (units of 
knowledge and associated expertise) 

Name knowexp 

Description Unit containing knowledge and a dynamic array of 
expertise from agents for that knowledge  

Elements 

Name Type Description 

knowexp_know int Knowledge element 

knowexp_expertise float_array Dynamic array of expertise values 

 

Name playertms 

Description Unit containing agent ID and a dynamic array of 
knowledge relating to other agents  

Elements 

Name Type Description 

playertms_id int ID of agent 

playertms_tms knowexp_array Dynamic array of data type ‘knowexp’.  

 

Name playerperf 

Description An agent and its values for all tasks 

Elements 

Name Type Description 

playerperf_id int ID of agent 

playerperf_val float array Array containing values for this agent doing each 
task. Array size is ‘team_size’.  
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Name perf_vals_low 

Description Array of performance values  

Elements 

Name Type Description 

vals_low float array Array containing performance values. Array size 
is ‘team_size’. 

 

Name perf_vals_high 

Description Array of performance values  

Elements 

Name Type Description 

vals_high perf_vals_low array Array containing perf_vals_low arrays of 
performance values. Array size is ‘team_size’. 

 

6.5.4 Agents 

6.5.4.1 Agent name: controller 

This agent is used to issue the tasks and manage the redistribution of tasks when tasks are moved 

around the team.  All player agents report information to the controller agent and it holds the 

individual and team level results. 

Controller memory 

Name Type Description 

team_ids int array Array containing ‘player’ agent IDs. Array size is 
‘team_size’. 

tasks_alloc playertask array Agents and their allocated tasks. Array size is 
‘team_size’. 

player_know playerknow array The knowledge of each ‘player’ agent’. Array size 
is ‘team_size’. 

tms_calcs playermeans array Agents and associated measures of TMS 
accuracy. Array size is ‘team_size’. 

tms_density playermeans array Agents and associated measures of TMS density. 
Array size is ‘team_size’. 
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cum_team_val float Cumulative output value for the team 

team_val float Output value for this iteration for the team 

cum_optimum_val float Cumulative optimum output value for the team 

optimum_val float Optimum output value for this iteration for the 
team 

 

Controller messages sent 

Name controller_task 

Description Randomly generated task sent to each agent. 

Name Type Description 

task_to_agent playertask One target agent ID and a randomly generated task 

 

Name new_task_to_agent 

Description A team id and the task they are assigned 

Name Type Description 

new_task_to_agent playertask One target agent ID with the reallocated task 

 

 

Controller functions 

Name controller_generate_task 

Description Randomly generate a task for each ‘player’ agent 

Current state start 

Next state 1 

Flow 
(Pair programming)  ↙            ↘ (Solo programming) 

Randomly generate ‘team_size’/2 number of 
tasks of size ‘task_size’  

↓ 
Randomly allocate each task to two ‘player’ 

agents 
↓ 

Output message 

Randomly generate ‘team_size’ number of tasks 
of size ‘task_size’  

↓ 
Randomly allocate each task to a ‘player’ agent 

↓ 
Output message 
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Inputs 

Message name From agent 

/ / 

Outputs 

Message name To agent 

controller_task player 

 

Name settle_tasks 

Description Reallocate spare tasks to ‘player’ agents without tasks 

Current state 1 

Next state 2 

Flow 
Read all ‘id_to_controller’ messages and put IDs into ptask array  

↓ 
While reading ‘task_to_controller’ message 

↓ 
Match incoming task to unique ID in ptask array 

↓  
Output ‘new_task_to_agent’ message 

↓ 
loop ends 

Inputs 

Message name From agent 

task_to_controller player 

id_to_controller player 

Outputs 

Message name To agent 

new_task_to_agent player 

 

 

Name optimum_perf 

Description Read in perf messages and calculate optimum output 

Current state 2 

Next state 3 
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Flow 
While reading ‘perf_to_controller’ message 

↓ 
Add output values for each ‘player’ doing each task to two dimensional array 

                   ↓ (loop ends) 
Calculate optimum total output value for iteration 

↓ 
Add optimum total output for iteration to controller memory 

↓ 
Calculate cumulative optimum total output value  

↓ 
Add cumulative optimum total output to controller memory 

Inputs 

Message name From agent 

perf_to_controller player 

Outputs 

Message name To agent 

/ / 

 

Name update_tms_means 

Description Read in perf messages and calculate optimum output 

Current state 3 

Next state 4 

Flow 
While reading ‘know_to_controller’ message 

↓ 
Update knowledge for each ‘player’ in ‘controller’ memory 

                   ↓ (loop ends) 
While reading ‘tms_to_controller’ message 

↓ 
Update tms for each ‘player’ in ‘controller’ memory 

                   ↓ (loop ends) 
Calculate team TMS accuracy  

↓ 
Calculate team TMS completeness 

↓ 
While reading ‘val_to_controller’ message 

↓ 
Calculate team output 

↓ 
Update team outputs in ‘controller’ memory 

↓ 
loop ends 
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Inputs 

Message name From agent 

know_to_controller player 

tms_to_controller player 

val_to_controller player 

Outputs 

Message name To agent 

/ / 

 

6.5.4.2 Agent name: player 

This agent is a member of the team carrying out the work. A ‘player’ agent may work as a pair, 

carries out tasks and reports knowledge, TMS and output to the controller. 

Player memory 

Name Type Description 

myid int  This agent’s ID 

my_know kande array A dynamic array of units of knowledge and 
associated expertise. 

tms playerknow array 
Transactive memory relating to the knowledge 
and expertise of other ‘player’ agents. Array size 
is one less than ‘team_size’. 

tasks_alloc playertask array The task allocated to each agent. Array size is 
‘team_size’. 

current_task int array The task allocated to this agent. Array size is 
‘task_size’. 

my_task_val float This agent’s output for current task 

id_given float ID of agent given this agent’s task 

new_tasks playertask array Dynamic array of tasks given to this agent 

taskcount int Number of current tasks 

pair int ID of partner for pair programming. myid or 0 if 
solo programming 
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Player messages sent 

Name task_to_expert 

Description Offer task to better qualified ‘player’. 

Name Type Description 

sent_id int ID of sending ‘player’ agent 

target_id int ID of target ‘player’ agent 

task int array Array containing task offered. Array size is 
‘task_size’ 

 

Name task_to_controller 

Description Excess task sent to controller for redistribution 

Name Type Description 

task int array Array containing task sent back to controller. Array 
size is ‘task_size’ 

 

Name feedback 

Description Acceptance or rejection of task 

Name Type Description 

id int ID of agent receiving feedback 

result int acceptance = 1, rejection = 0 

 

Name id_to_controller 

Description Send ID to controller if ‘player’ agent does not have a 
task. 

Name Type Description 

id int ID of ‘player’ needing a task 
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Name find_partner 

Description For pair programming, find ‘player’ agent with the 
same task as this agent. 

Name Type Description 

find_p playertask ID and task of this ‘player’ agent 

 

Name perf_to_controller 

Description Send values of this agent doing all tasks to 
‘controller’ 

Name Type Description 

perf playerperf This agent’s ID and the values for this agent doing 
each task 

Name tms_to_controller 

Description Send contents of this agent’s TMS to ‘controller’ 

Name Type Description 

id int ID of this agent 

tms_know int Knowledge element 

tms_expertise float Associated expertise 

 

Name know_to_controller 

Description Send knowledge and expertise of this agent to 
‘controller’  

Name Type Description 

id int ID of this agent 

know_know int Knowledge element 

know_expertise float Associated expertise 
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Name share_know 

Description Knowledge shared with partner for pair programming 

Name Type Description 

target_partner int ID of partner 

sent_partner int ID of this agent 

partner_know kande array Knowledge and expertise to be shared with partner. 
Array size is ‘task_size’ 

 

Name reshare_know 

Description Knowledge reshared with partner for pair 
programming 

Name Type Description 

target_partner int ID of partner 

sent_partner int ID of this agent 

partner_know kande array Knowledge and expertise to be shared with partner. 
Array size is ‘task_size’ 

 

Name fill_tms 

Description Send information for updating other agents’ TMS 

Name Type Description 

target_id int ID of another ‘player’ agent 

sent_id int ID of this agent 

fin_tms_info kande One random unit of this agent’s knowledge and 
associated expertise 

 

Name val_to_controller 

Description Send this agent’s output value to ‘controller’ 

Name Type Description 

val float Value of task output 
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Player functions 

Name player_get_task 

Description Pick up task from ‘controller’ 

Current state 1 

Next state 2 

Flow 
While reading ‘controller_task’ message 

↓ 
Add all tasks to ‘player’ memory 

                   ↓ (loop ends) 
Identify task for this agent and add to ‘player’ memory  

Inputs 

Message name From agent 

controller_task controller 

Outputs 

Message name To agent 

/ / 

 

Name assess_give_task 

Description Assess task potential task outputs and possibly offer task to another 
‘player’ agent 

Current state 2 

Next state 3 

Flow 
Find value of this agent doing this task 

↓ 
Using TMS assess value of each other ‘player’ agent doing this agent’s task  

↓ 
If higher than this agent doing task, offer it to agent that will produce best output for this agent’s task 

↓  
Send offer message to ‘player’ agent  

Inputs 

Message name From agent 

/ / 

Outputs 

Message name To agent 

task_to_expert player 
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Name optimise_tasks 

Description Receive tasks, decide on best and accept or reject offers 

Current state 3 

Next state 4 

Flow 
While reading ‘task_to_expert’ message 

↓ 
If task is offered to this agent add task to memory 

                   ↓ (loop ends) 
Decide on task that will produce best output 

↓ 
Send acceptance or rejection messages for tasks offered  

↓ 
If this agent has a surplus of tasks send them back to ‘controller’ for redistribution 

Inputs 

Message name From agent 

task_to_expert player 

Outputs 

Message name To agent 

task_to_controller controller 

feedback player 

 

 

 

Name 
feedback 

Description Receive feedback and process acceptance or rejection 

Current state 4 

Next state 5 

Flow 
While reading ‘feedback’ message 

↓ 
If task was offered to another ‘player’ process acceptance or rejection message 

                   ↓ (loop ends) 
If task offered was accepted and this agent had no offers send ID to controller to 

be issued a surplus task 

Inputs 

Message name From agent 

feedback player 
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Outputs 

Message name To agent 

id_to_controller controller 

feedback player 

 

Name final_get_task 

Description Obtain surplus tasks for agents with no task  

Current state 5 

Next state 6 

Flow 
While reading ‘new_task_to_agent’ message 

↓ 
If this agent has asked controller for new task add it to memory 

                   ↓ (loop ends) 
If pair programming send message to find partner 

Inputs 

Message name From agent 

new_task_to_agent controller 

Outputs 

Message name To agent 

find_partner player 

 

Name do_task 

Description Update knowledge and send share information to partner if pair 
programming  

Current state 6 

Next state 7 

Flow 
Calculate output value of this agent doing task 

↓ 
Calculate output value of this agent doing all other tasks  

↓ 
Send message to controller with value of this agent doing all tasks 

↓ 
Send message to controller with contents of TMS 

↓ 
Send message to controller with contents of knowledge 
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↓ 
(Pair programming)  ↙            ↘ (Solo programming) 

While reading ‘find_partner’ message 
↓ 

Match partner and add partner ID to memory  
                   ↓ (loop ends) 

Send message to partner with this agent’s 
knowledge and expertise for current task 

↓ 

 

↓ 
Update knowledge and expertise for this agent for current task elements  

 

Inputs 

Message name From agent 

find_partner player 

Outputs 

Message name To agent 

perf_to_controller controller 

tms_to_controller controller 

know_to_controller controller 

share_know player 

 

Name share 

Description Send selected knowledge and expertise to team and if pair programming 
update knowledge with partner knowledge. 

Current state 7 

Next state 8 

Flow 
(Pair programming)  ↙            ↘ (Solo programming) 

While reading ‘share_know’ message  
↓ 

If partner is more expert than this agent increase 
knowledge and expertise for this agent 

                   ↓ (loop ends) 
Send message to partner with new knowledge 

and expertise 
↓ 

Send message to partner with this agent’s 
knowledge 

 

 

Send message to random ‘player’ agent with random information relating 
to this agent’s knowledge and expertise 
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Inputs 

Message name From agent 

share_know player 

Outputs 

Message name To agent 

reshare_know player 

fill_tms player 

 

Name tms 

Description Update TMS  

Current state 8 

Next state 9 

Flow 
While reading ‘fill_tms’ message 

↓ 
Update TMS with information relating to another ‘player’ agent 

                   ↓ (loop ends) 
(Pair programming)  ↙            ↘ (Solo programming) 

While reading ‘reshare_know’ message 
↓ 

Update TMS with information relating to partner 
                   ↓ (loop ends) 

 

↓ 
Send message to ‘controller’ with the output value of this agent’s current task 

Inputs 

Message name From agent 

fill_tms player 

reshare_know player 

Outputs 

Message name To agent 

val_to_controller controller 

For a detailed stategraph please refer to Appendix 1. 

To examine the model in greater detail please refer to the code in the digital resources described at 

Appendix 2. 
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6.6 Model application 

The application of the model described above is used to investigate hypotheses relating to the 

behaviour of TMS, differentiation and performance under conditions simulating the use of two 

eXtreme programming techniques. The application of the models starts with a simple simulation and 

successively introduces greater complexity and cognitive realism with the following two simulations. 

It is suggested that the use of XP techniques changes the cognitive mechanisms within a team, which 

may contradict the established literature relating to TMS.  Utilising agent-based modelling allows 

these questions to be explored.  

The first simulation, Model Tabula Rasa, utilises agents with no initial knowledge or TMS and 

simulates task work in an environment with a low knowledge range of 10. This simulates routine and 

repetitive work, as the same task elements will occur repeatedly. The simulation compares teams 

using the XP techniques versus traditional Waterfall techniques, namely, pair versus solo 

programming, and small versus large task sizes. The aim of this model is to examine the use of XP 

techniques in a simple environment allowing some comparison of XP and Waterfall techniques but 

also to set some benchmarks for the subsequent models.  

The second simulation, Model Novelty, introduces the concept of task novelty and complexity by 

increasing the knowledge range utilised by the model to 100, reducing the likelihood of task elements 

being repeated. The same conditions of no TMS and no initial knowledge were used, as was the 

comparison of XP versus traditional parameters.  The results of this model were compared with the 

results of the previous model in order to test hypotheses relating to teams working in novel and 

complex environments. 

The final simulation, Model Differentiation, retains the high knowledge range simulating software 

development teams working in a novel environment. This simulation introduces yet more cognitive 

realism by using agents that have existing knowledge and TMS with varying characteristics.  The 

initial knowledge simulates heterogeneous and homogenous initial knowledge in the team, and the 

presence or absence of a complete TMS simulates team members that have prior knowledge, or not, 

of each other. The same comparisons of pair versus solo programming, and small versus large tasks 

were carried out to test how various initial conditions relating to knowledge and TMS affect the team 

in terms of TMS, differentiation and performance over time.  

The results from these simulations will allow some preliminary insight into optimum team 

construction for software development teams by understanding how initial conditions, the use of XP 

techniques and the development of TMS and differentiation affect team performance.  
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Before those simulations were accomplished, an attempt to validate the model by aligning it with a 

previous paper (Ren et al., 2006) that describes an agent-based model simulating TMS was carried 

out. This is described in the following chapter.  
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Chapter 7:  Model Validation  

7.1 Introduction 

This chapter describes a validation exercise where the model is run with one simple condition to 

compare results with the behaviour of TMS, differentiation and team output as described in the 

literature.  

7.2 Theoretical framework 

There are many challenges associated with validating agent-based models (Gore and Reynolds, 2007, 

Louie and Carley, 2008, Roth, 2007). As a basic requirement verification has to take place; the 

developer has to be sure that there are no errors in the code of the model and the model has to be 

confirmed as operating as designed. Arguably the most difficult, the validation of the model has to 

show that the design accurately models the real life process that is being modelled. These operations 

are addressed with an iterative process. A simple model is developed and compared with known data, 

the results of which feed into the ongoing development of the model design. Validation is not simply 

a dichotomous attribute of a model - one cannot say that a model is either validated or not validated. It 

is a continuous scale whereby the model improves as it develops (Bryson et al., 2007). According to 

Sun (2009) assessing the absolute validity of a computational cognitive model is impossible. One can 

only aim for empirical adequacy and only when a more accurate one replaces the current model will 

the validity no longer stand. 

The potential benefits of a TMS for a team’s performance are clear as members can anticipate rather 

than react to other members’ behaviour. An accurate expertise recognition system and knowledge 

differentiation are essential characteristics of a well developed TM system and are necessary for 

knowing who knows what expertise, and bringing that expertise to bear. Additionally, accurately 

identifying expertise and having differentiated knowledge facilitates the sharing of tasks and 

completion of goals, reducing the workload by not having to duplicate knowledge and effort in a team 

(Faraj and Sproull, 2000). 

There is evidence to suggest that the presence of a developed TMS improves a group’s performance 
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(Austin, 2003, Faraj and Sproull, 2000, Lewis, 2004, Liang et al., 1995, Moreland, 1999, Ren et al., 

2006). Simply, longevity in a team and thus getting to know team members better will increase the 

quality of the TMS. A study by Reagans et al. (2005) considered teams of health professionals in a 

hospital carrying out joint replacement procedures. Findings suggested that experience working 

together was a significant predictor of team performance and moreover, those team members have 

more accurate and more sophisticated knowledge of who knows what on the team than their less 

experienced counterparts.  

Specialists emerge in a team as a result of a well-developed understanding of each other’s knowledge 

(Wegner, 1995). As the TMS becomes more efficient the knowledge in a team will become more 

differentiated (Hollingshead, 2000), as tasks will be directed to those team members with the most 

appropriate expertise thus enhancing relevant expertise further. Levesque et al (2001) found that, 

while studying teams of software development students, team members roles became increasingly 

specialised, in other words differentiation increased over time. In turn, an increase in differentiation is 

believed to have a positive impact on team performance due to tasks being directed to team member 

with the best knowledge for completing the task (Lewis, 2004, Littlepage et al., 2008)   

Austin (2003) looked at performance, differentiation and TMS accuracy in mature teams in different 

departments of an apparel and sporting goods company. Results showed that accuracy and 

differentiation have an influence on performance with the interaction between differentiation and 

accuracy having a significant effect on performance. This indicates that if the team members know 

accurately what expertise is in the team then tasks are efficiently directed to the most expert team 

member, having a positive impact on both performance and differentiation.  

Over time a TMS in a team will develop with the optimal state of a TMS being convergence. This is a 

state where all members of a team have the same, complete, accurate representations of the actual 

knowledge in the team (Brandon and Hollingshead, 2004). For TMS structures to develop 

Hollingshead (2001) found that individuals required cognitive interdependence, be aware of the 

expertise of others in the team and have convergence. In reality, it is unlikely that any team will 

achieve perfect convergence, however, this may not be necessary for effective and improving 

performance of a team. Additionally, the TMS will always be adapting as the knowledge in a team is 

constantly changing and this will always have some time lag, impacting on performance. It is also 

possible that the TMS in a team reaches a ‘good enough’ state of convergence and unless there is 

some team upheaval it will remain at a steady level.  In summary it would seem that in general terms 

developing an accurate TMS and increasing differentiation contribute to better outcomes for a team 

over time.  



Chapter 7. Model Validation   

79 

This model aims to simulate a single team process in order to establish that the behaviour of the 

model mirrors the behaviour of a TMS as described in previous research.   

7.3 Method 

The model used for this experiment was as described in previous chapters. There was one simple 

condition for this simulation as described in table 3 below.  

Number of agents 4 

Task size 20 

Work	
  mode Solo	
   

Knowledge range 1	
  to	
  10 

Iterations 200	
  

Table 3: Validation: Parameters for model  

Team size is one factor that has been shown to have an effect on TMS (Palazzolo et al., 2006) and 

smaller groups have been found to gain greater benefit from TMS than larger groups (Ren et al., 

2006). There are numerous variables that can be modelled and decisions have to be taken to choose a 

manageable set or, as previously discussed, the data can become unwieldy and difficult to analyse. 

For this work it was decided to use a constant team size of four throughout and model other factors 

that are of interest. Four was chosen as being an even number it lends itself to pair programming and 

being a small team the data can be easily analysed. Larger teams may be modelled in later work. 

An arbitrary task size of twenty was chosen to model a fairly detailed, normal task.  The range of 

knowledge was between 1 and 10 meaning that each task contained random numbers between 1 and 

10 and each agent could develop a maximum of ten knowledge streams. This was chosen as a number 

that would provide enough diversity of knowledge but not so much that the analysis of the data would 

be unwieldy.   

At the start of the simulation all agents had no knowledge and no associated transactive memory. The 

simulation was carried out 50 times with each simulation running for 200 iterations. A number of 

trials were carried out with varying numbers of iterations and 400 was judged to provide enough 

detail; and with greater numbers of iterations the model did not provide any further useful 

information.    
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7.4 Results 

The results show the behaviour of the model over time in terms of mean output ratio, mean TMS 

accuracy and mean differentiation. Error bars show standard error of the mean (SEM) where: 

€ 

SEM =σ n
 

where σ is standard deviation and n is sample size.  

Figure 5 shows a steady increase of the output ratio over time indicating that the tasks are being 

directed increasingly efficiently to the agent with the most appropriate knowledge resulting in a 

higher mean ratio between actual output and optimum output over successive iterations. The increase 

in output also indicates that agents are gaining specialism, so not only are tasks being directed to the 

best agent, but also the agents are becoming greater experts and thus delivering greater task output.  

 

Figure 5: Validation: Mean output ratio over time  

Figure 6 shows the mean TMS accuracy. The graph shows that TMS accuracy increases over 

subsequent iterations. This indicates that agents are learning about the knowledge of other agents over 

subsequent iterations. This is allowing tasks to be directed more efficiently to the agent with the best 

knowledge for the task. 
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Figure 6: Validation: Mean TMS accuracy over time 

Figure 7 shows the differentiation over time and shows that differentiation increases over time. This 

demonstrates that specialisation is taking place in the model with agents developing greater 

knowledge in fewer areas. The TMS is causing tasks to be directed more often to the agent with the 

most knowledge in that area thus increasing specialism further. 

 

Figure 7: Validation: Mean differentiation over time 

The results show that as expected, output, differentiation and TMS accuracy increase over time. The 
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TMS is serving the team by directing tasks in a more efficient manner to the agent that will produce 

the best task output for the team, thus in turn increasing differentiation.  

7.5 Discussion 

The aim of this simulation was to establish that the model simulates the behaviour of a TMS in order 

that further simulations can be carried out to investigate the research questions relating to the 

comparison of Agile and Waterfall methodologies.  

The model simulated a team of four carrying out a series of tasks with each team member having no 

initial allocated knowledge and no associated transactive memory of other team members. The model 

produced increasing mean output of the team over time, increasing mean differentiation, and 

increasing TMS accuracy.  

This supports the literature positing that accurately identifying expertise and having differentiated 

knowledge facilitates the sharing of tasks and completion of goals, reducing the workload by not 

having to duplicate knowledge and effort in a team (Faraj and Sproull, 2000). The model showed 

increasing output over time supporting Reagans (2005) who studied established teams of health 

professionals.  

It is known that specialists emerge in a team as a result of a well-developed understanding of each 

other’s knowledge (Wegner, 1995) as tasks are directed to those team members with the most 

appropriate expertise thus enhancing relevant expertise further. This simulation showed 

differentiation developing over time, which in turn positively influenced the output of the team being 

modelled. This supports the literature on differentiation (Austin, 2003, Levesque et al., 2001, Lewis, 

2004, Littlepage et al., 2008) indicating that if the team members know accurately what expertise is in 

the team then tasks are efficiently directed to the most expert team member, having a positive impact 

on both performance and differentiation.  

Over time a TMS in a team will develop with the optimal state of a TMS being convergence. This is a 

state where all members of a team have the same, complete, accurate representations of the actual 

knowledge in the team (Brandon and Hollingshead, 2004). The TMS accuracy in this validation 

model was found to increase with the curve flattening out slightly over time indicating that the speed 

to complete convergence is slowing down. This would support the idea that perfect convergence is 

unlikely and that a ‘good enough’ state of convergence may ensue. 
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7.6 Conclusion 

In summary, supporting the literature, this simple model simulates a simple team over time and 

demonstrates that developing an accurate TMS and increasing differentiation contribute to better 

outcomes for a team.  
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Chapter 8:  Aligning the model 

8.1 Introduction 

This chapter describes a further exercise in validation carried out on the model prior to running the 

simulations relating to this research. Alignment can be used to determine equivalence of models 

where the results of two models given the same simulation requirements can produce comparable 

results.   

8.2 Theoretical framework 

Alignment, or validation, of a model is the process used to compare a model with another model to 

determine if they produce the same results under the same tests. Determining equivalence of models 

can be a useful tool for validating models (Axtell et al., 1996b) or providing insight into the reasons 

for any differences, however the question of equivalence can be fraught with difficulty. Determining 

equivalence of two models is not to prove that two models are identical but whether, when claiming to 

model the same phenomena, they produce the same results.  

Axtell (1996a) carried out an alignment exercise by comparing two models that had been used for 

quite different aims, a simple model and a model that was much more complex. To do this the more 

complex model was asked to process a very simple scenario that was akin to one that the simple 

model could simulate. In this way they could compare the two models to establish if the models were 

equivalent in that that they produced the same results. Of course only the simple model would be 

validated as only a small element of the complex model was being tested.  

The alignment exercise produced mixed results, however, the results highlighted a number of issues 

with alignment of different models. Sensitivity of parameters can make a difference in the success of 

alignment; meaning that small changes in input parameter values can make large differences in the 

success or failure of alignment of the models. Secondly, the study identified that the problem of 

specifying 'equivalent' model behaviour is not trivial. Do the models produce distributions of results 

that cannot be distinguished statistically? Can the models be shown to produce the same internal 

relationship between their results? The study concluded that alignment is a useful methodology for 
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validation but care must be taken over interpretation of the results and awareness of the sensitivity of 

the models must be taken into account.  

Alignment with a prior model of transactive memory was chosen to carry out some initial validation 

of this model, however, only two previous models of transactive memory systems have been found 

Palazzolo et al. (2006) and Ren et al. (2006).  

Palazzolo et al. (2006) used Blanche to look into how different initial conditions influenced the 

development of the TMS. The model simulated initial knowledge, initial accuracy of TMS and 

network size, and how these parameters affected final accuracy of TMS and differentiation. 

Interestingly this model resulted in only a modest fit between the theoretical model and the 

computational model results, so they explored alternative explanations and modified their theoretical 

model based on the results. This is a demonstration of the cyclic nature of agent-based modelling 

where the model generates further questions that may assist with the adaptation of the theory. This 

can then in its turn influence the refinement of the agent-based model. 

Another example of an agent-based model of transactive memory systems was developed by Ren et 

al. (2006) who validated it by comparing it with a previous experiment into transactive memory 

(Liang et al., 1995). The original study (Liang et al., 1995) tested hypotheses that training a group 

together will have a positive affect on transactive memory and in turn the performance of the group. 

The measures of differentiation, task coordination and task credibility were used to infer the strength 

of the transactive memory system. Measures of performance included recall of information, assembly 

accuracy and time taken. The results suggested that groups that are trained together have greater recall 

and assembly accuracy but that there was no effect on time taken to complete the task. Also, the 

results indicated that group training has a positive effect on transactive memory, and that transactive 

memory mediates the effects of group training on performance. 

Ren et al., (2006) used ORGMEM to create a model to test the contingent effects of transactive 

memory on group performance and used the Liang et al. study to validate it. The independent factors 

used were group size, task volatility and knowledge volatility. The dependent factors were TMS 

accuracy and density, and performance measures of time and quality. Quality was assessed as a 

combination of the match between individual requirements and resources, and a group assessment of 

how knowledgeable each agent was. The agents were simulated through a training stage, starting with 

no initial knowledge, for two conditions - training individually and training within the team. Each 

team was then put through the testing stage under each of the training conditions. The results 

corresponded to the previous study and the researchers judged their model effectively validated. 
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It was decided to use the Ren et al. study for aligning models as they had used empirical data from a 

previous study to validate their model unlike the Palazzolo et al. model, which was purely theoretical.  

The model for this research was developed to explore the relationship between TMS activity and team 

performance with regard to various input factors, so departing from the research focus of the 

comparison of software development methodologies, this model was utilised in a training scenario, in 

the same manner as Ren et al. They simulated the training scenario in order to demonstrate some 

equivalence with the original Liang et al. (1995) paper. 

8.3 Method 

The independent factor used for Ren et al.'s validation exercise was training condition, where 

members of groups were trained as individuals or as a team. The dependent factors were TMS 

accuracy and density, differentiation and performance, where time and quality was measured. Quality 

was assessed as a combination of the match between individual requirements and resources, and a 

group assessment of how knowledgeable each agent was.  

In order to align the model with the Ren et al. model a number of model parameters were defined to 

emulate the Liang et al. and Ren et al. papers but as the modelling environments had some differences 

assumptions were made to produce the best reproduction of both experiments. So in that spirit, task 

size was defined as five, as with the Ren et al. model and the range of knowledge was 1 to 10 

meaning that each task contained five random numbers between 1 and 10, and each agent could 

develop a maximum of 10 knowledge streams. As with the Ren et al. model there were 50 three-agent 

teams for each condition, the team training condition and the individual training condition. Again 

mirroring the Ren et al. model, the training phase was run for 50 iterations and the testing phase for 

100 iterations. At the start of the training phase all agents had no knowledge and no TMS. For the 

testing phase the teams who had trained together retained their knowledge and their TMS, but the 

teams where the agents had been trained individually retained their knowledge and their TMS was 

empty.  

As with Ren et al. the three hypotheses were adapted from the Liang et al. paper as follows: 

1. Groups whose members are trained together rather than alone will perform better than groups 

whose members are trained alone. 

2. Groups whose members are trained together will develop higher quality TMSs than groups 

whose members are trained alone. 
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3. The development of TMSs will mediate the effects of group training on team output. 

The measures of team output, differentiation and TMS accuracy and density were taken at ten 

intervals over the 100 iterations.  

The two conditions were compared by reviewing graphs of the behaviour of the model over time and 

by repeated-measures ANOVAs. The mediation was measured using the methodology as defined by 

Baron and Kenny (1986) as used by both Liang et al. and Ren et al. 

8.4 Results 

The following graphs show the behaviour of the models over time under the different conditions. All 

results show the means for all 50 runs of the simulation. Error bars show standard error of the mean 

(SEM) where: 

€ 

SEM =σ n
 

where σ is standard deviation and n is sample size.  

The following graph (Figure 8) shows the mean for output ratio over the course of the 100 iterations 

of the testing phase of the simulation. It can be seen that output ratio for those groups that were 

individually trained is substantially reduced at the start of the simulation however output ratio 

increases rapidly until it almost converges with that for groups trained together. Output ratio for 

groups trained together also shows a steady increase throughout the simulation.  
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Figure 8: Alignment: Mean output ratio over time 

The following graph (Figure 9) shows the mean for TMS accuracy over the course of the 100 

iterations of the testing phase of the simulation. The elevated initial accuracy for individually trained 

groups is likely to be due to the TMS starting empty and the initial contents of the TMS being more 

accurate than a more mature, populated TMS; as it becomes more populated the accuracy drops then 

as the volume of content of the TMS approaches the group training condition the accuracy for both 

conditions becomes very similar.  

 

Figure 9: Alignment: Mean TMS accuracy over time 
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Figure 10 shows that the groups that are trained together start the simulation with a TMS that is 

almost complete in volume although not necessarily accurate (Figure 6, TMS accuracy). For those 

groups that are trained individually the TMS increasingly becomes populated to join the volume of 

TMS of the trained together condition.  

 

Figure 10. Alignment: Mean TMS completeness over time 

In addition to the parameters as measured by the Ren et al. model the measures for differentiation for 

this model have been recorded in line with the Liang et al study. Differentiation and TMS have a 

close relationship and this measure may help to explain the results. The following graph, Figure 11, 

Mean differentiation over time shows the differentiation over the course of the simulation. The rate of 

increase of differentiation increases over the course of the simulation with differentiation for groups 

that were trained together greater than the groups trained individually.  
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Figure 11: Alignment: Mean differentiation over time  

Ren et al. carried out t-tests to investigate whether the results were drawn from significantly different 

populations, however, this takes no account for the behaviour of the model over time, it only analyses 

a snapshot of the model at one point. Although it is not clear from their paper it is assumed that the 

results at the end of the simulation are used. In order to look at the behaviour of this model over time 

in addition to comparing conditions, repeated measures ANOVA was used in preference.  

Where a t-test is used to compare the means of two sets of data to test whether statistically they 

originate from the same or different populations, the ANOVA (or ANalysis Of VAriance) test 

provides a statistical test of whether or not the means of several groups are all equal, and therefore 

generalizes the t-test to more than two groups. A repeated measures ANOVA is used when all 

members of a sample are measured under a number of different conditions. As the sample is exposed 

to each condition in turn, the measurement of the dependent variable is repeated. Repeated measures 

ANOVA tests are typically used in longitudinal experiments where the repeated measure is time.  

Sphericity is an important assumption of a repeated measures ANOVA. It relates to the condition 

where the variances of the differences between all possible pairs of groups are equal. The violation of 

sphericity occurs when the variances of the differences between all combinations of the groups are not 

equal. If sphericity is violated, then the variance calculations may be distorted, which would result in 

an F-ratio (used to determine whether the variances in two independent samples are equal) that would 

be inflated. Mauchly’s test tests the hypothesis that the variances of the differences between 

conditions are equal and if the results of Mauchly’s test are significant then sphericity has been 
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violated and the F-ratios produced by the statistical software, in this case SPSS, cannot be trusted. 

Fortunately, if data violate the sphericity assumption there are several corrections that can be applied 

and all of these involve adjusting the degrees of freedom associated with the F-value. In all cases the 

degrees of freedom are reduced based on an estimate of how ‘spherical’ the data are; by reducing the 

degrees of freedom we make the F-ratio more conservative.  The Greenhouse-Geisser correction is the 

correction to use when ε < 0.75 (as stated on the SPSS output), and when ε > .75 then the 

Huynh-Feldt correction is to be used. For further explanation see Field (2005). 

Hypothesis 1 states that groups whose members are trained together will perform better than groups 

whose members are trained individually.  

In order to analyse the operation of the model in more detail over time a repeated-measures ANOVA 

was carried out on output ratio over the five iteration periods. Mauchly's test indicated that the 

assumption of sphericity had been violated (X2(9) = 345.85); therefore degrees of freedom were 

corrected using Greenhouse-Geisser estimates of sphericity ( = .39).  

The results show that over time overall output increased significantly, F(1.58, 154.43) = 325.17, p< 

.001. For the effect of training condition there was a significant overall effect indicating that output 

differed by training condition, F(1,98) = 66.43, p < .001. In terms of interaction effects there was 

significant interaction between training condition and subsequent iterations indicating that over 

subsequent iterations output was affected by training condition F(1.58, 154.43) = 47.87, p < .001. 

These results can clearly be seen on the graph shown above at Figure 5. Hypothesis 1 is supported; 

members who are trained together will produce greater output than groups whose members are trained 

individually. In addition, output generally increases over time, and output differed by condition over 

time. 

Hypothesis 2 states that groups whose members are trained together will develop a higher quality 

TMS than groups whose members are trained alone. As differentiation and TMS accuracy are both 

considered to be indications of strength of TMS repeated measures ANOVAs were carried out for 

both variables.  

Taking TMS accuracy initially, Mauchly's test indicated that the assumption of sphericity had been 

violated (X2(9) = 46.63); therefore degrees of freedom were corrected using Huynh-Feldt estimates of 

sphericity ( = .83). The results show that over subsequent iterations there is a significant increase in 

TMS accuracy, F(3.48, 341.13) = 267.72, p < .001. For the effect of training condition there was a 
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significant overall effect indicating that there was a difference in TMS accuracy between training 

conditions, F(1, 98) = 768.93, p < .001. Lastly, interaction effects show that there was also a 

significant interaction between training condition and subsequent iterations indicating that over 

subsequent iterations TMS accuracy was affected by training condition F(3.48, 341.13) = 360.34, p < 

.001. Hypothesis 2 is partially unsupported; these results show that groups that are trained 

individually have a more accurate TMS than groups that are trained together, however, reviewing 

figure 7, this could be due to the completeness of the TMS. Groups that are trained together have a 

more complete TMS at the start of the simulation, albeit perhaps less accurate, compared to a less 

complete, more accurate TMS for groups that are trained individually. The graphs for accuracy and 

completeness show that over time, completeness and accuracy converge and accuracy continues to 

increase.  

Secondly, addressing differentiation, Mauchly's test indicated that the assumption of sphericity had 

been violated (X2(9) = 513.49); therefore degrees of freedom were corrected using Greenhouse-

Geisser estimates of sphericity (= .30).  

The results show that over subsequent iterations overall differentiation increased significantly, F(1.21, 

118.75) = 1135.84, p < .001. For the effect of training condition there was a significant overall effect 

indicating that training conditions affected differentiation, F(1,98) = 25.54, p < .001 with groups 

being trained together having greater differentiation. In terms of interaction effects there was 

significant interaction between training condition and subsequent iterations indicating that over 

subsequent iterations differentiation was affected by training condition F(1.21, 118.75) = 20.26, p < 

.001. Again, this can clearly be seen on the graph at Figure 8 showing a significant increase in 

differentiation over time and by condition. Assuming that increased differentiation is a measure of a 

strong TMS then by measures of differentiation hypothesis 2 is partially supported.  

Hypothesis 3 states that the development of a TMS will mediate the effects of group training on team 

output. Following the procedure of Baron and Kenny (1986), as did both Liang et al. and Ren et al. 

the mediation effect of both TMS accuracy and differentiation were tested. No mediation effects were 

found.  

In summary the results are mixed. Hypothesis 1 was supported, hypothesis 2 partially supported and 

hypothesis 3 was unsupported. Training condition did have an effect on output, differentiation and 

TMS accuracy. In addition the picture over time is of note. Output increases generally over time and 

this is affected by training condition, with output over time greater for groups that are trained together 

but for groups trained apart output rises faster to converge with group trained together.  
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The results do appear plausible. It would seem sensible that groups with knowledge of each others' 

skills will initially have higher output than groups that have no knowledge of each other, and that after 

some time the output of the groups trained individually will 'catch up' due to the development of a 

TMS and differentiation. 

8.5 Discussion 

The results of this model show some agreement with both the Liang et al. and Ren et al. work. The 

independent variable of training condition had a significant effect on output. There was also 

significance for differentiation and TMS accuracy for training condition, over time and a significant 

interaction effect was found.  

The model does show significance in differentiation, which increased over time for both groups with 

it increasing faster over time for the groups that were trained together. This result indicates that the 

model is successfully simulating a TMS in the team over time by, as they learn more about other 

agents' expertise, directing tasks to agents that are most expert in that subject area thus increasing that 

agent's expertise further. This has the effect of increasing TMS and differentiation. 

It is asserted that there are some inconsistencies in the translation of the Liang et al. study to the Ren 

et al. one and also to this one. One of the problems with modelling the Liang et al. study is the 

translation of factors into the modelling environment and the interpretation of those factors. For 

example, Liang et al. measure TMS in terms of differentiation; task coordination and task credibility 

while Ren et al. measure TMS in terms of TM density and TM accuracy.  

Likewise, the measures for team performance differ in all three cases; Liang et al. measure accuracy 

of memory and errors made during assembly, Ren et al. measure group performance as a combination 

of the match between individual requirements and resources, and a group assessment of how 

knowledgeable the agent is, and finally this model measures output by comparing the optimum team 

output based on knowledge and expertise against the actual team output. Ren et al. measure 

performance partially by a group assessment of how knowledgeable an agent is and it is argued here 

that this is a function of a transactive memory system, and thus blurring the distinction between TMS 

and performance.  

There have been numerous studies of TMS, many differing methods for measuring it, and some 

discussion around its constitution (Akgun et al., 2005, Austin, 2003, Brandon and Hollingshead, 2004, 

Brauner and Becker, 2006, Faraj and Sproull, 2000, Griffith and Neale, 2001, Gupta and 

Hollingshead, 2010, Hollingshead, 2000, Hollingshead, 2001, Jackson and Moreland, 2009, Lewis, 
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2003, Prichard and Ashleigh, 2007, Zhang et al., 2007). Some of the factors used to measure TMS 

include differentiation, coordination, knowledge stock, TMS consensus, TMS accuracy, credibility 

and communication. The developers of a model of transactive memory necessarily have to select and 

interpret measures of transactive memory that can be translated into the logical world of a modelling 

environment.  

These problems demonstrate the issues relating to translating a verbal theory into a model that is 

accurate. The definitions, assumptions, processes and parameters all have to be written in English 

alongside the code. Due to the nature of the English language this version will be a woollier and less 

precise version of the model code, and is also potentially open to inconsistent interpretation by the 

reader due to ambiguity. In contrast the model version of the theory necessarily has to be defined with 

rigour and cannot include any ambiguity. It is also possible that due to the model having to be defined 

in every detail during the development process, omissions or inconsistencies in the English language 

version may be discovered and assumptions made (Sun, 2009). 

The modelling environment is logical, numerical and absolute with no room for vague or imprecise 

parameters. The real world however, is not, and this can be especially true for the behaviour of people 

who can be vague, imprecise and inconsistent. This presents problems for the modeller who by 

necessity has to make assumptions relating to value or process. In illustration of this point the Liang et 

al. paper tested task credibility, which was a measure of the level of trust each agent had for each 

other's knowledge and measurement of this variable was carried out by third party judges observing 

behaviour and making an assessment. Ren et al. chose to measure TM in terms of TM density and 

accuracy. The mapping of Liang et al.'s measure onto Ren et al.'s measure is difficult to evaluate and 

likewise onto the measures for this model of TM in terms of completeness, accuracy and 

differentiation.  

In addition to showing some of the issues with the translation of theory into a model, this exercise has 

also highlighted some of the issues with comparing different modelling environments. Different 

modelling environments vary in their detail and construction with different treatment of variables, 

assumptions, and processes. In a model, the interaction of input and processes produces emergent 

behaviour. In different modelling environments the input variables and the processes will be different 

in some respects, otherwise the models would be identical. It is the mapping of these variables and 

processes between modelling environments that can make it difficult to compare models.  

The Ren et al. model appears to be a more complex model than ours. This should not be a drawback 

as simple and complex models have been successfully aligned before (Axtell et al., 1996a). This 

model and the model described in the Ren et al. paper were clearly designed for different purposes 



Chapter 8. Aligning the model   

96 

and both were utilised in a simple manner in order to carry out this alignment. The comparison of the 

output and any emergent behaviour will allow some comparison but any differences could be as a 

result of differences in the design of each model or the mapping of factors between them. It is 

possible that the equivalence of some variables is problematical due to semantic or conceptual 

reasons. 

In addition small changes to agents can have very different effects at the macro level and this is 

difficult to identify in more complicated models (Boero et al., 2008). This sensitivity of the model is 

important when making assumptions. If the parameters or values change will the model still reliably 

predict known behaviour and how much do they have to change to render the model invalid? One of 

the strengths of agent-based modelling is the variability of the combinations of parameters and 

variables, each variation potentially delivering different emergent behaviour. It is these nuances in 

behaviour as a result of small changes in input that establish agent-based modelling as a powerful 

tool. So, simple models, which address the question, are preferred (Burton and Obel, 1995).  An 

additional factor in agent-based modelling that is often absent in traditional empirical experimentation 

is the continuous observation of model behaviour over time. The Ren et al. model did not evaluate 

any results over time; had they done so, they may have garnered different results.  

In terms of transactive memory research this exercise has produced some initial results relating the 

behaviour of agents under particular initial conditions. It has introduced some further questions for 

subsequent simulations and development of the model. As stated earlier the primary focus for this 

model is on how TMS and performance is affected in Agile environments and this exercise has 

provided some initial data with which to progress the research focus.  

Regarding the validation exercise, it is dangerous to make assumptions of validation based on such a 

simple test such as this. Variation of variables can make large changes to the behaviour of a model 

and the factor of time has to be taken in to account, which Ren et al. did not do. However, as 

discussed earlier, the translation of verbal theory and subjective, vague, potentially ambiguous 

concepts into a logical, precise model is open to error, and great care must be taken to ensure validity 

at this low level. For this exercise the mapping of the variables used in the Liang et al. study onto the 

Ren et al. model and also onto this model was questionable.  

8.6 Conclusion  

In conclusion, the validation carried out by Ren et al. was simplistic, using only one previous study 

and with no testing for sensitivity of changes in values or parameters. In hindsight, there was not 

enough detailed information relating to the Ren et al. model in order to carry out an effective 
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alignment. It was also perhaps naive to expect this exercise to succinctly validate this model, but it 

has highlighted some questions and provided a test of the model resulting in some interesting output.  

This exercise has highlighted that validation has to be more than just a few tests for statistical 

significance. There has to be an iterative process where the model becomes more plausible as it 

develops. The relationship between model and empirical or academic data is not one-way. Research 

will validate the model but data from the model may open up new lines of research, which will in turn 

feed back into the model design. The relationship is a circular one resulting in ongoing exploration of 

the domain of research, with successful validation allowing this cycle to continue. 
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Chapter 9:  Model Tabula Rasa 

9.1 Introduction 

Previous chapters have discussed team and knowledge processes, Transactive Memory Systems 

(TMS), eXtreme programming (XP), and agent-based modelling (ABM). This chapter describes the 

first simulation, Model Tabula Rasa, which utilises agents with no initial knowledge or TMS and 

simulates task work in an environment with a low knowledge range of 1 to 10. This simulates routine 

and repetitive work, as the same task elements will occur repeatedly.  

The aim of this simulation is to examine the use of XP techniques in a simple environment allowing 

some comparison of XP and Waterfall techniques but also to obtain some benchmarks for subsequent 

simulations.  

9.2 Theoretical framework 

Specialists emerge in a team as a result of a well-developed understanding of each other’s knowledge 

(Wegner, 1995). As the TMS becomes more efficient the knowledge in a team will become more 

differentiated (Hollingshead, 2000), as tasks will be directed to those team members with the most 

appropriate expertise thus enhancing relevant expertise further. 

There is likely to be an optimum level of differentiation for a particular set of circumstances and 

conditions. Very low or non-existent levels of differentiation produce dysfunctional teams, as there 

will be no requirement for interaction if all members have the same knowledge (Klimoski and 

Mohammed, 1994). Less differentiated knowledge will inhibit the need for team members to work 

together thus rendering the TMS less useful (Brandon and Hollingshead, 2004).  One view suggested 

by the literature states that performance advantages deriving from TMS are greater when group 

members have higher differentiation (Austin, 2003, Larson, 2007, Lewis, 2004, Littlepage et al., 

2008). Austin suggests that differentiation means that it will be easier to recognise experts and as such 

the team members are more likely to agree on the distribution of expertise in the team. In support of 

this Lewis found that teams with initially diverse knowledge were better able to develop TMS than 

teams with overlapping knowledge and that a stronger TMS was positively related to team 
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performance. 

So, it is essential to have some differentiation in a team, but at the other extreme of very high 

differentiation there is an essential requirement for some overlap in team knowledge to allow effective 

communication, coordination and shared expectations (Cooke et al., 2000). 

It has been proposed that tasks divided into smaller chunks and higher differentiation of team 

knowledge result in higher team performance (Littlepage et al., 2008). The Littlepage et al. study, 

however, was carried out on staff doing relatively routine work and the findings may not apply in an 

innovative environment such as software development where tasks are often more novel, complex and 

non-routine (Brandon and Hollingshead, 2004). There is an alternative and contradictory view that 

there is a positive relationship between task size and performance when looking at familiar tasks in 

software development (Espinosa et al., 2007a). Support for this is scarce, however, endorsing the 

view of Littlepage et al. 

XP in software development has become more widespread and it may be useful to understand how its 

elements affect team processes and outcomes. The importance of TMS is well recognised as 

positively influencing the performance of software development teams by ensuring that expertise is 

effectively utilised (Akgun et al., 2006, Faraj and Sproull, 2000). As discussed in a previous chapter 

there is also much empirical work on the benefits of XP (Hannay et al., 2009, Macias, 2004, Nosek, 

1998, Williams et al., 2000), however, there is a scarcity of work looking at how different 

development methodologies facilitate expertise coordination and knowledge processes.  This was 

addressed in a study by Maruping et al. (2009) who examined the relationship between eXtreme 

programming practices, expertise coordination and software quality in software project teams. This 

study found that collective ownership of code attenuates the relationship between expertise 

coordination and software product quality. This study focussed on collective ownership of code and 

coding standards but their theoretical model indicates that studies of other elements of eXtreme 

programming may also yield similar results. It could be argued that pair programming and collective 

ownership of code will have similar effects on TMS.  

Hypothesis 1a. The eXtreme programming practice of pair programming moderates the relationship 

between TMS accuracy and output. TMS accuracy will be lower for pair programming conditions, as 

by working together closely and having overlapping knowledge of the project, as suggested by 

Maruping (2009), there is reduced interdependency in the team and thus less reliance on the TMS. 

TMS is especially important when teams perform complex and unpredictable tasks and it can be 

shown that when teams face complexity they resort to team familiarity (TMS accuracy) to reduce the 
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complexity of the task (Espinosa et al., 2007a). Reduced task size is one element of eXtreme 

programming and it is proposed that large task size is one characteristic that can render the task 

complex, demanding higher reliance on TMS for larger tasks. 

Hypothesis 1b. The eXtreme programming practice of small task size moderates the relationship 

between TMS accuracy and output. TMS accuracy will be lower for small task conditions.   

As found by Maruping et al., knowing the location of expertise in a team becomes less important 

when there is collective ownership of code, which can substitute for expertise coordination 

mechanisms such as TMS (Maruping et al., 2009). Whether this argument could be extended to pair 

programming is an interesting question. If team members are working in pairs, knowledge is more 

likely to be distributed evenly around the team resulting in lower differentiation.  

With pair programming, the risk from losing key programmers is reduced as long as the pairs are 

changed frequently, because there are multiple people familiar with each part of the system. Also, the 

pair approach is better at leveraging expertise by pairing experts with less skilled partners (Williams 

et al., 2000). Again this would aid the distribution of knowledge around the team reducing 

differentiation. 

 

Figure 12: Tabula Rasa: Diagram of moderation relationships hypotheses 1a and 1b 

Hypothesis 2a. The eXtreme programming practice of pair programming moderates the relationship 

between differentiation and output. Differentiation will be lower for pair programming conditions. 

As mentioned earlier it is proposed that tasks divided into smaller chunks and higher differentiation of 

team knowledge result in higher team performance (Littlepage et al., 2008). This does not fit well 

with the previous hypothesis 2.a. as the two eXtreme programming practices would appear to conflict 

with each other. However, it is proposed to test it with the model.  

Hypothesis 2b. The eXtreme programming practice of small task-size moderates the relationship 

between differentiation and output. Differentiation will be lower for small task conditions. 
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Overall software quality is affected far more profoundly by improvements to developer knowledge, 

which reduces future defect creation, than by simply removing defects from current individual 

projects. By increasing the overall knowledge stock and reducing the differentiation of knowledge in 

the team pair programming can contribute strongly to this optimum defect removal efficiency 

(Williams et al., 2000). 

 

Figure 13: Tabula Rasa: Diagram of moderation relationships hypotheses 2a and 2b 

There is much research looking at the benefits of pair programming and to summarise some of it 

Hannay et al. (2009) carried out a meta-analysis on the effectiveness of pair programming finding a 

small positive overall effect of pair programming on software quality. It is not unreasonable to 

assume, however, that there are more complex relationships influencing the outcomes of pair 

programming projects. With pair programming, programmers with low expertise benefit with 

increased software quality, intermediates from decreased time spent and the experts generally have no 

overall benefits at all (Arisholm et al., 2007). Theory predicts that experts perform better on complex 

tasks and that novices perform better on non-complex tasks (Chi et al., 1981, Chi et al., 1982, 

Chomsky, 1957, Ericsson and Charness, 1994) but by implementing pair programming the novices 

can be elevated to almost expert status (Hannay et al., 2009). Pair collaboration compensates for lack 

of understanding so it would seem sensible to employ pair programming when task complexity is low 

and time is short or when task complexity is high and correctness is important.  

The literature would seem to suggest that for optimum performance in traditional team environments 

the TMS develops hand in hand with differentiation with the emergence of specialists (Austin, 2003, 

Brandon and Hollingshead, 2004, Hollingshead, 2000, Wegner, 1995). The introduction of XP 

practices, it is argued, changes the way that TMS is utilised in a team and the mechanisms for the 

emergence of specialists, or in other words, differentiation.  For optimum performance in XP teams, 

differentiation, and the reliance on TMS is reduced, as there is elevated communication and sharing of 

task work. 

Hypothesis 3a. The eXtreme programming practice of pair programming is positively related to 
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output of the team. 

Hypothesis 3b. The eXtreme programming practice of small task-size is positively related to output 

of the team. 

This first model was developed to start the exploration of the relationships between these themes. For 

this initial model it was decided to use a limited knowledge set and thus model simple routine tasks. 

Also, all agents started the simulation with no knowledge and no transactive memory simulating 

novice team members with no knowledge of each other. The introduction of more complex, non-

routine tasks, and agents with more expertise will be addressed in a later chapter.  

One of the strengths of agent-based modelling is the ability to analyse behaviour over time. As 

described above, there is plenty of literature relating to TMS and to XP but a scarcity relating to the 

effects of such over time. It would be expected that the effects of the above hypotheses would be 

amplified over time but this model will illustrate if that indeed takes place.   

9.3 Method 

The model used for this experiment was as described previously.  The two dichotomous variables of 

task size and work mode were manipulated to produce four conditions for this simulation.  Task size 

was 4 or 20 and work mode was working solo or working in pairs. 

The range of knowledge was between 1 and 10 meaning that each task contained random numbers 

between 1 and 10 and each agent could develop a maximum of 10 knowledge streams.  At the start of 

the simulation all agents had no knowledge and no transactive memory. 

Number of agents 4 

Task size 4	
  or	
  20 

Work	
  mode Solo	
  or	
  in	
  pairs 

Knowledge range 1	
  to	
  10 

Initial knowledge None 

Initial transactive memory None 

Table 4: Tabula Rasa: Parameters for model 
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Condition no. Task size Work 
mode No. of iterations 

1 4 Pair 2000 

2 4 Solo 1000 

3 20 Pair 400 

4 20 Solo 200 

Table 5: Tabula Rasa: Description of conditions 

Each condition was simulated 50 times. The volume of work delivered for each simulation defined the 

number of iterations for each condition. For each condition 16000 task elements were delivered to the 

team. After a number of trials, this number of task elements was chosen as it was deemed sufficient to 

show emergent behaviour and any more did not reveal any further information. 

9.4 Results 

The results will describe firstly the descriptive statistics, look at the behaviour of the model over time 

and then look more closely at the behaviour of the model at the final iteration. Table 6 provides the 

descriptive statistics and the correlations among the constructs in the model. It shows that working 

mode (coded 0 for solo programming; 1 for pair programming) is positively significantly correlated to 

output and TMS accuracy and negatively significantly correlated with differentiation. Task size 

(coded 0 for large tasks; 1 for small tasks) is negatively, and significantly correlated with output and 

positively correlated with both differentiation and TMS accuracy. TMS accuracy is significantly, 

positively correlated with both differentiation and output and differentiation is negatively correlated 

with output. These results provide preliminary evidence of the importance of TMS, differentiation and 

eXtreme programming practices.  
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 Variable n Mean SD 1  2  3  4  

1 Work mode            

2 Task size            

3 Differentiation 200 1.8E3 2.69E3 -.550 *** .598 ***     

4 TMS accuracy 200 0.96 0.06 .712 *** .505 *** .189 ***   

5 Output ratio 200 0.99 0.01 .899 *** -.303 *** -.843 *** .344 *** 

Notes: ***p<0.001, n = number of runs of the simulation. 50 runs for each of the 4 conditions 

Table 6: Tabula Rasa: Descriptive statistics and correlations 

Firstly graphs of the behaviour of the model over time will be considered and secondly the behaviour 

of the results of the final iteration of the model will be examined more closely with correlation and t-

tests.  

The following graphs illustrate the means of the model data over time. Error bars show standard error 

of the mean (SEM) where: 

€ 

SEM =σ n
 

where σ is standard deviation and n is sample size. Where error bars are not apparent on the graphs, 

they are too small to be visible. 

Figure 14 clearly shows that performance is consistently greater for pair programming conditions. For 

solo conditions output increases faster over time with output being consistently better for large tasks. 

This result supports hypothesis 3a; pair programming is positively related to output. There is also an 

effect of task size on output relating to hypothesis 3b, “small task size is positively related to output”. 

This graph shows that large tasks are associated more with higher output, especially for solo 

programming conditions, contradicting hypothesis 3b. 
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Figure 14: Tabula Rasa: Mean output ratio over time  

The graph for differentiation over time (Figure 15) illustrates a dramatic increase in differentiation for 

solo programming with small tasks. For solo programming with large tasks the graph shows a smaller 

but increasing differentiation.  The conditions with pair programming show low differentiation for 

both task conditions. When comparing this graph with the output, Figure 14 above, it would indicate 

that high differentiation produces lowest performance and that work mode would seem to moderate 

the relationship between differentiation and output; hypothesis 2a is supported. Additionally, the 

graph shows that large tasks result in lower differentiation, thus hypothesis 2b is unsupported. 
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Figure 15: Tabula Rasa: Mean differentiation over time  

The graph below (Figure 16), TMS accuracy, shows that TMS accuracy is consistently higher for pair 

programming conditions with small task conditions producing slightly higher TMS accuracy. Solo 

conditions with small tasks have higher TMS accuracy than with large tasks and the difference for 

solo programming is larger than for pair programming. By reviewing the graph of TMS completeness 

(Figure 17), it can be seen that the solo programming with large tasks condition took longer to build a 

TMS than the other conditions. As the simulation is separated into large tasks there are fewer 

opportunities to exchange information relating to each other’s knowledge and by working solo this 

exacerbates this effect.  Comparing this graph with the output graph (Figure 14) it would indicate that 

the relationship between TMS accuracy and output is moderated by work mode in support with 

hypothesis 1a however contradicting hypothesis 1a TMS accuracy is higher for pair programming. In 

support of hypothesis 1b by comparing the TMS accuracy graph with the output graph, task size does 

moderate the relationship between TMS accuracy and output but contradicting hypothesis 1b there is 

a negative relationship between task size and performance with TMS accuracy higher, and output 

lower for small tasks.  
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Figure 16: Tabula Rasa: Mean TMS accuracy over time  

 

Figure 17: Tabula Rasa: TMS completeness over time 

The following table shows the independent t-tests for work mode and task size for output ratio, TMS 

accuracy and differentiation. These tests confirm the results shown on the graphs above and give 

some statistical verification of the graphs. 

 



Chapter 9. Model Tabula Rasa   

109 

 Variable Mean SE t df  

Pair programming 0.999 9.8 E-6 
Output ratio 

Solo programming 0.981 6.3 E-4 
-28.87 99.05 *** 

Pair programming 0.996 2.1 E-4 
TMS accuracy 

Solo programming 0.915 5.7 E-3 
-14.25 99.26 *** 

Pair programming 322.36 18.27 
Differentiation 

Solo programming 3.268E3 317.63 
9.26 99.65 *** 

Notes: n=200, ***p<0.001, (n = number of runs of the simulation. 50 runs for each of the 4 

conditions) 

Table 7: Tabula Rasa: Independent t-tests for work mode. 

 

 Variable Mean SE t df  

Small tasks 0.987 1.2 E-3 
Output ratio 

Large tasks 0.994 6.2 E-4 
4.48 146.65 *** 

Small tasks 0.985 1.3 E-3 
TMS accuracy 

Large tasks 0.927 6.8 E-3 
-8.23 106.31 *** 

Small tasks 3.40E3 304.70 
Differentiation 

Large tasks 191.64 16.05 
-10.51 99.54 *** 

Notes: n=200, ***p<0.001, (n = number of runs of the simulation. 50 runs for each of the 4 

conditions) 

Table 8: Tabula Rasa: Independent t-tests for task size. 

To test hypotheses 3a and 3b independent t-tests were carried out to determine if work mode and task 

size had significant effects on output. Pair programming conditions (M = 0.999, SE = 9.8 E-6), 

resulted in significantly higher output than solo programming conditions (M = 0.981, SE = 6.3 E-4). 

This difference was significant, t(99.05) = -28.87, p>0.001; This supports hypothesis 3a. 

Large task conditions (M = 0.994, SE = 6.2 E-4), resulted in significantly higher output than small 
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task conditions (M = 0.987, SE = 1.2 E-3). This difference was significant t(146.65) = 4.48, p>0.001. 

This contradicts hypothesis 3b, which predicted that small tasks would result in significantly higher 

output. 

T-tests were also carried out for the effects of pair programming and task size on TMS accuracy and 

differentiation, which show significant positive main effects for all relationships apart from the effect 

of working mode on differentiation. This relationship showed a positive relationship between large 

tasks and differentiation. To assess the moderation effects hypothesised the graphs below show the 

relationships between both TMS accuracy and differentiation with output and each other.  

Below are graphs derived from data from the final iteration of the model, which show the 

relationships hypothesised. Figure 18 shows the relationship between output and TMS accuracy. The 

blue lines show the interaction effects of task size and the red lines show the interaction effects of the 

work mode, showing some support for hypotheses 1a and 1b. The graph shows the strong effect of 

pair programming on output and that TMS accuracy is higher for pair programming conditions than 

for solo programming conditions. In addition it shows an advantage for large tasks for both solo 

programming conditions as the results of the t-test showed. It also shows a larger difference in output 

and TMS accuracy relating to task size for solo programming conditions than for pair programming 

conditions. This demonstrates the moderating effects of both work mode and task size on the 

relationship between TMS accuracy and output but contradicts hypotheses 1a, as TMS accuracy is 

high for pair programming conditions.  
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Figure 18: Tabula Rasa: output by TMS accuracy 

Hypotheses 2a and 2b assert that the relationship between differentiation and output is moderated by 

XP conditions. Figure 19 depicts this, showing that, for solo programming, small task conditions, 

differentiation is high for lowest output and large task size seems to have a small advantage. The blue 

lines show the interaction effects of task size and the red lines show the interaction effects of the work 

mode, showing some support for hypotheses 2a and 2b. However for pair programming, performance 

is highest with task size appearing to have little effect. This demonstrates the moderating effect of XP 

practices on the relationship in support of hypotheses 2a and 2b, however, differentiation is lower for 

pair programming and large tasks. 
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Figure 19: Tabula Rasa: output by differentiation 

The graph at Figure 20 shows the relationship between TMS accuracy and differentiation. The blue 

lines show the interaction effects of task size and the red lines show the interaction effects of the work 

mode. It shows a negative relationship for pair programming with TMS accuracy high and 

differentiation being low. For solo programming TMS accuracy is lower with TMS accuracy and 

differentiation being higher for small tasks. 

 

Figure 20: Tabula Rasa: TMS accuracy by differentiation 
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9.5 Discussion 

The hypotheses for this model were based on the literature relating to team performance, transactive 

memory systems, differentiation, tasks and XP techniques. There are many dependencies, complex 

relationships and some potential disagreement. The aim of this model was to try and clarify how the 

different elements relate to one another with a view to deeper investigation in future models.  

The hypotheses considered the relationships between work mode and task size factors, TMS, 

differentiation and output. Hypotheses 1a, 1b, 2a and 2b all predicted a moderating effect of work 

mode and task size on relationships with output, and 3a and 3b predicted that pair programming and 

small tasks would have a positive effect on output. 

The independent t-tests and the graphs show a strong main effect of working mode on output 

demonstrating that pair programming has a positive relationship with output in support of hypothesis 

3a. The t-test for task size showed a significant positive main effect between task size and output 

contradicting hypothesis 3b. T-tests were also carried out for the effects of pair programming and task 

size on TMS accuracy and differentiation, which show significant positive main effects for all 

relationships apart from the effect of working mode on differentiation. This relationship showed a 

positive relationship between large tasks and differentiation.  

The results of the t-tests provide some information but of course the dynamics of the results are more 

complex as these results show main effects and do not take into account any moderation for work 

mode or task size. The graphs, Figures 18 to 20, can give some insight into these moderation effects. 

It was expected that differentiation would be reduced for pair programming and small task conditions 

and this was partially found. Differentiation remained very low for pair programming conditions and 

for solo conditions with large tasks, however, differentiation rose quickly for solo conditions with 

small tasks.  

It was also expected that TMS accuracy would be reduced for pair programming and small task 

conditions however this was not found. In contradiction of the hypotheses, TMS accuracy was higher 

for pair programming conditions and small tasks produced higher TMS accuracy for both 

programming conditions.  

In summary, these results suggest that in pair programming conditions, with low differentiation, TMS 

accuracy is important for output. According to this model, pair programming generates high 

performance, high TMS accuracy and low differentiation, with large tasks having a weaker but 

positive effect on output. Solo programming produces lower performance and lower TMS accuracy, 
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with an advantage for large tasks; however, differentiation with small tasks produces substantially 

increased differentiation. 

There is some discrepancy in the literature relating to work mode and task size factors and 

differentiation. Small tasks are expected to increase differentiation whereas pair programming is 

expected to reduce it. Littlepage et al. (2008) predicted high differentiation with smaller tasks, 

resulting in higher performance but pair programming is expected to reduce differentiation and raise 

performance (Hannay et al., 2009, Maruping et al., 2009, Williams et al., 2000). Some explanation for 

this apparent discrepancy was sought by this model to identify the cumulative effects of the 

combination of XP factors. This model did indeed find that small tasks increased differentiation in 

solo conditions however in pair programming conditions differentiation was the lowest. The model 

also found in support of the literature (Hannay et al., 2009, Maruping et al., 2009, Williams et al., 

2000) that pair programming reduced differentiation and increased output.  

It is clear from the model that pair programming has a dominant effect but the results for solo 

programming can be viewed in respect of the literature. The solo programming condition with small 

tasks produced the lowest output yet substantially higher differentiation than any other condition. 

Austin (2003) suggests that it is easier to recognise experts when differentiation is higher and thus 

TMS accuracy will be higher. This model demonstrates that, for solo conditions, this is the case 

however this does not translate into higher output in contradiction of the literature that suggests that 

performance advantages deriving from TMS are greater when group members have higher 

differentiation (Austin, 2003, Larson, 2007, Lewis, 2004, Littlepage et al., 2008).  The results of this 

model also conflict with the findings of Lewis who found that teams with initially diverse knowledge 

were better able to develop TMS than teams with overlapping knowledge and that a stronger TMS 

was positively related to team performance. So, for solo programming this model found that higher 

output was attained for large tasks but with lower differentiation and lower TMS accuracy. 

Austin (2003) found that TMS accuracy is the most significant predictor of team performance and this 

model supported that finding. 

Whether pair programming creates high or low interdependence has not been addressed by the 

literature. It would seem plausible that as cognitive interdependence relates to the outcome of an 

individual being dependent on other team members then working in pairs would create high cognitive 

interdependence. If this is so then pair programming may also foster high levels of TMS accuracy, as 

it is dependent on cognitive interdependence. Maruping et al. (2009) found that collective ownership 

of code attenuates the relationship between expertise coordination and software product quality and it 

could be argued that pair programming will have similar effects on TMS. By working together closely 
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and having overlapping knowledge of the project, there is reduced interdependency in the team and 

thus less reliance on the TMS. The results of this simulation contradict Maruping finding that pair 

programming produced high levels of output and corresponding high levels of TMS accuracy 

indicating that even with high levels of shared knowledge, i.e. low differentiation, TMS accuracy 

remains important.  

The range of knowledge used in this model was very small, only 1 to 10, and it could be construed as 

representing routine, repetitive tasks. Indeed, the same elements will appear many times in the tasks 

presented to the agents in the model, as there are so few of them. This may explain why the 

differentiation for working in pairs produces such high differentiation; by working together and 

sharing knowledge in such a narrow range of knowledge team members' knowledge grows very 

quickly. 

A number of studies have suggested that task novelty and complexity would introduce higher levels 

of task interdependence (Brandon and Hollingshead, 2004, Faraj and Sproull, 2000, Hoegl and 

Gemuenden, 2001) however Hoegl and Gemuenden found limited support for the idea that task 

innovativeness affects the relationship between team coordination and performance. Lui and Chan 

(2006) in a study looking at expert versus novice programmers suggest that pair programming works 

best when a pair encounters challenging programming problems.  

Due to the very small range of knowledge over which this model operated, namely 1 to 10, the TMS 

was able to 'get up to speed' very quickly. Each agent was able to learn within a few iterations the 

knowledge of the other agents. It is suggested that in a model using a much larger knowledge range 

the TMS would take some time to develop.  

9.6 Conclusion 

The hypotheses for this simulation predicted that the XP techniques of pair programming and small 

task size would improve output and this was partially supported with pair programming generating 

higher output. Large tasks were associated with higher output.  

It was expected that pair programming would alter the relationships between TMS accuracy and 

differentiation with output and this was found. Pair programming improved output and there was 

generally a positive relationship between TMS accuracy and output, and, as expected pair 

programming generated lower differentiation. The graphs indicated some moderating effects of work 

mode and task size on the relationships between output, TMS accuracy and differentiation. For solo 

programming this model found that higher output was attained for large tasks but in contradiction of 
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the literature, with lower differentiation and lower TMS accuracy. 

This model revealed some interesting insights into the relationships between work mode and task size 

factors, TMS, differentiation, and performance. The model used agents with no initial knowledge or 

TMS, which is unrealistic, and used a very simple knowledge range. Subsequent chapters will 

describe further simulations using a substantially larger knowledge range, 1 to 100, simulating higher 

task complexity and novelty, and agents will be furnished with expertise and TMS for simulations to 

investigate the effects in more realistic settings.  
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Chapter 10:  Model Novelty 

10.1 Introduction 

The previous chapter focussed on a simple initial model with a small range of knowledge simulating 

repetitive routine tasks. The model found that work mode and task size to a lesser degree moderate the 

relationships between output and TMS accuracy, and differentiation. Pair programming generated 

higher output with low differentiation and high TMS accuracy, while solo programming produced 

lower output with an advantage for large tasks generating lower TMS accuracy and lower 

differentiation. 

Previously the model has used a knowledge range of only 1 to 10 and representing routine and 

repetitive tasks. This chapter describes the same model but replacing the knowledge range with 1 to 

100. As the task sizes for the model are 4 or 20 in size this larger knowledge range will deliver tasks 

that are more novel and complex; the intention being to simulate the environment of software 

developers where they face less routine tasks that include novel, complex problems. 

10.2 Theoretical framework 

Software development projects are not usually repetitive and routine; they often vary considerably in 

levels of innovativeness with development of new software solutions presenting higher levels of task 

complexity, novelty and technical uncertainty (Hoegl et al., 2003).  

Increases in complexity and novelty of tasks will always have a negative effect on performance.  

(Espinosa et al., 2007a, Gibson, 1999). There are contradictory views on the moderating influence of 

task complexity on the relationship between TMS and performance and since complex tasks introduce 

more demand for team members it may be argued that more complex tasks increase team 

interdependency.   

Low cognitive interdependence can work for routine simple tasks but when tasks are complex, 

innovative and non-routine there is a high need for cognitive interdependence (Brandon and 

Hollingshead, 2004). A study by Faraj and Sproull (2000) considered team coordination by looking at 
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TMS and performance of software development teams. They intentionally used homogenous tasks but 

tested for the moderating effect of task uncertainty and found no significant relationships. Drawing on 

previous research however they propose that task uncertainty and complexity would moderate the 

relationship between expertise coordination (TMS) and team performance in a more heterogeneous 

task set. There is limited support, however, for the notion that task innovativeness moderates the 

relationship between the TMS and team performance (Hoegl and Gemuenden, 2001).  

It has been found that groups with lower member turnover have higher performance (Argote et al., 

1995). The TMS of a team is damaged by the replacement of a member and it takes time for it to 

adapt to the new team constitution. However the impact of turnover on performance is lower for 

complex tasks than for simple tasks, implying that innovation lowers the deleterious effect of turnover 

on the team. If the work of the team is novel and requires less established knowledge then damage to 

the TMS will have less effect. So higher complexity and novelty will require lower dependence on 

TMS (Argote et al., 1995, Espinosa et al., 2007a).  

A contradictory view has been proposed; if a task is simple or repetitive team members can rely on 

existing knowledge and standard procedures. For higher complexity or non-routine tasks the 

requirements for knowledge and interdependency in the team are unknown to a greater or lesser 

extent.  If the knowledge is already in place or the task requires new knowledge a complex task brings 

along ambiguity and greater difficulty. Complex tasks require greater interdependency and thus the 

impact on of the TMS on performance is increased with increased task complexity (Akgun et al., 

2005, Ren et al., 2006). Increased task complexity and novelty enhances team knowledge by bringing 

new knowledge into the team and calls for more cooperation and coordination within the team.  

The work carried out by software development teams is often highly innovative. In projects of high 

innovativeness collaboration and communication is more essential to interpret and manage complex 

information, and share skills and information. For this reason the TMS is more strongly related to 

team performance in highly innovative software projects which supports the fundamental notion that 

it is the nature of the task that determines whether collaboration is beneficial (Hoegl et al., 2003). 

With high levels of collaboration pair programming responds to the needs generated by task 

complexity and novelty. Pair programming is more effective for complex tasks but not as useful in 

simple routine tasks (Lui and Chan, 2006) but this advantage applies mainly to novices and to a lesser 

extent experienced programmers. However, it is possible that the benefits of pair programming will 

increase for larger, more complex tasks and if the pair programmers have a chance to work together 

over a longer period of time, thus developing a stronger TMS (Arisholm et al., 2007, Hannay et al., 

2009). 
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It has been proposed that tasks divided into smaller chunks and higher differentiation of team 

knowledge result in higher team performance (Littlepage et al., 2008). The Littlepage et al. study, 

however, was carried out on staff doing relatively routine work and the findings may not apply in an 

innovative environment such as software development where tasks are often more novel, complex and 

non-routine (Brandon and Hollingshead, 2004). There is an alternative and contradictory view that 

there is a positive relationship between task size and performance when looking at familiar tasks in 

software development (Espinosa et al., 2007a). Support for this is scarce, however, endorsing the 

view of Littlepage et al. 

The results of the previous chapter showed that with low differentiation, high levels of TMS were 

important for high performance for pair programming conditions. This contradicts traditional research 

on TMS which states that there is a positive relationship with TMS and differentiation but supports a 

study by Espinosa (2007a) who found that team familiarity (TMS) and task familiarity (expertise) 

appear to substitute for each other. In other words, having more task knowledge makes one less 

dependent on colleagues, whereas having knowledge of your team members' abilities makes one less 

dependent on task knowledge.  

With the higher levels of task novelty and complexity introduced in this model, and the contradictions 

in the literature relating to task novelty and complexity the following hypotheses are proposed: 

Hypothesis 1. Output is lower with novel complex tasks for all conditions than for routine tasks. 

This is fairly intuitive but it seems sensible that for unfamiliar tasks there is likely to be lower output. 

It is expected that this will apply for all conditions.  

Hypothesis 2. Output is higher for pair programming and small task conditions. 

As seen in the last model, it is expected that output will be higher for pair programming. In addition it 

is expected that small tasks will be more successful than in the routine tasks model.  

Hypothesis 3. The reduction in output for complex novel tasks is attenuated by the use of pair 

programming and small tasks.  
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Figure 21: Novelty: Diagram of hypotheses relationship 1,2 and 3  

As pair programming is more successful for more complex tasks and knowledge is more evenly 

distributed around the team allowing a greater ability to address unfamiliar tasks, the reduction in 

output associated with more complex and novel tasks will be lower for pair programming conditions. 

The model will also show if task size has an influence on the relative output for routine and complex 

tasks.  

Hypothesis 4. Pair programming and small task practices affect the relationship between TMS and 

output. 

As stated, the literature is contradictory on the benefits of pair programming with novel and complex 

tasks. This model will help to determine the relationship between TMS and output with more novel 

and complex tasks.  

 

Figure 22: Novelty: Diagram of hypothesis relationship 4  
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Hypothesis 5. XP practices affect the relationship between differentiation and output.  

 

Figure 23: Novelty: Diagram of hypothesis relationship 5 

With this model being operated with higher novelty this will result in lower differentiation for XP 

conditions. The knowledge that each team member is gaining is being distributed about a larger range; 

therefore specialism is less likely with lower repetition of task content.   

10.3 Method 

The model described in this chapter increased the range of knowledge in the model from 1 to 100 to 

simulate more innovative tasks, so all tasks could contain numbers up to 100 and that the knowledge 

that an agent could develop will range from 1 to 100. This presents tasks to the agents, during each 

simulation, which will contain novel elements more often.  

The three dichotomous variables of task size, work mode and knowledge range were manipulated to 

produce four conditions for this simulation.  Task size was 4 or 20; work mode was working solo or 

working in pairs and knowledge range was from 1 to 100. 

At the start of the simulation all agents had no knowledge and no transactive memory. 

Number of agents 4 

Task size 4	
  or	
  20 

Work mode Solo	
  or	
  in	
  pairs 

Knowledge range 1	
  to	
  100 

Initial knowledge None 

Initial transactive memory None 

Table 9: Novelty: Parameters for model  
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Condition no. Task size Work 
mode No. of iterations 

1 4 Pair 2000 

2 4 Solo 1000 

3 20 Pair 400 

4 20 Solo 200 

Table 10: Novelty: Description of conditions 

Each condition was simulated 50 times. 

The volume of work delivered for each simulation defined the number of iterations for each condition. 

For each condition 16000 task elements were delivered to the team. 

10.4 Results 

The results will describe firstly the descriptive statistics, look at the behaviour of the model over time 

and then look more closely at the behaviour of the model at the final iteration. Table 11 provides the 

descriptive statistics and the correlations among the constructs in the model. It shows that working 

mode (coded 0 for solo programming; 1 for pair programming) is again positively, significantly 

correlated to output indicating that pair programming is highly positively correlated with output, 

supporting hypothesis 2. Conversely, task size (coded 0 for large tasks; 1 for small tasks) is 

negatively, significantly, correlated with output indicating that large tasks produce higher output. 

With regard to TMS accuracy, it is significantly, positively correlated with output. Notably, in 

contrast to the results in the previous chapter, differentiation is significantly and positively correlated 

with output and working mode, indicating that for pair programming conditions differentiation is high 

for high output. This gives preliminary evidence in support of hypothesis 5. 
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 Variable n Mean SD 1  2  3  4  

1 Working mode            

2 Task size            

3 Differentiation 200 25.76 8.43 .558 ** .694 **     

4 TMS accuracy 200 .813 .176 .932 ** .262 ** .765 **   

5 Output 200 .967 .032 .900 ** -.326 ** .203 ** .682 ** 

Notes: **p<0.01, n = number of runs of the simulation. 50 runs for each of the 4 conditions 

Table 11: Novelty: Descriptive statistics and correlations 

The following graphs show the results of the model over time. Error bars show standard error of the 

mean (SEM) where: 

€ 

SEM =σ n
 

where σ is standard deviation and n is sample size. Where error bars are not apparent on the graphs, 

they are too small to be visible. 

For comparison, the graphs from the previous chapter, for routine tasks, have been placed alongside 

the graphs relating to these results. The graph in Figure 24 shows output over time and it can be seen 

that in general, output is lower than for routine tasks supporting hypothesis 1. As with the previous 

model pair programming produces higher output than for solo conditions (supporting hypothesis 2) 

and it can be seen that the reduction in output due to task novelty is greater for solo conditions, in 

support of hypothesis 3.  
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Figure 24: Novelty: Mean performance over time for routine and novel tasks 

As can be seen in the graphs at Figure 25 results for differentiation over time are very different for 

this simulation than for the previous one simulating routine tasks. As suggested by the correlation 

results, the graph depicting differentiation over time clearly shows higher differentiation for pair 

programming conditions contradicting hypothesis 5, however, differentiation for solo programming is 

higher for small tasks increasing faster than for large tasks, with the rate of increase higher than for 

pair programming. The graph would indicate that differentiation for solo small tasks would become 

higher than for pair programming if the simulation were run for longer.  
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(Please note different axes for differentiation) 

Figure 25: Novelty: Mean differentiation over time for routine and novel tasks  

There is a marked difference between TMS accuracy over time for pair and solo programming 

conditions as depicted in the graph at Figure 26. For the former, TMS accuracy increases early and 

levels off to maintain a level with slightly higher accuracy for small tasks. For the latter, TMS 

accuracy drops slightly to start with a larger decrease for large tasks than for small tasks. For pair 

programming conditions increasing the complexity and novelty has had little effect on TMS accuracy 

and output other than reducing both slightly. For solo conditions, however, increasing novelty and 
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complexity has had a greater effect by reducing TMS accuracy particularly for small tasks. This lends 

support to hypothesis 4. By reviewing the graphs for both output and TMS accuracy, as with routine 

tasks it can be seen that for both pair and solo programming there is an inverse relationship between 

TMS accuracy and output, with higher output for large tasks with lower TMS accuracy.  

 

 

Figure 26: Novelty: Mean TMS accuracy over time for routine and novel tasks 

The completeness of the TMS is affected more by the different conditions for when the tasks are more 

novel and complex, as shown in the graph in Figure 27. For solo conditions the TMS takes much 

longer to become complete and, for the duration of this simulation, the TMS is does not reach 
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completion. 

 

 

Figure 27: Novelty: Mean TMS completeness over time for routine and novel tasks 

To compare the means of the results independent t-tests were carried out to establish whether the data 

were derived from the same or different populations. Although it is clear from the graphs, to test 

hypothesis 1 an independent t-test was carried out using the routine data from the previous model to 

determine if routine and novel tasks had significant overall effects on output. Routine tasks (M = 

0.990, SE = 7.2 E-4), resulted in higher output than novel tasks (M = 0.967, SE = 2.3 E-3). In support 

of hypothesis 1 this difference was significant, t(238.2) = 9.89, p>0.001. 
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Further independent t-tests were carried out on only the data from this novelty model to determine if 

work mode and task size had significant effects on output. Pair programming conditions (M = 0.996, 

SE = 1.3 E-4), resulted in significantly higher output than solo programming conditions (M = 0.938, 

SE = 2.0 E-3). In support of hypothesis 2 this difference was significant, t(99.81) = -28.97, p>0.001.  

Large task conditions (M = 0.977, SE = 2.0 E-3), resulted in significantly higher output than small 

task conditions (M = 0.956, SE = 3.8 E-3). In support of hypothesis 2 this difference was significant, 

t(148.34) = 4.86, p>0.001..  

T-tests were also carried out for the effects of pair programming and task size on TMS accuracy and 

differentiation. From the table below it can be seen that pair programming and small tasks have 

significant positive relationships with TMS accuracy (supporting hypothesis 4) and with 

differentiation (supporting hypothesis 5). However, for output only pair programming has a 

significant positive relationship with output with large tasks having an advantage for output. 

 Variable Mean SE t df  

Pair programming 0.996 1.3 E-4 
Output 

Solo programming 0.938 2.0 E-3 
-28.97 99.81 *** 

Pair programming 0.976 2.7 E-4 
TMS accuracy 

Solo programming 0.649 9.0 E-3 
-36.32 99.18 *** 

Pair programming 30.453 0.543 
Differentiation 

Solo programming 21.067 0.829 
-9.45 171.17 *** 

Notes: n=200, ***p<0.001, n = number of runs of the simulation. 50 runs for each of the 4 conditions 

Table 12: Novelty: Independent t-tests for work mode 
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 Variable Mean SE t df  

Small tasks 0.956 3.8 E-3 
Output 

Large tasks 0.977 2.0 E-3 
4.86 148.34 *** 

Small tasks 0.859 1.2 E-2 
TMS accuracy 

Large tasks 0.767 2.1 E-2 
-3.82 158.90 *** 

Small tasks 31.60 0.45 
Differentiation 

Large tasks 19.92 0.73 
-13.56 164.17 *** 

Notes: n=200, ***p<0.001, n = number of runs of the simulation. 50 runs for each of the 4 conditions 

Table 13: Novelty: Independent t-tests for task size 

To further assess the moderation effects hypothesised the graphs below show the relationships 

between TMS accuracy, differentiation and output at the final iteration. Figure 28 shows the 

relationship between output and TMS accuracy. The blue lines show the interaction effects of task 

size and the red lines show the interaction effects of the work mode, showing some support for 

hypotheses 4. As before, it shows the strong effect of pair programming on output and shows that 

TMS accuracy is higher for pair programming conditions than for solo programming conditions. In 

support of hypothesis 4 it also shows a larger difference in output and TMS accuracy relating to task 

size for solo programming conditions than for pair programming conditions.  

 

 



Chapter 10. Model Novelty   

130 

 

Figure 28: Novelty: Performance by TMS accuracy. 

Hypotheses 5 predicts that for XP practices differentiation will be lower and output higher. This is 

depicted by Figure 29, which shows that differentiation is similar for all conditions other than solo 

large tasks which show lower differentiation. The blue lines show the interaction effects of task size 

and the red lines show the interaction effects of the work mode, showing some support for hypotheses 

5. However, from the graph showing differentiation over time, figure 25, it can be seen that the 

relative positions of differentiation differs over the course of the simulation. 
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Figure 29: Novelty: Performance by differentiation. 

Again contradicting hypothesis 5, Figure 30 depicts TMS accuracy against differentiation. The blue 

lines show the interaction effects of task size and the red lines show the interaction effects of the work 

mode. It shows that pair programming results in higher TMS accuracy than solo programming but 

differentiation is similar for all conditions other than solo, large tasks. Also, it can be seen that TMS 

accuracy is more affected by task size for solo programming than for pair programming.  

 

Figure 30: Novelty: TMS accuracy by differentiation. 



Chapter 10. Model Novelty   

132 

10.5 Discussion 

Software development projects often comprise high levels of innovation presenting tasks with high 

complexity, novelty and uncertainty. In comparison with routine, repetitive tasks it would be expected 

that general performance would drop and more collaboration, distribution of knowledge and team 

cognition would be demanded of the team. The model described in this chapter increased the range of 

knowledge in the model from 10 to 100 to simulate more innovative tasks so all tasks could contain 

numbers from 1 to 100 and that the knowledge that an agent could develop will range from 1 to 100.  

The questions for this model related to changes in behaviour of TMS accuracy, differentiation and 

output as a result of introducing greater complexity and novelty to the tasks. The literature suggests 

that although output will be reduced due to greater task novelty and complexity the reduction will be 

smaller for pair programming and small task conditions. It is also hypothesised that differentiation 

will be reduced with a much larger knowledge range. So contrary to TMS literature, it was 

hypothesised that the TMS will remain important resulting in a negative relationship between TMS 

accuracy and differentiation resulting in higher output under pair programming and small task 

conditions.  

Hypothesis 1 predicts that output will be generally lower with higher novelty and complexity, 

although hypothesis 3 suggests that this reduction will be reduced for pair conditions. Hypothesis 2 

predicts that, pair programming and small task conditions will result in significantly higher output and 

hypotheses 4 and 5 predict that with greater novelty and complexity pair programming and task size 

conditions will affect the relationship between TMS accuracy and differentiation respectively with 

output. Specifically that differentiation will be low and TMS accuracy high for high output under pair 

programming and small task conditions.  

As expected, supporting hypothesis 1, the overall performance for all conditions was lower than in the 

previous model, Tabula Rasa (Argote et al., 1995, Espinosa et al., 2007a). From the model point of 

view this is due to the tasks containing more unfamiliar elements, therefore the agent has no related 

knowledge to contribute to the success of the task. From a theoretical perspective this makes sense as 

greater novelty and complexity of tasks will demand greater resources, demand knowledge that the 

team member does not have, and increase team interdependency to complete the unfamiliar task. 

Pair programming is more successful for complex tasks (Arisholm et al., 2007) than for simple 

routine tasks. For this reason it is expected that the reduction in output is attenuated by pair 

programming and small task practices and it can be clearly seen in Figure 17 that the output drop for 

pair programming is indeed smaller than the output drop for solo programming. It is posited that pair 
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programming reduces the drop in performance because by working together agents are pooling 

resources to address unfamiliar tasks. By working together there is more chance of having useful 

knowledge for the fulfilment of the task and they are both increasing their knowledge which is 

distributed more evenly around the team for use in future tasks.  

There is contradictory evidence in the literature relating to the role of TMS for more novel or complex 

tasks. One view states that if the work of the team is novel and requires less established knowledge 

then damage to the TMS will have less effect. So higher complexity and novelty will require lower 

dependence on TMS (Argote et al., 1995, Espinosa et al., 2007a). The contradictory view posits that 

complex tasks require greater interdependency and thus the impact of the TMS on performance is 

increased with increased task complexity (Akgun et al., 2005). Related to this question is the role of 

the relationship between TMS accuracy and differentiation and the subsequent impact on 

performance. Traditional TMS research states that there is a positive relationship between TMS 

accuracy and differentiation as with very low or non-existent levels of differentiation there will be no 

requirement for interaction if all members have the same knowledge (Klimoski and Mohammed, 

1994). Less differentiated knowledge will inhibit the need for team members to work together thus 

rendering the TMS less useful (Brandon and Hollingshead, 2004). This model found that with a 

slightly reduced performance for more novel and complex tasks, the TMS was correspondingly 

slightly lower for all conditions but the differentiation was substantially lower for all conditions.  The 

shape of the graph would indicate that the differentiation curves would develop in a similar way to the 

previous routine graph but would take a lot longer to do so.  This is plausible as knowledge within the 

team and consequently the differentiation is developing over a much larger range of knowledge than 

for routine tasks. 

Research into XP practices has found that using collective ownership weakens the relationship 

between TMS accuracy and performance (Maruping et al., 2009). It could be argued that pair 

programming has the same effect on the TMS/performance relationship but this simulation 

demonstrated that the importance of the TMS is maintained with high output. 

The previous simulation, Tabula Rasa, using a small range of knowledge representing routine tasks 

found low differentiation for pair programming conditions the results of this model simulating more 

novel complex tasks found that for pair programming conditions differentiation was higher than for 

solo conditions. However, the graph would indicate that the differentiation for solo programming and 

small tasks would increase exponentially over time, overtaking pair programming conditions. By 

increasing the novelty and complexity, the differentiation is delayed. By working together on tasks 

not only are team members providing a larger pool of resources to fulfil the task, they are gaining 
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greater knowledge increasing their levels of specialism.  

Regarding the TMS this model also found that high levels of TMS accuracy are maintained for pair 

programming conditions so in support of Akgun and in contradiction of Maruping et al. it would 

appear that complex tasks do require greater interdependency and so there is a positive relationship 

between TMS accuracy and output for increased task complexity (Akgun et al., 2005). By working 

closely together in pairs, it would be expected that team members can update their TMS more readily 

than if working solo.  

However, the picture is different for solo, task size conditions, where for higher output, differentiation 

and TMS accuracy are lower in large task conditions. This contradicts the view of Littlepage et al 

(2008) who proposed that small tasks and higher differentiation would result in higher performance, 

however this study was carried out on staff doing relatively routine work and the findings may not 

apply in an innovative environment such as software development where tasks are often more novel, 

complex and non-routine. The results of this simulation would seem to agree with this, supporting 

other literature (Brandon and Hollingshead, 2004, Espinosa et al., 2007b). In novel environments, for 

solo programmers large tasks are lowering differentiation by generating increased expertise across a 

much larger range for each task, than with small tasks that are very focussed. For the same reason 

TMS accuracy is reduced with large tasks as the effect is much more general and less focussed.  

10.6 Conclusion 

In summary, increasing the novelty and complexity in the model has reduced output in general but 

that reduction is smaller for pair programming conditions.  

This model has found a discrepancy between work mode and task size. Whereas, pair programming 

increases output with higher differentiation and higher TMS accuracy, large tasks are also found to 

increase output but with lower differentiation and lower TMS accuracy. It was also found that task 

size has less effect in pair programming conditions and a larger effect in solo conditions.  

This model also found that the development of differentiation is delayed for more novel and complex 

tasks resulting in the differentiation although being significantly lower than for routine tasks, pair 

programming conditions produces higher differentiation than solo conditions.  

Both this model and the previous model have operated with no initial knowledge or TMS. This was 

useful to establish some baseline behaviours and to look at some parameters without the additional 

complication of existing knowledge and TMS. It is, however, somewhat unrealistic. So in order to 
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include some additional realism and to investigate the behaviour of teams under different knowledge 

levels the next model will introduce knowledge and TMS.  
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Chapter 11:  Model Differentiation 

11.1 Introduction 

Previous chapters have described simulations using agents with no initial knowledge or TMS, which 

although generating some relevant results could be said to be unrealistic.  This simulation introduces 

agents with existing knowledge and TMS profiles that will give some insight into how initial 

conditions affect the knowledge, TMS and output of the team over time for different software 

development methodology techniques.   

11.2 Theoretical framework 

Inevitably there is some disagreement regarding the impact that differentiation of knowledge has on 

performance within a team. Diversity in a team directly impedes performance (Ancona and Caldwell, 

1992, Smith-Jentsch et al., 2009) and while it does have some advantages in terms of internal 

processes and communication, overall the effect of diversity on performance is negative. It is 

suggested that diversity lowers the capability for coordination and cooperation within the team and 

this improves for more homogenous teams. 

It may be the type of work that the team is undertaking that determines which type of knowledge 

structure is optimum for performance. Gupta and Hollingshead (2010) found evidence to suggest that 

knowledge structures with low differentiation resulted in higher performance for intellectual tasks.  

In contrast an alternative opinion states that group performance is higher when members differ in 

ability. Highly differentiated groups are more successful at identifying and utilising expertise in the 

group therefore the advantages that TMS bestow are greater when group members' knowledge is more 

diverse (Baumann and Bonner, 2004, Littlepage et al., 2008). This supports the general literature on 

TMS - that the reliance on TMS is increased with greater differentiation because cognitive 

interdependence is elevated. However, this is not necessarily the case as it has been shown that in 

traditional software development projects interaction declined over the course of the project as team 

members' roles became more specialised (Levesque et al., 2001). It is suggested that the division of 

labour due to specialisation exacerbates this differentiation resulting in a reduced reliance on TMS. In 

the software development industry this is often the case with new teams being formed for each 
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project, however, this may not be the case for teams that have longevity as they will continue to 

slowly develop a TMS even with reduced cognitive interdependence (Levesque et al., 2001).  

Often teams are constructed from members with a diverse range of skills to leverage the unique 

expertise of different members. Performance will depend on each team member's contribution of 

knowledge to the team and the formation of a successful TMS.  Expectations within the team relating 

to individual expertise will have an impact on TMS development and team members tend to learn 

more in their own specialisation if they believe that others hold different knowledge. They will often 

take responsibility for a particular area of expertise in the team. Likewise, other team members will 

defer to an individual who is perceived as the expert in a particular area (Hollingshead, 2001, Wegner, 

1995). So the extent to which a team’s knowledge is initially distributed is likely to define the initial 

structure of the TMS, and this should encourage information sharing leading to its further 

development (Lewis, 2004). Initially differentiated expertise is positively related to TMS emergence 

suggesting that more differentiated expertise helps define an initial framework of member-expertise 

associations. Teams with initially differentiated expertise were better at developing a TMS than those 

with overlapping expertise and this was even stronger when teams had initial TMS. For teams with 

overlapping expertise, prior knowledge of each other hindered TMS production suggesting that initial 

knowledge not initial TMS is responsible for the development of TMS (Lewis, 2004). 

It is widely believed that a group with initial knowledge of each other, or a partially or fully 

developed TMS will have higher performance than a newly formed group where the members have 

no prior knowledge of each other, or no TMS (Akgun et al., 2005, Espinosa et al., 2007a, Lewis, 

2004, Liang et al., 1995). For example studies have shown that teams that are trained together, and 

thus develop a TMS, perform better than those that are trained individually (Liang et al., 1995). This 

makes sense intuitively as the coordination and cooperation within a team would be improved if the 

team members have some knowledge of each other.  

The development of differentiation of knowledge in a team is directly motivated by the outcome 

(Hollingshead, 2001). It has been found that group members tend to learn relatively more information 

in their own area of expertise when they believe their teammates have different expertise 

(Hollingshead, 2000). However, in circumstances where the outcome favours lower differentiation 

team members are more likely to learn in areas in which their colleagues are expert resulting in more 

integrated knowledge distribution. This strategy relies on an accurate TMS but as this develops the 

strategy is likely to become more successful. Much of the literature on TMS asserts that more 

differentiation is more beneficial to teams (Austin, 2003, Wegner, 1995) but Hollingshead suggests 

that there may be circumstances where differentiation may hinder group performance. From the 



Chapter 11. Model Differentiation   

139 

results of the previous chapters it would seem that differentiation affects teams under different 

conditions.  

It was stated in the previous chapter that pair programming works well when the pair has to work on a 

challenging problem and a study found that novice-novice pairs are much more productive against 

novice solos in terms of elapsed time and software quality than expert-expert pairs against expert 

solos (Lui and Chan, 2006). This agrees with a meta-analysis of papers on the effects of pair versus 

solo programming which considered the relationships between juniors, intermediate and senior pairs 

(Hannay et al., 2009). It found that the improvement in quality was most significant for juniors, with 

an overall 73% increase in correctness, which rose to 149% for complex tasks only. For intermediates 

and seniors the increase in correctness was 28% and 4% respectively furthermore these groups 

experienced decreases in correctness of 29% and 13% respectively for simple tasks. This study also 

found that pairing up juniors resulted in elevated performance, to near senior performance, suggesting 

that pair programming is most beneficial for novice programmers. This may provide an explanation 

for the success of pair programming in previous models as all the agents were modelled as novices 

with no initial knowledge.  

In a study looking at pairs with different educational backgrounds and hence skill sets, forming pairs 

with similar skills enhanced the pair programming benefits (Bellini et al., 2005). However, pairs 

formed with very different backgrounds and skill sets reduces the more skilled member to a lower 

level. This contradicts Hannay et al. above and much existing work into the benefits of pair 

programming (Hannay et al., 2009, Muller, 2005, Muller, 2007, Nosek, 1998, Williams et al., 2000, 

Williams, 2000).  

The TMS literature has conflicting views relating to differentiation in a team, and the resulting TMS 

and performance. As found in previous chapters the relationship between differentiation, TMS 

accuracy and output do not necessarily agree with the traditional TMS literature with differing levels 

of differentiation and TMS producing higher output under different conditions.  

This model will examine the behaviour of output, TMS accuracy and differentiation for initial 

conditions relating to a variety of levels of initial knowledge and TMS. It will model teams containing   

all experts with the same knowledge and all experts with diverse knowledge. For both of those 

scenarios there will be a condition each for no initial TMS and complete TMS. As before, the model 

will have pair programming versus solo programming conditions and small task versus large tasks 

conditions.  

Of this model the general results will be analysed for unanticipated behaviour, and in addition the 
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following hypotheses are put forward.  

As Lewis (2004) proposed it is the differentiation not the presence of an initial TMS that influences 

the development of TMS. This in turn will have an influence on output, which, it is expected, will be 

moderated by pair programming. It is also expected that pair programming conditions will be more 

resilient to the effects of initial TMS and initial differentiation conditions.  

Hypothesis 1. Initial differentiation will have different effects on TMS accuracy and differentiation 

for different working conditions. It is expected that initial differentiation will have a positive 

relationship with TMS accuracy and with differentiation. Meaning that high initial differentiation 

produces high TMS accuracy and high differentiation.  This effect will be weaker for pair 

programming and small task conditions.  

 

Figure 31: Differentiation: Diagram of hypothesis 1 relationship 

Hypothesis 2. Initial TMS will have different effects on TMS accuracy and differentiation for 

different working conditions. It is expected that initial TMS will have a negative relationship with 

TMS accuracy and differentiation, with the presence of an initial TMS producing lower TMS 

accuracy and differentiation. This effect will be weaker for pair programming and small task 

conditions.  

 

Figure 32: Differentiation: Diagram of hypothesis 2 relationship 
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Hypothesis 3. Work mode and task size will moderate the relationship between initial TMS and 

output. It is expected that for pair programming conditions, the presence or not of an initial TMS will 

have no effect on output but for solo conditions the existence of an initial TMS will have a positive 

effect on output.  

 

Figure 33: Differentiation: Diagram of hypothesis 3 relationship 

Hypothesis 4. Work mode and task size will moderate the relationship between initial differentiation 

and output. As seen in previous chapters, lower initial differentiation will result in higher output for 

pair programming conditions and lower output for solo conditions.  

 

Figure 34: Differentiation: Diagram of hypothesis 4 relationship 

11.3 Method 

In addition to the existing variables of work mode and task size new variables have been added to this 

model to look at the effects of high initial differentiation or low initial differentiation for the agents.  

For the high differentiation condition each of the four agents was furnished with knowledge value of 

10 for discrete 25% elements of the knowledge range such that there was no overlapping knowledge. 

For the low differentiation condition, each of the agents was furnished with a knowledge value of 10 
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in the same 25% range of knowledge such that there was 100% overlapping knowledge.  

Each of these conditions is also tested with no initial TMS and a complete and accurate TMS to 

establish the effects of the presence of a TMS or not. 

The set of conditions for this model is detailed in the following table.  

Number of agents 4 

Task size 4	
  or	
  20 

Work mode Solo	
  or	
  in	
  pairs 

Knowledge range 1	
  to	
  100 

Initial knowledge 4	
  agents	
  with	
  same	
  25%	
  of	
  knowledge 

or 

4	
  agents	
  with	
  discrete	
  25%	
  each	
  of	
  knowledge 

Initial transactive memory None	
  or	
  complete 

Table 14: Differentiation: Parameters for model  

 

Condition no. Task size Work 
mode 

Initial 
TMS 

Initial 
differentiation No. of iterations 

1 4 Pair TMS High 2000 
2 4 Pair TMS Low 2000 
3 4 Pair No TMS High 2000 
4 4 Pair No TMS Low 2000 
5 4 Solo TMS High 1000 
6 4 Solo TMS Low 1000 
7 4 Solo No TMS High 1000 
8 4 Solo No TMS Low 1000 
9 20 Pair TMS High 400 
10 20 Pair TMS Low 400 
11 20 Pair No TMS High 400 
12 20 Pair No TMS Low 400 
13 20 Solo TMS High 200 
14 20 Solo TMS Low 200 
15 20 Solo No TMS High 200 
16 20 Solo No TMS Low 200 

Table 15: Differentiation: Description of conditions 

Each condition was simulated 50 times. 
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The volume of work delivered for each simulation defined the number of iterations for each condition. 

For each condition 16000 task elements were delivered to the team. 

11.4 Results 

This model introduces greater cognitive realism by giving the agents some initial knowledge and in 

some cases a complete TMS. Due to the results from previous chapters it is expected that performance 

for pair programming will remain high but the behaviour of the model with more realistic profiles will 

aid understanding of how initial conditions affect team performance. 

Table 16 provides the descriptive statistics and the correlations among the constructs in the model 

giving some preliminary overall indications of the behaviour of the model. Of course these results 

give an overall view and do not indicate how the model behaves for individual conditions. It shows 

that working mode (coded 0 for solo programming; 1 for pair programming) is again positively, 

significantly correlated to output indicating that pair programming is highly positively correlated with 

output as expected. As previously, task size (coded 0 for large tasks; 1 for small tasks) is significantly 

positively correlated with differentiation and TMS accuracy and significantly negatively correlated 

with output, indicating that for large tasks produce better performance with lower TMS accuracy and 

differentiation. 

Differing from the previous model the relationships between differentiation, TMS accuracy and 

output show that overall performance has a significant negative relationship with differentiation and a 

positive one with TMS accuracy resulting in a negative relationship between TMS accuracy and 

differentiation.   

Regarding the new factors of initial TMS and initial differentiation; Initial TMS has no significant 

relationships with TMS accuracy, differentiation or output, lending some support to hypotheses 2 and 

3.  Initial differentiation has no significant relationship with TMS accuracy but it does have a positive 

significant relationship with differentiation and a significant negative one with output. This indicates 

that low initial differentiation encourages higher output and lower differentiation, supporting 

hypothesis 1 and giving some support to hypothesis 4. 
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 Variable Mean SD 1  2  3  4  5  6  

1 Working mode               

2 Task size               

3 TMS or not               

4 Initial 
differentiation        

      
 

5 Differentiation 52.44 38.24 -.325 ** .459 ** .057  .237 **     

6 TMS accuracy .82 .17 .922 ** .274 ** -.041  -.005  -.090 *   

7 Performance .97 .03 .923 ** -.126 ** .044  -.170 ** -.385 ** .793 ** 

Notes: n =800, *p<0.05, **p<0.01, n = number of runs of the simulation. 50 runs for each of the 16 

conditions 

Table 16: Differentiation: Descriptive statistics and correlations 

To review the model results in more detail the following graphs show the behaviour of the model over 

time. There are four graphs for each of output, differentiation and TMS accuracy, showing results for 

conditions with high and low initial differentiation and the presence of an initial TMS or not. Each 

graph shows results for the four working conditions for task size and work mode. 

The following four graphs show the model behaviour over time for output. Error bars show standard 

error of the mean (SEM) where: 

€ 

SEM =σ n
 

where σ is standard deviation and n is sample size. Where error bars are not apparent on the graphs, 

they are too small to be visible. 

For pair programming the existence of an initial TMS seems to have little effect on output supporting 

hypothesis 3. For solo conditions the presence of an initial TMS has little effect for conditions with 

low initial differentiation, but for conditions with high initial differentiation the presence of an initial 

TMS produced substantially higher output, also lending support to hypothesis 3. 

For pair programming conditions low initial differentiation was expected to have a positive effect on 

output but this was not seen; the level of initial differentiation had little effect on output. For solo 

conditions, however, for conditions of no initial TMS low initial differentiation generated higher 
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output than high initial differentiation. When an initial TMS was present the difference in output was 

very similar but contrary to all other simulations, small tasks had the advantage for high initial 

differentiation. These results show no support for hypothesis 4.  

Graphs for output over time 

 

  

Figure 35: Differentiation: Output, no initial TMS 
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Figure 36: Differentiation: Output, a complete initial TMS. 

The following graphs show the model behaviour over time for differentiation. For pair programming 

the existence of an initial TMS seems to have little effect on differentiation supporting hypothesis 2. 

For solo conditions, contradicting hypothesis 2, the presence of an initial TMS produces slightly 

higher differentiation for conditions of both high and low initial differentiation. For conditions of high 

initial differentiation there was a marked difference in differentiation by task size with small tasks 

producing higher differentiation than large tasks.   

For pair programming conditions low initial differentiation was expected to have little effect on 
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differentiation and this was seen; the level of initial differentiation had little effect on differentiation 

supporting hypothesis 1. For solo conditions, however, hypothesis 1 was supported. In the presence of 

an initial TMS or not, high initial differentiation resulted in higher differentiation over time. In 

addition in high initial differentiation conditions the effect of task size was marked with small tasks 

generating higher differentiation.  

Graphs for differentiation over time 

 

 

Figure 37: Differentiation: Differentiation, no initial TMS 
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Figure 38: Differentiation: Differentiation, a complete initial TMS. 

The following graphs show the model behaviour over time for TMS accuracy.  

For pair programming the existence of an initial TMS seems to have little effect on TMS accuracy 

supporting hypothesis 2. For solo conditions, in support of hypothesis 2, the presence of an initial 

TMS produces lower TMS accuracy for conditions of both high and low initial differentiation, but 

only for large tasks.   

For pair programming conditions low initial differentiation was expected to have little effect on 

differentiation and this was seen; the level of initial differentiation had little effect on differentiation 
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supporting hypothesis 1. For solo conditions, however, hypothesis 1 was contradicted. The level of 

initial differentiation seemed to have no effect on levels of TMS accuracy. 

Graphs for TMS accuracy over time 

 

 

Figure 39: Differentiation: TMS accuracy, no initial TMS. 
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Figure 40: Differentiation: TMS accuracy, a complete initial TMS. 

T-tests were carried out on the data for the final iteration to determine any significant differences in 

means. They were carried out separately on each set of conditions of working mode and task size to 

give an indication of the impact of initial differentiation for each scenario.  

From the table below (Table 17) it can be seen that low initial differentiation generates higher output 

for every condition of working mode and task size apart from solo programming with small tasks.  

Regarding differentiation over time, low initial differentiation generates higher differentiation over 

time for pair programming conditions and the opposite for solo conditions; high initial differentiation 



Chapter 11. Model Differentiation   

151 

generates lower differentiation for solo conditions.  

The t-tests determine that TMS accuracy is higher for pair programming when initial differentiation is 

high, but there is only significance for solo conditions when tasks are small when conversely TMS 

accuracy is higher for solo programming when initial differentiation is low.  

In summary, low initial differentiation has a significant positive effect on performance for all 

conditions other than solo with small tasks. There is an inverse effect of initial differentiation on 

differentiation over time where high initial differentiation has a negative effect for pair programming 

conditions and a positive one for solo conditions. Finally high initial differentiation has a positive 

effect on TMS accuracy in pair programming conditions but has a negative effect on solo conditions 

with small tasks. There is no significant effect on solo conditions with large tasks.  

These results lend partial support to hypotheses 1 and 4. 
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 Work 
mode 

Task size Initial 
differentiation Mean SE t df  

High 0.931 9.5 E-4 
4 

Low 0.932 1.5 E-4 
0.77 104.21  

High 0.925 3.1 E-4 
Solo 

20 
Low 0.966 1.4 E-4 

121.18 136.75 *** 

High 0.995 1.3 E-5 
4 

Low 0.995 8.2 E-6 
-7.61 164.36 *** 

High 0.997 2.2 E-5 

Output 

Pair 
20 

Low 0.997 1.0 E-5 
7.79 139.31 *** 

High 149.81 1.50 
4 

Low 42.50 0.26 
-70.30 105.13 *** 

High 34.89 0.32 
Solo 

20 
Low 32.23 0.17 

-7.30 152.43 *** 

High 33.87 0.44 
4 

Low 53.73 0.69 
24.31 168.93 *** 

High 27.43 0.42 

Differentiation 

Pair 
20 

Low 45.06 0.60 
23.97 176.93 *** 

High 0.752 7.0 E-4 
4 

Low 0.759 4.4 E-4 
8.30 166.90 *** 

High 0.572 2.8 E-3 
Solo 

20 
Low 0.576 2.5 E-3 

.97 194.82  

High 0.981 8.2 E-5 
4 

Low 0.979 8.9 E-5 
-15.31 198 *** 

High 0.977 1.5 E-4 

TMS accuracy 

Pair 
20 

Low 0.975 1.8 E-4 
-9.84 198 *** 

Notes: n=800, ***p<0.001, n = number of runs of the simulation. 50 runs for each of the 16 

conditions 

Table 17: Differentiation: Independent t-tests for initial differentiation, separated by working 

conditions. 

The following table (Table 18) shows that the existence of an initial TMS results in higher 

performance for all working conditions apart from solo programming with large tasks when there is 

no significant difference. Regarding differentiation over time there is no effect attributed to the 

existence of an initial TMS for any condition apart from solo conditions with large tasks. For TMS 

accuracy, the presence of an initial TMS has a negative effect on TMS accuracy over time for solo 

programming conditions and no significant effect for pair programming conditions. These effects can 

be easily seen on the graphs above showing model behaviour over time.  

Hypothesis 3 is supported for pair programming and for solo conditions small tasks have to be in use 

for the existence of an initial TMS to be significant. Also, hypothesis 2 unsupported as the existence 

of a TMS has a positive effect on output for pair programming and also for solo conditions with small 
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tasks.  

 Work 
mode 

Task size Initial TMS Mean SE t df  

No TMS 0.927 5.4 E-4 
4 

TMS 0.936 4.7 E-4 
-12.57 194.46 *** 

No TMS 0.945 2.2 E-3 
Solo 

20 
TMS 0.976 2.0 E-3 

-0.57 196.77  

No TMS 0.994 1.1 E-5 
4 

TMS 0.995 1.4 E-5 
-3.19 187.90 ** 

No TMS 0.997 2.2 E-5 

Output 

Pair 
20 

TMS 0.997 1.2 E-5 
-6.77 152.64 *** 

No TMS 89.00 4.71 
4 

TMS 103.31 6.12 
-1.86 185.93  

No TMS 32.28 0.18 
Solo 

20 
TMS 34.83 0.32 

-6.94 158.46 *** 

No TMS 43.37 1.14 
4 

TMS 44.22 1.16 
-.521 198  

No TMS 36.41 1.08 

Differentiation 

Pair 
20 

TMS 36.08 0.97 
-.226 198  

No TMS 0.759 4.6 E-4 
4 

TMS 0.752 6.9 E-4 
8.11 172.42 *** 

No TMS 0.599 8.7 E-4 
Solo 

20 
TMS 0.549 8.4 E-4 

41.53 198 *** 

No TMS 0.980 1.3 E-4 
4 

TMS 0.980 1.2 E-4 
-.366 198  

No TMS 0.976 2.2 E-4 

TMS accuracy 

Pair 
20 

TMS 0.976 1.8 E-4 
-1.01 198  

Notes: n=800, **p<0.01, ***p<0.001, n = number of runs of the simulation. 50 runs for each of the 

16 conditions 

Table 18: Differentiation: Independent t-tests for initial TMS separated by working conditions. 

11.5 Discussion 

To include initial knowledge and TMS of agents improves the cognitive realism of the model. With 

the baseline models complete the impact of adding knowledge and TMS can be assessed. As 

described in the theoretical framework the behaviour of teams is likely to vary with different 

knowledge structures and the extent to which the initial knowledge in a team overlaps is one area that 

has been addressed in previous studies (Ancona and Caldwell, 1992, Austin, 2003, Baumann and 

Bonner, 2004, Gupta and Hollingshead, 2010, Hollingshead, 2000, Hollingshead, 2001, Lewis, 2004, 

Levesque et al., 2001, Littlepage et al., 2008, Wegner, 1995). Also, the initial development of the 

TMS is likely to have an influence on the performance of the team (Akgun et al., 2005, Espinosa et 
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al., 2007a, Lewis, 2004, Liang et al., 1995).  

This model introduced the dichotomous parameters of low and high initial differentiation and the 

presence of an initial TMS or not. Low initial differentiation was modelled by each agent having the 

same knowledge in the same 25% of the range of knowledge available. The high differentiation 

condition furnished the agents with the same level of knowledge but each agent's knowledge occupied 

a discrete 25% of the available knowledge, resulting in no overlapping initial knowledge at all. For 

those conditions where a TMS was present the TMS was complete and accurate.  

The hypotheses presented for this model predicted that the impact of initial differentiation and initial 

TMS on performance, differentiation and TMS accuracy will be moderated by the XP factors of work 

mode and task size. The results showed that the hypotheses were partially supported.  

As described in the theoretical framework there is continuing discussion relating to the role that 

differentiation plays in the performance of teams with one school of thought proposing that diversity 

in a team impedes performance (Ancona and Caldwell, 1992, Smith-Jentsch et al., 2009) and another 

suggesting that the advantages that TMS bestow are greater when group members' knowledge is more 

diverse (Baumann and Bonner, 2004, Littlepage et al., 2008). 

Initially differentiated expertise is positively related to TMS emergence suggesting that more 

differentiated expertise helps define an initial framework of member-expertise associations. 

According to Lewis, teams with initially differentiated expertise were better at developing a TMS 

than those with overlapping expertise (Lewis, 2004). The initial differentiation in a team is likely to 

have an impact on the development of the TMS and the resulting team output, as team members will 

defer to an individual who is perceived as the expert in a particular area (Hollingshead, 2001, Wegner, 

1995). However, as previous models have found, utilising pair programming can change the 

relationships that TMS accuracy and differentiation have with team output. In support of a number of 

studies (Ancona and Caldwell, 1992, Gupta and Hollingshead, 2010, Smith-Jentsch et al., 2009) the 

results of this model showed that low initial differentiation had a more positive effect on output than 

high initial differentiation apart from solo conditions with small tasks.  Disagreeing with Lewis, the 

model found that, in support of hypothesis 4 for pair programming, low initial differentiation 

generated higher team output, with no support for solo conditions. Low initial differentiation also 

generated for pair programming, lower TMS accuracy and higher differentiation, partially supporting 

hypothesis 1.  

The positive effect of low initial differentiation can be explained by the functioning of the model.  

Output is measured as the ratio between actual output and optimum output. As each of the agents has 
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identical knowledge the potential detriment from allocating tasks to the wrong agent is reduced. 

In addition, as TMS theory predicts (Akgun et al., 2005, Espinosa et al., 2007a, Lewis, 2004, Liang et 

al., 1995), results show that the existence of an initial TMS gives higher output for all working 

conditions apart from solo programming with large tasks when there is no significant difference. 

Hypothesis 3 is unsupported as the existence of an initial TMS significantly affects the output for all 

conditions apart from solo programming with large tasks. The advantage from the presence of an 

initial TMS is clear as tasks are directed to the most qualified agent for the task from the outset.   

In terms of the theoretical framework, the model supports the theory that low initial differentiation 

predicts higher performance because diversity lowers the ability of a team to cooperate and coordinate 

(Ancona and Caldwell, 1992, Smith-Jentsch et al., 2009). Also, pairing programmers with similar 

knowledge was found to improve performance (Bellini et al., 2005), which may explain the additional 

advantage that pair programming had over solo programming for low initial differentiation in the 

model. 

Regarding differentiation over time, the existence of an initial TMS had no effect under any condition 

other than for the case of solo programming with large tasks. Differentiation over time was found to 

have a significant negative relationship with initial differentiation for pair programming conditions 

and a significant positive relationship with initial differentiation for solo conditions.  

Agents that work together will exchange knowledge that differs. In the case of low differentiation 

there is no difference in agents' knowledge, therefore, there will be little or no exchange of knowledge 

and each will retain their own knowledge. In the case of high differentiation as agents work in pairs 

there will be high levels of exchange of knowledge due to the high diversity, resulting in a flatter 

knowledge structure. In reality, if all team members have the same knowledge, so have little reason to 

exchange knowledge, low initial differentiation reduces the interdependence in the team. For high 

initial differentiation there is high interdependence and with pair programming this results in large 

amounts of knowledge sharing.  

For pair programming TMS accuracy was not affected by initial TMS but for solo conditions the 

presence of an initial TMS actually reduced TMS accuracy over time.  The former is not a surprise as 

the elevated sharing of knowledge also includes greater TMS accuracy meaning that the TMS 'gets up 

to speed' very quickly for pair programming conditions. The initial presence of a complete and 

accurate TMS reducing the TMS accuracy over time for solo programming is more difficult to explain 

as it seems counterintuitive. It is possible that as changes to knowledge happen in the team it is more 

difficult for agents using solo programming to maintain the complete accurate TMS than if they were 
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building the TMS from scratch. This is contrary to the literature (Akgun et al., 2005, Espinosa et al., 

2007a, Lewis, 2004, Liang et al., 1995) which states that groups with an initial TMS will have higher 

quality TMSs and perform better.  

However, by reviewing the graphs of output it can be seen that regardless of initial differentiation and 

TMS conditions, for pair programming conditions, output is consistently higher, differentiation over 

time consistently lower and TMS accuracy consistently higher than for solo programming conditions. 

This is consistent with previous models and demonstrates that the use of pair programming mitigates 

the effects of initial conditions of a team on output and generates lower differentiation than the TMS 

literature predicts.  

Also, regarding solo conditions, in conditions with low initial differentiation large tasks produce 

higher output and for high initial differentiation. For high initial differentiation, small tasks are only 

advantageous when there is an initial TMS. For all solo conditions small tasks produce higher TMS 

accuracy even though this does not necessarily translate to better output.  

In summary, as with previous models pair programming improved output and TMS accuracy, and 

reduced differentiation over time for all conditions.  Generally, lower initial differentiation and an 

initial TMS increased output. For pair programming initial TMS had no effect on TMS accuracy or 

differentiation over time; and low initial differentiation increased both TMS accuracy and 

differentiation over time. For solo programming the picture is a little different, initial TMS reduced 

TMS accuracy and only improved differentiation over time for large tasks; and initial differentiation 

increased differentiation over time, and reduced TMS accuracy but only for small tasks.  

11.6 Conclusion 

This final model introduced yet more cognitive realism by using agents that had existing knowledge 

and TMS with varying characteristics. Both heterogeneous and homogenous initial knowledge in the 

team was simulated, and the presence or absence of a complete TMS simulating team members that 

have prior knowledge, or not, of each other. The same comparisons of pair versus solo programming, 

and small versus large tasks were carried out to test how various initial conditions relating to 

knowledge and TMS affect the team in terms of TMS, differentiation and output over time.  

The results showed that team members with similar knowledge, who had worked together before, 

would result in higher output. The use of pair programming compensates for different initial team 

conditions producing consistently higher output and higher TMS accuracy.  Also, in contradiction of 

the TMS literature, the use of pair programming produces lower differentiation while maintaining the 
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importance of an accurate TMS for better performance.  

If pair programming, team members having worked together before, and so having initial knowledge 

of each other, is unlikely to have an effect on the accuracy of their TMS or knowledge diversity over 

time. In contrast homogenous initial knowledge is likely to have an effect on the accuracy of TMS 

and the diversity of knowledge in the team, increasing them both to a greater degree over time. 

For solo programmers, previously working together reduces the accuracy of the team members' TMS 

over time and initial diversity of knowledge will increase the diversity over time. Other effects of 

initial conditions are dependent on other factors such as task size. 

Software development teams are often newly formed for each project and as such team members may 

not have worked together before meaning a lack of TMS relating to each other. A lack of initial TMS 

has been shown to reduce output, however, this simulation has demonstrated that the use of pair 

programming techniques can mitigate this disadvantage.  
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Chapter 12:  Discussion 

12.1 Review 

The main objective of this research was to develop an agent-based model of transactive memory 

systems and knowledge processes simulating software development teams operating within two 

different software development methodologies. EXtreme programming, as a more recent Agile 

methodology, has been compared with the more established Waterfall methodology in the literature 

but very little of that research has focussed on the cognitive aspects of team working. The aim was to 

contribute to the understanding of how knowledge distribution and transactive memory systems affect 

performance of software development teams under different conditions and to identify some optimum 

parameters such that software development teams can operate under different conditions for the best 

performance. In order to address these objectives, agent-based modelling was utilised and the 

modelling environment FLAME was used to build a model to address these questions.  

There is a body of research relating to transactive memory systems and there is also research 

comparing different software development methodologies; there is research into the cognitive 

processes of software development teams and also agent-based modelling of social and cognitive 

systems. This research aimed to consolidate these discrete streams of research and take an agent-

based modelling approach to investigate the behaviour of knowledge and transactive memory systems 

for both traditional and eXtreme programming conditions in software development teams. The model 

compared knowledge, TMS and performance for both methodologies in situations relating to routine 

versus novel tasks and combinations of knowledge distribution.  

After initial validation and alignment exercises the first experiment simulated simple routine tasks and 

compared two aspects of XP. The two parameters compared were pair/solo programming and 

small/large task size, with measures of TMS accuracy and completeness, differentiation and output 

being taken. The literature relating to software development often emphasises that the nature of the 

work of software development teams is complex and novel so the second model developed the 

simulation further to increase the knowledge range. Introducing greater realism into the model had the 

effect of simulating greater complexity and novelty to the work the agents were asked to do. The first 

two models simulated agents with no initial knowledge or TMS thus modelling people with no 

knowledge and no knowledge of each other. To introduce further realism the third model portrayed 
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agents with initial knowledge and for some conditions an existing TMS. The questions asked of this 

model were related to the distribution of the agents' initial knowledge and the presence of an existing 

TMS and their impact on output. 

12.1.1 Model Tabula Rasa 

The aims of this initial model were to compare work mode, pair or solo programming, and task size, 

small or large, and look at how they affected the measures of TMS, differentiation and team output in 

a simple simulation modelling routine tasks, and agents with no knowledge or TMS. It was 

hypothesised that work mode and task size would moderate the relationships of TMS accuracy and 

differentiation with performance. It was also predicted that TMS accuracy and differentiation would 

be lower for both pair programming and small task conditions. A further hypothesis stated that 

performance would be elevated for both small task and pair programming conditions.   

The literature suggests that for optimum performance in traditional team environments the TMS 

develops hand in hand with differentiation with the emergence of specialists (Austin, 2003, Brandon 

and Hollingshead, 2004, Hollingshead, 2000, Wegner, 1995). The introduction of pair programming 

and small task practices, it was hypothesised, changes the way that TMS is utilised in a team and the 

mechanisms for the emergence of specialists, or in other words, differentiation. It was argued that for 

optimum performance in XP teams, differentiation and the reliance on TMS is reduced, as there is 

elevated communication and sharing of task work. Studies into other aspects of XP have found that 

knowing the location of expertise in a team becomes less important when there is collective 

ownership of code, which can substitute for expertise coordination mechanisms such as TMS 

(Maruping et al., 2009). There are conflicting views in the literature relating to task size (Espinosa et 

al., 2007a, Littlepage et al., 2008) so this model was of interest to give some indication of the role task 

size plays under different methodologies. There is a body of literature on the impact of pair 

programming on team performance and the results are mixed, however, it is clear that there are many 

other factors that influence the outcome of a team and pair programming can be of benefit under 

certain circumstances.  

The results from this model suggested that in pair programming conditions, with high differentiation, 

TMS accuracy is important for performance. According to this model, pair programming generates 

high performance, high TMS accuracy and low differentiation, with large tasks having a positive 

effect on output and differentiation. Solo programming produces lower output with an advantage for 

large tasks, however solo programming generates lower accuracy and higher differentiation with an 

advantage for small tasks. The hypotheses were partly supported. 
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This model supported the hypothesis that pair programming generates low differentiation. With 

negative relationships being found between TMS accuracy and differentiation the results do not 

support the literature (Brandon and Hollingshead, 2004, Espinosa et al., 2007a, Klimoski and 

Mohammed, 1994) asserting that less differentiated knowledge inhibits team interdependence and 

reduces the reliance on the TMS.  

12.1.2 Model Novelty 

The previous experiment focussed on a simple initial model with a small range of knowledge 

simulating repetitive routine tasks. This model increased the knowledge range to between 1 and 100 

to simulate greater complexity and novelty. The aim of this model was to simulate greater levels of 

complexity and novelty for the agents' tasks modelling the more innovative environment of a software 

development team (Hoegl et al., 2003). It was hypothesised that general output would be reduced, 

output would be higher for pair programming and small task conditions, but the reduction in output 

would be attenuated by the use of pair programming and small task size. Further hypotheses predicted 

that pair programming and small task size practices would affect the relationship between both TMS 

and differentiation, and output. It was predicted that this model would demonstrate that for pair 

programming differentiation would be lower.  

The literature on TMS in highly innovative environments is contradictory (Akgun et al., 2005, Argote 

et al., 1995, Espinosa et al., 2007a, Hoegl et al., 2003, Ren et al., 2006) therefore the results of this 

model were difficult to predict. The model also demonstrated the influence of task size on TMS, 

differentiation and output. 

The results of this model found that increasing the novelty and complexity in the model reduced 

output in general but as hypothesised, that reduction was smaller for pair programming conditions 

with pair programming conditions again producing higher output. It is suggested that pair 

programming reduces the drop in output because by working together agents are pooling resources 

and there is more chance of having useful knowledge for the fulfilment of the unfamiliar task. 

It was also shown, as hypothesised, that for tasks with greater novelty and complexity, differentiation 

is lower for pair programming conditions than for solo conditions. By working together on tasks team 

members are sharing knowledge, which increases the distribution of knowledge around the team. As 

the pairs change regularly, this knowledge distribution is team wide.  

Regarding the TMS this model also found that high levels of TMS accuracy are maintained for pair 

programming conditions so in support of Akgun it would appear that complex tasks do require greater 
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interdependency and so there is a positive relationship between TMS accuracy and output for 

increased task complexity (Akgun et al., 2005). 

This model has found a discrepancy between work mode and task size. Whereas, pair programming 

increases output with higher differentiation and higher TMS accuracy, large tasks are also found to 

increase output but with lower differentiation and lower TMS accuracy. It was also found that task 

size has less effect in pair programming conditions and a larger effect in solo conditions.  

This model also found that the development of differentiation is delayed for more novel and complex 

tasks resulting in the differentiation although being significantly lower than for routine tasks, pair 

programming conditions produces higher differentiation than solo conditions.  

In summary, this model demonstrates that the drop in performance due to complexity and novelty of 

tasks can be reduced by the utilisation of pair programming and that the development of 

differentiation is delayed due to a much larger knowledge base, potentially having an effect on the 

results of the team. 

12.1.3 Model Differentiation 

From the results of the previous chapters low differentiation is beneficial for teams using pair 

programming practices. While working in pairs not only is knowledge being distributed more evenly 

about the team resulting in lower differentiation but also, it may be more conducive to efficient pair 

working if the pairs have closer knowledge structures.  

This model examined the behaviour of output, TMS accuracy and differentiation for initial conditions 

relating to a variety of levels of initial knowledge and TMS. It modelled teams containing all experts 

with the same knowledge and all experts with diverse knowledge. For both of those scenarios there 

was a condition each for no initial TMS and complete TMS. As before the model had pair 

programming versus solo programming conditions and small task versus large tasks conditions.  

As found in previous chapters the relationship between differentiation, TMS accuracy and output do 

not necessarily agree with the traditional TMS literature with TMS retaining an importance for team 

output even when differentiation is low. For this reason it was expected that initial conditions of high 

differentiation would not produce high output in pair programming conditions although they might for 

solo conditions.  

The hypotheses for this model predicted that initial TMS and differentiation would have different 

effects on TMS accuracy and differentiation for different working conditions. In addition it was 
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predicted that pair programming and task size factors would moderate the relationship between initial 

TMS, initial differentiation and output. It was expected that for pair programming conditions, the 

presence or not of an initial TMS would have no effect on output but for solo conditions the existence 

of an initial TMS would have a positive effect on output. Also, lower initial differentiation would 

result in higher output for pair programming conditions and lower performance for solo conditions.  

If pair programming, team members having worked together before, and so having initial knowledge 

of each other, is unlikely to have an effect on the accuracy of their TMS or knowledge diversity over 

time. In contrast homogenous initial knowledge is likely to have an effect on the accuracy of TMS 

and the diversity of knowledge in the team, increasing them both to a greater degree over time. 

For solo programmers, previously working together reduces the accuracy of the team members' TMS 

over time and initial diversity of knowledge will increase the diversity over time. Other effects of 

initial conditions are dependent on other factors such as task size. 

This might imply that team members with similar knowledge, who had worked together before would 

result in higher output. This is less important for pair programming factors, which seem to 

compensate for this. 

12.2 Conclusion 

The results of the three experiments carried out in this work can give some preliminary indications of 

the dynamics of knowledge and transactive memory in teams working under different development 

methodologies. With increasing realism the models have looked at the complex relationships between 

TMS accuracy, differentiation and team output.  

Pair programming was found to be conducive to high output for all simulations and there was 

generally a positive relationship between TMS accuracy and output, and, as expected pair 

programming generated lower differentiation. So, contradicting the literature, which asserts that less 

differentiated knowledge inhibits team interdependence and reduces the reliance on the TMS 

(Brandon and Hollingshead, 2004, Espinosa et al., 2007a, Klimoski and Mohammed, 1994), negative 

relationships were found between TMS accuracy and differentiation for pair programming. For solo 

programming the first model found that higher output was attained for large tasks but in contradiction 

of the literature, with lower differentiation and lower TMS accuracy. 

The main findings from the second model indicated that the use of pair programming reduces the drop 

in output resulting from the introduction of complexity or increases in unfamiliarity of the task. It was 
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also found that task size has less effect in pair programming conditions and a larger effect in solo 

conditions. This model also found that the development of differentiation is delayed for more novel 

and complex tasks resulting in the differentiation although being significantly lower than for routine 

tasks, pair programming conditions produces higher differentiation than solo conditions. 

The main findings from the third model showed that that team members with similar knowledge, who 

had worked together before, would result in higher output. The use of pair programming compensates 

for different initial team conditions producing consistently higher output and higher TMS accuracy.  

Also, in contradiction of the TMS literature (Brandon and Hollingshead, 2004, Espinosa et al., 2007a, 

Klimoski and Mohammed, 1994) the use of pair programming produces lower differentiation while 

maintaining the importance of an accurate TMS for better performance. 

This research has challenged the established TMS literature by demonstrating that transactive memory 

systems processes may differ from those expected when utilising eXtreme programming techniques. 

These simulations have given a more detailed understanding of the behaviour of TMS, differentiation 

and ultimately output under different conditions and although it is important to be critical of the 

results of these simulations, some initial findings can be gleaned that may be applicable in the context 

of teams of software developers using XP practices. This research can provide a basis upon which to 

develop further investigation into TMS processes that take place in software development teams.  

As interdisciplinary research spanning both psychology and computer science this thesis has 

contributed in a variety of ways. It has pioneered the use of FLAME in a novel way by modelling 

small numbers of agents where the information of interest is in their memory and not in their position 

in space. Secondly, this research has contributed to the TMS literature by highlighting potential 

circumstances that challenge existing research; and finally, this research contributes to the XP 

literature and to the understanding of factors that optimise the use of XP techniques and to identify 

optimum conditions for best team output.  

All results and model code are attached in digital form; an index can be found at Appendix 2. 

12.3 Limitations 

Limitations to this work have to be recognised. As with any agent-based model the extent to which it 

represents reality must be questioned. Development of the model is an iterative process where the 

model becomes more plausible as it develops. The relationship between model and empirical or 

academic data is not one-way. Research will validate the model but data from the model may open up 

new lines of research, which will in turn feed back into the model design. The relationship is a 
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circular one resulting in ongoing exploration of the domain of research. 

The operation of this model was informed by theoretical research and the corpus relating to the 

subjects addressed, however, it is often the practice to carry out empirical research for the cycle of 

model development to take place. There were some attempts to carry out empirical research using the 

software engineering students at the University of Sheffield, working on projects using the XP 

software development methodology, as subjects. They were given questionnaires regularly throughout 

their project and were asked to report on their beliefs relating to their teammates' skills. It was felt that 

the results were unreliable, as the students did not take the questionnaire seriously. It was suspected 

that they did not fill them in truthfully, either through disinterest, becoming bored with the repetition 

of the questionnaire, or wanting to enhance the skill sets of their friends in the eyes of the staff. In 

addition there were no subjects relating to traditional software development methodologies available. 

So, in consequence it was decided to carry out a theoretical exercise using existing literature to inform 

the research.  

12.4 Further work 

This initial foray into the effects of different software development methodologies on transactive 

memory, differentiation and performance for software development teams has given some preliminary 

results which will be useful to inform subsequent research into this area. There are many avenues 

which this research could take potentially revealing some very interesting results.  

The literature around transactive memory systems and XP is diverse and can provide more material 

for the development of the model: 

• Existing parameters - Experiment with existing parameters such as knowledge range, task 

size, team size, communication settings and number of iterations. 

• TMS - The introduction of greater cognitive realism by including other aspects of TMS such 

as consensus, knowledge stock and credibility  

• Staff turnover - Investigate the impact on the team by changes in team members.  

• Altruism - Other cognitive aspects could be added to the agents in the model such as 

including personal or team goals for agents. This would model selfish or altruistic behaviour 

in the team and the impact on performance, at the agent and team level. 
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• Forgetting - Currently agents in the model can only increase knowledge; deterioration of 

knowledge if it is not used is another potential development of the model.  

• Knowledge granularity - This model has one measure of knowledge; this could be increased 

to include hierarchical levels of knowledge giving greater insight into how knowledge is 

distributed in a team.  

• Time - This model has a fixed iteration period for agents to carry out tasks. The model could 

be enhanced to model changes in the time taken to fulfil tasks with some agents taking longer 

to fulfil tasks than others based on rules and conditions.  

• Communication - changes in the volume and nature of communication in the team could be 

investigated.  

• Multiple team interaction - the model could be developed to model multiple teams, agents 

moving between teams, inter-team communication and external knowledge sources.  

• Trust - TMS is based on team members’ beliefs. The model could be developed to introduce 

the concept of trust to establish the effect on knowledge, memory and team dynamics.  

• XP - introduce more practices of the XP methodology in order to understand in greater detail 

the cognitive processes that take place. 

The potential for the model to become ever more cognitively realistic and to include many more 

aspects of TMS are great. This thesis has introduced a preliminary model and established some 

interesting findings. It also contributes to the literature on understanding the benefits of XP practices 

and how they can be used for the best outcomes.  
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Appendix 2. Digital resources 

This appendix provides an index of the digital resources that are supplied with this thesis.  

1. PDF of this thesis 

2. Stategraph of the model 

3. The model 

a. controller_functions.c – functions for controller that provides team level services 

such as issuing tasks and calculating team level measures.  

b. mod5.xml – file providing the xml definition of the agents and the environment. 

c. my_library_functions.c – library of functions for use throughout the model 

d. player_functions.c – functions for the operation of the individual agents 

4. Results 

a. Validation model 

i. 0.xml 

ii. valid.xlsx 

b. Alignment model 

i. notms.xlsx – model output and calculation for trained individually condition 

ii. tms.xlsx – model output and calculation for trained as a team condition 

iii. repmeasacc.spv, repmeasdiff.spv and repmeasoutput.spv – SPSS output files 

with results of repeated measures ANOVA 
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c. Model Tabula Rasa 

i. agile4 - 0.xml and spreadsheet with model output for pair programming and 

small tasks condition 

ii. agile20 - 0.xml and spreadsheet with model output for pair programming and 

large tasks condition 

iii. trad4 - 0.xml and spreadsheet with model output for solo programming and 

small tasks condition 

iv. trad20 - 0.xml and spreadsheet with model output for solo programming and 

large tasks condition 

v. xp_stats.spv – SPSS output file containing output of statistical tests. 

d. Model Novelty 

i. novelty_stats.spv – SPSS file containing output of statistical tests 

ii. pp4k100 - 0.xml and spreadsheet with model output for high novelty, pair 

programming and small tasks 

iii. pp20k100- 0.xml and spreadsheet with model output for high novelty, pair 

programming and large tasks 

iv. wa4k100 - 0.xml and spreadsheet with model output for high novelty, solo 

programming, small tasks 

v. wa20k100 - 0.xml and spreadsheet with model output for high novelty, solo 

programming and large tasks 

e. Model Differentiation 

i. pp4x4dhi notms – 0.xml and spreadsheet with model output for pair 

programming, small tasks, high initial differentiation and no initial TMS 

ii. pp4x4dhi tms - 0.xml and spreadsheet with model output for pair 

programming, small tasks, high initial differentiation and an initial TMS 

iii. pp4x4dlo notms - 0.xml and spreadsheet with model output for pair 
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programming, small tasks, low initial differentiation and no initial TMS 

iv. pp20x4dlo tms - 0.xml and spreadsheet with model output for pair 

programming, large tasks, low initial differentiation and an initial TMS 

v. pp20x4dhi notms – 0.xml and spreadsheet with model output for pair 

programming, large tasks, high initial differentiation and no initial TMS 

vi. pp20x4dhi tms - 0.xml and spreadsheet with model output for pair 

programming, large tasks, high initial differentiation and an initial TMS 

vii. pp20x4dlo notms - 0.xml and spreadsheet with model output for pair 

programming, large tasks, low initial differentiation and no initial TMS 

viii. pp20x4dlo tms - 0.xml and spreadsheet with model output for pair 

programming, large tasks, low initial differentiation and an initial TMS 

ix. stats.spv – SPSS output file containing output of statistical tests 

x. wa4x4dhi notms – 0.xml and spreadsheet with model output for solo 

programming, small tasks, high initial differentiation and no initial TMS 

xi. wa4x4dhi tms - 0.xml and spreadsheet with model output for solo 

programming, small tasks, high initial differentiation and an initial TMS 

xii. wa4x4dlo notms - 0.xml and spreadsheet with model output for solo 

programming, small tasks, low initial differentiation and no initial TMS 

xiii. wa20x4dlo tms - 0.xml and spreadsheet with model output for solo 

programming, large tasks, low initial differentiation and an initial TMS 

xiv. wa20x4dhi notms – 0.xml and spreadsheet with model output for solo 

programming, large tasks, high initial differentiation and no initial TMS 

xv. wa20x4dhi tms - 0.xml and spreadsheet with model output for solo 

programming, large tasks, high initial differentiation and an initial TMS 

xvi. wa20x4dlo notms - 0.xml and spreadsheet with model output for solo 

programming, large tasks, low initial differentiation and no initial TMS 
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xvii. wa20x4dlo tms - 0.xml and spreadsheet with model output for solo 

programming, large tasks, low initial differentiation and an initial TMS 
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