
e-EMV: Emulating EMV for Internet
Payments using Trusted Computing

Technology

Shane Balfe and Kenneth G. Paterson

Technical Report
RHUL-MA-2006-10-v2

07 March 2008

Royal Holloway
University of London

Department of Mathematics
Royal Holloway, University of London
Egham, Surrey TW20 0EX, England

http://www.rhul.ac.uk/mathematics/techreports

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Royal Holloway Research Online

https://core.ac.uk/display/78876437?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Abstract

The introduction of EMV-compliant payment cards, with their
improved cardholder verification and card authentication capabilities,
has resulted in a dramatic reduction in the levels of fraud seen at
Point of Sale (PoS) terminals across Europe. However, this reduction
has been accompanied by an alarming increase in the level of fraud
associated with Internet-based Card Not Present (CNP) transactions.
This increase is largely attributable to the weaker authentication pro-
cedures involved in CNP transactions. This paper shows how the
functionality associated with EMV-compliant payment cards can be
securely emulated in software on platforms supporting Trusted Com-
puting technology. We describe a detailed system architecture encom-
passing user enrollment, card deployment (in the form of software),
card activation, and subsequent transaction processing. Our proposal
is compatible with the existing EMV transaction processing architec-
ture, and thus integrates fully and naturally with already deployed
EMV infrastructure. We show that our proposal, which effectively
makes available the full security of PoS transactions for Internet-based
CNP transactions, has the potential to significantly reduce the oppor-
tunity for fraudulent CNP transactions.

1 Introduction

The use of magnetic stripe cards for Point Of Sale (PoS) transactions is slowly
being phased out in favour of Integrated Circuit Cards (ICCs) compliant with
the Europay-Visa-Mastercard (EMV) specifications [14, 15, 16, 17]. This pro-
cess is essentially complete in Europe, well underway in the Far East, and
under active consideration for North America. This major technology change
is motivated by the susceptibility of magnetic stripe cards to cloning, and the
projected fraud losses associated with the continued use of such cards. ICC
cards, having chips that are actively engaged in the transaction authorisation
process, are much less easily cloned. The U.K., which began the transition
process in 2004, has seen a 47% post-migration reduction in PoS fraud [6].
However, with this reduction in PoS fraud has come an accompanying in-
crease in Internet-based Card Not Present1 (CNP) fraud. For example, CNP
transaction fraud is now the predominant means through which payment
card fraud is committed in the U.K. [5]. Specific figures are harder to come
by for other countries, but we believe the U.K. experience to be illustrative
of the global trend.

1For the remainder of this paper all references to CNP transactions refer to Internet-
based CNP transactions.

1



The level of fraud seen with CNP transactions has raised significant con-
cern amongst the card processing community. Over the years a number of
proposals have been put forward to address this problem. The most note-
worthy of these are SET [37] and 3-D Secure [49]. However, neither of these
proposals have gained widespread adoption. Indeed, the vast majority of
CNP payments are protected today just using SSL/TLS to secure data in
transit and to provide a limited form of merchant authentication. Customer
authentication is provided through the customer’s ability to provide relevant
card details such as the Personal Account Number (PAN) and the corre-
sponding Card Security Code (CSC) over the established SSL/TLS session.

Thus, from the merchant’s perspective, there is no guarantee that the
customer is actually in possession of the card corresponding to the details
being proffered in a payment transaction. This problem is exacerbated by
the perpetual increase in “phishing” attacks [22]: through a combination of
social engineering and technical subterfuge, customers may be tricked into
revealing their card account details to an attacker. In the past, these attacks
have required some active participation from the user. However, as attacks
become more sophisticated, the human element is becoming removed, with
malicious software (malware) residing on a customer’s platform being used
to capture customer account details and manipulate customer transactions
(including possibly instigating new transactions). We use the term Trans-
action Generator (TG), introduced in [24], to describe such malware in the
remainder of this paper.

On the other hand, from the customer’s perspective, there is little, if any,
assurance that a merchant will endeavour to protect sensitive cardholder data
stored on the merchant’s servers. In a PoS environment, a customer’s suspi-
cion may be aroused by environmental cues, such as damage to the housing
of the payment terminal or the demeanor of the sales assistant. Based on
this physical evidence, a customer may decide not to engage in a transaction.
However, in an on-line setting, the environmental (browser-based) cues that
are available are often either poorly interpreted, or not heeded [12]. In an at-
tempt to instill greater confidence in customers, the Payment Card Industry
Data Security Standard (PCI-DSS) [11] has been proposed. This standard
details 12 mandatory requirements that merchants and third party proces-
sors must satisfy. A customer then trusts that a (legitimate) merchant is in
compliance with this standard and has adopted best practice procedures to
protect their credit card details. However, PCI-DSS-compliance levels are
still low, and there have been instances of companies passing a PCI-DSS
conformance audit, only to be later shown to be non-compliant with the
standard at the time of a breach [35]. Recently, concerns over merchants
running vulnerable payment applications have become so great that begin-

2



ning in January 2008, Visa will begin implementing a series of mandates to
eliminate the use of non-secure payment applications from the Visa payment
system [51]. Visa will only accept payments from merchants using payment
applications that adhere to, and have been validated against, Visa’s Payment
Application Best Practices (PABP) [50].

In summary, current CNP transaction processing cannot make use of
the robust security features available from EMV-compliant ICC cards, and
simply reverts to pre-EMV card authentication procedures. This weakness is
now being ruthlessly and increasingly exploited by fraudsters, and closing this
attack vector represents a significant challenge to the payment card industry.

1.1 Our Work

To combat the threats posed by malware TGs (and by merchants that are
non-conformant with the PCI-DSS), we propose e-EMV, a system that makes
use of Trusted Computing technology to securely emulate EMV for CNP
transactions. We describe a system architecture encompassing user enroll-
ment, deployment of software cards to customer platforms, card activation,
and subsequent transaction processing. Our e-EMV proposal uses a com-
bination of application software, a Trusted Platform Module (TPM) [45], a
processor (with chipset extensions) [23] and Operating System (OS) support
[34, 1] to securely emulate the functionality of a standard EMV-compliant
card in software. We provide a detailed description, at the level of individual
TPM commands, showing how this emulation is achieved. We also explain
how the security features provided by Trusted Computing are used to obtain
an appropriate level of security for our system.

Our approach of emulating EMV on Trusted Platforms for CNP transac-
tions provides the following benefits:
1. It is possible to demonstrate e-EMV card ownership and authentication
for CNP transactions as in standard EMV card authentication procedures.
Thus a merchant can ensure that a customer claiming to present a particular
e-EMV card is the legitimate owner of that card.
2. A merchant can obtain a payment guarantee through being able to demon-
strate customer authorisation of a transaction.
3. A customer can gain an assurance prior to transaction initiation that a
merchant will endeavour to protect sensitive cardholder information. Such a
feature is is absent from EMV’s use at PoS terminals, a fact which is now
allegedly being exploited by criminal gangs [48].
4. An executing e-EMV application can avoid the threat posed by malware
TGs, by hosting e-EMV cards in their own isolated memory partition, free
from observation and interference.

3



5. Our proposal supports direct migration to EMV cards that are more pow-
erful and offer enhanced authentication and transaction authorisation proce-
dures, relative to cards used in current EMV deployments for PoS transac-
tions. While these enhanced security features (Dynamic Data Authentication
(DDA) and Combined DDA and application cryptogram generation (CDA))
are specified in the EMV standards [15], they are not ubiquitous on today’s
EMV ICCs because of their cost implications; instead, some banks find it
more economical to work with cheaper cards and accept the higher level
of risk implied by the use of Static Data Authentication (SDA) [15]. How-
ever, our proposal, involving only software running on mass-market consumer
computing platforms, is not restricted in this way.
6. In e-EMV, modifications and enhancements (resulting from, for exam-
ple, changes to the EMV specifications) can be realized through relatively
straightforward software update processes. In contrast, traditional EMV re-
quires complicated and expensive card upgrades to achieve the same thing.
This lends our e-EMV approach an inherent degree of “future proofing.”

The motivation for emulating EMV, rather than designing a new protocol
from scratch, comes from real-world, practical constraints. By creating an
environment where EMV transaction flows can be mapped directly to e-
EMV transactions we can avoid any expensive re-engineering of the back-end
financial network. Indeed, our proposal is compatible with the existing EMV
transaction processing architecture, and thus integrates fully and naturally
with already deployed EMV infrastructure. Additionally, as a consequence
of EMV having been developed and deployed over many years, many of the
protocol bugs should already have been ironed out.

The relative applicability of our approach is obviously dependent on the
ubiquity of Trusted Computing on commodity computing platforms. This is,
however, not an unreasonable assumption, and once made, allows a number
of interesting solutions to a whole host of security problems plaguing CNP
transactions. Currently available sales figures for 2005 [41] showed estimates
of 32% of all notebook systems shipped that year being TPM-enabled. This
figure is expected to nearly triple by the end of 2007, with processor and
OS support to follow soon after [23, 34, 1]. In addition to this, the recently
released Trusted Mobile specifications [43] hold particular promise for our
architecture, as market penetration of mobile devices typically occurs at an
expedited rate compared to that of Personal Computer (PC) clients.

Our e-EMV proposal could result in a mutually beneficial arrangement for
TPM manufacturers and card issuers. Indeed, our e-EMV proposal could be a
“killer application” for Trusted Computing in the consumer space, something
that seems to be currently lacking.

Organisation: In Section 2, we present an overview of related work. In

4



Section 3, we provide a brief introduction to EMV and Trusted Computing.
In Section, 4 we describe the payment model used for CNP payments. Sec-
tion 5 provides a high-level overview of our e-EMV architecture. Section 6
explains in detail the procedures and processes involved in establishing an
e-EMV card within a Trusted Computing enhanced platform. Following on
from this, Section 7 highlights how a normal EMV transaction flow can be
mapped to an e-EMV transaction. Section 8 examines how the threats posed
to CNP transactions are mitigated by e-EMV. We conclude with Section 9.

2 Related Work

Herreweghen and Wille [21] present a detailed evaluation of the security re-
quirements for Internet-based payments. These include: payment guarantee
for merchant, mutual authentication between customer and merchant, cus-
tomer privacy and anonymity, and transaction authorisation.

The real world roll-out of EMV and the accompanying desire to replicate
the fraud reduction seen with PoS transactions has resulted in a number
of proposals that utilize EMV’s functionality for Internet-based payments
[21, 27, 31, 13, 2]. However, these approaches have not seen any real trac-
tion in the market place. A possible explanation for this is these proposals’
underlying assumption that customers would make use of card readers con-
nected to their PC platforms. This assumption engenders an additional cost
in the form of distributing card readers to end-users. Even if the cost is-
sue could be surmounted, these approaches alone offer only limited security
gains. This is due to the lack of a trusted path between the card-reader
and host, as well as a lack of OS support for application isolation. Without
these, a TG could passively observe Personal Identification Number (PIN)
entries, actively modify transaction data and possibly generate new transac-
tions, enabling criminals to remotely take control of users’ payment cards.
There has, however, been a recent development in integrating EMV with
CNP transactions that aims (albeit indirectly) to address the TG issue. This
is the proposed use of “unconnected” card readers [29]. Unfortunately, this
approach also suffers with respect to the additional costs associated with dis-
tributing card readers to end-users and, once deployed, cannot be updated
to address new threats as they emerge.

The use of Trusted Computing to combat phishing has been proposed
in [3] and [18]. The primary threat considered in [3] is external attack,
whereby a credential needs to be extracted from the client’s platform in
order for it to have any value to an attacker. No consideration is given to
the ever-increasing threat posed by malware TGs. The threat from malware

5



is examined in greater detail in [18, 25, 24]. Here, much like in our approach,
Virtual Machines (VMs) are used to constrain the use of malware to an
individual VM “compartment”. These authors also suggest using visual cues
as to the trustworthiness of the VM with which an end-user interacts, an idea
originating in [7]. Such work is complementary, but orthogonal, to our own:
these cues could be adopted in e-EMV and might help enhance customer
protection from TGs.

3 Overview of EMV and Trusted Computing

In this section, we provide a high-level overview of the main features of EMV
and of Trusted Computing, providing references for readers who require more
detail. This section introduces many acronyms on which we will later rely,
unfortunately this is somewhat unavoidable given the two technologies (EMV
and Trusted Computing) involved.

3.1 EMV

EMV, as described in the current iteration of the specifications defines the
full spectrum of interactions, from the physical to the logical, between an ICC
and an ICC-enabled PoS terminal [14]. A readable introduction to the tech-
nical content of the EMV specifications can be found in [31]. EMV supports
both cardholder authentication, through new Cardholder Verification Meth-
ods (CVMs), and ICC authentication through either SDA, DDA or CDA.
SDA cards allow the terminal to determine if the data on the card has been
modified since card personalisation. DDA cards are more complex in that
they allow for the same checks as SDA but also enable the terminal to deter-
mine if the card is genuine or not through a challenge-response mechanism.
This involves the ICC generating a signature (using a card-specific private
key, with the card storing a certificate issued by the card’s issuer for the
corresponding public key) over the terminal-supplied challenge. CDA cards
are similar to DDA cards except the message signed by the ICC includes an
additional Application Cryptogram (AC). ACs are used to protect transac-
tion messages generated by the ICC using AC Session Keys (derived from a
long-term master key, the ICC AC Master Key, that is shared between the
ICC its card issuer). This ICC AC Master Key is unique per card and is
derived from a customer’s PAN, PAN sequence number and an issuer Mas-
ter Key. Here the PAN sequence number helps to identify a card amongst
several cards belonging to the same customer with the same PAN.

6



EMV defines a number of different types of transaction messages. De-
pending on the reconciliation of card and terminal risk management routines
one of the following will be generated by the card: an Application Authenti-
cation Cryptogram (AAC), an Authorisation Request Cryptogram (ARQC),
an Authorisation Response Cryptogram (ARPC) or a Transaction Certifi-
cate (TC). If the transaction is approved, the ICC will generate a TC which
will be passed to the terminal and can be used to claim payment during the
clearing process. If a transaction is declined, the ICC will generate an AAC.
In the event that the transaction needs to be approved on-line the ICC gen-
erates either an AAC or an ARQC. which will be forwarded to the issuer.
The issuer will then reply with an ARPC indicating whether the transac-
tion should be approved or declined, in which case a TC or an AAC will be
generated by the ICC.

3.2 Trusted Computing

Trusted Computing relates directly to the types of systems espoused by the
Trusted Computing Group (TCG). Namely, a trusted system is one which
will behave in a particular manner for a specific purpose. Trusted Comput-
ing is based on the inclusion a hardware “root of trust”, the Trusted Platform
Module (TPM), within a platform, that aims to allow users (and third par-
ties) to assess the “trustworthiness” of the devices with which they interact.
To achieve this, a Trusted Platform will be able to attest to its current oper-
ating environment, or any sub-component thereof. Interested second parties
can make requests for this information, and any divergence from an intended
operating state can be detected by the second party, allowing them to make
informed decisions as to whether to continue to interact with the current
system. We assume the reader is familiar with Trusted Computing and the
TPM command set, literature for which can be found in [30] and [47] respec-
tively. We now briefly outline some of the Trusted Computing functionally
upon which we depend in the remainder of this paper.

Measuring events on a platform is a two-stage process that begins with an
extend command. This command, more commonly referred to as ‘extending
the digest’, appends a hash of the event being measured to one of a number
of Platform Configuration Registers (PCRs) located internally to the TPM.
These PCRs store a representative hash of all the events generated so far to
form a picture of the current platform state. The second stage in this process
is the writing of events, reflected in a PCR, to permanent storage. This
logging of integrity-altering events within a platform occurs in the Stored
Measurement Log (SML). The SML maintains sequences of events to which
new events are appended. For example, such an event might be the launch

7



of an application. The measurement of an application can be performed by
computing the cryptographic hash over the current PCR value (to which
this event will be recorded) concatenated with the application’s instruction
sequence, its initial state (i.e. the executable) and its input. This hash is
then written to the PCR and a description of the event recorded in the SML.

When a verifier wishes to inspect a host platform’s configuration, it re-
quests (a portion) of the requestee platform’s SML and asks the requestee’s
TPM to produce a signature over a specific set of PCR values describing a
portion of the platform’s operating state. The TPM uses the private compo-
nent of a key pair called an Attestation Identity Key (AIK) to perform the
signing operation over the requested PCR values. However, in order for the
values being attested by a platform to have meaning outside of the confines
of a challenger’s platform, it is necessary for the challenger’s platform to first
obtain a credential for the signing AIK from a trusted third party recognised
by the verifier. How this credential is obtained differs between version 1.1b
and version 1.2 of the TCG specifications. Version 1.1b uses what is referred
to as the “Privacy CA” model (see [40]) whilst version 1.2 introduced a new
(optional) model in the form of Direct Anonymous Attestation (DAA). We
refer readers to [10] and [47] for the technical details of DAA.

A TPM can manage an unlimited number of cryptographic keys. Every
TPM Key [46] has an assigned attribute designation as well as a defined key
type. Attribute designations help to define key mobility. A key can be des-
ignated as being either migratable, Certified Migratable or non-migratable.
Migratable keys are unrestricted and are capable of leaving a TPM, Certified
Migratable Keys (CMKs) require authorisation from a third party in order
to be migrated from one TPM to another, whilst non-migratable keys are
inextricably bound to a single platform. Key types are used to define what
particular operations a TPM Key is capable of performing. For example, a
key could have a control policy that says a TPM Key is of signing type or
storage type depending on its intended use. In addition, individual private
keys may require explicit authorisation data to be entered by a user before
the key can be used, or require a specific set of platform metrics to be present
before the key can be loaded and used.

To allow a second party to inspect the properties of a CMK or non-
migratable TPM Key, the private component of an AIK (for which certifi-
cation of the public component has been obtained) may be used to sign the
public component of a TPM Key to produce a TPM Certify Info(2) structure
[46]. This structure contains a digest of the corresponding public TPM Key
and information that describes the control policy for the private portion of
this key. This structure can be sent (with the corresponding AIK credential
and public key) to a second party for verification.

8



In addition to the features provided by the TPM, both Operating System
(OS) and processor support represent integral components in the realisation
of Trusted Platforms. As well as providing access to TPM functionality,
a Trusted OS will be capable of launching sandboxed Virtual Machines in
which applications can run. A Dynamic Core Root of Trust for Measurement
(D-CRTM) [39], as defined by Intel in their Trusted Execution Technology
(TXT) and AMD in their Secure Virtual Machine (SVM) system architec-
tures [23, 4], refers to the instantiation of one or more protected Virtual
Machines (VMs) running on-top of a Measured Virtual Machine Monitor
(MVMM) [1]. These VMs run in parallel to the standard OS partition with-
out requiring a system reboot. The following are generic security services
for a protected VM based on an MVMM; we assume the presence of such
functionality in our later discussions.
No interference: Ensures that a program is free from interference from
entities outside its execution space.
Trusted path: Assumes a trusted path between a program and an input
device.
Secure inter-process communication: Enables one program to commu-
nicate with another, without compromising the confidentiality and integrity
of its own memory locations.
Non-observation: Ensures an executing process and the memory locations
it is working upon are free from observation.

4 Payment model

The processing model used for most card payment systems (including EMV)
is typically referred to as the four-corner-model. Within this model, a number
of steps are necessary to complete a given transaction (see Figure 1). Prior to
a customer being able to interact with a merchant, it is necessary that they
follow some issuer-specific enrollment procedure in order to obtain a physi-
cal payment card. A merchant, likewise, can only accept payments from a
customer if they have preregistered to accept payments for that customer’s
particular card type with their acquirer. The dashed line in Figure 1 rep-
resents the boundary of the financial network domain. Payment processing
occurs as follows:

Step 1: The process begins with a customer signaling their intent to
purchase goods by forwarding a payment record to a merchant. In this
instance, the actual characteristics of a payment record differ depending on
the environment in which it was created. For an on-line purchase, a payment
record typically includes the information embossed on the customer’s physical

9



Figure 1: Generic model for card processing.

payment card in conjunction with certain merchant supplied information
(such as the invoiced amount).

Steps 2-5: These steps occur immediately after receiving the customer’s
payment record. They consist of a merchant submitting the transaction
details to their acquirer which will either authorise or reject the transaction
based on their interactions with the customer’s card issuer. After this, the
merchant will either confirm payment or inform the cardholder that their
transaction has been rejected.

Steps 6-9: Based upon the transaction being approved, either as a result
of a successful outcome from steps 2-5 or merchant risk management routines,
steps 6-9 represent the account settlement process through which funds are
debited from a customer’s account and credited to the merchant’s.

Perhaps the most surprising feature of this model is that a positive trans-
action authorisation does not guarantee payment for a merchant. It is merely
an indication that the card account details being proffered have not been
reported stolen and that the customer has sufficient funds to cover the trans-
acted amount. Indeed, unless the card has been reported stolen, it is difficult
for a card issuer, and by extension a merchant, to ascertain whether a par-
ticular transaction is fraudulent or not.

Our e-EMV architecture closely follows the generic four corner model pre-
sented above. The only differences in our approach are that the communica-
tion channel between the customer and the merchant is now Internet-based
(instead of being based on physical proximity of card and terminal), and that
both card issuers and acquirers must provide enrollment facilities for their
e-EMV clients, separate to the facilities provided for the physical issuance of

10



an EMV card. For a card issuer this means providing a mechanism through
which customers can establish their e-EMV cards on their platforms. Simi-
larly, for an acquirer this means providing a facility whereby a merchant can
download an application that can interface with an customer’s e-EMV appli-
cation. In doing so, we assume the presence of a Public Key Infrastructure
(PKI), which can be an extension of the one that currently exists for EMV.
In this regard, enrollment facilities should be able to be authenticated by
customers and merchants via public key certificates issued by a particular
card association.

5 An overview of e-EMV

This section aims to present a high-level overview of our e-EMV proposal.
Our overall aim is to provide functionality akin to that of a standard EMV
card by replicating that functionality through procedures and capabilities
natively supported by a host that is augmented with Trusted Computing.
This allows us to provide a secure and extensible architecture for CNP trans-
actions.

The procedure for establishing an e-EMV card on a Trusted Computing
platform is a two-stage process consisting of an account activation stage
and an application delivery stage. In describing this architecture we are
making the following important assumptions, reiterated from Section 4: we
assume the presence of a PKI extending the one currently in existence for
EMV, we assume that Trusted Computing Platforms are ubiquitous within
the merchant/customer domain, and additionally, that both processor and
OS support are available to all platforms within this domain. Furthermore,
we have the underlying assumption that a card issuer has already made the
decision to extend credit or debit facilities to a particular customer.

5.1 Enrollment

Enrollment in our e-EMV architecture involves a customer formally register-
ing as a legitimate cardholder, allowing them to obtain an e-EMV card. Much
like enrollment in the traditional EMV architecture, a card issuer within our
system is responsible for enrolling cardholders as well as later authenticating
their transactions (and possibly the cardholders themselves). Acquirers can
be seen as providing similar functionality to their merchant customers. The
stages for establishing an e-EMV card on a TPM-enabled platform are as
follows.
Account Activation: Account activation is the process through which a

11



Figure 2: Enrollment procedure.

customer becomes a member of a card-issuer-controlled group. In this case,
group membership is indicative of a customer activating their account within
the system (Figure 2, Step 1a). In the context of Trusted Computing, this
means enrolling with a Privacy CA (see [40]) or optionally becoming a mem-
ber of a card-issuer-controlled Direct Anonymous Attestation (DAA) group
(see [10, 47]). This is achieved by the customer demonstrating the presence of
a non-migratable TPM-controlled secret over which certification is requested,
either an Attestation Identity Key (AIK) in the case of the Privacy CA or a
secret value f for DAA.

At this point, the actual binding between the customer and their plat-
form can be established through a mechanism of the issuer’s choosing. For
example, the customer might provide information supplied to them in the
pre-enrolment stage (in which the card issuer agreed to extend debit/credit
facilities), communicated using an out-of-band mechanism. In addition to
this authentication information, a platform will send various platform creden-
tials (describing the binding of the TPM to the platform) as well as evidence
of the existence of a non-migratable TPM-controlled secret. After receiving
this information, the card issuer performs due diligence in satisfying itself as
to the relationship between a customer and their platform. This is achieved
through a reconciliation of the provided authentication information with an
examination of evidence supporting the existence of a TPM-controlled secret.

12



If the card issuer is satisfied by this evidence, the customer’s platform will
receive certification on their TPM-controlled secret. This certification will
later be used to demonstrate the customer’s membership of a particular card
scheme.

Enrollment for the merchant (Figure 2, Step 1b), by contrast, involves sat-
isfying the requirements for payment processing as laid down by the relevant
acquirer’s Merchant Operator Guidelines (MOGs). During the merchant en-
rollment procedure, the merchant’s acquirer also becomes a certificate issuer,
again in the context of the Privacy CA or DAA models.
Secure Application Delivery: The customer downloads a small secure
application bundle (Figure 2, Step 2a) that fulfills the role of an e-EMV card
as well as acting as a guide through the process of creating/installing the
requisite TPM managed keys (Figure 2, Step 2b) [15]. This bundle, once
installed will enable a platform to perform electronic transactions analogous
to those carried out by an EMV card at a PoS terminal. Our e-EMV applica-
tion contains all the keys required to perform CDA authentication. However,
unlike an EMV card, our e-EMV application will need to provide some of
the functionality typically seen in PoS terminals, particularly when it comes
to cardholder verification (see Section 7).

The merchant will need to download and install a plug-in, similar in ap-
plicability to a 3-D Secure merchant plug-in [49], but capable of emulating
certain EMV terminal functionalities. The most important of these will be
the authentication of customer-supplied credentials. Much like terminals in
the physical setting, merchants will require card issuer’s public key certifi-
cates in order to verify customer transactions.

5.2 Transaction Architecture

In order for an e-EMV application (card) to be launched, a Trusted Plat-
form’s OS sends an instruction sequence to the D-CRTM to create a new
isolated memory partition. The D-CRTM launches a VM into this newly
created memory area, which in turn executes our e-EMV application, free
from observation and influence of TGs. For the details of launching a secure
VM, we refer readers to [23]. With the exception of Step 1 (see Figure 3),
the basic flow for e-EMV transaction processing follows EMV’s transaction
processing at PoS. The steps are as follows:

Step 1 represents the browsing phase in which a customer peruses a
particular merchant site. During this step, the customer verifies that the
merchant is a member of a valid group of merchants, corresponding to a
particular Privacy CA/DAA issuer (acquirer). Additionally, the customer
may verify that the merchant is in a state that exemplifies an adequate policy

13



Figure 3: Transaction architecture for e-EMV payments.

for addressing privacy and confidentially concerns (for example, conformance
with the PCI-DSS or Visa’s PABP) via Trusted Computing’s attestation
procedures.

Step 2 represents the typical EMV ICC and terminal interaction, except
that the communication channel is now exclusively Internet-based.

Step 2a represents the creation of an AC. As part of this step the cus-
tomer’s platform generates a signature over its AC (using the certified non-
migratable TPM-controlled secret established during the account activation
phase) as well as the Platform Configuration Register (PCR) values that
provide evidence as to the platform’s current state at the time of transac-
tion authorisation. These data items are communicated over a secure and
authenticated channel to the merchant server.

Steps 3 to 7 are executed if the optional decision to go “on-line” has been
exercised. As a result of either terminal or card risk management procedures,
the AC (possibly in conjunction with the information adducing the current
platform state) is forwarded to the customer’s card issuer (Steps 3a–4). After
examining the received data, the card issuer returns an AC of its own (Steps
5–7). This AC informs both the card and the merchant as to whether the
request is to be approved or declined, in which case the card application will
either proceed with the transaction or reject it. It is important to note that
all e-EMV messages exchanged in Steps 2–7 are standard EMV message flows
that are exchanged between a PoS terminal and EMV card.

Where additional Trusted Computing platform state information has
been added to EMV’s AC messages, it is optional for an card issuer to exam-
ine this state information as part of their decision making process. The Tag
Length Value (TLV) encoding mechanism used in EMV makes it easy for an
card issuer to ignore any extraneous information from a transaction referral

14



request. Significantly, if the card issuer does decide to take a customer’s
platform state into consideration, the customer’s card issuer would not need
any Trusted Computing facility to examine these characteristics. It would
only need to be capable of hashing some supplied records and verifying a
signature (as we shall see in Section 6). Indeed, such functionality could be
provided by a third party facility or performed by the merchant plug-in.

6 Installing and Instantiating an e-EMV card

This section explains in greater detail the process involved in establishing an
e-EMV card within a Trusted Platform.

6.1 Account Activation

In order for a customer’s e-EMV account to be activated, the customer’s
Trusted Platform must become a member of a card issuer controlled group.
This process is mirrored for the merchant server account activation procedure
with respect to a merchant’s acquirer. In both cases, account activation is
achieved by successfully obtaining/generating a credential issued for an AIK
public key. This credential could be in the form of X.509 certificate issued
by a Privacy CA or a credential issued by a DAA Issuer [47].

In discussing the use of a Privacy CA or a DAA Issuer here, we are
not suggesting that our approach should actually benefit from the privacy-
enhancing features available from either of these choices. Rather, we see the
card-issuer playing the role of either a Privacy CA or DAA Issuer as provid-
ing a convenient mechanism for achieving client-side certification within the
limitations of the TCG specifications.

In either case, the choice of a Privacy CA or DAA Issuer will end with a
similar result: the customer will have their account activated, later allowing
them to demonstrate physical/logical possession of an active card within the
system. Through the establishment of a customer-centric credential embed-
ded within a platform, the customer will be able to attest to the existence of
a key capable of replicating EMV’s SDA/DDA/CDA functionality.

In obtaining this credential, the credential issuer needs to ensure that
a request is coming from a particular customer. This can be achieved, for
example, through a customer demonstrating knowledge of a shared secret
created in the pre-enrollment stage over a secure channel. However, the
actual mechanism used is orthogonal to our discussion.

15



6.1.1 Privacy CA Approach

Here the process involves a customer’s TPM generating an attestation key
pair (SAIK and PAIK for the private/public portions respectively) and hav-
ing PAIK incorporated into an ICC Public Key Certificate (AIK credential).
When creating this key, the customer specifies a password for SAIK , which
will be required every time the key is loaded for use. The process involved
in the generation of a new attestation key within a platform maps to the
generation of an AIK key within a TPM, that is, as a result of performing
the TPM MakeIdentity command [47, pp.146]. The PAIK portion of this
AIK, along with various platform credentials and customer authentication
data, are encrypted with the issuing host’s public key and sent to the card-
issuer-controlled Privacy CA. After authenticating a particular customer and
satisfying itself that the request is coming from a genuine TPM, the Privacy
CA will issue an AIK certificate to the customer’s TPM-enabled platform.
This credential can then be used to provide evidence of card activation within
the system. The AIK certificate could be further enhanced through X.509v3
extensions. For example, it is possible to add key and policy information to
the credential, such as setting a private key usage period under which the
AIK signing key will operate.

6.1.2 DAA Approach

The DAA enrollment procedure occurs exactly as laid out in [10]. However,
here the role of the DAA Issuer is provided by the card-issuer-controlled
issuing host. After a successful completion of the DAA Join command [47,
pp.255], the customer will instruct their TPM to create a new AIK pair (SAIK

and PAIK for the private/public portions respectively). As part of this key
generation process, the customer specifies a password for SAIK , which will be
required every time the key is loaded for use. The customer then instructs
their TPM to sign the PAIK component using their newly enrolled DAA key.
This will later allow the customer to be able to demonstrate that their ac-
count has been activated with respect to a particular card issuer.

Subsequent to a successful completion of either the DAA join procedure or
upon receipt of an AIK certificate from a Privacy CA, the card issuer activates
the customer’s account within their systems. This enables the soon-to-be-
downloaded e-EMV application to be used in ensuing financial transactions.

16



6.2 Secure Application Delivery

The delivery of the e-EMV application to a customer’s platform involves an
interactive process between a customer and their card issuer. The delivery
of the software itself necessitates a number of checks to ensure the binding
between a customer and their platform. The software set-up utility requires
the inclusion of a unique EMV ICC AC Master Key per card issuance, and
this key cannot be generated by the platform itself as it is derived from an
issuer Master Key. Instead the ICC AC Master Key needs to be injected
into the platform as part of the application delivery process. In addition to
the secure delivery of the application, there is an underlying customer-driven
requirement to ensure the authenticity and the “behaviour” of the applica-
tion once delivered. The dual concerns of authenticity and “behaviour” can
typically be addressed using what is termed a validation credential in the
Trusted Computing literature [44]. In this way, load-time metrics can be
compared against known good values to assure customers (and merchants)
that their application will perform as intended.

The issue of secure delivery of an application using Trusted Computing
has previously been examined in the context of conditional access in mobile
systems [19]. However, the methods of [19] are inadequate for our purposes
as we require the card issuer to be able to specify the state on the customer’s
platform to which the e-EMV application will be sealed. Sealed messages
in the context of Trusted Computing are messages that are bound to a set
of platform metrics (specified by one or more PCR values) and can only be
opened when the platform is in a certain state. This is normally achieved with
the TPM Seal [47, pp.58] or the TPM Sealx command [47, pp.78]. However,
the TPM Seal and TPM Sealx commands only allow messages to be sealed
locally to a customer’s platform. Instead we require a message to be sealed
by the customer’s card issuer on their servers, and sent to customer.

In our proposal, the delivery of an application to a customer’s platform,
as well as the corresponding requirement of securely storing the application
upon receipt, is handled in three stages. In the first stage, the customer
generates an asymmetric key pair, specifying security constraints for the
private key. In the second stage, the customer sends the public key of this
key pair to the card issuer. The card issuer will then encrypt the customer’s
e-EMV application with the customer’s public key. In the third stage, the
customer decrypts their e-EMV application (provided the security constraints
specified for the private key are satisfied by the platform). The details of these
stages are as follows.

In the first stage, the customer’s TPM generates either a CMK or a non-
migratable key pair. The set-up phase of this is illustrated in Algorithm

17



1.

Algorithm 1 Set-up Phase

1: CI → C : SealedState ‖ SCI(SealedState) ‖ CICert

2: IC Key := TPM CreateWrapKey (TPM Auth Always, digestAtCre-
ation, digestAtRelease)

3: TPM Certify Info := TPM CertifyKey(IC Key)

Notation: Here CI is the card issuer and C is the customer. SX(Y)
denotes a signature with the private key of entity X over data item Y and
Xcert is the public key certificate for entity X.

In step 1, the customer’s card issuer specifies a state to which it would
like the customer to “seal” a private key.

In step 2, the customer creates a new asymmetric key pair, IC Key.
The customer specifies a password for the private component of this key,
which will be required every time the key is loaded (TPM Auth Always).
The customer also specifies the current platform state at the time the key
is created (digestAtCreation) as well as the future platform state required
for key usage (digestAtRelease). Here digestAtRelease is specified to be the
SealedState provided by the card issuer.

In step 3, the newly generated IC Key is certified by SAIK using the
TPM CertifyKey command [47, pp.128]. Here the customer’s TPM is effec-
tively producing a signature over the public IC Key using a signature key
that the card issuer knows to be bound to a particular customer. In this
setting IC Key can provide the same level of assurance as results from the
TPM Seal command. This is because the “digestAtRelease” parameter is
specified during the generation of the private component of the IC Key. In
this case specifying digestAtRelease is semantically equivalent to sealing.

Once the set-up stage is complete, the download of a customer’s e-EMV
card application can proceed as follows:

Algorithm 2 Downloading the e-EMV Application

1: CI → C : RCI ‖ CICert ‖ [Platform Attestation]
2: C → CI : ECI(TPM Certify Info ‖ ICC Keypub ‖ Platform Attestation
‖ RCI ‖ RC ‖ SICC Keypriv

(C ‖ CI ‖ RCI))
3: CI → C : RC ‖ EC(e-EMV application)

Notation: Here Rx is a random number, ICC Keypub is the public key
of the ICC key generated in the set-up stage and ICC Keypriv is the private
key of the ICC key generated in the set-up stage. SICC Keypriv

(Y) denotes

18



a signature with the ICC Key private key over data item Y, EX(Z) denotes
encryption with the public key of entity X over data item Z, and X Cert(Cpub)
is a public key certificate issued by entity X.

In step 1, the card issuer sends a challenge, its public key certificate and
optionally its own platform state.

In step 2, the customer verifies this platform state (if present) as well as
their card issuer’s public key certificate. The customer returns the TPM Certify Info
structure (generated in the set-up phase) which contains a hash of the public
key of IC Key and a description of the security constraints (of the private
component) of IC Key. In addition to this it sends the public component of
IC Key, signed platform metrics, responds to the challenge of the card issuer
and sends a challenge of its own, all encrypted with the public key of the
card issuer.

In step 3, the card issuer examines the received data. Provided the stor-
age semantics for the private key (IC Key) match the card issuer’s security
policy and the customer correctly responded to the earlier challenge, then
the card issuer sends a reply to the customer’s challenge and the customer’s
e-EMV application encrypted with the customer’s public IC Key.

The final stage of the protocol for secure application delivery is application
retrieval. The basic algorithm is as follows:

Algorithm 3 Application Retrieval

if (Platform state == digestAtRelease) && (incomingAuth == objAuth-
Data) then

Retrieve application
else

Fail
end if

Providing that the current platform state matches the requirements for
the sealed data (as specified by the card issuer) and the incoming authorisa-
tion data matches the authorisation data set for the private key during the
set-up phase, then the application is unsealed. If one or both of these two
conditions is not met then the application should remain sealed until both
conditions can be fulfilled. Following a successful delivery of the e-EMV ap-
plication, the customer is now able to utilise their card on their TPM-enabled
platform.

19



7 e-EMV in Operation

Once our e-EMV application (card) is launched into its own isolated VM,
transaction processing proceeds as follows.

7.1 Customer to Merchant Interaction

Customer-to-merchant interaction in our e-EMV system uses the same trans-
action processing used for EMV at PoS terminals. Transaction flows for
e-EMV transaction are mapped to EMV transaction flows as follows (see
Figure 4):

Figure 4: e-EMV Customer-Merchant Interface

Application Selection: Typically, application selection occurs in re-
sponse to a terminal-initiated command to select the appropriate EMV ap-
plication from a multi-application card. In this case we assume a single
application instance in which customer/merchant application matching is
dependent on finding a suitable set of validation credentials supported by
the platform or a reported set of one or more PCR values in the form of a
platform attestation, representing a valid application execution.

Initiate Application Processing: The customer’s application next
commences application processing. In the physical world this would yield a
response in which the card returns its application interchange profile and its
application file locator. However, in this setting as the cards are virtualised
and free from the constraints of typical ICC cards, all e-EMV cards would
represent CDA capabilities. Additionally, as part of this step the merchant
terminal plug-in provides to the e-EMV application any terminal-related in-
formation pertaining to the business environment at the point of service. An
example of such information would be terminal capabilities or the country in
which the terminal is operating.

Read Application Data: The steps involved in issuing one or more
READ RECORD commands [16, pp.69] in this setting is relatively redun-

20



dant as we assume the application is executing solely in main memory on a
customer’s platform.

Processing Restrictions: This mandatory step is performed by the
merchant and doesn’t require any direct interaction with the customer’s exe-
cution environment. This step is primarily concerned with judging the com-
patibility of the e-EMV application with that of the terminal application.
This process can be handled in an e-EMV environment through a process
of reconciliation between terminal supported applications and customer sup-
plied validation credentials/platform attestation.

Off-line Data Authentication: The three options for off-line data au-
thentication available in EMV-compliant cards are SDA, DDA and CDA.
These all involve a PoS terminal issuance of an INTERNAL AUTHENTI-
CATE command [16, pp.65]. We achieve this functionality in our e-EMV
application through the platform’s attestation mechanism. We now discuss
how this is achieved for each of the three options.

SDA: SDA is relatively simple process whereby a validation credential
(generated by a card issuer) providing metrics for a correctly functioning e-
EMV card application is compared against load-time PCR metrics reported
in an attestation challenge to a merchant. An outline of this process is as
follows (here M is the merchant and Req is a request for one or more PCR
registers:

1: M → C : MCert ‖ SM(Req) ‖ Req ‖ Platform Attestation
2: C → M : CCert ‖ EM(PAIK ‖ Platform Attestation)

The merchant server requests one or more PCR values corresponding to
the PCRs to which the e-EMV application is bound. In addition to this
request the merchant attests its own platform metrics for examination by
the customer’s platform.

The customer’s platform examines the attested merchant metrics and de-
termines the suitability of the merchant for adherence to certain desirable
policies, such as the PCI-DSS standards for card processing or Visa’s PABP.
If satisfied, a customer’s platform agent culls its SML for the events respon-
sible for generating the requested PCR values.

The TPM loads the AIK signing key using customer-provided authori-
sation data. The e-EMV application, using the now loaded AIK key, calls
the TPM Quote command [47, pp.157] to sign the requested PCR registers.
This will either be the AIK for which a certificate was obtained during the
e-EMV account activation stage (as per the Privacy CA model) or an AIK
over which a DAA signature has been generated (as per the DAA model).
This information is returned to the merchant server for verification.

21



The merchant examines the AIK credential, checks signatures2 and com-
pares a hash of the SML entries to the attested PCR values. If they match
the merchant can be sure as to the current state of the VM in which the
e-EMV application is executing. In effect, this procedure achieves the same
function as SDA does in standard EMV.

DDA: DDA requires a slight modification to the SDA mechanism as
outlined above. During the operation of TPM Quote in which the PCR
registers are signed, the customer incorporates a merchant-supplied 160-bit
random challenge to the attestation. This challenge takes the place of the
operand externalData which is of type TPM NONCE [46, pp.27] in the PCR
attestation process.

CDA: In the EMV PoS environment this would consist of a ICC private
key signature over the dynamic application data of which an AC (specifically
a TC or an ARQC) and a random challenge (as per DDA) are integral parts.
Replicating this in e-EMV environment is not substantially more complicated
than either the SDA or DDA approaches. The e-EMV application carries out
the AC generation process. The AC, along with its data output (TC/ARQC)
can be integrated into a PCR register. The actual examinable output, that
is the TC or ARCQ, is then correspondingly appended to the SML and a
signature is generated over the representative PCR values. In this way the
merchant, upon receipt of the attestation bundle can examine the SML for
the inclusion of an AC and verify its veracity through a signature verification.

Card-holder Verification: In the typical PoS EMV operation, this
step allows the terminal to verify the authenticity of a cardholder. This
authentication is based on the card and terminal both supporting a particular
Card-holder Verification Method (CVM). In addition to the CVM being used
to verify a customer, some CVMs, particularly PIN authentications, are used
as a means of authorising transactions.

Through the use of Trusted Computing functionality we can make PIN
authentication and authorisation intrinsic to transactions. This is achieved
through the TPM key authorisation mechanism, whereby certain keys require
20 bytes of authorisation data to be supplied prior to being loaded. The AIK
key’s operation requires authorisation data to be securely communicated to
a TPM. In our architecture, this authentication data will be communicated
over a secure Object-Independent Authorisation Protocol (OIAP) session [45,
pp.62]. The use of an OIAP session allows authorisation information to be
sent TPM without revealing the data on the channel over which it is sent.

2There may be a situation in which a merchant is unfamiliar with certificate authority
referred to in an ICC public key certificate. However, provided each card issuer is itself
a link in a chain traversing back to globally recognised root CA, for example Visa or
Mastercard, then this verification can be as a result of certificate chain traversal.

22



The availability of such a secure channel is an adjunct to our assumption of
a Trusted Path provided by the OS.

The ability to actually use a key as part of a transaction demonstrates to
a merchant that a CVM has occurred successfully. By verifying the state of
the platform, a merchant can be assured that only a valid customer would
be capable of using the AIK/DAA key generated in the account activation
stage.

To prevent malware from launching a dictionary attack against key au-
thorization data, it is important that the TPM provide some form of re-
siliency to such an attack. The current iteration of the TPM specifications
[45] detail an example mechanism where a count of failed authorization at-
tempts is recorded. If this count exceeds a threshold, the TPM is locked
and remains non-responsive to further requests for a predetermined time-out
period. However, at present, the implementation of a dictionary attack resis-
tant authorisation mechanism is vendor-specific and not always implemented
securely [32].

Terminal Risk Management and Action Analysis: The purpose
of terminal risk management and terminal action analysis is to protect the
issuer, acquirer and payment system from fraud. The existing variety of
measures used by EMV in terminal risk management, such as floor limits,
random transaction selection and velocity checking can all be replicated in
the merchant terminal plug-in in our e-EMV architecture.

Card Risk Management and Action Analysis: Details of card risk
management are proprietary to card issuers and are outside the scope of the
EMV specification and as such would remain proprietary to individual card
issuers within our system.

On-line Authorisation: During EMV transaction processing the mer-
chant terminal may decide to proceed with an on-line check; this again can
be replicated in our e-EMV environment.

Issuer Script Processing: To allow updates to EMV cards in the field,
the card issuer can return scripts via the terminal to the ICC for processing.
These scripts are not necessarily relevant to the current transaction and
may be used to update applications during the utilisation phase of the ICC’s
lifecycle, or to transition the card into a blocked or unblocked state. Updates
to e-EMV cards can be performed in a similar manner. An issuer can send
update scripts via the merchant plug-in to the customer’s e-EMV card. The
issuer can then distribute new state measurements for updated e-EMV cards
to merchants via new validation credentials. Merchants should only allow
e-EMV cards whose attestation matches the values contained in the latest
validation credential to perform e-EMV transactions. Card blocking scripts
are a more difficult EMV feature to replicate in an e-EMV setting. It may

23



be illegal in certain jurisdictions for a card issuer to force an update on a
customer’s platform without gaining customer consent.

7.2 Payment

As we saw in Section 3.1, in EMV, an ICC uses session keys derived from
the ICC Master Key to protect the transaction messages. In our e-EMV
architecture, in conjunction with the information typically sent in the AC
message, the e-EMV application sends the current platform state as witnessed
by its issuer-validated signing key. After examining the AC message as well
as the supplied state, the verifier (a merchant or a card issuer) can make a
decision as to whether or not to proceed with a transaction. In the instance
where an AC is an ARQC, as mentioned in Section 5.2, the TLV encoding
scheme used in EMV allows the issuer to ignore extraneous information if
they so choose. The card issuer can then respond with an ARPC indicating
whether the transaction should be approved or declined, in which case a TC
(which can be signed, see CDA in Off-line Data Authentication) or an AAC
will be generated by the customer’s platform. The transition to Internet-
based communications in e-EMV requires that ACs be protected in transit
between the customer and merchant. Such protection can be achieved by
establishing a TPM-centric SSL tunnel between customer and merchant, as
per [8].

7.3 Migration

Enabling the migration of an e-EMV card from one Trusted Platform to an-
other would be useful in our architecture. We could achieve such a feature by
using the TPM’s certifiable migration functionality. If the customer creates
a CMK during the application delivery process (see Section 6.2), a customer
may later migrate their application bundle to another TPM-enabled plat-
form. However, as neither DAA secrets nor AIK private keys obtained in the
enrollment phase are migratable from a TPM, the customer would need to
rerun the account activation phase (see Section 6.1) in order for their card
to be usable on the new platform. In this instance, the cost of providing ad-
ditional infrastructural elements to support a trusted migration service [42]
may be somewhat prohibitive for issuers, and it may just be simpler in prac-
tice for customers to enroll their new platform with their card issuer from
scratch.

24



8 Security Analysis

The semantics of trust enforced by Trusted Computing functionality enables
both parties, the merchant and the customer, to obtain certain guarantees
that were hitherto unrealizable in past proposals [37, 49]. Both merchant
and server can be sure as to the integrity of their communicating peer’s
platform, i.e. that each peer will behave in the expected manner (in this
case, adhere to, and faithfully adduce state characteristics corresponding to
legitimate transaction states). It is important to point out that we do not
expect the customer to be able to recognize or validate software states within
our system. This function can be fulfilled by the application software itself
and should be reported to the customer in a way that is understandable.
This section analyses the effectiveness of our e-EMV architecture as a means
of securing electronic payments. This is achieved by examining how well it
satisfies the security requirements of Herreweghen and Wille [21] described
in Section 2.

Mutual authentication of customer and merchant: In our archi-
tecture both customers and merchants are authenticated via their card is-
suer/acquirer supplied credentials, providing a much stronger form of authen-
tication than that currently employed for CNP payments. Balfe et al. [8]
have shown how such credentials can be used to authenticate the establish-
ment of SSL/TLS sessions, thus providing an additional layer of protection
for the transport of e-EMV transaction messages over the Internet. Their
proposal can also be adopted here.

An added benefit of our approach is allowing the customer to examine a
merchant’s platform state prior to transaction authorisation. This enables
the customer to satisfy themselves that the merchant will behave in a manner
that will protect their sensitive card data. Such a feature is lacking with
current PoS transactions, a fact which is now allegedly being exploited by
criminal gangs [48].

Transaction authorisation & payment guarantee for merchant:
In our architecture, the use of the private transaction authorising key is
contingent on a particular platform state being present on the customer’s
platform. Much like PIN entry at a PoS, the completion of a transaction is
conditioned on the input of correct authorisation data, ensuring the physical
presence of the cardholder in the remote transaction. Additionally, as part of
the transaction authorisation process, a customer’s platform must attest to
the VM in which our e-EMV application is executing. Any divergence from
intended operating state (due to unwanted memory resident applications)
will be picked up in the attestation, allowing merchant risk management
routines to terminate the transaction.

25



Assuming a transaction goes ahead, payment guarantee for the merchant
is provided by CDA. CDA provides a signature over an e-EMV card’s Trans-
action Certificate, providing the merchant with non-repudiable evidence of
payment. Cardholder non-repudiation is dependent on the degree to which
the cardholder’s private signing key is securely generated and stored in the
cardholder’s Trusted Platform.

Customer privacy and anonymity: Customer privacy is somewhat
problematic in any CNP transaction as the customer will typically pro-
vide copious amounts of personally identifiable information, such as name
and billing address. However, our DAA approach does provide a degree of
pseudonymity for the actual transaction. Provided the customer selects a
fresh DAA identity for each transaction, a customer’s different transactions
should be unlinkable by a merchant.

9 Conclusions

The use of the Internet as an avenue for electronic commerce, in the form
of CNP transactions, has seen something of an explosion in recent years.
However, CNP transactions are currently far from secure. This paper pro-
posed a new security architecture for securing CNP transactions. By creating
software-based EMV cards running on Trusted Platforms, our e-EMV pro-
posal replicates many of the features of standard EMV-compliant cards for
use in CNP transactions. Through our account activation and secure appli-
cation delivery procedures, we established cards can be remotely provisioned
within our system. We showed how card ownership can be demonstrated by
the customer through the use of an OIAP session enabling secure PIN entry.
We also showed how EMV transaction messages can be mapped to e-EMV
transaction messages. We demonstrated how EMV keys can be generated
and bound to a particular TPM-enabled platform. Through these various
measures, we can achieve a significant improvement in the level of security
afforded to CNP transactions.

Our work raises a number of areas for further research. In this paper, we
have focussed on describing architectural and technical aspects of our e-EMV
proposal. Our future work will examine security and system management
issues. A prototyping activity based on the OpenTC framework3 with SVM
[4], L4 µ-Kernel4 and Xen [9] support is also likely to be useful in terms
of revealing unforseen practical issues, operational problems, and the like.
At present, our approach is reliant on MVMMs and Trusted Computing

3http://www.opentc.net/
4http://os.inf.tu-dresden.de/L4/

26



augmented processors being present in commodity platforms. Unfortunately,
such support is not widely available today. A more immediate avenue for
adoption would be Trusted Computing enhanced mobile phones [43] which
do not require MVMM support. However, at present only preliminary details
of the TCG’s trusted mobile architecture are available [43]. We believe that
Trusted Computing can provide an enhanced level of security over EMV’s
deployment at PoS. However, given the perpetual increase in attacks (both
in terms of number and sophistication) targeting end-user systems, we see
an increased role for both terminal and card risk management routines to
control transaction risk in our e-EMV architecture.

Whilst outside of the immediate scope of this paper, in developing our
architecture we note two weaknesses in the current attestation mechanisms
adopted by the TCG. Firstly, as noted in [20], the current TCG attestation
is static, inexpressive and has poor handling of patches and upgrades to
system software. Alternative approaches to attestation have been proposed
in [33, 38, 20]. Secondly, the TCG attestation mechanism only concerns
itself with load-time measurements of applications. It is very difficult to
obtain any guarantees of the run-time behaviour of the application, and as
such, applications may suffer from a time-of-check-to-time-of-use problem.
Recent approaches that attempt to address this issue have been proposed
in [26, 28, 36, 38]. Investigating these proposals in the context of e-EMV
will be of interest. In the absence of more expressive attestations we must
rely on the properties of the MVMM to ensure that our executing e-EMV
application cannot be interfered with by outside applications.

We further note the possibility of extending our system by exploiting ad-
ditional features of the DAA protocols to support pseudonymous payment
cards. In such an extension, we envisage the information identifying individ-
uals being removed from the merchants’ view of transactions, with acquirers
still being able to obtain the necessary payment guarantees. We leave the
details of such a system to the full paper.

References

[1] M. Abadi and T. Wobber. A logical account of NGSCB. In David
de Frutos-Escrig and Manuel Nú nez, editors, Proceedings of the 24th
International Conference on Formal Techniques for Networked and Dis-
tributed Systems (FORTE 2004), volume 3235 of LNCS, pages 1–12.
Springer Verlag, 2004.

27



[2] M. Al-Meaither and C. J. Mitchell. Extending EMV to support
Murabaha transactions. In Proceedings of the 7th Nordic Workshop
on Secure IT Systems (NordSec 2007), pages 95–108, Gjovik Univer-
sity College, Norway, October 2003. Department of Telematics, NTNU,
Trondheim, Norway.

[3] A. Alsaid and C. J. Mitchell. Preventing phishing attacks using trusted
computing technology. In Proceedings of the 6th International Network
Conference (INC 2006), pages 221–228, July 2006.

[4] AMD. AMD64 architecture programmer’s manual: Volume 2: System
programming, AMD Publication no. 24594 rev. 3.11 edition, May 2006.

[5] APACS. Card fraud the facts 2006. http://www.apacs.org.uk/

resources_publications/documents/FraudtheFacts2006.pdf,
April 2006.

[6] APACS. Card fraud losses continue to fall. http://www.apacs.org.

uk/media_centre/press/07_14_03.html, March 2007.

[7] B. Balacheff, D. Chan, L. Chen, S. Pearson, and G. Proudler. Secur-
ing intelligent adjuncts using trusted computing platform technology.
In Proceedings of the 4th working Smart Card Research and Advanced
Applications (CARDIS 2001), pages 177–195. Kluwer Academic Pub-
lishers, Norwell, MA, USA, 2001.

[8] S. Balfe, A.D. Lakhani, and K.G. Paterson. Securing peer-to-peer net-
works using trusted computing. In C.J. Mitchell, editor, Trusted Com-
puting, pages 271–298. IEE Press, 2005.

[9] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-
bauery, I. Pratt, and A. Warfield. Xen and the art of virtualization. In
Proceedings of the 19th ACM Symposium on Operating Systems Princi-
ples (SOSP 2003), pages 164–177, The Sagamore, Bolton Landing (Lake
George), New York, 19–22 October 2003. ACM Press, Bolton Landing,
New York, USA.

[10] E. Brickell, J. Camenisch, and L. Chen. Direct anonymous attestation.
In Proceedings of the 11th ACM conference on Computer and Commu-
nications Security (CCS 2004), pages 132–145, Washington DC, USA,
2004. ACM Press, New York, NY, USA.

28



[11] PCI Security Standards Council. Payment Card Industry Data Security
Standard – Version 1.1. https://www.pcisecuritystandards.org/

tech/download_the_pci_dss.htm, 2006.

[12] R. Dhamija, J. D. Tygar, and M. Hearst. Why phishing works. In
Proceedings of the SIGCHI Conference on Human factors in computing
systems (CHI 2006), pages 581–590, Montreal, Qubec, Canada, 2006.
ACM Press, New York, NY, USA.

[13] EMVCo. Book 3 - Application Specification, 4.0 edition, December 2000.

[14] EMVCo. Book 1 - Application independent ICC to Terminal Interface
requirements, 4.1 edition, May 2004.

[15] EMVCo. Book 2 - Security and Key Management, 4.1 edition, May
2004.

[16] EMVCo. Book 3 - Application Specification, 4.1 edition, May 2004.

[17] EMVCo. Book 4 - Cardholder, Attendant, and Acquirer Interface Re-
quirements, 4.1 edition, June 2004.

[18] S. Gajek, A-R. Sadeghi, C. Stüble, and M. Winandy. Compartmented
security for browsers–or how to thwart a phisher with trusted computing.
ARES, 0:120–127, 2007.

[19] E. Gallery and A. Tomlinson. Conditional access in mobile systems: Se-
curing the application. In First International Conference on Distributed
Frameworks for Multimedia Applications (DFMA 2005), pages 190–197.
IEEE, 2005.

[20] V. Haldar, D. Chandra, and M. Franz. Semantic remote attestation: A
virtual machine directed approach to trusted computing. In USENIX
Virtual Machine Research and Technology Symposium, pages 19–41.
USENIX, May 2004.

[21] E.V. Herreweghen and U. Wille. Risks and potentials of using EMV
for internet payments. In Proceedings of the 1st USENIX Workshop on
Smartcard Technology, pages 163–174. USENIX, May 1999.

[22] IBM-Global-Services. IBM Global Business Security Index Report,
February 2005.

[23] Intel-Corporation. LaGrande Technology Preliminary Architecture Spec-
ification, intel publication no. d52212 edition, May 2006.

29



[24] C. Jackson, D. Boneh, and J. Mitchell. Attack of the transaction gen-
erators. http://crypto.stanford.edu/SpyBlock/spyblock.pdf.

[25] C. Jackson, D. Boneh, and J. Mitchell. Spyware resistant web au-
thentication using virtual machines. http://crypto.stanford.edu/

antiphishing/spyblock.pdf.

[26] T. Jaeger, R. Sailer, and U. Shankar. PRIMA: policy-reduced integrity
measurement architecture. In Proceedings of the 11th ACM Symposium
on Access Control Models And Technologies (SACMAT 2006), pages
19–28, Lake Tahoe, California, USA, 2006. ACM Press, New York, NY,
USA.

[27] V. Khu-Smith and C.J. Mitchell. Using EMV Cards to Protect E-
commerce Transactions. In Proceedings of the 3rd International Confer-
ence on E-Commerce and Web Technologies (EC-WEB 2002), volume
2455, pages 388–399. Springer-Verlag, London, UK, January 2002.

[28] J.M. McCune, B. Parno, A. Perrig, M.K. Reiter, and A. Seshadri. Mini-
mal TCB Code Execution. In Proceedings of the 2007 IEEE Symposium
on Security and Privacy, pages 267–272. IEEE Computer Society, Wash-
ington, DC, USA, 2007.

[29] P. Meadowcroft. Combating card fraud. http://www.scmagazine.com/
uk/news/article/459478/combating+card+fraud/, January 2005.

[30] C.J. Mitchell, editor. Trusted Computing. IEE Professional Applications
of Computing Series 6. The Institute of Electrical Engineers (IEE), Lon-
don, UK, April 2005.

[31] C. Radu. Implementing Electronic Card Payment Systems. Artech
House, Inc., Norwood, MA, USA, 2002.

[32] A-R. Sadeghi, M. Selhorst, C. Stüble, C. Wachsmann, and M. Winandy.
TCG inside?: a note on TPM specification compliance. In Proceedings
of the 1st ACM workshop on Scalable trusted computing (STC 2006),
pages 47–56, Alexandria, Virginia, USA, 2006. ACM Press, New York,
NY, USA.

[33] A-R. Sadeghi and C. Stüble. Property-based attestation for computing
platforms: caring about properties, not mechanisms. In Proceedings
of the 2004 workshop on new security paradigms (NSPW 2004), pages
67–77, Nova Scotia, Canada, 2004. ACM Press, New York, NY, USA.

30



[34] A-R. Sadeghi, C. Stüble, and N. Pohlmann. European Multilateral Se-
cure Computing Base: Open Trusted Computing for You and Me. http:
//www.prosec.rub.de/Publications/SaStPo2004Web.pdf, 2004.

[35] U.S. Securities and Exchange Commission. Form 10-K – The TJX Com-
panies, INC. http://www.sec.gov/Archives/edgar/data/109198/

000095013507001906/b64407tje10vk.htm, 2007.

[36] A. Seshadri, M. Luk, N. Qu, and A. Perrig. SecVisor: a tiny hypervisor
to provide lifetime kernel code integrity for commodity OSes. In Proceed-
ings of 21st ACM SIGOPS symposium on Operating Systems Principles
(SOSP 2007), pages 335–350, Stevenson, Washington, USA, 2007. ACM
Press, New York, NY, USA.

[37] SETCo. SET Secure Electronic Transaction 1.0 specification —
the formal protocol definition. http://www.cl.cam.ac.uk/research/

security/resources/SET/, May 1997.

[38] E. Shi, A. Perrig, and L.V. Doorn. BIND: A Fine-Grained Attestation
Service for Secure Distributed Systems. In Proceedings of the 2005 IEEE
Symposium on Security and Privacy, pages 154–168. IEEE Computer
Society, Washington, DC, USA, 2005.

[39] TCG. TCG PC Specific Implementation Specification, 2003. https:

//www.trustedcomputinggroup.org/downloads/specifications.

[40] TCG. TCG Specification Architecture Overview, 1.2 edition,
2004. https://www.trustedcomputinggroup.org/downloads/

specifications.

[41] TCG. Trusted computing: Opportunities and challenges. https://www.
trustedcomputinggroup.org/downloads/tcgpresentations/, 2004.

[42] TCG. Interoperability Specification for Backup and Migration Services,
1.0 revision 1.0 edition, 2005. https://www.trustedcomputinggroup.
org/specs/IWG/.

[43] TCG. TCG Mobile Trusted Module Specification, .09 draft edition, 2006.
https://www.trustedcomputinggroup.org/specs/mobilephone/.

[44] TCG. TCG Specification Architecture Overview Revision 1.2, 1.2 re-
vision 93 edition, 2006. https://www.trustedcomputinggroup.org/

downloads/specifications.

31



[45] TCG. TPM Main: Part 1 Design Principles, 1.2 revision 93 edi-
tion, 2006. https://www.trustedcomputinggroup.org/downloads/

specifications.

[46] TCG. TPM Main: Part 2 Structures of the TPM, 1.2 revision 93 edi-
tion, 2006. https://www.trustedcomputinggroup.org/downloads/

specifications.

[47] TCG. TPM Main: Part 3 Commands, 1.2 revision 93 edi-
tion, 2006. https://www.trustedcomputinggroup.org/downloads/

specifications.

[48] The Sunday Times. Don’t use cards at petrol stations. http://

business.timesonline.co.uk/, Febuary 18 2007.

[49] Visa. 3-D SecureTM Protocol Specification: System Overview. http://
international.visa.com/fb/paytech/secure/main.jsp, May 2003.

[50] Visa. Cardholder information security program – list of vali-
dated payment applications. http://usa.visa.com/merchants/risk_
management/cisp_payment_applications.html, October 2007.

[51] Visa. Cardholder information security program bulletin 102307–
visa announces new payment application security mandates.
http://usa.visa.com/merchants/risk_management/cisp_payment_

applications.html, October 2007.

32


