
Public key encryption using block
ciphers

Chris J. Mitchell

Technical Report
RHUL–MA–2003–6
9 September 2003

Royal Holloway
University of London

Information Security Group
Department of Mathematics

Royal Holloway, University of London
Egham, Surrey TW20 0EX, England

http://www.rhul.ac.uk/mathematics/techreports

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Royal Holloway Research Online

https://core.ac.uk/display/78876469?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Abstract

A method for deriving a public key encryption system from any ‘conventional’
(secret key) block cipher is described. The method is related to, but improves
upon, Merkle’s ’puzzle system’.

1 Introduction

In this paper we describe a very simple means of deriving a public key en-
cryption scheme from an arbitrary symmetric block cipher. The idea is based
on a simple trade-off between storage and computation. An important aspect
of the scheme is that, as the availability of cheap mass-storage grows, so the
security of the scheme can be increased.

Note that the scheme described is related, but not identical, to Merkle’s
‘puzzle system’ [2] (see also page 537 of [1]). It has the significant advantage
over Merkle’s scheme that the recipient of an encrypted message can decrypt
it immediately, whereas in Merkle’s scheme decryption requires an exhaustive
search.

2 The scheme

We divide the description of the scheme into five subsections, as follows:

• Domain parameter selection,

• Key generation — generation of a public/private key pair,

• Preparing for use of a public key — computations which a user must
perform before use of a public key is possible,

• Encryption — using the public key,

• Decryption — using the private key.

2.1 Domain parameter selection

Before use of the scheme an n-bit block cipher must be selected, i.e. a block
cipher operating on plaintext and ciphertext blocks of n bits for some n.
We write eK(X) for the block cipher encryption of data string X using a
key K, which we assume has k bits. We write dK(X) for the corresponding
decryption. Note that if X is longer than the block cipher block length n then

1



in computing eK(X) we assume that an appropriate mode of operation (e.g.
Cipher Block Chaining — see, for example, [1]) is used. Two positive integers
must also be selected, namely m and d. Parameter m helps determine the
size of the public and private keys, and d helps determine the size of public
keys (details below).

2.2 Key generation

A user wishing to generate a key pair must obtain a set of m random keys for
the specified block cipher, K1, K2, . . . , Km say. These constitute the user’s
private key. The user must also choose a random data string X of dn bits,
and then compute Pi = eKi

(X) for every i (1 ≤ i ≤ m). The sequence of
values (P1, P2, . . . , Pm) together with X then constitutes the user’s public
key. Note that every user should choose a different value for X (e.g. by
incorporating a unique identifier into X).

2.3 Preparing for use of a public key (pre-processing)

Suppose user A wishes to send user B an encrypted message, and A knows
that B’s public key is ((P1, P2, . . . , Pm), X). A now generates a sequence of
random block cipher keys: L1, L2, . . ., and for each such key generates eLi

(X)
and compares the result with (P1, P2, . . . , Pm). Eventually a match will be
found, i.e. suppose eLj

(X) = Pi, for some i and j. Given that d was chosen
to be sufficiently large, there is a very high probability that Lj = Ki.

User A now stops the search and retains Lj and i, which can be used
to encrypt a message to B (as many times as is required). Note that if A
retains Lj and i, A can discard the remainder of B’s public key.

2.4 Encryption

To encrypt a message M for transmission to B, A simply computes eLj
(M),

and sends the result to B, along with the integer i.

2.5 Decryption

On receipt of an encrypted string C, together with the parameter i, B uses
key Ki to decrypt it, i.e. B computes dKi

(C).

2



3 Analysis

3.1 Parameter selection

The parameter d should be chosen so that the probability that two keys
will map the dn-bit string X to the same encrypted string is very small.
Assuming that the block cipher behaves in a random fashion, this can be
achieved by choosing dn to be a few bits longer then k.

The parameter m should be chosen to be as large as is feasible. The
larger m is, the more efficient the rest of the scheme is and/or the greater
the security level can be.

3.2 Complexity of scheme

The storage complexity of the scheme is simple to compute. Private keys
contain m block cipher keys, i.e. they contain a total of mk bits. Public
keys contain m encrypted strings, each of dn bits, i.e. public keys contain
dmn bits. Of course, once the Pre-processing step described in Section 2.3 is
complete, a user need only retain a single block cipher key of k bits instead
of the entire public key.

Encryption and decryption are simply block cipher encryption and de-
cryption, and hence will operate much more quickly than most public key
ciphers. The major computational complexity of the scheme lies in the Pre-
processing step. The expected number of trials to find a key is of the order
of 2k/m. Hence if m = 2s then the expected number of trials will be of the
order of 2k−s.

Thus, as an example, suppose k = 64 and s = 32, i.e. m = 232 ' 4× 109.
Suppose also that n = 128. Note that if the key length of the block cipher
we wish to use is greater than the desired value of k then we can reduce the
effective length by assuming certain key bits are fixed. Hence, to achieve
these parameters we could, for example, use AES/Rijndael [3] with 128-bit
keys and with half of the key bits fixed.

The private key will thus contain mk = 235 ' 3× 1010 bytes, i.e. around
30 Gigabytes (easily within the storage capability of a modern PC). Of the
order of 232 ' 4× 109 trials will be required to complete the Pre-processing
step. Hence, if the entity performing this step can perform 105 encryptions
per second, then Pre-processing will take of the order of 10 hours. Public
keys will contain around 60 Gigabytes, but once pre-processing is complete
the public key can be discarded.

These numbers are around the limits of today’s computers’ capabilities.
However, as computing power and available storage continues to grow, these

3



requirements will become less and less onerous. Of course, this example only
enables use of 64-bit encryption, and larger keys are likely to be required
in the near future to cope with growing cryptanalytic capabilities. Nev-
ertheless, this scheme would appear to become more and more feasible as
time progresses, since, to break the scheme, the cryptanalyst requires com-
putational resources equal to the product of the computational and storage
resources available to the legitimate user. Thus, the increasing availability
of ever cheaper storage increases the margin of safety between the legitimate
user and the cryptanalyst.

3.3 Attacks on the scheme

We now briefly examine the ways in which a cryptanalyst E might attempt to
break the scheme. Note that we assume throughout that the block cipher is
resistant to all attacks other than exhaustive key search. Note also that, since
every user employs a different value X, precomputation attacks on multiple
public keys are not feasible.

We first consider the simplest attack model, where E has observed one
or more messages encrypted by a single user, and hence E will know i and
eKi

(M) for one or more messages M . Knowledge of i simply identifies which
of the block cipher keys this user has chosen to employ. Hence this is only of
use if E has already discovered this key. If E performs 2t trial encryptions of
X, the probability that E will be able to deduce this key is 2t−k. Knowledge
of eKi

(M) will not be of any use to E unless E can choose M to be one for
which E has a precomputed table of values eK(M) for a variety of keys K.
In such a case, if the table has 2t entries, then the probability that E will
successfully find the key is 2t−k.

Hence, if we reconsider the example from Section 3.2, we see that, if the
precomputed table has 2t entries, then the probability of finding the key
is 2t−64. We next consider how large t might be. If we suppose that the
cryptanalyst has 1000 times the computing resources of the genuine user,
then the cryptanalyst will be able to perform 108 encryptions per second,
i.e. around 1013 encryptions per day. Thus 3 months work will yield a table
containing around 250 entries (of course, the storage and sorting costs for a
table containing perhaps 10 million Gigabytes will be non-negligible)! This
will still only give the attacker a probability of 2−14 of discovering the desired
key.

We next examine a more complex attack model where E has observed
messages encrypted by a number of users (say 2u users). We suppose that
E has been fortunate enough (perhaps by design) to have observed the same
message M encrypted by each of the 2u users. Suppose moreover that E has

4



a precomputed table of values eK(M) for a variety of keys K. If the table
has 2t entries, then the probability that E will successfully find the key is of
the order of 2t+u−k.

Revisiting our example, and supposing the existence of a table of the
same size as discussed above, then the probability of finding one user’s key
is of the order of 2u−14. Hence, if E has observed M encrypted by around
1000 users (i.e. u ' 10) then the probability of successfully finding one key is
still much less than 0.5, although it is now becoming significant. This attack
scenario serves as a measure of the overall security of the scheme, assuming
a chosen plaintext attack launched against a large number of users.

To avoid attacks of this latter type, it would seem prudent to arrange
matters so that obtaining the same message M encrypted using a variety of
different keys is made infeasible. This can be achieved by using application-
specific mechanisms. Two obvious examples of possible approaches are as
follows. Firstly, as is common practice when using public key encryption,
the public key can be used solely for encrypting a session key, where session
keys are chosen at random by the encryptor. Secondly, the encryptor can
always arrange to randomise encrypted strings, e.g. by using a random IV
when encrypting using CBC mode (see, for example, page 230 of [1]).

Finally note that these attacks are simply the same as attacks against
conventional uses of block ciphers, when one assumes known or chosen plain-
text attacks. What weaknesses we observe for our example case apply to all
block ciphers with 64-bit keys, which is one reason why 128-bit keys are now
becoming the norm. Of course, as storage becomes cheaper, the system de-
scribed here can be used with significantly longer keys (and correspondingly
larger public key tables), increasing the margin of security.

3.4 Choosing parameters revisited

Based on the above analysis, the size of public keys (i.e. mdn = 2smn) should
be chosen to be as large as storage allows. Having chosen s, the approximate
number of trials to be performed by a legitimate public key user, 2t say,
should be chosen to be as large as user computing power allows. The key
length k should then be defined as k = s + t.

The complexity for the attacker will be of the order of 2k. Hence, if
k − t, the difference in computing power between the cryptanalyst and the
legitimate user, stays roughly constant, then the security level of the system
will grow as the feasible choice for s grows. I.e. the security level of the
system will grow in line with the growth in available data storage.

5



3.5 Reducing the size of public key certificates

We now consider one simple way of improving the efficiency of the scheme.
As currently presented, the scheme involves rather large public keys which, if
distributed within public key certificates, will mean that the certificates are
very large. To avoid this, a hash-code computed over the complete public
key (i.e. the set of 2s ciphertexts) can be certified instead.

When a user wishes to process a public key, the complete set of 2s cipher-
texts can be obtained from some public source, which need not be trusted.
Before use, the set of 2s values can then be verified by computing the hash of
this set, and verifying the hash-code using the public key certificate. With
this simple enhancement, the scheme now has almost all the characteristics
of a ‘conventional’ public key encryption scheme. The remaining major dis-
advantages would appear to be the preprocessing time, and question marks
over whether current technology allows the scheme to be used with large
enough block cipher key lengths to be considered completely secure.

4 Summary and conclusions

We have presented a conceptually very simple scheme for building a public
key encryption scheme out of a symmetric cipher. The scheme relies on a
memory/storage trade-off, and the ‘margin of security’ (in terms of the differ-
ence in computations to be performed by the cryptanalyst and the legitimate
user) is proportional to the size of the private key. Hence, as memory be-
comes ever cheaper, the security margin of the system can be increased in
absolute terms, regardless of improvements in computing power (assuming
that the ratio of cryptanalyst computing power to legitimate user computing
power remains constant).

References

[1] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone. Handbook of
Applied Cryptography. CRC Press, Boca Raton, 1997.

[2] R.C. Merkle. Secure communications over insecure channels. Communi-
cations of the ACM, 21:294–299, 1978.

[3] National Institute of Standards and Technology (NIST), Gaithersburg,
MD. Federal Information Processing Standards Publication 197 (FIPS
PUB 197): Specification for the Advanced Encryption Standard (AES),
November 2001.

6


