
On the security of XCBC, TMAC and
OMAC

Chris J. Mitchell

Technical Report
RHUL–MA–2003–4

19 August 2003

Royal Holloway
University of London

Information Security Group
Department of Mathematics

Royal Holloway, University of London
Egham, Surrey TW20 0EX, England

http://www.rhul.ac.uk/mathematics/techreports

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Royal Holloway Research Online

https://core.ac.uk/display/78876467?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Abstract

The security provided by the XCBC, TMAC and OMAC schemes is anal-
ysed and compared with other MAC schemes. The results imply that there
is relatively little to be gained practically through the introduction of these
schemes by comparison with other well-established MAC functions. More-
over, TMAC and OMAC possess design weaknesses which enable part of the
secret key to be recovered much more easily than would ideally be the case
— design changes are suggested which alleviate this problem. Whether or
not the proofs of security are retrievable for the modified designs remains an
open question, although the need for change would appear to be clear.

1 Introduction

In this paper the security of three related methods for computing Message
Authentication Codes (MACs) is analysed and compared with the level of
security provided by other, more well-established, MACing techniques. The
security analysis is given in terms of the most efficient (known) forgery and
key recovery attacks that can be launched against the schemes.

The three MAC schemes considered here are known as XCBC [3], OMAC
[8] and TMAC [7] (see also [6]). These three schemes are all examples of
CBC-MACs, i.e. they are all based on the use of a block cipher in Cipher
Block Chaining Mode — see, for example, [9]. Various types of CBC-MAC
scheme have been in wide use for many years for protecting the integrity and
guaranteeing the origin of data.

Note that all three of these schemes have been specifically designed for use
with messages of variable length. Hence we compare these MAC schemes
with two other schemes also designed for messages of arbitrary length, namely
EMAC [2] and the ANSI retail MAC [1], otherwise known as MAC algorithms
2 and 3 (respectively) from ISO/IEC 9797-1 [5].

2 Key recovery and forgery attacks

There are two main classes of attack on a MAC scheme, namely key recov-
ery attacks, in which an attacker is able to discover the secret key used to
compute the MACs, and forgery attacks in which an attacker is able to deter-
mine the correct MAC for a message (without a legitimate key holder having

1



generated it). Key recovery attacks are clearly more powerful than forgery
attacks since once the key is known arbitrary forgeries are possible. We also
consider partial key recovery attacks in which an attacker is able to obtain
part of the secret key.

Using a simplified version of the approach used in [5], we use a three-tuple
[a, b, c] to quantify the resources needed for an attack, where a denotes the
number of off-line block cipher encipherments (or decipherments), b denotes
the number of known data string/MAC pairs, and c denotes the number of
chosen data string/MAC pairs.

3 XCBC and some simple attacks

The XCBC scheme was originally proposed by Black and Rogaway in 2000
[3], with the objective of providing a provably secure CBC-MAC scheme
which minimises the number of block cipher encryptions and decryptions.

3.1 Definition

The XCBC scheme operates as follows. First (as throughout) suppose that
the underlying block cipher transforms an n-bit block of plaintext into an
n-bit block of ciphertext (i.e. it is an n-bit block cipher), and that it uses a
key of k bits. If X is an n-bit block then we write eK(X) (or dK(X)) for the
block cipher encryption (or decryption) of the n-bit block X using key K.

The XCBC MAC scheme uses a triple of keys (K1, K2, K3) where K1 is a
block cipher key, i.e. it contains k bits, and K2, K3 are both n-bit strings.
The XCBC MAC computation is as follows.

A message D is first padded and split into a sequence of q n-bit blocks:
D1, D2, . . . , Dq. Note that there are two possibilities for the padding process.
If the bit-length of the message is already an integer multiple of n then no
padding is performed. However, if the bit-length of the message is not a
multiple of n then the padded message consists of the message concatenated
with a single one bit followed by the minimal number of zeros necessary
to make the bit-length of the padded message a multiple of n. (Note that
this padding strategy is not a 1-1 mapping of messages to padded messages;
however, problems are avoided by the use of two different MAC computation
strategies, as described immediately below).

The computation of the MAC depends on whether or not padding has been

2



necessary. In the first case, i.e. where no padding is necessary, the MAC
computation is as follows:

H1 = eK1(D1),

Hi = eK1(Di ⊕Hi−1), (2 ≤ i ≤ q − 1), and

MAC = eK1(Dq ⊕Hq−1 ⊕K2).

In the second case, i.e. where padding is applied, the MAC computation is
as follows:

H1 = eK1(D1),

Hi = eK1(Di ⊕Hi−1), (2 ≤ i ≤ q − 1), and

MAC = eK1(Dq ⊕Hq−1 ⊕K3).

That is, the keys K2 and K3 are ex-ored with the final plaintext block de-
pending on whether or not padding is necessary.

Note that the MAC used will be truncated to the left-most m bits of the
MAC value given in the above equation, where m ≤ n. In this paper we only
consider the case where m = n, i.e. where no truncation is performed.

Before proceeding we observe that other authors have also considered the
security of XCBC and related schemes. In particular, Furuya and Sakurai [4]
have considered various attacks against 2-key variants of XCBC. However,
some of the previous work (including that in [4]) has focussed on weaknesses
arising from particular choices for the underlying block cipher. This contrasts
with the approach followed in this paper which considers attacks independent
of the block cipher.

3.2 Forgery attacks on XCBC

Suppose a fixed key triple (K1, K2, K3) is in use for computing XCBC-
MACs. Let D1, D2, . . . , Dq be any sequence of n-bit blocks, where q ≥ 0
is arbitrary. Suppose (by some means) an attacker has the MACs for 2n/2

different messages which, after padding and splitting into a sequence of n-bit
blocks, all have the form D1, D2, . . . , Dq, X, for some n-bit block X. Because
padding has been applied the MACs will all be computed using the key
K3. (Note that, since padding is applied, all of these messages must have
unpadded bit-length ` satisfying qn < ` < (q + 1)n).

Suppose that the attacker also has the MACs for a further 2n/2 different
messages to which padding is not applied and which, after division into a se-
quence of n-bit blocks, have the form D1, D2, . . . , Dq, Y , for some n-bit block

3



Y . Because padding has not been applied, the MACs will all be computed
using the key K2. Note that, since no padding is applied, all these messages
will have length precisely (n + 1)q bits.

The total number of message/MAC pairs required is clearly 2n/2+1. In the
discussion below we ‘cheat’ slightly and refer to these as ‘known MACs’
rather than ‘chosen MACs’. The justification for this is that if q = 0 then we
do not impose any conditions on the messages for which MACs are required
(except for their lengths). Also, there may be applications where the first
part of a message is fixed, and only the last block is variable — again in such
a case the required message/MAC pairs can be obtained without choosing
the messages.

By the ‘usual’ birthday paradox probability arguments (see, for example,
[9]), with a probability of approximately 0.63 one of the MACs from the
first set of messages will equal one of the MACs from the second set. Sup-
pose the pair of messages concerned are respectively D1, D2, . . . , Dq, X

∗ and
D1, D2, . . . , Dq, Y

∗ for some n-bit blocks X∗ and Y ∗.

Before proceeding, suppose that Q is the ‘simple’ CBC-MAC for the q-block
message D1, D2, . . . , Dq, i.e. if

H1 = eK1(D1), and

Hi = eK1(Di ⊕Hi−1), (2 ≤ i ≤ q)

then Q = Hq.

Then, by definition, we immediately have that

eK1(Q⊕X∗ ⊕K3) = eK1(Q⊕ Y ∗ ⊕K2).

Hence, since encryption with a fixed key is a permutation of the set of all
n-bit blocks, we have Q⊕X∗⊕K3 = Q⊕ Y ∗⊕K2, i.e. X∗⊕ Y ∗ = K2⊕K3.
That is, the attacker has learnt the value of K2 ⊕ K3. Knowledge of this
value immediately enables forgeries to be computed.

Specifically, suppose (D1, D2, . . . , Dq) is the padded version of a message (of
unpadded length ` satisfying (q − 1)n < ` < qn) for which the MAC M is
known. Then the unpadded message (D1, D2, . . . , Dq ⊕K2 ⊕K3) also has
MAC M . The overall complexity of this forgery attack is [0, 2n/2+1, 0].

Note that the above is, in some sense, also a partial key recovery attack,
since the attacker has reduced the number of unknown key bits from k + 2n
to k + n. However, to simplify the presentation below we do not consider
this further here.

4



3.3 Key recovery attacks on XCBC

We describe two main types of key recovery attack. The first attack (essen-
tially based on the Preneel-van Oorschot attack [11, 12]) requires a significant
number of known MACs and ‘only’ 2k block cipher operations. The second
attack (a ‘meet-in-the-middle’ attack) requires minimal numbers of known
MACs, but potentially larger numbers of block cipher operations (and more
storage).

The first attack is as follows. Suppose an attacker knows the MACs for 2n/2

different messages of length less than n bits. Thus, after padding and division
into n-bit blocks, all these messages will consist of one block. Suppose the
attacker also knows the MACs for a further 2n/2 different messages of bit-
length ` satisfying n < ` < 2n, i.e. messages which, after padding, contain
two blocks.

Exactly as above, there is a good chance (probability ' 0.63) that a message
from the first set will have the same MAC as a message from the second set.
Suppose that the one-block and two-block messages concerned are X and
(Y , Z) respectively. Since both messages involve padding, key K3 is used in
both cases. Then we know that

eK1(K3 ⊕X) = eK1(K3 ⊕ Z ⊕ eK1(Y )).

Hence, since eK1 is a permutation on the set of all n-bit blocks, we have
K3⊕X = K3⊕Z⊕ eK1(Y ), i.e. X⊕Z = eK1(Y ). It is now possible (at least
in principle) to perform an exhaustive search through all possible values for
K1, and as long as k < n it is likely that only the correct value will satisfy
this equation. If k ≥ n then a number of ‘false’ matches will be found —
however, these can be eliminated in the next stage with minimal effort.

Given a candidate for K1, any of the known MACs for one-block messages
can be decrypted using this value of K1 to reveal the value of K3. This
candidate key pair can then be tested on a further known MAC, and all false
keys can quickly be eliminated (the complexity of this step does not affect
the overall attack complexity since it is only conducted when a candidate
for K1 is found, which will only happen occasionally). The total expected
complexity of this first key recovery attack is thus [2k−1, 2n/2+1, 0], since
the correct key should be found (on average) halfway through the exhaustive
search of the key space.

For the second attack we present just one variant (many other meet-in-the-
middle variants exist). Suppose that the attacker has access to d(k + n)/ne
known single-block message/MAC pairs all of which involve no padding (and

5



hence K2 is used), together with a single known message/MAC pair for which
padding is applied, i.e. a total of d(k + 2n)/ne known MACs. One interest-
ing point regarding the attack we now describe is that negligible storage is
required, unlike similar attacks on EMAC (although this would no longer be
true if the messages contained more than one block).

The attacker chooses one of the single-block messages for which padding is
not used — suppose the one message block is D and the MAC is M . The
attacker first goes through all 2k possible values for the key K1 and computes
dK∗

1
(M)⊕D = K∗

2 for each candidate value K∗
1 . The pair (K∗

1 , K∗
2) is then

tested as a candidate for (K1, K2) using a second known message/MAC
pair for which padding was not used. This will require a single block cipher
operation, and almost all incorrect candidate key pairs will be eliminated.
By means of further tests against known message/MAC pairs (from the set
of d(k + n)/ne), with high probability all but the correct key pair can be
eliminated. The single remaining known MAC can be used to derive K3.
The total complexity of this attack is thus [2k+1, d(k + 2n)/ne, 0]. (Note
that this attack requires only four times as many block cipher operations as
the previous attack, and requires only a handful of known MACs compared
to a very large number for the previous attack).

4 TMAC and its security

The TMAC scheme, a simple variant of XCBC, was proposed by Kurosawa
and Iwata [8] with the goal of reducing the number of required keys from
three to two.

4.1 Definition of TMAC

The TMAC scheme operates in exactly the same way as XCBC except that
it only uses a key pair (K, K ′) instead of a key triple, where K is a k-bit
block cipher key and K ′ contains n bits. A key triple (K1, K2, K3), as used
by XCBC, is then derived from (K, K ′) by setting K1 = K, K2 = u.K ′

and K3 = K ′, where u is a constant (defined in [8]) and multiplication by u
takes place in a specific representation of the finite field of 2n elements (also
specified in [8]).

6



4.2 Forgery attacks on TMAC

Clearly the forgery attack on XCBC described in Section 3.2 will also apply
to TMAC. There does not appear to be any obvious way in which to take
advantage of the added structure in TMAC to make such an attack more
efficient.

4.3 Key recovery attacks on TMAC

Again, both the key recovery attacks on XCBC described in Section 3.3 will
also apply to TMAC.

There also exists a partial key recovery attack which will yield the key K ′

rather more simply than the entire key can be obtained — most importantly
this attack does not require a search through the entire key space.

Suppose that the attacker performs the forgery attack described in Sec-
tion 3.2. Then, the attacker will learn the value of K2 ⊕ K3 = S, say.
However, in the case of TMAC, we also know that K2 = u.K3, where multi-
plication by the public constant u is defined over the finite field of 2n elements.
Thus K3 = S.(u + 1)−1, and hence the attacker can learn the values of both
K2 and K3. The total complexity of this partial key recovery attack is thus
the same as that of the forgery attack, i.e. [0, 2n/2+1, 0]. (Note that this
yields another full key recovery attack with complexity [2k−1, 2n/2+1, 0]).

Before proceeding we consider the implications of knowledge of K2 and K3.
At first glance it is not obvious that this is any worse than knowing the
value of K2⊕K3, which already enables simple forgeries. However, it is more
serious since it enables a far wider range of forgeries to be performed. For
example, suppose the (unpadded) message D1, D2, . . . , Dq has MAC M , i.e.
M = eK1(K2⊕Dq⊕Hq−1), where Hq−1 is defined as above. Then, if message
E1, E2, . . . , Er has MAC N , it is not hard to see that the message

D1, D2, . . . , Dq−1, Dq ⊕K2, E1 ⊕M, E2, E3, . . . , Er

also has MAC N .

Finally note that this partial key recovery attack against TMAC has previ-
ously been described by Sung, Hong and Lee [13].

7



4.4 Improving TMAC

The main reason that TMAC is significantly weaker than XCBC is the fact
that a simple algebraic relationship exists between K2 and K3. This not only
enables K2 to be trivially deduced from K3 (and vice versa), it also enables
a second linear equation in K2 and K3 to be used to deduce both K2 and
K3.

However, there is no reason for such a simple relationship to exist between
K2 and K3. One way of avoiding this would be to cryptographically derive
both K2 and K3 from the single key K ′. One way in which this could be
done would be to define two different fixed n-bit strings, S2 and S3 say, and
to put K2 = eK′(S2) and K3 = eK′(S3). With this definition, knowledge
of one of K2 (or K3) will not enable K3 (or K2) to be deduced, as long
as the block cipher e resists known ciphertext attacks. Also, knowledge of
K2⊕K3 will also not enable K2 and K3 to be deduced (again assuming that
e resists known ciphertext attacks). This change would, however, mean that
K ′ contains k rather than n bits.

Of course, this change invalidates the security proof for TMAC. It is not
immediately clear how easy it will be to repair the proof for a revised TMAC
of this general type.

5 The security of OMAC

The OMAC scheme, a further simple variant of XCBC, was proposed by
Iwata and Kurosawa [7] with the goal of further reducing the number of
required keys from three to one.

5.1 Definition of OMAC

The OMAC scheme operates in exactly the same way as XCBC except that
it only uses a single key K instead of a key triple, where K is a k-bit block
cipher key. A key triple (K1, K2, K3), as used by XCBC, is then derived
from (K, K ′) by setting L = eK(0n), K1 = K, K2 = u.L and K3 = u2.L,
where 0n is the n-bit block of all zeros, and u is a constant (defined in [7])
and multiplication by u and u2 takes place in a specific representation of the
finite field of 2n elements (also specified in [7]).

Note that there are, in fact, two different variants of OMAC, known as
OMAC1 and OMAC2. The version defined above is OMAC1, and is the

8



one analysed here. However the analysis is almost identical for OMAC2,
which is identical to OMAC1 except that K3 = u−1.L.

5.2 Forgery attacks on OMAC

Just as for TMAC, the forgery attack on XCBC described in Section 3.2 will
also apply to OMAC. There does not appear to be any obvious way in which
to take advantage of the added structure in OMAC to make such an attack
more efficient.

5.3 Key recovery attacks on OMAC

Both the key recovery attacks on XCBC described in Section 3.3 will also
apply to OMAC, as will a simple variant of the partial key recovery attack
described in Section 4.3. In this case however, a second partial key recovery
attack exists, which we now describe. This attack is designed to enable L to
be determined, knowledge of which immediately enables both K2 and K3 to
be determined. The attack is similar to that described in Section 3.3.

Suppose an attacker knows the MACs for 2n/2 different messages of length
less than n bits. Thus, after padding and division into n-bit blocks, all these
messages will consist of one block. Suppose the attacker also knows the MACs
for a further 2n/2 different messages of bit-length ` satisfying n < ` < 2n, i.e.
messages which, after padding, contain two blocks, and for which the first n
bits are all zero.

Exactly as above, there is a good chance (probability ' 0.63) that a message
from the first set will have the same MAC as a message from the second
set. Suppose that the one-block and two-block messages concerned are X
and (0n, Z) respectively (recall that the second message must begin with n
zeros). Since both messages involve padding, key K3 is used in both cases.
Then we know that

eK1(K3 ⊕X) = eK1(K3 ⊕ Z ⊕ eK1(0
n)).

Hence, since eK1 is a permutation on the set of all n-bit blocks, we have
K3 ⊕X = K3 ⊕ Z ⊕ eK1(Y ), i.e. X ⊕ Z = eK1(0

n). But K1 = K, and thus
we know that L = X ⊕ Z. Thus L, and hence K2 and K3, are immediately
available to the attacker. This latter attack has complexity [0, 2n/2, 2n/2].

9



5.4 Improving OMAC

Analogously to the proposed improvements to TMAC (given in Section 4.4),
it is suggested that K2 and K3 are derived from K using the following process:
put K2 = eK(S2) and K3 = eK(S3), where S2 and S3 are fixed and distinct
n-bit strings. This will avoid the attack described in Section 4.3.

In order to avoid the OMAC-specific attack described in Section 5.3, it is
suggested that the key K1 used in MAC computations is not the same as the
key used to derive K2 and K3, to prevent MAC computations accidentally
revealing K2 and/or K3. This is simple to achieve by setting K1 = K ⊕ S1

for a fixed k-bit string S1.

Again, whether or not a security proof can be devised for this modified
OMAC is an interesting open question.

6 Benchmark results and comparisons

We next consider the security provided by two well-known and standardised
CBC-MAC schemes, namely EMAC and the ANSI retail MAC. Note that,
unlike XCBC, TMAC and OMAC, these schemes operate independently of
whether or not a message is padded and how padding is performed.

6.1 EMAC

EMAC is standardised as MAC algorithm 2 in ISO/IEC 9797-1 [5], and has
been proven secure by Petrank and Rackoff [10]. EMAC uses a pair of keys
(K1, K2) where K1 and K2 are both block cipher keys, i.e. they contain k
bits. A message D is first padded and split into a sequence of q n-bit blocks:
D1, D2, . . . , Dq.

The EMAC computation, which essentially involves double encrypting the
final block, is as follows:

H1 = eK1(D1),

Hi = eK1(Di ⊕Hi−1), (2 ≤ i ≤ q − 1), and

MAC = eK2(eK1(Dq ⊕Hq−1)).

As summarised in [5], the most effective (known) forgery attack against
EMAC has complexity [0, 2n/2, 1] and the best key recovery attacks have
complexity either [2k+1, 2n/2, 0] or [s.2k, d2k/ne, 0] (for some small value of

10



s), where the second attack requires O(2k) storage. Note that the second
attack is a meet-in-the-middle attack.

6.2 ANSI retail MAC

The ANSI retail MAC (abbreviated as ARMAC below) is standardised as
MAC algorithm 3 in ISO/IEC 9797-1 [5]. Note that this scheme is widely
used with the block cipher DES (which has n = 64 and k = 56) in environ-
ments where obtaining 2n/2 = 232 message/MAC pairs is deemed infeasible.
However, it seems that a security proof for this scheme does not exist. Nev-
ertheless, since it closely resembles EMAC, heuristically one might expect a
similar level of provable security.

This MAC scheme again uses a pair of keys (K1, K2) where K1 and K2

are both block cipher keys, i.e. they contain k bits. A message D is first
padded and split into a sequence of q n-bit blocks: D1, D2, . . . , Dq. The
MAC computation is as follows:

H1 = eK1(D1),

Hi = eK1(Di ⊕Hi−1), (2 ≤ i ≤ q − 1), and

MAC = eK1(dK2(eK1(Dq ⊕Hq−1))).

As summarised in [5], the best known forgery attack against the ANSI retail
MAC has complexity [0, 2n/2, 1] and the best-known key recovery attack has
complexity [2k+1, 2n/2, 0] — note that one attraction of ARMAC is that it
does not appear to be subject to meet-in-the-middle attacks.

6.3 Comparisons

We compare the three ‘new’ MAC algorithms, i.e. XCBC, OMAC and TMAC,
with the two longer-established schemes with respect to two different criteria:
efficiency and security.

Efficiency can be further sub-divided into two different categories: key length,
and the number of block cipher operations required to compute the MAC for
a message. The key lengths for the five MAC schemes considered here are
given in Table 1.

The number of block cipher operations (encryptions or decryptions) required
to compute the MAC for a message is specified in Table 2. Note that it is
assumed that EMAC and ARMAC are used with the “always add a ‘1’ and

11



Table 1: Key lengths

XCBC TMAC OMAC EMAC ARMAC
k + 2n k + n k 2k 2k

then as many zeros as necessary” padding method, which is standardised as
padding method 2 in ISO/IEC 9797-1 [5].

Table 2: Computational complexity (block cipher operations)

No. of data bits (`) XCBC TMAC OMAC EMAC ARMAC
(t− 1)n < ` < tn t t t t + 1 t + 2

` = tn t t t t + 2 t + 3

From Table 2 it should be clear that XCBC, TMAC and OMAC all offer
workload advantages over EMAC and ARMAC. This workload advantage is
slightly increased by the fact that XCBC, TMAC and OMAC only require
one block cipher key ‘set up’ per MAC computation, whereas EMAC and
OMAC require two — the difference this makes depends on the block cipher
in use. However, these advantages are probably insignificant for messages
that are more than a few blocks long, and even for short messages they are
unlikely to be a major issue; banking networks have been using ARMAC
with a relatively slow block cipher such as DES for many years for very large
numbers of messages, using relatively primitive hardware.

We sub-divide the security comparison into three sub-categories, covering
forgery attacks, key recovery attacks and partial key recovery attacks. The
complexities of forgery attacks against the five MAC schemes considered here
are specified in Table 3.

Table 3: Forgery attack complexities

XCBC TMAC OMAC EMAC ARMAC

[0,2n/2+1,0] [0,2n/2+1,0] [0,2n/2+1,0] [0,2n/2,1] [0,2n/2,1]

The complexities of key recovery attacks are specified in Table 4. Note that
this table does not take account of the fact that the complexities of the

12



second attacks for XCBC, TMAC and OMAC require no significant storage,
whereas the second attack against EMAC requires around O(2k) storage.

Table 4: Key recovery attack complexities

XCBC TMAC OMAC EMAC ARMAC
[2k−1,2n/2+1,0] [2k−1,2n/2+1,0] [2k−1,2n/2+1,0] [2k+1,2n/2,0] [2k+1,2n/2,0]

[2k+1,d(k + 2n)/ne,0] [2k+1,d(k + n)/ne,0] [2k+1,dk/ne,0] [s.2k,d2k/ne,0]

Finally, the complexities of partial key recovery attacks (where they exist)
are specified in Table 5.

Table 5: Partial key recovery attack complexities

XCBC TMAC OMAC EMAC ARMAC

— [0,2n/2+1,0] [0,2n/2+1,0] — —
[0,2n,2n]

7 Conclusions

It should be clear from the analysis above that, in terms of security, XCBC,
TMAC and OMAC offer no significant advantage by comparison with EMAC
and ARMAC. Moreover, in some cases, they would appear to be weaker, al-
though the most significant weaknesses of TMAC and OMAC can be avoided
by changing the key derivation procedure. Unfortunately, these changes
would appear to invalidate the proofs of security for these schemes, and
it would be interesting to see whether proofs for these revised schemes can
be devised.

Nevertheless, XCBC, TMAC and OMAC do offer a small practical advantage
in terms of a modest reduction in the number of block cipher operations,
although this is unlikely to be significant in most applications. If a proof of
security for the revised OMAC can be devised, it would be true that this ‘new
OMAC’ would be at least as attractive as any of the currently standardised
schemes.

In summary, there does not appear to be a compelling case for standardising

13



these new CBC-MAC schemes, and certainly OMAC and TMAC should not
be adopted in their current form.

Acknowledgements

The author would like to gratefully acknowledge a number of helpful com-
ments and suggestions from Kenny Paterson and Matt Robshaw, which have
considerably improved this paper.

References

[1] American Bankers Association, Washington, DC, ANSI X9.19, financial
institution retail message authentication, August 1986.

[2] A. Berendschot, B. den Boer, J.-P. Boly, A. Bosselaers, J. Brandt,
D. Chaum, I. Damgard, M. Dichtl, W. Fumy, M. van der Ham, C. J. A.
Jansen, P. Landrock, B. Preneel, G. Roelofsen, P. de Rooij, and J. Van-
dewalle, Integrity primitives for secure information systems, Lecture
Notes in Computer Science, vol. 1007, Springer-Verlag, Berlin, 1995.

[3] J. Black and P. Rogaway, CBC-MACs for arbitrary length messages:
The three-key constructions, Advances in Cryptology — Crypto 2000
(M. Bellare, ed.), Lecture Notes in Computer Science, vol. 1880,
Springer-Verlag, Berlin, 2000, pp. 197–215.

[4] S. Furuya and K. Sakurai, Risks with raw-key masking — The secu-
rity evaluation of 2-key XCBC, Information and Communications Secu-
rity, 4th International Conference, ICICS 2002 (R. H. Deng, S. Qing,
F. Bao, and J. Zhou, eds.), Lecture Notes in Computer Science, vol.
2513, Springer-Verlag, Berlin, 2002, pp. 327–341.

[5] International Organization for Standardization, Genève, Switzerland,
ISO/IEC 9797–1, Information technology — Security techniques —
Message Authentication Codes (MACs) — Part 1: Mechanisms using
a block cipher, 1999.

[6] T. Iwata and K. Kurosawa, Stronger security bounds for OMAC, TMAC
and XCBC, 2003, Department of Computer and Information Sciences,
Ibaraki University, Japan.

14



[7] , OMAC: One-key CBC MAC, Proceedings of FSE 2003, Lecture
Notes in Computer Science, Springer-Verlag, Berlin, to appear.

[8] K. Kurosawa and T. Iwata, TMAC: Two-key CBC MAC, Topics in
Cryptology — CT-RSA 2003 (M. Joye, ed.), Lecture Notes in Com-
puter Science, vol. 2612, Springer-Verlag, Berlin, 2003, pp. 33–49.

[9] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone, Handbook of
applied cryptography, CRC Press, Boca Raton, 1997.

[10] E. Petrank and C. Rackoff, CBC MAC for real-time data sources, Jour-
nal of Cryptology 13 (2000), 315–338.

[11] B. Preneel and P.C. van Oorschot, A key recovery attack on the ANSI
X9.19 retail MAC, Electronics Letters 32 (1996), 1568–1569.

[12] , On the security of iterated Message Authentication Codes, IEEE
Transactions on Information Theory 45 (1999), 188–199.

[13] J. Sung, D. Hong, and S. Lee, Key recovery attacks on the RMAC,
TMAC, and IACBC, ACISP 2003 (R. Safavi-Naini and J. Seberry, eds.),
Lecture Notes in Computer Science, vol. 2727, Springer-Verlag, Berlin,
2003, pp. 265–273.

15


