
Key recovery in a business
environment

Konstantinos Rantos

Technical Report
RHUL–MA–2001–4
1 November 2001

Royal Holloway
University of London

Department of Mathematics
Royal Holloway, University of London
Egham, Surrey TW20 0EX, England

http://www.rhul.ac.uk/mathematics/techreports

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Royal Holloway Research Online

https://core.ac.uk/display/78876475?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Key Recovery in a

Business Environment

by

Konstantinos Rantos

Thesis submitted to the University of London
for the degree of Doctor of Philosophy

Department of Mathematics
Royal Holloway, University of London

2001

Declaration

These doctoral studies were conducted under the supervision of Chris Mitchell and
Peter Wild.

The work presented in this thesis is the result of original research carried out by myself,
in collaboration with others, whilst enrolled in the Department of Mathematics as a
candidate for the degree of Doctor of Philosophy. This work has not been submitted
for any other degree or award in any other university or educational establishment.

Konstantinos Rantos
March 8, 2001

2

List of Publications

A number of papers resulting from this work have been presented in or submitted to
refereed conferences and journals.

• G. Horn, P. Howard, K.M. Martin, C.J. Mitchell, B. Preneel, and K. Rantos.
Trialling secure billing with trusted third party support for UMTS applications.
In Proceedings of 3rd ACTS Mobile Communications Summit, pages 574–579,
Rhodes, Greece, 1998.

• K. Rantos and C.J. Mitchell. Remarks on KRA’s key recovery block format.
Electronic Letters, 35:632–634, 1999.

• C. Markantonakis and K. Rantos. On the life cycle of the certification authority
key pair in EMV’96. In Proceedings of Euromedia ’99, pages 125–130, Munich,
Germany, 1999.

• K. Rantos and C.J. Mitchell. Key recovery in ASPeCT authentication and initial-
isation of payment protocol. In Proceedings of 4th ACTS Mobile Communications
Summit, pages 629–634, Sorento, Italy, 1999.

• C.J. Mitchell and K. Rantos. A fair certification protocol. ACM Computer
Communication Review, 29(3):47–49, July 1999.

• K. Rantos and C.J. Mitchell. Key recovery for archived data using smart cards.
In Proceedings of the 5th Nordic Workshop on Secure IT Systems, Reykjavik,
Iceland, 2000.

• K. Rantos and C.J. Mitchell. Matching Key Recovery Mechanisms to Business
Requirements. Submitted.

• K. Rantos and C.J. Mitchell. Key recovery scheme interoperability – a protocol
for mechanism negotiation. Submitted.

3

Acknowledgements

This thesis would not have been possible without the guidance, technical and personal
support of a number of people. My initial and foremost thanks to my supervisor Chris
Mitchell for his continued support, interest, patience and guidance throughout my
Doctoral Studies at Royal Holloway. His style of supervision along with his important
comments and suggestions for improvements have encouraged me to pursue my ideas.
Special thanks also to my advisor Peter Wild. I benefited from the added dimension
he brought to this thesis.

Particular thanks to my colleague Keith Howker who made my integration into the
ASPeCT project less difficult than it might otherwise have been. My thanks to my
friends and colleagues Kostas Markantonakis, Keith Martin, Peter Burge, Barry Rising,
Zbigniew Ciechanowicz, Ioannis Michalopoulos, Kostas Zafeiris and all of those who
helped to make my stay in Royal Holloway so enjoyable.

I cannot thank Aphrodite enough for her love, kindness, tolerance and support over
the last few years. She has been a source of constant inspiration to me.

I would also like to thank my sister Anna and Makis for the good time that I have
when I go back home, and to congratulate them on their marriage as it made me feel
very happy.

My parents have set the cornerstone for my studies. They have guided, motivated and
supported me through my academic career and my life. Mum and dad thanks.

Finally, I wish to dedicate this thesis to my grandmother Athina whose funeral I was
unable to attend due to my studies far away from home.

4

Abstract

This thesis looks at the use of key recovery primarily from the perspective of business
needs, as opposed to the needs of governments or regulatory bodies.

The threats that necessitate the use of key recovery as a countermeasure are identified
together with the requirements for a key recovery mechanism deployed in a business
environment. The applicability of mechanisms (mainly designed for law enforcement
access purposes) is also examined. What follows from this analysis is that whether the
target data is being communicated or archived can influence the criticality of some of
the identified requirements.

As a result, key recovery mechanisms used for archived data need to be distinguished
from those used for communicated data, and the different issues surrounding those two
categories are further investigated. Two mechanisms specifically designed for use on
archived data are proposed.

An investigation is also carried out regarding the interoperability of dissimilar key
recovery mechanisms, when these are used for encrypted communicated data. We
study a scheme proposed by the Key Recovery Alliance to promote interoperability
between dissimilar mechanisms and we show that it fails to achieve one of its objectives.
Instead, a negotiation protocol is proposed where the communicating parties can agree
on a mutually acceptable or different, yet interoperable, key recovery mechanism(s).

The issue of preventing unfair key recovery by either of two communicating parties,
where one of the parties activates a covert channel for key recovery by a third party, is
also investigated. A protocol is proposed that can prevent this. This protocol can also
be used as a certification protocol for Diffie-Hellman keys in cases where neither the
user nor the certification authority are trusted to generate the user’s key on their own.

Finally, we study the use of key recovery in one of the authentication protocols pro-
posed in the context of third generation mobile communications. We propose certain
modifications that give it a key recovery capability in an attempt to assist its in-
ternational deployment given potential government demands for access to encrypted
communications.

5

Contents

1 Introduction 15

1.1 Motivation and challenges . 16

1.2 Contribution of this thesis . 18

1.3 Structure of the thesis . 19

I KEY RECOVERY IN BUSINESS ENVIRONMENTS 22

2 Information Recovery Using Key Recovery 23

2.1 Data protection and key recovery . 25

2.2 An abstract model of a key recovery mechanism 26

2.3 Recoverable keys . 28

2.4 Classification of key recovery mechanisms 29

2.5 Examples . 31

2.5.1 Key escrow . 31

2.5.2 Key encapsulation . 37

2.6 Attacks on KRM functionality . 42

2.6.1 Rogue user attacks . 43

2.6.2 Superencryption . 43

2.7 Making KRMs robust . 44

2.7.1 Integrity checks . 44

2.7.2 Implementation on trusted hardware 44

2.8 Weaknesses introduced by deployment of KRMs 45

2.8.1 Attacks on the agent . 45

2.8.2 Untrusted agents . 45

2.9 Strengthening the security infrastructure 46

2.9.1 Dispersion . 46

6

CONTENTS

2.9.2 Collusion-resistance . 46

2.9.3 Residual work factor . 47

2.9.4 Making the trusted parties oblivious 47

2.9.5 Using procedural means to protect the key recovery material . . 47

2.10 Summary . 48

3 Matching key recovery mechanisms to business requirements 49

3.1 Protecting business information . 50

3.2 Distinguishing between a business environment and law enforcement access 52

3.3 Requirements for KRMs deployed in a business environment 54

3.4 Assessment of existing mechanisms . 58

3.4.1 Assessment of key escrow mechanisms 58

3.4.2 Assessment of key encapsulation mechanisms 62

3.5 Distinguishing between communicated and archived data 65

3.6 Summary . 67

II KEY RECOVERY FOR ARCHIVED DATA 69

4 Applying key recovery to archived data 70

4.1 Requirements for KRMs for archived data 71

4.2 Applicability of existing mechanisms . 73

4.3 A new KR scheme . 77

4.3.1 Specification of scheme . 77

4.3.2 Properties and security analysis 80

4.3.3 Defeating rogue user attacks . 83

4.4 A second new KR scheme . 85

4.4.1 Specification of scheme . 85

4.4.2 Properties and security analysis 88

4.5 Comparison of the two schemes . 89

4.6 Summary . 90

5 Implementation issues of the proposed KRM for archived data 92

5.1 Introduction to smart cards . 93

5.2 Java Card . 95

7

CONTENTS

5.3 Implementation architecture . 97

5.3.1 OCF overview . 98

5.3.2 Applet functionality . 99

5.4 Implementation details . 100

5.5 Performance measurements and analysis 101

5.6 Summary . 104

III KEY RECOVERY FOR COMMUNICATED DATA 106

6 Interoperability issues surrounding key recovery mechanisms 107

6.1 Key recovery enabled communications 108

6.2 Applicability of existing mechanisms . 109

6.3 Interoperability . 110

6.4 Detailed description of the key recovery model 111

6.4.1 The key generation process . 112

6.4.2 The key recovery information generation process 113

6.5 Factors that can affect interoperability 114

6.6 Interoperable mechanisms . 116

6.7 A scheme proposed by the Key Recovery Alliance 118

6.8 Remarks on Key Recovery Alliance’s CKRB format 120

6.8.1 KRF generation . 120

6.8.2 Interoperability issues . 121

6.9 Summary . 123

7 A protocol for negotiating key recovery mechanisms 124

7.1 High-level description of the KRM negotiation protocol 125

7.1.1 The proposed scheme . 125

7.1.2 Exchanged messages . 127

7.2 Avoiding modification of the Hello messages by an adversary 129

7.3 Properties and discussion . 131

7.4 Summary . 132

8

CONTENTS

IV AVOIDING UNFAIR KEY RECOVERY 133

8 A fair certification protocol 134

8.1 Fair key agreement . 135

8.2 The commitments solution . 136

8.3 Key agreement using public key cryptography 138

8.4 A fair key generation and certification protocol 140

8.5 Summary . 143

V LAWFUL INTERCEPTION OF ENCRYPTED TELECOMMU-
NICATIONS 144

9 Key recovery in ASPeCT authentication and initialisation of payment
protocol 145

9.1 Lawful interception of telecommunications in UMTS 146

9.2 The ASPeCT authentication and initialisation of payment protocol . . . 147

9.2.1 Preliminaries . 147

9.2.2 Authentication without an on-line TTP (B–Variant) 148

9.2.3 Authentication with an on-line TTP (C–Variant) 149

9.3 Requirements and goals for key recovery in the ASPeCT protocol 150

9.4 Giving a key recovery capability to the B-variant 151

9.5 C-variant protocol with key recovery capability 153

9.6 Properties and discussion . 155

9.7 Summary . 155

10 Discussion and conclusions 157

10.1 Contributions and findings . 158

10.2 Discussion and suggestions for future work 162

A Code Listings 164

A.1 KeyRecDeclarations . 165

A.2 KeyRec . 166

A.3 KeyRecApplet . 169

A.4 KRAppletProxy . 172

A.5 KRAppletState . 177

9

CONTENTS

A.6 KeyRecovApplet . 179

Bibliography 180

10

List of Figures

2.1 A typical KRM . 27

2.2 Escrowed Encryption Standard . 33

2.3 JMW scheme . 36

2.4 SKR communication process . 41

2.5 SKR key recovery process . 42

5.1 Java Card architecture . 95

5.2 Java Card VM and converted classes downloading 96

5.3 The implementation architecture . 98

5.4 Implementation flowchart . 102

6.1 A typical KRM in relation to the key generation process 112

6.2 A typical KRM in relation to the KR information generation process . . 113

9.1 ASPeCT AIP Protocol (B–Variant) . 148

9.2 ASPeCT AIP Protocol (C–Variant) . 149

9.3 Modified B-variant Protocol . 152

9.4 Modified C-Variant Protocol . 154

11

List of Tables

5.1 Command APDU contents . 94

5.2 Response APDU contents . 95

5.3 Sm@rtCafé Java Card results using a block of 248 bytes of data 103

12

Abbreviations

AE Authorised entity

AIP Authentication and Initialisation of Payment

APDU Application Protocol Data Unit

API Application Programming Interface

AR Access Rule

ARI Access Rule Index

ASPeCT Advanced Security for Personal Communications Technology

BRV Backup Recovery Vector

CAD Card Acceptance Device

CKR Commercial Key Recovery

CKRB Common Key Recovery Block

DES Data Encryption Standard

DRC Data Recovery Centre

DRF Data Recovery Field

EES Escrowed Encryption Standard

ICC Integrated Circuit Card

IFD Interface Device

IP Internet Protocol

JCRE Java Card Runtime Environment

JCVM Java Card Virtual Machine

KDC Key Distribution Centre

KR Key Recovery

13

KRA Key Recovery Agent

KRC Key Recovery Centre

KRF Key Recovery Field

KRM Key Recovery Mechanism

KTC Key Translation Centre

LEA Law Enforcement Agency

LEAF Law Enforcement Access Field

MAC Message Authentication Code

OCF OpenCard Framework

PKI Public Key Infrastructure

SKR Secure Key Recovery

TLS Transport Layer Security

TTP Trusted Third Party

UMTS Universal Mobile Telecommunications System

VASP Value Added Service Provider

VFV Validation Field Value

14

Chapter 1

Introduction

Contents

1.1 Motivation and challenges . 16

1.2 Contribution of this thesis . 18

1.3 Structure of the thesis . 19

The aim of this chapter is to describe the context of the research and present the

structure of the thesis.

15

Introduction

1.1 Motivation and challenges

In recent years, key recovery has captured the attention of information security spe-

cialists as well as government officials and the public. It has been one of the most

controversial issues in the information security area.

With increasing demands for the use of encryption on communications, governments

have sought routes to lawful access to encrypted data while allowing the use of strong

encryption. This lawful access was intended to serve the purpose of dealing with

serious crime and for national security reasons. From the government perspective, key

escrow gives a means of access to encrypted data. This solution, however, has caused

widespread opposition as it has been seen as a potential infringement of the rights of

individuals.

Key recovery, and more specifically key escrow, first gained publicity from the United

States government’s proposal for compulsory escrow of keys [70]. It was part of this

government’s plan to relax export restrictions on cryptographic products that employ

strong encryption. The result was the proposal of a key escrow scheme, namely the

Escrowed Encryption Standard (EES) or Clipper, which provides users with strong en-

cryption for their communications, and Law Enforcement Agencies (LEAs) with access

to users’ encrypted communications when authorised. The latter, however, reinforced

opposition arising from possible threats to privacy.

Key recovery apart from fulfilling LEAs demands for access to encrypted communi-

cations, is likely to be an essential tool for businesses and organisations that want to

ensure continuous access to their encrypted data. Businesses cannot tolerate denial

of access to their data due to loss of access to decryption keys as the lost data could

be of considerable value. Key recovery in a business environment should therefore be

considered as part of routine disaster recovery planning.

16

1.1 Motivation and challenges

Although much work has been done regarding key recovery mechanisms, the majority

of it has been in the context of providing sound key recovery mechanisms that meet gov-

ernment demands for lawful access. There is little published material on key recovery

mechanisms and their benefits when they are applied in a business environment. How-

ever, through the process of seeking sound mechanisms for law enforcement demands,

schemes that serve business requirements have also started to emerge. As in any im-

mature market, the existence of proprietary mechanisms has caused problems, such

as interoperability issues among dissimilar schemes, that have not been thoroughly

investigated. Moreover, the design of most of these mechanisms has focused on en-

crypted communications without taking into account their use for encrypted archived

data or, at least, the different requirements that surround key recovery mechanisms

when deployed for communicated and for archived data. Therefore, interoperability

of dissimilar mechanisms and key recovery schemes for archived data are among the

issues that urgently need further investigation.

The Key Recovery Alliance is an international industry group that was founded by

eleven major information technology vendors in 1996 (by the end of 1997 more than

60 companies had joined the group). It was set up to develop high-level cryptographic

“key-recovery” solutions that meet the requirements of business for strong encryption

and could allow easing of restrictions of cryptographic import/export around the world.

Among the aims of the alliance was to provide some kind of standardisation for key re-

covery mechanisms, with a particular focus on interoperability issues. However, public

opposition to the general notion of key recovery restricted the Key Recovery Alliance’s

activities and, in a particular case, even forced a company to withdraw from the al-

liance. Key recovery was something that nobody wanted to talk about, regardless of

the environment in which it was to be used, and this seemed to have an effect on the

work carried out by the Key Recovery Alliance. It is worth mentioning, however, that

almost all the companies that provide cryptographic solutions incorporate some-kind

of proprietary key recovery within their products, not necessarily for LEA demands

but for the end user. This is an indication that businesses, which must safeguard their

17

Introduction

encrypted assets from loss of privately held keys, are starting to see key recovery as an

essential tool, which must exist in their cryptographic products.

1.2 Contribution of this thesis

This thesis investigates certain issues that surround key recovery mechanisms when

deployed specifically in a business environment. It looks at this topic entirely from the

business perspective without considering LEA requirements.

A thorough analysis of the requirements that a key recovery mechanism should fulfil

when deployed in a business environment is given, and an investigation of the appli-

cability of existing mechanisms follows. What follows from this investigation is that

the nature of the target data, i.e. whether the mechanism is used for communicated or

archived data, can influence the criticality of the requirements. Such an investigation

was considered necessary as businesses wishing to use key recovery have to be aware

of the advantages and disadvantages of deploying a mechanism that was designed to

serve law enforcement access.

The identification of different requirements for communicated and archived data has

motivated research for a mechanism that can be deployed specifically for archived

data. Two mechanisms of this type are proposed, one of which is an adaptation of a

mechanism proposed by Maher in [53]. The mechanisms meet different requirements,

with the main distinction being that one of them requires the existence of an on-line

key recovery agent during key generation, which helps counter rogue user attacks.

The work within this thesis was carried out in parallel with the work of the Key

Recovery Alliance, and the results of the latter’s work have been closely monitored.

In particular, consideration was given to the solution that the Key Recovery Alliance

has proposed to solve the interoperability problems between dissimilar key recovery

mechanisms. It is shown that the proposed model has some flaws and does not achieve

18

1.3 Structure of the thesis

what the alliance promises. Therefore, further research on this important topic is

necessary. A solution is proposed for the interoperability problem that arises from

the use of dissimilar mechanisms incorporated within various cryptographic solutions.

The proposed scheme gives the communicating parties the ability to negotiate the key

recovery mechanism(s) to be used, thus avoiding the situation where the two entities

are unable to establish a secure association because of interoperability issues between

the corresponding key recovery mechanisms.

This thesis is not primarily concerned with potential government requirements for law

enforcement access. However, in Chapter 9 a solution is proposed that allows law

enforcement access to encrypted telecommunications; this was done to help the inter-

national deployment of the ASPeCT (Advanced Security for Personal Communications

Technology [2]) protocol bearing in mind potential government demands for compul-

sory deployment of key recovery mechanisms. The objective was to put a mechanism

in place that will guarantee time-bounded interception and protect users against unau-

thorised access to their communications.

1.3 Structure of the thesis

The thesis is divided into five parts. Part I introduces the concepts and principles of key

recovery mechanisms and investigates the requirements of a key recovery mechanism

deployed in a business environment. More specifically, Chapter 2 gives an introduction

to key recovery mechanisms. It introduces the concept of key recovery and explains

how key recovery mechanisms work using selected examples of mechanisms proposed

by both the commercial sector and academia. Chapter 3 outlines the requirements for

a key recovery mechanism when deployed specifically in a business environment, as

opposed to the use of a key recovery mechanism for law enforcement access. Within

this chapter the need for distinction between key recovery mechanisms for archived and

for communicated data is outlined, while a thorough investigation of these two classes

19

Introduction

follows in Parts II and III respectively.

Part II covers key recovery mechanisms specifically deployed for archived data. In

Chapter 4 the requirements of such a key recovery mechanism are described and an

analysis of the applicability of existing mechanisms follows. Moreover, two new mecha-

nisms are proposed which fulfil the identified requirements. The first one is a variant of

Maher’s mechanism described in [53], which avoids certain problems. Chapter 5 gives

the details of a prototype implementation of this scheme.

Part III covers issues surrounding key recovery mechanisms for communicated data and

more specifically investigates interoperability of key recovery mechanisms. Chapter

6 gives an introduction to the interoperability problem that dissimilar key recovery

mechanisms might face in encrypted communications and identifies those factors that

can cause interoperability problems using a detailed description of a key recovery model.

Within this chapter, a scheme proposed by the Key Recovery Alliance as a solution to

the interoperability problem is also investigated and the reasons why this scheme fails

to achieve its objectives are explained. In Chapter 7, a protocol for negotiating the

key recovery mechanism(s) to be used by two communicating parties is described. This

protocol aims to help overcome the interoperability problems that might arise from the

intention of two communicating parties to use dissimilar key recovery mechanisms.

Part IV of this thesis looks at key recovery from a different perspective, namely the pre-

vention of unfair key recovery by either of two communicating parties. More specifically,

it looks at one of the standardised key agreement mechanisms of ISO/IEC 11770-3 [38]

and considers the problem that either party might influence the generated key, while

activating a covert channel for key recovery by a third party. The protocol proposed as

a countermeasure can also be used as a certification protocol for Diffie-Hellman keys.

Finally, Part V gives an introduction to the ASPeCT authentication and initialisation

of payment (AIP) protocols and describes certain modifications that give them a key re-

20

1.3 Structure of the thesis

covery capability. The modified protocols enable time-bounded law enforcement access

to encrypted communications. Two different solutions are proposed for this purpose.

21

Part I

KEY RECOVERY IN
BUSINESS ENVIRONMENTS

22

Chapter 2

Information Recovery Using Key
Recovery

Contents

2.1 Data protection and key recovery 25

2.2 An abstract model of a key recovery mechanism 26

2.3 Recoverable keys . 28

2.4 Classification of key recovery mechanisms 29

2.5 Examples . 31

2.5.1 Key escrow . 31
2.5.2 Key encapsulation . 37

2.6 Attacks on KRM functionality 42

2.6.1 Rogue user attacks . 43
2.6.2 Superencryption . 43

2.7 Making KRMs robust . 44

2.7.1 Integrity checks . 44
2.7.2 Implementation on trusted hardware 44

2.8 Weaknesses introduced by deployment of KRMs 45

2.8.1 Attacks on the agent . 45
2.8.2 Untrusted agents . 45

2.9 Strengthening the security infrastructure 46

2.9.1 Dispersion . 46
2.9.2 Collusion-resistance . 46
2.9.3 Residual work factor . 47
2.9.4 Making the trusted parties oblivious 47
2.9.5 Using procedural means to protect the key recovery material 47

2.10 Summary . 48

23

Information Recovery Using Key Recovery

The aim of this chapter is to give an overview of key recovery mechanisms. Some of

the various types are illustrated with selected examples that have been proposed by

both the commercial sector and academia. Attacks that seek to defeat the objective

of key recovery, and weaknesses introduced into the security infrastructure by the use

of key recovery, are also described, together with some techniques that can be used as

countermeasures.

24

2.1 Data protection and key recovery

2.1 Data protection and key recovery

The dependence of organisations and enterprises on the global information infrastruc-

ture for conducting business with their partners or consumers is increasing very rapidly.

Information has become one of the most valuable assets of a corporation, and hence the

need for protection of this information has emerged. This underlines the importance

of the security mechanisms used for the protection of sensitive information to prevent

loss of proprietary data and to safeguard its integrity.

Among the protection mechanisms used are cryptographic techniques, which can help

guarantee the confidentiality, integrity and authenticity of information. Key manage-

ment techniques exist for the cryptographic keys used, covering the generation, distri-

bution, validation, update, storage, usage, and destruction of keys. Key management

techniques should, however, also deal with situations where keys become forgotten,

damaged, rendered unavailable, or authorised third party access is required. Key re-

covery, backup and archival are techniques that can be used for this purpose.

Key backup refers to the backup of key material in independent, secure storage media,

during operational use. Key archival is a form of backup where the target keys are no

longer in normal use. It refers to long-term storage of post-operational keys and is used

for key retrieval under special conditions, such as settling disputes involving repudia-

tion. Both key archival and backup can be considered as key recovery techniques.

Although the term key recovery lacks a precise definition, and its interpretation may

vary, within the context of this thesis key recovery (KR) is defined as the process

that enables authorised entities to recover decryption keys, when they are not other-

wise available, with the ultimate goal of recovering the plaintext from encrypted data.

This process is typically an integral part of the key management infrastructure and is

achieved through reconstruction and/or retrieval of the target key. Related terms that

have been used in the literature include key escrow, encryption control, commercial key

25

Information Recovery Using Key Recovery

recovery, cryptographic backup and recovery, virtual addressing, and key encapsulation,

which are defined differently by various communities of interest and have poorly de-

fined differences. We use the terms key escrow and key encapsulation to describe two

fundamentally different approaches to key recovery.

One of the most critical components of a key recovery mechanism (KRM) is a key

recovery agent (KRA), which is a trusted third party (TTP) that assists in the recovery

of keys by preserving the appropriate key material. The KRA can be external or

internal to an organisation, with associated advantages and disadvantages (these are

described in detail in Chapter 3). Trust in the KRA is obviously a crucial requirement,

as the KRA will potentially hold the key to all the users’ encrypted information. If the

KRA becomes corrupted or changes its policy, the users’ privacy is endangered.

Alternative names for the KRA that have been used in the literature include key recov-

ery centre (KRC), data recovery centre, key escrow agent or even just agent. Through-

out this thesis these terms are considered synonymous, unless specifically distinguished,

although there is a trend to use the term key escrow agent only for key escrow mecha-

nisms.

2.2 An abstract model of a key recovery mechanism

An abstract model of a key recovery mechanism is depicted in Figure 2.1. This is a

functional model, depicting the processes of a key recovery mechanism while emphasis is

given to the entities that are involved. A similar model has been described by Denning

in [17] and an entirely functional model can be found in [42].

The entities that are typically involved are the KRA and the two communicating par-

ties, namely A and B, unless the mechanism is used for archived data in which case

only A will be present (the ciphertext together with the potential key recovery field are

simply sent to a storage device). The Authorised entity within whose domain the data

26

2.2 An abstract model of a key recovery mechanism

recovery takes place can be any entity authorised to recover encrypted data, such as

the corporation management, or the user that encrypted the data.

 KRF, ciphertext

 Entity A Entity B

 key K

 KRA
 Authorised entity

plaintext
 data

 key K

encrypt

 plaintext
 data

 key K
 Entity B

decrypt

KR
material

Key Recovery
Process

 plaintext
 data

decrypt

Figure 2.1: A typical KRM

In the model, A will encrypt the plaintext data with the session key K producing the

ciphertext. A will also generate the key recovery field (KRF), which is information that

can be interpreted by the Key Recovery Process.

The recovery of the target keys is performed by the Key Recovery Process. This

might be part of the KRA’s or the Authorised entity’s functionality (the latter possi-

bility applies when the key recovery material is dispersed among multiple agents; e.g.

the Escrowed Encryption Standard [70]). The Key Recovery Process takes as input

information necessary for this process, namely ‘KR information’, which has the form

of a key recovery field (KRF) or KR material. The KRF represents KR information

generated by either or both communicating parties while the KR material can include

cryptographic values that A escrows with KRA, or KRA’s own key material essential

for the recovery of the requested keys.

For simplicity reasons, only one KRA is shown, which is assumed to be the one with

which entity A is associated. Although interaction between A’s and B’s KRAs can take

place during any of the communication phases, it is not shown in the figure as inter-

27

Information Recovery Using Key Recovery

TTP communication is beyond the scope of the model given here. No communication,

however, takes place between an entity and the peer’s KRA unless the two entities

share the same KRA. Finally, note that A might be associated with multiple KRAs, in

which case the KR material is distributed among them.

2.3 Recoverable keys

For the purposes of this thesis we assume that the target keys that can be recovered

using a KRM are keys used by a cryptographic mechanism deployed for data confiden-

tiality (i.e. a cipher mechanism). Note that, in any event, it is usually considered bad

practice to give third parties access to signature keys. If a user’s private signing key is

lost then a new key pair can be generated, and use of cryptographic mechanisms can

continue uninterrupted without loss of service. Of course, if a user’s private signature

key is compromised, then different problems arise, but this is outside the scope of the

thesis.

The situation, however, is rather different for private decryption keys for a public

key cryptosystem. Third party access to private decryption keys is often necessary, a

property that strongly suggests the maintenance of separate key pairs for signatures

and for encryption.

Regarding the nature of the target keys, there are typically the following possibilities:

• Data decryption keys. These keys are used directly for the decryption of the

encrypted data, and include session keys for encrypted communications and file

keys.

• Master keys or key decryption keys. These keys typically enable access to multiple

data encryption keys, e.g. master keys used for encrypting multiple session keys.

28

2.4 Classification of key recovery mechanisms

Given that the current trend is the deployment of symmetric ciphers for data encryp-

tion, while public-key cryptosystems are used for key management purposes, through-

out this thesis it is assumed that the data decryption keys are those used by symmetric

ciphers unless otherwise stated. In this context, the term “encryption key” will also

denote the decryption key of the target data.

2.4 Classification of key recovery mechanisms

Although many categories have been introduced for the classification of KRMs (see [83])

key recovery mechanisms can typically be divided into key escrow or key encapsulation

mechanisms.

In a typical key escrow mechanism, an escrow agent holds a copy of all or part of the

user’s keys (either data or key encryption keys). In [66] a key escrow mechanism is

described as a method of KR in which “the secret or private keys, key parts, or key-

related information to be recovered are stored by one or more key escrow agents”. As a

result, each user has to escrow directly with his agent his private keys, or each session

key that he uses. A typical key escrow agent could be an on-line TTP acting as a key

distribution centre (KDC) or a key translation centre (KTC), which keeps a copy of all

keys that the user establishes. Variants of key escrow mechanisms exist and some of

them are described in [83].

In another scenario, the user escrows an initial value, namely a Master Key, with his

agent, which is subsequently used for the generation of all session keys (for example

using a hash function and a time-stamp). A further alternative is when the user escrows

with his agent the private key of an asymmetric key pair that can be used to compute

the secret session keys [28]. An example of the latter is the JMW scheme [39, 40, 41]

which is described in detail in Section 2.5.1.2. As can been seen from the above, a

wide range of KR solutions can be classified as key escrow mechanisms. All of them

29

Information Recovery Using Key Recovery

are characterised by the storage of key-related information with a trusted agent that

gives the latter the ability to recover all the user’s decryption keys.

In a typical key encapsulation mechanism, the user encloses the KR information (e.g.

session keys or key parts) in an encrypted KR block that is made available to the

agent(s) with which the user is associated, and which can be decrypted only by this

agent(s). The KR information is typically encrypted using the agent’s public encryption

key, and attached to the encrypted data as a key recovery field (KRF) [91]. In a more

general definition, [66], a key encapsulation mechanism is described as “a method of key

recovery in which keys, key parts, or key related information are encrypted specifically

for the KRA function and associated with the encrypted data”, where the KRA function

is “a key recovery system function that performs a recovery service in response to an

authorised request”.

There are also KR mechanisms that are difficult to categorise into one of the above two

classes. There are, for instance, key escrow schemes that also require the transmission

of a KRF for the KRA to be able to recover the keys. An example is a KRM where

the user escrows his private decryption key with his agent, and uses the public key for

the transmission of any key related material. Such a scheme can be considered as a

hybrid mechanism, but it can also be classified as a key escrow scheme since it involves

escrowing key-related material, regardless of the transmission of a KRF. There are also

key encapsulation schemes for which the KRF is not restricted to the transmission

of session keys encrypted under the KRA’s public encryption key. As an example,

consider the KRM proposed by Maher in [53]. Although the author claims that the

proposed scheme is a key escrow mechanism, using the above definition the scheme

should be classified as a key encapsulation mechanism, since the user does not escrow

any key material with his KRA but instead makes this information available to the

KRA function.

A KRM that cannot be classified under these two categories is weak encryption, which

30

2.5 Examples

is identified in [45] as an encryption control system. For the purposes of this thesis,

however, we do not consider this as a type of KRM as it contradicts one of the basic

requirements for a KRM deployed in a business environment (see Chapter 3), which is

that the deployed KRM should not weaken security and, more specifically, the cryp-

tographic mechanisms used. Besides that, and as mentioned in [45], this type of key

recovery is unlikely to be attractive to any of the interested entities, i.e. users and/or

corporations.

2.5 Examples

In this section we consider some representative examples of KRMs proposed either by

industry or academia.

2.5.1 Key escrow

2.5.1.1 The US Escrowed Encryption Standard

The US Escrowed Encryption Standard (EES) [70] was developed and standardised by

the US National Institute of Standards and Technology (NIST), a division of the US

Department of Commerce. EES is probably the most well-known and controversial

key escrow mechanism. It was designed to provide decryption of encrypted sensitive

but unclassified communicated data, when their interception is lawfully authorised.

For the purposes of this standard, data includes digitised voice, fascimile or computer

information communicated in a telephone system.

The EES is implemented on a tamper-resistant hardware chip. Two devices have been

produced for this purpose: Clipper and Capstone. The EES standard is based on a

NSA-designed algorithm called SKIPJACK [82], and a method that allows for govern-

ment access through a chip unique key and a Law Enforcement Access Field (LEAF)

31

Information Recovery Using Key Recovery

transmitted with the encrypted communications. For this purpose, the following ele-

ments are included in the chip.

1. The SKIPJACK encryption algorithm.

2. An 80-bit family key KF that is common to all chips.

3. A chip unique identifier (UID).

4. An 80-bit chip unique key KU, which is the exclusive-or (XOR) of two 80-bit chip

unique key components (KU1 and KU2).

5. Specialized control software.

Prior to the use of EES, an initialisation phase takes place, where two government-

approved escrow agents generate key components KU1 and KU2 respectively, which

are bitwise XORed to form the chip unique key KU, i.e. KU = KU1 ⊕ KU2. The

key components are encrypted with the escrow agents’ secret key encrypting keys and

escrowed along with the chip identifier UID. In particular, KU1 is encrypted with

the key encrypting key K1, assigned to escrow agent 1, to produce EK1(KU1), where

EK(X) denotes encryption of X with key K. Similarly, KU2 is encrypted with K2,

which is assigned to escrow agent 2, to produce EK2(KU2).

The mechanism. Two entities that wish to communicate using a security device that

contains an escrowed encryption chip should first establish an 80-bit session key KS,

which will be used to encrypt the communications. Once KS is established, it is passed

to the chip and the LEAF generation method is invoked. The 128-bit LEAF consists

of the 32-bit UID, the session key KS encrypted with KU, and a 16-bit checksum,

which is computed using the session key and an initialisation vector (IV) (which may

be generated by the chip). The LEAF, encrypted with the unique family key KF, and

the IV are then transmitted, together with the encrypted data, to the receiving entity

as shown in Figure 2.2.

32

2.5 Examples

 IV , E K F (U I D , E K U (K S) , A) , E K S (M e s s a g e)

d e c r y p t o r

D

D
K F

D

D

D

K 1

K 2

KU1

KU2

K U K S

E K U (K S)
A

U I D E K 1 (K U 1)

U I D E K 2 (K U 2)

key component reques t UID

K S

S J
K F

U I D
K U

K S

S J
K F

U I D
K U

" M e s s a g e " " M e s s a g e "

" M e s s a g e "

Figure 2.2: Escrowed Encryption Standard

Warranted interception. Lawful interception of communications that take place

on a particular line is feasible after the authorised entity has obtained a court order

to intercept it. The court order is passed to the telecommunications service provider

in order to get access to the communications associated with that line. As described

in [13], if encrypted communication is detected “the incoming line will be set up to

pass through a special government-controlled decrypt device” as shown in Figure 2.2.

“The decrypt device will recognize communications encrypted with a key escrow chip,

extract the LEAF and IV, and decrypt the LEAF using the family key KF in order to

pull out the chip identifier UID and the encrypted session key EKU (KS).”

The chip identifier will be given to the escrow agents along with the request for the

corresponding key components, documentation that certifies the authorisation of the

surveillance, and the serial number of the decrypt device. In response to the request,

the escrow agents will release the corresponding key components to the authorised

entity. These components will then be used to form the key KU, as required to decrypt

KS.

33

Information Recovery Using Key Recovery

2.5.1.2 The JMW scheme

Another representative example of key escrow is the JMW scheme [39, 40, 41], named

after its three inventors: Jefferies, Mitchell, and Walker. It is based on the Diffie-

Hellman key exchange algorithm, [20], and is “intended to provide warranted access to

user communications” via the TTPs with which the two communicating parties A and

B are associated (TA and TB correspondingly).

Prior to use of the mechanism, an initialisation has to take place. More specifically,

every pair of TTPs, whose users wish to communicate securely, have to do the following.

• Agree on public values g and p, where g is a primitive element modulo p and p is

a large integer.

• Agree on the use of a digital signature algorithm, choose their own signature

key/verification key pair, and exchange verification keys in a reliable way. Any

user B wishing to receive a message from a user A, with associated TTP TA,

must be equipped with a trusted copy of TA’s verification key.

• Agree on a secret key K(TA,TB) and a Diffie-Hellman key generation function

f .

If A wishes to send a secure message to B, A and B have to be provided with certain

parameters by their respective TTPs.

• Using the function f , and the secret key K(TA,TB) and the name of B as input

to f , both TA and TB generate the private integer b satisfying 1 < b < p−1. This

key is known as B’s private receive key and it needs to be securely transferred from

TB to B. The corresponding public receive key for B is set equal to gb mod p.

The key b will be used to protect all traffic from clients of TA to B.

34

2.5 Examples

• TA randomly generates a private send key for A, denoted a, and signs a copy of

A’s public send key (equal to ga mod p). A’s private send key and public send

key will constitute A’s send key pair, which A will use when sending confidential

messages to any users, not just those associated with TB.

• A must also be equipped with a copy of B’s public receive key. This can be

computed by TA and transferred in a reliable way to A.

The mechanism. The information the two entities possess prior to the use of the

mechanism, can be used to generate a shared key gab mod p (where a is A’s private

send key and gb is B’s public receive key) for protecting the confidentiality of a message

sent from A to B. This key can be used as the session key or, as the authors suggest,

it can be better used as a key encryption key, which in turn can be used for protecting

a suitable session key.

User A then sends the following information to user B.

• The message encrypted using the session key (either gab mod p or a key encrypted

using gab mod p),

• A’s public send key ga mod p signed by TA, and

• the public receive key gb mod p for user B.

Upon receipt of the message B, using A’s public send key ga mod p and B’s own

private receive key b, can generate the session key gab mod p and decrypt the received

encrypted message.

A representation of the scheme is given in Figure 2.3 (note that inter-TTP commu-

nication is not shown; CertTA(ga) denotes a copy of A’s public send key signed by

TA).

35

Information Recovery Using Key Recovery

B

a, g b , Cer t T A (g a)

C e r t T A (g a) , gb , encryp ted message

A TA B

Figure 2.3: JMW scheme

Warranted interception. Warranted interception of encrypted communications is

feasible as long as one of TA and TB operates within the intercepting authority’s

jurisdiction. The intercepting authority has the following options (assuming that A,

served by TA, sends encrypted data to B, served by TB).

• Request TA to recover the shared key gab mod p. In that case, TA has the

following options:

– Combine B’s private receive key b (generated from K(TA,TB) and the name

of B using the key generating function f) with A’s public send key, sent with

the message.

– Combine A’s private send key a with B’s public receive key, sent with the

message.

• Request TB to recover the key. Because TB does not have access to A’s private

send key there is only one way that TB can recover the key, namely by combining

B’s private receive key b and A’s public send key, sent with the message.

Properties of the mechanism. The JMW scheme has the following properties.

• A user can arrange for his/her send key pair to be changed at any time by simply

requesting his/her TTP to generate a new key pair, which is then passed by the

TTP to the user.

36

2.5 Examples

• No directories are required to make the system work. An entity wishing to send a

message only needs to obtain the public receive key for the intended recipient from

his/her own TTP, who can generate this information merely from the name of

the recipient and the identity of the recipient’s TTP. A recipient of an enciphered

message will, given the information contained in the message, possess all the data

necessary to obtain the session key, without further reference to any third parties.

• All receive key pairs can automatically be updated at regular intervals, by includ-

ing date information (e.g. month and year) within the scope of the key generating

function f .

2.5.2 Key encapsulation

We next describe three examples of key encapsulation schemes.

2.5.2.1 Commercial Key Recovery

Probably the most representative example of a key encapsulation mechanism is the one

proposed by Walker, Lipner, Ellison, and Balenson in [91], which the authors refer as

a “Commercial Key Recovery (CKR) System”. The main objective for the design of

this mechanism was to “respond to the objections to Clipper without sacrificing the

government’s law enforcement interests”.

The proposed scheme employs a data recovery centre (DRC), which is a KRA either

established by a corporation, for its own use, or by an external organisation which offers

this service. Every time a key recovery enabled program encrypts a file or message using

a session key, the corresponding key recovery information is generated. This is the data

recovery field (DRF), containing the session key and the user’s identity encrypted using

the DRC’s public key and the DRC’s identifier. “This information is stored with the

file or sent with the message, and these are the only places the session keys reside.

37

Information Recovery Using Key Recovery

There is no database of escrowed keys, at the DRC or elsewhere”.

If an authorised entity, e.g. a user or corporate management, is unable to decrypt a

message, it needs to send the DRF together with appropriate authentication informa-

tion to the corresponding DRC. The DRC, using its private key, will decrypt the DRF

and return the session key to the requester via a secure channel.

2.5.2.2 TIS Commercial Key Recovery

The TIS CKR scheme, also described in [91], is a key encapsulation mechanism with

enhanced features that allow authentication and authorisation of the entity requesting

recovery. In particular, “the DRF holds more than merely the encrypted file key”. It

includes the following unencrypted fields:

• a version number (for the DRF itself),

• a name for the DRC, and

• a number for the DRC’s public key (since each DRC can have multiple key pairs).

It also contains a field encrypted with the indicated DRC’s public key, containing:

• an access rule index (ARI), which tells the DRC how to challenge any requester

to make sure that he/she has permission to get access, and

• the file key (an individual encryption key for this encrypted data only).

The ARI is a number, chosen by the DRC, indicating an access rule (AR), which

“defines the process for verifying permission to gain emergency access”. ARs are defined

by the user during the initial registration phase, and each user can have any number

38

2.5 Examples

of ARs, “to represent different sets of people or conditions for emergency access to

different data”.

The TIS CKR scheme uses four types of ARs.

1. A direct personal identification (such as a password, one-time password, or public

key signature verification), which can be checked directly between the person and

the DRC over a secure channel.

2. An indirect personal identification, in which a third party vouches for the identity

of the individual.

3. Testimony about a condition, e.g. testimony by a trusted individual or organi-

sation about an event, such as a death or transfer of funds that has cleared the

bank.

4. A group of ARIs. This is a threshold group of n previously defined ARIs, such

that k out of the n ARs in the group need to be satisfied in order to satisfy this

AR. The ARIs involved can be of any of the four types. The threshold group

allows specification of logical AND, OR and majority – as special cases.

The scheme has also an override capability that permits emergency access to data

owned by the corporation.

2.5.2.3 IBM Secure Key Recovery

Another example of a key encapsulation mechanism is IBM’s Secure Key Recovery

(SKR) [27]. SKR differs from other key encapsulation mechanisms in that the data

encryption key is not encrypted under the KRA’s public key but under a symmetric

key established between the user and the KRA(s). The proposed mechanism can be

used for encrypted communications as well as for encrypted archived data.

39

Information Recovery Using Key Recovery

For this scheme each user initially registers with two key recovery agents in his domain,

while each KRA has at least one private and public key pair.

The mechanism. The SKR mechanism consists of a two-phase process as shown

in Figure 2.4. The division of the mechanism into two phases allows the expensive

public key computations to be avoided in all but the first communication between the

communicating parties. More specifically, Phase 1, which must occur at least once

before one or more communication sessions take place, consists of the following steps.

1. The communicating parties A and B establish a common random seed S. This is

typically done using a key agreement protocol, e.g. Diffie-Hellman key exchange,

or an RSA key transport protocol.

2. A uses S to derive random key-generating keys (KG), specific to each recovery

agent, by hashing S and the respective agent’s ID.

3. A encrypts KG using the respective agents’ public keys.

4. A sends to B the SKR Block 1 (B1) which consists of: T1, ePUa1(KGa1),

ePUa2(KGa2), ePUb1(KGb1), and ePUb2(KGb2), where

• T1 is a public header containing IDs for A, B, and all key recovery agents,

• eP denotes public key encryption with key P ,

• PUai is the public key for A’s ith agent,

• PUbi is the public key for B’s ith agent,

• KGai is the key generating key for A’s ith agent, and

• KGbi is the key generating key for B’s ith agent

In Phase 2, the two parties establish the session key K, which will be used for encrypting

any subsequent communications, using any key transport or key agreement protocol.

40

2.5 Examples

Es tab l i sh S

S K R B l o c k 1 (B 1){P h a s e 1
(one t ime)

A B

E s t a b l i s h K

S K R B l o c k 2 (B 2)

D a t a E n c r y p t e d w i t h K{P h a s e 2
(mul t ip le t imes)

Figure 2.4: SKR communication process

Phase 2 occurs prior to the start of encryption for each encrypted session and consists

of the following steps.

1. A and B establish session key K.

2. A derives for each agent a key generating value KH as the hash of the respective

KG value, and a key-generating header. The KH key-generating keys are used to

derive subordinate sets of pseudo-random key-encrypting keys KK (see [27, 35]

for a detailed description of key generation in SKR).

3. A derives for each agent a session-specific key KK as the hash of the respective

KH value, and the session’s public header T2.

4. A nested encrypts K under the sets of session-specific KK key encrypting keys.

5. A sends to B the SKR Block 2 (B2) which consists of the values: T2, h(B1),

EKKa1.1(EKKa2.1(K)), and EKKb1.1(EKKb2.1(K)), where

• T2 is a public header consisting of T1, the session ID, a timestamp e.t.c.,

• EK denotes symmetric key encryption using key K,

• h is a hash function,

• KKai.1 is the first key encrypting key for A’s ith agent, and

• KKbi.1 is the first key encrypting key for B’s ith agent.

41

Information Recovery Using Key Recovery

Key recovery phase. In the recovery phase, the authorised entity that requests the

recovery of a key has to pass to a set of agents the block B1 and the public header T2

from B2. The agents are not given the rest of T2, and in particular the doubly encrypted

key K, so that they will not be able to recover the key individually. The agents decrypt

their respective blocks and recover the KG values, which they use together with the

headers T1 and T2 to generate the values KK and KA for the session covered by the

T2 header. Each agent returns to the Recovery Service the calculated KK, as shown

in Figure 2.5, and the latter recovers the requested key by decrypting the encrypted

recovery field EKKa1.1(EKKa2.1(K)) or EKKb1.1(EKKb2.1(K)).

R e c o v e r y
S e r v i c e

o r

S e r v i c e
P r o v i d e r

o r

L a w
E n f o r c e m e n t

S K R B l o c k 1 (B 1)

S K R B l o c k 2 (B 2)

D e c r y p t e d I n f o r m a t i o n

S K R B l o c k 1 (B 1)

S K R B l o c k 2 (B 2)

D e c r y p t e d I n f o r m a t i o n

K e y
R e c o v e r y
A g e n t 1

K e y
R e c o v e r y
A g e n t 2

Figure 2.5: SKR key recovery process

As the agent does not return the long term KG value but only key-encrypting keys KK,

the secrecy of the KG value is not compromised, and hence the requesting authority

cannot recover data from other sessions. However, if the user and agent agree, it is

possible to release the value KH to the requesting authority, which will give access to

a set of sessions instead.

2.6 Attacks on KRM functionality

In this section we describe two methods of attack on KRM functionality. The term

‘attack’ is used here to describe means of defeating the objective of key recovery, i.e.

42

2.6 Attacks on KRM functionality

preventing the authorised recovery of keys to decrypt encrypted data.

2.6.1 Rogue user attacks

Rogue user attacks are amongst the most effective attacks against a KRM, and are

probably the most difficult to prevent. Such an attack typically involves a rogue user,

who wants to circumvent the KR system so that his encrypted data cannot be accessed

by an authorised third party even when the KR system is used [67]. The rogue user

bypasses or disables the key recovery functionality, either by passing the wrong key

material to the agent or by altering or deleting the key recovery information generated

by the mechanism. The way these attacks are mounted depends on the mechanism

and in some cases they can be successfully prevented. However, no KRM can prevent

dual rogue user attacks, where there is collusion by two or more dishonest users. In the

case of archived data, it is impossible to prevent a rogue user from deploying his own

cryptographic infrastructure [91], a situation that constitutes another form of rogue

user attack.

2.6.2 Superencryption

Superencryption, i.e. a technique where data is encrypted more than once, can be

considered as a special type of rogue user attack. In this case, the rogue user does not

attempt to bypass the key recovery functionality using any of the methods previously

mentioned, but he rather uses a non-escrow cryptosystem to pre-encrypt his data [4, 71].

Thus, the user makes proper use of the KRM but the agent recovers encrypted data

instead of plaintext. The user, however, who appropriately manages the keys of the

non-escrow cryptosystem, will have full access to the plaintext.

43

Information Recovery Using Key Recovery

2.7 Making KRMs robust

In this section, we describe some techniques that can be used as countermeasures to

the attacks on the KRM functionality identified in the previous section.

2.7.1 Integrity checks

An integrity check is a means whereby interested parties can ascertain that the key

recovery functionality is properly invoked and has not been maliciously modified by a

rogue user, i.e. the key recovery mechanism is not being circumvented.

In [4], a set of measures for achieving the integrity of software products are described,

including the following.

• Build integrity checks at several points into the product. These typically involve

the use of digest functions embedded in the product for verifying the integrity of

the product functionality by comparing the computed digest with the one given

by the software’s vendor.

• Have different integrity checks verify different areas of the product.

• Use several different instruction sequences to perform the integrity checking func-

tion. This will prevent an adversary from performing an automated scan to

identify and remove all integrity checks at once.

2.7.2 Implementation on trusted hardware

In order to achieve a higher degree of security, parts of the security functionality on

the user’s terminal could be implemented on a separate, trusted, tamperproof security

module or token, such as a smart card. Such an approach can help to prevent rogue

44

2.8 Weaknesses introduced by deployment of KRMs

user attacks by keeping the security functionality intact.

2.8 Weaknesses introduced by deployment of KRMs

Key recovery mechanisms, if they are not properly deployed, can introduce weaknesses

into the security infrastructure, which an adversary might exploit.

2.8.1 Attacks on the agent

Key recovery systems provide an alternative means of access to decryption keys, and

hence to the data encrypted with these keys. The concentration by some KRMs of

key material at a single location, especially in a key escrow system, make this location

a point of attack that an attacker might want to exploit [1]. Unless these keys are

appropriately protected and access control mechanisms are in place, the deployed KRM

will introduce a major vulnerability point in the security chain. Attacking single keys

that give the attacker access to a large number of the users’ keys also constitutes a major

threat. This is the case with key encapsulation mechanisms where a vast number of

users’ keys are encrypted under a single agent’s private key. If this key is compromised,

all the data encryption keys encrypted with it will be revealed to the attacker.

2.8.2 Untrusted agents

Although one of the crucial requirements for an entity that acts as a key recovery agent

is to be trusted, there is no guarantee that this will always be the case. There might

be situations where the agent might relax its security policies, go bankrupt, or get

corrupted. In situations like these, the secrecy of the users’ keys, and hence their data,

is critically endangered.

45

Information Recovery Using Key Recovery

2.9 Strengthening the security infrastructure

In this section, several countermeasures that can be used to enhance the security in-

frastructure are described.

2.9.1 Dispersion

Dispersion is the property where “joint (but not necessarily unanimous) participation

by multiple, designated entities is an essential step in key recovery” [83]. Such an

approach typically requires that the recovery of the target keys is done by an indepen-

dent authorised entity, such as a law enforcement agency or the management of the

corporation. Each agent administers part of the required key recovery information.

Participation of all, or k out of n agents in the case that a (k, n) threshold scheme

is used [59], is essential for the recovery of the keys. An example is provided by the

Escrowed Encryption Standard, where recovery of the requested keys is done by the

authorised entity and not by the agents, while participation of 2 out of 2 agents is

required for the recovery, i.e. EES is a (2, 2) threshold scheme.

2.9.2 Collusion-resistance

In some environments, an additional goal to dispersion might be to ensure that even

if the agents collude they will not be able to recover the required key material. This

feature allows the user or an authorised entity to control the recovery of keys. Collusion

resistance typically requires an authorised entity to retain critical information for the

recovery of keys [83].

46

2.9 Strengthening the security infrastructure

2.9.3 Residual work factor

A residual work factor requires the agent to possess only a portion of the information

required for the recovery of keys [80]. Keys can then be recovered through trial-and-

error techniques or cooperation with the entity that retains the rest of the required

information, including the user or the entity that is authorised to recover the keys. As

described in [83], “a residual work factor can be used to increase the overall work effort

involved in key recovery, to discourage ‘casual’ recovery requests and to keep part of

the overall security of key recovery in the hands of the user”.

2.9.4 Making the trusted parties oblivious

Micali in [60] describes a method of avoiding unauthorised actions by trusted parties

especially in the case of law enforcement access. In particular, Micali considers the

situation where “a trustee requested by a court order to surrender his share of a given

secret key may alert the owner of that key that his communications are going to be

monitored”. While, however, making trustees oblivious avoids this undesirable situa-

tion, several problems are introduced, the most important being the weakness of the

system to unauthorised key recovery requests. That is, if the trustees do not know

which user’s key material they are revealing, they cannot easily verify the legitimacy

of the request.

2.9.5 Using procedural means to protect the key recovery material

Almost any deployed cryptographic infrastructure (e.g. those containing Certification

Authorities or Key Distribution Centres) concentrates trust in a small number of

security-critical network entities. Compromise of such an entity will almost certainly

severely damage security throughout the network that this trusted entity serves. In

this respect, key escrow centres do not significantly worsen risks that are commonly

47

Information Recovery Using Key Recovery

dealt with in existing security infrastructures which do not possess a KR capability.

The threat posed by such concentrations of trust is typically dealt with by well-

established techniques, including physical and procedural security measures (combined

with rigorous auditing of the use of security facilities). In particular, such measures can

be used to enforce the principle of ‘dual control’ to critical security functions, whereby

no single individual is ever granted access to such functions or data.

2.10 Summary

In this chapter we introduced the concept of key recovery and we gave a general model

of a key recovery mechanism. We described several existing KRMs, covering both key

escrow and key encapsulation, the two main categories of key recovery mechanisms.

Attacks both on KRM functionality and on weaknesses introduced by their deployment

have been discussed as well as techniques that can be used as countermeasures.

48

Chapter 3

Matching key recovery
mechanisms to business
requirements

Contents

3.1 Protecting business information 50

3.2 Distinguishing between a business environment and law
enforcement access . 52

3.3 Requirements for KRMs deployed in a business environment 54

3.4 Assessment of existing mechanisms 58

3.4.1 Assessment of key escrow mechanisms 58
3.4.2 Assessment of key encapsulation mechanisms 62

3.5 Distinguishing between communicated and archived data . 65

3.6 Summary . 67

This chapter addresses the business needs for key recovery as a countermeasure to the

threat of losing potentially valuable information. Requirements essential for a sound

key recovery mechanism are described, and the applicability of the two main classes of

key recovery schemes to a corporate environment is examined.

49

Matching key recovery mechanisms to business requirements

3.1 Protecting business information

Protection of information through the use of security mechanisms has become vital

for business. Cryptographic keys, including key agreement keys, session keys used for

encrypting communication sessions or stored data, and signature keys, are a crucial

part of the security infrastructure protecting corporate data. Loss or unavailability of

encryption keys will lead to an inability to access the encrypted information, a situation

the corporation will typically not wish to tolerate. Within a business environment there

are many cases where access to keys might be lost, arising from both deliberate actions

and accidents. The former might originate from both outsiders and insiders, while

accidents can be due to a failure of mechanisms.

As far as deliberate actions are concerned, it has been reported that more attacks to

corporations’ systems are likely to come from insiders rather than outsiders [15, 84].

This needs to be taken into account when establishing a cryptographic infrastructure

offering services such as data confidentiality. Employees acting as the only holders of

encryption keys might pose a threat to the corporation. Suppose a user’s employment

is terminated, and that the user is the only holder of keys used to encrypt business

information. On leaving the company, the employee might withhold these keys, either

deliberately or through simply forgetting to hand them to their legitimate owner. If

there is no backup of these keys, and there is no way to recover or recompute them,

then access to the information encrypted under them is infeasible (assuming that the

cryptographic mechanisms used are strong enough to prevent a cryptanalytic means of

decryption). Similar problems arise when an employee cannot be contacted because he

is absent, e.g. on vacation. It is easier and safer to be able to recover the encryption key

within the company’s protected environment rather than having to contact the user,

in some cases in insecure environments, bearing the risk of accidentally revealing the

keys to untrusted third parties.

As far as failure of, or damage to, devices is concerned, this is always a threat in the

50

3.1 Protecting business information

business environment. More specifically, if encryption keys are stored in a damaged

device, and there is no backup or other means to recover the keys, then data encrypted

under the inaccessible keys will be lost. This device could be a hard disk storing a file

of passwords used to derive keys, or a smart card containing a key or key component.

In the latter case, losing the token itself is also not unlikely.

In [15] it is mentioned that AccessData of Orem, Utah, a company that provides soft-

ware and services to companies that have lost access to encrypted data, “reported in

1995 that they received about a dozen and a half calls a day from companies with

inaccessible computer data. About a third of these calls resulted from disgruntled em-

ployees who left under extreme conditions and refused to cooperate in any transitional

stage by leaving necessary keys. Another half-dozen resulted from employees who died

or left on good terms but simply forgot to leave their keys. The remaining third resulted

from loss of keys from current employees.”

In addition to the possibility of key loss, companies may wish to monitor employ-

ees’ communications, either external or internal, e.g. to track leaks of information.

This is especially necessary in hierarchical environments where exchange of proprietary

information, even within the company’s domain, needs to be monitored. Corporate

monitoring of communications can also deter employees wishing to break security poli-

cies governing the flow of classified information [35]. Corporations may further wish to

have access to encrypted communications for non-repudiation purposes in the event of

a dispute, or even for running checks on incoming traffic, e.g. for viruses or for intrusion

detection.

Although key recovery can be used to deter employees, it can also be used to promote

the use of cryptography. Unless they are sure that the data they encrypt can be

recovered even if they lose the decryption keys, employees may be reluctant to use

encryption, hence leaving their data unencrypted even though that information needs

to be protected.

51

Matching key recovery mechanisms to business requirements

3.2 Distinguishing between a business environment and
law enforcement access

The term key recovery, or more specifically key escrow, has attracted much unfavourable

publicity mainly because of a number of government proposals for compulsory escrow

of all private communications keys, see e.g. [92]. The intention of these proposals was

to give governments the ability to decrypt intercepted communications to deal with

criminal activities. However, this has been seen by a number of parties as a potential

infringement of the rights of individuals and corporations to provide privacy for data

stored and communicated electronically.

In a business environment, however, the situation is rather different [1]. Corporations

cannot tolerate loss of potentially important information through the unavailability of

encryption keys. Further, and most importantly, a company normally owns its infor-

mation, and therefore the issues surrounding access to private communications through

compulsory key escrow do not arise. KRMs deployed in a corporate environment can

be thought of as part of routine disaster recovery planning.

Moreover, the requirements for KRMs used for law enforcement access and those de-

ployed in a business environment are slightly different, making this distinction impor-

tant. As described in [1], the requirements for a KRM designed for law enforcement

access include the following.

1. Access without end-user knowledge or consent. While law enforcement

typically requires the monitoring of users’ communications without the latter

being aware, recovery of keys in a business environment does not necessarily have

this requirement. The company, as the owner of the encrypted data, has the right

to recover keys should an emergency situation arise, with or without the user’s

knowledge or consent.

2. Ubiquitous adoption. Governments have been seeking the ubiquitous adoption

52

3.2 Distinguishing between a business environment and law enforcement
access

of “key recovery for all encryption, regardless of whether there is benefit to the

end-user” [1]. In a business environment, however, deployment of a KRM will be

in a restricted controlled environment where users can benefit from the existence

of KRMs, as these can help prevent loss of access to their data.

3. Fast access to plaintext. Law enforcement access to encrypted communica-

tions demands service availability round-the-clock, and seeks the ability to obtain

decryption keys quickly (in some cases within one or two hours). This is to help

monitor fast-moving criminal or terrorist activities. Within a corporation, how-

ever, time restrictions are not expected to be such an important requirement

when the KRM is used for archived data and the corporation can typically toler-

ate longer response times.

Granularity of keys is another strong requirement for KRMs deployed for law enforce-

ment needs as it limits LEA access to those communications authorised by a valid

warrant [45]. In a business environment, however, granularity is of minor importance

as the corporation will typically have the right to access any corporate data.

A discussion of the need to distinguish between business and law enforcement require-

ments can also be found in [65]. Note, however, that in [65] the authors claim that

enforceability, i.e. a requirement that the users cannot circumvent the KRM, is not

strongly required in a business environment. We believe that this is not always true

as enforceability (or non-circumventability, as it is identified in this thesis) is necessary

for the prevention of rogue user attacks. The existence of a controlled environment, i.e.

an organisation’s infrastructure, does not necessary mean that the users cannot ma-

nipulate the generated key recovery information (in some KRMs), thus circumventing

the key recovery functionality.

In the following section the requirements on a KRM deployed specifically in a business

environment are described in detail.

53

Matching key recovery mechanisms to business requirements

3.3 Requirements for KRMs deployed in a business envi-
ronment

Although key recovery mechanisms address problems arising from loss of decryption

keys, they should always be deployed with extreme care. If the mechanism is not prop-

erly deployed it can seriously weaken security, as KR provides an alternative means of

access to encryption keys that may be easier for an attacker to exploit than the orig-

inal computation process. Thus, the fundamental security requirement for any KRM

is that the effort to exploit and break the cryptographic infrastructure with KR added

should not be less than the effort required if the cryptographic infrastructure lacks

KR functionality. Moreover, the KRM deployed should not weaken the cryptographic

mechanisms used. In particular, it should not necessitate the use of specific mechanisms

and algorithms which may be weak.

Another obvious requirement is that honest users and agents should be able to suc-

cessfully use the KRM, and, if possible, the deployed mechanism should be transparent

to users and acceptable by users and agents. Moreover, the mechanism should not be

vulnerable to rogue user attacks.

The following list gives requirements for a KRM deployed in a business environment.

It is not unlikely, however, that most of the these requirements also apply in a LEA

environment. For instance, some of these (in particular requirements R2, R3, R4, and

R5) are identified in [45] where the authors consider them as a general framework

for analysis of key recovery systems regardless of the environment that they are used.

Detailed requirements regarding a general functional model of a key recovery system

are also proposed by the National Institute of Standards and Technology in [66].

R1. Non-circumventability: The KRM should be infeasible to circumvent, i.e. users

must not be able to use the cryptographic mechanisms while bypassing the KR

information generation process. Further, the user should not be able to generate

54

3.3 Requirements for KRMs deployed in a business environment

invalid KR information or alter/delete it after its generation. It should be noted

that a lot of mechanisms do not meet this requirement, making them vulnerable

to rogue user attacks.

R2. User completeness: Honest users should succeed in making use of the KRM to pro-

duce valid KR information. This requirement covers any need for the availability

of a server that will be involved in the KR information generation process, or of

any public key material required by the KRM during this process. User complete-

ness should also satisfy the users need for being able to use the KRM to recover

their keys without the agent’s intervention. This is particularly relevant to the use

of a KRM for archived data, and is discussed in detail in Sections 3.5 and 4.1.

R3. Agent completeness: An authorised entity complying with the company’s rules and

policy should succeed in recovering the required keys. Any authorised attempts to

recover keys, successful or not, should be logged for audit purposes.

R4. User soundness: As a result of the first requirement, any attempt to misuse the

protocol by a dishonest user should be prevented, or at least be detectable. More

specifically, a rogue user should not succeed in establishing a secure communication

or encrypting stored data while producing invalid KR information without being

detected and logged for audit purposes.

R5. Agent soundness: Any attempt by an agent to misuse the protocol or recover

keys without complying with the company’s policy should at least be detectable.

Within this category of misuses fall both attempts by unauthorised entities and

unauthorised attempts by authorised entities. Agent soundness can be achieved by

the use of well-established access control mechanisms. Any unauthorised attempt

to use the recovery process, successful or not, must be logged for audit purposes.

R6. User acceptability: The protocol should be acceptable to users. However, in a cor-

porate environment this property is less important, since the use of the mechanism

will typically be specified within the corporate security policy, and hence part of

the conditions of employment. Nevertheless, factors that will help acceptability

55

Matching key recovery mechanisms to business requirements

include: making clear the benefits of its use, its flexibility, availability, compati-

bility and interoperability with existing schemes, and, probably most importantly,

its efficiency of use (see property 11 below).

R7. Agent acceptability: The protocol should be acceptable to entities authorised to

recover keys. The main factor that will lead to acceptability is the protocol’s

efficiency, i.e. it should be easy for agents to recover keys efficiently and quickly

by using the protocol in accordance with the corporate security policy.

R8. Policy compliance: The protocol should operate within the corporate security

policy, and should satisfy all relevant legal restrictions. Within the latter fall any

constraints imposed by laws within the domain the corporation operates, such as

those covering cryptographic algorithm use and export.

R9. Flexibility: The KR scheme should not prohibit the use of well-known and secure

cryptographic mechanisms. This is closely related to the main security require-

ment that the KRM should not weaken or introduce any vulnerabilities to the

cryptographic infrastructure by imposing restrictions on the mechanisms used.

R10. Interoperability: The mechanism should be capable of dealing with dissimilar

KRMs, or cryptographic mechanisms that do not have KR functionality. This

is particularly important for communications enhanced with a KR capability. A

thorough analysis of the interoperability problem and its proposed solution is given

in Chapters 6 and 7.

R11. Mechanism transparency: The KRM should be transparent to end users in that

it should not introduce any significant computational overhead, or demand user

interaction when the user employs the cryptographic mechanisms.

R12. Negligible cost: Deployment of the KRM should introduce only a negligible increase

in the overall cost of the cryptographic services used and the security infrastruc-

ture. In particular, the cost of using the mechanism should not exceed the value

of the information encrypted using an inaccessible key.

56

3.3 Requirements for KRMs deployed in a business environment

Although, as previously mentioned, some of these requirements are also identified as

requirements for a LEA environment, others are of no relevance to a KRM deployed

for LEA access. One example of such a requirement is interoperability of key re-

covery mechanisms. This is because law enforcement access typically seeks the wide

(even global) deployment of a KRM which is potentially not expected to interact with

other schemes. However, the variety of existing KRMs and their deployment in vari-

ous business environments is expected to cause interoperability problems in encrypted

communications.

Other requirements differ from those for LEA access in the degree that they should

be met. For instance, while user acceptability has proven to be one of the crucial

requirements for the deployment of a KRM for LEA needs, it is not expected that

it will be an important factor in a business environment, assuming that the benefits

from the use of a KRM will be made clear to the users. Cost is another issue that

corporations are likely to consider, in contrast to governments which can typically

tolerate higher expenses.

The above list of requirements can also serve as criteria for evaluating a KRM. All of

them are likely to be essential for a sound mechanism, but factors that can influence

their criticality should also be taken into account. For example, a slight weakening of

the user and agent acceptability requirements is allowable if all the other requirements

are satisfied and there is no alternative. The target of a KRM, that is whether it is used

for communicated or archived encrypted data, can also affect the above requirements.

A more detailed analysis of this distinction is given in Chapters 4 and 6.

There are other issues involved in using KRMs. KRMs require the existence of an

infrastructure supporting key management techniques meeting the requirements of the

mechanism. Clearly the administration and cost of the required infrastructure are fac-

tors that cannot be ignored. Moreover, if the mechanism is not appropriately deployed

a number of security issues might arise. Storage of any KR information should be

57

Matching key recovery mechanisms to business requirements

carefully protected to prevent unauthorised access. If appropriate access control re-

strictions on the recovery process are not enforced, an adversary without the required

privileges might be able to recover keys and monitor communications or decrypt stored

encrypted files. More important still, if the infrastructure lacks the existence of an

audit log mechanism where all attempts to recover keys are monitored and reviewed,

then the system could be significantly more vulnerable to compromise than it would

be if it lacked KR functionality.

These requirements may be more difficult to meet if the corporation decides not to

perform key recovery internally but rather to outsource the service. While there are

certain risks associated with outsourcing the service (the agent might relax its security

policies, go bankrupt, or even be bought out by a competitor while retaining the ability

to recover keys [1]) this solution might be more attractive to small and medium-sized

enterprises that are not willing to deploy their own infrastructure.

3.4 Assessment of existing mechanisms

In the following sections, the applicability of existing KRMs to a business environment

is investigated. More specifically, the two main types of KRMs are considered, i.e. key

escrow and key encapsulation, taking into account only their general characteristics as

described in Section 2.4.

3.4.1 Assessment of key escrow mechanisms

When key escrow mechanisms are used in a business environment, there is typically a

need for a large storage capacity for the escrowed information and, more importantly,

this information must be protected from unauthorised access. The latter is one of

the main drawbacks of key escrow mechanisms, as pointed out frequently by their

opponents. As mentioned in [1], the storage of all keying material at a single point

58

3.4 Assessment of existing mechanisms

makes it a significant point of attack, and introduces a major vulnerability to the

key escrow mechanism if appropriate countermeasures are not in place. The main

protection mechanism that can be employed for this purpose is strong access control,

ensuring that only authorised personnel can access the escrowed key material and

recover user keys. Access control should be enforced in conjunction with appropriate

audit log mechanisms that will enable the monitoring of all attempts to access the

escrowed keys and make use of the recovery process. Dispersion of the key material to

multiple locations, resistance to agents’ collusion, and residual work factor (see Section

2.9) can be used as additional countermeasures. If all these protection mechanisms are

in place, supported by an appropriate security policy, the likelihood of misuse of the

KRM can be minimised.

Key escrow mechanisms are likely to be integrated into a cryptographic infrastructure,

i.e. the KR functionality will be closely related to the key establishment process. For

these mechanisms to work properly and not to face interoperability problems (require-

ment R10; see Section 6 for more details), there is a need for a common infrastructure

meeting the mechanism’s requirements. In other words, such mechanisms usually de-

mand the existence of specific key establishment protocols, a requirement that can

cause interoperability problems in communications sessions, making them difficult to

deploy world-wide. As a consequence, if they are deployed by a corporation they may

constitute a barrier to encrypted internet communications with other organisations.

Even if the KR information can be generated solely at the user’s end, with no require-

ment for interaction with the peer, the dependence on the cryptographic infrastructure

would require the communicating parties to use cryptographic mechanisms compatible

with the KRM.

Such mechanisms are, however, potentially more appropriate for intranet communica-

tions, where it is easy to establish a common infrastructure, and also for archived data

encryption. If the KRM is part of the cryptographic infrastructure, and dependent

upon it, circumventing it will typically require the rogue user to circumvent the whole

59

Matching key recovery mechanisms to business requirements

cryptographic functionality, and hence not use the provided mechanisms. In controlled

environments, such as a corporation, it is not infeasible to restrict the user’s resources,

and hence requirements R1, R3, and R8 can be efficiently met. This is not the case for

key encapsulation mechanisms as will be described later, or even for those key escrow

mechanisms that are less dependent on specific key establishment protocols.

When assessing key escrow mechanisms it is useful to make a further distinction be-

tween those that at least sometimes require the on-line participation of a TTP acting as

an escrow agent and which assists in the session key establishment process (such as the

JMW scheme [39]), and those that do not. In the first category fall mechanisms such as

the ones where the escrow agent acts as a key distribution centre (KDC) or key trans-

lation centre (KTC), and in the meantime escrows all the keys that the users establish.

For this class of key escrow mechanisms, an on-line server, which must typically be

able to deal with a large number of simultaneous requests, will be involved in all, or

at least a significant number of, the key establishment processes. The agent’s on-line

participation makes these mechanisms the most difficult to circumvent, and rogue user

attacks are difficult to mount. Furthermore, they give the agents more control over the

KR information than with other mechanisms, a scenario that fits the business model

(assuming that agents are internal to, and managed by, the organisation). These prop-

erties are particularly relevant to requirements R1, R3, and R7, which this type of key

escrow mechanism can efficiently satisfy. Compromise of this server, however, would

have unpredictable consequences. An adversary in control of the server functionality

would typically be able to recover all the established keys and decrypt communicated

or archived data. Moreover, agent unavailability would mean that users are unable to

encrypt data, hence requirement R2 will not always be satisfied. Thus, protection of the

server against unauthorised use and denial of service attacks becomes a fundamental

issue.

In the second category fall mechanisms that are less dependent on an on-line escrow

agent. For these mechanisms, the user escrows certain key-related information, typi-

60

3.4 Assessment of existing mechanisms

cally during the initialisation phase, which enables the agent to recover session keys

subsequently generated by the user. As an example, consider a scheme where the sender

encrypts the session key under the recipient’s public key, while the corresponding pri-

vate key is escrowed with the user’s agent. Although there is no need for the agent

to be on-line for these mechanisms, avoiding any availability requirements, they are

no more flexible than mechanisms of the first category, since they also typically need

an infrastructure to assist in all the cryptographic computations. For instance, in the

given example users need to possess each others’ valid certificates. This means that a

complete certificate management scheme is required, including an inter-organisational

public-key infrastructure (PKI) (e.g. a certificate repository, and means to generate

and manage certificate revocation lists).

Cost (requirement R12) is another important consideration, especially in a commercial

environment. Although deployment costs might be acceptable, long term administra-

tive costs cannot be ignored. Key escrow mechanisms require provisions to protect

the escrowed key material, and in that respect are potentially expensive. Although the

cost might be significantly reduced if an external agent is used, as previously mentioned

there are clear potential disadvantages of such an approach.

Summarising the above, key escrow mechanisms can efficiently satisfy non-circumventability

(R1), especially in cases where the key recovery agent controls the key establishment

process. As a result agent completeness (R3) and policy compliance (R8) will also be

satisfied. Problems, however, might arise if an on-line agent is used for the key es-

tablishment process, whose unavailability can affect user completeness (R2) and user

acceptability (R6). Finally, key escrow mechanisms are likely to suffer from interoper-

ability problems, and hence not satisfy requirement R10, and their cost (R12) cannot

be considered negligible.

61

Matching key recovery mechanisms to business requirements

3.4.2 Assessment of key encapsulation mechanisms

When used in a corporate environment, the majority of key encapsulation mechanisms

appear to be more flexible than key escrow schemes. Being independent of the key

establishment technique means that protocols can easily be adapted to them and,

unlike key escrow schemes, they are unlikely to suffer from key management related

interoperability problems and hence, they can satisfy requirement R10. The data

encryption keys will typically be encrypted under KRM-specified public key(s), with no

restrictions on their nature or generation (requirement R9). Interoperability, however,

can be affected in communication sessions by the interaction the mechanism might

require with the remote party prior to generation and/or for verification of the KR

information. This might include mechanism-specific public keys that the originating

party needs to generate the KR information, or any verification checks the peer is

required to perform on the received KR information prior to decryption.

Unlike some key escrow mechanisms, a key encapsulation infrastructure would typically

not require a high powered on-line server, as there is no need for on-line interaction dur-

ing the KR information generation process (of course, such a server may be necessitated

by other key management requirements). Therefore, user acceptability (requirement

R6), as far as the availability of the KRM is concerned, will always be satisfied. De-

ployment of such a mechanism in a corporate environment, however, might necessitate

checks on transmitted KR information to ensure users comply with the company’s pol-

icy (requirements R3, R4, and R8). This is because key encapsulation mechanisms

are vulnerable to cut-and-paste attacks, where a rogue user can alter or delete the KR

information after its generation to disable subsequent key recovery by an authorised

entity. To prevent this, and hence satisfy requirements R1, R3 and R7, authorised

entities could run checks on the generated KR information to ensure that the KRM

has been properly used (assuming that such checks are supported by the KRM); such

checks could be made at random, or only if rogue activity is suspected.

62

3.4 Assessment of existing mechanisms

One way of preventing rogue user attacks is to check intercepted KR information. If the

intercepted information is invalid, the transmitted data could be prevented from leaving

the organisation’s domain. Rogue user attacks can also be prevented by requiring the

validation of the KR information by the receiving party prior to decryption of the

received data. This latter solution, however, requires trust in the receiving entity,

which is not always the case, especially if the latter is not within the company’s domain.

Thus, a drawback of key encapsulation mechanisms is that, in order to ensure that the

mechanism is not circumvented, there is a potential need for on-line checks on the

generated KR information. This checking can prevent both single rogue user attacks

that are not prevented by the mechanism itself, and double rogue user attacks where

the colluding entities agree to make use of the organisation’s cryptographic mechanisms

but bypass the key recovery process by tampering with the key recovery information.

On-line checks on the key recovery fields might be trivial if the key recovery agent

operates within the company’s domain. In that case a server that resides behind

the organisation’s firewall can be used for this purpose. However, verification of the

KRF might be harder if the agent is external to the organisation. Only checks can

be performed in this case, and then only if the information is intercepted during its

transmission, or if all communications are routed through an agent’s server. This is

because the data may already have left the company’s control and have reached their

destination. Thus, in this case, detection of rogue users remains possible, but the

capability for prevention is much more limited. Of course, it may be the case that

detection is sufficient, for actions can be taken against rogue users as soon as a single

instance of system misuse is detected. However, in situations where misuse must always

be prevented, it will probably be appropriate to have an internal rather than an external

agent.

Note that existing key recovery mechanisms typically do not support third party val-

idation of KR information, a property that can help meet requirements R1, R3, R4,

and R8. A model designed for this purpose was proposed in [89] but, as described in

63

Matching key recovery mechanisms to business requirements

[71], the proposed scheme suffers from superencryption attacks. Simple techniques can

be employed, e.g. demanding the encryption of a data field known to the agent with

the key used for encrypting the rest of the data. Decrypting this field with the key

contained in the KRF would give the agent an indication as to the validity of the KRF.

Even with these techniques, however, mechanisms can still be vulnerable to rogue user

attacks. Probably the most effective solution is to decrypt the data, and search for

expected patterns that should, or should not (in the case of malicious software), be

present in the transmitted data.

Key encapsulation mechanisms are even more vulnerable to cut-and-paste attacks when

the mechanism is used on encrypted archived data. It would typically be too costly to

check the validity, either on-line or off-line, of every KRF produced for every encrypted

file. Therefore, a rogue user could tamper with the KRF by simply deleting or modi-

fying the field after its generation, thereby disabling any authorised KR attempt. This

will typically constitute a breach of policy (requirement R8), and action could be taken

against that employee, who might even lose his job. However, from the company’s

perspective the data are lost, and hence the KRM has failed. In such a case, it would

be more appropriate to use a key escrow mechanism which will give the company the

ability to have more control over the generated keys.

Another relevant issue is that, in key encapsulation mechanisms, the management of

the keys is left with the user. In hierarchical environments this property might cause

problems if different agent public keys are used to protect KRFs for different levels of

classification of information. The user will have to decide which key he should use for

encrypting the key recovery information, depending on the sensitivity of the data. This

might lead to confusion, and even accidental or deliberate misuse of the KRM. This is

not always the case with key escrow mechanisms, where the escrow agent can manage

the generated data encryption keys.

Key encapsulation mechanisms are not inherently more secure than key escrow mecha-

64

3.5 Distinguishing between communicated and archived data

nisms. Although for the latter there is a need to protect all the escrowed key material,

and unauthorised access to it would typically give the attacker access to data encryp-

tion keys, the compromise of the agent’s private decryption key in a key encapsulation

mechanism would have the same unacceptable consequences.

Finally, key encapsulation mechanisms appear to have potentially lower management

costs than key escrow schemes (requirement R12). For such a mechanism there only

needs to be a cryptographic infrastructure. There is no need for on-line participation

of the agent, which potentially requires a high powered server (unless the corporation

demands on-line checks on generated KRFs), or for the secure storage of all the escrowed

keys. However, these cost estimates might be altered, depending on the mechanism’s

implementation. For instance, if it is decided to deploy user smart cards, then the cost

of issuing a card for each employee may not be negligible.

Summarising the above, key encapsulation mechanisms are more susceptible to rogue

user attacks than key escrow schemes, and thus they do not always satisfy the non-

circumventability requirement (R1). Susceptibility to rogue user attacks is likely to

have the same effect on agent completeness (R3), agent acceptability (R7), and policy

compliance (R8). However, as key encapsulation mechanisms can typically work with

any key establishment protocol and key encryption algorithm, they are quite flexible

(R9), and they cause less interoperability (R10) problems than key escrow mechanisms.

Finally, their cost of deployment (R12), although it cannot be considered negligible, is

likely to be less than key escrow mechanisms.

3.5 Distinguishing between communicated and archived
data

The above analysis of KRMs in a business environment has not considered the target

data. There are certain issues, however, that need to be addressed as far as the target

of the KRM is concerned. This arises from the fact that there are different requirements

65

Matching key recovery mechanisms to business requirements

for KRMs for archived data and KRMs for communicated data.

The majority of existing key recovery mechanisms were designed for use with commu-

nicated data, and with the objective of giving access to LEAs. Giving user access was

typically not a design requirement mainly because users would not benefit from such

a property. As mentioned in [1], “there is hardly ever a reason for an encryption user

to want to recover the key used to protect a communication session”. If the session

key is lost during an encrypted session, a new session can be established and a new

key can be negotiated. This, however, does not rule out business demands for access

to encrypted communications.

With communicated data, interoperability of the deployed KRMs is the most important

requirement. Otherwise, use of dissimilar mechanisms might prohibit the establishment

of a secure communication session. Interoperability is an issue that is covered in detail

in Chapters 6 and 7.

With archived data, the requirements are rather different, making the distinction es-

sential. With archived data, the focus of the design of the KRM should also consider

the users’ needs for recovery of data. In other words, apart from fulfilling third parties’

needs, the KRM should also be the users’ means for access to lost keys. It would be

a waste of communications resources and processing power if the user had to contact

his agent whenever he wants access to his encrypted data or requests recovery of a lost

key. Moreover, interoperability is no longer an issue, as encryption of archived data

will typically only involve one entity, and hence only one KRM. As a result of this,

however, the mechanism will be more susceptible to rogue user attacks where the user

might deliberately delete or alter the generated KR information.

Electronic mail is a special case because it has the characteristics of both communicated

and archived data. If the decryption key for an encrypted e-mail is lost, access to the

email will be infeasible unless the sender re-sends the message. The ability to recover

66

3.6 Summary

keys used for encrypting e-mail could be of a potential benefit to the user.

Therefore, the differences that necessitate the distinction between KRMs used for com-

municated data and those used for archived data are as follows.

• Interoperability. While interoperability is a critical requirement for KRMs used

for encrypted communicated data it is of no importance to KRMs for archived

data.

• Susceptibility to rogue user attacks. In encrypted communications, attacks

where a rogue user tampers with the generated KR information can be prevented

by requiring the receiving party to verify it prior to decryption (although this

might not always be an efficient countermeasure against these attacks). This

is not possible with archived data, however, as during a typical encryption of

archived data there will be only one entity involved.

• Users’ ability to recover their keys unaided. While users typically do not

benefit from being able to recover keys used for their encrypted communications,

the situation is rather different for archived data.

The next two parts of this thesis consider these two types of KRMs in more detail.

3.6 Summary

In this chapter, the possible dangers to a corporation arising from an inability to access

keys used for encrypting data have been considered. An analysis has been made of the

requirements for KRMs applied in a business environment, and the applicability of

existing mechanisms was investigated. More specifically, the deployment of the two

main types of KRMs, i.e. key escrow and key encapsulation, has been assessed on the

basis of their general properties. As there is no panacea to the key recovery problem,

67

Matching key recovery mechanisms to business requirements

careful analysis of the business needs is necessary to identify appropriate solutions.

A further distinction was made between requirements for KRMs for communicated

data and for archived data. This distinction has motivated the work described in the

next two parts of this thesis.

68

Part II

KEY RECOVERY FOR
ARCHIVED DATA

69

Chapter 4

Applying key recovery to
archived data

Contents

4.1 Requirements for KRMs for archived data 71

4.2 Applicability of existing mechanisms 73

4.3 A new KR scheme . 77

4.3.1 Specification of scheme . 77
4.3.2 Properties and security analysis 80
4.3.3 Defeating rogue user attacks 83

4.4 A second new KR scheme . 85

4.4.1 Specification of scheme . 85
4.4.2 Properties and security analysis 88

4.5 Comparison of the two schemes 89

4.6 Summary . 90

In this chapter we identify the requirements for a key recovery mechanism used specif-

ically for archived data, and we propose two schemes where keys used for stored data

encryption can easily be recovered.

70

4.1 Requirements for KRMs for archived data

4.1 Requirements for KRMs for archived data

Keys used for encrypting stored data should be saved so that later decryption will be

feasible. Storing these keys unencrypted makes them subject to unauthorised access.

If, however, they are protected by a private key (e.g. password) a question arises as

to where this key is stored. Requiring the user to memorise it is very risky (it is not

unlikely that the user will forget it), while, if it is stored on a secure device such as a

smart card, then there is a risk that the device will fail, or will be lost or destroyed.

Archived data management typically involves only one entity, which stores and retrieves

data at distinct points in time [59]. Keys used by this entity to encrypt stored company

data are likely to be possessed only by this entity. Therefore, decryption of archived

data by a third party (a crucial requirement in a business environment) will be infeasible

unless a KRM is in place that will enable recovery of the data decryption keys.

Previously proposed KRMs were mainly designed to provide KR functionality for en-

crypted communications. As we discussed in Chapter 3, when these mechanisms are

applied to archived data (especially key encapsulation schemes [83, 91]), they suffer

from the absence of a second party that can verify the generated KR information. As

a result, they become particularly vulnerable to rogue user attacks, where a rogue user

can tamper with (alter or delete) the KR information during or after its generation,

making it invalid to third parties. While this kind of attack on some KRMs, such as key

encapsulation schemes, is typically prevented in a data communication environment by

requiring the receiving party to verify the KR information prior to decryption of the

received data, this is infeasible for stored data encryption.

Another problem with most existing KRMs is that they do not offer the user the ability

to recover his keys unaided, hence forcing him to contact his agent, who will recover

the keys on the user’s behalf. This problem arises from the fact that the intention

of the majority of the proposed mechanisms was to give LEAs access to encrypted

71

Applying key recovery to archived data

communicated data. Designs have therefore typically focused on giving access to keys

to the on-line agent rather than the user himself, i.e. the user is given no means to

recover his data encryption keys unaided. As a result, applying these mechanisms

to encrypted archived data introduces extra communications costs from the necessary

interaction with the agent. User key recovery will also necessitate the existence of an

on-line agent.

For example, consider a key encapsulation mechanism where the KRF contains the

data encryption key encrypted under the agent’s public key. Whenever the user wants

to access an encrypted file, and assuming that a copy of the key is not kept locally, he

has to ask the agent to recover the decryption key from the KRF. Problems will then

arise when the user works off-line, or if there is no connection with the agent because of

a network failure; the user will be unable to use the KRM to recover his keys because

of the agent’s unavailability. A solution to this problem is for the user to have a backup

of the keys stored locally, and whenever he requires decryption of a file the copy of the

key is used instead of the KRM. This solution, however, introduces new risks.

A key recovery mechanism that would be specifically designed for use with encrypted

archived data while overcoming the aforementioned problems should typically satisfy

the following requirements. Note that this is not a complete list of requirements; it

rather highlights those requirements that are of particular relevance to the use of a

KRM for archived data, and which are not satisfied by the majority of the existing

mechanisms.

1. The KRA should have the ability to recover the required keys, even when the

user tampers with the generated KR information. This is particularly relevant

to key encapsulation mechanisms where the KRA typically does not have direct

control over the key generation process.

2. The mechanism should give the user the ability to recover his keys unaided, i.e.

without the KRA’s intervention. This will ensure that the user has continuous

72

4.2 Applicability of existing mechanisms

access to his keys while avoiding the need to keep a backup of them locally (an

approach that introduces new threats to the secrecy of the keys).

Further to these requirements, it will be an advantage if the KRM makes no demands

for an on-line agent or for storage of users’ key related material.

4.2 Applicability of existing mechanisms

To examine the applicability of existing KRMs, we start by making the same distinction

as in Section 3.4.1, that is, between key escrow mechanisms that require the existence

of an on-line TTP and those that do not.

1. Mechanisms requiring on-line participation of the escrow agent for key generation

appear to be more secure from the non-circumventability point of view. As they

are typically integrated within the cryptographic mechanisms, circumventing the

KRM would require the user to avoid making use of the cryptographic mecha-

nisms, and hence make no use of encryption. One example of such a mechanism

is provided by a KDC that generates keys on the users’ behalf while a copy of

the key is kept by the agent. Yet, as already mentioned, these mechanisms suffer

from the requirement for a high-powered server that will participate in the key

generation process.

2. KRMs that are less dependent on on-line agent participation are weaker as far as

circumventability is concerned. Within this class, however, fall some mechanisms

that do not have this problem. For example, consider a KRM where a user escrows

a Master Key with his agent. He subsequently uses the Master Key, combined

with some additional data that the agent is assumed to know in advance, to

compute the session key. Such a scheme does not require the existence of an

on-line TTP. Yet, the TTP has direct access to the generated key, and this is

the characteristic distinguishing it from other mechanisms of the same category.

73

Applying key recovery to archived data

Both these types of mechanisms suffer from the problems previously mentioned regard-

ing key escrow mechanisms. That is, deployment of such a scheme would require the

existence of large storage devices for the administration of the escrowed keys, which

require the use of strong security mechanisms for their protection.

Key encapsulation mechanisms used for encrypted archived data have the advantage

that neither an on-line agent nor storage of any KR material by the user’s agent is

required. Although key encapsulation mechanisms increase the amount of data that

have to be stored, as the encrypted key has to be attached to the encrypted data,

we assume that this is not a problem in most applications. Moreover, the session

key is adequately protected as it is encrypted, together with some mechanism-specific

credentials, under the public key of the user’s agent. Key encapsulation mechanisms,

however, are vulnerable to cut-and-paste attacks where a rogue user alters or deletes

the generated KR information, preventing access to the encrypted data by authorised

entities. So, as far as circumventability is concerned, these mechanisms appear to be

more vulnerable than key escrow.

A KRM designed for use with archived data, as well as with encrypted messages and

session keys, was proposed by Maher, [53]. The Maher Crypto backup system pro-

vides corporations access to keys that are lost, destroyed, or withheld from legitimate

access, by automatically making “a backup key through a controlled process”. The

system requires agents and users to share a value x and a function f with the following

properties.

• The function is easy to compute, but its inverse in r is computationally infeasible.

More specifically, r is hard to compute from the value f(x, r) when the value x

is known.

• For any two values r1 and r2, f(f(x, r1), r2) = f(f(x, r2), r1).

74

4.2 Applicability of existing mechanisms

One example of a suitable choice for f is obtained by putting f(x, r) = xr mod p,

where p is a large prime and x is chosen to be an element of large prime multiplicative

order modulo p.

The Crypto Backup process is implemented by the following steps.

1. The value x and the function f are fixed.

2. The agent, namely Trusted Backup Agent, generates a random value rM , which is

the agent’s private MasterKey, and computes the corresponding public MasterKey

as y = f(x, rM).

3. The public MasterKey together with the agent’s identity is signed by an appropri-

ate authority, thus binding the agent’s identity to the agent’s public MasterKey.

4. A user U of the backup system, generates a random number rU and constructs

the key k to be used for the file or message encryption as k = projn(f(y, rU)),

where projn selects the first n bits of its argument.

5. User U generates the Backup Recovery Vector (BRV), which is a vector that con-

tains information identifying the agent and information sufficient to recover the

corresponding key k for a single file or message, as (idA, idy, f(x, rU)). Follow-

ing its generation, either the BRV is placed in the file header or an appropriate

pointer to a BRV file is provided to the agent.

Although the described mechanism does not require the agent’s participation in session

key generation, it suffers from the problem that a user can tamper with the generated

key recovery information and prevent key recovery. It might be argued though, that

if the key recovery process is automatic and transparent to the user, then rogue user

attacks are relatively unlikely. However, in many circumstances users will nevertheless

be aware that key recovery is taking place, and hence might wish to take steps to

prevent key recovery operating correctly. Therefore, a rogue user can typically alter or

75

Applying key recovery to archived data

delete the attached BRV, or submit an invalid BRV to the BRV file, hence disabling

key recovery by the agent. Moreover, the user cannot recover the keys used without

the agent’s participation, a property that makes the mechanism less attractive for use

with archived data.

Two different schemes are proposed in Sections 4.3 and 4.4 that effectively overcome

these problems, with the first being an adaptation of Maher’s scheme. The two mech-

anisms have the following common properties.

• Users do not require their agent’s intervention to recover keys previously used.

• The mechanisms are not vulnerable to rogue user attacks on the generated KR

information.

• The mechanisms make no demands for the user to escrow with the agent any key

related material.

Therefore, the proposed mechanisms avoid both the key encapsulation mechanisms vul-

nerability to rogue user attacks, and the key escrow mechanisms’ demands for storage

and protection of users’ key related material. The main difference between the two

schemes is that the second KRM requires user communication with the agent(s) during

key generation, and mandates the use of smart cards. Use of smart cards in the first

mechanism is optional, although, as discussed below, their deployment can help prevent

rogue user attacks.

Both schemes are ‘text expanding’, i.e. the encrypted string will be longer than the

cleartext string. Whilst this will not be a problem in most applications, there exist cer-

tain special circumstances, for example the encryption of individual database records,

where this is a serious problem. Dealing with such special cases is outside the scope of

this thesis.

76

4.3 A new KR scheme

As mentioned in Chapter 2, for rogue user attacks we assume that a rogue user, trying

to disable authorised KR by his associated KRA, may tamper with the generated

KR information by either altering or deleting it, or may even prevent its generation.

However, we assume that the user will leave the encrypted data unchanged so that he

can recover it when necessary (if the encrypted data is modified or destroyed, then no

KRM can deal with the situation). For instance, the rogue user might simply detach

the KR information from the encrypted file, and retain the KR information separately

so that it is not available to the KRA. Through possession of this information the user

can recover the required key but the KRA cannot.

4.3 A new KR scheme

4.3.1 Specification of scheme

Whenever a user wants to encrypt a file or message, instead of generating a random

key and using it to encrypt the stored data, he uses the proposed mechanism which

will also allow later recovery of the generated key. For this mechanism the following

requirements must be satisfied:

1. All entities share public values p and g, where p is a large prime number and g

is an element of large prime multiplicative order modulo p. We will write gx for

(gx mod p) throughout.

2. Each user and each KRA has a Diffie-Hellman [20] key agreement key pair. More

specifically, user A has private key agreement key x with corresponding public

key gx, and KRA C has private key agreement key y with corresponding public

key gy. The user’s key pair can be generated by either the user or a certification

authority (CA) specified in the corporation’s policy (or even by both of them

[62]), and the public key is certified by the latter. If the CA and KRA are not

the same entity, the KRA can also get its public key agreement key certified by

77

Applying key recovery to archived data

a CA in the hierarchy.

3. The entities share a one-way hash function h.

4. A repository for distributing the certified public keys has to be in place.

The KR information generation phase consists of the following steps:

1. When a user wants to encrypt archived data, a KRA is selected depending on

the demands of the data to be encrypted (note that this can be an automated

process), and obtains the KRA’s public key certificate from the repository.

2. The user generates session key K as:

K = h((gy)x mod p ‖ “data credentials”)

where ‖ denotes concatenation, x is the user’s private key and gy is the KRA’s

public key agreement key. The “data credentials” can vary according to the

application of the KRM. If the data is a file, the “data credentials” can be derived

from the file’s unique characteristics, e.g. the date of the file’s last modification,

and/or the name of the file. If the data is a message, a unique serial number that

identifies the message is sufficient. The generated key, or part of it, depending on

the requirements of the encryption mechanism, can be used for the encryption of

the message or file.

3. A key recovery field (KRF) is generated and attached to the encrypted data

(message or file). The KRF consists of the identity, idKRA, of the agent whose

public key agreement key gy was used to compute the session key, a serial number

idy that identifies the agent’s public key if the agent has multiple public keys,

and the “data credentials” used to compute K. That is, the KRF is:

KRF = (idKRA, idy, “data credentials”)

78

4.3 A new KR scheme

When a user wants to decrypt the data, he simply recomputes the key K by executing

step 2 from the KR information generation phase. That is, during the user key recovery

phase:

1. The user detaches the KRF from the encrypted data.

2. Using the agent’s identity idKRA and the key serial number idy, both contained in

the KRF , the user obtains from the repository the certificate for the appropriate

agent public key (if he has not already got a valid copy stored locally).

3. Using his private key agreement x, the KRA’s public key agreement key and

the “data credentials” field, contained in the KRF , the user can re-compute the

required key.

If an authorised entity wants to recover a key, he detaches the KRF and sends it to

the KRA identified by the idKRA field, along with the appropriate authorised request.

The requesting entity must also inform the KRA who the file owner is, i.e. the user

that encrypted the file, so that the KRA can retrieve the appropriate user’s public

key certificate. The latter task can be left to the requesting entity which, in this case,

must pass the certificate to the KRA. If the recovery request complies with the relevant

security policy the agent proceeds with the agent key recovery phase:

1. The agent extracts from the received KRF the “data credentials” and the value

idy, which will identify the agent’s key used. Moreover, the agent retrieves the

user’s public key agreement key if this is not received from the requesting entity.

2. The agent is now in possession of all the key material required for the recovery

of the requested key, which the agent can easily compute.

79

Applying key recovery to archived data

4.3.2 Properties and security analysis

From the above description it should be clear that, during the user key recovery phase

there is no need for interaction with the agent, a property that simplifies the key

recovery process for the user. More specifically, when a user wants to recover a key

that he has previously used to encrypt archived data, the agent need not participate

in the key recovery process. The user is able to recover the keys himself, without the

KRA’s intervention.

The majority of KRMs lack such a feature; the user’s KRA is typically the only entity

that can recover the key. With the proposed scheme the user will be required to contact

his agent only if he has lost his private key agreement key, in which case the only entity

that can recover the user’s keys is the KRA. This property typically eliminates the

requirement for an on-line agent and avoids the related communications overhead.

Further properties of the proposed mechanism include:

1. The agent and the user are the only entities that can access the data encryption

keys. Encryption of a file by a user that is not its owner, if this is allowed by

the access control system, will give ownership of the encrypted file to that user.

This will ensure that when the agent attempts to recover the corresponding key,

it will use the appropriate user public key. If the operating system cannot assign

ownership of the encrypted file or message, the user’s identity can be included in

the KRF as an alternative. Moreover, if a user can have multiple keys, the KRF

should also contain an identifier for the one used.

2. There is no need for the agent to store any user-specific key material. The only

storage requirement is that there must exist a repository from where the cer-

tificates, for both users’ and agents’ public key agreement keys, can be easily

obtained. Each agent, however, has to ensure that its private key agreement

key(s) are protected against disclosure to unauthorised third parties.

80

4.3 A new KR scheme

3. The “data credentials” field used in the key generation process ensures the unique-

ness of the generated key for each file or message encrypted, assuming these data

are unique. Thus, each key recovery request by an authorised entity will be

restricted to a single file or message.

4. Although with the proposed scheme the encrypted data will be longer than the

cleartext this is not a problem in most applications. Those special cases where

’text-expansion’ might be a problem are outside the scope of this thesis.

5. The corporation’s environment can be divided up and multiple agents’ key agree-

ment keys can be used, each one corresponding to a single domain, group of users,

or level of information classification. The management can thus ensure that a sin-

gle agent’s key agreement key can only be used to recover specific types of data

encryption keys.

6. The proposed scheme is not restricted to encryption of archived data. It can

also be used in encrypted communications, given the existence of an independent

means for conveying the generated key to the receiving party. In that case,

however, the peer will not be able to verify the validity of the generated KR

information, although this may not be a problem since the mechanism is not

vulnerable to rogue user attacks.

7. Unlike many KRMs applied to encrypted archived data, the proposed scheme

is not vulnerable to rogue user attacks. If a rogue user tampers with the KR

information, aiming to disable any authorised KR attempt by the agent, the

proposed scheme offers an alternative means for the agent to recover the keys.

Specifically, if only a limited number of bytes are used as the “data credentials” for

the key computation, the agent can mount an exhaustive key search, as described

in Section 4.3.3, which will recover the required key in a reasonable time period.

The following remarks can also be made concerning the security of the proposed mech-

anism.

81

Applying key recovery to archived data

1. A rogue user who wants to disable key recovery on his encrypted files has to sub-

vert the whole key establishment process. Appropriate software integrity checks

[4] can ensure the proper use of the cryptographic infrastructure.

2. To avoid an attack where a rogue user generates his own Diffie-Hellman key pair

and uses it to generate a session key, an on-line check can be run on the validity

of the certificate for the public key agreement key used. That is, if necessary, the

mechanism can pass the public key agreement key being used to the agent over

a secure channel. The agent can thereby check its validity in a user-transparent

way. This on-line check can be avoided, however, if the key is stored in a smart

card, as described in Section 5.3, assuming the user is not able to create ‘bogus’,

apparently legitimate, smart cards.

3. Use of smart cards can also prevent a rogue user from manipulating the key

after its generation, e.g. the user can use the generated key as input to a keyed

function while using the output of this function as the session key. To prevent

such an attack the whole mechanism should be implemented on the card, i.e.

encryption must take place on the card, although there are certain limitations

associated with such an approach, as described in Chapter 5. An alternative is

also proposed in the next chapter.

As with the mechanism proposed by Maher [53] this scheme can also be modified to

reduce the trust that needs to be placed in one agent. Each user can use keys from

multiple agents, thus eliminating any unauthorised attempt by a single agent to recover

encryption keys. More specifically, assume, for simplicity, that the user wants to split

his trust between two agents and that these two agents have private key agreement keys

y1 and y2 and corresponding public key agreement keys gy1 and gy2 respectively. When

generating an encryption key, instead of simply using one agent’s public key agreement

key, both agents’ public keys are used:

K = h(gx(y1+y2) mod p ‖ “data credentials”)

82

4.3 A new KR scheme

During the key recovery phase, the user can reconstruct the key following exactly the

same procedure as before. An agent that wants to recover a requested key must obtain

the user’s public key agreement key raised to the power of the other agent’s private key

agreement key. Thus both agents must participate in key recovery.

4.3.3 Defeating rogue user attacks

The agent, as previously mentioned, can mount an exhaustive key search for the re-

quested key if the user tampers with the KR information. Performing a known-plaintext

exhaustive key search would typically require the knowledge of at least as many bits of

plaintext as there are bits in the unknown “data credentials” used to derive the secret

key. Therefore, we propose prefixing the data to be encrypted with a fixed bit string,

known to the KRA, of sufficient length to enable the correct key to be determined.

Note that, in normal use, the encryption software will delete this fixed string during

decryption. By this means, if there are 2k possibilities for the “data credentials”, then

finding the correct key is expected to take approximately 2k−1 trials.

Given the above requirements, it should be clear that, for current technology the “data

credentials” field should not exceed 6 bytes in length, i.e. k = 48, if a result is required

within a short time period (not more than a couple of days) and at reasonable cost.

Nevertheless, if the bytes making up the “data credentials” are highly redundant, e.g.

if each byte is an ASCII-coded alphanumeric character, then using a larger number

of bytes for these credentials will become possible. Ultimately, the size of the “data

credentials” will depend on the resources and the time that a corporation is willing

to spend on an exhaustive search for the keys. This, in turn, will depend on the

availability of key searching technology – note that, for example, in [93] it is estimated

that a $10,000 machine can find a 56 -bit DES key in 2.5 days.

If the rogue user also attempts to delete the encrypted fixed string from the encrypted

data, then a ciphertext-only key search can be attempted. As described in [59], “if the

83

Applying key recovery to archived data

underlying plaintext is known to contain redundancy, then ciphertext-only key search

is possible with a relatively small number of ciphertexts”. In that case the criteria for

a correct key would be characteristics that are expected to be found in the decrypted

text, e.g. the coding of the expected plaintext.

Further suppose that a rogue entity, in an attempt to circumvent the key recovery

process, uses the cryptographic infrastructure to perform superencryption, at the same

time deleting the key recovery information at each stage. If the encrypted fixed strings

used to prefix the data to be encrypted are left in place, then a series of brute force

searches, each of expected size 2k−1, will be sufficient to recover the plaintext, even if

different “data credentials” are used for each iteration of the superencryption process.

It could be argued that rogue users who do superencryption are smart enough to

circumvent the whole key recovery process by other means. However, performing su-

perencryption may only require a mouse click, and hence will be very easy to perform

for even the most non-technical of users. Taking other measures to defeat key recov-

ery (e.g. implementing another encryption algorithm) will not be an option for such

non-technical users.

Finally, if a rogue user performed superencryption while also deleting the encrypted

fixed strings, then recovery of the encrypted data may become infeasible, as it will now

probably be necessary to perform a simultaneous brute force search over the entire set

of keys used for superencryption. However, this seems a relatively minor threat, since

the amount of work involved for the rogue user may be more than simply introducing

a different cryptographic infrastructure.

84

4.4 A second new KR scheme

4.4 A second new KR scheme

4.4.1 Specification of scheme

We now describe another mechanism for adding KR functionality to the encryption

process for archived data. This mechanism requires the user’s interaction with the

agent during key generation, and it is this interaction that helps prevent rogue user

attacks.

Three entities are involved in the proposed mechanism: the user who encrypts the

data, the KRA which assists in the management of keys, and the authorised entity AE

which is the entity authorised by the corporate policy to have access to users’ data.

Whenever a user wants to encrypt a file or message, instead of generating a random

key for data encryption, he uses the proposed mechanism for key generation, which will

also allow later recovery of the generated key. For this mechanism, which necessitates

the use of a smart card by each user, the following requirements must be satisfied:

1. The KRA and the user’s card share a message authentication code (MAC) func-

tion f1, a one-way hash function h, and a key generating function f2 (this could

potentially be based on a one-way hash function). f2 is used to generate the key

KAC that will be used by the MAC function f1, i.e. KAC = f2(KM , idA), where

KM is the KRA’s master key and idA is user A’s identity. KAC should be stored

on the user’s card, typically during card personalisation. The user must not have

access to KAC , otherwise rogue user attacks become possible.

2. The KRA, user, and authorised entity share a key generating function f3. As

with f2, f3 can be based on a one-way hash function.

3. The user’s card and the AE share a secret key KAM which is generated as a

function of KA and a secret master key KAE that the authorised entity possesses,

85

Applying key recovery to archived data

i.e. KAM = f3(KAE ,KA). KA is a master key specific to user A, which is

generated as a function of KRA’s key KM and the user’s identity idA, i.e. KA =

f3(KM , idA). As with KAC , KAM should also be stored on the user’s card during

the card personalisation.

4. The user has access to a random number generator. The generated random

numbers are used to ensure key freshness so that a file will never be encrypted

with the same key more than once.

5. The KRA administers a file consisting of indexes binding a unique file identifier

with a random value generated for the specific file. The integrity of this file must

be preserved.

6. All the entities trust the device where the encryption takes place, i.e. the user’s

PC or a server. If this is not the case then encryption has to take place on

the card, although there are certain performance limitations associated with this

approach (see Chapter 5).

When user A wants to encrypt a file, a session key KS has to be generated using the

following protocol.

1. A generates a random value RAND either on his card or on the PC. Using his

card, A computes a MAC on RAND and the unique identifier fileid of the file

to be encrypted, i.e. MAC1 = f1KAC
(RAND,fileid). A then sends the following

message to the KRA,

A
idA ‖ RAND ‖ fileid ‖ MAC1−−−−−−−−−−−−−−−−−−−−−−−−−−→ KRA

where ‖ denotes concatenation.

2. Upon receipt of the message, the KRA uses the received user’s identity idA and

the master key KM to compute the key KAC . The KRA then recomputes the

message authentication code MAC1 using the received values RAND and fileid

86

4.4 A second new KR scheme

and checks the result against the received MAC1. If the check succeeds the KRA

adds an entry to the index file consisting of the received fileid and the random

value RAND, indexed by the user who sent it. The KRA then computes a message

authentication code MAC2 on A’s identity idA and the values fileid and RAND,

i.e. MAC2 = f1KAC
(idA,fileid,RAND), and sends it back to the user’s card.

A
MAC2←−−−−−−−− KRA

This tells the card that the KRA, which is the only entity that can compute

MAC2, has successfully registered the received random value RAND for the file

identified by fileid.

3. As soon as the card receives MAC2 it recomputes it using the values RAND and

fileid that it sent to the KRA, and checks it against the received MAC2. If the

check succeeds, the card uses the secret key KAM and the random value RAND

to generate the session key KS as

KS = f3(KAM ,RAND)

which is passed to the PC for the encryption process. The file is encrypted using

KS and a key recovery field KRF is attached to it. The KRF consists of the

random value RAND (the KRA’s identity should also be included if there are

multiple KRAs), i.e.

KRF = {RAND}

Should an emergency access situation arise, the authorised entity will request the ap-

propriate key KA from the KRA. Having KA and using the master key KAE and the

function f3, the authorised entity computes the corresponding user’s key KAM , i.e.

KAM = f3(KAE ,KA). Using KAM and the value RAND attached to the file, the

authorised entity can successfully recover the required key and the target data.

87

Applying key recovery to archived data

4.4.2 Properties and security analysis

With the proposed scheme, there is no need for interaction with the agent in everyday

user access to the encrypted data, a property that simplifies the key recovery process

for the user. More specifically, the user is able to recover the keys using his smart card,

which can recompute the target key KS using the value RAND attached to the file.

The user will be required to contact his agent only if he has lost his card, in which case

only the authorised entity AE can recover the user’s keys. This property typically elim-

inates the requirement for an on-line agent for the recovery of keys (for the purposes of

everyday user access to encrypted data) and avoids the related communications over-

head. Moreover, the user does not have to back-up or archive the generated keys, thus

avoiding the security hazards associated with secret key storage. Further properties of

the proposed mechanism include:

1. The proposed mechanism is not vulnerable to rogue user attacks, as even if a

rogue user deletes the generated KRF the KRA has the means to recover the

requested key. Using just the index file and the identity of the file and the user,

the KRA has all the needed values to compute the required key.

2. The KRA does not have to store or protect any of the user generated keys, thus

avoiding certain problems that key escrow mechanisms face, e.g. preventing unau-

thorised access to the escrowed material. The only requirement, apart from the

protection of the secret value KM , is protection of the index file from unauthorised

modification.

3. The mechanism benefits from the separation of the KRA from the authorised

entity AE in that the KRA does not have access to users’ generated session keys.

The only entities that can recover the session keys are the users and the authorised

entity AE. This allows the corporation to outsource the management of the KRM

without endangering the confidentiality of the corporate data.

88

4.5 Comparison of the two schemes

4. Dispersion of key material, a countermeasure that makes attacks on key recovery

mechanisms more difficult, is properly enforced with the use of both KM and

KAE for the computation of KAM and, therefore, the generation of KS . Even if

KM or KAE is compromised an adversary cannot gain access to the users’ keys.

The attacker has to know both KM and KAE to be able to recover users’ keys.

5. The random value RAND can be generated either on the card or on the user’s

PC and passed to the card. The security of the mechanism, however, does not

rely on the randomness of this value, since it is only used to ensure freshness of

the generated key. As a result, RAND can be generated on the PC to reduce the

number of power consuming procedures that take place on the card.

6. As with the previous mechanism, to prevent a rogue user from manipulating the

key after its generation, the whole mechanism should be implemented on the card,

i.e. encryption must take place on the card. However, there are certain limitations

associated with such an approach and alternative countermeasures are described

in Chapter 5.

4.5 Comparison of the two schemes

As previously mentioned, the two schemes meet the two main requirements identified in

Section 4.1 for key recovery mechanisms specifically deployed for archived data. Their

main difference is the way that rogue user attacks are prevented. The first mechanism

solves this problem by imposing a residual work factor on the agent recovering the keys

when a rogue user attack occurs, a property that is likely to affect data availability

given the time needed by the agent to recover the required keys. The second scheme

requires the agent’s participation in the generation of the session keys. Therefore, agent

availability becomes a crucial requirement for the second mechanism, as otherwise it

forces the user to leave his data unencrypted.

Although the first scheme does not necessitate the use of smart cards, as the second one

89

Applying key recovery to archived data

does, smart cards provide an effective means to prevent rogue user attacks. Therefore,

in terms of cost of deployment of the mechanism the second scheme is no more expensive

than the first one. Besides that, both mechanisms can be deployed using an existing

multi-application smart card, which the employee might already use, and hence they

may well not add significant costs to the existing infrastructure.

Both mechanisms offer the corporation the ability to outsource the service without

endangering the privacy of the encrypted data. Although this constitutes one of the

properties of the second mechanism, for the first mechanism use of multiple agents, with

one of them being internal to the corporation, is essential if the corporation wishes to

control the recovery process.

Finally, note that the second mechanism appears to be more secure against attacks tar-

geting the compromise of the agent’s key. The second mechanism requires an adversary

to know two keys, i.e. the KRA’s and the authorised entity’s master keys, to get access

to users’ generated keys, while compromise of either of those keys does not endanger

the privacy of the encryption keys. With the first mechanism, however, and if multiple

agents are not used, compromise of the agent’s private key would give the adversary

access to all the users’ generated keys (assuming that the adversary has access to the

users’ public keys).

4.6 Summary

In this chapter, the use of key recovery mechanisms for archived data has been investi-

gated. More specifically, we identified the requirements that a KRM should fulfil when

deployed to provide key recovery functionality for encrypted archived data. As most

of the existing KRMs were designed for use with encrypted communicated data, using

them with archived data causes problems, and thus there is a need for a mechanism

designed specifically for archived data.

90

4.6 Summary

Two different KRMs were proposed that satisfy the identified requirements. The first

involves a certain amount of work by the KRA to recover the keys if a rogue user deletes

the generated KR information. The second mechanism defeats rogue user attacks by

employing a secure user token and an on-line agent during key generation. Both mech-

anisms offer the user the ability to recover his keys without agent intervention. Neither

requires the direct escrow of any user generated keys, avoiding the costs associated

with the requirement for protection and administration of these keys.

91

Chapter 5

Implementation issues of the
proposed KRM for archived data

Contents

5.1 Introduction to smart cards 93

5.2 Java Card . 95

5.3 Implementation architecture 97

5.3.1 OCF overview . 98
5.3.2 Applet functionality . 99

5.4 Implementation details . 100

5.5 Performance measurements and analysis 101

5.6 Summary . 104

A prototype implementation of the first of the two proposed KRMs for archived data is

described in this chapter. The purpose of this demonstration is to examine the efficiency

of the deployment of this mechanism using smart cards, and more specifically, using

the Java Card technology.

92

5.1 Introduction to smart cards

5.1 Introduction to smart cards

A smart card or integrated circuit card (ICC) is a small device, about the size of a credit

card, that contains memory, an input/output facility and, optionally, a microproces-

sor. Smart cards are capable of manipulating information, and hence they provide an

attractive platform for implementing cryptographic functions. Tamper-resistance is an-

other characteristic of ICCs which makes them a suitable medium for storing sensitive

information. As a result, use of a smart card can be an important part of a secu-

rity infrastructure, especially for operations that take place in untrusted environments.

Smart cards are used extensively for a variety of applications including banking, mobile

communications, and electronic purses.

Smart card applications consist of an ICC-aware application, or client, interacting

with a card-resident component. The ICC-aware application is the software program

that makes use of the functionality provided by the card, and which runs on some

computing platform known as the terminal. A terminal can be a personal computer

(PC), an automatic-teller machine, a personal digital assistant, or a network computer.

The card-resident component comprises data and functions that reside on the smart

card. The ICC communicates with the computing platform through the interface device

(IFD), also known as card acceptance device (CAD) or simply a smart card reader.

The ICC-aware application interacts with the smart card by exchanging pairs of pack-

ets called application protocol data units (APDUs). The communication model is

command-response based; the application sends a CommandAPDU to the smart card

by handing it to the IFD’s driver, which in turn forwards the APDU to the card.

The smart card processes the CommandAPDU and returns the response in a Re-

sponseAPDU. The set of Command–Response APDUs determines the smart card’s

functionality. Smart cards are reactive communicators, i.e. they never initiate commu-

nications.

93

Implementation issues of the proposed KRM for archived data

A command APDU, as defined in ISO/IEC 7816-4 [36], consists of

• a mandatory header of 4 bytes (CLA, INS, P1, P2), and

• a conditional body of variable length.

Header Body

CLA INS P1 P2 [Lc] [Data] [Le]

Table 5.1 shows the contents of the command APDU (length is in bytes).

Table 5.1: Command APDU contents

Code Name Length Description

CLA Class 1 Class of instruction

INS Instruction 1 Instruction code

P1 Parameter 1 1 Instruction parameter 1

P2 Parameter 2 1 Instruction parameter 2

Lc field Length 1 or 3 Number of bytes present in the
data field of the command

Data field Data Lc String of bytes sent in the
data field of the command

Le field Length 1 or 3 Maximum number of bytes expected in the
data field of the response to the command

A response APDU consists of

• a conditional body of variable length, and

• a mandatory trailer of 2 bytes (SW1 SW2).

Body Trailer

Data field SW1 SW2

Table 5.2 shows the contents of the response APDU (length is in bytes).

94

5.2 Java Card

Table 5.2: Response APDU contents

Code Name Length Description

Data field Data Variable String of bytes received in the
data field of the response.

Its length depends on the Le value.

SW1 Status byte 1 1 Command processing status

SW2 Status byte 2 1 Command processing qualifier

5.2 Java Card

Among the various technologies that have been invented and used for smart cards, [30],

is the Java Card [85], which is a smart card that can execute Java Card applications,

namely Java Card applets or just applets. Java Card is a set of specifications issued by

Sun Microsystems and based on the Java programming language. More specifically, as

mentioned in [86], “Java Card technology combines a portion of the Java programming

language with a runtime environment optimized for smart cards and related, small-

memory embedded devices”.

The software components that comprise the Java Card are depicted in Figure 5.1.

A p p l e t A p p l e t A p p l e t

 J C R E
F r a m e w o r k

A P I

J a v a C a r d V M Nat ive me thods

Indus t ry spec i f ic ex tens ions

Figure 5.1: Java Card architecture

The heart of a Java Card is the Java Card Runtime Environment (JCRE) [86], which

is the component that specifies how a Java Card manages its resources. More specifi-

cally, it defines how atomicity is to be achieved, how communication is to be handled,

95

Implementation issues of the proposed KRM for archived data

how applications are to be managed (including how objects are to be shared between

applets), and how security measures should be enforced. The JCRE includes native

methods, that perform the input/output and memory allocation services of the card,

and the framework, which is the set of classes that implement the Application Pro-

gramming Interface (API). The API defines the calling conventions by which an applet

accesses the JCRE and native methods.

A fundamental component of the JCRE is the Java Card Virtual Machine (JCVM)

[87] which consists of two components; one that runs on-card and the other that runs

off-card, i.e. on a PC or a workstation. The on-card JCVM executes bytecodes using

the bytecode interpreter, manages classes and objects, enforces separation between ap-

plications (firewalls), and enables secure data sharing. The off-card JCVM contains a

Java Card Converter tool, which converts the input class files into a Java Card exe-

cutable code format (CAP file) during the development process. It also provides many

of the verifications, preparations, optimizations, and resolutions that the Java virtual

machine performs at class loading time. A schematic representation of this process and

the relationship between the off-card and the on-card JCVM are depicted in Figure

5.2. This figure also briefly depicts the procedure followed for the preparation and

download of an applet to the smart card.

C o n v e r t e r J C R E

O f f - c a r d V M O n - c a r d V M

J a v a C a r d V M
.class
f i les

. c a p
fi le

Figure 5.2: Java Card VM and converted classes downloading

Java Card technology offers many benefits including platform independence, multi-

96

5.3 Implementation architecture

application capability, and post-issuance of applications (i.e. loading applications onto

a card after issue of the card). Platform independence ensures that Java applets will

run on different vendors’ cards (compliant with the Java Card technology). Multi-

application capability allows multiple applications to run on a card and to be down-

loaded dynamically, while the inherent protection mechanism provides a secure en-

vironment for running multiple applications on a single card. Finally, post-issuance

of applications provides card issuers with the ability to respond dynamically to their

customers’ needs.

There are certain limitations, however, associated with Java Cards compliant with

the version 2.1 specification [85], including lack of support for dynamic class loading,

multiple threads and multidimensional arrays, and non-mandatory garbage collection.

These limitations, driven by the limited existing resources, in many cases make applet

implementation a challenging process.

The Java Card technology has been used to implement the mechanism proposed in

Section 4.3 to examine the efficiency of a smart card based version of the mechanism.

5.3 Implementation architecture

Implementation of the mechanism employing a user smart card, as mentioned in Section

4.3.2, offers benefits by securing the infrastructure against users’ attempts to deploy

their own, uncertified, key agreement keys, and to manipulate the generated session

key. The high-level architecture of a prototype implementation, using a PC as the

terminal, is depicted in Figure 5.3.

The Java Card applet contains all the functions accessible by the ICC-aware applica-

tion, and provides an interface to the library functions that implement the KRM. User

authentication is also part of the library functionality in the form of a secret 4-digit per-

sonal identification number (PIN). Once the user has been authenticated he can make

97

Implementation issues of the proposed KRM for archived data

T e r m i n a l / C a r d
In te r face

V e r i f y P I N
ver i fycer t i f ica te

g e n e r a t e k e y
e n c r y p t d e c r y p t

C o n n e c t
Ca rdho lde r Ve r i f i c a t i on

encryp t f i l e
decryp t f i l e

se lec tcer t i f ica te
T e r m i n a t e

C o m m a n d

R e s p o n s e

I C C - a w a r e
app l i ca t ion

A p p l e t L i b r a r y

V E R I F Y
E n c r y p t F i l e
D e c r y p t F i l e {

Figure 5.3: The implementation architecture

use of the functionality provided by the applet, unless the card has been removed from

the IFD or a new session has started, in which case the user has to be authenticated

again.

The proposed KRM was implemented using the Giesecke&Devrient Sm@rtCafé Java

Card, partly compliant with the Java Card 2.1 API [85], while the interface technology

used was the OpenCard Framework (OCF), developed by the OpenCard Consortium.

5.3.1 OCF overview

OCF is ICC middleware that sits between an ICC-aware application and the smart

card reader. It is implemented in the Java programming language and seeks to provide

functionality required by ICCs, IFDs, and PCs to allow portability and interoperability

among compliant elements as provided by a variety of vendors.

The core architecture of the OpenCard Framework consists of two main components:

the CardTerminal layer and the CardService layer. The CardTerminal layer provides

access to physical card terminals and inserted smart cards. It also offers a mechanism to

insert and remove card terminals through the use of the CardTerminalRegistry, which

keeps track of the installed card readers [69]. The CardService layer represents a set of

smart card services, each of which defines a particular API that can be used to access

98

5.3 Implementation architecture

a particular smart card function.

5.3.2 Applet functionality

The main applet functionality is provided by three library functions: verifycertificate(),

generatekey(), and encryptdecrypt(). The verifycertificate() function verifies

the certificate for the agent’s public key. For this purpose a valid copy of the CA’s

public key has to be preloaded on the card. The generatekey() generates the session

key K using the “data credentials” provided by the client, the user’s private key stored

on the card, and the agent’s public key. The user’s private key is accessible only by

this applet, ensuring that the key cannot be accessed by a malicious applet.

The coding of the commands sent to the card is as follows (the command for PIN

verification is not described). All the commands conform to the ISO/IEC 7816-4 format

[36].

• EncryptFile. This command is used to request encryption of the data included

in the “file data” field. The key will be generated using the data included in

the optional “data credentials” field. If the command executes successfully the

returned result is the encrypted data concatenated with the hex value ‘90 00’.

CLA INS P1 P2 Lc DATA Le

B0 50 GKCP 00 l Data Credentials File Data 00

GKCP – Generate Key Control Parameter. It can take the following values.

‘01’: The generatekey() function is invoked. The “data credentials” field

is required.

‘00’: Encrypt with the existing key. There is no “data credentials” field.

This mode is used when the data to be encrypted does not fit within the

data field of a single APDU, and hence multiple APDUs have to be used.

l – the length of the DATA field.

99

Implementation issues of the proposed KRM for archived data

• DecryptFile. This command is used to request decryption of the data included

in the “file data”. It has the same format as the ‘EncryptFile’ command except

for the ‘INS’ field which, in this case, has the hex value of ‘60’. If the command

executes successfully the returned result is the decrypted data concatenated with

the hex value ‘90 00’.

• GetCertificate. This command is used to pass to the card the certificate for

the agent’s public key agreement key. The certificate received by the card will be

verified and if this check succeeds the certified key will be used for the computation

of K and the returned result will be the hex value ‘90 00’. The coding of the

command is as follows:

CLA INS P1 P2 Lc DATA Le

B0 1A 00 00 l Certificate

The client part of the mechanism consists of three functions: encryptfile(), decryptfile()

and selectcertificate(). The selectcertificate() selects an agent’s public key

and passes the appropriate certificate to the card. The result of the encrypt() func-

tion is the encrypted file concatenated with the KRF. The decryption is performed by

extracting the KRF appended to the encrypted file, selecting the appropriate certifi-

cate, sending it to the card using the ‘GetCertificate’ command, and passing the “data

credentials” to the card with the ‘DecryptFile’ command.

5.4 Implementation details

For the experimental implementation, dummy values were used for the user’s private

key x and the agent’s public key gy, and hence for the resulting key gxy, as the desired

cryptographic functionality was not available on the card. Moreover, the agent’s public

key was preloaded on the card. As a result, the key generation function included only

the creation of a buffer which keeps the necessary key material, i.e. gxy and “data

100

5.5 Performance measurements and analysis

credentials”. This buffer is used as input to a digest function and the result is passed to

another function which converts the key to the format used by the encryption function.

The PKI functionality, including certificate upload and verification, was not part of

the demonstration. Instead, the implementation focused on an examination of the

encryption/decryption functionality efficiency and the handling of the generated key

within the card. Figure 5.4 gives a flowchart of the mechanism’s implementation.

The DES algorithm was used both in ECB and CBC modes for data encryption. The

reason for using two different modes was to make a performance comparison, and to

check how much more expensive the encryption process becomes when the CBC mode

is used. Note that the code listed in Annex A makes use of DES in ECB mode.

Although, as mentioned earlier, the Sm@rtCafé Java Card that we used was only partly

compliant with the Java Card 2.1 API, the lack of full compliance did not introduce any

significant implementation problems. It was not possible, however, for the developed

applet to be uploaded to a card fully compliant with the Java Card 2.1 specifications.

Major modifications would be required to the existing code to make it fully compliant

with the Java Card 2.1 API. Therefore, one of the main advantages of the Java Card

technology, i.e. portability provided by platform independence, is lost. This problem,

which arises from the fact that certain classes found in Sm@rtCafé Java Card are

not supported by other cards, is of course easily solved by making Giesecke&Devrient

Sm@rtCafé cards fully compliant with the corresponding specifications. As a result of

this problem, however, cross-checking of the performance measurements with imple-

mentations on other cards was not possible.

5.5 Performance measurements and analysis

The main conclusion from the implementation of the proposed mechanism is that bulk

data encryption on the card is still a prohibitively expensive operation. The perfor-

101

Implementation issues of the proposed KRM for archived data

 ICC

 ICC

H a s t h e
c a r d h o l d e r b e e n

ver i f i ed?

Ver i fy
c a r d h o l d e r

H a s t h e
ver i f i ca t ion
s u c c e e d e d ?

P r e p a r e t h e
n e x t A P D U

Is th is the
f i r s t A P D U f o r

this f i le?

Ask fo r key
gene ra t i on

Do no t a sk fo r
key gene ra t i on

S e n d
c o m m a n d

A P D U

Increase the
n u m b e r o f

fa i l ed a t t empts

Has th i s
r eached t he
m a x i m u m
n u m b e r ?

Y e s

N o

Y e s

Y e s

N o

The ca rd i s
b l o c k e d

Have a l l da t a
b e e n s e n t ?

N o

S a v e
e n c r y p t e d d a t a

and a t t ach
K R F

T e r m i n a t e

Sta r t Se lec t f i le

Y e s

Is key
gene ra t i on
r e q u e s t e d ?

G e n e r a t e k e y

P r o c e s s d a t a
a c c o r d i n g l y a n d

s e n d r e s p o n s e

N o

N o

Y e s

Y e s

N o

Figure 5.4: Implementation flowchart

102

5.5 Performance measurements and analysis

mance measurements indicate that encryption on a card is a very slow process even for

small amounts of data. Table 5.3 shows the results of ten consecutive encryptions of a

data block of 248 bytes, which is the maximum amount of data that can be sent within

a single APDU, given that the “data credentials” (6 bytes) used for key generation

are included in the same APDU. Three different procedures have been measured to

examine the efficiency of the implementation.

Table 5.3: Sm@rtCafé Java Card results using a block of 248 bytes of data

Mean time (ms) Std. Deviation

Encryption with key 2369 12.94
generation (DES-ECB)
Encryption without key 2133 12.195
generation (DES-ECB)
Encryption with key 2902 43.665

generation (DES-CBC)
Encryption without key 2657 40.838
generation (DES-CBC)

Transmission of 254 bytes 767 16.1

The “Encryption with key generation” figure indicates the time spent for the key gen-

eration together with the encryption of 248 bytes of data. Due to the lack of proper

cryptographic functionality on the card, as mentioned in the previous section, the key

generation stage includes only the computation of the digest of the key material and

its preparation for use by the encryption function.

The “Encryption without key generation” row of the table involves the same operations

as the previous figure except that no key generation takes place. The key used for

encryption is the key computed when the first APDU for the specified file has been

sent to the card. The difference between those two figures indicates that the actual key

preparation lasts roughly 230ms.

The “Transmission of 254 bytes” figure gives an indication as to the delay introduced

in the encryption/decryption process by the data transmission between the ICC-aware

103

Implementation issues of the proposed KRM for archived data

application and the card-resident component. This figure includes the delay introduced

by the use of OCF for the data transmission, and this gives an indication of OCF’s

performance as a middleware technology.

From the above figures, it is clear that with current smart card technology bulk data

encryption is a very expensive operation. A better approach would be to use the card

only for key management purposes, while data encryption can be done by the ICC-

aware application. The key can be passed to the ICC-aware application using secure

messaging, which is a method where cryptographic functions are used to protect and

authenticate the data passed to and from the card [36]. Use of secure messaging can

guarantee that the application that receives the key is the legitimate one and that this

key originates from a legitimate card and has not been modified during transmission.

Integrity checks on the ICC-aware application, [4], can also guarantee that the user will

not tamper with the software and that the key is not manipulated in an unacceptable

manner in an attempt to disable the key recovery functionality.

Alternatively, if the encryption is done by an ICC-aware application lacking integrity

checks, then random checks on the encrypted data can ensure that the key recovery

functionality is not bypassed by a rogue user.

5.6 Summary

In this chapter we considered the use of smart cards to implement one of the two

key recovery mechanisms for archived data proposed in the previous chapter. The

efficiency of the implementation was examined using a Java Card, in conjunction with

the OpenCard Framework, which is an ICC middleware technology that sits between an

ICC-aware application and the card reader. The outcome of this test implementation

is that bulk data encryption on the card is still a very expensive procedure. With

current technology it appears more sensible to use the card for key management, while

104

5.6 Summary

encryption takes place in the ICC-aware application.

The threats that arise from such an approach however, necessitate the introduction

of extra countermeasures for the protection of the key recovery functionality against

sophisticated rogue user attacks. Such countermeasures include secure messaging be-

tween the card and the ICC-aware application, and integrity checks on the ICC-aware

application.

As the technology advances, however, it is possible that bulk data encryption on a

smart card will become viable, especially if dedicated crypto co-processors are used for

this purpose.

105

Part III

KEY RECOVERY FOR
COMMUNICATED DATA

106

Chapter 6

Interoperability issues
surrounding key recovery
mechanisms

Contents

6.1 Key recovery enabled communications 108

6.2 Applicability of existing mechanisms 109

6.3 Interoperability . 110

6.4 Detailed description of the key recovery model 111

6.4.1 The key generation process 112
6.4.2 The key recovery information generation process 113

6.5 Factors that can affect interoperability 114

6.6 Interoperable mechanisms . 116

6.7 A scheme proposed by the Key Recovery Alliance 118

6.8 Remarks on Key Recovery Alliance’s CKRB format 120

6.8.1 KRF generation . 120
6.8.2 Interoperability issues . 121

6.9 Summary . 123

This chapter investigates the interoperability problems that arise from the use of dis-

similar key recovery mechanisms in encrypted communications. The components of a

key recovery mechanism that can cause interoperability problems are identified, as part

of the development of a general model for key recovery mechanisms

107

Interoperability issues surrounding key recovery mechanisms

6.1 Key recovery enabled communications

As previously mentioned, the issues surrounding key recovery for communicated data

are somewhat different from those for archived data. Typically, the keys used for tran-

sient communications need not be retained, as once the communication session has

finished such keys are no longer required and can be discarded. There is a need, how-

ever, for access to this key during its lifetime, i.e. during the communication session (or

afterwards if the company logs any communications), especially if this communication

takes place within certain environments, including companies and organisations. As

described in Chapter 3, the company might want to have access to encrypted com-

munications to check for malicious software or track leakage of sensitive information.

Therefore, there are certain situations where the use of a KRM is required. The require-

ments that are of particular relevance to a KRM specifically deployed for communicated

data are the following.

1. The KRM should give authorised entities the means to recover session keys used

to encrypt the exchanged data, as well as keys used to encrypt communications-

related data. This is vital for the company, as it may legitimately want to

keep track of certain outgoing communications, to use this information for non-

repudiation purposes in the case of a dispute, or even monitor incoming traffic

for malicious software or for intrusion detection purposes. Thus, individual keys

used by employees, or established during a communication session, must be re-

coverable. This includes keys generated by entities outside the company and used

to protect messages sent to the company.

2. The KRM should provide the ability for on-line and real-time decryption of the

intercepted communications. That is, if suspicious communications take place

between an employee and an outsider (or between two employees) then the man-

agement should be in position to monitor them. This includes the ability to verify

the validity of the KR information generated by the employee, or even decrypt

108

6.2 Applicability of existing mechanisms

the communicated data at the time they cross the company’s domain.

3. The KRM should be interoperable. That is, use of the mechanism should not

prohibit the establishment of a secure communication session.

Assuming that the first two requirements are universal for KRMs, our investigation

concentrates on the interoperability problems that are likely to arise from the use of

dissimilar KRMs in encrypted communications. This has also been one of the primary

concerns of the work carried out by the Key Recovery Alliance (see Section 1.1). Before

looking in depth in the interoperability problem, it is worth examining how the two

main categories of KRMs apply in encrypted communications.

6.2 Applicability of existing mechanisms

Most key escrow mechanisms designed for encrypted communications depend on a

common key management infrastructure. While this might not be a problem in a

corporate environment, i.e. for intranet communications, it is a major drawback when

using the mechanism for communications that span company domains. The main

reason is that there would be a need for the two communicating parties to deploy the

same, or at least compatible, key establishment protocols. Otherwise, the establishment

of secure communications is likely to be prevented.

Use of a key encapsulation mechanism, on the other hand, typically requires the addition

of data fields to the communicated data, to carry the KR information. A receiving party

in a different domain can simply modify its existing infrastructure so that additional

fields are discarded without being interpreted. This allows secure communication to

take place, and provides KR for the communicating party that wants it. However, such

a configuration allows rogue users to mount cut-and-paste attacks (see Section 3.4.2),

as the other party will not check the validity of the generated KR information.

109

Interoperability issues surrounding key recovery mechanisms

6.3 Interoperability

The word interoperability, as in [28], means the ability of entity A, which uses KRM

KRMA, to establish a KR-enabled cryptographic association with entity B, which uses

KRM KRMB. If A knows that B uses a different key recovery mechanism, then A

may not know whether B can meet the requirements of A’s KRM, and vice versa.

This uncertain situation may force the parties to avoid key recovery, with associated

increased risks especially when the entities operate in a business environment.

The interoperability issue arises from the variety of KRMs proposed by industry and

academia, in conjunction with the lack of a standard for KRMs. Note, however, that

even if KRMs were standardised there is no assurance that interoperability problems

would be eliminated. Standards tend to provide a variety of sound mechanisms but

not necessarily interoperable ones.

In the context of communications between two entities, A and B, we consider two possi-

ble scenarios where the use of a KRM might affect the establishment of a cryptographic

association.

1. Entities A and B make use of KRMs KRMA and KRMB respectively, which

might be identical, compatible or dissimilar mechanisms. In the case of identical

or compatible mechanisms the two entities are not expected to face any prob-

lems. Problems, however, might arise if the two entities make use of dissimilar

mechanisms. They are unlikely to be able to establish a secure communication

while making use of their respective KRMs as this would typically demand each

entity to fulfil the requirements of the peer’s KRM.

A
KRMA

B
KRMB

2. Entity A uses KRMA while B does not make use of KR. The issues that arise in

110

6.4 Detailed description of the key recovery model

this case are whether B will be able to meet KRMA’s requirements, and whether

A will be able to generate valid KR information. For the two entities to be able

to communicate, assuming that A manages to generate valid KR information,

B should at least be aware that A makes use of a KRM. This is important as

B should not discard incoming traffic because of unrecognised additional fields

(carrying the KR information and attached to the incoming data), which B can-

not interpret. Another problem that is likely to arise is whether A’s policy will

permit the acceptance of incoming traffic that does not make use of KR. If A

operates within a corporate environment, this requirement is likely to be crucial,

as the company might want to run checks for malicious software on incoming

data before they reach their destination.

A
KRMA

Non KR
system

Communicating entities who want KR functionality in their encrypted communication

sessions and who wish to avoid the above problems, must use interoperable KRMs.

Also, all deployed cryptographic mechanisms with embedded KR functionality should

be compatible with cryptographic products that do not make use of KR. These require-

ments will ensure that neither of the above scenarios will prevent the establishment of

a secure session.

6.4 Detailed description of the key recovery model

To identify those factors that can cause interoperability problems there is a need to

give a more detailed description of the KR model described in Section 2.2. In partic-

ular, we need to consider the two most important processes that take place during a

communication session, i.e. key generation and KR information generation.

111

Interoperability issues surrounding key recovery mechanisms

6.4.1 The key generation process

Prior to an encrypted communication session, data encryption keys must be established.

There are typically three options for this process.

1. Both entities contribute to the key generation process.

2. The key is generated by one of the communicating entities and either it is trans-

mitted to the peer by conventional means, or the peer is able to generate the

same key using some pre-agreed cryptographic values.

3. The session key is provided by a TTP, which in this case also serves the role of

the KRA, and the key is transmitted to the communicating party(s) via a secure

channel.

 KRF, ciphertext

plaintext
 data

 key K

encrypt

key
generation

 plaintext
 data

 key K

decrypt

key
generation

 KR

 material

Key Recovery
Process

 plaintext
 data

decrypt

key
generation

Entity A Entity B

key K

KRA
Authorised entity

Figure 6.1: A typical KRM in relation to the key generation process

The above alternatives are represented in Figure 6.1 by the dashed arrows (which de-

note optional communications) between the key generation components of the three

entities that might contribute to the establishment of the data encryption keys. If the

KRA generates the session key on behalf of the user, A’s key generation component

112

6.4 Detailed description of the key recovery model

will only serve the role of communicating with the KRA’s key generation component.

The key will be provided by the KRA to entity A and transferred to B by some secure

means.

6.4.2 The key recovery information generation process

Every KRM, at some stage in its operation, will generate ‘KR information’ (which as

described in Section 2.2 has the form of a KRF or KR material), as required for key

recovery. The process of generating the KR information, in a form interpretable by

the KRA’s Key Recovery Process, is performed by the KR information generation

component, depicted in Figure 6.2.

 KRF

 key
material

KR information
generation

Repository

 KRF

 key
 material

KR information
generation

 KR
 material

 key material

KR information
generation

Entity A Entity B

KRA

Figure 6.2: A typical KRM in relation to the KR information generation process

The dashed arrows to the KRF indicate that in some cases only one entity might

be required to generate the KRF, which is not restricted to conveying key material

– it can simply be data that uniquely identifies the session or the data encryption

keys. The KR material generated by the KRA can include data encryption keys or

key material that is not bound to a specific session (such as master keys, public key

agreement keys or private decryption keys). The interaction between the entity’s and

the KRA’s KR information generation might take place in every communication

session, occasionally, or only once, e.g. during the initialisation of the KRM.

113

Interoperability issues surrounding key recovery mechanisms

The key material in either A’s or B’s domain, which is input to the KR information

generation, represents either the output of key generation, i.e. the generated data

encryption key, or the input to this process (e.g. key components, master key, and/or

random values). The first case includes KRMs that make use of a key generated by

the underlying key establishment protocol, and as such can be independent of the key

establishment method. The second case includes mechanisms that are tightly bound

to the underlying key generation process, e.g. mechanisms where the KRA relies on a

particular key establishment process which it can reproduce and thereby recover keys.

Thus, depending on whether the key material is the output of, or the input to, the key

generation process, KRMs can be divided into those that are bound to this process

and those that are independent of it.

Unlike A’s and B’s KR information generation, which typically has to be executed

in every communication session, the corresponding process in the KRA’s domain might

have to be executed only during the initialisation phase of the scheme, or only a limited

number of times during the lifetime of the mechanism. In these latter cases the output

of KR information generation, i.e. the KR material, is likely to be used for the

recovery of multiple keys.

Finally, the Repository holds any additional information required by the KR informa-

tion generation process, such as A’s and B’s public key certificates.

6.5 Factors that can affect interoperability

Many KRMs, as previously mentioned, require the use of a specific mechanism for

the generation of the session keys, and as such they can be considered as part of

the key establishment protocol. This restriction is one of the factors that can cause

interoperability problems in the use of a KRM. A KRM with this property requires

compatibility of the communicating parties’ underlying key establishment protocols,

114

6.5 Factors that can affect interoperability

a requirement that is not always fulfilled. Key escrow mechanisms suffer more from

this problem, as most of them demand the use of a specific key establishment protocol.

By contrast, key encapsulation schemes appear to be more adaptable in this respect,

since they simply wrap the generated data encryption key under the KRC’s public

encryption key (and hence potentially work with any key establishment protocol).

Flexibility of key encapsulation mechanisms with respect to the underlying key estab-

lishment protocols does not necessarily imply that interoperability problems do not

arise. Interoperability very much depends on what additional requirements exist on

their use. For example, interoperability problems arise if the recipient of encrypted

data needs to validate KR information, or the receiver relies on the sender to generate

KR information. These needs, which are likely to arise from policy requirements, will

typically demand interaction between the two communicating parties, e.g. exchanging

cryptographic values during the generation or verification of KR information. If either

party’s mechanism cannot cope with the demands of its peer, interoperability prob-

lems are likely to arise. This problem is not restricted to the use of key encapsulation

schemes. In the case of key escrow mechanisms, a requirement for participation of both

entities in the generation of KR information will have the same effect. We can therefore

divide KRMs into two classes, depending on their communications requirements during

the generation and verification of KR information.

1. KRMs where each entity generates KR information merely for its own needs with-

out the peer’s assistance. If neither party requires verification of the peer’s KR

information prior to decryption, interoperability issues become of minor impor-

tance and the two parties will be able to make use of their respective KRMs.

2. KRMs that require interaction between the two entities, which might be needed

in the following cases.

• Exchange of cryptographic material is required for KR information genera-

tion.

115

Interoperability issues surrounding key recovery mechanisms

• The sender generates KR information both for his own and his peer’s needs.

This is particularly relevant to single-message communications, such as email

or file transfer.

• Either party wishes, e.g. for policy reasons, to verify the KR information

generated by the peer.

In situations like these, interoperability is an issue that has to be taken into

account. Otherwise, it is likely to result in a failure to establish secure commu-

nications.

In summary, the two factors that are likely to affect the interoperability of KRMs in

encrypted communication sessions are:

1. the KRMs’ dependence on the underlying key establishment protocol, and

2. the interaction requirements between the communicating parties for the genera-

tion and/or verification of KR information.

6.6 Interoperable mechanisms

Based on the above analysis, a mechanism that is neither dependent on the underlying

key establishment protocol, nor needs any interaction with the peer for generation or

verification of KR information, will always be interoperable with a KRM with the

same requirements. The two mechanisms can work independently, and the two parties

can make use of them regardless of the underlying key establishment protocol. A key

encapsulation scheme where each entity encrypts the key generated by the underlying

key establishment protocol using the agent’s public key has this property. We assume,

of course, that neither entity requires its peer to verify the key recovery information,

and that the transmission of the KRF will not cause any problems to the recipient.

116

6.6 Interoperable mechanisms

A mechanism with these properties can also inter-operate with one that is dependent

on the underlying key establishment protocol, as long as the mechanism does not re-

quire peer interaction for KR information generation or verification. As an example,

consider the scenario where entity A makes use of a key escrow mechanism, where the

session key is generated using an escrowed master key and some additional information

made available to A’s agent, and the remote entity B uses a key encapsulation mech-

anism, while the generated key is transferred to B via a secure channel. As B has no

requirements for the key establishment process, and there is no interaction required to

generate the KR information, interoperability problems are not likely to arise, assuming

that verification of KR information by B is not required.

Yet, if B used the same key escrow mechanism there would be a conflict and the two

mechanisms could not inter-operate as the receiver would have no means to escrow

the generated key (which in this case is provided by the sender). The problem here is

that both KRMs demand the use of specific key establishment protocols, and therefore

the requirement for compatibility of the key establishment protocols becomes crucial

for the interoperability of the KRMs (a requirement that in this case is not fulfilled).

Thus, there are cases where even the same mechanism cannot be used simultaneously

by two parties. Hence, if both parties mandate the use of such a KRM then it will

potentially act as a barrier to secure communications.

Interoperability problems are likely to arise in the following cases (we assume that

the communicating parties can deal with all possible underlying key establishment

protocols):

1. Both KRMs demand the use of specific key establishment mechanisms regardless

of requirements for interaction. In this case, the interoperability of the KRMs

depends on the compatibility of the respective underlying key establishment pro-

tocols.

2. At least one KRM demands peer participation in the generation and/or verifi-

117

Interoperability issues surrounding key recovery mechanisms

cation of KR information. For instance, if policy restrictions demand that the

KR information for the receiver’s needs should be generated by the sender, it is

apparent that the sender must be able to cope with the receiver’s mechanism.

Otherwise, it is likely that establishment of secure communications will fail.

Given these scenarios, the chances of interoperability problems arising are considerable

and a solution has to be found.

6.7 A scheme proposed by the Key Recovery Alliance

To overcome the interoperability problems, the Key Recovery Alliance has proposed a

mechanism [28], which, when adopted, enables the establishment of secure communica-

tions between dissimilar KRMs. The mechanism introduces the common key recovery

block (CKRB), that “serves as a container for a single KR mechanism–specific KRF”.

According to [28] the CKRB achieves two main objectives; it “provides a means to

identify the KRM used to construct the KRF”, and “provides a range of validation

techniques, including those that allow validation of the KR information in generic, KR

mechanism–independent ways”. (Note that, in line with [28], throughout we simply

refer to KRB instead of CKRB)

Brief descriptions of the KRB and the KRB validation techniques are given below.

For full details and explanations of the mechanism, see [28]. The KRB consists of the

following fields:

• KRB Version Number: Set to 1 for the version of the common KRB format

specified in [28].

• KRB Length: The number of words in the entire KRB.

• Object Identifier (OID) for KRF: The OID for the KR mechanism used to

generate the KRF, as registered with a central authority.

118

6.7 A scheme proposed by the Key Recovery Alliance

• Reserved: A 16-bit field reserved for future use.

• KRF Length: Number of words in the KRF.

• Key Recovery Field: The proprietary KRF whose format and contents are

indicated by the OID.

• Validation Field Type: Identifies one of the following eight techniques used to

compute the Validation Field.

1. NONE (Type 0): No Validation Field Value (VFV) is calculated; KRF

validation is unnecessary at the decrypting side.

2. SEMANTIC (Type 1): No VFV is calculated; the KRF should be vali-

dated semantically using the mechanism-specific algorithm.

3. PROTOCOL (Type 2): No VFV is calculated; the KRB need not be

checked for validity since the carrier protocol provides integrity protection

for the KRB.

4. CONF-HMAC-SHA–1-96 (Type 3): The VFV is a MAC of the KRB

using HMAC [47] and SHA-1 [52] and the confidentiality key associated with

the KRF.

5. CONF-HMAC-MD5-96 (Type 4): The VFV is a MAC of the KRB

using HMAC [47] and MD5 [51] and the confidentiality key associated with

the KRF.

6. INTEG-HMAC-SHA–1-96 (Type 5): The VFV is a MAC of the KRB

using HMAC and SHA-1 and the integrity key associated with the KRF.

7. INTEG-HMAC-MD5-96 (Type 6): The VFV is a MAC of the KRB

using HMAC and MD5 and the integrity key associated with the KRF.

8. SIGNATURE–PKCS7 (Type 7): The VFV is a PKCS7 signature block

that carries a digital signature, which is calculated on the hash of the KRB.

• Validation Field Length: Number of words in the VFV.

119

Interoperability issues surrounding key recovery mechanisms

• Validation Field Value: It is calculated over the entire KRB. If some of the

KRB fields are unknown at the time the Validation Field Value is calculated,

then:

– the KRB Length field is set to zero,

– the Validation Field Length is set to zero, and

– the Validation Field Value is omitted (it has a length of zero).

The length of the Validation Field Value is variable, but it is padded with zeros

to be an integral number of 32-bit words.

6.8 Remarks on Key Recovery Alliance’s CKRB format

As mentioned above, the mechanism proposed by the Key Recovery Alliance is intended

to promote interoperability between dissimilar mechanisms. However, two problems

can be identified with this mechanism. The first relates to difficulties arising from the

generation of proprietary KRFs, while the other concerns the fact that, in many cases,

the mechanism fails to provide interoperability.

6.8.1 KRF generation

The paper describing the Key Recovery Alliance mechanism, [28], makes the implicit

assumption that a KRF has already been generated and therefore is always available

for KRB generation. However, this is true only in a limited number of combinations

of the various KR schemes. In the case of non-interoperable mechanisms, the sender

might not be able to generate a KRF because the receiver does not fulfill the require-

ments of the sender’s KRM. A simple example of this problem is the case where KRF

generation requires the encryption of the secret session key (data encryption key) using

the receiver’s public key, which is escrowed with the receiver’s escrow agent. If the

receiver does not have a public key meeting the requirements of the sender’s KRM, e.g.

120

6.8 Remarks on Key Recovery Alliance’s CKRB format

because he is not using a key escrow mechanism, then the sender cannot generate a

KRF.

6.8.2 Interoperability issues

Among the Validation Field Types proposed in [28], there are five (types 2–6) which

provide validation of the KRB. According to [28], using the generic validation mecha-

nisms supported by the KRB, entity B would be able to validate the proprietary KRF

sent by A and vice versa, “even though B did not understand how to parse the KRF”.

However, the placement of the KRF within the KRB does not enable this validation.

The receiving entity still has to parse the KRF to check its validity. Moreover, the

integrity and/or authenticity of the KRB, and therefore of the content of the KRB, i.e.

the KRF, does not guarantee the KRF’s validity.

As a consequence, the validation techniques proposed are vulnerable to a single rogue

user scenario. Consider the case where two parties communicate using dissimilar (non-

interoperable) KRMs. Sender A generates a KRF for receiver B, who is not able to

verify the proprietary KRF using the method required by A’s KRM because he is using

a dissimilar KRM. Assuming further that A is a rogue user, then the following scenario

might arise.

Rogue user A generates an invalid KRF. However, the VFV is generated using the

valid session key (validation field types 3-6), which the receiver knows in advance. A

genuine receiver B will validate correctly the KRB, as this was correctly generated by

A. However, the validation technique and therefore the validation of the KR informa-

tion will fail because the KRF is not genuine, and B has no means to verify it (we

assume that the two mechanisms are not compatible and therefore B does not know

the semantic details of A’s KRM). Thus B will not be compliant with his policy, which

requires validation of the KRF prior to decryption of the encrypted data.

121

Interoperability issues surrounding key recovery mechanisms

Moreover, the agent with which A is associated will not be able to recover the key.

However, the KRB was accepted as valid by B. This problem arises because the KRB

validation mechanism only enables the recipient to verify the integrity and/or origin

of the KRF. The KRB scheme is not a “mechanism for verifying the validation of the

enclosed KRF” [28]. There is no way to recover the key from the KRB using only

the information provided by the KRB itself (excluding the KRF because this can be

manipulated only by the users that deploy the same KRM).

In the case of Validation Field Type 7, the same problem holds, as the VFV is a digital

signature on the KRB which can carry a nonvalid KRF. The only Validation Field types

that do not suffer from this problem are types 0 and 1 which demand “no validation”

and “mechanism specific validation” respectively.

Therefore, the solution proposed here does not achieve one of the two major objectives

mentioned above, which is to provide “the ability to validate the KR information in

a way that does not require knowledge of the exact semantic properties of the KRF”.

The solution fails to achieve its objective in situations where it is most desirable, i.e.

in environments where there is a lack of trust.

The KRMs where the KRF is equal to the key exchange block do not suffer from the

above problem, because in such a case the KRF has to be processed to obtain the

decryption key. However, these mechanisms still face the problem where the sender

might not be able to generate a KRF and, if one is generated, the receiving end might

not be able to parse it and get the session key. The KRB proposed does not offer

an alternative to this situation, since the receiver cannot obtain the session key using

interoperable components.

A different approach to the solution of the interoperability problem is described in the

next chapter of this thesis. This enables some of the difficulties described above to be

avoided.

122

6.9 Summary

6.9 Summary

The introduction of a large number of KRMs and their use in encrypted communi-

cations is likely to result in interoperability problems between key recovery enabled

cryptographic products. In this chapter, a detailed key recovery model has been de-

scribed and the factors that can cause interoperability problems have been identified.

A study of the model proposed by the Key Recovery Alliance to solve the interoperabil-

ity problem has revealed that this scheme does not achieve its major objective, which

is to provide interoperability between dissimilar mechanisms. This motivates the study

of alternative schemes, the subject of the next chapter in this thesis.

123

Chapter 7

A protocol for negotiating key
recovery mechanisms

Contents

7.1 High-level description of the KRM negotiation protocol . 125

7.1.1 The proposed scheme . 125
7.1.2 Exchanged messages . 127

7.2 Avoiding modification of the Hello messages by an adversary129

7.3 Properties and discussion . 131

7.4 Summary . 132

In this chapter, a protocol is proposed which allows two communicating entities to

negotiate the key recovery mechanism(s) to be used, with the ultimate goal of providing

the parties the means to agree either on a mutually acceptable KRM or on different,

yet interoperable, mechanisms of their choice.

124

7.1 High-level description of the KRM negotiation protocol

7.1 High-level description of the KRM negotiation proto-
col

We now describe a protocol designed to enable two communicating parties to negotiate

the KRM(s) to be used in an encrypted communication session. Its main objective

is to deal with situations where the two parties might otherwise wish to make use of

different, non-interoperable, KRMs.

A similar protocol, specifically designed to allow the negotiation of key recovery mecha-

nisms using the Internet Security Association and Key Management Protocol (ISAKMP),

is described in [3]. This protocol, however, uses the CKRB (described in the previ-

ous chapter) for the transmission of key recovery information, with which problems

have been identified (see Section 6.8). A more general protocol is described here that

considers the differing requirements of various mechanisms and potential additional

requirements for the exchange of cryptographic certificates. Moreover, the proposed

protocol can be used to provide key recovery functionality at the application layer, in

contrast to the Key Recovery Alliance scheme which targets the IP layer.

Note that in the protocol description we refer to the two parties as ‘Client’ and ‘Server’,

as opposed to our previous labels of A and B; this is so as to follow the client-server

model terminology as closely as possible. The approach is similar to the negotiation

of cryptographic parameters and establishment of a secure communication session in

TLS [19].

7.1.1 The proposed scheme

The protocol consists of the following steps (messages in Small Caps are optional;

more detailed descriptions of the exchanged messages are given in the next section).

• The client initiates the protocol by sending the ClientHello message to the server.

125

A protocol for negotiating key recovery mechanisms

Client ClientHello−−−−−−−−−−−−−−→ Server

• The server responds with his Hello message, the ServerHello.

Client ServerHello←−−−−−−−−−−−−−− Server

With the ClientHello and ServerHello, the two entities exchange the parameters

necessary for KRM negotiation. After the ServerHello, the server sends the Cer-

tificate message to the client (if required by the selected KRM(s)) containing the

appropriate certificates

Client Certificate←−−−−−−−−−−−−−− Server

and requests the corresponding client’s certificates with the CertificateRequest

message.

Client CertificateRequest←−−−−−−−−−−−−−−−−−−−− Server

Following that, the server sends the ServerHelloDone message, which indicates

that the server has completed his Hello messages.

Client ServerHelloDone←−−−−−−−−−−−−−−−−− Server

• The client responds with the optional Certificate message, which contains the

certificates specified in the CertificateRequest,

Client Certificate−−−−−−−−−−−−−−→ Server

the optional KRParameters message which contains any additional information

required by the selected KRMs,

Client KRParameters−−−−−−−−−−−−−−−→ Server

and finally the Finished message, which indicates that the client has completed

the negotiation of the mechanisms.

126

7.1 High-level description of the KRM negotiation protocol

Client Finished−−−−−−−−−−−→ Server

• The server verifies the received Finished message, and if the check succeeds it

responds with a similar Finished message.

Client Finished←−−−−−−−−−−− Server

On receipt of this message the client verifies it and, if the verification succeeds, the

negotiation protocol terminates successfully.

7.1.2 Exchanged messages

In the following sections the exchanged messages are described in detail.

7.1.2.1 Client Hello

The client, as previously mentioned, initiates the protocol by sending the first message

of the negotiation protocol (ClientHello). The ClientHello contains a list of KRMs

(from a complete list of mechanisms the protocol supports) that the client is able and

willing to use, in decreasing order of preference. A default mechanism that all parties

are assumed to be able to cope with, and which can serve as a worst case solution, can

be included in the list.

With the ClientHello, the client must also inform the server whether he wants to resume

a previous session, by including the appropriate identifier in the corresponding field. If

this field is left empty, a new session id should be assigned by the server.

127

A protocol for negotiating key recovery mechanisms

7.1.2.2 Server Hello

If the client does not request the resumption of a previous session, or if the server wants

to initiate a new one, the server must assign a new session id, which will be included in

the corresponding field and sent with the ServerHello message. Otherwise, the server

will respond with the session id included in the ClientHello and proceed with the Finish

message.

If the server initiates a new session, he sends the selection of the KRM that he wants

the client to use, and the KRM that the server will use. The two mechanisms, if not

identical, have to be interoperable. For this purpose, a list of all possible matches

of interoperable mechanisms has to be kept by both communicating entities. If an

acceptable match is not found in the list, the server can either terminate the negotiation

protocol unsuccessfully, or choose the default mechanism if this was included in the list

received from the client. Otherwise the server can drop the session.

If the selection of the mechanism for both entities is a KRM that can itself handle the

exchange of certificates and related KR parameters, the two parties can terminate the

negotiation protocol and leave this KRM to take charge. To achieve this, the server

will send a Finish message (after the ServerHello) to indicate that control is now to be

passed to the negotiated KRM(s).

Finally, within the ServerHello, the server also includes the KRParameters field, which

carries any additional information that the client has to possess to be able to deal with

the server’s KRM.

7.1.2.3 Certificate and KRM related information exchange

Depending on the selection of the KRM, and if the server has not sent a Finish mes-

sage, the server proceeds with the Certificate message. This message is optional and

128

7.2 Avoiding modification of the Hello messages by an adversary

contains the required certificates (for the chosen mechanisms) for the generation and/or

verification of KR information. Following that, and depending on the requirements of

the chosen KRM(s), the server can also send a request for the corresponding client’s

certificates using the CertificateRequest. The purpose of the CertificateRequest is to

give the client a list of specific types of certificates needed by the server, and a list of

certification authorities trusted by the server. After the CertificateRequest, the server

sends the ServerHelloDone message, which indicates that the server has completed his

Hello messages.

On receipt of the ServerHelloDone, if the client has received a CertificateRequest he

responds with his Certificate message, which contains the requested certificates, assum-

ing that he is in possession of the appropriate ones. Further, the client sends in the

optional KRParameters message any additional information required by the selected

for the client KRM. Note that the corresponding KRParameters for the server’s KRM

is sent as part of the ServerHello message.

7.1.2.4 Finish messages

If the client is satisfied with the current selection of mechanisms he sends the Finish

message, which indicates that the client is willing to proceed with the current selection

of mechanisms. Subsequently, the client waits for the corresponding server’s Finish

message, whose receipt indicates successful execution of the protocol.

7.2 Avoiding modification of the Hello messages by an
adversary

After the execution of the above protocol, the two entities are not sure whether any

of the exchanged messages have been altered during transmission by an adversary, as

the specified protocol includes no proper integrity checks. Moreover, neither of the

129

A protocol for negotiating key recovery mechanisms

communicating parties authenticates the other. Assuming, however, that the KRMs

that can be negotiated are sound, the protocol does not introduce any vulnerabilities

to the secrecy of the session key. The only attack that an adversary can mount against

the protocol is to alter the Hello messages exchanged between the two entities in an

attempt to downgrade the negotiated KRM(s) to one(s) that the attacker regards as

weaker. Such an attack will only force the two entities to make use of less favourable

mechanisms.

To avoid such problems, we propose enhancing the previously proposed protocol. These

enhancements provide the following security services.

• Integrity of the exchanged messages.

• Assurance that the Hello messages exchanged are not a replay from a previous

session.

Additionally, the mechanism provides mutual authentication of the communicating par-

ties. Note, however, that mutual authentication is not a requirement for the negotiation

protocol. It is a property derived from the use of digital signatures. The modifications

proposed are as follows.

• The client generates a random value randC, which he sends to the server with

the ClientHello message.

• The server generates a random value randS, which he sends to the client with

the ServerHello message.

• The client’s Finish message becomes

SC(ClientHello ‖ ServerHello ‖ randC ‖ randS)

and the server’s Finish message becomes

130

7.3 Properties and discussion

SS(ServerHello ‖ ClientHello ‖ randS ‖ randC)

where SU (M) is U ’s signature on data M and “‖” denotes concatenation.

The rest of the messages remain as previously defined. On receipt of the respective

Finish messages the two entities check the signatures and if either of the two verification

checks fails the protocol terminates unsuccessfully (this indicates that at least one of the

ClientHello, ServerHello might have been altered during transmission). The modified

protocol deals with the threat of modification of the exchanged Hello messages by an

adversary. The generated random values prevent against replay attacks, i.e. where

an adversary uses old exchanged messages to subvert the protocol. The cost of this

countermeasure, however, is the introduction of signatures, which have to be supported

by an appropriate public key infrastructure.

In a practical implementation of the protocol the two variants can actually co-exist and

the two parties will be able to select the mode to be used. More specifically, an extra

field in the Hello messages can be used to indicate whether the two entities possess

the appropriate certificates and therefore are willing to use the second variant of the

protocol.

7.3 Properties and discussion

The proposed protocol offers the communicating parties a means of negotiating the

KRMs to be used for their encrypted communications. Given that this negotiation

will affect the selection of the key establishment protocol, execution of the proposed

protocol must take place before the establishment of any session keys. It might also be

the case that the two entities are obliged to use a specific key establishment protocol.

This will simply restrict the number of mechanisms that the two entities will be able

to negotiate.

131

A protocol for negotiating key recovery mechanisms

The negotiating entities will be able to choose different KRMs as long as there are no

conflicts between the underlying key establishment mechanisms. Therefore, the choice

of the key recovery mechanism(s) will only be affected by the compatibility of the

underlying key establishment protocols. If these are compatible, the two parties will be

able to use the negotiated KRMs, overcoming efficiently any interoperability problems

that the two parties would have otherwise faced.

Finally, note that in order to achieve the degree of agreement needed, the KRM nego-

tiation process and the KRMs to be negotiated need to be subject of a standardisation

process of some type (e.g. via the IETF). This standard will need to include agreed

identifiers for a large set of KRMs.

7.4 Summary

A new KRM negotiation protocol has been described which follows a different approach

to the scheme proposed by the Key Recovery Alliance. The new protocol gives the

communicating parties the ability to negotiate the KRM(s) to be used. The protocol

allows the communicating parties to use different, yet interoperable, KRMs.

132

Part IV

AVOIDING UNFAIR KEY
RECOVERY

133

Chapter 8

A fair certification protocol

Contents

8.1 Fair key agreement . 135

8.2 The commitments solution . 136

8.3 Key agreement using public key cryptography 138

8.4 A fair key generation and certification protocol 140

8.5 Summary . 143

In this chapter a ‘fair’ key generation and certification protocol for Diffie-Hellman keys

is proposed, which is intended for use in cases where neither user nor certification

authority are trusted to choose the user’s key on their own. This protocol also ensures

that key agreement mechanism 1 in ISO/IEC 11770-3 [38] provides ‘fair key agreement’

[63] and prevents unfair key recovery by either of the communicating parties.

134

8.1 Fair key agreement

8.1 Fair key agreement

In the multi-part international standard ISO/IEC 11770, a number of key establishment

techniques are described. Key establishment, as defined in ISO/IEC 11770-3 [38], is

“the process of making available a shared secret key to one or more entities”, and it can

be subdivided into key transport and key agreement. Key agreement is “the process

of establishing a shared secret key between entities in such a way that neither of them

can predetermine the value of that key” [38]. This definition implies that the shared

secret is derived as a function of the information contributed by, or associated with, all

the communicating parties such that none of them can predetermine the value of the

key [59].

Key agreement mechanisms are used in environments where the communicating parties,

who may not trust one another, wish to be sure that a session key used to protect

communications between them is derived so that neither of the communicating parties

can predetermine some number of bits in the session key or all of its value. As briefly

discussed in [63], the mechanisms described in ISO/IEC 11770-3 [38], clause 6, and

11770-2 [37], clauses 5.5 and 5.6, do not provide ‘fair key agreement’, as they do not

prevent one of the communicating entities from choosing part of the shared secret key.

The basic idea behind most key agreement protocols, and certainly all the protocols

described in ISO/IEC 11770, is that both parties provide a ‘key component’, and the

two components are combined in some way to give the key. The method used to

combine the components is typically a one-way function. As mentioned in ISO/IEC

11770-3 [38], certain checks, depending on the particular key agreement mechanism

and/or cryptographic functions used, should also be enforced to prevent the use of

weak values (key components).

However, in the mechanisms in the above standards, neither the use of a one-way

‘combiner’ function nor these checks can prevent one entity gaining an advantage over

135

A fair certification protocol

the other. Suppose, as is the case with most such schemes, one entity (A say) sends

its component to the other entity (B say) before B sends its component back to A.

There is then nothing to stop B from working on the key component received from A

prior to choosing its own component, allowing B to choose part of the shared secret

key. Specifically, “if B is prepared to perform approximately 2s computations of the

one-way function used to combine key components prior to sending a response to A,

then B will be able to choose s bits of the shared secret key” [63]. The computation of

the combinations has to be performed within the limited space of time that B has prior

to sending a response back to A. Yet, if a fast hash function, such as SHA-1, is used

to combine components, B may be able to test as many as 104 − 105 key components

in a second or so, allowing him to choose as many as 16 bits of the shared secret key.

Before proceeding, we consider why allowing one of the two entities to choose a few bits

of the shared key might be a threat. Suppose entity B has agreed to allow party C to

have access to his keys for key recovery purposes, but B does not wish to let A know.

Moreover, although this could be achieved by having B pass a copy of every key to C,

this is potentially costly in communications and storage, and B and C wish to find an

alternative. Suppose that the keys agreed between A and B are 64 bits long. Then,

using essentially the same technique as described in [63], B may be in a position to

choose every key shared with A such that the last 16 bits are a fixed function (known

only by B and C) of the first 48 bits. When C wishes to recover a key, C needs only

test at most 248 possibilities for the key (e.g. using a known plaintext/ciphertext pair).

8.2 The commitments solution

To avoid the above problem, the use of commitments is proposed in [63]. The notion of

commitments in cryptographic protocols is a well-established one, particularly in the

context of zero-knowledge protocols (see, for example, [59]). By a commitment here we

mean the disclosure of a value by an entity which binds that entity to a related value,

136

8.2 The commitments solution

without revealing that related value (in some contexts the disclosed value is referred

to as a witness). The main idea behind using commitments to make key agreement

schemes fair is to ensure that both parties choose their own key component before seeing

the other party’s component. This is achieved by requiring one entity, say B, to hash

its key component using a one-way hash function, and to send the resulting hash-code

as the commitment to the other entity, say A, before A sends its own key component

to B. Assuming that the key component contains sufficiently many bits, A cannot

calculate B’s key component before choosing its own. Therefore, A has to generate

and send its own key component without seeing the exact value of B’s component.

After that, B can pass its key component back to A, who hashes the value and checks

whether the newly computed hash-value matches the previously provided commitment.

Most of the standardised key agreement mechanisms described in ISO/IEC 11770-2

[37] and 11770-3 [38] can easily be adapted, using commitments, to provide ‘fair key

agreement’. However, of the seven key agreement methods specified in ISO/IEC 11770-

3, the use of the commitment-based solution only applies to four of them; it does not

work for the mechanisms involving use of pre-established key agreement key pairs (key

agreement mechanisms 1–3 in ISO/IEC 11770-3). The main reason is that if one of

the communicating parties has a public key agreement key certified by a certification

authority (CA), the other party can work on it for a long period of time before choosing

its key component.

In this chapter, we consider key agreement mechanism 1 in ISO/IEC 11770-3 and

provide a solution to the ‘fair key agreement’ problem for this scheme. The proposed

solution could more generally serve as a ‘fair certification protocol’ for Diffie-Hellman

keys where the user does not choose his private key, but neither is the private key

released to the CA. The mechanism could be deployed in environments where neither

the CA nor the user trust each other to choose the user’s key.

137

A fair certification protocol

8.3 Key agreement using public key cryptography

Before describing the new method for ‘fair key agreement’, we consider the existing

mechanisms in more detail.

In the key agreement mechanisms described in ISO/IEC 11770-3 [38], both commu-

nicating parties contribute to the shared secret key, which is computed as a one-way

function of the key components that the parties have chosen. The requirements for

use of the mechanisms are given in ISO/IEC 11770-3 clauses 5 and 6. Most impor-

tantly, entities A and B using one of these protocols must have agreed on a function

F : H ×G → G, with the following properties.

1. F satisfies the commutativity condition F (hA, F (hB, g)) = F (hB, F (hA, g)).

2. It is computationally intractable to find F (h1, F (h2, g)) from F (h1, g), F (h2, g)

and g. This implies that F (·, g) is a one-way function.

Also A and B must share an element g in G, which may be publicly known, and A and

B must be able to efficiently compute values F (h, g), and must also be able to generate

random elements in H. One ‘obvious’ candidate for F is to choose a large prime p, put

G = Zp, put H = Z∗p , let g be an element of large prime multiplicative order modulo

p, and define

F (h, g) = gh mod p.

The seven key agreement mechanisms specified in ISO/IEC 11770-3 [38] can be divided

into three classes.

• In one scheme (mechanism 1) the shared secret key is generated as a function of

the two parties’ pre-established key agreement keys. According to mechanism 1

138

8.3 Key agreement using public key cryptography

two entities A and B non-interactively establish a shared secret key using their

key agreement key pairs. Use of the mechanism requires each entity X to have

a private key agreement key hX in H and a public key agreement key pX =

F (hX , g), and both entities to have an authenticated copy of each other’s public

key agreement key [38, clause 6.1]. The mechanism involves the following steps:

1. A computes, using its own private key agreement key hA and B’s public key

agreement key pB, the shared secret key as KAB = F (hA, pB).

2. B computes, using its own private key agreement key hB and A’s public key

agreement key pA, the shared secret key as KAB = F (hB, pA).

• In two schemes (mechanisms 2 and 3) the shared secret key is generated as a

function of one party’s pre-established key agreement key, and the other party’s

dynamically generated component.

• In the other four schemes (mechanisms 4–7) the shared secret key is computed

as function of two dynamically generated components, one for each party.

As already discussed, the ‘commitments’ solution only applies to the third class of

mechanisms. The fairness problem arises in the first class of mechanisms because one

party may select his/her key agreement key pair so as to choose part of the key shared

with another specified entity. Suppose entity A generates and publishes his public key

agreement key. When B chooses his key agreement key he can ensure that the key

established between A and B has certain properties. Of course, B has no control over

keys established between himself and other entities, so the problem is restricted in

scope. Nevertheless, B potentially has a long time in which to work on A’s key before

choosing his own, and in this respect the problem is worse than for mechanisms 4–7.

We now propose a solution to this problem for the first class of mechanisms, based on

the idea of preventing a user choosing his/her key pair, whilst preserving the secrecy

of the user’s private key.

Finally note that we do not have a solution to the problem for the second class of

139

A fair certification protocol

mechanisms. This case appears particularly intractable, and if the lack of ‘fairness’ is

a major problem then a mechanism from one of the other two classes should be used.

8.4 A fair key generation and certification protocol

We present a protocol between an entity and a CA which provides the entity with a

private key and a certified public key, where the user cannot choose his/her private key

but also no other entity (including the CA) knows the private key. Use of the proposed

certification and key derivation mechanism requires the user and CA to share a secure

channel and have agreed a modulus (a large prime number p), an element g of large

prime multiplicative order modulo p, and a collision-resistant hash-function h. The

values p, g and h would typically be shared by a large domain of users, and could be

distributed as part of an implementation of the scheme. Alternatively, the agreement

of these values could be done using one of the mechanisms proposed in [59]. Note also

that the secure channel might simply be a physical link between a user PC and the

CA’s registration system, set up at the time the user physically registers with the CA.

The proposed protocol consists of the following steps.

• User U chooses a private key component x, computes h(gx), and sends it to the

CA.

U
h(gx)−−−−−−−→ CA (8.1)

• The CA chooses a second private key component y, and also computes y−1 mod

q (where q is the multiplicative order of g modulo p). The CA sends y to the

User.

U
y←−−−− CA (8.2)

140

8.4 A fair key generation and certification protocol

• U computes its private key as xy mod q and sends its public key gxy mod p to

the CA.

U
gxy

−−−−−−→ CA (8.3)

• The CA computes h((gxy)y−1
mod p) and checks that the result equals the value

sent by U in the first message. If the check is successful the CA accepts gxy mod p

as the public key of U , certifies it, and returns the certificate to the user.

U
CertCA(gxy)←−−−−−−−−−−−−− CA (8.4)

Theorem 1 The above protocol has the following properties, assuming that the dis-

crete logarithm problem is intractable, that g has multiplicative order q modulo p where

q is a large prime, that the CA chooses y uniformly at random from the set of possible

values, and that the hash-function h is one-way.

1. The user cannot choose his private key.

2. The CA does not know the value of the user’s private key.

Proof

1. The user chooses x before y is chosen, and because of the one-way property of h

cannot change x once it has been chosen. As y ranges over the full set of possible

values, so does (xy mod q), and hence xy is equally likely to be any of the set of

possible values.

2. Suppose that, given h(gx), y and gxy mod p, it is feasible to find xy (for any x

and y), i.e. suppose claim (2) is not true. This is equivalent to saying that given

gz mod p and a value y such that z = xy for some (unknown) x, then it is feasible

to find z. (Note that h(gx) is of no value since it can be computed from y and

141

A fair certification protocol

gxy mod p). However, the information regarding the value y is of no value at all,

since given any value y∗, there will exist a value x∗ such that x∗y∗ = z. Hence

the assumption is equivalent to saying that given gz mod p then it is feasible to

find z, which contradicts our assumption that the discrete logarithm problem is

hard [59].

Use of this protocol for the establishment and certification of all the users’ key agree-

ment keys ensures that a user cannot influence a key established with another user.

In other words, the protocol prevents the user choosing his key agreement key to have

certain specific properties [63]. Thus, in particular, B will not be able to choose part

of the shared secret key established between A and himself, even if B has a long time

to work on A’s public key agreement key. However, although the user cannot control

the generation of his key agreement key, the user’s privacy is protected as neither the

CA nor any other entity get knowledge of the generated private key agreement key.

It is also clear that, through the use of ‘commitments’, the CA cannot choose part

of the final key. This mechanism, as mentioned earlier, could more generally serve

as a fair certification protocol for Diffie-Hellman keys in cases where neither user nor

CA is trusted to choose the user’s private key ‘on their own’. As long as one party’s

contribution is random, the resulting key will be ‘good’.

The value of g will typically be fixed for a particular application. If the multiplicative

order of g (q say, where q | (p− 1)) is non-prime, as would be the case if g were chosen

to be primitive, then the user can have an influence on the value of their private key,

albeit at the cost of choosing a rather ‘weak’ key. To see how this might arise, suppose

r is a small prime dividing q. The user now chooses x so that gx has order r. This

is easily achieved by choosing a random value z (0 < z < r) and putting x = zq/r.

Whatever the CA chooses as the value y, the final private key will be one of a set of r

possible values. To avoid this pathological case it is necessary to choose q to be prime,

and also for the CA to check that gx 6= 1.

142

8.5 Summary

8.5 Summary

In this chapter we looked at key recovery from an entirely different perspective, which is

the prevention of unfair key recovery. A protocol has been proposed that prevents either

of two communicating parties using one of the key agreement mechanisms described in

ISO/IEC 11770-3 [38] from choosing the generated key, while enabling a covert channel

for key recovery by a third party. The protocol provides fair key agreement for this

standardised mechanism, for which the commitments based solution proposed in [63]

does not apply.

The new protocol can also serve as a certification protocol for Diffie-Hellman keys. The

protocol enables a user to be provided with a certificate for a Diffie-Hellman public key

such that the user does not choose his/her private key, but neither is this private key

known to anyone other than the user.

143

Part V

LAWFUL INTERCEPTION OF
ENCRYPTED

TELECOMMUNICATIONS

144

Chapter 9

Key recovery in ASPeCT
authentication and initialisation
of payment protocol

Contents

9.1 Lawful interception of telecommunications in UMTS 146

9.2 The ASPeCT authentication and initialisation of payment
protocol . 147

9.2.1 Preliminaries . 147
9.2.2 Authentication without an on-line TTP (B–Variant) 148
9.2.3 Authentication with an on-line TTP (C–Variant) 149

9.3 Requirements and goals for key recovery in the ASPeCT
protocol . 150

9.4 Giving a key recovery capability to the B-variant 151

9.5 C-variant protocol with key recovery capability 153

9.6 Properties and discussion . 155

9.7 Summary . 155

In this chapter certain modifications to the ASPeCT (Advanced Security for Personal

Communications Technology) authentication and initialisation of payment protocols

are described that give them a key recovery capability. The two proposed solutions fulfil

potential government demands for lawful interception of encrypted communications,

while protecting the user from unauthorised disclosure of his/her communications.

145

Key recovery in ASPeCT authentication and initialisation of payment
protocol

9.1 Lawful interception of telecommunications in UMTS

Almost since the first introduction of public telecommunications networks, govern-

ments have demanded a lawful interception capability, mainly for the investigation of

serious crime and for national security reasons. Laws of many countries and regional

institutions (e.g. European Union) mandate the existence of a capability for lawful in-

terception of traffic and related information, and this is typically part of the licensing

and operational conditions of network operators [21]. Until the widespread employment

of encryption for the protection of communications became possible, access to data was

just a matter of line-tapping or listening to the air interface. The introduction of con-

fidentiality services for protecting communications, however, has driven governments

to try and find means of accessing encrypted data. One possible solution is the use of

key recovery (escrow) services.

In a Universal Mobile Telecommunications System (UMTS) [88] environment many

types of data might be involved, not just the ‘voice’ data found in GSM. In UMTS,

communicated data comprises all forms of data that can be generated by user ap-

plications (emails, messages), signalling data (charging and billing), or control data

(routing data, network access data). Recovery of transient keys, used for protection of

the communicated data, is designed to meet LEA needs for lawful interception of com-

munications. Intercepted information comprises both the content of communication

and intercept related information, which is call related and non-call related information

[23].

Among the authentication schemes proposed for a third generation mobile communi-

cation system (3GMS) were the ones designed and implemented by the collaborative

research project ASPeCT [2]. In this chapter certain modifications to the ASPeCT

authentication and initialisation of payment protocols are proposed that give them a

key recovery capability. The solutions were proposed to assist the international deploy-

ment of the ASPeCT protocol, by meeting potential government demands for lawful

146

9.2 The ASPeCT authentication and initialisation of payment protocol

interception of encrypted communications.

9.2 The ASPeCT authentication and initialisation of pay-
ment protocol

The ASPeCT authentication and initialisation of payment (AIP) protocol [34] was

developed for authentication between a user U and a value added service provider

(VASP) V in UMTS environments. One of the basic properties of the AIP protocol is

the establishment of a secret session key K which can be used to encrypt subsequent

communications between the two entities. Two basic models have been designed for

this purpose (B and C variants). The main difference between the B and C variants is

the use in the C variant of an on-line TTP which serves as U ’s certification authority.

9.2.1 Preliminaries

Both variants are presented using similar notation, and both rely on certain pre-agreed

‘domain parameters’. In particular, it is assumed that U and V share Diffie-Hellman

key exchange parameters, including a modulus p and a ‘base’ g (where g is an element

of large prime multiplicative order modulo p). For simplicity of presentation we write

ga for (ga mod p) throughout; U and V must also share a set of agreed cryptographic

functions as follows.

• Collision-resistant hash-functions h1, h2, and h3;

• A (pseudo–)random number generator;

• A symmetric encryption function where {M}K denotes encryption of message M

using key K;

• A public system parameter T which gives the maximum number of ‘ticks’, i.e.

the maximum transaction value, to which the user can commit himself by one

147

Key recovery in ASPeCT authentication and initialisation of payment
protocol

signature;

• A family of length-preserving one-way functions Fx, where a ‘length-preserving

one-way function’ is a one-way function that inputs and outputs bit strings of

the same length. For any positive integer i we write F i
x for the ith power of Fx,

i.e. the result of iteratively applying Fx a total of i times. Note that T and F

are used only for the needs of the payment protocol which is performed after the

AIP protocol described here.

Finally note that, as elsewhere in this thesis, we use ‖ to denote concatenation of data

items.

9.2.2 Authentication without an on-line TTP (B–Variant)

This variant of the AIP protocol assumes that U is in possession of a valid certificate

for V ’s public key agreement key and V has a valid certificate on the public key of U ’s

asymmetric signature system. A detailed description of this model is given in [34] and

the messages exchanged are specified in Figure 9.1.

USER U VASP V
idCAVg u ||

certVTVdatachidVrKhr ||||_||)||||(2||

KTT
vu

U IVcertUIVTVdatachidVrgghSig }||||||))||||||_||||||||(3({ αα

Figure 9.1: ASPeCT AIP Protocol (B–Variant)

In this protocol, U generates a random number u, computes gu and sends it to V ,

together with the identity idCAV of the authority whose certificates U can verify. On

receipt of the first message, V generates a random number r and computes a session

key K = h1((gu)v ‖ r), where v is V ’s secret key agreement key. V then sends U

148

9.2 The ASPeCT authentication and initialisation of payment protocol

the number r, the hash value h2(K ‖ r ‖ idV) (where idV is an identifier for V), its

certificate certV , a time-stamp TV , and charging-relevant data ch data. On receipt of

the second message, U computes the key K = h1((gv)u ‖ r), recomputes the hashed

value h2(K ‖ r ‖ idV) and compares it with the one received. If the check succeeds, U

generates random numbers IV and α0, computes αT = F T
IV (α0) and signs the message

shown in Figure 9.1, including IV and αT . U then concatenates the signature with

his certificate certU , αT , and IV , encrypts the concatenated parameters with K, and

sends the encrypted message to V .

9.2.3 Authentication with an on-line TTP (C–Variant)

The second authentication protocol involves an on-line TTP. The main role of the

TTP is real-time verification of certificates and to ensure that both the user and the

VASP are able to verify each other’s certificates. A brief description of the ASPeCT

authentication protocol with on-line TTP is provided here. It is based on the protocol

published in [33] and has been enhanced to prevent a content verification attack (see

[56] and [32]). The messages exchanged are specified in Figure 9.2 and a full description

and analysis of the protocol is given in [34].

 USER U VASP V TTP

L
u idUidTTPg }{||||

 certVidUg L
u ||}{||

))||||||(3(||),(||

),(||),(||

TTcidVcidUghSigTVCertChain

UVCertChainVUCertChainTT
u

T

()
K

u
T TTcidVcidUghSig

VUCertChainTTdatachidVrKhr

))}||||||(3({||

),(||||_||||||2||

KTT

vu
U IVIVTTdatachidVrgghSig }||||))||||||_||||||||(3({ αα

Figure 9.2: ASPeCT AIP Protocol (C–Variant)

In this variant of the protocol, U generates a random number u, computes gu and sends

149

Key recovery in ASPeCT authentication and initialisation of payment
protocol

it to V , together with the identity idTTP of his TTP and his own identity idU encrypted

under session key L = guw, where gw is the TTP’s public key agreement key. As soon

as V receives the first message it connects to U ’s TTP and forwards the message sent by

U together with its certificate CertV . On receipt of the second authentication message

the TTP checks whether U ’s, and optionally V ’s, certificates have been revoked. If

both certificates are still valid, the TTP generates the certificate chains and sends

them back, together with a time-stamp TT, and a signature on the concatenation of

the certificate identifiers cidU and cidV, the time-stamp TT and the random number

gu. V verifies CertChain(V,U) and the signature using the TTP’s public key which it

retrieves from CertChain(V, T). It then generates a random number r and computes

the session key K and a hash value on K, concatenated with the random number r

and V ’s identity idV. V also encrypts the signature with key K.

This encryption was incorporated in order to prevent a content verification attack in

the air interface. V then forwards to U the encrypted signature together with the

hash value h2(K ‖ r ‖ idV), the cross-certificate for V ’s public key CertChain(U, V),

the random number r, the time-stamp TT and charge data ch data. On receipt of

the fourth authentication message U decrypts the signature, checks its validity and

that of the cross-certificate. If the checks are successful U responds with the fifth

authentication message (exactly as in the B-variant).

9.3 Requirements and goals for key recovery in the AS-
PeCT protocol

As mentioned earlier, the AIP protocol establishes a secret session key K = h1(guv, r).

This key can be used to encrypt subsequent communications between U and V . The

aim of the modifications proposed below is to give authorised entities access to the

generated session key K. This transient key will be the only target of the key recovery

mechanism.

150

9.4 Giving a key recovery capability to the B-variant

One of the main requirements for the key recovery mechanism is to minimise any

additional computational overhead at the user end. This is desirable because all the

user computations are typically performed by a smart card. An effective solution

would therefore be to make the key recovery mechanism part of the key establishment

process. The proposed key recovery mechanism, however, should not affect the key

establishment process nor any of the desirable properties of the existing protocol. More

importantly, it must not reduce the strength of the cryptographic system nor introduce

any vulnerabilities into the protocol. The system should also be able to provide the

recovered material within a very limited time period.

A key recovery mechanism that enables LEA access to plaintext should also protect the

user against unauthorised access to subsequently, or previously, communicated data.

Such a risk could arise if the recovered key has a greater lifetime than the period for

which the LEA has authorized access to communicated data [22].

Two different solutions to the key recovery problem are proposed. Although both

solutions apply to both basic models of the ASPeCT protocol (B and C variants), for

brevity we apply only one solution to each model.

9.4 Giving a key recovery capability to the B-variant

The first variant of the protocol examined is the B-variant described in Section 9.2.2.

This protocol can be given a key recovery capability by slightly modifying the way that

U ’s key component u is generated. Note that, in the existing variants of the protocol,

the value u is chosen at random by U prior to the start of the protocol.

The user’s key component generation becomes a two-phase procedure. First, there is a

key recovery registration phase where the user registers an initial secret value ku with

his TTP in an escrow-like mechanism. Second, each time the user wants to generate a

key component he generates a random (or serial) number s and combines s and ku to

151

Key recovery in ASPeCT authentication and initialisation of payment
protocol

get the key component u. That is, u = f(ku, s) where f should be a one way function.

In order for the TTP to be able to compute the value u, U has to send the TTP

its identity idU and the value s encrypted under L = (gw)u, where gw is the TTP’s

public key agreement key. Hence, the modified scheme requires the TTP to have a key

agreement key, as in the C-variant. The modified first message is as specified in Figure

9.3 (the other messages are as previously; see Figure 9.1).

USER U VASP V
Ls||idU }{|||| idCAVg u

Figure 9.3: Modified B-variant Protocol

In U ’s domain, the keys can be recovered as follows.

• The entity requesting key recovery has to pass the following intercepted values

to U ’s TTP, which acts as a KRA:

1. The one-time random value gu, V ’s certificate certV , the random value r

and the encrypted string {idU ‖ s}L. The TTP, using the value gu and its

private key agreement key w, can compute the session key L and therefore

decrypt the encrypted string {idU ‖ s}L. The value idU will help the TTP

identify the user and hence retrieve the stored secret ku. This will enable

the TTP to compute the value u and, already having the values r and gv,

to recover the key K and send it to the requesting entity.

2. The last authentication message sent by U to V together with the charging

data ch data and the time-stamp TV. These values will help the TTP verify

U ’s signature so that it can check that the request is within the scope of the

warrant.

In V ’s domain, however, the procedure is slightly different. This is because it would

typically not be desirable to send the user’s secret key component to V ’s TTP (espe-

cially when U ’s and V ’s TTPs are in different domains or simply if V ’s TTP is not

152

9.5 C-variant protocol with key recovery capability

trusted by the user). Therefore, V has to register the private key agreement key v with

its TTP. This can be done at the time that a certificate on the public key agreement

key gv is requested and issued. However, the key recovery procedure followed by V ’s

TTP is almost the same as the one described above. The only difference is the way

that V ’s TTP recovers the session key, i.e. it uses V ’s private key v and the value gu

to directly compute the session key K.

It should be noted that the value s could also be sent in clear (and not encrypted under

L). In such a case the function f must have the property that, given the input value s,

an adversary cannot get any information on the output u (without knowledge of ku).

More generally, if s is sent in clear, a second one-way function f∗ could be employed to

increase flexibility. The user would keep a long term secret k∗u (also known to the user’s

TTP). From this value the user would compute a ‘fixed term’ secret ku, by combining

k∗u and a date stamp using f∗. In such a case the TTP could disclose the value ku for a

particular time period to the intercepting authority, and would thereby only reveal the

user’s key values u for a fixed time interval. However, the flexibility provided in the

user’s domain is not available in V ’s domain, since if V ’s private key agreement key v

is revealed, then all previous and subsequent communications to and from the VASP

can be decrypted. In most scenarios this will be inappropriate, so the TTP must only

pass the session key K to the entity requesting recovery.

9.5 C-variant protocol with key recovery capability

In this section another solution to the key recovery problem is proposed which, as men-

tioned earlier, can also apply to the B–Variant. Essentially, this variant can be given

a key recovery capability simply by passing the TTP the key component u encrypted

under the secret key L. This gives the TTP the ability to recover the key K. With

this change, the first two messages of the enhanced protocol are as shown in Figure 9.4

153

Key recovery in ASPeCT authentication and initialisation of payment
protocol

(where the other messages are as previously; see Figure 9.2).

USER U VASP V TTP
 L

u idUidTTPg }||{|||| u

 certVidUg L
u ||}||{|| u

Figure 9.4: Modified C-Variant Protocol

As previously mentioned, in this solution U simply passes to its TTP the generated key

component u encrypted under L. Thus, when intercepting the communication between

the user and the VASP, all the information needed by the user’s TTP to compute the

session key K is available. The key recovery procedure is almost the same as in the

previous solution in both U ’s and V ’s domain except for the session key K computation

and the fact that the TTP’s signature is sufficient to check that the request is within

the scope of the warrant. Thus, in the user’s domain the entity requesting key recovery

has to give the following intercepted values to the TTP:

1. The one-time random value gu, the certificate chain CertChain(U, V), the ran-

dom number r, and the encrypted string {idU ‖ u}L. The TTP, using the value

gu and its private key agreement key w, can compute the session key L and there-

fore decrypt the encrypted string {idU ‖ u}L. Having also the values r and gv,

the TTP will be able to recover the key K and send it to the requesting entity.

2. The time-stamp TT together with the TTP’s signature. These will enable the

TTP to verify that the request is within the scope of the warrant. As mentioned

earlier, this signature contains all the information the TTP needs to make this

verification and there is no need to give the TTP the last authentication message.

In V ’s domain the key recovery procedure is the same as in U ’s domain. However, as

with the previous solution, V has to register the private key agreement key v with its

TTP.

154

9.6 Properties and discussion

9.6 Properties and discussion

The main aim of the two solutions described is to give authorised entities access to

transient keys and therefore access to communications. It should be noted that it is

not only LEAs that might benefit from such a property. Consider an employee who is

using a company’s device for his communications. It is clear that the company could

legitimately wish to discover what purposes this device is being used for. Key recovery

for the session key could come to serve this purpose and therefore protect business.

One of the main concerns in the design of key recovery mechanisms that give LEAs

access to plaintext, is the protection of the user from subsequent unauthorised access

to his/her communicated data. Problems could arise if the recovered key has a greater

lifetime than the period for which a LEA has authorised access to communicated data.

The solutions described prohibit such unauthorised listening to communications. In the

second solution only session keys are recovered, which means that LEAs can decrypt

only the communication sessions they are authorised to. However, if the value s is

sent in clear, the first solution gives more flexibility in the user’s domain in terms of

time-bounding recovered keys.

Finally note that the existence of an on-line TTP helps avoid single rogue user attacks

in U ’s domain. If there is a strong requirement for the prevention of such attacks, the

TTP might check whether the encrypted value u corresponds to the public value gu it

receives in the second authentication message. This check is not possible if there is no

on-line TTP (B–Variant).

9.7 Summary

In this chapter two mechanisms were proposed that give the ASPeCT authentication

and initialisation of payment protocols a key recovery capability. The modified pro-

155

Key recovery in ASPeCT authentication and initialisation of payment
protocol

tocols enable warranted law enforcement access to encrypted communications while

protecting the user from further unauthorised disclosure of his/her data.

The intention of the proposed solutions was to assist the international deployment of

the ASPeCT infrastructure, given potential government requirements for provision of

warranted access to encryption keys used to protect mobile telecommunications.

156

Chapter 10

Discussion and conclusions

Contents

10.1 Contributions and findings . 158

10.2 Discussion and suggestions for future work 162

This final chapter summarises the primary contributions of this thesis and concludes

with suggestions for future work.

157

Discussion and conclusions

10.1 Contributions and findings

This thesis has investigated the use of key recovery mechanisms primarily in a busi-

ness environment. Within this context we identified the threats that motivate the

deployment of a key recovery mechanism as a countermeasure. More specifically, we

discussed the threat of lack of access to decryption keys arising from deliberate actions

by disgruntled employees, or because of accidents, such as the failure of devices used

for storing decryption keys. Loss of decryption keys leads to an inability to access

potentially valuable information, a situation that corporations will typically not wish

to tolerate. In addition, authorised access to encrypted communications might also be

needed by a corporation wishing to run checks, either on incoming traffic for malicious

data or on outgoing communications for leakage of sensitive information.

The outcome of this introductory investigation was that key recovery can be an essential

tool for corporations and enterprises, and can be considered as part of their disaster

recovery planning. Key recovery in a business environment can provide benefits to

individual users as well as to the business as whole. The ethical issues arising from the

use of key recovery in a business environment also appear less difficult than those arising

from its proposed use by law enforcement agencies, which have aroused considerable

disquiet.

Using the identified threats, we specified the requirements that a key recovery mech-

anism should satisfy when deployed in a business environment. While most of these

requirements are likely to be important, some of them are less important than others,

and their criticality is mainly affected by the nature of the target keys. More specifically,

we concluded that there should be a distinction between those mechanisms deployed for

communicated data and those used for archived data. These differing requirements, and

the fact that most of the existing mechanisms were designed for communicated data,

have motivated a study of the use of existing key recovery mechanisms for archived

data. This study showed that these mechanisms might not constitute an ideal solution

158

10.1 Contributions and findings

when they are used on archived data.

Among the plethora of existing key recovery mechanisms is the one proposed by Maher

in [53]. Although this mechanism has been designed to be used on archived data, it does

not satisfy all the requirements identified in this thesis. More specifically, although the

mechanism has the advantage that it does not require an on-line agent (unlike many key

escrow mechanisms), it has the disadvantage that is vulnerable to rogue user attacks. A

rogue user can alter or delete the generated key recovery information, thus preventing

authorised recovery of the decryption key. This is one of the problems that we identified

as a weak point of most existing key recovery mechanisms when applied to archived

data.

The other problem that existing key recovery mechanisms face is that they do not

offer the user the ability to recover his keys on his own, thus forcing the user either

to keep a backup of these keys locally or to contact his agent whenever access to

encrypted data is required. The first approach might introduce problems associated

with the management and protection of the backup of keys, while the second introduces

a communication overhead, and might also lead to an inability to access the required

keys if the communications channel between the user and the agent is not available.

Given the lack of mechanisms that can be used for encrypted data, the design of a

mechanism that can efficiently overcome the two aforementioned problems is highly

desirable. As a result, two new schemes were proposed that fulfil the requirements

identified for a key recovery mechanism used with archived data. Both mechanisms

give the user the ability to recover his keys without the agent’s intervention, while

being robust against certain rogue user attacks. More specifically, we assume that

in an attempt to bypass the key recovery functionality a rogue user might alter or

delete the generated key recovery information, or even prohibit its generation. It is

very difficult to prevent attacks where a rogue user deploys his own cryptographic

mechanisms to encrypt his data.

159

Discussion and conclusions

The two proposed mechanisms prevent rogue user attacks by different means. The first

imposes a residual work factor on the agent recovering the keys when a rogue user

deletes the generated key recovery information. That is, the agent will have to recover

the required key through a trial-and-report technique. The other mechanism requires

the agent’s participation during key generation and mandates the use of smart cards.

The agent can be external to the corporation without endangering the secrecy of the

keys.

The feasibility of deployment of the first mechanism was studied by implementing it

using a Giesecke&Devrient Sm@rtCafé Java Card. One finding from this prototype

implementation is that bulk data encryption on the card is still a prohibitively time-

consuming operation. With current technology it is thus most appropriate to use the

card for key generation, while encryption takes place on another platform, such as a

PC. Secure messaging between the card and the PC, and certain integrity checks on

the software that runs on the PC, are two techniques that can help ensure that a rogue

user will not alter the key after its generation to prevent authorised recovery of his

keys.

Another major theme of this thesis was the investigation of interoperability issues that

arise from the use of dissimilar key recovery mechanisms in encrypted communications.

It is likely that the use of dissimilar mechanisms will force communicating parties either

to abandon the establishment of a secure communication or not to use key recovery.

Both situations introduce potential problems, with the first case leading to a denial of

service, and the second giving rise to potential data loss through lack of a key recovery

capability.

The investigation of interoperability issues was performed in parallel with similar work

carried out by the Key Recovery Alliance. One of the outcomes of this latter work

was the proposal of the ‘Common Key Recovery Block Format’ designed to enable

interoperation between dissimilar mechanisms. Detailed study, however, showed that

160

10.1 Contributions and findings

the Key Recovery Alliance scheme fails to achieve one of its main objectives, and that

it is not always applicable. The varying properties of existing key recovery mechanisms

render a single model solution, such as the one proposed by the Key Recovery Alliance,

inappropriate for use on every mechanism.

Instead, we proposed a simpler approach where the two entities negotiate the key

recovery mechanism(s) to be used in the encrypted communications. Negotiation of

cryptographic parameters is an approach that has been empirically proven to work

efficiently in environments where there is a variety of incompatible mechanisms avail-

able. Following this model, we proposed a protocol where the two parties can negotiate

the key recovery mechanism(s) to be used, with the ultimate goal of agreeing on a

mutually acceptable mechanism or on different, yet interoperable, mechanisms. The

proposed protocol can be used to provide key recovery functionality at the application

layer in contrast to a protocol proposed by the Key Recovery Alliance, which targets

the IP layer. Note also that because the latter approach uses the Common Key Recov-

ery Block Format mechanism, it suffers from the problems already identified with this

mechanism.

Another issue that has been investigated within this thesis is the prevention of unfair

key recovery by either of the parties in an encrypted communication. A protocol to

enable ‘fair key agreement’ in one of the standardised mechanisms in ISO/IEC 11770-3

[38] was given. This protocol can also serve two additional purposes; it can be used

as a fair certification protocol for Diffie-Hellman keys, and can also be used to prevent

unfair key recovery. The term “fair certification” is used to describe the issue of public

key certificates by a certification authority where the subject cannot choose his private

key, and hence prevent unfair key agreement, while the private key is not disclosed to

the certification authority. Unfair key recovery is used to describe the situation where

one of the communicating parties chooses part of the negotiated session key, and hence

enables a covert channel for recovery of this key by another entity. This would typically

be an undesirable situation for the other party, especially in environments where the

161

Discussion and conclusions

two entities agree not to use key recovery.

Although, as already mentioned, this thesis is primarily concerned with the use of key

recovery in a business environment, the last main section was devoted to the addition of

a key recovery capability to one of the authentication protocols designed in the context

of third generation mobile communications. This work was motivated by the possibility

that governments would require future mobile telecommunications protocols to provide

for warranted access to encryption keys. The proposed modifications were designed

to protect users against unauthorised access to their communications. Access to user

decryption keys is restricted to those protecting data to which the requesting entity is

authorised to have access.

10.2 Discussion and suggestions for future work

One of the problems that the work carried out for this thesis has faced is the lack of

standardisation for key recovery mechanisms. The existence of a plethora of proprietary

key recovery schemes proposed by industry and academia, with no standards, presents

a challenging problem to future users of key recovery techniques.

This problem becomes worse when one considers the interoperability issues that arise

from the use of dissimilar mechanisms. Dealing with interoperability problems between

non-standardised key recovery mechanisms requires consideration of the properties of

the majority, if not all, of the existing schemes. This process would be much easier

if the wide spectrum of key recovery schemes could be reduced to a small number of

standardised mechanisms.

The adoption of some of the existing mechanisms as de facto standards does not nec-

essarily imply that there is no need to take further action. It is vital to check the

soundness of these mechanisms before they start being used extensively.

162

10.2 Discussion and suggestions for future work

Although the Key Recovery Alliance has worked on the standardisation of key recov-

ery mechanisms and on issues related to their deployment, the alliance was dissolved

without having the results adopted by any of the existing standardisation bodies. One

way of progressing standardisation efforts would be to put the negotiation protocol

proposed in this thesis forward for adoption by an appropriate body such as the IETF.

We believe that such an action, in conjunction with the work that has been presented

in this thesis, would help to raise the awareness of the need for standardisation in this

area.

It would appear that the general suspicion of research on key recovery, which mainly re-

sults from potential government requirements for access to encrypted communications,

is holding back progress on key recovery mechanisms and their use in a business envi-

ronment. Unless the benefits of the use of key recovery in the commercial environment

are better understood, companies are likely to continue using proprietary mechanisms.

Key recovery will potentially continue to be an issue that experts will be reluctant to

talk about, yet many cryptographic products will transparently use it.

As the use of IT continues to advance, the threats that corporations will face from

disgruntled employees are likely to increase. The deployment of key recovery, however,

is not just a countermeasure to these threats. Key recovery is a security mechanism

that can work to the benefit of both users and corporations. It can encourage employees

to use encryption, which is vital for the protection of information, and it can also give

businesses continuous access to their encrypted data, as well as access to their encrypted

communications. In the future we expect that key recovery will be widely seen as a

crucial component of the security infrastructure for all organisations.

163

Appendix A

Code Listings

164

A.1 KeyRecDeclarations

A.1 KeyRecDeclarations

/**

*** Royal Holloway University of London ***

*** Information Security Group ***

FILE NAME : KeyRecDeclarations

CLASS : KeyRecApplet

PACKAGE : keyrecovery

AUTHOR : Konstantinos Rantos 10

DATE : May 2000

DESCRIPTION : Part of the Applet. Declarations of the CLA and

INS bytes, and of the PIN related constants

**/

package keyrecovery;

public interface KeyRecDeclarations

{
// codes of CLA byte in the command APDU header 20

final static byte KeyRec CLA =(byte)0xB0;

final static byte ISO CLA = (byte)0x00;

// codes of INS byte in the command APDU header

final static byte VERIFY = (byte) 0x20;

final static byte EncryptFile = (byte) 0x50;

final static byte DecryptFile = (byte) 0x60;

// maximum number of incorrect tries before the

// PIN is blocked 30

final static byte PinTryLimit =(byte)0x03;

// maximum size PIN

final static byte MaxPinSize =(byte)0x04;

// status word (SW1-SW2) to signal that PIN verification has failed

final static short SW PIN FAILED = (short)0x63C0;

}

165

Code Listings

A.2 KeyRec

/**

*** Royal Holloway University of London ***

*** Information Security Group ***

FILE NAME : KeyRec

CLASS : KeyRec

PACKAGE : keyrecovery

AUTHOR : Konstantinos Rantos 10

DATE : May 2000

DESCRIPTION : Part of the Applet. Contains the implementation of

the core functions of the key recovery applet

**/

package keyrecovery;

import javacard.framework.*;

import com.gieseckedevrient.javacardx.crypto.*;

20

public class KeyRec implements KeyRecDeclarations{

/* Constants declarations */

static byte PIN VALUE[] ={0x34,0x33,0x32,0x31};

protected OwnerPIN pin;

//The following are dummy values used for the user’s and agent key pairs

private short userprivate = (short) 21; 30

private short userpublic = (short) 285;

public short agentpublic = (short) 251; //the corresponding private is 16;

private short keycomponent = (short) 89;

private byte[] buffertobehashed;

private byte[] m hashedbuffer;

private CipherECB m cipherECB;

private MessageDigest m sha1alg;

private SymmetricKey m ECBkey; 40

public KeyRec() {

JCSystem.makeTransientShortArray((short) 1, JCSystem.CLEAR ON DESELECT);

buffertobehashed = new byte[8];

m hashedbuffer = new byte[20];

50

m cipherECB = CipherECB.getInstance(Cipher.ENGINE DES);

m ECBkey = new SymmetricKey((short) 0x08, JCSystem.CLEAR ON DESELECT);

m sha1alg = MessageDigest.getInstance(MessageDigest.ENGINE SHA1);

pin = new OwnerPIN(PinTryLimit, MaxPinSize);

pin.reset();

166

A.2 KeyRec

pin.update(PIN VALUE, (short)(0), (byte)(4));

}

//The generatehashdata() function prepares the data that will be used 60

//by the generatekey() function for key generation

public byte[] generatehashdata(byte[] m buffer){
//put the exponentiation g^xy mod p into the beggining

//of the buffertobehashed array

Util.setShort(buffertobehashed, (short) 0x00, (short) keycomponent);

//Concatenate the ‘‘data credentials’’ contained in the m buffer

Util.arrayCopy(m buffer, ISO7816.OFFSET CDATA, buffertobehashed,

(short) 0x02, (short) 0x06);

70

return(buffertobehashed);

}

//The generatekey() function provides the key for the file encryption.

public byte[] generatekey(byte[] m buffer) {

m sha1alg.generateDigest(generatehashdata(m buffer), (short) 0x00,

(short) 0x08, m hashedbuffer, (short) 0x00);

80

return(m hashedbuffer);

}

//The encryptdecrypt() function encrypts/decrypts ‘‘bytestoencrypt’’ bytes of data

//found in m buffer. The data to be encrypted/decrypted are positioned after the

//‘‘data credentials’’ at the m inoffset position of the m buffer.

//‘‘encordec’’ denotes whether the data are to be encrypted or decrypted.

public byte[] encryptdecrypt(boolean encordec, byte[] m buffer, short m inoffset,

short bytestoencrypt, boolean generatenewkey) { 90

if (! pin.isValidated())

ISOException.throwIt(ISO7816.SW PIN REQUIRED);

if(generatenewkey)

m ECBkey.setValue(generatekey(m buffer), (short) 0x00, (short) 0x08);

m cipherECB.setKey(m ECBkey);

if (encordec)

m cipherECB.encrypt(m buffer, m inoffset, bytestoencrypt, 100

m buffer, (short) 0x00, RunCipher.PADDING ISO00);

else

m cipherECB.decrypt(m buffer, m inoffset, bytestoencrypt,

m buffer, (short) 0x00);

return(m buffer);

} // end encryptdecrypt()

public void VerifyPIN(byte[] m buffer, byte m byteRead) {
// validate pin provided by the user 110

if (pin.check(m buffer, (short) ISO7816.OFFSET CDATA, m byteRead) == true)

return;

// If the PIN check failed, throw the apropiate ISOException.

short sTries = pin.getTriesRemaining();

167

Code Listings

ISOException.throwIt((short) (SW PIN FAILED + sTries));

} // end VerifyPIN()

}

168

A.3 KeyRecApplet

A.3 KeyRecApplet

/**

*** Royal Holloway University of London ***

*** Information Security Group ***

FILE NAME : KeyRecApplet

CLASS : KeyRecApplet

PACKAGE : keyrecovery

AUTHOR : Konstantinos Rantos 10

DATE : May 2000

DESCRIPTION : Contains the key recovery applet functionality

**/

package keyrecovery;

import javacard.framework.*;

public class KeyRecApplet extends Applet implements KeyRecDeclarations{ 20

/* Constants declarations */

private KeyRec m AppletKeyRec;

private byte buffer[]; // APDU buffer

public static void install(byte[] buffer, short offset, byte length){
new KeyRecApplet();

} // end of install method

//Constructor for KeyRecApplet 30

private KeyRecApplet() {
// create a KeyRec applet instance

m AppletKeyRec = new KeyRec();

register();

} // end of the constructor

public boolean select() {
return true;

}// end of select() method

40

public void process(APDU apdu) {

if(selectingApplet())

return;

// APDU object carries a byte array (buffer) to

// transfer incoming and outgoing APDU header

// and data bytes between card and CAD

buffer = apdu.getBuffer();

// check whether the applet can accept the incoming APDU message

if (buffer[ISO7816.OFFSET CLA] != KeyRec CLA & 50

buffer[ISO7816.OFFSET CLA] != ISO CLA)

ISOException.throwIt(ISO7816.SW CLA NOT SUPPORTED);

switch(buffer[ISO7816.OFFSET CLA])

{
case ISO CLA:

169

Code Listings

switch (buffer[ISO7816.OFFSET INS])

{
case VERIFY: {
// retrieve the PIN for validation. 60

byte byteRead = (byte)(apdu.setIncomingAndReceive());

m AppletKeyRec.VerifyPIN(buffer, byteRead);return;

}
default: ISOException.throwIt(ISO7816.SW INS NOT SUPPORTED);

}break;

case KeyRec CLA:

switch (buffer[ISO7816.OFFSET INS])

{
case EncryptFile: { 70

// Lc byte denotes the number of bytes in the

// data field of the comamnd APDU

short numBytes = (short) (buffer[ISO7816.OFFSET LC] & 0x00FF);

// indicate that this APDU has incoming data and

// receive data starting from the offset ISO.OFFSET CDATA

short byteRead = (short)(apdu.setIncomingAndReceive());

// it is an error if the number of data bytes

// read does not match the number in Lc byte

if (byteRead != numBytes)

ISOException.throwIt(ISO7816.SW WRONG LENGTH); 80

if (buffer[ISO7816.OFFSET P1] == (byte) 1)

//generate new key

Util.arrayCopy(m AppletKeyRec.encryptdecrypt(true, buffer,

(short) (ISO7816.OFFSET CDATA + 0x06),

(short) (byteRead − 0x06), true),(short) 0x00, buffer,

(short) 0x00, (short) (byteRead − 0x06));

else

//use the generated from the previous transaction key

Util.arrayCopy(m AppletKeyRec.encryptdecrypt(true, buffer, 90

(short) (ISO7816.OFFSET CDATA + 0x06),

(short) (byteRead − 0x06), false), (short) 0x00, buffer,

(short) 0x00, (short) (byteRead − 0x06));

apdu.setOutgoing();

//indicate the number of bytes in the data field

if ((byteRead − 0x06) % (short)8 != 0) {
apdu.setOutgoingLength((short)((((byteRead − 0x06)/8)+1)*8));

apdu.sendBytes((short)0, (short) ((((byteRead − 0x06)/8)+1)*8));

} 100

else {
apdu.setOutgoingLength((short)(byteRead − 0x06));

apdu.sendBytes((short)0, (short) (byteRead − 0x06));

}
return;

} //end case EncryptFile

case DecryptFile: {
// Lc byte denotes the number of bytes in the

// data field of the comamnd APDU 110

short numBytes = (short) (buffer[ISO7816.OFFSET LC] & 0x00FF);

// indicate that this APDU has incoming data and

// receive data starting from the offset

// ISO.OFFSET CDATA

short byteRead = (short)(apdu.setIncomingAndReceive());

170

A.3 KeyRecApplet

// it is an error if the number of data bytes

// read does not match the number in Lc byte

if (byteRead != numBytes)

ISOException.throwIt(ISO7816.SW WRONG LENGTH);

120

if (buffer[ISO7816.OFFSET P1] == (byte) 1)

//generate new key

Util.arrayCopy(m AppletKeyRec.encryptdecrypt(false, buffer,

(short) (ISO7816.OFFSET CDATA + 0x06),

(short) (byteRead − 0x06), true), (short) 0x00, buffer,

(short) 0x00, (short) (byteRead − 0x06));

else

// use the generated from the previous transaction key

Util.arrayCopy(m AppletKeyRec.encryptdecrypt(false, buffer,

(short) (ISO7816.OFFSET CDATA + 0x06), 130

(short) (byteRead − 0x06), false), (short) 0x00, buffer,

(short) 0x00, (short) (byteRead − 0x06));

apdu.setOutgoing();

//indicate the number of bytes in the data field

apdu.setOutgoingLength((short)(byteRead−0x06));
apdu.sendBytes((short)0, (short) (byteRead − 0x06));

return;

} // end case DecryptFile

140

default: ISOException.throwIt(ISO7816.SW INS NOT SUPPORTED);

}
}

} // end of process method

} // end of class KeyRec

171

Code Listings

A.4 KRAppletProxy

/**

Royal Holloway University of London

Information Security Group

FILE NAME : KRAppletProxy

CLASS : KRAppletProxy

PACKAGE : services

AUTHOR : Konstantinos Rantos 10

DATE : May 2000

DESCRIPTION : Part of the client. Contains the implementation

of the two main functions provided by that service,

i.e. encryption and decryption

**/

package services;

import java.util.Hashtable;

import opencard.opt.management.ApplicationID; 20

import opencard.core.service.SmartCard;

import opencard.core.service.CardChannel;

import opencard.core.service.CardServiceScheduler;

import opencard.core.service.CardServiceException;

import opencard.core.service.CardServiceUsageException;

import opencard.core.service.CardServiceInvalidParameterException;

import opencard.core.service.CardServiceInvalidCredentialException;

import opencard.core.service.CardServiceOperationFailedException;

import opencard.opt.service.CardServiceUnexpectedResponseException;

import opencard.core.terminal.CommandAPDU; 30

import opencard.core.terminal.ResponseAPDU;

import opencard.core.terminal.CardTerminalException;

import opencard.core.terminal.CardTerminalIOControl;

import opencard.core.terminal.CHVControl;

import opencard.core.terminal.CHVEncoder;

import opencard.core.util.Tracer;

import keyrecovery.KeyRecDeclarations;

import com.gieseckedevrient.opencard.util.Hex;

import com.gieseckedevrient.opencard.services.SmartCafeService;

40

// KRAppletProxy is a Card Applet Proxy for the KeyRecovApplet.

public class KRAppletProxy extends SmartCafeService

implements KeyRecovApplet

{

public static final ApplicationID KEYREC APPLET AID =

new ApplicationID("KeyRecApplet".getBytes());

private Tracer tracer;

private static final String where = KRAppletProxy.class.getName(); 50

private static final byte[] bzero4 = { (byte)0, (byte)0, (byte)0, (byte)0 };
private static final byte[] bzero8 = { (byte)0, (byte)0, (byte)0, (byte)0,

(byte)0, (byte)0, (byte)0, (byte)0 };

public KRAppletProxy() {

172

A.4 KRAppletProxy

tracer = new Tracer(this, KRAppletProxy.class);

} // end KRAppletProxy()

protected void initialize(CardServiceScheduler scheduler, 60

SmartCard card, boolean blocking)

throws CardServiceException{
super.initialize(scheduler, card, blocking);

try {
allocateCardChannel();

CardChannel channel = getCardChannel();

Hashtable ht = (Hashtable)(channel.getState());

if(ht == null) {
ht = new Hashtable(); 70

channel.setState(ht);

}

KRAppletState state = (KRAppletState)(ht.get(KEYREC APPLET AID));

if(state == null) {
state = new KRAppletState();

ht.put(KEYREC APPLET AID, state);

}
}
finally { 80

releaseCardChannel();

}
} // end initialize().

public byte[] encryptfile(byte[] keycredentials, byte[] datatoencrypt,

boolean generatekey)

throws CardServiceInvalidCredentialException, CardServiceUnexpectedResponseException,

CardServiceException{

try { 90

allocateCardChannel();

// Perform Card Holder Verification if necessary

if (!getKRAppletState().isEncryptionAllowed()) {
performCHV(getCardChannel(), KRAppletState.ENCRYPT CHV);

}
byte m generatekey;

if (generatekey)

m generatekey = (byte) 0x01;

else 100

m generatekey = (byte) 0x00;

CommandAPDU cmd = new CommandAPDU(5 + keycredentials.length +

datatoencrypt.length +1);

cmd.append(new byte[]{ KeyRecDeclarations.KeyRec CLA, // CLA.

KeyRecDeclarations.EncryptFile, // INS.

m generatekey, // P1.

(byte)0x00, // P2.

(byte)(datatoencrypt.length + keycredentials.length), // Lc. 110

});

cmd.append(keycredentials);

cmd.append(datatoencrypt);

cmd.append((byte)0x00); //Le

173

Code Listings

ResponseAPDU rsp = sendCommandAPDU(getCardChannel(), KEYREC APPLET AID, cmd);

int sw = rsp.sw();

if(sw == 0x9000)

return rsp.data();

else 120

throw new CardServiceUnexpectedResponseException

(where + "::encrypt: " + "Unexpected response, SW = "

+ Hex.short2hex((short)(sw & 0x0000FFFF)));

}
catch(CardTerminalException x) {

tracer.error("encrypt", "Caught terminal exception - " + x.getMessage());

return −1;
}
finally {
releaseCardChannel(); 130

}
} // end encryptfile()

public byte[] decryptfile(byte[] keycredentials, byte[] datatodecrypt,

boolean generatekey)

throws CardServiceInvalidCredentialException, CardServiceUnexpectedResponseException,

CardServiceException{

try { 140

allocateCardChannel();

// Perform Card Holder Verification if necessary

if (!getKRAppletState().isEncryptionAllowed()) {
performCHV(getCardChannel(), KRAppletState.ENCRYPT CHV);

}
byte m generatekey;

if (generatekey)

m generatekey = (byte) 0x01;

else 150

m generatekey = (byte) 0x00;

CommandAPDU cmd = new CommandAPDU(5 + keycredentials.length +

datatodecrypt.length + 1);

cmd.append(new byte[]{ KeyRecDeclarations.KeyRec CLA, // CLA.

KeyRecDeclarations.DecryptFile, // INS.

m generatekey, // P1.

(byte)0x00, // P2.

(byte)(datatodecrypt.length + keycredentials.length), // Lc. 160

});

cmd.append(keycredentials);

cmd.append(datatodecrypt);

cmd.append((byte)0x00); //Le

ResponseAPDU rsp = sendCommandAPDU(getCardChannel(), KEYREC APPLET AID, cmd);

int sw = rsp.sw();

if(sw == 0x9000)

return rsp.data();

else 170

throw new CardServiceUnexpectedResponseException

(where + "::decrypt: " + "Unexpected response, SW = "

+ Hex.short2hex((short)(sw & 0x0000FFFF)));

}

174

A.4 KRAppletProxy

catch(CardTerminalException x) {
tracer.error("decrypt", "Caught terminal exception - " + x.getMessage());

return −1;
}
finally {
releaseCardChannel(); 180

}
} // end decryptfile()

/**

* Performs Card Holder Verification.

*

* The p bNumCHV parameter can be used for the case that more than one

* types of PINs used. For instance an administrator PIN can be used

* which can give the user privileged access to the card. 190

**/

protected void performCHV(CardChannel p channel, byte p bNumCHV)

throws CardServiceInvalidCredentialException,

CardServiceOperationFailedException,

CardServiceUnexpectedResponseException,

CardServiceException,

CardTerminalException

{
byte bLength = 4;

200

String message = new String();

if(p bNumCHV == 1)

message = " Please enter " +

" ENCRYPTION/DECRYPTION PIN " +

" ";

CommandAPDU cmd = new CommandAPDU(5 + bLength + 1);

cmd.append(new byte[]{ KeyRecDeclarations.ISO CLA, // CLA.

KeyRecDeclarations.VERIFY, // INS. 210

(byte)0x20, // P1.

(byte)(0x80 | p bNumCHV), // P2.

bLength }); // Lc.

cmd.append(bzero4); // Data.

CardTerminalIOControl ioCtrl = new CardTerminalIOControl(bLength, 30, null, null);

CHVControl chvCtrl = new CHVControl(message, p bNumCHV,

CHVEncoder.STRING ENCODING,

0,

ioCtrl); 220

ResponseAPDU rsp = sendVerifiedAPDU(p channel, KEYREC APPLET AID, cmd,

chvCtrl, getCHVDialog(), 30000);

int sw = rsp.sw();

if(sw == 0x9000)

{
getKRAppletState().setCHVPerformed(p bNumCHV, true);

return; 230

}
else

if((short)(sw & 0x0000FFF0) == KeyRecDeclarations.SW PIN FAILED)

175

Code Listings

throw new CardServiceInvalidCredentialException

("PIN verification failed, "

+ (sw & 0x000F)

+ " retries remaining.");

else

throw new CardServiceUnexpectedResponseException

(where + "::verify: " 240

+ "Unexpected response, SW = "

+ Hex.short2hex((short)(sw & 0x0000FFFF)));

} // ’KRAppletProxy.verify()’.

protected KRAppletState getKRAppletState()

throws CardServiceException

{
Hashtable ht = (Hashtable)(getCardChannel().getState());

KRAppletState state = (KRAppletState)(ht.get(KEYREC APPLET AID)); 250

if(state == null)

throw new CardServiceException

(where + "::getCardState: "

+ "No card state object available!");

return state;

} // ’KRAppletProxy.getCardState()’.

protected void appletSelected()

{ 260

// Reset the proxy state of the applet.

try

{
getKRAppletState().resetState();

}
catch (CardServiceException x) {};

} // ’SmartCafeService.appletSelected()’.

} // class ’KRAppletProxy’.

176

A.5 KRAppletState

A.5 KRAppletState

/**

Royal Holloway University of London

Information Security Group

FILE NAME : KRAppletState

CLASS : KRAppletState

PACKAGE : services

AUTHOR : Konstantinos Rantos 10

DATE : May 2000

DESCRIPTION : Part of the client. Represents the state

of the key recovery applet on the card

**/

package services;

public class KRAppletState {

/* Constants to indicate which type of CHV is performed. */ 20

public static final byte ENCRYPT CHV = 1;

public static final byte ADMIN CHV = 3;

/* Which type of successful card holder verification

has been performed last. This is for the case that

administrator functionality is implemented on the card. */

protected boolean m zEncryptCHVPerformed = false;

protected boolean m zAdminCHVPerformed = false;

30

/*

* Check if encrypt operations are allowed.

* return true if allowed, false otherwise.

*/

public boolean isEncryptionAllowed() {
return m zEncryptCHVPerformed;

} // KRAppletState.isEncryptionAllowed()

/*

* Check if PIN administration operations are allowed. 40

* return true if allowed, false otherwise.

*/

public boolean isAdminAllowed() {
return m zAdminCHVPerformed;

} // KRAppletState.isAdminAllowed()

/*

* Sets the card holder verification flag to the given value.

* param p bCHVType Indicates which type of CHV has been performed

* param p zCHVPerformed Indicates whether a successful 50

* card holder verification has been performed.

*/

public void setCHVPerformed(byte p bCHVType, boolean p zCHVPerformed) {
resetState();

switch (p bCHVType)

{

177

Code Listings

case ENCRYPT CHV:

m zEncryptCHVPerformed = p zCHVPerformed;

break;

case ADMIN CHV: 60

m zAdminCHVPerformed = p zCHVPerformed;

break;

}
} // KRAppletState.setCHVPerformed()

/* Reset the state of the key recovery applet. */

public void resetState() {
m zEncryptCHVPerformed = false;

m zAdminCHVPerformed = false;

} // KRAppletState.resetState() 70

} // class KRAppletState

178

A.6 KeyRecovApplet

A.6 KeyRecovApplet

/**

*** Royal Holloway University of London ***

*** Information Security Group ***

FILE NAME : KeyRecovApplet

CLASS : KeyRecovApplet

PACKAGE : services

AUTHOR : Konstantinos Rantos 10

DATE : May 2000

DESCRIPTION : Part of the client. Contains the interface

to the functions implemented in KRAppletProxy

**/

package services;

import opencard.core.service.CardServiceException;

import opencard.core.service.CardServiceUsageException;

import opencard.core.service.CardServiceInvalidParameterException; 20

import opencard.core.service.CardServiceInvalidCredentialException;

import opencard.core.service.CardServiceOperationFailedException;

import opencard.opt.service.CardServiceUnexpectedResponseException;

import opencard.opt.service.CardServiceInterface;

public interface KeyRecovApplet extends CardServiceInterface{

public byte[] encryptfile(byte[] keycredentials, byte[] datatoencrypt,

boolean generatekey)

throws CardServiceInvalidCredentialException, 30

CardServiceUnexpectedResponseException,

CardServiceException;

public byte[] decryptfile(byte[] keycredentials, byte[] datatodecrypt,

boolean generatekey)

throws CardServiceInvalidCredentialException,

CardServiceUnexpectedResponseException,

CardServiceException;

} // interface ’KeyRecovApplet’. 40

179

Bibliography

[1] H. Abelson, R. Anderson, S.M. Bellovin, J. Benaloh, M. Blaze, W. Diffie,

J. Gilmore, P.G. Neumann, R.L. Rivest, J.I. Schiller, and B. Schneier.

The risks of key recovery, key escrow, and trusted third party encryption.

http://www.cdt.org/crypto/risks98.

[2] Advanced Security for Personal Communications Technologies (ASPeCT).

http://www.esat.kuleuven.ac.be/cosic/aspect/.

[3] D. Balenson and T. Markham. ISAKMP key recovery extensions. Computers &

Security, 19(1):91–99, 2000.

[4] D.M. Balenson, C.M. Ellison, S.B. Lipner, and S.T. Walker. A new approach

to software key escrow encryption. In L.J. Hoffman, editor, Building in Big

Brother, The Cryptographic Policy Debate, pages 180–207. Springer-Verlag, New

York, 1995.

[5] M. Blaze. Key management in an encrypting file system. In Proceedings Summer

1994 USENIX Technical Conference, Boston, MA, June 1994.

[6] M. Blaze. Protocol failure in the escrowed encryption standard. In Proceedings

of Second ACM Conference on Computer and Communications Security, pages

59–67, FairFax VA, November 1994.

[7] E.F. Brickell, D.E. Denning, S.T. Kent, D.P. Maher, and W. Tuchman. SKIP-

JACK review: Interim report. In L.J. Hoffman, editor, Building in Big Brother,

180

BIBLIOGRAPHY

The Cryptographic Policy Debate, pages 119–130. Springer-Verlag, New York,

1995.

[8] W.J. Caelli. Commercial key escrow: An Australian perspective. In E.P. Dawson

and J. Golic, editors, Proceedings of Cryptography: Policy and Algorithms, In-

ternational Conference Brisbane, Queensland, Australia, July 1995, pages 40–64.

Springer-Verlag (LNCS 1029), Berlin (1996).

[9] W.J. Caelli and D. Longley. Key recovery - a perspective for the rest of the world.

Presented at 5th Annual IT Security Summit, Sydney NSW, February 1998.

[10] L. Chen, D. Gollmann, and C.J. Mitchell. Key escrow in mutually mistrusting

domains. In M. Lomas, editor, Security Protocols – Proceedings, International

Workshop, Cambridge, April 1996, pages 139–153. Springer-Verlag (LNCS 1189),

Berlin (1997).

[11] D. Denning and M. Smid. Key escrowing today. IEEE Communications Magazine,

32:58–68, 1994.

[12] D.E. Denning. To tap or not to tap. Communications of the ACM, 36(3):25–44,

March 1993.

[13] D.E. Denning. The U.S. key escrow encryption technology. Computer Communi-

cations, 17(7):111–118, July 1994.

[14] D.E. Denning. International key escrow encryption: Proposed objectives and op-

tions. In L.J. Hoffman, editor, Building in Big Brother, The Cryptographic Policy

Debate, pages 208–225. Springer-Verlag, New York, 1995.

[15] D.E. Denning. Information Warfare and Security. Addison Wesley, 1998.

[16] D.E. Denning and W.E. Baugh. Key escrow encryption policies and technologies.

Information System Security, 5(2):44–51, Summer 1996.

[17] D.E. Denning and D.K. Branstad. A taxonomy of key escrow encryption systems.

Communications of the ACM, 39(3):34–40, March 1996.

181

BIBLIOGRAPHY

[18] Y. Desmedt. Securing traceability of ciphertexts–Towards a secure software key

escrow system. In L. Guillou and J. Quisquater, editors, Advances in Cryptology–

EUROCRYPT’95, pages 147–157. Springer-Verlag (LNCS 921), 1995.

[19] T. Dierks and C. Allen. The TLS protocol, version 1.0, January 1999. RFC 2246.

[20] W. Diffie and M. Hellman. New directions in cryptography. IEEE Transactions

on Information Theory, 22:644–654, 1976.

[21] ETSI EG 201 781. Intelligent Networks—Lawful Interception, July 2000.

[22] ETSI ETR 331. Security Techniques Advisory Group (STAG); Definition of user

requirements for lawful interception of telecommunications; Requirements of the

law enforcement agencies, December 1996.

[23] ETSI TS 133 106. Universal Mobile Telecommunications System (UMTS); 3G

Security; Lawful Interception Requirements, January 2000.

[24] P.A. Fouque, G. Poupard, and J. Stern. Recovering keys in open networks. In Pro-

ceedings of IEEE Information Theory and Communications Workshop (ITW’99),

Kruger National Park, South Africa, June 1999.

[25] Y. Frankel and M. Yung. Escrow encryption systems visited: attacks, analysis

and designs. In D. Coppersmith, editor, Advances in Cryptology–CRYPTO’95,

California, USA, August 1995, pages 222–235. Springer-Verlag (LNCS 963), Berlin

(1995).

[26] E.H. Freeman. When technology and privacy collide. Encoded encryption and the

Clipper chip. Information System Management, 12(2):43–46, Spring 1995.

[27] R. Gennaro, P. Krager, S. Matyas, M. Peyravian, A. Roginsky, D. Safford, M.

Willett, and N. Zunic. Two–phase cryptographic key recovery system. Computers

& Security, 16:481–506, 1997.

[28] S. Gupta. A common key recovery block format: Promoting interoperability be-

tween dissimilar key recovery mechanisms. Computers & Security, 19(1):41–47,

2000.

182

BIBLIOGRAPHY

[29] S. Gupta, S.M. Matyas Jr., and N. Zunic. Public key infrastructure: Analysis of

existing and needed protocols and object formats for key recovery. Computers &

Security, 19(1):56–68, 2000.

[30] U. Hansmann, M.S. Nicklous, T. Schack, and F. Seliger. Smart Card Application

Development Using Java. Springer Verlag, 2000.

[31] J. He and E. Dawson. A new key escrow cryptosystem. In E.P. Dawson and J.

Golic, editors, Proceedings of Cryptography: Policy and Algorithms, International

Conference Brisbane, Queensland, Australia, July 1995, pages 105–114. Springer-

Verlag (LNCS 1029), Berlin (1996).

[32] G. Horn, P. Howard, K.M. Martin, C.J. Mitchell, B. Preneel, and K. Rantos.

Trialling secure billing with trusted third party support for UMTS applications.

In Proceedings of 3rd ACTS Mobile Communications Summit, pages 574–579,

Rhodes, Greece, June, 1998.

[33] G. Horn and B. Preneel. Authentication in future mobile systems. Technical

Report KUL-ESAT-COSIC98-2, Katholieke Universiteit Leuven, 1998.

[34] G. Horn and B. Preneel. Authentication and payment in future mobile systems.

In J-J. Quisquater, Y. Deswarte, C. Meadows, and D. Gollmann, editors, Com-

puter Security - ESORICS 98, pages 539–548. Springer-Verlag (LNCS 1485), Berlin

(1998).

[35] IBM SecureWay. Towards a framework based solution to cryptographic key recov-

ery. http://www-4.ibm.com/software/security/keyworks/library/.

[36] International Organization for Standardization, Genève, Switzerland. ISO/IEC

7816–4, Information technology—Identification cards—Integrated circuit(s) cards

with contacts—Part 4: Interindustry commands for interchange, 1995.

[37] International Organization for Standardization, Genève, Switzerland. ISO/IEC

11770–2, Information technology—Security techniques—Key management—Part

2: Mechanisms using symmetric techniques, 1996.

183

BIBLIOGRAPHY

[38] International Organization for Standardization, Genève, Switzerland. ISO/IEC

11770–3, Information technology—Security techniques—Key management—Part

3: Mechanisms using asymmetric techniques, 1999.

[39] N. Jefferies, C. Mitchell, and M. Walker. A proposed architecture for trusted

third parties. In E. Dawson and J. Golic, editors, Cryptography: Policy and Al-

gorithms — Proceedings: International Conference, Brisbane, Australia, pages

98–104. Springer-Verlag (LNCS 1029), Berlin (1996).

[40] N. Jefferies, C. Mitchell, and M. Walker. Trusted third party based key manage-

ment allowing warranted interception. In Proceedings: Public Key Infrastructure

Invitational Workshop. MITRE, McLean, Virginia, USA, NISTIR 5788, Septem-

ber 1995.

[41] N. Jefferies, C. Mitchell, and M. Walker. Practical solutions to key escrow and

regulatory aspects. In Public Key Solutions ’96, Zurich, Switzerland, Septem-

ber/October 1996.

[42] J. Kennedy, S.M. Matyas Jr., and N. Zunic. Key recovery functional model. Com-

puters & Security, 19(1):31–36, 2000.

[43] J. Kilian and T. Leighton. Fair cryptosystems, revisited. In D. Coppersmith, ed-

itor, Advances in Cryptology–CRYPTO’95, California, USA, August 1995, pages

208–221. Springer-Verlag (LNCS 963), Berlin (1995).

[44] S. Kim, I. Lee, M. Mambo, and S. Park. On the difficulty of key recovery systems.

In M. Mambo and Y. Zheng, editors, International Workshop on Information Se-

curity, Kuala Lumpur, Malaysia, November 1999, pages 207–224. Springer-Verlag

(LNCS 1729), Berlin (1999).

[45] L.R. Knudsen and K.M. Martin. In search of multiple domain key recovery. Journal

of Computer Security, 6:219–235, 1998.

184

BIBLIOGRAPHY

[46] L.R. Knudsen and T.P. Pedersen. On the difficulty of software key escrow. In

U. Maurer, editor, Advances in Cryptology–EUROCRYPT’96, pages 237–244.

Springer-Verlag (LNCS 1070), Berlin (1996).

[47] H. Krawczyk, M. Bellare, and R. Canetti. HMAC: Keyed-hashing for message

authentication, February 1997. RFC 2104.

[48] Y. Lee and C. Laih. On the key recovery of the key escrow system. In Proceedings

of 13th Annual Computer Security Applications Conference, pages 216–220, San

Diego, California, 1997.

[49] A.K. Lenstra, P. Winkler, and Y. Yacobi. A key escrow system with warrant

bounds. In D. Coppersmith, editor, Advances in Cryptology–CRYPTO’95, pages

197–207. Springer-Verlag (LNCS 963), Berlin (1995).

[50] A. Maclean, S.M. Matyas Jr., and N. Zunic. Organization implementation guide-

lines for recovery of encrypted information. Computers & Security, 19(1):69–81,

2000.

[51] C. Madson and R. Glenn. The use of HMAC-MD5-96 within ESP and AH. RFC

2403.

[52] C. Madson and R. Glenn. The use of HMAC-SHA-1-96 within ESP and AH. RFC

2404.

[53] D.P. Maher. Crypto backup and key escrow. Communications of the ACM,

39(3):48–53, March 1996.

[54] C. Markantonakis and K. Rantos. On the life cycle of the certification authority

key pair in EMV’96. In Proceedings of Euromedia ’99, pages 125–130, Munich,

Germany, April, 1999.

[55] T. Markham and C. Williams. Key recovery header for IPSEC. Computers &

Security, 19(1):86–90, 2000.

185

BIBLIOGRAPHY

[56] K.M. Martin, B. Preneel, C.J. Mitchell, H.J. Hitz, G. Horn, A. Poliakova, and P.

Howard. Secure billing for mobile information services in UMTS. In S. Trigila,

M. Campolargo, H. Vanderstraeten, and M. Mampaey, editors, Proceedings of the

5th Internatiotal Conference in Services and Networks, IS&N’98, pages 535–548.

Springer-Verlag (LNCS 1430), Berlin (1998).

[57] S.M. Matyas Jr. and N. Zunic. Additional Key Recovery Functions. Computers

& Security, 19(1):37–40, 2000.

[58] D. Maughan, M. Schertler, and J. Turner. Internet security association and key

management protocol (ISAKMP). RFC 2408.

[59] A.J. Menezes, P.C. van Oorschot, and S.A. Vanstone. Handbook of Applied Cryp-

tography. CRC Press, Boca Raton, 1997.

[60] S. Micali. Fair cryptosystems. In L.J. Hoffman, editor, Building in Big Brother,

The Cryptographic Policy Debate, pages 149–173. Springer-Verlag, New York,

1995.

[61] W.J. Micali. Fair public key cryptosystems. In E.F. Brickell, editor, Advances

in Cryptology–CRYPTO’92, pages 113–138. Springer-Verlag (LNCS 740), Berlin

(1993).

[62] C.J. Mitchell and K. Rantos. A fair certification protocol. ACM Computer Com-

munication Review, 29(3):47–49, July 1999.

[63] C.J. Mitchell, M. Ward, and P. Wilson. Key control in key agreement protocols.

Electronics Letters, 34:980–981, 1998.

[64] J. Nechvatal. A public key based key escrow system. Journal of System Software,

35(1):73–83, October 1996.

[65] J.G. Nieto, K. Viswanathan, C. Boyd, and E. Dawson. Key recovery system for

the commerical environment. In E. Dawson, A. Clark, and C. Boyd, editors,

Information Security and Privacy – ACISP 2000, pages 149–162. Springer-Verlag

(LNCS 1841), Brisbane, Australia, 2000.

186

BIBLIOGRAPHY

[66] National Institute of Standards and Technology. requirements for key recovery

products, November 1998. Available at http://csrc.nist.gov/keyrecovery/.

[67] NSA report. threat and vulnerability model for key recovery, February 1998.

http://www.fcw.com/pubs/fcw/1998/0413/web-nsareport-4-14-1998.html.

[68] OpenCard Framework — General Information Web Document, October 1998.

http://www.opencard.org.

[69] OpenCard Framework 1.2 — Programmer’s Guide, December 1999.

http://www.opencard.org.

[70] National Institute of Standards and Technology. FIPS Publication 185: Escrowed

Encryption Standard, February 1994.

[71] B. Pfitzmann and M. Waidner. How to break fraud-detectable key recovery. ACM

Operating Systems Review, 32(1):23–28, 1998.

[72] K. Rantos and C.J. Mitchell. Key recovery scheme interoperability – a protocol

for mechanism negotiation. Submitted.

[73] K. Rantos and C.J. Mitchell. Matching key recovery mechanisms to business

requirements. Submitted.

[74] K. Rantos and C.J. Mitchell. Remarks on KRA’s key recovery block format.

Electronics Letters, 35:632–634, 1999.

[75] K. Rantos and C.J. Mitchell. Key recovery for archived data using smart cards.

In Proceedings of the 5th Nordic Workshop on Secure IT Systems, pages 75–85,

Reykjavik, Iceland, October 2000.

[76] K. Rantos and C.J. Mitchell. Key recovery in ASPeCT authentication and initial-

isation of payment protocol. In Proceedings of 4th ACTS Mobile Communications

Summit, pages 629–634, Sorento, Italy, June, 1999.

[77] B. Schneier. Applied Cryptography. John Wiley & Sons Inc., 2nd edition, 1996.

187

BIBLIOGRAPHY

[78] B. Schneier. Security in the real world: How to evaluate security technology.

Computer Security Journal, 15(4):1–14, 1999.

[79] A. Shamir. How to share a secret. Communications of the ACM, 22(11):612–613,

March 1979.

[80] A. Shamir. Partial key escrow: A new approach to software key escrow. The Weiz-

mann Institute, presentation at NIST Key Escrow Standards meeting, September

1995.

[81] T. Shoriak. SSL/TLS protocol enablement for key recovery. Computers & Security,

19(1):100–104, 2000.

[82] Skipjack. http://csrc.nist.gov/encryption/skipjack/skipjackkea.htm.

[83] M. Smith, P. van Oorschot, and M. Willett. Cryptographic information recovery

using key recovery. Computers & Security, 19(1):21–27, 2000.

[84] M.R. Smith. Commonsense Computer Security. McGraw-Hill, 1994.

[85] Sun Microsystems. Java card 2.1 application programming interface, February

1999. http://www.java.sun.com/products/javacard/.

[86] Sun Microsystems. Java card 2.1 runtime environment specification, February

1999. http://www.java.sun.com/products/javacard/.

[87] Sun Microsystems. Java card 2.1 virtual machine specification, March 1999.

http://www.java.sun.com/products/javacard/.

[88] Universal Mobile Telecommunications System (UMTS). http://www.umts-

forum.org/.

[89] E.R. Verheul and H.C.A. van Tilborg. Binding Elgamal: A fraud-detectable al-

ternative to key escrow proposals. In W. Fumy, editor, Advances in Cryptology–

EUROCRYPT’97, pages 119–133. Springer-Verlag (LNCS 1233), Berlin (1997).

188

BIBLIOGRAPHY

[90] S.T. Walker. Software key escrow: A better solution for law enforcement’s needs?

In L.J. Hoffman, editor, Building in Big Brother, The Cryptographic Policy Debate,

pages 174–179. Springer-Verlag, New York, 1995.

[91] S.T. Walker, S.B. Lipner, C.M. Ellison, and D.M. Balenson. Commercial key

recovery. Communications of the ACM, 39(3):41–47, March 1996.

[92] The White House. Directive on public key encryption management, 1993.

[93] M.J. Wiener. Efficient DES key search - an update. RSA Laboratories’ Crypto-

Bytes, 3(2):6–8, Autumn 1997.

[94] M. Willett. Features, attributes, characteristics, and traits (FACTs) of key recov-

ery schemes/products. Computers & Security, 19(1):28–30, 2000.

[95] C. Williams and N. Zunic. Global interoperability for key recovery. Computers &

Security, 19(1):48–55, 2000.

[96] N. Zunic. Organization considerations for retrieval of stored data via key recovery

methods. Computers & Security, 19(1):82–85, 2000.

189

