
On the security of CBC-MAC
schemes

Chris Mitchell
Information Security Group

Royal Holloway, University of London
C.Mitchell@rhul.ac.uk

http://www.isg.rhul.ac.uk/~cjm brought to you by
C

O
R

E
V

iew
 m

etadata, citation and sim
ilar papers at core.ac.uk

provided by R
oyal H

ollow
ay R

esearch O
nline

https://core.ac.uk/display/78876648?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Contents of talk

1. CBC-MACs
2. EMAC and ARMAC
3. New CBC-MAC schemes
4. RMAC
5. The XCBC family
6. Conclusions

Purpose of MACs

• Used to protect integrity and guarantee
origin of data strings.

• Sender and verifier share a secret key (of
k bits).

• Sender inputs data and key to MAC
algorithm – output is MAC (short string of
bits) which is sent/stored with data.

• Verifier recomputes MAC using received
message and secret key and compares.

CBC-MACs

• A CBC-MAC is a particular (very popular)
type of MAC.

• Computed using a block cipher in CBC
(Cipher Block Chaining) mode.

• Write eK(P) for block cipher encryption of
block P (n bits) using secret key K (k bits).

• Similarly, write dK(C) for block cipher
decryption of block C using key K.

CBC-MAC operation

• Divide and pad data to be MACed into n-
bit blocks D1, D2, …, Dq (n is block length
of block cipher, e.g. n = 64 for DES).

• The MAC is computed by:
– put H1 = eK(D1),
– for i = 2, 3, ..., q: put Hi = eK(Di ⊕ Hi-1).

• Hq is then subject to an ‘optional process’
and truncated to m bits to give the MAC.

CBC-MAC calculation

D1 D2

H1
(n bits)

Dq

Hq
(n bits)

H2
(n bits)

eK eK eK

Hq-1

Optional
process

Optional
truncate

MAC
(m bits)

Padding

• Three well known padding methods:
– Method 1: add minimum no. of zeros to

make a whole number of blocks.
– Method 2: add single one followed by

zeros to make a whole number of blocks.
– Method 3: right-pad with zeros as

necessary. Left-pad with extra n-bit block
containing binary representation of bit-
length of unpadded string.

• Padding not sent with MACed message.

Trailing zeros forgeries

• Padding Method 1 allows attacker to add
or delete trailing zeros from a message
without changing the MAC. A forgery
attack.

• Arises from fact that Padding Method 1 is
not a one-to-one function, i.e. up to n
unpadded messages map to the same
padded message.

• Motive for introduction of Method 2.

Need for optional process
• Suppose a CBC-MAC is computed with no

optional process and no truncation (SMAC).
• Suppose we have the MACs for two one-

block messages:
MAC1 = eK(D1), MAC2 = eK(D2).

• Then MAC2 is a valid MAC on the two block
message: D1 || D2 ⊕ MAC1.

• Need to add optional process (or padding
method 3) to avoid this ‘cut and paste’
Forgery attack.

Contents of talk

1. CBC-MACs
2. EMAC and ARMAC
3. New CBC-MAC schemes
4. RMAC
5. The XCBC family
6. Conclusions

Optional processes

• Two well-known optional processes:
– choose a key K1 and compute:

Hq′′ = eK(dK1(Hq)),
– choose a key K1 and compute:

Hq′ = eK1(Hq).
• First method results in ANSI Retail MAC

(ARMAC) when block cipher = DES
• Second method often called EMAC.

Standard CBC-MACs

• ISO/IEC standard for CBC-MACs
(ISO/IEC 9797-1: 1999) contains 6
schemes.

• First three are as follows:
– Alg. 1 = CBC-MAC with no optional process

(SMAC).
– Alg. 2 = CBC-MAC with optional process as

single extra encryption (EMAC).
– Alg. 3 = CBC-MAC with optional process as

extra decryption and encryption (i.e., triple
encrypt last block) (ARMAC).

EMAC security

• EMAC has a proof of security (Petrank &
Rackoff, 2000).

• For block ciphers with large enough n and
k (128 or more), EMAC is sound choice –
with padding method 2 or 3.

• For block ciphers with small k (e.g. DES:
k=56), EMAC insecure, because of simple
meet-in-the-middle key recovery attack.

• Attack complexity: O(2k) encryptions with 1
known MAC.

ARMAC security

• Problems with EMAC (and SMAC), combined
with desire to use DES, motivates design of
ARMAC.

• ARMAC seems much more resistant to key
recovery attacks than EMAC (no proof however).

• Key recovery attack either requires triple DES
break (2k encryptions + 2k storage) or large
number (2n/2) of known MACs combined with
single DES break (2k encryptions).

Contents of talk

1. CBC-MACs
2. EMAC and ARMAC
3. New CBC-MAC schemes
4. RMAC
5. The XCBC family
6. Conclusions

Rationale

• The standardisation of a block cipher
(AES) with larger n and k, means that it
seems appropriate to re-examine ways in
which we use block ciphers.

• Modes of operation and commonly used
CBC-MAC schemes are quite ‘old’
designs.

• Can we do better?

NIST process

• NIST has an ongoing project to produce new
‘modes’ standards for DES.

• Objective: produce combined encryption +
integrity mode (proposal for review in NIST
Special Publication 800-38C, September 2003).

• Objective: CBC-MAC standard for AES.
• NIST activity mirrored in ISO, where ISO/IEC

9797-1 currently under review, and Data
Encapsulation Mechanisms (DEMs) work just
starting (DEM = combined encryption/integrity).

Candidate schemes

• A number of candidate CBC-MAC
schemes have been proposed, including:
– RMAC (Jaulmes, Joux and Valette, 2002),
– XCBC (Black and Rogaway, 2000), and
– TMAC and OMAC (Iwata and Kurosawa,

2003).

Contents of talk

1. CBC-MACs
2. EMAC and ARMAC
3. New CBC-MAC schemes
4. RMAC
5. The XCBC family
6. Conclusions

RMAC

• RMAC operates as follows.
• Two block cipher keys required (K, K1).
• To generate a MAC first generate a

random salt R (of k bits).
• Then, using the model previously

described, RMAC involves the optional
process:

Hq′ = eK1⊕R (Hq).

Rationale of RMAC

• Typically, a CBC-MAC scheme will be
subject to forgery attacks requiring O(2n/2)
known/chosen MACs (based on ‘birthday
paradox’ probability).

• For ‘short block’ block ciphers (e.g. 3DES,
IDEA, … with n = 64) this is sometimes a
little ‘close’ to what is possible.

• RMAC objective is to offer greater
resistance to ‘birthday’ forgery attacks.

NIST draft

• RMAC was included in NIST special
publication 800-38B (November 2002) –
essentially a draft standard.

• At that time RMAC was clearly the leading
candidate for standardisation.

Reaction to 800-38B

• The release of NIST SP 800-38B
provoked a large number of negative
comments.

• The result is that RMAC is no longer being
seriously considered for NIST adoption.

• The original SP 800-38B and the main
comments are available for download at
the NIST website.

A simple observation

• Suppose know one RMAC (M say) for
data D (using salt R, say).

• Request another MAC (M' say) for the
same data D (uses salt R' say).

• Then immediately know that:
dK1⊕R (M) = dK1⊕R' (M').

• Enables exhaustive search for K1 with
complexity 2k (and just 2 known MACs).

• This contradicts claims in SP 800-38B.

Some attacks on RMAC

• In (Knudsen & Mitchell, J. Crypt., to
appear) a series of partial key recovery
attacks on RMAC are presented.

• Enable one of the two RMAC keys (K1) to
be recovered with much less than 2k work.

• Once K1 is known, very simple forgery
attacks become possible (based on ‘cut
and paste’ attack).

Contents of talk

1. CBC-MACs
2. EMAC and ARMAC
3. New CBC-MAC schemes
4. RMAC
5. The XCBC family
6. Conclusions

XCBC

• XCBC, another CBC-MAC scheme, was
proposed by Black & Rogaway in 2000.

• Objective was to define a provably secure
CBC-MAC which minimises number of
block cipher encryptions/decryptions.

• Address fact that EMAC + pad method 2
can involve 2 ‘extra’ encryptions by
comparison with SMAC + pad method 1.

XCBC operation I

• XCBC does not quite fit the general CBC-
MAC model presented earlier.

• Use padding method 2 if data string needs
padding; otherwise do not pad.

• Avoid ambiguity problems by computing
MAC differently depending on whether or
not padding was performed.

• Three keys: K, K1 and K2 (K has k bits, &
K1, K2 have n bits).

XCBC operation II

• If no padding then exor K1 with Dq (last
data block).

• If padding used then exor K2 with Dq.
• Then compute SMAC on (modified) data

using key K.

XCBC properties

• Same number of encryptions as SMAC
with padding method 1, yet forgery
problems removed.

• Proof of security exists.
• Hence optimally efficient with respect to

block cipher operations, BUT largish key
(384 bits for AES).

TMAC

• To reduce key size, Kurosawa and Iwata
(2003) proposed TMAC (T for ‘two key’)
using keys K (of k bits) and K' of n bits.

• Derive K1 and K2 from K' by putting K2 = K'
and K1 = u.K' where multiplication takes
place in GF(2n).

• Compute MAC as for XCBC.
• TMAC still has a proof of security.

OMAC

• Iwata and Kurosawa (2003) have recently
proposed OMAC (O for ‘one-key’) using
just one key K (of k bits).

• Derive K' from K by setting K' = eK(0n).
• Then derive K1 and K2 from K' as for

TMAC.
• Finally, compute MAC as for XCBC.
• OMAC again has a proof of security.

NIST statement

• NIST have not yet published a new draft
on CBC-MACs, but have indicated that
they are leaning towards OMAC.

• There is also an ‘open call’ for comments
on all CBC-MAC schemes.

• Some comments exist on NIST website.
• Thus, now is the time to provide input to

NIST!

Partial key recovery attack on TMAC

• Sung, Hong & Lee (2003) described attack
against TMAC which allows recovery of K'
given O(2n/2) known/chosen MACs and
trivial computation (no key search).

• Recovering K still requires 2k work, and
proof of security not challenged.

• However, knowing K' does make very
trivial forgeries possible.

OMAC attacks

• The TMAC attack works against OMAC,
as does a further (different) attack, both
allowing recovery of K‘ given O(2n/2)
known/chosen MACs.

• As Iwata has pointed out, this is no longer
a partial key recovery attack, since K' is
not part of the key (but is derived from it) –
unlike TMAC.

• Nevertheless, recovery of K' would allow
very trivial forgeries.

What does it mean?

• These attacks do not contradict proofs of
security for OMAC and TMAC.

• None of the proofs say anything about
security once an attacker has O(2n/2)
known MACs.

• However, it is arguable that one should
still be concerned about what happens at
the ‘boundaries’ of the security proof.

Contents of talk

1. CBC-MACs
2. EMAC and ARMAC
3. New CBC-MAC schemes
4. RMAC
5. The XCBC family
6. Conclusions

Where next?

• The main choice right now (for NIST)
would appear to be between EMAC and
OMAC.

• Both have similar provable security.
• OMAC is more efficient.
• However EMAC appears stronger just

outside envelope of security proof.
• Views are needed, both for NIST and in

near future for ISO.

