
Cryptanalysis of the Yeh-Sun
password-based authentication

protocols

Chris J. Mitchell and Qiang Tang

Technical Report
RHUL–MA–2004–4
29 November 2004

Royal Holloway
University of London

Department of Mathematics
Royal Holloway, University of London
Egham, Surrey TW20 0EX, England

http://www.rhul.ac.uk/mathematics/techreports

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Royal Holloway Research Online

https://core.ac.uk/display/78876462?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

Two authentication protocols proposed by Yeh and Sun are analysed and
shown to possess serious security defects.

1 Introduction

Yeh and Sun [2] have proposed two trusted third party (TTP)-aided client-
server mutual authentication protocols. These protocols are designed for the
case where a client shares a password with the TTP, the server shares a secret
key with the TTP, and the TTP has an asymmetric encryption key pair for
which a reliable copy of the public key is available to the client. The two
protocols, known as KTAP and KAAP, cover the cases where either the TTP
generates the key and distributes it to the client and server (KTAP), or the
client and server agree on a key without any party choosing it (KAAP).

It is claimed in [2] that the protocols are secure against a range of possible
attacks, although no formal evidence of security is offered. In this short paper
we show that both protocols suffer from serious flaws, particularly KTAP.

2 The two protocols

We now briefly describe the two protocols. In these descriptions we use {x}P

to denote the asymmetric encryption of the data string x using the public
key P , and [x]K to denote the symmetric encryption of the data string x
using the secret key K. We also use h to denote a one-way hash-function,
iX to denote an identifier for entity X, and || to denote concatenation of
data strings. We moreover suppose that all the parties have agreed on the
cryptographic algorithms (and the details of the protocol) in advance. We
denote the parties in the protocols by C (client), S (server) and T (TTP).
Finally we suppose that the public encryption key of the TTP is PT , that
the TTP and the client share a secret password pC , and that the TTP and
the server share a secret key KS.

Note that in both the protocol descriptions we implicitly assume that if
any of the checks fail then the party concerned aborts the protocol and does
not send any more messages.

1

2.1 The Key Transfer Authentication Protocol (KTAP)

The four messages of the KTAP protocol are as follows.

1. C → T {iC ||iS||pC ||KC}PT

2. T → S [iC ||iS|| [iC ||K]KC
||K]KS

3. S → C [iC ||K]KC
|| [iS||rS]K

4. C → S rS

The processing associated with the messages is as follows. The client gener-
ates and stores a random secret key KC and then uses the public key PT of
the TTP to generate message 1.

On receipt of message 1, the TTP first decrypts it (using the TTP’s
private decryption key), and verifies the correctness of the client password
pC (using iC to identify the client). The TTP then chooses a random secret
session key K (to be shared by C and S) and uses the server secret key KS

and the client-selected key KC to generate message 2 (where iS received in
message 1 is used to identify the server).

When the server receives message 2, it is decrypted using the server secret
key KS. The server then checks that iS is correctly included and generates a
random ‘nonce’ rS. The server then assembles message 3 by combining the
‘inner’ encrypted string from message 2 with a string encrypted using the
key K, as recovered from message 2.

When the client receives message 3, the first part is decrypted using the
key KC (generated and stored at the beginning of the protocol). The client
checks that iC is correctly included, and then uses the recovered key K to
decrypt the second part of the message. The correctness of iS is then checked,
at which point (if all the checks have passed) C has authenticated S. Finally,
the client sends rS to the server as message 4.

Receipt of message 4 enables the server to authenticate the client. At this
point both client and server possess an authenticated shared secret key, K.

2.2 The Key Agreement Authentication Protocol (KAAP)

This protocol requires the client and server to have agreed on Diffie-Hellman
domain parameters, namely a large prime modulus p and a base g, where g
has multiplicative order q modulo p and q is a large prime. The four messages
of the KAAP protocol are as follows.

1. C → T {iC ||iS||pC ||rC ||gx}PT

2. T → S [iC ||gx]KS

2

3. S → C gy||[iS||rS]K

4. C → S rS

The processing associated with the messages is as follows. The client gener-
ates and stores random values x and rC , and then uses the public key PT of
the TTP to generate message 1 (where gx is computed mod p).

On receipt of message 1, the TTP first decrypts it (using the TTP’s
private decryption key), and verifies the correctness of the client password
pC (using iC to identify the client). The TTP then uses the server secret key
KS to generate message 2 (where iS received in message 1 is used to identify
the server).

When the server receives message 2, it is decrypted using the server secret
key KS. The server then generates a random nonce rS and a random value
y, and computes the secret session key K = (gx)y mod p. The server then
assembles message 3 using the newly computed key K.

When the client receives message 3, the value gy is used to obtain K =
(gy)x mod p, which is then used to decrypt the remainder of the message.
The client checks that iS is correctly included, at which point the client has
authenticated the server. The client concludes by sending rS back to the
server as message 4.

Receipt of message 4 enables the server to authenticate the client. At this
point both client and server possess an authenticated shared secret key, K.

3 Cryptanalysis

We next describe a number of security issues with both protocols. The
majority of these issues arise from the fact that in both cases the compromise
of a transient or session key enables the protocol to be compromised. Such
attacks have long been known — see, for example, Denning and Sacco [1].

Before discussing these issues in detail note that it is important for both
protocols that the symmetric encryption technique used should be sufficiently
robust to resist attacks based on known plaintext-ciphertext pairs. This is
because message 2 in both protocols provides a dishonest client C with a
known plaintext-ciphertext pair for the key KS.

Note also that both protocols rely for their security on the secrecy of a
transient key during execution of the protocol. If, KC (in KTAP) or gx (in
KAAP) becomes known to an eavesdropper E, then E can use this knowledge
to impersonate S to C in this instance of the protocol. This is a typical and
uncontroversial assumption for an authentication protocol; however, we show
below that if such a transient secret is ever disclosed, even long after execution

3

of the protocol, then serious attacks are possible.

3.1 Analysis of KTAP

The KTAP protocol possesses the following serious weaknesses.

1. Suppose a fraudulent third party, E say, who has intercepted message
2 of the protocol, learns the session key K sent in that message. (This
may occur as a result of the use of the key K in subsequent commu-
nications between C and S). Entity E can now impersonate C to S
any number of times. This is achieved by E forwarding the intercepted
message 2 to S. The server S then responds with message 3, containing
a new random nonce r′S encrypted using the ‘old’ key K. E intercepts
this message and can decrypt the second part to obtain r′S. This can
then be used to impersonate C to S.

2. Suppose E has intercepted messages 1 and 2 of the protocol and has, by
some means, learnt the key KC sent in message 1 and used to encrypt
part of message 2. How this might be achieved is outside the scope of
this paper; however, note that message 3 will provide an interceptor
with a matching pair of ciphertext and (partial) known plaintext, where
the ciphertext is encrypted using KC . This could provide the basis for
an exhaustive search for KC , especially if KC is not well chosen (this
point is considered in more detail below).

This situation gives rise to two separate vulnerabilities.

(a) E can use this value of KC to impersonate C to S. This arises
trivially since E can decrypt the copy of message 2 encrypted
using KC , and thereby recover K. The attack described above
can then be employed.

(b) If the password pC is poorly chosen, then knowledge of KC will
enable pC to be discovered from message 1 using an exhaustive
search (since all other data included in this message is known to
E). Compromise of the password pC will enable the attacker to
impersonate C freely.

Over and above these weaknesses, we note two further anomalies in the pro-
tocol as described in [2].

• Firstly observe that Yeh and Sun appear to be assuming that symmet-
ric and asymmetric encryption provide integrity protection for an en-
crypted message. This requirement is, however, never explicitly stated.

4

Moreover, although modern asymmetric encryption schemes provide
the non-malleability property, which will guarantee this integrity pro-
tection, the same is not true for any widely used symmetric encryp-
tion schemes. That is, implementing the protocol as specified (without
providing the necessary integrity protection) will result in an insecure
scheme.

• Secondly note that the key labelled KC in the description of KTAP is
described as a random value in [2]. However, the protocol requires it
to be used as a key, and hence we describe it as a key in this paper.
This means that it is a fundamental protocol requirement that C must
be capable of generating sound keys. If not, i.e. if KC is not chosen
well, then deducing KC and enabling the second attack above may be
possible. Also, if A is capable of generating sound keys, then there
seems no reason not to employ the KAAP protocol (that is, there seem
to be no advantages from the use of KTAP).

3.2 Analysis of KAAP

KAAP possesses the following potentially significant security vulnerability.
Suppose E has intercepted message 2 from one instance of the protocol, and
has (by some means) determined the values of both x and gx used in this
protocol instance. Then E can use these values to impersonate C to S any
number of times. This is achieved by E forwarding the intercepted message
2 to S. The server S then responds with message 3, containing a new public
transient value gy′ and a new random nonce r′S encrypted using the key
K ′ = gxy′ . E intercepts this message and can combine the known value of x
with gy′ to deduce K, which can then be used to obtain the cleartext nonce
r′S. This can then be used to impersonate C to S.

It is, however, important to note that it may be difficult for an attacker to
obtain both x and gx, since gx is only sent in encrypted form, and x is never
transmitted; moreover, as long as p and q are sufficiently large, determining x
from gx is computationally infeasible. Thus this vulnerability is of somewhat
less significance than the vulnerabilities in KTAP.

Over and above this weakness, we note that, as for KTAP, the authors ap-
pear to be assuming that the symmetric and asymmetric encryption schemes
used provide data integrity protection, although this is not an explicit re-
quirement.

5

4 Conclusions

Serious security issues have been identified in both the protocols specified
in [2]. As a result, use of these protocols cannot be recommended. More
generally, protocols not possessing any solid evidence of security should only
be used with great care.

References

[1] D. E. Denning and G. M. Sacco. Timestamps in key distribution proto-
cols. Communications of the ACM, 24:533–536, 1981.

[2] H.-T. Yeh and H.-M. Sun. Password-based user authentication and key
distribution protocols for client-server applications. The Journal of Sys-
tems and Software, 72:97–103, 2004.

6

