On the security of CBC-MAC
schemes

Chris Mitchell
Information Security Group

Royal Holloway, University of London
C.Mitchell@rhul _.ac.uk
http://www.i1sg.rhul .ac.uk/~cjm

https://core.ac.uk/display/78876648?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

S i A

Contents of talk

CBC-MACs

EMAC and ARMAC

New CBC-MAC schemes
RMAC

The XCBC family
Conclusions

Purpose of MACs

Used to protect integrity and guarantee
origin of data strings.

Sender and verifier share a secret key (of
K bits).
Sender inputs data and key to MAC

algorithm — output iIs MAC (short string of
bits) which is sent/stored with data.

Verifier recomputes MAC using received
message and secret key and compares.

CBC-MACs

« A CBC-MAC is a particular (very popular)
type of MAC.

e Computed using a block cipher in CBC
(Cipher Block Chaining) mode.

» Write e, (P) for block cipher encryption of
block P (n bits) using secret key K (k bits).

» Similarly, write d,(C) for block cipher
decryption of block C using key K.

CBC-MAC operation

* Divide and pad data to be MACed into n-
bit blocks D,, D,, ..., D, (n is block length
of block cipher, e.g. n = 64 for DES).

 The MAC Is computed by:
— put H; = ex(D,),
—for1=2,3,...,q: put H=¢e.(D; ®H,,).

* H, Is then subject to an ‘optional process
and truncated to m bits to give the MAC.

CBC-MAC calculation

D, D, D

g
A o Ha
% % l
A
(n bits) (n bits) (n bits) l

MAC
(m bits)

Padding

e Three well known padding methods:

— Method 1: add minimum no. of zeros to
make a whole number of blocks.

— Method 2: add single one followed by
zeros to make a whole number of blocks.

— Method 3: right-pad with zeros as
necessary. Left-pad with extra n-bit block
containing binary representation of bit-
length of unpadded string.

« Padding not sent with MACed message.

Trailing zeros forgeries

 Padding Method 1 allows attacker to add
or delete trailing zeros from a message
without changing the MAC. A forgery
attack.

* Arises from fact that Padding Method 1 is
not a one-to-one function, l.e. up to n
unpadded messages map to the same
padded message.

 Motive for introduction of Method 2.

Need for optional process

Suppose a CBC-MAC is computed with no
optional process and no truncation (SMAC).

Suppose we have the MACs for two one-
block messages:

MAC, = eK(D,), MAC, = eK(D,).
Then MAC, is a valid MAC on the two block
message: D, || D, ® MAC,.

Need to add optional process (or padding
method 3) to avoid this ‘cut and paste’
Forgery attack.

S i i

Contents of talk

CBC-MACs

EMAC and ARMAC
New CBC-MAC schemes
RMAC

The XCBC family
Conclusions

Optional processes

 Two well-known optional processes:
— choose a key K; and compute:

Hy" = ex(dka(Hg)),
— choose a key K, and compute:
Hy' = exi(Hy)-
e First method results in ANSI Retaill MAC
(ARMAC) when block cipher = DES

e Second method often called EMAC.

Standard CBC-MACs

e |ISOJ/IEC standard for CBC-MACs
(ISO/IEC 9797-1: 1999) contains 6
schemes.

e First three are as follows:
— Alg. 1 = CBC-MAC with no optional process
(SMAC).
— Alg. 2 = CBC-MAC with optional process as
single extra encryption (EMAC).

— Alg. 3 = CBC-MAC with optional process as
extra decryption and encryption (i.e., triple
encrypt last block) (ARMAC).

EMAC security

EMAC has a proof of security (Petrank &
Rackoff, 2000).

~or block ciphers with large enough n and
K (128 or more), EMAC is sound choice —
with padding method 2 or 3.

For block ciphers with small k (e.g. DES:
k=56), EMAC Insecure, because of simple
meet-in-the-middle key recovery attack.

Attack complexity: O(2%) encryptions with 1
known MAC.

ARMAC security

* Problems with EMAC (and SMAC), combined

with desire to use DES, motivates design of
ARMAC.

« ARMAC seems much more resistant to key
recovery attacks than EMAC (no proof however).

« Key recovery attack either requires triple DES
break (2K encryptions + 2k storage) or large
number (2"2) of known MACs combined with
single DES break (2% encryptions).

o 0k W

Contents of talk

CBC-MACs

EMAC and ARMAC

New CBC-MAC schemes
RMAC

The XCBC family
Conclusions

Rationale

* The standardisation of a block cipher
(AES) with larger n and k, means that it
seems appropriate to re-examine ways Iin
which we use block ciphers.

 Modes of operation and commonly used
CBC-MAC schemes are quite ‘old’
designs.

e Can we do better?

NIST process

NIST has an ongoing project to produce new
‘modes’ standards for DES.

Objective: produce combined encryption +
Integrity mode (proposal for review in NIST
Special Publication 800-38C, September 2003).

Objective: CBC-MAC standard for AES.

NIST activity mirrored in 1ISO, where ISO/IEC
9797-1 currently under review, and Data
Encapsulation Mechanisms (DEMs) work just
starting (DEM = combined encryption/integrity).

Candidate schemes

A number of candidate CBC-MAC
schemes have been proposed, including:
— RMAC (Jaulmes, Joux and Valette, 2002),
— XCBC (Black and Rogaway, 2000), and

— TMAC and OMAC (lwata and Kurosawa,
2003).

o 0k W

Contents of talk

CBC-MACs

EMAC and ARMAC

New CBC-MAC schemes
RMAC

The XCBC family
Conclusions

RMAC

RMAC operates as follows.
Two block cipher keys required (K, K,).

To generate a MAC first generate a
random salt R (of k bits).

Then, using the model previously
described, RMAC involves the optional
Process:

Hy' = exer (Hg):

Rationale of RMAC

e Typically, a CBC-MAC scheme will be

subject to forgery attacks requiring O(2"2)
Known/chosen MACs (based on ‘birthday
paradox’ probabillity).

* For ‘short block’ block ciphers (e.g. 3DES,
DEA, ... with n = 64) this Is sometimes a
ittle ‘close’ to what Is possible.

* RMAC objective Is to offer greater
resistance to ‘birthday’ forgery attacks.

NIST draft

* RMAC was included in NIST special
publication 800-38B (November 2002) —
essentially a draft standard.

« At that time RMAC was clearly the leading
candidate for standardisation.

Reaction to 800-38B

 The release of NIST SP 800-38B
provoked a large number of negative
comments.

* The result is that RMAC is no longer being
seriously considered for NIST adoption.

 The original SP 800-38B and the main
comments are available for download at
the NIST website.

A simple observation

Suppose know one RMAC (M say) for
data D (using salt R, say).

Request another MAC (M' say) for the
same data D (uses salt R' say).
Then immediately know that:

di,er (M) = di,er (M).
Enables exhaustive search for K, with
complexity 2% (and just 2 known MACS).

This contradicts claims in SP 800-38B.

Some attacks on RMAC

* In (Knudsen & Mitchell, J. Crypt., to
appear) a series of partial key recovery
attacks on RMAC are presented.

» Enable one of the two RMAC keys (K,) to
be recovered with much less than 2k work.

* Once K, Is known, very simple forgery
attacks become possible (based on ‘cut
and paste’ attack).

o 0k W

Contents of talk

CBC-MACs

EMAC and ARMAC

New CBC-MAC schemes
RMAC

The XCBC family
Conclusions

XCBC

« XCBC, another CBC-MAC scheme, was
proposed by Black & Rogaway in 2000.

* Objective was to define a provably secure
CBC-MAC which minimises number of
block cipher encryptions/decryptions.

e Address fact that EMAC + pad method 2
can involve 2 ‘extra’ encryptions by
comparison with SMAC + pad method 1.

XCBC operation |

XCBC does not quite fit the general CBC-
MAC model presented eatrlier.

Use padding method 2 if data string needs
padding; otherwise do not pad.

Avoid ambiguity problems by computing
MAC differently depending on whether or
not padding was performed.

Three keys: K, K, and K, (K has k bits, &
K, K5 have n bits).

XCBC operation I

* If no padding then exor K, with D, (last
data block).

* If padding used then exor K, with D,,.

 Then compute SMAC on (modified) data
using key K.

XCBC properties

« Same number of encryptions as SMAC
with padding method 1, yet forgery
oroblems removed.

* Proof of security exists.

 Hence optimally efficient with respect to
nlock cipher operations, BUT largish key
(384 bits for AES).

TMAC

To reduce key size, Kurosawa and Iwata
(2003) proposed TMAC (T for ‘two key’)
using keys K (of k bits) and K' of n bits.

Derive K, and K, from K' by putting K, = K’
and K, = u.K' where multiplication takes
place in GF(2").

Compute MAC as for XCBC.
TMAC still has a proof of security.

OMAC

wata and Kurosawa (2003) have recently
oroposed OMAC (O for ‘one-key’) using
just one key K (of k bits).

Derive K' from K by setting K' = e, (0").

Then derive K, and K, from K" as for
TMAC.

Finally, compute MAC as for XCBC.
OMAC again has a proof of security.

NIST statement

NIST have not yet published a new draft
on CBC-MACs, but have indicated that
they are leaning towards OMAC.

There Is also an ‘open call’ for comments
on all CBC-MAC schemes.

Some comments exist on NIST website.

Thus, now Is the time to provide input to
NIST!

Partial key recovery attack on TMAC

e Sung, Hong & Lee (2003) described attack
against TMAC which allows recovery of K
given O(2"?) known/chosen MACs and
trivial computation (no key search).

* Recovering K still requires 2% work, and
oroof of security not challenged.

 However, knowing K' does make very
trivial forgeries possible.

OMAC attacks

« The TMAC attack works against OMAC,
as does a further (different) attack, both
allowing recovery of K‘ given O(2"2)
known/chosen MACSs.

e As lwata has pointed out, this is no longer
a partial key recovery attack, since K'is
not part of the key (but Is derived from it) —
unlike TMAC.

* Nevertheless, recovery of K' would allow
very trivial forgeries.

What does it mean?

 These attacks do not contradict proofs of
security for OMAC and TMAC.

* None of the proofs say anything about
security once an attacker has O(2"?)
known MACS.

 However, it Is arguable that one should
still be concerned about what happens at
the ‘boundaries’ of the security proof.

S i A

Contents of talk

CBC-MACs

EMAC and ARMAC

New CBC-MAC schemes
RMAC

The XCBC family
Conclusions

Where next?

The main choice right now (for NIST)
would appear to be between EMAC and
OMAC.

Both have similar provable security.
OMAC is more efficient.

However EMAC appears stronger just
outside envelope of security proof.

Views are needed, both for NIST and In
near future for ISO.

