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Abstract

The classical non-recursive methods to estimate unknown param-

eters of the model, such as the maximum likelihood method, the

method of least squares etc. eventually require maximization pro-

cedures. These methods are often difficult to implement, especially

for non i.i.d. models. If for every sample size n, when new data are

acquired, an estimator has to be computed afresh, and if a numeri-

cal method is needed to do so, it generally becomes very laborious.

Therefore, it is important to consider recursive estimation procedures

which are appealing from the computational point of view. Recur-

sive procedures are those which at each step allow one to re-estimate

values of unknown parameters based on the values already obtained

at the previous step together with new information. We propose a

wide class of recursive estimation procedures for the general statis-

tical model and study convergence, the rate of convergence, and the

local asymptotic linearity. Also, we demonstrate the use of the results

on some examples.

Keywords: recursive estimation, estimating equations, M-estimators, stochastic

approximation.

1 Introduction

Let X1, . . . , Xn be independent identically distributed (i.i.d.) random vari-
ables (r.v.’s) with a common distribution function Fθ with a real (unknown)
parameter θ. AnM -estimator of θ is defined as a statistic θn = θn(X1, . . . , Xn),
which is a solution (w.r.t. v) of the estimating equation

n
∑

i=1

ψ(Xi; v) = 0,(1.1)

where ψ is a suitably chosen function. For example, if θ is a location param-
eter in the normal family of distribution functions, the choice ψ(x, v) = x−v
gives the MLE (maximum likelihood estimator). For the same problem,
if ψ(x, v) = sign(x − v), the solution of (1.1) reduces to the median of
X1, . . . , Xn. Other forms of ψ for location or other models may be chosen
from relevant considerations. If Fθ(x) has a density (w.r.t. a σ-finite mea-
sure µ) and the density is differentiable w.r.t. θ, then the choice ψ(x, v) =
f ′(x, v)/f(x, v) yields the MLE.

Suppose now that X1, . . . , Xn are not necessarily independent or identi-
cally distributed r.v’s, with a joint distribution depending on a real param-
eter θ. Then an M -estimator of θ is defined as a solution of the estimating
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equation

n
∑

i=1

ψi(v) = 0,(1.2)

where ψi(v) = ψi(X
i
i−k; v) with X i

i−k = (Xi−k, . . . , Xi). Therefore, the ψ-
functions may now depend on the past observations as well. For instance,
if Xi’s are observations from a discrete time Markov process, then one can
assume that k = 1. In general, if no restrictions are made on the dependence
structure of the process Xi, one may need to consider ψ-functions depending
on the vector of all past and present observations of the process (that is,
k = i− 1). If the conditional probability density function of the observation
Xi, given Xi−k, . . . , Xi−1, is fi(x, v) = fi(x, v|Xi−k, . . . , Xi−1), then one can
obtain the MLE on choosing ψi(v) = f ′

i(Xi, v)/fi(Xi, v). Besides MLEs, the
class of M -estimators includes estimators with special properties such as
robustness. An estimator is said to be robust if its behaviour is not “seriously
affected” by violations of underlying assumptions. Under certain regularity
and ergodicity conditions it can be proved that there exists a consistent
sequence of solutions of (1.2) which has an asymptotic representation of the
following type:

a1/2
n (θ) (θn − θ) = a−1/2

n (θ)
n
∑

i=1

ψi(θ) + opθ(1),(1.3)

where an(θ) = an(θ, ψn) is a normalizing sequence. In the i.i.d. case this
implies the asymptotic normality result. (See e.g., Huber (1981), Lehman
(1983), Serfling (1980). A comprehensive bibliography can be found in Ham-
pel at al (1986), Jurečková and Sen (1996), Launer and Wilkinson (1979),
and Rieder (1994).)

If ψ-functions are nonlinear, it is rather difficult to work with the cor-
responding estimating equations. (It is well-known that, typically, robust
M-estimators are nonlinear.) The situation is much more complex if a se-
quential estimation rule is required. If for every sample size n, when new
data are acquired, an estimator has to be computed afresh, and if a numeri-
cal method is needed to do so, it generally becomes very laborious. Therefore
one can consider recursive estimation procedures which are appealing from
the computational point of view. Note that for a linear estimator, e.g., for
the sample mean, θn = X̄n we have X̄n = (n − 1)X̄n−1/n + Xn/n, that is
θn = θn−1(n − 1)/n + Xn/n, indicating that the estimator θn at each step
n can be obtained recursively using the estimator at the previous step θn−1

and the new information Xn. Such an exact recursive relation may not hold
for nonlinear estimators (see, e.g., the case of median).
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In general, the following heuristic argument can be used to establish a
possible form of an approximate recursive relation (see also Jurečková and
Sen (1996), and Lazrieva and Toronjadze (1987)). Since θn is defined as a
root of the estimating equation (1.2), denoting the left hand side of (1.2) by
Mn(v) we have Mn(θn) = 0 and Mn−1(θn−1) = 0. Assuming the difference
θn − θn−1 is “small” we can write

0 = Mn(θn) −Mn−1(θn−1) = Mn (θn−1 + (θn − θn−1)) −Mn−1(θn−1)

≈ Mn(θn−1)+M
′
n(θn−1)(θn−θn−1)−Mn−1(θn−1) = M ′

n(θn−1)(θn−θn−1)+ψn(θn−1).

Therefore,

θn ≈ θn−1 −
ψn(θn−1)

M ′
n(θn−1)

.

Suppose now that the estimator θn is consistent (a.s. converges to the value
of the unknown parameter θ as n → ∞). Then we can replace M ′

n(θn−1)
by M ′

n(θ) =
∑n

i=1 ψ
′
i(θ), which in turn, depending on the nature of the

underlying model, can be replaced by a simpler expression. For instant, in
i.i.d. models with ψ(x, v) = f ′(x, v)/f(x, v) (a MLE case), by the strong law
of large numbers,

1

n
M ′

n(θ) =
1

n

n
∑

i=1

(f ′(Xi, θ)/f(Xi, θ))
′ ≈ Eθ

[

(f ′(X1, θ)/f(X1, θ))
′]

= −i(θ)

for large n’s, where i(θ) is the one-step Fisher information. So, in this case,
one can use the recursion

θn = θn−1 +
1

n i(θn−1)

f ′(Xn, θn−1)

f(Xn, θn−1)
,

to construct an estimator which is “asymptotically equivalent” to the MLE.
In general, following the above argument, for a multidimensional param-

eter θ ∈ R
m one can derive an estimator using the recursion

θn = θn−1 + Γ−1
n (θn−1)ψn(θn−1), t ≥ 1,(1.4)

where ψn is a suitably chosen vector process, Γn is a (possibly random)
normalizing matrix process and θ0 is some initial point.

In i.i.d. models, similar estimating procedures have been studied by a
number of authors using methods of stochastic approximation theory (see,
e.g., Khas’minskii and Nevelson (1972), Fabian (1978), Ljung, Pflug and
Walk (1992), Titterington, Smith, and Makov (1985), and references therein).
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Some work has been done for non i.i.d. models as well. In particular, En-
glund, Holst, and Ruppert (1989) give an asymptotic representation results
for certain type of Xn processes. In Sharia (1998) theoretical results on
convergence, the rate of convergence and the asymptotic representation are
given under certain regularity and ergodicity assumptions on the model, in
the one-dimensional parameter case with ψn(x, θ) = d

dθ
logfn(x, θ) (see also

Sharia (1992), Sharia (1997) and Lazrieva, Sharia and Toronjadze (1997)).
In the present paper we study multidimensional estimation procedures

of type (1.4) for general statistical model. Section 2 introduces the basic
model, objects and notation. In Section 3, imposing ”global” restrictions on
the processes ψ and Γ, we study ”global” convergence of the recursive esti-
mators, that is the convergence for an arbitrary starting point θ̂0. In Section
4, assuming that θ̂t → θ, we present results on rate of the convergence. In
Section 5 we show that under certain regularity and continuity assumptions,
the recursive estimators are locally asymptotically linear and therefore, cor-
responding asymptotic distributions can be determined using a suitable form
of the central limit theorem. In Section 6 we demonstrate the use of these
results on some examples. Namely, we consider the i.i.d model, the expo-
nential family of Markov processes and robust estimation of parameters of
AR(m) process together with a brief simulation study.

2 Basic model, notation and preliminaries

Let Xt, t = 1, 2, . . . , be observations taking values in a measurable space
(X,B(X)) equipped with a σ-finite measure µ. Suppose that the distribution
of the process Xt depends on an unknown parameter θ ∈ Θ, where Θ is an
open subset of the m-dimensional Euclidean space R

m. Suppose also that
for each t = 1, 2, . . . , there exists a regular conditional probability density of
Xt given past observations Xt−1, . . . , X2, X1, which will be denoted by

ft(θ, xt | xt−1
1 ) = ft(θ, xt | xt−1, . . . , x1),

where f1(θ, x1 | x0
1) = f1(θ, x1) is the probability density function of the

random variable X1. Denote by Ft (t = 1, 2, . . . ) the σ-field generated by
the random variables X1, . . . , Xt, i.e.

Ft = σ(X1, . . . , Xt).

There is no loss of generality in assuming that the basic space is the canonical
space

(Ω,F) := (X∞,B(X∞)) ,
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where X∞ = {x : x = x1, x2, . . . ; xi ∈ X} and B(X∞) is the σ-field
generated by the cylindrical sets. Using Tulcea’s theorem on extending a
measure and the existence of a random sequence (see, e.g., Shiryayev (1984),
Ch.II, §9, Theorem 2), we can construct the family

{

P θ, θ ∈ R
}

of the cor-
responding distributions on (X∞,B(X∞)) and identify X = (Xt)t=1,2,... with
the coordinate process on (X∞,B(X∞)), that is, Xt(x) = xt, t = 1, 2, . . . .

We assume that all random variables are defined on the probability space
(Ω,F). By (Rm,B(Rm)) we denote the m-dimensional Euclidean space with
the Borel σ-algebra B(Rm). Transposition of matrices and vectors is denoted
by T .

Suppose that
h : Θ → R

k, Θ ⊂ R
m,

and θ is an interior point of Θ. Then the (total) differential of h at θ is a
k ×m real valued matrix H such that

h(u) = h(θ) +H(u− θ) + ‖u− θ‖ε(u),

with a function ε satisfying limu→θ ε(u) = 0.
If h is a real valued function defined on Θ ⊂ R

m, ḣ(θ) is the row-vector
of partial derivatives of h(θ) with respect to the components of θ, that is,

ḣ(θ) =

(

∂

∂θ1
h(θ), . . . ,

∂

∂θm
h(θ)

)

.

The m×m identity matrix is denoted by 1.
If for each t = 1, 2, . . . , a derivative (w.r.t. θ) ḟt(θ, xt | xt−1

1 ) exists, then
we can define the function

lt(θ, xt | xt−1
1 ) =

1

ft(θ, xt | xt−1
1 )

ḟTt (θ, xt | xt−1
1 )

with the convention 0/0 = 0.
The one step conditional Fisher information matrix for t = 1, 2, . . . is

defined as

it(θ | xt−1
1 ) =

∫

lt(θ, z | xt−1
1 )lTt (θ, z | xt−1

1 )ft(θ, z | xt−1
1 )µ(dz).

We shall use the notation

ft(θ) = ft(θ,Xt | X t−1
1 ), lt(θ) = lt(θ,Xt | X t−1

1 ),

it(θ) = it(θ | X t−1
1 ).
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Note that the process it(θ) is “predictable”, that is, the random variable it(θ),
is Ft−1 measurable for each t ≥ 1.

Note also that by the definition, it(θ) is a version of the conditional ex-
pectation w.r.t. Ft−1, that is,

it(θ) = Eθ
{

lt(θ)l
T
t (θ) | Ft−1

}

.

Everywhere in the present work conditional expectations are meant to be
calculated as integrals w.r.t. the conditional probability densities.

The conditional Fisher information at time t is

It(θ) =
t
∑

s=1

is(θ).

If the Xt’s are independent random variables, It(θ) reduces to the standard
Fisher information matrix. Sometimes It(θ) is referred as the incremental
expected Fisher information. Detailed discussion of this concept and related
work, appears in Barndorff-Nielsen and Sorensen (1994) and Prakasa-Rao
(1999), Ch. 3.

Let for each t = 1, 2, . . .

ψt(θ, xt, xt−1, . . . , x1) : Θ × Xt → R
m

be Borel functions.
We say that the sequence ψ = {ψt(θ, xt, xt−1, . . . , x1)}t≥1 is a sequence of

estimating functions and write ψ ∈ Ψ, if for each t ≥ 1,

Eθ {ψt(θ) | Ft−1} = 0(2.1)

where
ψt(θ) = ψt(θ,Xt, Xt−1, . . . , X1).

(we assume that the conditional expectation in (2.1) is well-defined and F0

is the trivial σ-algebra).
Note that if the derivative of ft(θ) exists and differentiation of the equa-

tion

1 =

∫

ft(θ, z | xt−1
1 )µ(dz)

is allowed under the integral sign, then {lt(θ, xt | xt−1
1 )}t≥1 ∈ Ψ.

An estimator θt is said to be locally asymptotically linear if for each θ ∈ Θ
there exists a sequence of estimating functions ψ and a real valued predictable
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matrix process At(θ) (i.e., a matrix with predictable components Aij
t (θ)) such

that detAt(θ) 6= 0 and

θt = θ + A−1
t (θ)

t
∑

s=1

ψs(θ) +Rθ
t ,

where Rθ
t→0 in probability P θ.

Asymptotic behaviour of a locally asymptotic linear estimator can be
studied using a suitable form of the central limit theorem for martingales
(see, e.g., Shiryayev (1984), Ch.VII, §8, Theorem 4).

Convention Everywhere in the present work θ ∈ R
m is an arbitrary but

fixed value of the parameter. Convergence and all relations between random
variables are meant with probability one w.r.t. the measure P θ unless spec-
ified otherwise. A sequence of random variables (ξt)t≥1 has some property
eventually if for every ω in a set Ωθ of P θ probability 1, ξt has this property
for all t larger than some t0(ω) <∞.

3 Strong consistency

Suppose that ψ is a sequence of estimating functions and Γt(θ), for each
θ ∈ R

m, is a predictable matrix process with detΓt(θ) 6= 0, t ≥ 1. Consider
the estimator θ̂t defined recursively by the equation

θ̂t = θ̂t−1 + Γ−1
t (θ̂t−1)ψt(θ̂t−1), t ≥ 1,(3.1)

where θ̂0 ∈ R
m is some initial point.

Let θ ∈ R
m be an arbitrary but fixed value of the parameter and for any

u ∈ R
m define

bt(θ, u) = Eθ {ψt(θ + u) | Ft−1} = Eθ {ψt(θ + u) − ψt(θ) | Ft−1} .

Theorem 3.1 Suppose that

(C1) u
′

Γ−1
t (θ + u)bt(θ, u) < 0 if u 6= 0;

(C2) for each ε ∈ (0, 1),

∞
∑

t=1

inf
ε≤‖u‖≤1/ε

|u′

Γ−1
t (θ + u)bt(θ, u)| = ∞;
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(C3) there exists a predictable scalar process (Bθ
t )t≥1 such that

Eθ
{

‖Γ−1
t (θ + u)ψt(θ + u)‖2 | Ft−1

}

≤ Bθ
t (1 + ‖u‖2)

for each u ∈ R
m, and

∞
∑

t=1

Bθ
t <∞.

Then θ̂t is strongly consistent (i.e., θ̂t → θ P θ-a.s.) for any initial value θ̂0 .

We will prove a more general results on the convergence of the procedure (3.1)
(see Theorem 3.2 below), which implies Theorem 3.1. Let us first comment
on the conditions used in Theorem 3.1.

Remark 3.1 Conditions (C1), (C2), and (C3) are natural analogues of the
corresponding assumptions in the theory of stochastic approximation. In-
deed, start with the i.i.d. case with

ft(θ, z | xt−1
1 ) = f(θ, z), ψt(θ) = ψ(θ, z)|z=Xt

,

where
∫

ψ(θ, z)f(θ, z)µ(dz) = 0 and Γt(θ) = tγ(θ) for some invertible non-
random matrix γ(θ). In this case,

bt(θ, u) = b(θ, u) =

∫

ψ(θ + u, z)f(θ, z)µ( dz).

Denote ∆t = θ̂t − θ and rewrite (3.1) in the form

∆t = ∆t−1 +
1

t
γ−1(θ + ∆t−1)b(θ,∆t−1) + εθt ,(3.2)

where

εθt =
1

t
γ−1(θ + ∆t−1) {ψ(θ + ∆t−1, Xt) − b(θ,∆t−1)} .

Equation (3.2) defines a Robbins-Monro stochastic approximation procedure
that locates the solution of the equation

Rθ(u) := γ−1(θ + u)b(θ, u) = 0,

when the values of the function Rθ(u) can only be observed with zero ex-
pectation errors εθt . Note that in the general, recursion (3.1) cannot be con-
sidered in the framework of classical stochastic approximation theory (see
Lazrieva, Sharia, and Toronjadze (1997, 2003) for the generalized Robbins-
Monro stochastic approximations procedures). For the i.i.d. case, conditions
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(C1), (C2) and (C3) can be written as (I) and (II) in Section 6 which are
usual assumptions for stochastic approximation procedures of type (3.2) (see,
e.g., Robbins and Monro (1951), Khas’minskii and Nevelson (1972), Ljung,
Pflug and Walk (1992)).

Remark 3.2 Let us consider the maximum likelihood type recursive estima-
tor

θ̂t = θ̂t−1 + I−1
t (θ̂t−1)lt(θ̂t−1), t ≥ 1,(3.3)

where lt(θ) is the likelihood function of the model and It(θ) is the conditional
Fisher information with det It(θ) 6= 0. As we will see in Section 5, It(θ) is a
“suitable” normalizing sequence for the recursion with the influence process
lt(θ). By Theorem 3.1, θ̂t is strongly consistent if conditions (C1), (C2) and
(C3) are satisfied with lt(θ) and It(θ) replacing ψt(θ) and Γt(θ) respectively.
On the other hand, if bt(θ, u) is differentiable at u = 0 and the differentiation
is allowed under the integral sign, then

ḃt(θ, 0) = Eθ

{

l̇t(θ) | Ft−1

}

.

Also, if the differentiation w.r.t. θ of Eθ

{

l̇t(θ) | Ft−1

}

= 0 is allowed under

the integral sign and the corresponding integrals exist (see (5.7) with ψ = l),
we obtain that

ḃt(θ, 0) = −it(θ)
implying that (C1) always holds for small u’s.

Condition (C2) in the i.i.d. case is a requirement of the separateness of
the function γ−1(θ+ u)b(θ, u) from zero on each finite interval that does not
contain 0. For the i.i.d. case with continuous w.r.t u functions b(θ, u) and
i(θ + u), condition (C2) is an easy consequence of (C1).

Condition (C3) is a boundedness type assumption which restricts the
growth of the estimating function ψt(θ) w.r.t. θ with certain uniformity
w.r.t. t.

Denote by η+ (respectively η−) the positive (respectively negative) part
of η.

Theorem 3.2 Suppose that for θ ∈ R
m there exists a real valued nonnegative

function Vθ(u) : R
m −→ R having continuous and bounded partial second

derivatives and

(G1) Vθ(0) = 0 and for each ε ∈ (0, 1),

inf
‖u‖≥ε

Vθ(u) > 0;
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(G2) for each ε ∈ (0, 1),

∞
∑

t=1

inf
ε≤Vθ(u)≤1/ε

[Nt(u)]
− = ∞;

(G3) for ∆t = θ̂t − θ,

∞
∑

t=1

(1 + Vθ(∆t−1))
−1 [Nt(∆t−1)]

+ <∞,

where

Nt(u) = (V ′
θ (u))

TΓ−1
t (θ+u)bt(θ, u)+

1

2
sup
v

‖Vθ ′′(v)‖Eθ
{

‖Γ−1
t (θ + u)ψt(θ + u)‖2 | Ft−1

}

,

u ∈ R
m.

Then θ̂t → θ P θ-a.s. for any initial value θ̂0.

Proof. Rewrite (3.1) in the form

∆t = ∆t−1 + Γ−1
t (θ + ∆t−1)ψt(θ + ∆t−1).

By the Taylor expansion,

Vθ(∆t) = Vθ(∆t−1) + (V ′
θ (∆t−1))

TΓ−1
t (θ + ∆t−1)ψt(θ + ∆t−1)(3.4)

+
1

2

[

Γ−1
t (θ + ∆t−1)ψt(θ + ∆t−1)

]T
V ′′
θ (∆̃t)Γ

−1
t (θ + ∆t−1)ψt(θ + ∆t−1),

where ∆̃t ∈ R
m. Taking the conditional expectations w.r.t. Ft−1 yields

Eθ {Vθ(∆t) | Ft−1} ≤ Vθ(∆t−1) + Nt(∆t−1).(3.5)

Using the obvious decomposition Nt(∆t−1) = [Nt(∆t−1)]
+− [Nt(∆t−1)]

−, the
previous inequality can be rewritten as

Eθ {Vθ(∆t) | Ft−1} ≤ Vθ(∆t−1)(1 +Bt) +Bt − [Nt(∆t−1)]
−,

where
Bt = (1 + Vθ(∆t−1))

−1 [Nt(∆t−1)]
+.

By condition (G3),
∑∞

t=1Bt <∞. The application of Lemma A1 in Appendix
gives that the processes Vθ(∆t) and

Yt =
t
∑

t=1

[Nt(∆t−1)]
−

converge to some finite limits. It therefore follows that Vθ(∆t) → r ≥ 0.
Because of (G2), {r > 0} would imply that {Yt → ∞}. Therefore, r = 0 and
so, Vθ(∆t) → 0. The assertion now follows from (G1). ♦
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4 Rate of convergence

Throughout this section, θ̂t is a sequence defined by (3.1) and ∆t = θ̂t − θ.

Lemma 4.1 Let {Ct(θ)} be a predictable matrix process such that Ct(θ) is
positive definite for t = 1, 2, . . . . Denote Vt(u) = (Ct(θ)u, u) and 4Vt(u) =
Vt(u) − Vt−1(u). Suppose that

∞
∑

t=1

(1 + Vt−1(∆t−1))
−1 [Kt(θ)]

+ <∞(4.1)

where

Kt(θ) = 4Vt(∆t−1) + 2
(

Ct(θ)∆t−1,Γ
−1
t (θ + ∆t−1)bt(θ,∆t−1)

)

(4.2)

+Eθ

{

[

Γ−1
t (θ + ∆t−1)ψt(θ + ∆t−1)

]T
Ct(θ)Γ

−1
t (θ + ∆t−1)ψt(θ + ∆t−1) | Ft−1

}

.

Then Vt(∆t) converges to a finite limit.

Proof. To simplify notation we drop the argument or the index θ in some
of the expressions below. Use of Vt(u) = (Ctu, u) in (3.4) yields

Vt(∆t) = Vt(∆t−1) + 2
(

Ct∆t−1,Γ
−1
t (θ + ∆t−1)ψt(θ + ∆t−1)

)

(4.3)

+
[

Γ−1
t (θ + ∆t−1)ψt(θ + ∆t−1)

]T
CtΓ

−1
t (θ + ∆t−1)ψt(θ + ∆t−1).

Since

Vt(∆t−1) = Vt−1(∆t−1) + 4Vt(∆t−1),(4.4)

we have
Eθ {Vt(∆t) | Ft−1} = Vt−1(∆t−1) + Kt.

Then, using the obvious decomposition Kt = [Kt]
+ − [Kt]

−, the previous
inequality can be rewritten as

Eθ {Vt(∆t) | Ft−1} = Vt−1(∆t−1)(1 + Ct) + Ct − [Kt]
−,

where
Ct = (1 + Vt−1(∆t−1))

−1 [Kt]
+.

Now, the assertion of the theorem follows immediately from Lemma A1 in
Appendix. ♦

Corollary 4.1 Let {at(θ)} be a predictable non-decreasing scalar process
such that at(θ) → ∞ as t → ∞. Denote 4at(θ) = at(θ) − at−1(θ) and
suppose that
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(R1)

lim
t→∞

4at(θ)
at−1(θ)

= 0;

(R2) there exists a symmetric and positive definite matrix Cθ such that

(

Cθ∆t−1,Γ
−1
t (θ + ∆t−1)bt(θ,∆t−1)

)

≤ −λt(θ) (Cθ∆t−1,∆t−1) ,

eventually, where {λt(θ)} is a predictable scalar process, satisfying

∞
∑

s=1

[4at(θ)
at(θ)

− 2λt(θ)

]+

<∞;

(R3) for each 0 < ε < 1

∞
∑

s=1

aεt (θ)Eθ
{

‖Γ−1
t (θ + ∆t−1)ψt(θ + ∆t−1)‖2 | Ft−1

}

<∞.

Then
at(θ)

δ(θ̂t − θ) → 0

for any δ ∈]0, 1/2[.

Proof. Let us check the conditions of Lemma 4.1 for Ct(θ) = Cθ(at(θ))
2δ,

δ ∈]0, 1/2[. To simplify notation we drop the fixed argument or the index θ
in some of the expressions below. Denote

Pt = a2δ
t Eθ

{

[

Γ−1
t (θ + ∆t−1)ψt(θ + ∆t−1)

]T
C
[

Γ−1
t (θ + ∆t−1)ψt(θ + ∆t−1)

]

| Ft−1

}

and

rt =
4a2δ

t − 2a2δ
t λt

a2δ
t−1

.

Then, by (R2), for the process Kt defined in (4.2) we have

Kt = 4a2δ
t (C∆t−1,∆t−1) + 2a2δ

t

(

C∆t−1,Γ
−1
t (θ + ∆t−1)bt(θ,∆t−1)

)

+ Pt
≤
(

4a2δ
t − 2a2δ

t λt
)

(C∆t−1,∆t−1) + Pt
≤ rt

(

a2δ
t−1C∆t−1,∆t−1

)

+ Pt

Since C is positive definite,

(1 + Vt−1(∆t−1))
−1 [Kt]

+ =
(

1 +
(

a2δ
t−1C∆t−1,∆t−1

))−1
[Kt]

+ ≤ [rt]
+ + Pt.

12



The finiteness of
∑∞

t=1 Pθ
t is guaranteed by (R3) and so, (4.1) reduces to

∞
∑

t=1

[rt]
+ <∞.

Since 4a2δ
t = a2δ

t − a2δ
t−1, we can rewrite rt as

rt =
(

ata
−1
t−1

)2δ
(1 − 2λt) − 1.

Also, since (1 + x)2δ = 1 + 2δx+O(x2), we have

(ata
−1
t−1)

2δ =

(

1 +
4at
at−1

)2δ

= 1 + 2δ
4at
at−1

+ δ
(1)
t ,

where, by (R1), δ
(1)
t = O (4at/at−1)

2 → 0 as t→ ∞. Denote

ηt =
4at
at

− 2λt.

Then simple calculations show that

rt ≤
(

ata
−1
t−1

)2δ
(

1 + ηt
+ − 4at

at

)

− 1

= −(1 − 2δ)
4at
at−1

+ δ
(1)
t + η+

t + 2δη+
t

4at
at−1

+ η+
t δ

(1)
t + (1 − 2δ)

4at
at

4at
at−1

− 4at
at

δ
(1)
t

=
4at
at−1

(

−(1 − 2δ) + δ
(2)
t

)

+ δ
(3)
t

where

δ
(2)
t =

(4at
at−1

)−1

δ
(1)
t (1 − 4at

at
) + (1 − 2δ)

4at
at

and

δ
(3)
t = η+

t + 2δη+
t

4at
at−1

+ η+
t δ

(1)
t .

From (R1) and (R2),

δ
(2)
t → 0 and

∞
∑

t=1

|δ(3)
t | <∞.

Then, since 1 − 2d > 0,
[rt]

+ ≤ |δ(3)
t |.

It therefore follows that the conditions of Lemma 4.1 are satisfied implying
that a2δ

t ‖θ̂t − θ)‖ converges to a finite limit. Finally, since this holds for an
arbitrary δ ∈]0, 1/2[ and at → ∞, the result follows. ♦
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Corollary 4.2 Consider the i.i.d. case with

ψt(θ) = ψ(θ,Xt) and Γt(θ) = tγ(θ).

Suppose that θ̂ → θ and

(B1) there exists a symmetric and positive definite matrix Cθ such that

(

Cθu, γ
−1(θ + u)Eθψ(θ + u,X1)

)

≤ −1

2
(Cθu, u) ,

for small u ’s;

(B2) Eθ‖γ−1(θ + u)ψ(θ + u)‖2 = O(1) as u→ 0.

Then, for any δ ∈]0, 1/2[,
tδ(θ̂t − θ) → 0.

Proof. The result follows immediately if we take at(θ) = t and λt(θ) = 1/(2t)
in Corollary 4.1. ♦
Remark 4.1 As it was mentioned in Remark 3.1, for the i.i.d. case the recur-
sive procedures can be studied in the framework of stochastic approximation
theory. For stochastic approximation procedures of this type, conditions that
guarantee a good rate of the convergence are expressed in terms of stability
of matrices. Recall that a matrix A is called stable if the real parts of its
eigenvalues are negative. A common requirement in stochastic approximation
theory is existence of the representation (see Remark 3.1 for the notation)

Rθ(u) = Bθu+ o(‖u‖) as u→ 0,

where the matrix

Sθ = Bθ +
1

2
1

is stable. It is easy to see that this assumption implies (B1). Indeed, it
follows from the stability of Sθ that the maximum of the real parts of the
eigenvalues of Bθ is less that −1/2. This implies (see, e.g., Khas’minskii and
Nevelson (1972), Ch.6, §3, Corollary 3.1), that their exists a symmetric and
positive definite matrix Cθ such that

(Cθu,Bθu) < −1

2
(Cθu, u) ,

and therefore (B1) follows.
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5 Asymptotic representation

Define

ct(θ, u) =







−Γt(θ)Γ
−1
t (θ + u)bt(θ, u)u

′

/‖u‖2 if u 6= 0

4Γt(θ) if u = 0.
(5.1)

(A more revealing form for ct(θ, u) is given in Remark 5.2 (iii).) Denote as
before ∆t = θ̂t − θ. Then (3.1) can be rewritten as

∆t =
(

1 − Γ−1
t (θ)ct(θ,∆t−1)

)

∆t−1 + Γ−1
t (θ)εθt ,(5.2)

where
εθt = Γt(θ)Γ

−1
t (θ + ∆t−1)(ψt(θ + ∆t−1) − bt(θ,∆t−1))

is a P θ-martingale difference.
The aim of this section is to show that θ̂t is asymptotically linear, that

is, the main term in the asymptotic representation of θ̂t is a linear statistic

θ̂∗t = θ + Γ−1
t (θ)

t
∑

s=1

ψs(θ).(5.3)

Let ∆∗
0 = 0 and for t ≥ 1 denote ∆∗

t = θ̂∗t − θ. It is easy to verify, by
inspection of the difference ∆∗

t −∆∗
t−1, that ∆∗

t satisfies the recursive relation
given by

∆∗
t =

(

1 − Γ−1
t (θ)4Γt(θ)

)

∆∗
t−1 + Γ−1

t (θ)ε∗t(5.4)

where t ≥ 1 and ε∗t = ψt(θ) is a P θ-martingale difference. By comparing
equations (5.2) and (5.4), one can obtain the following result on the asymp-
totic relationship between θ̂t and θ̂∗t .

Theorem 5.1 Suppose there exists a non-random sequence of diagonal in-
vertible matrices At(θ) such that

(E)
At(θ)Γ

−1
t (θ)At(θ) → η(θ)

weakly w.r.t. P θ, where η(θ) is a random matrix with det η(θ) 6= 0;

(L1)

lim
t→∞

A−1
t (θ)

t
∑

s=1

(4Γs(θ) − cs(θ,∆s−1)) ∆s−1 = 0

in probability P θ;
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(L2)

lim
t→∞

t
∑

s=1

Eθ

{

∥

∥A−1
t (θ)Es(θ)

∥

∥

2 | Fs−1

}

= 0

in probability P θ, where

Es(θ) = Γs(θ)Γ
−1
s (θ + ∆s−1) (ψs(θ + ∆s−1) − bs(θ,∆s−1)) − ψs(θ).

Then, in probability P θ,

At(θ)(θ̂
∗
t − θ̂t) → 0.

Proof. To simplify notation we drop the fixed argument or the index θ in
some of the expressions below. Denote

δt := θ̂t − θ̂∗t .

Subtraction (5.4) from (5.2) yields the recursive relation

δt =
(

1 − Γ−1
t 4Γt

)

δt−1 + Γ−1
t (εt − ε∗t ) + Γ−1

t (4Γt − ct(θ,∆t−1))∆t−1.

Denote

Mt :=
t
∑

s=1

[εs − ε∗s] and Ht :=
t
∑

s=1

[4Γs − cs(θ,∆s−1)]∆s−1.

Then the expression

δt = Γ−1
t {Mt + Ht + δ0} , t ≥ 1

can easily be obtained by inspecting the difference between t’th and (t−1)’th
term of this sequence to check that it satisfies the above recursive relation.

So, we have to prove that Atδt → 0 in probability P θ. Condition (L1)
implies that A−1

t Ht → 0 in probability P θ. Because of (E), it remains only to

prove that A−1
t Mt → 0 in probability P θ. Denote by M

(j)
t the j-th component

of the martingaleMt. Then the square characteristic 〈M (j)〉t of the martingale

M
(j)
t is

〈M (j)〉t =

t
∑

s=1

Eθ

{

(

ε(j)
s − ε∗s

(j)
)2

| Fs−1

}

=

t
∑

s=1

Eθ

{

(

E (j)
s

)2 | Fs−1

}

,

where Es is defined in (L2). From (L2), since At is diagonal,

(

A−1
t

(jj)
)2

〈M (j)〉t → 0
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in probability P θ. Now, use of the Lenglart-Rebolledo inequality (see, e.g.,
Liptser and Shiryayev (1989), Ch.1, §9) yields

P θ

{

(M
(j)
t )2 ≥ K2

(

A−1
t

(jj)
)−2
}

≤ ε

K
+ P θ

{

〈M (j)〉t ≥ ε
(

A−1
t

(jj)
)−2
}

for each K > 0 and ε > 0. This implies that A−1
t

(jj)
M

(j)
t → 0 in probability

P θ and since At is diagonal, the result follows. ♦

Remark 5.1 Results in Section give sufficient conditions for convergence of
sequences of the form At(θ)∆t. It may therefore be useful to have a sufficient
for (L1) condition written in the following form.

(LL) The elements of At(θ) are non-decreasing processes with At(θ)jj → ∞
and

A−2
t (θ)

t
∑

s=1

As(θ)[4Γs(θ) − cs(θ,∆s−1)]∆s−1 → 0.

Proposition (LL) implies (L1).
Proof To simplify notation we drop the fixed argument or the index θ in
some of the expressions below. Denote

χs = As[4Γs(θ) − cs(θ,∆s−1)]∆s−1.

and

Gt = A−1
t

t
∑

s=1

[4Γs(θ) − cs(θ,∆s−1)]∆s−1 = A−1
t

t
∑

s=1

A−1
s χs.

Applying the formula

t
∑

s=1

Ds∆Cs = DtCt −
t
∑

s=1

∆DsCs−1, C0 = 0 = D0,(5.5)

with Cs =
∑s

m=1 χm and Ds = A−1
s we obtain

Gt = A−2
t

t
∑

s=1

χs − A−1
t

t
∑

s=1

4A−1
s

s−1
∑

m=1

χm.

Then,

4A−1
s = A−1

s − A−1
s−1 = −A−1

s (As − As−1)A
−1
s−1 = −4AsA

−1
s A−1

s−1,
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where the last equality follows since As is diagonal. Therefore,

Gt = A−2
t

t
∑

s=1

χs + A−1
t

t
∑

s=1

4As
{

A−1
s A−1

s−1

s−1
∑

m=1

χm

}

.

Finally, since At’s are diagonal, Gt → 0 follows on application of the Toeplits
Lemma to the elements of Gt.

Remark 5.2
(i) Condition (E) is an ergodicity type assumption on the statistical model It
trivially holds if Γt(θ) is non-random or, e.g., if Γt(θ)/t→ γ(θ) as t→ ∞ for
some non-random invertible matrix γ(θ). Further discussion of this concept
and related work appears in Hall and Heyde (1980), § 6.2., Barndorff-Nielsen
and Sorensen (1994) and Basawa and Scott (1983).

(ii) Condition (L2) is a continuity type assumption on functions ψt(θ) and
Γt(θ) w.r.t. θ.

(iii) In Section 3, while studying the convergence problem, no connections
have been assumed between the estimating functions and the normalizing
sequence. In Sections 4, to ensure a good rate of convergence, one has to
assume certain asymptotic relationship between these two quantities by im-
posing conditions (4.1) or (R2). While these conditions still leave a lot of
room for flexible choice of the normalizing sequence, the condition (L1) as-
sumes more asymptotic balance between ψt(θ) and Γt(θ). To understand
this relationship, let us first explore the behaviour of ct(θ, u) as u→ 0. Since
bt(θ, 0) = 0 (see (2.1)), the function ct(θ, u) for u 6= 0 can be expressed as

ct(θ, u) = −Γt(θ)Γ
−1
t (θ + u)

(bt(θ, u) − bt(θ, 0))uT

‖u‖2
.(5.6)

Suppose now that Γt(θ) is continuous w.r.t. θ, so that Γt(θ)Γ
−1
t (θ + u) → 1.

Then, − limu→0 ct(θ, u), if it exists, is the total differential ḃt(θ, 0) of bt(θ, u)
at u = 0. Let us now examine conditions (L1) and (LL). In most applica-
tions the rate of At is

√
t and, the best one can hope for is that

√
t∆t is

stochastically bounded. Therefore we must at least have the convergence
(4Γt(θ) − ct(θ,∆t−1)) → 0. Since ∆t−1 → 0, if t is sufficiently large, we
expect 4Γt(θ) ≈ −ḃt(θ, 0). If, e.g., ψt(θ) is differentiable in θ and differen-
tiation of bt(θ, u) = Eθ{ψt(θ + u) | Ft−1} is allowed under the integral sign,
then ḃt(θ, 0) = Eθ{ψ̇t(θ) | Ft−1}. This implies that, for a given sequence
of estimating functions ψt(θ), a natural choice of the normalizing sequence
would be

Γt(θ) = −
t
∑

s=1

Eθ{ψ̇s(θ) | Fs−1}.
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On the other hand, if we suppose that the differentiation w.r.t. θ of

0 = Eθ{ψt(θ) | Ft−1} =

∫

ψt(θ, z | X t−1
1 )ft(θ, z | X t−1

1 )µ(dz)

is allowed under the integral sign, then

Eθ{ψ̇t(θ) | Ft−1} =

∫

ψ̇t(θ, z | X t−1
1 )ft(θ, z | X t−1

1 )µ(dz)

= −
∫

ψt(θ, z | X t−1
1 )ḟt(θ, z | X t−1

1 )µ(dz)

= −
∫

ψt(θ, z | X t−1
1 )l̇Tt (θ, z | X t−1

1 )ft(θ, z | X t−1
1 )µ(dz)(5.7)

= −Eθ{ψt(θ)lTt (θ) | Fs−1}.

Therefore, denoting

γψt (θ) = Eθ{ψt(θ)lTt (θ) | Ft−1},

another possible choice of the normalizing sequence is

Γt(θ) =

t
∑

s=1

γψs (θ).

Note that for ψt(θ) = lt(θ) (a MLE case), γψt (θ) = it(θ) and therefore,
the suggested normalizing sequence in this case is the conditional Fisher
information It(θ).

6 SPECIAL MODELS AND EXAMPLES

Example 1 The i.i.d. scheme. Consider the classical scheme of indepen-
dent and identically distributed observations X1, X2, . . . , with a common
probability density/mass function f(θ, x), θ ∈ R

m. Suppose that ψ(θ, z) is
an estimating function, i.e

∫

ψ(θ, z)f(θ, z)µ(dz) = 0.

Let us define the recursive estimator θ̂t by

θ̂t = θ̂t−1 +
1

t
γ−1(θ̂t−1)ψ(θ̂t−1, Xt), t ≥ 1.(6.1)

19



where γ(θ) is a non-random matrix such that γ−1(θ) exists for any θ ∈ R
m.

Suppose that

jψ(θ) =

∫

ψ(θ, z)ψT (θ, z)f(θ, z)µ( dz) <∞

and consider the following conditions.

(I) For any 0 < ε < 1,

sup
ε≤‖u‖≤ 1

ε

uT γ−1(θ + u)

∫

ψ(θ + u, x)f(θ, x)µ( dx) < 0.

(II) For each u ∈ R
m,

∫

∥

∥γ−1(θ + u)ψ(θ + u, x)
∥

∥

2
f(θ, x)µ( dx) ≤ Kθ(1 + ‖u‖2)

for some constant Kθ.

(III) γ(θ) is continuous in θ.

(IV)

lim
u→0

∫

‖ψ(θ + u, x) − ψ(θ, x)‖2f(θ, x)µ( dx) = 0.

(V) for some ε > 0,

∫

ψ(θ + u, x)f(θ, x)µ( dx) = −γ(θ + u)u+ αθ(u),

where αθ(u) = o(‖u‖1+ε) as u→ 0.

Corollary 6.1 Suppose that for any θ ∈ R
m conditions (I) - (V) are satis-

fied. Then the estimator θ̂t is strongly consistent and

tδ(θ̂t − θ) → 0 (P θ − a.s.)

for any 0 < δ < 1/2. Furthermore, θ̂t is asymptotically normal with param-
eters (0, γ−1(θ)j(θ, 0)γ−1(θ)), that is,

L
(

t1/2(θ̂t − θ) | P θ
)

w→N
(

0, γ−1(θ)jψ(θ)γ−1(θ)
)

.
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Proof. Since Γt(θ) = tγ(θ) and

bt(θ, u) = b(θ, u) =

∫

ψ(θ + u, z)f(θ, z)µ( dz),

it is easy to see that (I) and (II) imply (C1), (C2) and (C3) from Theorem
3.1 which yields (θ̂t − θ) → 0.

Then, (II) implies (B2) from Corollary 4.2. Condition (V) implies that
(B1) in Corollary 4.2 holds with Cθ = 1.

Let us check that conditions of Theorem 5.1 are also satisfied with At =√
t1. Condition (E) trivially holds. From Proposition 5.1, to check (L1), it

is sufficient to show that

1

t

t
∑

s=1

[γ(θ) − c(θ,∆s−1)]
√
s∆s−1 → 0,(6.2)

where, by (5.1),

ct(θ, u) = c(θ, u) = −γ(θ)γ−1(θ + u)

∫

ψ(θ + u, z)f(θ, z)µ( dz) uT/‖u‖2

for u 6= 0 and c(θ, 0) = γ(θ). Condition (V) yields

[γ(θ)−c(θ,∆s−1)]
√
s∆s−1 =

√
sγ(θ)γ−1(θ+∆s−1)α

θ(∆s−1) =
√
s‖∆s−1‖1+εδs,

where, by (III) and (V), δs = γ(θ)γ−1(θ + ∆s−1)α
θ(∆s−1)/‖∆s−1‖1+ε → 0.

Then,
√
s‖∆s−1‖1+εδs =

√

s

s− 1

(

(s− 1)
1

2(1+ε) ‖∆s−1‖
)1+ε

δs

which, since 1/(2(1 + ε)) < 1/2, converges to zero. Therefore, (6.2) is now a
consequence of the Toeplits Lemma.

For the process Es(θ) from (L2) we have

‖Es(θ)‖2 = ‖γ(θ)γ−1(θ + ∆s−1) (ψ(θ + ∆s−1, Xs) − b(θ,∆s−1)) − ψ(θ,Xs)‖2

≤ 2‖γ(θ)γ−1(θ+∆s−1)ψ(θ+∆s−1, Xs)−ψ(θ,Xs)‖2+2‖γ(θ)γ−1(θ+∆s−1)b(θ,∆s−1)‖2

From (III) and (V) we obtain that (γ(θ)γ−1(θ + ∆s−1) − 1) → 0 and
b(θ,∆s−1) → 0 as s→ ∞. Therefore, (IV) implies that

Eθ
{

‖Es(θ)‖2 | Fs−1

}

→ 0.

Since

t
∑

s=1

Eθ

{

∥

∥A−1
t (θ)Es(θ)

∥

∥

2 | Fs−1

}

=
1

t

t
∑

s=1

Eθ
{

‖Es(θ)‖2 | Fs−1

}

,
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(L2) follows from the Toeplitz lemma.
Therefore, the conditions of Theorem 5.1 hold for At(θ) =

√
t. This im-

plies that θ̂t is asymptotically linear. The asymptotic normality obviously
follows from the central limit theorem for i.i.d. random variables. ♦

Similar results (for i.i.d. schemes) were obtained by Khas’minskii and
Nevelson (1972) (when ψ(θ, x) = l(θ, x) and γ(θ) = i(θ), Ch.8, §4) and
Fabian (1978).

Note also that conditions (I) and (II) are derived from Theorem 3.1 and
are sufficient conditions for the convergence of (6.1). Applying Theorem 3.2
to ψ and Γ, one can obtain various alternative sufficient conditions analogous
to those given in Fabian (1978).

Example 2 Exponential family of Markov processes Consider a con-
ditional exponential family of Markov processes in the sense of Feigin (1981)
(see also Barndorf-Nielson (1988)). This is a m-dimensional time homoge-
neous Markov chain with the one-step transition density (with respect to
some dominating measure on R

m)

f(y; θ, x) = h(x, y) exp
(

θTm(y, x) − β(θ; x)
)

,

where m(y, x) is a m-dimensional vector and β(θ; x) is one dimensional. It
is assumed that the canonical parameter space Θ does not depend on on x.
Suppose we observe the Markov chain X at times 1, 2, . . . , t. Then in our
notation ft(θ) = f(Xt; θ,Xt−1) and

lt(θ) =
d

dθ
log ft(θ) = m(Xt, Xt−1) − β̇T (θ;Xt−1),

where β̇(θ;Xt−1), as before denotes the m-dimensional raw-vector of partial
derivatives of β(θ;Xt−1) with respect to the coordinates of θ. It follows from
standard exponential family theory (see, e.g., Feigin (1981)) that lt(θ) is a
martingale-difference and the conditional Fisher information is

It(θ) =

t
∑

s=1

β̈(θ;Xs−1).

So, a MLE type recursive procedure can be defined as

θ̂t = θ̂t−1 +

(

t
∑

s=1

β̈(θt−1;Xs−1)

)−1
(

m(Xt, Xt−1) − β̇T (θt−1;Xt−1)
)

, t ≥ 1.
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Let us find the functions appearing in the conditions of our theorems for the
case ψt = lt and Γt = It. Since Eθ {lt(θ) | Ft−1} = 0 we have

Eθ {m(Xt, Xt−1) | Ft−1} = β̇T (θ;Xt−1)

and also,

β̈(θ;Xt−1) = it(θ) = Eθ
{

lt(θ)l
T
t (θ) | Ft−1

}

= Eθ
{

m(Xt, Xt−1)m
T (Xt, Xt−1) | Ft−1

}

− β̇T (θ;Xt−1)β̇(θ;Xt−1),

which implies that

Eθ
{

m(Xt, Xt−1)m
T (Xt, Xt−1) | Ft−1

}

= β̈(θ;Xt−1) + β̇T (θ;Xt−1)β̇(θ;Xt−1).

Now, it is a simple matter to check that

bt(θ, u) = Eθ {lt(θ + u) | Ft−1} = β̇T (θ;Xt−1) − β̇T (θ + u;Xt−1),

and

Eθ
{

‖lt(θ + u)‖2 | Ft−1

}

= trace
(

β̈(θ;Xt−1)
)

+‖β̇T (θ;Xt−1)−β̇T (θ+u;Xt−1)‖2.

Using these expressions one can check conditions of the relevant theorems
for different choices of functions m and β.

A particular example of a conditional exponential family is the Gaussian
autoregressive model defined by

Xt = θXt−1 + Zt, t = 1, 2, . . . ,

where θ ∈ R, X0 = 0 and Zt’s are independent random variables with the
standard normal distribution. In this model m(y, x) = xy and β(θ, x) =
1
2
x2θ2. Since β̇(θ, x) = x2θ and β̈(θ, x) = x2,

lt(θ) = XtXt−1 −X2
t−1θ, It = It(θ) =

t
∑

s=1

X2
s−1,

bt(θ, u) = −X2
t−1u, Eθ

{

l2t (θ + u) | Ft−1

}

= X2
t−1 +X4

t−1u
2.

The recursive procedure in this case is

θ̂t = θ̂t−1 +
1

It

(

XtXt−1 −X2
t−1θ̂t−1

)

(6.3)

It = It−1 +X2
t−1.
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Note that the rate of the conditional Fisher information It varies for the
different values of θ. Suppose

at(θ) =







t(1 − θ2)−1 for |θ| < 1
1
2
t2 for |θ| = 1
θ2t(θ2 − 1)−2 for |θ| > 1.

(6.4)

For |θ| < 1 the process is stable and It(θ)/at(θ) → 1 in probability as t→ ∞,
whereas It(θ)/at(θ) → W ∼ χ2(1) almost surely in the unstable case |θ| > 1
(non-ergodic case). In the critical case, |θ| = 1, the ratio It(θ)/at(θ) converges
in distribution, but not in probability (for details, see White (1958) and
Anderson (1959)). It is also well known that It → ∞ almost surely for any
θ ∈ R (see, e.g, Shiryayev (1984), Ch.VII, 5.5). Note that if dn is a sequence
of positive numbers, then dn → ∞ implies that

∑∞
k=1 4dk/dk = ∞ and

∑∞
n=1 4dn/d2

n < ∞ (where, as before, 4dn = dn − dn−1). Therefore, almost
surely,

∞
∑

t=1

X2
t−1

It
= ∞ and

∞
∑

t=1

X2
t−1

I2
t

<∞.

Let us check that the conditions of Theorem 3.2 hold for for Vθ(u) = u2. We
have

Nt(u) = −2u2X
2
t−1

It
+ u2X

4
t−1

I2
t

+
X2
t−1

I2
t

= −u2X
2
t−1

It
− X2

t−1

I2
t

(

u2It−1 − 1
)

To check (G2) note that since the infimum is taken over ε ≤ u2 ≤ 1/ε, the
value of (u2It−1 − 1) is positive eventually and therefore, there exists an
almost surely finite r.v. ξ such that

∞
∑

t=1

inf
ε≤u2≤1/ε

[Nt(u)]
− ≥ ξ + ε2

∞
∑

t=1

X2
t−1

It
= ∞.

To check (G2) we rewrite

Nt(u) = −u2

(

X2
t−1

It
+
X2
t−1

I2
t

It−1

)

+
X2
t−1

I2
t

and

∞
∑

t=1

(1 + ∆2
t−1)

−1 [Nt(∆t−1)]
+ ≤

∞
∑

t=1

[Nt(∆t−1)]
+ ≤

∞
∑

t=1

X2
t−1

I2
t

<∞.

Therefore, we conclude for any θ ∈ R, the recursive estimator θ̂t is strongly
consistent for any choice of the initial θ̂0. This result, of course, could have
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been obtained directly for the linearity of the model allows to solve the re-
cursion equation analytically. Indeed, in this case,

θ̂t =
1

It

(

θ̂0 +

t
∑

s=1

XsXs−1

)

which, in the case of θ̂0 = 0 coincides with the MLE. Since θ̂t is obviously
asymptotically linear, we expect the conditions of Theorem 5.1 to hold with-
out any additional assumptions. This is indeed the case. Condition (E) is
satisfied with At(θ) =

√

at(θ) where at(θ) is defined in (6.4). Conditions
(L1) and (L2) trivially hold since in this case (cs(θ,∆s−1)−4Γs(θ)) = 0 and
Es(θ) = 0 for any s.

Example 3 AR(m) process Consider an AR(m) process

Xi = θ1Xi−1 + · · · + θmXi−m + ξi = θTX i−1
i−m + ξi,

where X i−1
i−m = (Xi−1, . . . , Xi−m)T , θ = (θ1, . . . , θm)T and ξi is a sequence of

i.i.d. random variables.
A reasonable class of procedures in this model should have a form

θ̂t = θ̂t−1 − Γ−1
t (θ̂t−1)ψt(Xt − θ̂Tt−1X

t−1
t−m),(6.5)

where ψt(z) and Γ−1
t (z) (z ∈ R

m) are respectively vector and matrix processes
meeting conditions of the previous sections. Suppose that the probability
density function of ξt w.r.t. Lebesgue’s measure is g(x). Then, if

ψt(z) = − ġ
T (z)

g(z)
X t−1
t−m

then ψt(Xt − θ̂t−1Xt−1) is a score vector and (6.5) becomes the likelihood
recursive procedure. A possible choice of Γt(z) in this case would be the
conditional Fisher information matrix

It = ig
t
∑

s=1

X t−1
t−m(X t−1

t−m)T

where

ig =

∫
(

ġT (z)

g(z)

)2

g(z) dz.
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An interesting class of recursive estimators for strongly stationary AR(m)
processes is studied in Campbell (1982). These estimators are recursive ver-
sions of robust modifications of the least squares method and are defined
as

θ̂t = θ̂t−1 − atγ(X
t−1
t−m)φ(Xt − θ̂Tt−1X

t−1
t−m),(6.6)

where at is a sequence of a positive numbers with an → 0, φ is a bounded
scalar function and γ(u) is a vector function of the form uh(u) for some non-
negative function h of u (See also Leonov (1988)). The class of procedures
of type (6.6) is clearly a subclass of that defined by (6.5) and therefore can
be studies using the results of the previous sections.

Suppose that ξi are i.i.d. random variables with a bell-shaped, symmetric
about zero probability density function g(z) (that is, g(−z) = g(z), and g ↓ 0
on R+). Suppose also that φ(x) is an odd, continuous in zero function. Let
us write conditions of Theorem 3.1 for

Γ(θ) = at1 and ψt(θ) = X t−1
t−mh

(

X t−1
t−m

)

φ
(

ξt − θTX t−1
t−m

)

.

We have

Eθ
{

φ
(

Xt − (θ + u)TX t−1
t−m

)

| Fs−1

}

= Eθ
{

φ
(

ξt − uTX t−1
t−m

)

| Fs−1

}

=

∫

φ
(

z − uTX t−1
t−m

)

g(z)dz.

It follows from Lemma A2 in Appendix that if w 6= 0,

G(w) = −w
∫ ∞

−∞

φ (z − w) g(z)dz > 0.

Therefore,

uTΓ−1
t (θ + u)bt(θ, u) = atu

TX t−1
t−mh

(

X t−1
t−m

)

Eθ
{

φ
(

ξt − uTX t−1
t−m

)

| Fs−1

}

= −at h
(

X t−1
t−m

)

G(uTX t−1
t−m) ≤ 0.

Also, since φ is a bounded function,

Eθ
{

‖Γ−1
t (θ + u)ψt(θ + u)‖2 | Ft−1

}

≤ Cθa2
t ‖X t−1

t−m‖2h2(X t−1
t−m)

for some positive constant Cθ. Therefore, conditions of Theorem 3.1 hold if

∞
∑

t=1

ath
(

X t−1
t−m

)

inf
ε≤‖u‖≤1/ε

G(uTX t−1
t−m) = ∞(6.7)
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and

∞
∑

t=1

a2
t ‖X t−1

t−m‖2h2(X t−1
t−m) <∞.(6.8)

If Xt is strongly stationary process, these conditions can be verified using
limit theorems for strongly stationary processes. Suppose, e.g., that at = 1/t
and ‖γ(X t−1

t−m)‖2 = ‖X t−1
t−m‖2h2(Xs−1

s−m) is integrable. Then it follows that
h
(

X t−1
t−m

)

infε≤‖u‖≤1/εG(uTX t−1
t−m) is integrable as well and if h(x) 6= 0 for

any x 6= 0 then h(x) infε≤‖u‖≤1/εG(uTx) > 0 for any x 6= 0 (see Appendix,
Lemma 2). Therefore, it follows from an ergodic theorem for strongly sta-
tionary processes that

lim
t→∞

1

t

t
∑

s=1

h
(

X t−1
t−m

)

inf
ε≤‖u‖≤1/ε

G(uTXs−1
s−m) > 0

and
1

t

t
∑

s=1

‖X t−1
t−m‖2h2(Xs−1

s−m)

converges to a finite limit. Now, (C2) in Theorem 3.1 follows from the obser-
vation that for any nonnegative sequence ct, the convergence 1

t

∑t
s=1 cs → c >

0 implies
∑∞

t=1 ct/t = ∞. The convergence
∑∞

t=1 γ
2(X t−1

t−m)/t2 < ∞ follows
since for any nonnegative sequence ct, the convergence 1

t

∑t
i=1 ci → c implies

∑∞
t=1 ct/t

2 < ∞ (this can be easily verified using (5.5) with Cs =
∑t

i=1 ci
and Dt = 1/t2).

Examples of the procedures of type (6.6) as well as some simulation results
are presented in Campbell (1982).

Sometimes the conditions of the theorems presented here are difficult to
verify. The next example shows that even when this is the case, the results
of the paper can be useful to construct recursive analogue of the estimators
given by estimating equations. Consider for instance a robust generalized
M-estimator of the parameter of an AR(1) process proposed by Denby and
Martin (1979), which is a solutions of the equation

t
∑

s=1

cxsxφH

(

Xs−1

cxsx

)

crsrφH

(

Xs − θXs−1

crsr

)

= 0

where

φH(x) =

{

x, if |x| ≤ 1
sign(x) if |x| > 1
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is the Huber function and sx, sr are scale estimates. A recursive analogue of
this estimator is a sequence defined by

θ̂t = θ̂t−1 − Γ−1
t cxsxφH

(

Xt−1

cxsx

)

crsrφH

(

Xt − θ̂t−1Xt−1

crsr

)

,(6.9)

where Γt is a random process with the increments ∆Γt = Γt − Γt−1 defined
by

∆Γt =

{

cxsxφ
2
H

(

Xt−1

cxsx

)

if
∣

∣

∣

Xt−θ̂t−1Xt−1

crsr

∣

∣

∣
≤ 1

0 otherwise
(6.10)

and cx, cr are tuning constants. The form of Γt is suggested by the the-
orems presented in Sections 4 and 5 (see Remark 5.2 (iii)). Note that the
direct application of Theorem 5.1 suggests using a normalising sequence with
the increments defined in (6.10) but cxsxφ

2
H replaced by cxsxφHXt−1. Never-

theless, from the considerations of robustness we have preferred to truncate
Xt−1, especially as, as simulation results showed, the truncated version works
better.

Note also that (6.9) is clearly a procedure of type (6.6) with m = 1 and

φ(x) = crsrφH () , γ(x) = cxsxφH (x) = cxsxxh(x),

h(x) =

{

1, if |x| ≤ 1
1/|x| if |x| > 1

but with a stochastic normalising sequence at = Γ−1
t . It is easy to see that, as

far as at is a predictable process, conditions (6.7) and (6.8) remain sufficient
for the conditions of Theorem 3.1. For the recursion (6.9), condition (6.7)
can be easily verified, but the difficulties arise with (6.8) since it requires the
convergence

∑∞
t=1 Γ−2

t .
Further research is required to study behaviour of the procedures of type

(6.9). Below we present a brief simulation study to compare the performance
of the recursive procedure (6.9) to that of the least squares method which is
equivalent to the procedure defined by (6.3). The time series were generated
from the additive effect outliers (AO) model:

Yt = θYt−1 + εt

Xt = Yt + vt,
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Figure 1. Single realizations 
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Figure 2. Averages over  30 replications

where innovations εt are i.i.d. Gaussian N(0, 1) and vt are also i.i.d. with a
Gaussian mixture distribution (1− δ)N(0, 1) + δN(0, σ2). The figures below
show the performances of the estimators for θ = 0.8, δ = 0.1 and σ = 10.
The estimators are computed for the series of length 300, with the additional
20 observations at the beginning on which initial estimates are based (as an
estimates for sx and sr we take the median of the absolute values of the
data and residuals respectively, divided by 0.6745). The tuning constants in
(6.9) help to damp excess oscillation of the values of θ̂t and are surprisingly
easy to adjust (in the simulations below their values vary from 0.5 to 4).
Figure 1 shows single realizations of θ̂t and θ̂LSt (t = 125, . . . , 300), derived
by (6.9) and (6.3) respectively. Figure 2 presents averages of θ̂t and θ̂LSt
(t = 125, . . . , 300), over 30 replications and finally, Figure 3 shows the mean
squared errors (over 30 replications) of θ̂t and θ̂LSt (t = 125, . . . , 300).

In all three figures the black and red lines correspond to θ̂LSt and

θ̂t respectively.
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Figure 3. Mean squared errors 

APPENDIX

Lemma A1(Robbins and Siegmund) Let F0,F1, . . . be a non-decreasing se-
quence of σ-algebras and Xn, βn, ξn, ζn ∈ Fn, n ≥ 0, are nonnegative r.v.’s
such that

E(Xn|Fn−1) ≤ Xn−1(1 + βn−1) + ξn−1 − ζn−1, n ≥ 1

eventually. Then

{
∞
∑

i=1

ξi−1 <∞} ∩ {
∞
∑

i=1

βi−1 <∞} ⊆ {X →} ∩ {
∞
∑

i=1

ζi−1 <∞} (P -a.s.).

Remark Proof can be found in Robbins and Siegmund (1971). Note also
that this lemma is a special case of the theorem on the convergence sets non-
negative semimartingales (see, e.g., Lazrieva, Sharia, and Toronjadze (1997)).

Lemma A2 Suppose that g 6≡ 0 is a nonnegative even function on R and
g ↓ 0 on R+. Suppose also that φ is a measurable odd function on R such
that φ(z) > 0 for z > 0 and

∫

� |φ(z − w)|g(z)dz < ∞ for all w ∈ R. Then
for any w 6= 0,

(A1) w

∫ ∞

−∞

φ (z − w) g(z)dz < 0.

Furthermore, if g(z) is continuous, then for any ε ∈ (0, 1)

(A2) sup
ε≤|w|≤1/ε

w

∫ ∞

−∞

φ (z − w) g(z)dz < 0.

Proof Denote

(A3) Φ(w) =

∫ ∞

−∞

φ (z − w) g(z)dz.
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Using the change of variable z � −z in the integral over (−∞, 0) and the
equalities φ(−z) = −φ(z) and g(−z + w) = g(z − w), we obtain

Φ(w) =

∫ ∞

−∞

φ(z)g(z + w)dz

=

∫ 0

−∞

φ(z)g(z + w)dz +

∫ ∞

0

φ(z)g(z + w)dz

=

∫ ∞

0

φ(z) (g(z + w) − g(−z + w))dz

=

∫ ∞

0

φ(z) (g(z + w) − g(z − w)) dz.

Suppose now that w > 0. Then z − w is closer to 0 than z + w, and the
properties of g imply that g(z+w)− g(z−w) ≤ 0. Since φ(z) > 0 for z > 0,
Φ(w) ≤ 0. The equality Φ(w) = 0 would imply that g(z+w)− g(z−w) = 0
for all z ∈ (0,+∞) since, being monotone, g has right and left limits at each
point of (0,+∞). The last equality, however, contradicts the restrictions on
g. Therefore, (A1) holds true. Similarly, if w < 0, then z + w is closer to 0
than z−w, and g(z+w)−g(z−w) ≥ 0. Hence w (g(z + w) − g(z − w)) ≤ 0,
which yields (A1) as before.

To prove (A2) note that the continuity of g implies that g(z+w)−g(z−w)
is a continuous functions of w and (A2) will follow from (A1) if one proves
that Φ(w) is also continuous in w. So, it is sufficient to show that the
integral in (A3) is uniformly convergent for ε ≤ |w| ≤ 1/ε. It follows from
the restrictions we have placed on g that there exists δ > 0 such that g ≥ δ
in a neighbourhood of 0. Then the condition
∫ ∞

0

φ(z) (g(z + w) + g(z − w)) dz =

∫

�
|φ(z − w)|g(z)dz <∞, ∀w ∈ R

implies that φ is locally integrable on R. It is easy to see that, for any
ε ∈ (0, 1),

g(z ± w) ≤ g(0)χε(z) + g(z − 1/ε), z ≥ 0, ε ≤ |w| ≤ 1/ε,

where χε is the indicator function of the interval [0, 1/ε]. Since the function
φ(·) (g(0)χε + g(· − 1/ε)) is integrable on (0,+∞) and does not depend on
w, we conclude that the integral in (A3) is indeed uniformly convergent for
ε ≤ |w| ≤ 1/ε. ♦
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