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Abstract. We consider the nonlinear function used in the Advanced
Encryption Standard (AES). This nonlinear function is essentially in-
version in the finite field GF(28), which is most naturally considered as
a projective transformation. Such a viewpoint allows us to demonstrate
certain properties of this AES nonlinear function. In particular, we make
some comments about the group generated by such transformations, and
we give a characterisation for the values in the AES Difference or XOR
Table for the AES nonlinear function and comment on the geometry
given by this XOR Table.

1 Introduction

The Advanced Encryption Standard (AES) [8, 20] uses only one nonlinear func-
tion, namely the mapping of the finite field GF(28) to itself defined by x 7→ x28−2.
However, this AES nonlinear function maps the multiplicative group GF(28)∗ to
itself and is just finite field inversion for an element of this multiplicative group.
Thus the AES nonlinear function is really just finite field inversion, but which
has been extended to the whole field GF(28) by requiring that 0 7→ 0. A round
of the AES consists of the simultaneous application of this nonlinear function to
each byte of the state space, followed by a linear diffusion function of the entire
state space and finally a subkey addition.

It is clear that the properties of this nonlinear function are critical to the
security of the AES. However, it is also clear that an “inversion” mapping such
as that of the AES is probably most naturally handled mathematically in terms of
projective geometry, and in particular in terms of the projective line of the finite
field. Indeed, some such geometric aspects of the AES inversion mapping, such
as the cross-ratio, have already been discussed in [1]. In this paper, we consider
such a projective approach to analysing the AES nonlinear function and discuss
some consequences of this adopting this point of view. We begin by giving a very
brief general discussion of the relevant aspects of projective geometry. We then
consider some consequences of this approach for the group-theoretic properties of
AES-like transformations and for the differential properties of the AES inversion
function.



2 Projective Geometry

We consider the binary finite field F = GF(2n), where the case for n = 8 is of
special interest to us because of the AES. We denote the multiplicative group of
the field F by F∗, so F∗ = F \ {0}. We let f :F 7→ F denote the AES nonlinear
function, so f(x) = x2n−2. As the AES nonlinear function is inversion on F∗, we
also use the notation x(−1) to denote f(x). We now discuss the projective line of
F and then more general projective geometries over F. A much more thorough
discussion is given in [11].

We define the projective line F of F by considering the two-dimensional vector
space F2 over F. The projective line F of F is the set of all one-dimensional
subspaces of this two-dimensional vector space F2, and any such one-dimensional
is a point on the projective line F. Loosely speaking, the projective line F is the
set of all lines through the origin in the plane defined by F. Thus the projective
line F of F consists of all lines or projective points 〈(1, z)〉 for z ∈ F together
with the “point at infinity” 〈(0, 1)〉. We let the line or projective point 〈(1, z)〉
correspond to the point z ∈ F in this usual projective manner, and the point at
infinity 〈(0, 1)〉 correspond to the symbol ∞ ∈ F. In other words, the projective
line F of F is the finite field F together with a point at infinity. In summary, we
have F = F ∪ {∞} = F∗ ∪ {0,∞}.

The projective transformations of the projective line F are given by the
invertible linear transformations of the two-dimensional vector space F2 ([11]
Chapter 6). If T is an invertible linear transformation of F2, then T maps any
one-dimensional subspace of F2 to some other one-dimensional subspace and so
gives a mapping of the points of F. The group of all such transformations is the
projective general linear group acting on F, and is denoted for the projective line
by PGL(2,F). With the usual conventions about ∞, PGL(2,F) is the set of all
fractional linear transformations of F ([22] Theorem 9.46), so

PGL(2,F) =

{
g:F→ F

∣∣∣∣∣ g(x) =
ax + b

cx + d
, ad + bc 6= 0

}
.

For even characteristic, it is well-known that there is an isomorphism between
PGL(2,F) and the special linear group SL(2,F) of unimodular (determinant 1)
2× 2 matrices ([11] Theorem 2.8). This isomorphism is given by η: PGL(2,F) →
SL(2,F), which is defined by

η

(
x 7→ ax + b

cx + d

)
=

1
ad + bc

(
a b
c d

)
.

Furthermore, the group actions of PGL(2,F) on F and SL(2,F) acting on the lines
of the 2-dimensional vector space over F are isomorphic. Thus we may identify
a 2× 2 matrix with determinant 1 with a fractional linear transformation, that
is a projective transformation of the projective line F, and vice versa.

The AES nonlinear function on f :F → F given by f(x) = x(−1), can be
extended to give a function f̂ :F → F of the projective line by setting f̂ |F = f



and requiring that f̂(∞) = ∞. However, this extended AES nonlinear function
is almost identical to the geometric or projective transformation f :F → F of
the projective line given by z 7→ 1

z , differing only at the points 0 and ∞. Thus
the natural geometrical setting for considering the AES nonlinear function would
seem to be the projective line F, as the AES nonlinear function is almost identical
to a geometrical transformation of this line.

More generally, projective geometries are higher dimensional versions of the
projective line. The projective geometry PG(m− 1,F) (or PG(m− 1, |F|)) is the
set of one-dimensional subspaces of the m-dimensional vector space Fm under
the action of the group of linear transformations of Fm. The (m−1)-dimensional
subspaces of Fm are known as the hyperplanes of the projective geometry PG(m−
1,F). Thus F = PG(1,F). Two projective geometries are isomorphic if there
is mapping between them which is bijective both on the point sets and the
hyperplane sets, and which also preserves incidence. Projective geometries are
examples of more general structures known as designs [12]. In particular, the set
D is a 2-(v, k, λ) design if D has v elements called points, a collection of subsets
called blocks such that each block has k points and any two points are contained
in exactly λ blocks. For example, the projective geometry PG(m−1,F) (m > 2)
is a 2–(|F|m − 1, |F|m−1 − 1, |F|m−2 − 1) design in which the hyperplanes form
the blocks. We later consider projective geometries over the field GF(2) and
their associated designs when we discuss the differential properties of the AES
inversion mapping in Section 4.

3 Group-theoretic Properties of AES Inversion

3.1 Introduction to the Group-theoretic Properties of a Cipher

It is has been shown that the round functions of the AES [8, 20] generate the
alternating group on the state space of the AES [26]. Similar results have been
demonstrated for other well-known block ciphers [24, 9, 25]. It is of course possi-
ble to construct block ciphers whose round functions generate the alternating or
symmetric group, but are easy to attack by exploiting statistical properties of
the block cipher [17]. However, the rationale given by these and other papers and
others is that a block cipher whose round functions generate the symmetric or
alternating group cannot be attacked by the type of algebraic method illustrated
in [21].

The key-dependent non-linear transformations of the AES are based on the
mappings x 7→ x(−1) + k in some binary finite field F, where x(−1) denotes x−1

for x 6= 0 and 0 for x = 0. It has been observed that constructing a block
cipher with n-bit blocks by using such transformations as the round functions
gives a very weak cipher, and a description of the cryptanalysis of such a block
cipher comprising solely of AES-like transformations (modified “SHARK” with
“n”= 1) using a technique called the interpolation attack has been given [14, 13].
The interpolation attack on such a block cipher is fundamentally an algebraic
technique of the type supposedly excluded if the round functions generate the
alternating or symmetric group on the state space. However, as we show below,



the set of such transformations generates the symmetric group on F. This leads
us to consider the nature of what exactly is meant by “the group generated by
a cipher”, and we conclude the Section with some comments on this issue. We
note that some similar ideas were discussed in [7].

3.2 Groups generated by AES-like Transformations

We let fk:F→ F denote the function x 7→ x(−1)+k for k ∈ F, and we term such a
transformation an AES-like transformation. It is clear that fk is a permutation,
so fk ∈ Sym(F), the symmetry group of F, where the group action of Sym(F)
on the elements of F is defined in the usual way. Thus the set of AES-like
transformations from F to F for one round is given by the set

SF = {fk:F→ F | fk(x) = x(−1) + k, k ∈ F}.
We are interested in the group generated by SF, which is a subgroup of Sym(F).

We contrast this set of transformations SF with the set SF of inversive-type
transformations from F to F defined by

SF =
{
fk:F→ F | fk(x) = x−1 + k, k ∈ F} .

By writing x−1 + k as kx+1
x+0 , we can see from Section 2 that every element of

SF is a projective transformation, so SF ⊂ PGL(2,F), acting on F in the usual
projective way.

The transformation fk ∈ SF and its corresponding transformation fk ∈ SF
are however very similar (as was noted in Section 2 when k = 0). More formally,
we can consider a restricted set SF∗ of AES-type transformations from F∗ to F
defined as

SF∗ = {fk:F∗ → F | fk(x) = x−1 + k, k ∈ F}.
The functions AES-like transformations in SF∗ are simply those in SF with a re-
stricted domain, whilst the inversive-type transformations in SF∗ are also simply
those in F with a restricted domain, Thus we have

SF∗ = {fk|F∗ | fk ∈ SF}. = {fk|F∗ | fk ∈ SF}.
It can thus be seen that an AES-like transformation fk on F and its corresponding
inversive-type transformation fk on F only differ for at most two elements of their
domains (0 and ∞). However, this seemingly insignificant difference between the
two corresponding transformations in SF and SF give rise to a big difference in the
groups generated by SF and SF. We thus now show that SF generates (generally)
the symmetric group, whereas SF generates a projective group. The relevant
proofs are given in Appendix A.

We note that the related group 〈x 7→ x(−1), x 7→ x + k〉 was discussed in [7].
However, the group we consider, 〈SF〉, is generated by transformations closer
to AES transformations than “inversion” and subkey addition considered sepa-
rately. Moreover, Theorem 4.3.1 of [7], the analogous result to our Theorem 1,
is incorrect.



We first consider the group generated by SF, the set of inversive-type trans-
formations of F. We can identify this set of projective transformations with
a set T = η(SF) of unimodular matrices, where η: PGL(2,F) → SL(2,F) is
the group isomorphism of Section 2. The following two results then show that
〈SF〉 = PGL(2,F).

Lemma 1. The group generated by the set of matrices

T =

{(
k 1
1 0

) ∣∣∣∣∣ k ∈ F
}

is SL(2,F), the group of all 2× 2 matrices over F with determinant 1.

Corollary 1. The group generated by the set SF of inversive-type transforma-
tions from F to F is PGL(2,F) acting on F.

We now consider the group generated by SF, the set of AES-like transforma-
tions of F. The two smallest (n ≤ 2) fields F of characteristic 2 are special cases.
For n = 1, we have F = GF(2) and SF = 〈(0, 1)〉 = Sym(GF(2)). For n = 2, we
have F = GF(22) = {0, 1, θ, θ2} where θ2 = θ + 1. Thus SF = {f0, f1, fθ, fθ2},
and we summarise these permutations of SF in the Table below.

Permutation Mapping Cycle Notation
f0 x 7→ x(−1) (θ, θ2)
f1 x 7→ x(−1) + 1 (0, 1)
fθ x 7→ x(−1) + θ (0, θ, 1, θ2)
fθ2 x 7→ x(−1) + θ2 (0, θ2, 1, θ)

We note that f0 = f2
θ f1 and fθ2 = f−1

θ , so in fact 〈SF〉 = 〈f1, fθ〉. Furthermore,
f4

θ = f2
1 = (f−1

1 fθf1)fθ = 1, so we have

〈SF〉 = 〈f1, fθ | f4
θ = f2

1 = (f−1
1 fθf1)fθ = 1〉.

This is the group presentation for the dihedral group D8 with 8 elements ([2]
Section 28.81), Thus, for n = 2, SF generates the dihedral group D8, rather than
the symmetric group Sym(F).

In the general case when n > 2, F has at least 8 elements. For this general
case we associate a fractional linear transformation of F with a permutation of
F by means of an injective function

Ψ : PGL(2,F) → Sym(F),

which is defined for c = 0 by
(

x 7→ ax + b

cx + d

)
7→

(
x 7→ ax + b

cx + d

)
,

and is defined for c 6= 0 by
(

x 7→ ax + b

cx + d

)
7→

(
x 7→

{
ax+b
cx+d for x 6= d

c
a
c for x = d

c

)
.



By considering the elements fk ∈ SF and fk ∈ SF defined earlier, we can see
that Ψ(SF) = SF. Hence the set of generators of PGL(2,F) can be associated
with the set of AES-like transformations. This association allows us to prove the
following results which show that 〈SF〉 = Sym(F).

Lemma 2. The set SF generates the transposition (0, 1) of Sym(F).

Lemma 3. For n > 2, the set SF generates a 2-transitive subgroup of Sym(F).

Theorem 1. For n > 2, the group generated by the set SF of AES-like trans-
formations from F to F is Sym(F) acting on F.

3.3 Comments on the “Group Generated by a Cipher”

We have discussed the group generated by the set of AES-like transformations
acting on the state space F in a similar manner to the discussions given in [24, 9,
25, 26]. We have shown that the group generated by the AES-like transformations
is generally the symmetric group on Sym(F). However, we can associate each
AES-like transformation of F with an inversive-type transformation of F. A pair
of such associated transformations give the same transformation on F unless a 0-
inversion occurs. Moreover, 0-inversion is a rare event unless n is very small. Thus
it seems that a very natural group action to consider for cryptanalytic purposes
is that of the group generated by the set of inversive-type transformations acting
on the projective line F. This group is PGL(2,F), which is generally (n > 2) much
smaller and more structured than the group Sym(F) of AES-like transformations
acting on the state space F.

The discussion of the interpolation attack on a block cipher consisting of
many rounds of iterated AES-like transformations (such as modified “SHARK”
with with “n”= 1 [14, 13]) is straightforward in the context of the projective
group. Except for 0-inversion, a round transformation is naturally considered
as an element of PGL(2,F) acting on the projective line F. Thus this block
cipher, which is the iteration of many such transformations, is also an ele-
ment of PGL(2,F) unless a 0-inversion occurs. However, PGL(2,F) is a sharply
triply transitive group ([23], Theorem 4.5.4), so if we know only three plaintext-
ciphertext pairs (with no 0-inversion), then we can identify the unique element of
PGL(2,F) corresponding to the encryption transformation. This should enable
us to break the block cipher with three such pairs, though it has been stated
that four such pairs are needed [14, 13, 1, 7].

It is clear that in discussing the “group generated by a cipher” there is always
an accompanying group action on some set to consider. The above example
clearly shows that the “obvious” group with the “obvious” implicit action on
the state space may not be the most relevant “group generated by the cipher”
when discussing the algebraic properties of that cipher. For practical purposes,
we could have regarded an encryption transformation in the above example as
an element of a small structured (projective) group acting on a slightly altered
set rather than as a general permutation. It is this projective group that gives a



much better indication of this cipher’s strength against certain types of algebraic
attacks than the general symmetry group. It is thus clear from the above example
that, when considering the group generated by a collection of block cipher round
transformations, the set on which the transformations act has to be carefully
chosen. There is a sense in the above construction in which the original state
space F is embedded in a larger state space F = F ∪ {∞} with 0 and ∞ being
identified when the embedding needs reversing. This is in many ways similar to
the general ideas of embedding a block cipher state space algebra in a larger
state space algebra discussed in [18, 6]. The interesting question when discussing
the “group generated by the AES” is whether for the AES there is a similar
construction to the above example for the AES state space F16 (n = 8), but
which also gives a smaller and more structured group than the symmetric or
alternating group on F16.

4 Differential Properties of AES Inversion

4.1 Introduction to the Differential or XOR Table

One of the standard techniques used to assess the security of a block cipher is
that of differential cryptanalysis [3, 4]. We give a preliminary discussion of the
differential properties of inversion mappings from a projective viewpoint. For a
cryptographic function, the major tool used in differential cryptanalysis is the
XOR or Difference Table. For a function g:F→ F, it is a 2n × 2n table defined
for α, β ∈ F by

Ng(α, β) = #{x ∈ F | g(x + α) + g(z) = β}.

Thus Ng(α, β) measures the number of times an input difference of α is mapped
to an output difference of β, so Ng can be used to calculate the probability
that certain input differences propagate throughout the cipher. If the differences
from round to round are regarded as a random process, the XOR Table (suitably
normalised) is essentially the matrix of transition probabilities [15]. Some simple
properties for the zero row or zero column are that Ng(0, 0) = 2n and Ng(0, β) =
0 for β 6= 0, with Ng(α, 0) = 0 for α 6= 0 if g is invertible. Furthermore, the row
sum is given by

∑
β Ng(α, β) = 2n, whilst if g is invertible the column sum

has the same property, that is
∑

β Ng(α, β) = 2n. The maximum value of this
XOR Table (for α 6= 0) gives an upper bound for the probability of difference
propagation and so is clearly of interest. This idea is captured by the following
definition [19].

Definition 1. g:F→ F is differentially δ-uniform if for all α 6= 0 and β,

#{x ∈ F | g(x) + g(x + α) = β} ≤ δ.

Thus g is differentially δ-uniform if the maximum value of Ng(α, β) (α 6= 0)
is at most δ. Some further discussion of the differentially δ-uniform properties of



power mappings are given in [5]. Furthermore, according to the AES specifica-
tions [20, 8], the nonlinear function of AES (x 7→ x(−1)) of the AES was chosen
partially because of the discussion of its properties given in [19].

In the remainder of this section, we consider the Differential or XOR Table
of the AES nonlinear function f :F → F defined by x 7→ x(−1). The differential
properties of this AES nonlinear function in regard of the XOR Table give rise
to a particular quadratic equation. Some properties of this particular quadratic
equation have previously been considered in [11]. We therefore revisit this dis-
cussion of [11] before using these results to calculate Nf (α, β) and so completely
characterise the XOR Table for the AES. This enables us to demonstrate some
interesting connections between this AES XOR Table and projective geometry
that arise from this characterisation.

4.2 Quadratic Equations over Fields of Even Characteristic

Section 1.4 of [11] gives the following discussion about solutions to quadratic
equations of even characteristic (that is over F). The trace of an element of F is
defined to be the sum of its conjugates. Thus the trace mapping Tr:F→ GF(2)
is defined by x 7→ x+x2 +x22

+ · · ·+x2n−1
. As squaring is a field automorphism

for a field of even characteristic, the trace mapping is a GF(2)-linear mapping,
that is Tr is a linear transformation of F when F is considered as a vector space
of dimension n over GF(2). The kernel of this linear transformation is a subspace
of F (considered as a vector space) of dimension n− 1. This kernel or subspace
is denoted by C0 and called the set of elements of category zero, and its coset is
denoted by C1 and called the set of elements of category one. Thus we have

C0 = {x ∈ F | Tr(x) = 0} and C1 = {x ∈ F | Tr(x) = 1}.

We then have the following results from Section 1.4 of [11].

Theorem 2. Let the finite field F and categories C0 and C1 be defined as above.

1. y2 + y + ε = 0 has two solutions if ε ∈ C0 and no solutions if ε ∈ C1.
2. 0 ∈ C0.
3. If n is even then 1 ∈ C0, whereas if n is odd then 1 ∈ C1.
4. |C0| = |C1| = 2n−1.

4.3 The XOR Table for AES Inversion

We now discuss the differential properties of the AES nonlinear transformation
f :F→ F defined by f(x) = x2n−2 = x(−1). Thus we consider

Nf (α, β) = {x ∈ F | f(x) + f(x + α) = β}
= {x ∈ F | x(−1) + (x + α)(−1) = β}.

It has been shown that the AES inversion function is differentially 4-uniform
(at worse) [19], and indeed the known results concerning Nf seem to be upper



bounds. We now calculate Nf (α, β) exactly for all α, β ∈ F, so we calculate the
number of solutions of the equation

x(−1) + (x + α)(−1) = β.

We have already noted that Nf (0, 0) = 2n and that Nf (α, 0) = Nf (0, β) = 0
for α, β 6= 0. We therefore assume that α, β ∈ F∗. The calculation of Nf (α, β)
then splits into two cases depending on whether “AES-inversion” coincides with
F-inversion. Thus we define

N1(α, β) = #{ x ∈ {0, α} | x(−1) + (x + α)(−1) = β }
and N2(α, β) = #{ x ∈ F \ {0, α} | x−1 + (x + α)−1 = β },

so Nf (α, β) = N1(α, β) + N2(α, β). We now consider these two cases.

Case 1: N1(α, β).
In this case we have x = 0 or x = α. In both cases, x(−1) + (x + α)(−1) =
0(−1) + α(−1) = α−1. Thus x(−1) + (x + α)(−1) = β has one solution if and
only if α−1 = β, or equivalently αβ = 1, and no solution otherwise. Therefore
N1(α, β) = 2 if αβ = 1 and N1(α, β) = 0 otherwise.

Case 2: N2(α, β).
In this case, we are considering solutions to the equation

1
x

+
1

x + α
=

α

x2 + αx
= β,

which gives the quadratic equation βx2 + αβx + α = 0 or the equivalent monic
quadratic equation x2 + αx + α

β = 0 for x 6= 0, α. If we make the substitution
x = αy, then we can obtain the monic quadratic equation y2 + y + (αβ)−1 = 0,
so N2(α, β) = #{y ∈ F | y2 + y +(αβ)−1 = 0}. However, the number of solutions
of this quadratic equation was given in Theorem 2 of Section 4.2. Thus we have
N2(α, β) = 2 if Tr((αβ)−1) = 0 and N2(α, β) = 0 if Tr((αβ)−1) = 1.

We can now combine the two cases to find Nf (α, β). With a slight abuse of
notation, we can regard the trace mapping as an integer, so we have:

Nf (α, β) =





2n if α = β = 0;
0 if αβ = 0 but not both zero;
2(1− Tr(1)) + 2 if αβ = 1;
2(1− Tr((αβ)−1) if αβ 6= 0, 1.

For the AES, n = 8 is even, which is a special case of the following result.

Theorem 3. The values Nf (α, β) in the XOR Table for AES-like inversion are
given for even n by:

Nf (α, β) =





2n if α = β = 0;
0 if αβ = 0 but not both zero;
4 if αβ = 1;
2 if αβ 6= 0, 1 and Tr

(
(αβ)−1

)
= 0;

0 if αβ 6= 0, 1 and Tr
(
(αβ)−1

)
= 1.



4.4 The AES Inversion XOR Table and Projective Geometry

The XOR Table for a nonlinear function of a block cipher is mainly of interest
as a tool for differential cryptanalysis. For the AES, we showed in Theorem 3
that the entries in the XOR Table for the AES are characterised mainly by the
Trace mapping. However, we can also define certain geometric structures and
associated ideas in terms of the Trace mapping. Thus we show in this Section
that the AES XOR Table naturally defines a projective geometry.

We can remove the row corresponding to α = 0 and the column corresponding
to β = 0, and call the resulting (2n − 1) × (2n − 1) table the Reduced AES
XOR Table. The underlying condition of this Reduced AES XOR Table is that
Nf (α, β) = 2 when Tr((αβ)−1) = 0 with a correction for 0-inversion. However,
we can use this trace condition, and hence also the AES XOR Table, to construct
the following incidence structure based on the multiplicative group F∗ of the
finite field F. Thus suppose D is the structure consisting of the elements of F∗
as points and the subsets

Bα = {β ∈ F∗ | Tr((αβ)−1) = 0} (α ∈ F∗),
as blocks. We can also use Theorem 3 to define D directly from the XOR Table,
when the blocks can also be defined for α ∈ F∗ by

Bα =
{{β ∈ F∗ |Nf (α, β) ≥ 2} n even
{β ∈ F∗ |Nf (α, β) = 2} \{α−1} n odd.

Hence the Reduced XOR Table gives the incidence matrix for the structure D.
Suppose we now order the rows and columns of the Reduced XOR Table

1, ρ, ρ2, . . . , ρ2n−2, where ρ is a primitive element of F, then the sequence

Tr
(
α−1(ρ−1)0

)
, Tr

(
α−1(ρ−1)1

)
, . . . , Tr

(
α−1(ρ−1)2

n−2
)

is an m-sequence (as ρ−1 is primitive [16]) whose minimal polynomial is the
minimal polynomial of ρ−1. Thus the rows of the Reduced XOR Table for the
nonlinear function of the AES are essentially all m-sequences with the same
minimal polynomial, and so are shifts of one another. However, there is a detailed
discussion given in [10] about the equivalence of the incidence structure defined
from a binary m-sequence and the projective geometry PG(n − 1, 2) over the
field GF(2). Furthermore, this equivalence is made explicit by using the trace
function Tr discussed above. Thus from [10] we have the following result.
Theorem 4. The projective geometry PG(n − 1, 2) is isomorphic to the inci-
dence structure D defined from the Reduced AES XOR Table.
The points of the projective geometry PG(n−1, 2) of Theorem 4 are the elements
of F∗ and the hyperplanes are the sets Bα (α ∈ F∗) defined above. Theorem 4
also shows that the incidence structure D is a 2-design.

In summary, we have shown that the Reduced XOR Table for AES inversion,
interpreted in a very natural way as an incidence matrix, gives a projective
geometry. Thus we have not only characterised the entries Nf (α, β) of the AES
XOR Table, but we have also shown that this AES XOR Table is fundamentally
a projective geometry.



4.5 Comments on the AES XOR Table from a Projective Viewpoint

The projective techniques used in this Section may be able to adapted to some
other functions other than the AES inversion mapping, for example certain power
maps. Thus, for example, conjugates of the AES inversion mapping, such as
x 7→ (x(−1))2, would give essentially the same results as the AES inversion.

The projective viewpoint has allowed us, in particular, to demonstrate certain
geometric properties of the AES XOR Table for an individual AES inversion.
However, for these AES differential geometric properties to be of interest for
cryptanalysis, we would need to combine these results for a single inversion for
several inversions both within the same round and across several rounds. Of
course, calculating the XOR Table for the simultaneous application of the AES
inversion within one round is straightforward. We simply multiply the individual
Nf (α, β) values for each AES inversion, and it is clear that to maximise the
overall value we need as many inputs (α) to be non-zero as possible. Calculating
a specific entry in the global XOR Table across several rounds would seem much
more problematical. One of the AES’s main design features is the “wide-trail”
strategy [8], which (in some sense) maximises the number of non-zero differential
inputs used and so would seem to ensure that a specific entry in the global XOR
Table is both small and difficult to calculate. However, the set of non-zero entries
in the XOR Table across one round do form some sort of coherent geometrical
structure in some space. It is conceivable that it might be possible to analyse
the effect of linear diffusion on this geometrical structure and so formulate some
type of analysis of the differential properties of the AES based on the underlying
geometrical structure.

5 Conclusions

The geometrical properties of the AES inversion function that we have discussed
in this paper are not shared, as far as we are aware, by other well-known block
ciphers (except those based on the AES). Thus the geometrical properties of the
AES nonlinear function seem to be fundamentally unique to the AES.

The properties we have been discussing have generally referred to a single
AES inversion. The challenge, as discussed in both Sections 3 and 4, is to find
some way of combining such properties for several AES inversions, that is of
combining the underlying projective structures of each individual AES inversion.
However, the rich geometrical structure of AES inversions clearly merits further
investigation.
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A Group–Theoretic Proofs

Lemma 1. The group generated by the set of matrices

T =

{(
k 1
1 0

) ∣∣∣∣∣ k ∈ F
}

is SL(2,F), the group of all 2× 2 matrices over F with determinant 1.

Proof. Every matrix in T has determinant 1, so 〈T 〉 ≤ SL(2,F). Now, a matrix
in SL(2,F) can be expressed as a product of matrices in T in the following way.

(
a b
c d

)
=





(
a(1 + b) 1

1 0

)(
d 1
1 0

)(
a 1
1 0

)
for c = 0;

(
1+a

c 1
1 0

)(
c 1
1 0

)(
1+d

c 1
1 0

)(
0 1
1 0

)
for c 6= 0.

Thus any matrix in SL(2,F) can be generated by elements in T .

Lemma 2. The set SF generates the transposition (0, 1) of Sym(F).

Proof. The transformation f1 ∈ PGL(2,F) defined by (x 7→ 1
x +1) is represented

by the matrix A =
(

1 1
1 0

)
, which satisfies A3 = I. We note that f1 permutes

the elements of F \ {0, 1} as f1:∞ 7→ 1 7→ 0 7→ ∞.
We now consider the corresponding transformation f1 = Ψ(f1) ∈ SF, defined

by x 7→ x(−1) + 1. We note that f1: 0 7→ 1 7→ 0, so f1 permutes the elements of
F \ {0, 1} and furthermore f1 and f1 are the same transformation on F \ {0, 1}.
Thus the triple iteration f1f1f1 ∈ 〈SF〉 is therefore the identity on F \ {0, 1} and
transposes 0 and 1. Hence the transposition (0, 1) ∈ 〈SF〉.
Lemma 3. For n > 2, the set SF generates a 2-transitive subgroup of Sym(F).

Proof. We first show that for any p′, q′ ∈ F, the set SF generates a permutation
which maps p′ to 0 and q′ to 1. As the identity permutation performs this
function for the trivial case, we assume that (p′, q′) 6= (0, 1).



For ease of notation, we define p, q ∈ F such that p′ = p2 and q′ = q2. Now,
the three transformations f p+q+p2

(p+q)2
, fp+q, f 1

p+q
∈ PGL(2,F) are given by

x 7→ 1
x

+
p + q + p2

(p + q)2
, x 7→ 1

x
+ (p + q) and x 7→ 1

x
+

1
p + q

respectively. It can thus be shown from their corresponding matrices (or proof
of Lemma 1) that their composition h ∈ PGL(2,F) is given by

x 7→
1

p+q x + p2

p+q

p + q
=

x + p2

(p + q)2
,

so clearly h(p2) = 0 and h(q2) = 1. The composition h of the corresponding
functions f p+q+p2

(p+q)2
, fp+q and f 1

p+q
in SF is clearly in 〈SF〉 and satisfies h(p2) = 0

and h(q2) = 1 unless a 0-inversion occurs. For the composition of these three
functions, a 0-inversion occurs when evaluating inputs of 0 or p+q, when h(0) =

p2

(p+q)2 and h(p+q) = p+q+p2

(p+q)2 . An input of 0 occurs when either p2 = 0 or q2 = 0,
whereas an input of p + q occurs when either p2 = p + q or q2 = p + q. For this
latter input of p + q, we can deduce that if p2 = p + q then q2 = p2(1 + p)2 and
similarly if q2 = p + q then p2 = q2(1 + q)2. Thus we can identify four special
cases for (p2, q2), namely (0, q2), (p2, 0), (p2, p2(1+p)2) and (q2(1+ q)2, q2), and
except for these four special cases, the above permutation maps p2 to 0 and q2

to 1. We now consider these four special cases.

1. Permutation mapping 0 to 0 and q2 to 1.
The permutation x 7→ x(−1) + λ2 maps 0 to λ2 and q2 to (1+λq)2

q2 . We know

that there exists a permutation mapping λ2 to 0 and (1+λq)2

q2 to 1, except
possibly for the four special cases given above. These four special cases are
given by:
(a) λ2 = 0;
(b) (1+λq)2

q2 = 0 so λ2 = 1
q2 ;

(c) λ2 = λ + 1+λq
q = 1

q ;

(d) (1+λq)2

q2 = λ + 1+λq
q = 1

q which gives 1 + q2λ2 = q so λ2 = q+1
q2 .

Thus there may not exist a permutation mapping λ2 to 0 and (1+λq)2

q2 to 1
for the four special cases given by λ2 = 0, 1

q2 , 1
q , q+1

q2 . However, for n > 2,
F is a field with more than four elements, so we can always find a λ which
is not one of these four special cases. Thus for n > 2 we can always find a
permutation mapping λ2 to 0 and (1+λq)2

q2 to 1, and hence for n > 2 we can
always find a permutation in 〈SF〉 mapping 0 to 0 and q2 to 1.

2. Permutation mapping p2 to 0 and 0 to 1.
Using Part 1, there exists a permutation mapping p2 to 1 and 0 to 0. However,
the permutation of F given by x 7→ x(−1) + 1 maps 0 to 1 and vice versa.
Thus there exists a permutation in 〈SF〉 mapping p2 to 0 and 0 to 1.



3. Permutation mapping p2 to 0 and p2(1 + p)2 to 1 (p 6= 0, 1).
The permutation x 7→ x(−1) + 1

p2 maps p2 to 0 and p2(1 + p)2 to 1
(1+p)2 ,

and using Part 1 there exists a permutation mapping 0 to 0 and 1
(1+p)2 to 1.

Thus there exists a permutation in 〈SF〉 mapping p2 to 0 and p2(1 + p)2 to
1.

4. Permutation mapping q2(1 + q)2 to 0 and q2 to 1 (q 6= 0, 1).
By Part 3 there is a permutation mapping q2(1 + q)2 to 1 and q2 to 0, and
as above the permutation x 7→ x(−1) +1 maps 0 to 1 and vice versa, so there
exists a permutation in 〈SF〉 mapping q2(1 + q)2 to 0 and q2 to 1.

In summary, have shown that for a given p′, q′, there exists a permutation
hp′,q′ ∈ 〈SF〉 mapping p′ to 0 and q′ to 1. Thus the permutation h−1

p′′,q′′hp′,q′ ∈
〈SF〉 maps p′ to p′′ and q′ to q′′. Hence 〈SF〉 is a 2-transitive subgroup of Sym(F).

Theorem 1. For n > 2, the group generated by the set SF of AES-like transfor-
mations from F to F is Sym(F) acting on F.

Proof. The group 〈SF〉 generated by the AES-like transformations contains the
transposition (0, 1) and is a 2-transitive subgroup of Sym(F). Thus 〈SF〉 contains
all transpositions and so generates Sym(F) ([2] Section 15.4).


