
Special Signature Schemes and Key
Agreement Protocols

Caroline J. Kudla

Technical Report
RHUL–MA–2006–8

6 October 2006

Royal Holloway
University of London

Department of Mathematics
Royal Holloway, University of London
Egham, Surrey TW20 0EX, England

http://www.rhul.ac.uk/mathematics/techreports

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Royal Holloway Research Online

https://core.ac.uk/display/78876434?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Special Signature Schemes and Key Agreement
Protocols

Caroline J. Kudla

Thesis submitted to the University of London
for the degree of Doctor of Philosophy

Information Security Group
Department of Mathematics

Royal Holloway, University of London
2006

Declaration

These doctoral studies were conducted under the supervision of Kenneth G. Paterson.

The work presented in this thesis is the result of original research carried out by
myself, in collaboration with others, whilst enrolled in the Department of Mathematics as
a candidate for the degree of Doctor of Philosophy. This work has not been submitted for
any other degree or award in any other university or educational establishment.

Caroline J. Kudla
January, 2006

2

Acknowledgements

My sincere thanks go to my supervisor, Kenny Paterson, whose dedication has been out-
standing, and who has given generously of his time to guide and encourage me in my work
over the last 3 years. His invaluable comments, constructive criticism and unwavering
support have been crucial in helping me to achieve my goals and develop as a researcher.
I would also like to thank my advisor, Chris Mitchell, for his encouragement in my various
endeavors.

I would like to express my deepest gratitude to HP Labs in Bristol, whose generous
financial support has enabled me to pursue my studies. HP also permitted me to work
from their labs, allowing me insight into the world of industrial research and providing me
with invaluable experience. In particular, I would like to thank Keith Harrison for all his
encouragement and advice during my time at HP, and Liqun Chen for her guidance and
support. It has been great working with and learning from you both.

I would also like to thank my friends and family, near and far, for all their encourage-
ment over the last 3 years. I have finished studying - at last! Finally, I want to thank
my beloved husband, Guillaume. He has been fantastic in every way, and I couldn’t have
done this without his constant love and support.

3

Abstract

This thesis is divided into two distinct parts. The first part of the thesis explores various
deniable signature schemes and their applications. Such schemes do not bind a unique
public key to a message, but rather specify a set of entities that could have created the
signature, so each entity involved in the signature can deny having generated it. The main
deniable signature schemes we examine are ring signature schemes.

Ring signatures can be used to construct designated verifier signature schemes, which
are closely related to designated verifier proof systems. We provide previously lacking
formal definitions and security models for designated verifier proofs and signatures and
examine their relationship to undeniable signature schemes.

Ring signature schemes also have applications in the context of fair exchange of signa-
tures. We introduce the notion of concurrent signatures, which can be constructed using
ring signatures, and which provide a “near solution” to the problem of fair exchange.
Concurrent signatures are more efficient than traditional solutions for fair exchange at the
cost of some of the security guaranteed by traditional solutions.

The second part of the thesis is concerned with the security of two-party key agreement
protocols. It has traditionally been difficult to prove that a key agreement protocol satisfies
a formal definition of security. A modular approach to constructing provably secure key
agreement protocols was proposed, but the approach generally results in less efficient
protocols.

We examine the relationships between various well-known models of security and in-
troduce a modular approach to the construction of proofs of security for key agreement
protocols in such security models. Our approach simplifies the proof process, enabling us
to provide proofs of security for several efficient key agreement protocols in the literature
that were previously unproven.

4

Contents

1 Introduction 9
1.1 Contributions . 9
1.2 Overall Structure . 11
1.3 Publications . 12

I Special Signature Schemes 13

2 Preliminary Topics 14
2.1 Mathematical Background . 14

2.1.1 Complexity Theory . 14
2.1.2 Abstract Algebra . 15
2.1.3 The Discrete Logarithm and Diffie-Hellman Problems 16
2.1.4 Additional Notation . 18

2.2 Public Key Cryptography . 18
2.2.1 Basic Terminology and Cryptographic Goals 18
2.2.2 Key Infrastructures . 19
2.2.3 Digital Signature Schemes . 20

2.3 Provable Security . 21
2.3.1 Security Definition for Digital Signatures 24
2.3.2 Cryptographic Hash Functions . 25
2.3.3 The Random Oracle Model . 26
2.3.4 Rewinding Oracles and the Forking Lemma 27
2.3.5 The Non-Generic Forking Lemma . 29

3 Ring Signature Schemes 32
3.1 Introduction . 32
3.2 Preliminaries . 32
3.3 Ring Signature Definitions . 33

3.3.1 Related Work . 33
3.4 Security Model . 34

5

CONTENTS

3.4.1 Correctness . 34
3.4.2 Anonymity . 34
3.4.3 Unforgeability . 35
3.4.4 Notes on the Security Definitions for Ring Signatures 35

3.5 A Concrete Scheme . 36
3.6 Security of the Concrete Scheme . 37

4 Non-interactive Designated Verifier Proofs and Their Applications 40
4.1 Introduction . 40

4.1.1 Related Work and Notions . 43
4.2 NIDV Proofs . 44
4.3 Security for NIDV Proofs . 45

4.3.1 Correctness . 45
4.3.2 Non-transferability . 45
4.3.3 Soundness . 45
4.3.4 Notes on the Security Definitions for NIDV Proof Systems 46

4.4 NIDV Undeniable Signatures . 48
4.5 Security for NIDV Undeniable Signatures 49

4.5.1 The Security of the Core Signature Scheme 49
4.5.2 Notes on the Security Definitions for Undeniable Signatures 51

4.6 A Concrete NIDV Undeniable Signature Scheme 53
4.6.1 The Core Signature . 53
4.6.2 The Confirmation and Denial Proofs 54
4.6.3 A Concrete NIDV EDL Proof System 54
4.6.4 A Concrete NIDV IDL Proof System 55

4.7 Security of the Concrete Scheme . 56
4.7.1 Security of the NIDV EDL proof system 56
4.7.2 Security of the NIDV IDL proof system 64
4.7.3 Application to the core signature scheme 71

4.8 DV Signatures . 77
4.9 Security for DV Signatures . 78

4.9.1 Correctness . 78
4.9.2 Non-transferability . 78
4.9.3 Unforgeability . 79
4.9.4 Notes on the Security Definitions for DV Signatures 80
4.9.5 Comparison to Other Work . 80

4.10 Concrete DV Signature Schemes . 81
4.10.1 DV Signatures from Ring Signatures 81
4.10.2 DV Signatures from NIDV Undeniable Signatures 83
4.10.3 A Concrete DV Signature Scheme from an NIDV EDL Proof 83

6

CONTENTS

4.10.4 Security of our Concrete DV Signature Scheme 84
4.11 Conclusions and Open Problems . 89

5 Concurrent Signatures 91
5.1 Introduction . 91

5.1.1 Technical Approach . 95
5.1.2 Published Work . 96

5.2 Formal Definitions . 97
5.2.1 Concurrent Signature Algorithms . 97
5.2.2 Concurrent Signature Protocol . 98

5.3 Formal Security Model . 99
5.3.1 Correctness . 99
5.3.2 Non-transferability . 99
5.3.3 Unforgeability . 100
5.3.4 Fairness . 101

5.4 A Concrete Concurrent Signature Scheme 102
5.5 Security of the Concrete Concurrent Signature Scheme 103
5.6 Extensions and Open Problems . 111

5.6.1 The Scheme Can Use a Variety of Keys 111
5.6.2 The Multi-party Case . 111
5.6.3 Extensions to Concurrent Signatures 112

5.7 Conclusion . 113

II Key Agreement Protocols 114

6 Introduction to Key Agreement 115
6.1 Basic Concepts . 115

6.1.1 Adversarial Assumptions . 116
6.2 The Diffie-Hellman Protocol . 116

6.2.1 Man-in-the-Middle Attacks . 117
6.3 Authenticated Key Agreement . 118

6.3.1 Security Attributes . 120
6.3.2 Authenticated Diffie-Hellman Protocols 121
6.3.3 Security Attributes of Protocols 2 and 3 122

7 Models of Security for Key Agreement Protocols 125
7.1 Introduction . 125
7.2 The BJM Model . 126

7.2.1 Protocol Participants . 127
7.2.2 Oracle Queries . 128

7

CONTENTS

7.2.3 Matching Conversations . 129
7.2.4 Freshness . 130
7.2.5 The BJM Game and Test Query . 130
7.2.6 AK security . 131
7.2.7 AKC security . 132
7.2.8 Security Attributes of the BJM Model 134

7.3 A Modified BJM Model . 135
7.3.1 Oracle Queries . 136
7.3.2 Freshness . 137
7.3.3 The mBJM Game and the Test Query 138
7.3.4 Definition of security . 139
7.3.5 Security Attributes of the mBJM Model 140
7.3.6 mBJM-AKC Security . 140

7.4 Identity-based Models . 141
7.4.1 The ID-BJM model . 142

7.5 A Modular Approach to the Construction of KA Protocols 143
7.6 Universal Composability . 144

8 Modular Security Proofs for Key Agreement Protocols 147
8.1 Introduction . 147

8.1.1 Published Work . 148
8.2 Gap Assumptions . 148
8.3 Modular Security Proofs in the mBJM Model 150

8.3.1 Protocol Partnering . 150
8.3.2 Reduced Games . 152
8.3.3 Handling Reveal Queries using Gap Assumptions 154

8.4 Applying the Technique to Different Security Models 157
8.5 Applying the Technique to Existing Protocols 159

8.5.1 Notes on Protocol 4 . 162
8.6 Applying the Technique to Protocols with Partial Proofs 162
8.7 When the Modular Technique Cannot be Used 163

8.7.1 Pairings and Related Problems . 164
8.7.2 The Chen-Kudla Protocol . 165
8.7.3 Smart’s Protocol . 170

8.8 Special Gap Groups . 174
8.9 Conclusions and Open Problems . 174

Bibliography 176

8

Chapter 1

Introduction

1.1 Contributions

This thesis is divided into two distinct parts. The first part of the thesis explores various

non-standard digital signature schemes. The signature schemes we examine differ from

standard digital signature schemes in the sense that they do not bind a unique public key

to a message. Rather, the signature schemes that we consider specify a set of entities that

could have created the signature. Such a signature therefore binds the set of public keys to

the message being signed, and no single entity (or public key) is implicated as the signer.

We say that such signatures are deniable since the identity of the signer is “hidden” in

a group of possible signers, and therefore each entity involved in the signature can deny

having generated it. We examine various types of deniable signature schemes and ways in

which they may be used.

The most common deniable signature schemes (i.e. signature schemes satisfying the

above properties) are ring signature schemes, and indeed all the other deniable signature

schemes that we consider can be derived from ring signature schemes.

The original motivation for ring signature schemes was to be able to leak information

without being held accountable. An entity could sign some declaration in such a way that

he is not implicated by the signature, but rather a group of entities of his choice (including

the signer) is implicated. In this way, the real signer is able to “hide” his involvement

within a group of possible signers, and can therefore deny any involvement in producing

the signature.

Although this is an interesting application, ring signature schemes also possess some

additional properties in the two-party case. In this case the ring signature could have been

produced by either of two parties but where it is infeasible for a third party to determine

9

1.1 Contributions

which of the two possible signers generated the signature. Both possible signers can deny

having produced the signature to a third party, but the two parties involved both know

who created the signature. The signer knows that he created the signature, and the other

party (the non-signer) knows that that he did not create the signature and can therefore

uniquely identify the signer.

Two party ring signature schemes can be used to construct designated verifier signature

schemes. The goal of designated verifier signature schemes is for a signer to prove to a

specific verifier (called a designated verifier) that they have signed a message. However

the verifier should not be able to prove this to a third party. Two-party ring signature

schemes exactly meet this requirement, although there are also other ways to construct

designated verifier signatures.

We also examine the related notion of designated verifier proof systems. Here the

goal is not to sign a message, but rather to prove the validity of some statement to a

designated verifier. A designated verifier proof could have been created by the prover or

the designated verifier, so the verifier cannot transfer the proof to a third party since he

himself could have generated it. Designated verifier proofs are usually used in the context

of undeniable signature schemes, so we consider them in this context as well.

The last type of deniable signature schemes that we consider are introduced in the

context of fair exchange of signatures. The goal of a fair exchange protocol is to allow

two entities to exchange signatures in a fair way. By this we mean that by engaging in a

protocol, either each party obtains the other’s signature, or neither party does. It should

not be possible for one party to terminate the protocol at some stage leaving the other

party committed when they themselves are not.

Existing techniques for solving this problem either involved a timed release of signa-

tures or the use of a special purpose trusted third party. Timed release of signatures is

highly interactive and cannot always guarantee complete fairness, and in practice, suitable

trusted third parties can be difficult to find. We therefore introduce the notion of concur-

rent signature schemes which provide an efficient (partial) solution to the problem of fair

exchange of signatures that does not require a trusted third party, but which forfeits some

of the security guarantees normally expected from a full fair exchange solution.

In order to construct a concurrent signature scheme, we require a special type of

deniable signature, which we call a non-transferable signature. Non-transferable signatures

can be constructed using ring signature schemes of a specific form.

The second part of the thesis is concerned with the study of key agreement protocols.

10

1.2 Overall Structure

Since the seminal paper by Diffie and Hellman [50] which allowed two parties to generate

a shared secret key without having any previous shared secret, the study of key agreement

protocols using asymmetric techniques has been very fertile.

It is difficult to design secure cryptographic primitives, and particularly so for key

agreement protocols. The literature contains many attempts at constructing secure key

agreement protocols, many of which turned out to be insecure.

Unlike many other cryptographic primitives such as encryption and digital signature

schemes, the correct definition of a secure key agreement protocol is still debated. Further-

more, assuming a suitable definition of security has been found, constructing a proof that

the concrete key agreement protocol concerned meets the required definition of security is

usually very difficult.

The later chapters of this thesis consider various well-known models of security (and

corresponding security definitions) for key agreement protocols. We examine what security

guarantees the various definitions in fact provide, and we analyze what concrete properties

various security definitions demand.

The identification of certain necessary requirements for a protocol to be secure allows

us to develop a modular method by which a certain class of key agreement protocols may

be proven secure. If protocols cannot be proven secure in their current form, our modular

technique often identifies the cause of the problem, and in many cases the problem is easily

addressed by making some small modifications to the protocol. The proof techniques

developed greatly simplify the proof process and we are able to provide proofs of security

for various previously unproven protocols.

1.2 Overall Structure

Part I In Chapter 2, we cover the nomenclature and definitions that are relevant for the

subsequent chapters in Part I of the thesis. Here we define the concept of a digital signature

scheme and security for digital signatures. We also introduce the topic of provable security,

random oracles, and proof techniques for the signature schemes in later chapters.

In Chapter 3, we introduce ring signature schemes. We give a formal definition of ring

signature schemes and their security, and we present an efficient concrete ring signature

scheme.

In Chapter 4, we introduce the notions of non-interactive designated verifier (NIDV)

proof systems and undeniable signature schemes (which use NIDV proofs). We provide

11

1.3 Publications

formal definitions for these schemes and their security. We go on to provide a concrete

undeniable signature scheme using NIDV proofs. We then introduce the notion of desig-

nated verifier signature schemes and present formal definitions for these schemes and their

security. We show that secure two-party ring signatures are in fact also secure DV signa-

tures, and we present two concrete designated verifier signature schemes (one of which is

a ring signature scheme, and the other of which is derived from an NIDV proof), and we

provide proofs of security for these concrete schemes.

In Chapter 5, we introduce concurrent signature schemes, giving formal definitions of

concurrent signature schemes and their security. We go on to show how a specific two

party ring signature scheme can be used to construct a concurrent signature scheme. We

provide a proof of security for the resulting concrete scheme.

Part II In Chapters 6 and 7 we introduce the nomenclature and relevant background

for the second part of the thesis which is concerned with key agreement protocols. We

also introduce the topic of provable security for key agreement protocols as well as various

security models and definitions of security for key agreement protocols.

In Chapter 8 we analyze certain of the security models presented in Chapter 7, and

present our modular techniques for constructing proofs of security for key agreement pro-

tocols in these security models. We then consider various key agreement protocols in

the literature which lack proofs of security (or complete proofs of security) and use our

techniques to construct full proofs of security for these protocols in appropriate security

models.

1.3 Publications

This thesis contains certain material that was previously published with L. Chen [39, 40],

material that was published with K.G. Paterson [73, 74] as well as material that was

published with L. Chen and K.G. Paterson [41].

The content of [74] forms a basis for Chapter 4, the content of [41] forms a basis for

Chapter 5, and the content of [73] forms a basis for the content of Chapter 8. In addition,

a protocol appearing in [39, 40] is also presented in Chapter 8.

12

Part I

Special Signature Schemes

13

Chapter 2

Preliminary Topics

2.1 Mathematical Background

2.1.1 Complexity Theory

The goal of complexity theory is to provide mechanisms by which computational problems

may be classified in terms of the resources required to solve them. The resources measured

are usually time, and occasionally storage space. We now define some of the terminology

required.

An algorithm is a computational procedure which takes a variable input and terminates

with some output. If an algorithm follows the same execution path each time it is executed

with the same input, then we say that the algorithm is deterministic. By contrast, a

randomized algorithm’s execution path differs each time it is executed on the same input

since its decisions rely on a supply of random bits.

The running time of an algorithm on a particular input is the number of steps or

primitive operations executed before the algorithm terminates.

The worst-case running time of an algorithm is an upper bound on the running time

of an algorithm for any input. This is usually expressed as a function of the input size.

The expected running time of an algorithm is the average running time of an algorithm

over all inputs of a specific size. This is usually expressed as a function of the input size.

Since the exact running time of an algorithm is often difficult to derive, we often rely

on approximations of the running time. In particular, we often refer to the order of the

asymptotic upper bound of the running time of an algorithm using the big-O notation.

Definition 2.1 For two functions f(l) and g(l), we say that f(l) = O(g(l)) if there exists

a positive constant c and a positive integer lc such that for all l > lc, 0 ≤ f(l) ≤ cg(l).

14

2.1 Mathematical Background

Two frequently used concepts in cryptology are the notions of negligible functions and

polynomial time algorithms. We define these as follows.

Definition 2.2 A function ε(l) is negligible in parameter l if for all c ≥ 0, there exists an

integer lc > 0 such that for all l > lc, ε(l) < l−c.

Definition 2.3 A polynomial time algorithm is an algorithm whose worst-case running

time is of the form O(lc) where l is the input size and c is a constant. An algorithm whose

running time cannot be bounded in this way is called a non-polynomial time algorithm.

In general, we regard polynomial time algorithms as being efficient, and non-polynomial

time algorithms as being inefficient. We call a problem that cannot be solved in polynomial

time intractable or infeasible.

The complexity of algorithms is always measured with respect to some parameter l.

For cryptographic algorithms, we call this parameter the security parameter. By manip-

ulating the size of this parameter, we can change the key lengths and group sizes of the

cryptographic scheme, and this in turn affects the security of the scheme.

2.1.2 Abstract Algebra

We let the set of natural number be denoted by N, and the set of integers be denoted by Z.

For any positive integer n, we denote the ring of integers modulo n by Zn = {0, 1, .., n−1}.
We denote the group of units of Zn (that is, elements relatively prime to n and therefore

having an inverse under multiplication) by Z∗n, and we denote by φ(n) the number of

integers in {1, .., n} that are relatively prime to n. The function φ is called the Euler

totient function.

We recall that if n is prime, then φ(n)=n−1, and if n = p.q where p and q are relatively

prime, then φ(n) = φ(p).φ(q).

Let G be a group with binary operation ∗.

Definition 2.4 The number of elements in group G is denoted by |G| and is called the

order of G. Group G is called finite if |G| is finite.

Definition 2.5 A group G is called cyclic if there exists an element g ∈ G such that for

each element a ∈ G, there exists an integer i such that a = gi. Such an element g is called

a generator of G.

Theorem 2.1 [106] If p is prime, then Z∗p is a cyclic group.

15

2.1 Mathematical Background

If H is a non-empty subset of group G and H itself is a group, then we call H a

subgroup of G. If a ∈ G, then the set of all powers of a forms a cyclic subgroup of G and

is denoted by 〈a〉. If 〈a〉 = G, then a is a generator of G. The order of a ∈ G is defined to

be the least positive integer t such that at = 1. So if the order of a is t, then |〈a〉| = t. If

no such integer t exists then the order of a is defined to be ∞.

Theorem 2.2 (Lagrange) If G is a multiplicative group of order n, and a ∈ G, then the

order of a divides n.

Corollary 2.3 If G is a multiplicative group, and a ∈ G has order t, then the order of ak

is t/gcd(t, k).

Theorem 2.4 [106] If p is prime, then an integer α ∈ Z∗p is a generator of Z∗p if and only if

αφ(p)/q 6= 1 mod p for each prime divisor q of φ(p) and therefore Z∗p has φ(φ(p)) = φ(p−1)

generators.

Theorem 2.4 provides us with an efficient method for testing whether a given element

is indeed a generator for Z∗p if we know the factorization of p−1. For example, if p = 2q+1,

where p and q are prime, then φ(p) = p − 1 = 2q, and Z∗p has φ(2q) = φ(2).φ(q) = q − 1

generators. If α is a generator of Z∗p, then by Corollary 2.3, α2 has order q and therefore

generates the subgroup of Z∗p of order q.

2.1.3 The Discrete Logarithm and Diffie-Hellman Problems

We define here the computational problems on which the security of our cryptographic

schemes are based. We start by defining the discrete logarithm problem.

Definition 2.6 We say that an algorithm ParamGen is a discrete logarithm (DL) param-

eter generator if, for input a security parameter l ≥ 1, ParamGen runs in polynomial time

and generates a prime q as well as the description of a finite cyclic group G of prime order

q. ParamGen outputs the description of group G.

We assume that the description of the group G contains the group order q. We also

assume that the group operations can be performed efficiently, group elements can effi-

ciently be sampled with uniform distribution, and that group membership and equality of

group members can be tested efficiently.

16

2.1 Mathematical Background

Definition 2.7 Let G be a group of prime order q which was output by ParamGen(l), and

let g be a random generator of G. Given a random element a ∈ G, the Discrete Logarithm

Problem (DLP) in G is to find a w ∈ Zq such that a = gw.

Such a w is called the discrete logarithm of a in G, also denoted DL(a, g). We say that

an algorithm A has advantage ε in solving the DLP in G if

Pr[A(a, g) = DL(a, g)] ≥ ε

This probability is measured over the random choices of a, g ∈ G and the random inputs

of A, if any.

The DL assumption states that no polynomial time algorithm A has non-negligible

advantage (in l) in solving the DLP for G generated by ParamGen(l).

The Diffie-Hellman problem [87] is closely related to the DLP and is the basis for the

security of many cryptographic primitives.

Definition 2.8 Let G be a group of prime order q which was output by ParamGen(l), and

let g be a random generator of G. Given g and the random elements ga and gb in G, the

Computational Diffie-Hellman Problem (CDHP) in G is to find gab ∈ G.

We say that an algorithm A has advantage ε in solving the CDHP in G if

Pr[A(ga, gb) = gab] ≥ ε

This probability is measured over the random choices of g, ga, gb ∈ G and the random

inputs of A, if any.

The CDH assumption states that no polynomial time algorithm A has non-negligible

advantage (in l) in solving the CDHP for G generated by ParamGen(l).

If we suppose that the DLP can be efficiently solved, then one can solve the CDHP

as follows. Given g and the random elements ga and gb in G, find a from ga by solving

the DLP, and then compute (gb)a = gab. Whether the two problems are in fact equiva-

lent remains unresolved in general, although they are known to be equivalent in certain

circumstances [20, 42, 45, 48, 80, 82].

Closely related to the CDHP are the decisional Diffie-Hellman and Gap Diffie-Hellman

problems.

Definition 2.9 Let G be a group of prime order q which was output by ParamGen(l), and

let g be a random generator of G. Given g and the random elements ga, gb and gc in G,

the Decisional Diffie-Hellman Problem (DDHP) in G is to determine if gab = gc.

17

2.2 Public Key Cryptography

Definition 2.10 Let G be a group of prime order q which was output by ParamGen(l).

The Gap Diffie-Hellman Problem (GDHP) in G is to solve the CDHP in G given a hypo-

thetical polynomial time subroutine, or oracle, that solves the DDHP in G.

2.1.4 Additional Notation

We now define some additional notation and terminology that is used in this thesis.

Definition 2.11 Let a, b be integers. Then a divides b if there exists an integer c such

that b = ac. If a divides b, then this is denoted by a|b.

For any group G, we defined |G| to be the order (or size) of the group. Similarly, if X

is any set, then |X| denotes the number of elements in X, or the size of X.

We let {0, 1}∗ denote the set of all bitstrings of unspecified length. For any string

s ∈ {0, 1}∗, we denote the bitlength of s by |s| and we denote the concatenation of strings

s and t by s‖t. If s and t are not strings, then s‖t denotes the concatenation of the bit

representation of s and t in the appropriate endian.

2.2 Public Key Cryptography

2.2.1 Basic Terminology and Cryptographic Goals

We start by defining some basic terminology which we require when discussing cryptogra-

phy and its goals. An entity (or party) is someone or something which sends, receives or

manipulates information. It may be a person, or it may be some computing device.

When two parties communicate, we refer to the channel as the means of conveying

information from one entity to another. We call the legitimate transmitter of information

the sender, and the intended recipient of the information the receiver.

The objective of cryptography is to provide security for information using mathematical

techniques. This objective is usually broken down into four key goals:

• Confidentiality which is concerned with keeping data secret from all but those

authorized to access it.

• Data integrity which is concerned with being able to detect the manipulation of

data by unauthorized entities.

• Authentication which is related to identification, of both entities and data. It is

therefore subdivided into two classes: entity authentication, which is concerned with

18

2.2 Public Key Cryptography

verifying the identity of entities, and data origin authentication, which is concerned

with verifying the origin of data (which implicity provides data integrity as well).

• Non-repudiation which is concerned with preventing entities from denying previ-

ous commitments or actions.

We now define some of the mechanisms used to achieve security goals or objectives.

Definition 2.12 A (cryptographic) scheme is a set of algorithms used to provide some

cryptographic service. For example, a signature scheme may be used to provide authenti-

cation.

Definition 2.13 A (cryptographic) protocol is a distributed algorithm defined by a se-

quence of steps specifying the actions required by two or more entities to achieve a specific

security objective.

Technically, all schemes can be called protocols, however we will reserve the term

protocol for mechanisms that specifically demand interaction (or communication) between

parties.

A cryptographic primitive is a basic tool used to provide some security functionality.

For example, a signature scheme may be used as a cryptographic primitive within some

protocol.

2.2.2 Key Infrastructures

The study of cryptography can be divided into the areas of symmetric cryptography and

asymmetric cryptography. Usually, entities that wish to securely communicate using cryp-

tographic techniques have to first share a secret key. The security of the communications

depends on this key, and the key has to be kept secret from all other entities for as long

as the communication is to remain secure.

A fundamental problem in symmetric key cryptography is that the secret keys must

be distributed between the relevant entities before secure communication can commence.

In 1976, Diffie and Hellman [50] revolutionized cryptography by providing a solution to

this problem via the notion of asymmetric cryptography, also known as Public Key Cryp-

tography (PKC).

In a public key setting, each entity I has two distinct keys, a public key PKI , and

a private key SKI , which the entity can generate locally. The private key must be kept

19

2.2 Public Key Cryptography

secret, but the public key can be widely distributed without compromising the secrecy of

the private key.

The fundamental idea of PKC is that, in order to securely communicate with an entity,

one need only know the public key of that entity. However before using a public key, one

must be entirely convinced that the public key does in fact belong to the correct entity.

So PKC transforms the problem of securely distributing secret keys into the problem of

distributing authentic public keys.

A security infrastructure designed to distribute and subsequently manage public keys is

called a public key infrastructure (PKI). The traditional method of distributing public keys

in an authentic manner is to use a trusted authority (TA). The most common approach

is for an entity to register their public key with the TA, who authenticates the entity and

attests to the authenticity of the public key by issuing a digital certificate binding the

entity’s identity with their public key. Such a TA is called a certification authority (CA).

An alternative approach to managing public keys is enabled by the use of identity-based

cryptography [18, 100]. In this environment, an entity’s public key is derived directly from

an entity’s identity (or identifying information, e.g. their email address), eliminating the

requirement for a certificate binding the entity’s identity to their public key. Although

certificates are no longer required, an entity must still contact a TA in order to obtain

their private key. The TA must authenticate the entity, generate the private key from the

given public key (or identity) and securely deliver the private key to the authenticated

entity. Such a TA is often referred to as a Key Generation Centre (KGC).

For the remainder of this thesis, we will assume that the public keys being used are

authenticated using some PKI.

2.2.3 Digital Signature Schemes

We now introduce the concept of a digital signature scheme, which is one of the most

important cryptographic primitives enabled by PKC. Digital signature schemes are the

focus of the first part of this thesis, and are fundamental in providing various cryptographic

services such as entity authentication, data origin authentication, data integrity, and non-

repudiation.

Informally, digital signature schemes provide a means by which entities can bind their

identity (or public key) to a piece of information (usually referred to as a message).

A digital signature scheme is defined via the following algorithms [87]:

20

2.3 Provable Security

Setup(l): which takes as input security parameter l and outputs a set of parameters

params.

KeyGen(params): which takes as input the public parameters params and outputs a

public key PK and a private key SK.

Sign(m, SK): which takes as input a message m and a private key SK and produces a

signature σ for the message m.

Verify(m,PK, σ): which takes as input a message m, a public key PK and a signature σ,

and outputs either accept or reject.

Suppose that an entity I has public and private key pair 〈PKI , SKI〉. We say that

entity I signs a message m if I runs Sign on input (m,SKI) to produce a signature σI .

We then call σI entity I’s signature on message m.

If Verify outputs accept when run on input a message m, a public key PK and a

signature σ, then we say that σ is a valid signature for entity I on message m.

Informally, we require the following properties from a digital signature scheme:

1. Signatures produced by the Sign algorithm should be valid (that is, accepted by

Verify).

2. It should be computationally infeasible for any entity other than I to produce a valid

signature for I on any message m.

In particular, the second property is one of the requirements for a digital signature

scheme to provide non-repudiation. We will provide a more formal definition of security

for digital signature schemes after having introduced the topic of provable security.

2.3 Provable Security

It is very difficult to design secure cryptographic schemes. This is illustrated by the

number of cryptographic schemes that have been proposed over time and in which flaws

have subsequently been discovered. These flaws may be due to new attacks which were not

previously known, or simply due to inadequate security analysis on the part of the scheme’s

designers. It is therefore crucial to rigorously analyze a scheme for possible security flaws

before it is implemented and used in practice.

Traditionally, a cryptographic scheme was analyzed by constructing convincing argu-

ments that a scheme was immune to the best currently known attack methods because

21

2.3 Provable Security

the resources required were greater than those of any reasonable attacker. Such analysis is

called heuristic analysis and schemes that survive such analysis are said to have heuristic

security.

However heuristic security is only a measure of security against currently known at-

tacks. It gives little assurance that a scheme is in fact secure since it cannot guarantee

that no previously undiscovered attack cannot compromise the scheme’s security.

In 1984, Goldwasser and Micali [61] introduced the paradigm of provable security and

lead the way for far more rigorous treatments of cryptographic schemes by developing

precise definitions and appropriate “models” of security for various cryptographic primi-

tives. Goldwasser, Micali and Rivest [63] were the first to formalize a notion of security

for digital signature schemes. They also presented a scheme that satisfied their definition

under reasonable assumptions.

In order to analyze cryptographic primitives, we introduce some useful terminology.

An adversary or attacker of a cryptographic scheme is an entity which tries to defeat the

intended security objective of the scheme. A passive adversary is one which only monitors

communication channels. An active adversary is one which attempts to delete, add, or in

some way modify the transmissions on a channel. When reasoning about cryptographic

schemes under attack, the entities involved in such schemes, as well as the attacker(s) are

modelled as interactive Turing machines, which can be seen as abstractions of modern

computers. In general, these Turing machines are probabilistic, meaning that they have

access to a supply of random bits.

Giving a precise definition of security is an important step when analyzing the secu-

rity of a cryptographic scheme. Firstly, the objectives of the scheme need to be clearly

understood. Then we need to define what it means for the adversary to break the scheme,

that is, what the adversary’s goal is in attacking the scheme. Finally, we need to define

the adversarial model, or the resources to which the adversary has access when attacking

the scheme.

Once an appropriate definition of security has been formulated, a mathematical proof of

security for a given scheme can then be derived. This usually takes the form of a reduction:

assuming that a successful adversary of the scheme exists, then one shows that such an

adversary can be used to solve some underlying problem. If this problem is believed to be

intractable, then no such adversary can exist, and the scheme is assumed to be secure.

We note that a proof of security (for an appropriate definition of security) does not

guarantee security in an unconditional sense. Rather, it clearly identifies one or more

22

2.3 Provable Security

underlying assumptions (usually related to a well-studied problem) which must be violated

in order to subvert the security of the scheme. In addition, the security of a scheme is

usually only defined within certain bounds. For example, an attacker is usually assumed

to have clearly defined and polynomially limited resources. If these bounds are breached,

then the proof of security becomes inapplicable.

In the context of digital signature schemes, the goal of the adversary is to forge signa-

tures. However there are different criteria for what it means to break a signature scheme.

1. Total break: An adversary is able to produce signatures on arbitrary messages as

if he were the true signer. This is akin to recovering the private key of the signer.

2. Selective forgery: An adversary is able to produce a valid signature for a message

of his choice.

3. Existential forgery: An adversary is able to create a valid signature for at least

one message. In this case the adversary may have no control over the message

corresponding to the signature obtained.

An adversary may launch different types of attacks against a digital signature scheme

depending on the resources to which he has access. We distinguish between the following

types of attack:

1. Key only attack: An adversary knows only the signer’s public key.

2. Known message attack: An adversary has access to signatures on messages known

to the adversary, but not chosen by him.

3. Chosen message attack: An adversary has access to signatures on a chosen list

of messages before attempting to break the signature scheme. This attack is non-

adaptive since the adversary must choose the list of messages to be signed before any

of the signatures are obtained.

4. Adaptive chosen message attack: An adversary is able to use the signer as an

oracle, meaning that the adversary may request signatures on messages of his choice,

and these message may depend on the signer’s public key, on previous messages or

on previous signatures obtained.

The designers of digital signature schemes would like the security of their schemes to be

as strong as possible. This means that the scheme should resist even the weakest types of

23

2.3 Provable Security

forgery against an adversary with the most resources. If this is the case, then the scheme

will certainly be secure against more serious forgeries by adversaries with more limited

resources. It is therefore common to evaluate the security of a digital signature scheme by

its resistance to existential forgeries under an adaptive chosen message attack.

We now present a formal definition for the security of a digital signature scheme.

2.3.1 Security Definition for Digital Signatures

Security for digital signature schemes is defined via the following two notions.

Correctness

A digital signature scheme is correct if, for any σ produced by running Sign on message m

and private key SK (where PK is the corresponding public key), then Verify(m,PK, σ)

outputs accept.

Unforgeability

We define the strongest notion of unforgeability for a digital signature scheme, namely

existential unforgeability under a chosen message attack [63]. This is defined via the

following game between a challenger C and an adversary E.

Initialization: C runs Setup on security parameter l to generate the public parameters

params. C also runs KeyGen to obtain a public key PK and a private key SK. C

gives the parameters params and the public key PK to E.

Sign: E may request a signature on any message m. C computes σ=Sign(m,SK), and

gives σ to E.

Output: E outputs a signature σ∗ and a message m∗. E wins the game if Verify(m∗, PK, σ∗)

outputs accept, and no previous Sign query was made on m∗.

Definition 2.14 We say that a digital signature scheme is existentially unforgeable un-

der an adaptive chosen message attack if the probability of success of any polynomially

bounded adversary in the above game is negligible (as a function of the security parameter

l).

We notice that it is possible to obtain a slightly stronger definition of unforgeability

by extending the model presented above. In the unforgeability game presented above,

24

2.3 Provable Security

we make the restriction (in the output conditions) that the adversary cannot have made

any previous Sign query on m∗. In the extended model, we could relax these conditions

by making the restriction that the signature σ∗ cannot previously have been output by a

Sign query on m∗. This modification means that an adversary could win the extended

unforgeability game by requesting signatures on m∗, and finally outputting a new signature

on m∗ which is different from those output from previous Sign queries on m∗. In the

extended model, this is considered to be a valid attack on the signature scheme.

If the digital signature scheme is deterministic, then such an attack is impossible, so in

this case, the two models of unforgeability are equivalent. However if the digital signature

scheme is non-deterministic, then there may be many valid signatures for each message,

and such an attack may be possible.

Although the extended model captures these additional attacks and therefore results in

a slightly stronger definition of unforgeability, we do not consider such attacks to be useful

since the attack does not commit the signer to any message to which he is not already

committed. We therefore choose to model the unforgeability of our signature schemes

in Chapters 3 to 5 in the model presented above. An additional advantage of using the

simpler model of unforgeability is that we are able to directly apply certain useful proof

techniques (e.g. the Forking Lemma, which is presented in Section 2.3.4), which in turn

enable simpler proofs of security.

2.3.2 Cryptographic Hash Functions

Cryptographic hash functions (hereafter simply referred to as hash functions) play a fun-

damental role in cryptography. Hash functions create a short “fingerprint” of the input

data, and if the data is altered, in general the fingerprint will no longer be valid. In

this way, hash functions can be used to provide assurance of data integrity, and therefore

play a vital role in the construction of most signature schemes, as well as many other

cryptographic schemes and protocols.

Definition 2.15 A hash function H is an efficient algorithm that maps an input x of

arbitrary finite bitlength (i.e. x ∈ {0, 1}∗) to an output H(x) in a finite set D.

Since a hash function is a many-to-one function, the existence of collisions (that is,

pairs of inputs which map to the same output) is unavoidable. However for cryptographic

use, we require that such collisions are computationally difficult to find. The following

notions informally describe different levels of security for hash functions [87].

25

2.3 Provable Security

Preimage resistance: For essentially all pre-specified outputs, it is computationally in-

feasible to find any input which hashes to that output, i.e., given any y for which

no corresponding input is known, it is infeasible to find any preimage x such that

H(x) = y.

2nd preimage resistance: It is computationally infeasible to find any second input

which has the same output as any specified input, i.e., given x, it is infeasible to find

a 2nd-preimage x′ 6= x such that H(x′) = H(x).

Collision resistance: It is computationally infeasible to find any two distinct inputs x,

x′ which hash to the same output, i.e., such that H(x) = H(x′). (Note that here

there is free choice of both inputs.)

The output set D of H is commonly the set of all strings of some fixed bitlength n, i.e.

H : {0, 1}∗ → {0, 1}n, and in this case, H acts as a compression function. However if the

output space D has a more complex structure (e.g. an algebraic group), then H may be

relatively complex, requiring intermediate mapping functions and deterministic encoding

operations. For example, in a particular application H may need to map arbitrary strings

to elements of a group G. Suppose G is a multiplicative subgroup of Z∗p of order q and let

g be a generator of G. Such a hash function may be constructed by using a standard hash

function to map the input to a bitstring representing an integer, reducing that integer

modulo p and then raising the result to the power (p− 1)/q modulo p.

In practice, it is very difficult to design secure hash functions, and recent work has

shown that many common hash functions are weaker than previously thought [15, 113,

114, 115, 116].

2.3.3 The Random Oracle Model

Hash functions play an important role in the design of many cryptographic schemes, and

therefore also have a major influence over the security of such schemes. Many crypto-

graphic primitives have efficient designs using hash functions, but in general it is very

difficult to obtain security arguments (or proofs of security) for such schemes.

If a hash function H is well designed, then it should be infeasible to compute H(x)

without evaluating H on x. This should be the case even if many other hash values

H(x1),H(x2), .. have been computed. Bellare and Rogaway [11] therefore advocated an

idealized model for hash functions, which attempts to capture the concept of an ideal hash

26

2.3 Provable Security

function. This model is commonly referred to as the random oracle model, and involves

modelling hash functions as random functions.

In the random oracle model, hash functions are replaced by random oracles, which

output truly random values for each new input. Obviously, if the same input is submitted

to the random oracle twice, then identical outputs should be obtained. It is argued that

proofs of security in this model attest to the security of the overall scheme as long as the

hash function used has no weakness.

Proofs of security in the random oracle model are often far easier to construct than

proofs in the standard model (i.e. without random oracles), and we find that schemes

proven secure in the standard model tend to be less efficient than schemes that employ

hash functions and which can be proven secure in the random oracle model. The random

oracle model has therefore become a very popular tool in the construction of security

proofs for a variety of schemes.

Recent works [7, 60, 81, 90] have demonstrated that for certain schemes, proofs of

security in the random oracle model do not translate into security for the actual scheme

when the random oracle is instantiated by a hash function. However most of the examples

given use hash functions in a completely unnatural way, and it is unclear whether proofs

of security in the random oracle model are adequate in general. Despite doubts that have

been cast over the use of random oracles, proofs of security in the random oracle model

are still widely accepted.

2.3.4 Rewinding Oracles and the Forking Lemma

An example of a proof technique enabled by the random oracle model, we present a result

by Pointcheval and Stern [96] known as the Forking Lemma. This lemma is a useful tool

in constructing proofs of unforgeability for a large class of digital signature schemes.

Informally, the Forking Lemma applies to signature schemes that make use of a hash

function, which will be modelled as a random oracle. We assume that adversary E is a

polynomial time Turing machine which interacts with a random oracle and the challenger

of the unforgeability game of Section 2.3.1, and runs with some random tape which it uses

as its source of randomness.

The rationale for the Forking Lemma is that, if E has non-negligible probability η

of forging a signature σ in the unforgeability game, then by “rewinding” E and running

E again on the same random tape, but with a different random oracle, we can obtain a

second (related) forgery with non-negligible probability.

27

2.3 Provable Security

There are two restrictions which apply when using the Forking Lemma. Firstly, the

model of unforgeability used should be equivalent to the one presented in Section 2.3.1.

Secondly, the digital signature scheme should be of a particular form, namely on input a

message M , the signature scheme should produce a signature of the form (r1, h, r2) where

r1 takes its value randomly from a large set, h is the hash of M and r1, and r2 depends

only on r1,M and h. In particular, no value r1 can appear with probability greater than

2/2l where l is the security parameter. We call such a digital signature scheme a generic

digital signature scheme.

If the two conditions above are met, then the Forking Lemma is as follows.

Lemma 2.5 (The Forking Lemma [96]): Suppose E is a polynomial time Turing

machine with input only public data which produces, in time τ and with probability

η ≥ 10(µs + 1)(µs + µ)/2l (where l is a security parameter) a valid generic signature

(M, r1, h, r2). Here µ is the number of random oracle (hash) queries made by E, and

µs is the number of signature queries made by E. Suppose also that triples r1, M, r2

are simulatable with indistinguishable probability distribution without knowledge of the

secret key. Then there exists an algorithm A, which controls E and replaces E’s interaction

with the signing oracle and random oracle by a simulation, and which produces two valid

generic signatures (M, r1, h, r2) and (M, r1, h
′, r′2) such that h 6= h′ in expected time at

most τ ′ = 120686µsτ/η.

Since E may need to be “rewound” multiple times before outputting an appropriate

second forgery, we find that the expected time for E to produce two related forgeries is

much larger than τ . Details of the proof of the Forking Lemma can be found in [95, 96].

By examining the proof of the Forking Lemma in [96], we notice that the value r1 of

a generic signature scheme does not need to be chosen randomly from a large set, but

must be indistinguishable from a value chosen randomly from a large set. For instance,

r1 may depend on some public parameters (or even M) together with some value chosen

randomly from a large set. In addition, the computation of r2 may also depend on values

other than r1,M and h (e.g. r2 may also depend on public parameters or public keys). It

is also not necessary for r2 to be uniquely determined by r1,M and h.

Since none of the above modifications to the definition of a generic signature scheme

affect the proof of the Forking Lemma, we will include these modifications into the defini-

tion of a generic signature scheme and we will use this more general definition of generic

signature schemes in the rest of the thesis.

28

2.3 Provable Security

2.3.5 The Non-Generic Forking Lemma

In Chapters 4 and 5, we will need to apply a modified version of the Forking Lemma

which we introduce now. Since we will need to apply the forking lemma to signature

schemes that do not exactly match the format required, we present a modified version

of the forking lemma for signature schemes which take as input an additional parameter,

which we denote T . The value T simply acts as a placeholder value, and has no real

affect on the proof of the forking lemma, but will be used in the security proofs of certain

non-standard digital signature schemes in later chapters.

This modified version of the Forking Lemma applies to digital signature schemes which

on input a message M and a value T produce signatures of the form (r1, h, r2). Here r1

randomly distributed in a large set, h is the hash of M and r1, and r2 depends on r1,M

and h. As before we require that no value r1 can appear with probability greater than

2/2l where l is the security parameter. We call such digital signature schemes non-generic

digital signature schemes.

The unforgeability model for non-generic (NG) signature schemes is identical to the

unforgeability model for generic signature schemes (presented in Section 2.3.1) except

that Sign queries take an additional value T as input. The analogous output conditions

require a valid signature for some M and T and forbid an adversary from making previ-

ous Sign queries on M, T . We call the resulting unforgeability model the NG signature

unforgeability model.

As in the more general definition of a generic signature scheme, the value r1 of an

NG signature scheme does not need to be chosen randomly from a large set, but must be

indistinguishable from a value chosen randomly from a large set. For instance, r1 may

depend on some public parameters (or even M and T) together with some value chosen

randomly from a large set. We also explicitly allow the computation of r2 in a non-generic

signature scheme to depend on values other than r1, M and h (e.g. r2 may also depend on

public parameters or public keys). We also do not require r2 to be uniquely determined

by r1,M and h.

Lemma 2.6 (The NG Forking Lemma): Suppose E is a polynomial time Turing

machine with input only public data which produces, in time τ and with probability η ≥
10(µs+1)(µs+µ)/2l (where l is a security parameter) a valid NG signature (M, T, r1, h, r2)

(in the NG unforgeability model). Here µ is the number of random oracle (hash) queries

made by E, and µs is the number of signature queries made by E. Suppose also that

29

2.3 Provable Security

tuples r1,M, T, r2 are simulatable with indistinguishable probability distribution without

knowledge of the secret key. Then there exists an algorithm A, which controls E and

replaces E’s interaction with the signing oracle and random oracle by a simulation, and

which produces two valid NG signatures (M, T, r1, h, r2) and (M, T ′, r1, h
′, r′2) such that

h 6= h′ in expected time at most τ ′ = 120686µsτ/η.

Proof:

The proof of this lemma follows almost exactly the proof of Lemma 2.5 (Theorem 3 in

[96]), which is broken up into two steps. As in [96], we first require the following lemma

which deals with adversaries in a no-message attack (Theorem 1 in [96]).

Lemma 2.7 (The No-Message Attack NG Forking Lemma): Suppose E is a poly-

nomial time Turing machine with input only public data, and suppose that E produces,

in time τ and with probability η ≥ 7µ/2l (where l is a security parameter) a valid NG

signature (M, T, r1, h, r2), where µ is the number of random oracle (hash) queries made

by E. Then there exists an algorithm A, which controls E and which produces two valid

NG signatures (M,T, r1, h, r2) and (M,T ′, r1, h
′, r′2) such that h 6= h′ in expected time at

most τ ′ = 84480µτ/η.

Proof: This lemma is proven in exactly the same way as Theorem 1 in [96] since the

changes in the structure of the signature (i.e. the differences between generic and non-

generic signatures) have no effect on the proof in [96]. ¤
As in the proof of Theorems 1 and 3 in [96], we consider an algorithm B such that

B executes E and responds to E’s random oracle queries. However in addition, in a

chosen-message attack, B must also answer E’s signature queries on input a message M

and a value T . However since tuples r1, M, T, r2 are simulatable with indistinguishable

probability distribution without knowledge of the secret key, B is able to adequately

answer these queries.

The rest of the proof is exactly the same as the proof of Theorem 3 in [96] since once

again the structure of the non-generic signatures and Sign queries have no effect on the

proof, and the risk of random oracle collisions is exactly the same as before if no value r1

can appear with probability greater that 2/2l where l is the security parameter.

¤
We will require the NG version of the Forking Lemma to prove the security of certain

non-standard signature schemes in Chapters 4 and 5. As long as the signature scheme

can be rewritten in the appropriate form and the model of unforgeability (when rewritten

30

2.3 Provable Security

in the appropriate form) is equivalent to the one presented in Section 2.3.1 (or the NG

version of this model), then we may apply the appropriate version of the Forking Lemma.

31

Chapter 3

Ring Signature Schemes

3.1 Introduction

The notion of ring signatures was first formalized by Rivest et al. [97]. A ring signature

specifies a set (or ring) of possible signers without revealing which member actually pro-

duced the signature. Ring signatures require no co-ordination between the ring members:

any member can choose any set of possible signers that includes himself and can sign any

message using his private key and the public keys of the other ring members.

Rivest et al. proposed various applications for ring signatures. A verifier of a particular

ring signature should be convinced that a member of the ring created the signature, but

cannot determine which of the ring members is the actual signer. Ring signatures therefore

provide an elegant and efficient way to leak information or secrets in an anonymous way.

Ring signatures can also be used as a building block to create group signature schemes

[38]. In fact, ring signature schemes had previously been generated for this purpose [26, 38],

but the distinct notion of ring signatures was only distilled in [97].

Since it is impossible to distinguish which ring member actually produced a particular

ring signature, we find that the actual signer (and in fact all the ring members) can deny

having produced the signature. Ring signatures therefore do not have the property of

non-repudiation.

3.2 Preliminaries

We call a set of possible signers a ring. We call the ring member who actually produced

a specific signature the signer and each of the other ring members are called non-signers.

32

3.3 Ring Signature Definitions

3.3 Ring Signature Definitions

We now define a (1 out of n) ring signature scheme. We assume that each member I of

the ring possesses a public and private key pair (PKI , SKI) from some digital signature

scheme, and that each member is associated with their public key via some PKI or certifi-

cate. This public key defines this member’s signature scheme and specifies his verification

key. We denote the corresponding private key as SKI .

Definition 3.1 A ring signature scheme is defined via the following algorithms:

RingSign: (m,R, sig, SKsig) which produces a ring signature σ for the message m, given

the list of public keys R = {PK1, PK2, .., PKn} which constitute the ring, and the

private key SKsig of the member in position sig in R (who is the signer).

RingVerify: (m,R, σ) which takes as input a message m, a list of public keys R, and a

signature σ, and outputs either accept or reject.

We note that in addition to the above algorithms each member I will have a key

generation algorithm (and possibly some setup algorithm) to set up the public and private

key pair (PKI , SKI). However these algorithms are specific to each member and must be

run before an entity can be a ring member, so we do not consider them as part of the ring

signature definition.

We also note that the size of the ring (n) may vary for each ring signature produced.

In other words, the number of public keys taken as input by RingSign may vary each time

the algorithm is run.

3.3.1 Related Work

We note that a ring signature scheme is set-up free, meaning that the signer does not

require any assistance or co-ordination with other ring members in order to generate a

ring signature. He only needs to know their public keys. This also means that the public

keys of the various ring members need not be of the same type. Such a ring signature

scheme is called separable.

Some ring signature schemes (e.g. [2, Appendix A]) require that the public keys of all

ring members be related. For example, they may all require the same public parameters,

and in this case, explicit initialization algorithms would be required. For such schemes,

a Setup algorithm would be required to generate the necessary public parameters from

33

3.4 Security Model

a security parameter, and a KeyGen algorithm would be required to generate public and

private keys from the public parameters. The public parameters would also be taken as

input to RingSign and RingVerify. Such a ring signature scheme is called non-separable

and can offer some efficiency advantages over separable ring signature schemes.

The concept of ring signatures has also been extended to the identity-based setting by

Zhang and Kim [117] and also by Herranz and Sáez [66]. Bresson et al. [25] introduce the

concept of threshold ring signature schemes, where instead of a single signer being able to

create a ring signature for a ring of size n, a threshold number of signers (say t ≤ n) must

cooperate to create a ring signature.

In [65], Herranz and Sáez formalize the notion of generic ring signature schemes, and

provide some techniques for proving the security of such schemes. Informally, they provide

a version of the Forking Lemma [96] adapted for ring signatures and use this to analyze

the security of certain schemes.

3.4 Security Model

The security of ring signature schemes is defined via the following notions.

3.4.1 Correctness

A ring signature scheme is correct if, for any m,σ where σ was output by RingSign on input

m, a list of public keys R = {PK1, PK2, .., PKn} and secret key SKsig (sig ∈ {1, .., n}),
then RingVerify(m,R, σ) outputs accept.

3.4.2 Anonymity

Anonymity ensures that it is impossible to distinguish which member of a ring has gener-

ated a given signature, and is defined via the following game between a challenger C and

an adversary E.

Initialization: C firstly generates a set S = {(PKi, SKi)}n(l)
i=1 of public and private keys

using key generation algorithms of its choosing, where n is a polynomial function of

the security parameter l, and gives this set to E. The set of public keys is set to be

R = {PKi}n(l)
i=1 .

Challenge: E finally produces a message m, and a ring R ⊆ R. C chooses some PKsig

at random from R, computes σ=RingSign(m,R, sig, SKsig), and gives σ to E.

34

3.4 Security Model

Output: E outputs some PKj ∈ R. E wins the game if PKsig = PKj .

Definition 3.2 We say that a ring signature scheme is anonymous if no polynomially

bounded adversary has advantage non-negligibly greater than 1/R of winning in the above

game. We say that a ring signature scheme is perfectly anonymous if all adversaries have

probability exactly 1/R of winning the above game.

3.4.3 Unforgeability

Unforgeability ensures that no-one other than a ring member can create a valid ring sig-

nature for that ring. Unforgeability is defined via the following game between a challenger

C and an adversary E.

Initialization: C firstly generates a set S = {(PKi, SKi)}n(l)
i=1 of public and private keys

using key generation algorithms of its choosing, where n is a polynomial function of

the security parameter l, and the list of public keys R = {PKi}n(l)
i=1 is given to E.

RingSign Queries: E may request a signature on any message m, for any ring R ⊆ R,

with any public key PKsig ∈ R. C computes σ=RingSign(m,R, sig, SKsig), and

gives σ to E.

Corrupt Queries: E may request the private key SKi corresponding to any public key

PKi.

Output: E finally outputs a message m∗, a ring R∗ ⊆ R, and a signature σ∗. E wins

the game if RingVerify(m∗, R∗, σ∗) outputs accept, no public key PK ∈ R∗ has been

corrupted, and no previous RingSign query was made on m∗ and R∗.

Definition 3.3 We say that a ring signature scheme is unforgeable if the probability of

success of any polynomially bounded adversary in the above game is negligible.

3.4.4 Notes on the Security Definitions for Ring Signatures

Anonymity: This definition of anonymity is very strong since the adversary knows the

private keys of all members of the ring. We present this definition since it appears

to be the strongest definition of anonymity, and the concrete ring signature scheme

that we present later in this chapter is able to meet this definition.

Many papers in the literature do not rigorously define what they mean by anonymity,

and those that do often propose weaker notions of anonymity. Bender et al. [14]

35

3.5 A Concrete Scheme

give a good overview of different definitions although they do not consider the def-

inition above. Weaker definitions restrict the adversary’s access to the private keys

of members of the ring R.

Unforgeability: Our definition of unforgeability is also stronger than usual. In particu-

lar, we allow the adversary to make Corrupt queries on all public keys except those

involved in the forged ring signature. We also allow the adversary to stipulate which

private key it wishes to be used when making a RingSign query even though, if the

ring signature scheme is anonymous, it should make no difference to the adversary

which private key is used to generate the ring signature.

We include these additional adversarial resources in our model of unforgeability in

order to make our security definitions as strong as possible, and also to ensure that

our models of security for ring signatures are compatible with models of security for

other cryptographic schemes presented in later chapters.

3.5 A Concrete Scheme

Since we only require a non-separable ring signature scheme in later chapters, we present

the non-separable ring signature scheme of [2, Appendix A] which is defined by the fol-

lowing algorithms.

Setup: For some security parameter l, let p and q be large primes, where q|(p − 1). Let

G be a multiplicative subgroup of Z∗p of order q and let g be a generator of G. We

also assume that H : {0, 1}∗ → Zq is a cryptographic hash function. The public

parameters are params = 〈p, q, g, H〉.

KeyGen: This algorithm takes as input public parameters params = 〈p, q, g, H〉. A private

key x is chosen at random from Z∗q , and the corresponding public key is computed

as X = gx mod p.

RingSign: Given a message m, a list of public keys R = {X1, X2, .., Xn}, and a private

key xsig which corresponds to a public key Xsig in position sig of R, select random

t, hi ∈ Zq for i = 1, .., n, i 6= sig, and compute

z = gtΠn
i=1,i 6=sigX

hi
i mod p

h = H(X1, .., Xn,m, z)
hsig = h− (h1 + .. + hsig−1 + hsig+1 + .. + hn) mod q
s = t− xsig · hsig mod q

The signature is σ = 〈s, h1, .., hn〉.

36

3.6 Security of the Concrete Scheme

RingVerify: Given a message m, a list of public keys R = {X1, X2, .., Xn}, and a signature

σ = 〈s, h1, .., hn〉, compute

h = H(X1, .., Xn,m, gsXh1
1 · · ·Xhn

n mod p)
h′ =

∑n
i=1 hi mod q.

If h = h′ then output accept, otherwise output reject.

We notice that the 1-party version of the ring signature scheme above is in fact equiva-

lent to the Schnorr signature scheme [99]. The Schnorr signature scheme was proven to be

unforgeable in [96] (using the Forking Lemma presented in Section 2.3.4), and we will show

that the unforgeability of this ring signature scheme in fact relies on the unforgeability of

the Schnorr signature scheme.

3.6 Security of the Concrete Scheme

Proofs of security for the above scheme are omitted in [2]. However work in later chapters

relies on the security of this scheme, so we now present security results for the above ring

signature scheme.

Theorem 3.1 The ring signature scheme presented in Section 3.5 is perfectly anonymous

assuming that H is a random oracle.

Proof: Consider any ring signature σ = 〈s, h1, .., hn〉 produced by RingSign on input

a message m, a list of public keys R = {X1, X2, .., Xn}, and a private key xsig which

corresponds to a public key Xsig in position sig of R.

Each hi for i 6= sig is selected randomly from Zq, so these values are distributed

uniformly at random in Zq. Now hsig depends on an output from H, but since H is a

random oracle, the outputs of H are distributed uniformly at random over G, and therefore

hsig is uniformly distributed over Zq. Since s depends on randomly selected t, s also has

uniform distribution on Zq.

The hi values and s are not independent since for each valid signature the following

equation holds:
n∑

i=1

hi mod q = H(X1, .., Xn,m, gsXh1
1 · · ·Xhn

n mod p)

However this equation holds for all valid signatures and the inputs all have equal

distributions, so any two valid signatures generated by RingSign on R and m are indistin-

guishable, irrespective of which private key was used in each case. Therefore no adversary

has advantage greater than 1
R of winning the anonymity game of Section 3.4.2. ¤

37

3.6 Security of the Concrete Scheme

We note that if we assume that the outputs of H are only computationally indistin-

guishable from random, then our concrete ring signature is anonymous (but not perfectly

anonymous).

Theorem 3.2 The ring signature scheme presented in Section 3.5 is unforgeable, assuming

the unforgeability of the Schnorr signature scheme [99].

Proof:

Suppose that H is a random oracle and there exists an algorithm E that makes at

most µ queries to the random oracle H, at most µs RingSign queries, and wins the

unforgeability game of Section 3.4.3 in time at most τ with non-negligible probability η

in the security parameter l. We now show that there exists an algorithm B that uses E,

and which has a non-negligible chance of forging a Schnorr signature.

Unforgeability for a Schnorr signature scheme is defined in the same way as unforge-

ability for a standard digital signature scheme in Section 2.3.1. Since B attempts to forge

a Schnorr signature, we assume that B in turn interacts with a challenger C in the un-

forgeability game of Section 2.3.1. Since the Schnorr signature scheme is essentially the

same as the 1-party version of our ring signature scheme, the algorithms Setup and KeyGen

for the two schemes are identical. C therefore initializes the unforgeability game in the

same way as a challenger in the unforgeability game for ring signatures, except that C

only generates a single public and private key pair 〈X,x〉. C gives B the public key X

and the public parameters 〈p, q, g〉, and access to the random oracle H.

C will also answer B’s Sign queries on any message M , and will respond with a Schnorr

signature σ′ = 〈s′, h′〉 where h′ = H(M, gs′Xh′). We note that the message M may be of

any form and of any length.

B in turn initializes an unforgeability game (for ring signatures) for E. B gives the

public parameters params = 〈p, q, g〉 to E. B also sets the number of participants to be

n(l), where n is a polynomial function of the security parameter l, and picks a random

j ∈ {1, .., n(l)}. B generates a set S = {(Xi, xi)}n(l)
i=1,i6=j of public and private keys using

KeyGen. B sets public key Xj = X, and the list of public keys R = {Xi}n(l)
i=1 is given to

E. B now simulates a challenger for E by simulating all the queries which E can make as

follows:

H-Queries: B passes all of E’s random oracle queries to C and returns C’s response to

E.

38

3.6 Security of the Concrete Scheme

RingSign Queries: E may request a signature on any message m, for any ring R where

R = {X1, .., Xk} ⊆ R, and with any public key Xsig ∈ R. If Xj /∈ R then B computes

σ=RingSign(m,R, sig, xsig) and outputs σ. The running of RingSign requires a single

call to the random oracle H.

If Xj ∈ R then B sets message M = X1, .., Xk,m, makes a Sign query on M to

C, and receives a response σ′ = 〈s′, h′〉. For each Xi ∈ R where Xi 6= Xj , B

picks a random value hi ∈ Zq. B computes hj = h′ − ∑
i6=j hi mod q and s =

s′ −∑
i6=j xihi mod q. B sets σ = 〈s, h1, .., hk〉 and outputs σ.

Corrupt Queries: E can make a Corrupt query on any public key Xi. If Xi = Xj , then

B aborts and terminates E. Otherwise B returns the appropriate private key xi.

Output: On termination, with non-negligible probability E outputs a signature σ∗ = 〈s∗,
h∗1, .., h

∗
k〉, a ring R∗ = {X∗

1 , .., X∗
k} ⊆ R and a message m∗, where RingVerify(m∗, R∗,

σ∗) outputs accept, and no previous RingSign query was made on m∗ and R∗.

If Xj /∈ R∗ then B aborts. Otherwise we assume that Xj ∈ R∗, which occurs with

probability |R∗|/n (and in this case, B would not have had to abort on any Corrupt

query since E cannot have corrupted any public key in R∗).

B computes s′′ = s∗ +
∑

i6=j x∗i h
∗
i mod q and sets h′′ = h∗j . B outputs σ′′ = 〈s′′, h′′〉 as

a forgery to C on message M = X∗
1 , .., X∗

k ,m∗. Since σ∗ is a valid ring signature, σ′′ is a

valid Schnorr signature, and since E made no previous RingSign query on m∗ and R∗,

B made no previous Sign query on M .

Therefore B has forged a Schnorr signature in time τ and with non-negligible proba-

bility η′ = η|R∗|/n, making at most µs Sign queries and at most µ + µs random oracle

queries.

This contradicts the unforgeability of the Schnorr signature scheme which was proven

in [96]. ¤

39

Chapter 4

Non-interactive Designated
Verifier Proofs and Their
Applications

4.1 Introduction

Undeniable signatures were first presented in 1989 by Chaum and van Antwerpen [37], and

were designed to have the property that signatures could be freely distributed, but were not

self-authenticating. More precisely, undeniable signatures should not be verifiable without

the cooperation of the signer. However, any party wrongly accused of having produced

the signature can deny his involvement. The true signer may prove his authorship of

an undeniable signature by running a confirmation protocol with a verifier, and a falsely

implicated signer may deny his involvement by running a denial protocol with a verifier.

The confirmation (and possibly also the denial) proofs must be non-transferable, mean-

ing that they must be convincing only to the intended recipient. A verifier should not be

able to pass on (or transfer) the proof to other parties, since otherwise the signature can

be verified without the cooperation of the signer. Obviously, only the true signer should

be able to successfully complete a confirmation protocol. Moreover the true signer should

be unable to successfully complete a denial protocol for any of his signatures. Therefore

the true signer cannot deny having produced his signatures.

The confirmation and denial protocols for the undeniable signature scheme of [37]

were made zero-knowledge in [35], and this goes some way to ensuring that the signer has

control over who can verify an undeniable signature. However, as was pointed out in [49],

even though the confirmation protocol is zero-knowledge, the signer may still not always

be able to control who is able to verify the validity of a signature if a group of verifiers

40

4.1 Introduction

cooperate. The undeniable signature scheme in [37] is also vulnerable to a blackmailing

attack [68]. Jakobsson et al. [70] provided a solution to such attacks, called designation

of verifiers, to ensure that only a specified verifier can confirm an undeniable signature.

Informally, a designated verifier (DV) proof is a proof of correctness of some “state-

ment” that either the prover or some designated verifier could have produced. If the prover

created the proof, then the “statement” is correct. However a designated verifier can sim-

ulate a valid proof without a correct “statement”. Therefore since a third party cannot

determine whether a given DV proof was generated by the prover or by the designated

verifier, they cannot determine whether the corresponding “statement” is correct or not.

A DV proof should convince the designated verifier of the correctness of the “state-

ment” since the designated verifier knows that he did not create the proof himself, and

therefore the proof must have been generated by the prover. However no other party will

be convinced of the validity of the proof since the designated verifier could have simulated

it. In the context of undeniable signatures, a DV proof can be used to convince (only)

the designated verifier of the validity of the undeniable signature. We refer to undeni-

able signature schemes that use DV proofs as their confirmation and denial proofs as DV

undeniable signatures.

Although the authors of [70] did not give a formal definition of DV proofs, they provided

concrete examples of such proofs. The construction of DV proofs in [70] used trapdoor

commitment schemes [24]. It was also shown there that the DV proofs could be made

non-interactive. Such proofs are called NIDV proofs and can in turn be used to construct

NIDV undeniable signatures. However a flaw in the concrete NIDV proof of [70] was

recently discovered by Wang [112], whereby a cheating signer can create a “non-standard”

undeniable signature which the signer can prove valid via the NIDV confirmation proof

and later deny via the denial proof. Wang proposed two ways to repair the scheme of [70],

but did not offer any proofs of security.

For normal undeniable signature schemes, unforgeability and invisibility (or anonymity)

are usually considered to be the key notions of security. As for the security of confirmation

and denial proofs, the literature suggests that most authors have been content to simply

prove that they are zero-knowledge and sound. This may suffice for the case where zero-

knowledge confirmation and denial proofs are used, but it is unclear whether these notions

of security are satisfactory for NIDV confirmation and denial proofs.

A concept related to DV proofs is what is commonly referred to as DV signatures

[75, 77, 98]. DV signature schemes and DV proofs are commonly confused in the liter-

41

4.1 Introduction

ature, although they are quite distinct notions. Informally, a DV signature can be seen

as an NIDV proof, but instead of proving the validity of some statement (e.g. that a

certain undeniable signature is valid), it is simply associated with some message. DV

signatures retain the property of non-transferability (that we find with DV proofs) since

a DV signature could have been created by the signer or by the designated verifier.

Some authors have proposed formal definitions [75, 77] and security notions [77] for

DV signatures. It has also been noted that in fact secure two-party ring signatures satisfy

the definition of DV signatures and that the security requirements for DV signatures and

ring signatures are essentially the same [75, 98].

In Section 4.2 we present a formal definition for NIDV proof systems which we believe

are of independent interest. Our formal definition is compatible with the concrete scheme

of [70]. In Section 4.3 we propose a formal model of security for NIDV proof systems.

In Sections 4.4 and 4.5 we present a formal definition for NIDV undeniable signature

schemes as well as a security model which models the security of both the core signature

scheme and the NIDV confirmation and denial proof systems with which it is composed.

Essentially, two NIDV proof systems are required to construct an NIDV undeniable sig-

nature scheme. The NIDV proof systems are for complementary languages, one providing

confirmation proofs and the other denial proofs for the core signature scheme.

We go on to repair the NIDV proofs of [70], producing secure NIDV proof systems

suited to combination with the full domain hash variant of Chaum’s undeniable signature

scheme [35, 37]. The NIDV proofs we obtain are actually a little shorter than those in

[70]. Our work confirms that one of the fixes proposed by Wang [112] does indeed repair

the NIDV proofs of [70]. The result is a concrete and efficient NIDV undeniable signature

scheme.

For completeness, in Sections 4.8 and 4.9 we provide a formal definition of DV sig-

natures as well as a security model for DV signatures which closely follows our model of

security for ring signatures in Section 3.4.

We also discuss how DV signature schemes can be constructed from both 2-party ring

signature schemes and NIDV proofs, and we give a concrete example demonstrating how

one of our concrete NIDV proofs may be modified to create a DV signature scheme. The

chapter concludes with some open problems and ideas for further extensions of our work.

Our work in this chapter represents the first time that a formal security model for

NIDV undeniable signatures has been developed. The model does not require the signature

scheme to be randomized. It is also a multi-party model, reflecting the fact that designated

42

4.1 Introduction

verifier proofs naturally involve more than one party (and therefore involve more than one

secret keys), and that a party may play different roles at different times. For example, an

entity A may generate NIDV proofs for some designated verifier B, and at the same time

be a recipient of an NIDV proof (i.e. play the role of designated verifier) from B. It is

therefore important to model such interaction and interchanging of roles in the security

model.

We consider NIDV proofs and NIDV undeniable signatures separately. One reason

for doing so is that, in any application, undeniable signatures may exist independently of

proofs. For example, a prover may generate a signature as a commitment to a message but

only later provide an NIDV proof of its correctness, or a prover may generate many proofs

for different designated verifiers on the same signature. A second reason is that NIDV

proofs may also be useful in contexts other than undeniable signatures. One possible

application of NIDV proofs is to deniable proofs of knowledge, in particular, proofs of

knowledge of a private key. For example, when registering a public key with certification

authority C, A could demonstrate knowledge of the appropriate private key by presenting

C with an NIDV proof of knowledge of the private key of A.

4.1.1 Related Work and Notions

As we mentioned before, there is some confusion in the literature between DV proofs,

NIDV proofs and DV signatures, and these terms are often used interchangeably. In much

of the literature on DV signature schemes [75, 77, 98], the authors ascribe the term DV

signatures to [70] and describe the concrete NIDV undeniable signature scheme of [70] as

a DV signature scheme. In fact, this terminology was never used in [70]. Despite this

incorrect association, the works of [75, 77, 98] are in fact concerned with DV signatures.

Although most authors do acknowledge that unforgeability and non-transferability are

necessary properties for a secure DV signature scheme, most authors do not formalize these

notions. Lipmaa et al. [77] are the first to examine the security properties of DV signature

schemes more formally. In their work, they formalize and extend the attack of Wang [112]

on [70] to DV signatures. They then propose two additional security properties which are

required for secure DV signatures, namely non-delegatability and non-disavowability. In

Section 4.9.4 we contrast our model of security with theirs and discuss how the notions of

non-delegatability and non-disavowability relate to our security definitions.

Another related notion is that of strong designated verifier (SDV) proofs and signatures

[70, 98, 109], which provide stronger security guarantees than DV signatures and NIDV

43

4.2 NIDV Proofs

proofs. SDV signatures provide similar properties to DV signatures except that only the

designated verifier is able to verify the signatures produced, since the verification algorithm

makes use of the private key of the designated verifier. By contrast, DV signatures (and

NIDV proofs) are universally verifiable, but only convincing to the designated verifier.

Another notion is that of universal designated verifier (UDV) signatures [75, 104, 105].

Although at first glance these appear to be similar to NIDV undeniable signatures, they

are quite different. UDV signature schemes produce signatures which are universally

verifiable. However any party in possession of a valid UDV signature on message M from

signer S can provide (to any verifier of their choice) a designated verifier proof that they

possess a valid UDV signature on M by S. In comparison, NIDV undeniable signatures

are not universally verifiable, and only the signer is able to produce designated verifier

proofs of a signature’s validity.

4.2 NIDV Proofs

We now present a formal definition for NIDV proof systems. This formal definition was

previously lacking in [70] but our definitions are compatible with the concrete scheme of

[70].

Unless explicitly stated, we will denote the public key of a participant I by XI , and

the private key of I by xI . P will in general represent a prover, and V a verifier.

A non-interactive designated verifier (NIDV) proof system is defined with respect to

some family of languages L. The goal of an NIDV proof system is to prove the membership

of elements e in a language L ∈ L. An NIDV proof system consists of the following

algorithms:

Setup(l): A probabilistic algorithm which takes a security parameter l as input and re-

turns the system parameters params and a description of a family of languages L.

Amongst the public parameters params are descriptions of the following spaces: a

public key space PK, a private key space SK, an element space E and a proof space

P. E contains all elements e ∈ L for all languages L ∈ L.

KeyGen(params): A probabilistic algorithm which takes as input the public parameters

params and returns a key pair (x,X) where x ∈ SK is a private key and X ∈ PK
is the corresponding public key.

PGen(XP , XV , xP , e): A (possibly probabilistic) proof generation algorithm which takes

44

4.3 Security for NIDV Proofs

as input XP , XV ∈ PK, XP 6= XV , xP ∈ SK, and e ∈ E , and produces an NIDV

proof π ∈ P for e.

PVerify(XP , XV , e, π): A verification algorithm which takes as input XP , XV ∈ PK, XP 6=
XV , e ∈ E and π ∈ P, and outputs accept or reject.

Note that we parameterize the languages L ∈ L by public keys, and for any public key

X ∈ PK, L(X) ⊆ E . This parametrization will be needed for the proof systems required

for use with undeniable signatures, but is not necessary in general.

4.3 Security for NIDV Proofs

We say that an NIDV proof system is secure if it satisfies the notions of correctness,

non-transferability and soundness. These are defined as follows.

4.3.1 Correctness

An NIDV proof system is correct if when PGen is run on any input 〈XP , XV , xP , e〉 where

XP , XV ∈ PK, XP 6= XV , xP ∈ SK, e ∈ L(XP), and outputs some π ∈ P, then PVerify on

input 〈XP , XV , e, π〉 outputs accept.

4.3.2 Non-transferability

We say that an NIDV proof system is non-transferable if there exists a polynomial time

algorithm FakePGen that on input a tuple 〈XP , XV , xV , e′〉, where XP , XV ∈ PK, XP 6=
XV , xV ∈ SK, e′ ∈ E , but where e′ is not necessarily in L(XP), produces a proof π′ ∈ P
such that 〈XP , XV , e′, π′〉 is accepted by PVerify. In addition, if π is produced by PGen

when run on inputs 〈XP , XV , xP , e〉 where e ∈ L(XP), then if e and e′ are indistinguish-

able, then the distributions of proofs π′ and π must be polynomially indistinguishable.

4.3.3 Soundness

Soundness of an NIDV proof system is defined via the following game between a challenger

C and an adversary E:

Initialize: C firstly runs Setup for a given security parameter l to obtain the public

parameters params, and a description of a family of languages L. C runs KeyGen

to generate the public and private keys XI and xI for each participant, where the

number of participants is bounded by n, where n is a polynomial function of l. We

45

4.3 Security for NIDV Proofs

define the set of all participants’ public keys to be X . E is given params,L and X
while C retains the private keys.

E can make the following types of query to the challenger C:

EGen Queries: E can request an element of a particular language (or its complement).

On input a public key XI and a bit b (and possibly some seed), if b = 1 then C

outputs an element e ∈ L(XI), otherwise C outputs an element e /∈ L(XI).

PGen Queries: E can request an NIDV proof for input 〈XP , XV , e〉 where XP , XV ∈ X ,

XV 6= XP and e ∈ E . C runs PGen(XP , XV , xP , e) to produce an NIDV proof π ∈ P.

If PVerify(XP , XV , e, π) outputs accept then C outputs π. Otherwise C outputs

invalid.

FakePGen Queries: E can request a fake NIDV proof on input 〈XP , XV , e′〉 where

XP , XV ∈ X , XV 6= XP , and e′ ∈ E . C runs FakePGen(XP , XV , xV , e′) to produce

an NIDV proof π′ ∈ P. C outputs π′.

Corrupt Queries: E can request the private key corresponding to any public key XI ∈
X . C outputs the corresponding private key xI .

Output: Finally E outputs 〈X∗
P , X∗

V , e∗, π∗〉, where X∗
P , X∗

V ∈ X , X∗
P 6= X∗

V , X∗
V is

uncorrupted, e∗ ∈ E and π∗ ∈ P. E wins if 〈X∗
P , X∗

V , e∗, π∗〉 is accepted by PVerify,

no FakePGen query was made on 〈X∗
P , X∗

V , e∗〉, and either:

1. X∗
P is uncorrupted and no PGen query was made on 〈X∗

P , X∗
V , e∗〉, or

2. e∗ /∈ L(X∗
P).

Definition 4.1 We say that an NIDV proof system is sound if the probability of success

of any polynomially bounded adversary in the above game is negligible (as a function of

the security parameter l).

4.3.4 Notes on the Security Definitions for NIDV Proof Systems

Non-transferability: The existence of FakePGen that can be run by V to create an

NIDV proof for any element e (not necessarily in L) ensures that no-one besides V

will be convinced by an NIDV proof for e.

We note that we do not require the elements e and e′ to be indistinguishable for non-

transferability; rather only the proofs π and π′ are required to be indistinguishable.

46

4.3 Security for NIDV Proofs

If an outside party can already distinguish elements in L(XP) from elements not in

L(XP), then they have no need of NIDV proofs for L(XP). However an NIDV proof

for an element e should not give any extra information regarding e to parties other

than the designated verifier.

Soundness: The soundness definition guarantees that if an uncorrupted verifier receives

a valid NIDV proof, then it was created using the private key xP and e ∈ L(XP).

So a prover cannot cheat. Soundness also guarantees that no-one other than P

can convince an uncorrupted designated verifier that e ∈ L(XP). In the context of

undeniable signatures, this means that a verifier must cooperate with the real signer

in order to verify an undeniable signature since no-one other than the real signer is

able to produce an NIDV proof of a valid undeniable signature that will be accepted

by an uncorrupted designated verifier.

Although not immediately obvious, the soundness definition also guarantees that

if PGen is run on 〈XP , XV , xP , e〉 where e /∈ L(XP), and outputs some π ∈ P,

then PVerify on input 〈XP , XV , e, π〉 outputs reject. If this is not the case, then

E could generate an element e /∈ L(XP), generate a proof π using PGen which is

accepted by PVerify, and output π. E would win the game since e /∈ L(XP). This

observation, together with the correctness property, means that an entity with public

key XP can determine whether an element e is in L(XP) or not by running PGen on

〈XP , XV , xP , e〉 for some XV and then PVerify. PVerify outputs accept if and only if

e ∈ L(XP). This is in fact used when answering PGen queries.

We note that EGen queries allow E to stipulate some “seed” to be used. This is

necessary in the context of undeniable signatures where EGen queries correspond

to signature queries, and the message to be signed corresponds to the seed.

The existence of FakePGen from Section 4.3.2 also enables C to answer FakePGen

queries. We consider it important to model such queries since an adversary may

have access to such “fake” NIDV proofs that are produced by dishonest verifiers

using FakePGen.

The model for soundness is multiparty, reflecting the fact that NIDV proofs naturally

involve more than one party, and that a party may play different roles at different

times.

47

4.4 NIDV Undeniable Signatures

4.4 NIDV Undeniable Signatures

As mentioned earlier, the main application of NIDV proofs has historically been in unde-

niable signatures, even though the current security models for undeniable signatures (in

particular the definitions of soundness) do not to support NIDV proofs. We now present

a formal definition for NIDV undeniable signature schemes.

Definition 4.2 An NIDV undeniable signature scheme consists of a core signature scheme

as well as NIDV confirmation and denial proof systems. The core signature scheme consists

of the following algorithms:

Setup(l): A probabilistic algorithm which takes a security parameter l as input and returns

the system parameters params. Amongst the public parameters are descriptions of

the following spaces: a public key space PK, a private key space SK, a message

space M and a signature space S.

KeyGen(params): A probabilistic algorithm which takes as input the public parameters

params and returns a key pair (x,X) where x ∈ SK and X ∈ PK.

USign(x,m): A (possibly probabilistic) signature generation algorithm which on input

x ∈ SK,m ∈M, produces an undeniable signature σ ∈ S.

The core signature scheme defines a language L(X) for each public key X, where L(X) =

{(m,σ) : σ = USign(x,m)}. In other words, L(X) is the language of all possible valid

message and signature pairs for public key X and L(X) is the language of all invalid

message and signature pairs for public key X. The family of languages L is defined as

L = {L(X) : X ∈ PK} and L is defined as L = {L(X) : X ∈ PK}.
The families of languages L and L parameterize the confirmation and denial proofs.

The confirmation proof is an NIDV proof system C for L, and the denial proof is an NIDV

proof system D for L. The setup algorithms for C and D use the public key space PK, the

private key space SK, and set the element space E to be M×S. The proof spaces for C
and D are denoted PC and PD respectively. The following algorithms then make up the

confirmation and denial proofs.

ConfGen(XP , XV , xP ,m, σ): A confirmation proof generation algorithm which, on input

XP , XV ∈ PK, XP 6= XV , xP ∈ SK, (m,σ) ∈ E runs PGen of C on 〈XP , XV , xP , (m,σ)〉.

48

4.5 Security for NIDV Undeniable Signatures

ConfVerify(XP , XV ,m, σ, πC): A confirmation proof verification algorithm which, on in-

put XP , XV ∈ PK, XP 6= XV , (m, σ) ∈ E and πC ∈ PC runs PVerify of C on

〈XP , XV , (m,σ), πC〉.

DenyGen(XP , XV , xP ,m, σ): A denial proof generation algorithm which, on input XP , XV ∈
PK, XP 6= XV , xP ∈ SK, (m,σ) ∈ E runs PGen of D on 〈XP , XV , xP , (m,σ)〉.

DenyVerify(XP , XV ,m, σ, πD): A denial proof verification algorithm which, on input XP ,

XV ∈ PK, XP 6= XV , (m,σ) ∈ E and πD ∈ PC runs PVerify ofD on 〈XP , XV , (m,σ),

πD〉.

4.5 Security for NIDV Undeniable Signatures

In analyzing the security of NIDV undeniable signatures, we consider the security of the

confirmation and denial proofs being used, and their composition with the core signature

scheme.

Definition 4.3 The confirmation (denial) proof of an NIDV undeniable signature is secure

if C (respectively D) is a secure NIDV proof system for L (respectively L). That is, C
(respectively D) is correct, non-transferable and sound.

4.5.1 The Security of the Core Signature Scheme

The security of the core signature scheme is defined via the notions of unforgeability and

invisibility.

4.5.1.1 Unforgeability

Unforgeability of an NIDV undeniable signature scheme is defined via the following game

between a challenger C and an adversary E:

Initialize: C firstly runs Setup for a given security parameter l to obtain the public

parameters params. C runs KeyGen to generate the public and private keys XI and

xI for each participant, where the number of participants is bounded by n, where n

is a polynomial function of l. We define the set of all participants’ public keys to be

X . E is given params and X while C retains the private keys.

E can make the following queries to the challenger C:

49

4.5 Security for NIDV Undeniable Signatures

USign Queries: E can request an undeniable signature for input 〈XI ,m〉 where XI ∈ X ,

and m ∈M. C takes the private key xI corresponding to XI and runs USign(xI ,m)

to produce σ ∈ S, where xI is the private key corresponding to XI . C outputs σ.

Conf/Deny Queries: E can request a confirmation or denial proof for input 〈XP , XV ,m, σ〉
where XP , XV ∈ X , XV 6= XP , m ∈ M and σ ∈ S. C takes the private key xP

corresponding to XP and proceeds as follows. C runs ConfGen(XP , XV , xP ,m, σ) to

produce an NIDV proof πC ∈ PC . If ConfVerify(XP , XV ,m, σ, πC) returns accept,

then C outputs πC . Otherwise C runs DenyGen(XP , XV , xP ,m, σ) to produce an

NIDV proof πD ∈ PD which it outputs. C informs E which case has occurred.

FakeConf Queries: E can request a fake confirmation proof for input 〈XP , XV ,m, σ〉
where XP , XV ∈ X , XV 6= XP , m ∈M and σ ∈ S. C takes the private key xV corre-

sponding to XV and runs FakePGen of the NIDV proof system C on 〈XP , XV , xV , (m,σ)〉
to produce an NIDV proof πC ∈ PC , which C outputs.

FakeDeny Queries: E can request a fake denial proof for input 〈XP , XV ,m, σ〉 where

XP , XV ∈ X , XV 6= XP , m ∈M and σ ∈ S. C takes the private key xV correspond-

ing to XV and runs FakePGen of the NIDV proof system D on 〈XP , XV , xV , (m,σ)〉
to produce an NIDV proof πD ∈ PD, which C outputs.

Corrupt Queries: E can request the private key corresponding to any public key XI ∈
X . C outputs the corresponding private key xI .

Output: Finally E produces X∗
I ∈ X , m∗ ∈M and σ∗ ∈ S, where X∗

I is uncorrupted and

no USign query was previously made on 〈X∗
I ,m∗〉. E wins the game if (m∗, σ∗) ∈

L(X∗
I).

Definition 4.4 We say that an NIDV undeniable signature scheme is unforgeable if the

probability of success of any polynomially bounded adversary in the above game is negli-

gible in l.

4.5.1.2 Invisibility

Invisibility of an NIDV undeniable signature scheme is defined via the following game

between a challenger C and an adversary E:

Initialize: This is as in the Unforgeability game above.

50

4.5 Security for NIDV Undeniable Signatures

Phase 1: The adversary can make USign, Conf/Deny, FakeConf, FakeDeny and

Corrupt queries, and these are all answered as in the Unforgeability game.

Challenge: E produces m∗ ∈ M, X∗
I ∈ X , where X∗

I is uncorrupted. In addition, if the

USign algorithm is deterministic, then E should not have previously made a USign

query on 〈X∗
I ,m∗〉 in Phase 1. C chooses a random bit β and if β = 0, C sets σ∗ = r

where r is randomly chosen from S, otherwise C sets σ∗=USign(x∗I ,m
∗). C gives σ∗

to E.

Phase 2: Again E can make queries as in Phase 1, except that E cannot corrupt X∗
I

and E cannot make a Conf/Deny query on 〈X∗
I , XV ,m∗, σ∗〉 for any XV . If the

signature algorithm USign is deterministic, E is also forbidden from making a USign

query on 〈X∗
I ,m∗〉.

Output: Finally E outputs a bit β′ and wins the game if β′ = β.

Definition 4.5 We say that an NIDV undeniable signature scheme is invisible if the

difference between the success probability of any polynomially bounded adversary and

1/2 in the above game is negligible in l.

Definition 4.6 We say that an NIDV undeniable signature scheme is secure if the con-

firmation and denial NIDV proofs systems C and D with which it is composed are secure,

and the core signature scheme is unforgeable and invisible.

4.5.2 Notes on the Security Definitions for Undeniable Signatures

Correctness: Although we do not explicitly define correctness for NIDV undeniable sig-

natures, correctness is ensured by the correctness of proof systems C and D.

Unforgeability: Our model of unforgeability differs from security models for normal un-

deniable signatures in two main ways. Firstly it is multiparty due to the multiparty

nature of the NIDV confirmation and denial proofs. Secondly, we allow the adver-

sary to make FakeConf and FakeDeny queries. We consider these to be necessary

since an adversary may conceivably have access to such “fake” proofs produced by

dishonest designated verifiers.

In answering Conf/Deny queries, C can determine whether a given message and

signature pair (m,σ) is in the language L(XP) or not by generating an NIDV proof

that (m,σ) ∈ L(XP) using ConfGen. The resulting proof will be accepted by Con-

fVerify if and only if (m, σ) ∈ L(XP). This is guaranteed by the soundness of the

51

4.5 Security for NIDV Undeniable Signatures

underlying NIDV proof. Alternatively, if USign is deterministic, then C could run

USign to generate the unique signature σ′ on m and compare this to σ. In this case

(m,σ) ∈ L(XP) if and only if σ = σ′.

Invisibility: We use the notion of invisibility in our model of security rather than anonymity.

Anonymity for NIDV undeniable signatures, which could be defined in a similar way

to [55], captures the notion that an adversary cannot determine which of two possi-

ble signers created a given undeniable signature. Analogous results to those in [55]

would show that our definition of invisibility implies anonymity for NIDV undeniable

signatures and so is the stronger notion. Moreover, we feel that the stronger defini-

tion of invisibility is appropriate for NIDV undeniable signatures since we model the

existence of fake NIDV proofs and their corresponding (possibly fake) signatures.

This means that random (invalid) signatures (with corresponding NIDV proofs) can

appear in the adversary’s game, and these should be indistinguishable from true

signatures (and their corresponding NIDV proofs). Therefore true signatures should

be indistinguishable from random strings, which corresponds to the stronger notion

of invisibility.

Determinism: Our definitions of unforgeability and invisibility encompass both deter-

ministic and non-deterministic undeniable signatures. In either case, signers can

identify their own valid signatures using ConfGen and ConfVerify.

We note that in the deterministic case, invisibility actually implies unforgeability,

since an adversary who can forge signatures can trivially win the invisibility game.

However for randomized signatures, these properties are distinct. We keep the prop-

erties distinct when proving the security of a deterministic undeniable signature

scheme later in the paper because it simplifies the proof process. We first prove

unforgeability of our concrete scheme and then use this result to simplify the proof

of invisibility, thus avoiding a single, highly complex proof.

However it should be noted that deterministic schemes have distinct weaknesses,

and that in practice, non-deterministic undeniable signature schemes should always

be used. Although the scheme presented in the next section is deterministic, it can

easily be made non-deterministic by adding a random salt into the hash function

and distributing the random salt with the signature.

Overall security: We argue that the definition of security that we present for NIDV

undeniable signatures does indeed capture the security properties that we require

52

4.6 A Concrete NIDV Undeniable Signature Scheme

for NIDV undeniable signatures.

Unforgeability guarantees that no-one can forge undeniable signatures without the

appropriate private key, and invisibility guarantees that no-one can verify a given

undeniable signature (or associate it with a certain public key) without the assistance

of the signer.

When interacting with the signer, the soundness of the confirmation proof ensures

that it is convincing. In other words, if the confirmation proof is valid, then the un-

deniable signature was indeed created by the signer. However the non-transferability

of the confirmation proof guarantees that the verifier cannot prove the authorship

of the undeniable signature to a third party.

When falsely accused of creating a given undeniable signature, the denial proof

allows a party to deny having created an undeniable signature. The soundness of

the denial proof ensures that it is convincing. In other words, if the denial proof is

valid, then the undeniable signature was not created by the accused party. However

the non-transferability of the denial proof guarantees that the verifier cannot prove

this to a third party.

4.6 A Concrete NIDV Undeniable Signature Scheme

We present the full domain hash variant of the undeniable signature scheme of Chaum

[35] with NIDV confirmation and denial proofs.

4.6.1 The Core Signature

Setup(l): For some security parameter l, let p and q be large primes, where q|(p − 1).

Let G be the multiplicative subgroup of Z∗p of order q and let g be a generator of

G. We also assume that H1 : {0, 1}∗ → G is a cryptographic hash function. We

set PK = S = G, M = {0, 1}∗ and SK = Z∗q . The public parameters params are

〈p, q, g,H1〉 as well as descriptions of the spaces PK,SK,M and S.

KeyGen(params): To set up a user’s public and private keys, the private key x is chosen

at random from Z∗q , and the corresponding public key is X = gx mod p.

USign(xI ,m): On input xI ∈ Zq, and m ∈ {0, 1}∗, compute σ = H1(m)xI mod p, and

output σ.

53

4.6 A Concrete NIDV Undeniable Signature Scheme

4.6.2 The Confirmation and Denial Proofs

The USign algorithm defines a language L(XI) = {(m,σ) : σ = USign(xI ,m)} for

each public key XI . For the above signature scheme, we can write L(XI) = {(m,σ) :

DL(σ,H1(m)) = DL(xI , g) in G}. In other words, L(XI) is the language of all possible

message and signature pairs (m,σ) where the discrete logarithm of σ to the base H1(m)

equals the discrete logarithm of XI to the base g modulo p. The family of languages L is

defined as L = {L(XI) : XI ∈ G}.
We can now define confirmation and denial proofs with respect to the languages L(XI).

Confirmation proof: The confirmation proof requires a secure NIDV proof system C for

L. Informally, C must prove the equality of two discrete logarithms (EDL).

Denial proof: The denial proof requires a secure NIDV proof system D for L. Informally,

D must prove the inequality of two discrete logarithms (IDL).

4.6.3 A Concrete NIDV EDL Proof System

The NIDV proof we present is a modification of the scheme of Jakobsson et al. [70]. The

modification repairs a flaw in the original proof, which was discovered by Wang [112].

Since our NIDV EDL proof will be used with the above undeniable signature scheme,

the Setup algorithm will be identical to that in Section 4.6.1 except that in addition we

require another cryptographic hash function H2 : {0, 1}∗ → Zq, and we define the spaces

E = M × S and P = Z4
q . KeyGen will be exactly as in Section 4.6.1. The family of

languages will be defined by the USign algorithm of the concrete scheme as described

above in Section 4.6.2. We still need to define the PGen and PVerify algorithms.

NIDV EDL PGen(XP , XV , xP ,m, σ): On input XP , XV ∈ PK, XV 6= XP , xP ∈ SK, m ∈
M and σ ∈ S, the algorithm picks random w, r, t ∈ Zq and computes:

c = gwXr
V mod p

G = gt mod p

D = H1(m)t mod p

h = H2(c,G, D,m, σ,XP , XV)

d = t− xP (h + w) mod q

The algorithm outputs π = 〈w, r, h, d〉.

54

4.6 A Concrete NIDV Undeniable Signature Scheme

NIDV EDL PVerify(XP , XV ,m, σ, π): On input XP , XV ∈ PK, XV 6= XP , message m ∈
M, signature σ ∈ S, and proof π = 〈w, r, h, d〉 ∈ P, the algorithm computes:

c = gwXr
V mod p

G = gdX
(h+w)
P mod p

D = H1(m)dσ(h+w) mod p

and verifies that h = H2(c,G, D, m, σ,XP , XV). If the last equation holds, then the

algorithm outputs accept, otherwise it outputs reject.

Comparison to the scheme of Jakobsson et al.

The main difference is that we include the values σ, XP and XV in the input of H2. Our

proof π also has one less element than the NIDV EDL proof of [70].

4.6.4 A Concrete NIDV IDL Proof System

Our denial proof is an NIDV version of the proof of inequality of discrete logarithms in

[28].

Our Setup and KeyGen algorithms are as above in Section 4.6.3 for the NIDV EDL

proof scheme except that now P = G× Z4
q .

NIDV IDL PGen(XP , XV , xP ,m, σ): On input XP , XV ∈ PK, XV 6= XP , xP ∈ SK,

m ∈ M, and σ ∈ S, the algorithm picks random t ∈ Zq and computes C =

(H1(m)xP

σ)t mod p.

The algorithm then constructs a designated verifier proof to demonstrate knowl-

edge of some α and β such that C = H1(m)ασ−β mod p and 1 = gαXP
−β mod p.

The algorithm sets α = xP t mod q and β = t, picks random w, r, r1, r2 ∈ Zq and

computes:

C = H1(m)ασ−β mod p

c = gwXr
V mod p

G = gr1(XP)−r2 mod p

D = H1(m)r1σ−r2 mod p

h = H2(C, c, G,D, m, σ,XP , XV)

d1 = r1 − α(h + w) mod q

d2 = r2 − β(h + w) mod q

55

4.7 Security of the Concrete Scheme

The algorithm outputs π = 〈C,w, r, h, d1, d2〉 as the NIDV proof to verifier V that

DL(σ,H1(m)) 6= DL(XP , g).

NIDV IDL PVerify(XP , XV ,m, σ, π): On input XP , XV ∈ PK, XV 6= XP , m ∈ M, σ ∈ S,

and π = 〈C, w, r, h, d1, d2〉 ∈ P. The algorithm first checks that C 6= 1. If C = 1,

then the algorithm outputs reject and halts. Otherwise it computes:

c = gwXr
V mod p

G = gd1X−d2
P mod p

D = Ch+wH1(m)d1σ−d2 mod p

and verifies that h = H2(C, c, G,D, m, σ,XP , XV). If the last equation holds, then

the algorithm outputs accept, otherwise it outputs reject.

4.7 Security of the Concrete Scheme

4.7.1 Security of the NIDV EDL proof system

Theorem 4.1 The NIDV EDL proof system of Section 4.6.3 is correct.

Proof: It is trivial to verify that if NIDV EDL PGen is run on input 〈XP , XV , xP ,m, σ〉
where (m, σ) ∈ L(XP) and produces a proof π = 〈w, r, h, d〉, then NIDV EDL PVerify on

input 〈XP , XV ,m, σ, π〉 will output accept. ¤

Theorem 4.2 The NIDV EDL proof system of Section 4.6.3 is non-transferable.

Proof: We define algorithm NIDV EDL FakePGen as follows. On input 〈XP , XV , xV ,m, σ′〉,
where XP , XV ∈ PK, XV 6= XP , xV ∈ SK, m ∈ M and σ′ ∈ E , NIDV EDL FakePGen

produces proof π′ ∈ P as follows:

NIDV EDL FakePGen chooses random d′, α, β ∈ Zq and calculates:

c′ = gα mod p

G′ = gd′X−β
P mod p

D′ = H1(m)d(σ′)−β mod p

h′ = H2(c′, G′, D′,m, σ′, XP , XV)

w′ = β − h′ mod q

r′ = (α− w′)x−1
V mod q

56

4.7 Security of the Concrete Scheme

NIDV EDL FakePGen outputs π′ = 〈w′, r′, h′, d′〉. It is easy to check that 〈XP , XV ,m, σ′,

π′〉 will be accepted by NIDV EDL PVerify. We now show that π′ is indistinguishable from

any π = 〈w, r, h, d〉 produced by running NIDV EDL PGen on input 〈XP , XV , xP ,m, σ〉.
Examining the proof π′ output by NIDV EDL FakePGen and a proof π produced by

running NIDV EDL PGen on input 〈XP , XV , xP , m, σ〉, we find that:

• Since r is chosen randomly from Zq, and r′ depends on the random value α, r and

r′ are uniformly distributed in Zq, and therefore indistinguishable.

• Since w′ depends on the random value β ∈ Zq and w is chosen randomly from Zq,

w and w′ are uniformly distributed in Zq and therefore indistinguishable.

• Since d′ is chosen randomly from Zq and d depends on the random value t ∈ Zq, d

and d′ are uniformly distributed in Zq and therefore indistinguishable.

In proof π (respectively π′), w, r and d (respectively w′, r′ and d′) are independent

since each depends on a randomly chosen value (or is randomly chosen itself). Now h and

h′ are both outputs from the same hash function on indistinguishable inputs (if (m,σ)

and (m,σ′) are indistinguishable), therefore h and h′ are indistinguishable, and the distri-

butions of π and π′ are indistinguishable. ¤

In order to analyze the soundness of our NIDV EDL proof, we first need to introduce

a related non-generic (NG) signature scheme. We recall that generic signature schemes

are simply digital signature schemes (as defined in Section 2.2.3) that take a certain

form (which is described in Section 2.3.4). In addition, we recall from Section 2.3.5 that

NG signature schemes are identical to generic signature schemes except that instead of

generating signatures on a message M , NG signature schemes take an additional value T

as input when generating or verifying a signature.

Our concrete NG signature scheme is defined as follows.

• The Setup and KeyGen algorithms are identical to those of the concrete NIDV EDL

scheme except that the hash function H1 is not required.

• The Sign algorithm for some public key X ∈ PK takes as input a message M where

M may be of one of two forms:

1. M = m,σ,X, XV where (m,σ) ∈ L(X) and XV ∈ PK. The signing algorithm

also has as inputs a value T ∈ G and the private key x ∈ SK corresponding to

57

4.7 Security of the Concrete Scheme

X. The algorithm runs in an identical way to NIDV EDL PGen(X,XV , x, m, σ)

except that T replaces H1(m) in producing a proof π = 〈w, r, h, d〉. The algo-

rithm sets r2 = 〈w, r, d〉 and r1 = gwXr
V mod p, gdXh+w

P mod p, T dσh+w mod p,

and outputs σNG = 〈r1, h, r2〉.
2. M = m,σ,XP , X where m ∈ M, σ ∈ S and XP ∈ PK. The signing algorithm

also has as inputs a value T ∈ G and the private key x ∈ SK corresponding to X.

The algorithm runs in an identical way to NIDV EDL FakePGen(XP , X, x, m, σ)

except that T replaces H1(m) in producing a proof π = 〈w, r, h, d〉. The algo-

rithm sets r2 = 〈w, r, d〉 and r1 = gwXr
V mod p, gdXh+w

P mod p, T dσh+w mod p,

and outputs σNG = 〈r1, h, r2〉.

• The Verify algorithm on input M = m,σ,XP , XV , a value T ∈ G and a signature

σNG = 〈r1, h, r2〉 where XP = X or XV = X and r2 = 〈w, r, d〉, sets π = 〈w, r, h, d〉
and runs in an identical way to NIDV EDL PVerify(XP , XV , m, σ, π) except that T

replaces H1(m) in the verification process.

Security for NG signature schemes is defined in the same way as security for digital

signature schemes (in Section 2.3.1) except that the model is adapted to accommodate

the additional value T . We refer to the above scheme as the NIDV EDL NG signature

scheme.

Theorem 4.3 The NIDV EDL proof system is sound in the random oracle model assum-

ing the hardness of the discrete logarithm problem in G.

Proof: We suppose that H1 and H2 are random oracles and there exists a polynomial

time algorithm E that makes at most µi queries to the random oracles Hi, i = {1, 2}, at

most µp PGen and µf FakePGen queries, and wins the soundness game of Section 4.3.3

in time τ with non-negligible probability η′ (in security parameter l) where the number

of participants is bounded by ρ. We assume that η′ > 10ρ(µs + 1)(µs + µ2)/2l where

µs = µp + µf .

In Step 1 of the proof, we show how E can be used to construct an algorithm B

that makes at most µ2 queries to the random oracle H2, at most µs Sign queries to its

challenger C, and wins the NG version of the unforgeability game of Section 2.3.1 for

the NIDV EDL NG signature scheme in time at most τ with non-negligible probability

η = η′/ρ where η > 10(µs + 1)(µs + µ2)/2l.

In Step 2 of the proof, we then replace C with an algorithm C ′ that uses B to solve

58

4.7 Security of the Concrete Scheme

the discrete logarithm problem in G. Step 2 of the proof will make use of Lemma 2.6, the

NG Forking Lemma.

Step 1 We will show that there exists an algorithm B that uses E to forge an NIDV

EDL NG signature with non-negligible probability when interacting with a challenger C

in the NG version of the unforgeability game of Section 2.3.1.

The challenger C initializes the NG unforgeability game for B and gives B the public

key X, the public parameters 〈p, q, g〉, descriptions of the spaces PK,SK,M,S,P, and

access to the random oracle H2.

B can make H2 as well as Sign queries on any message M = m,σ,XP , XV (where

m ∈ M, σ′ ∈ S, XP , XV ∈ PK, and XP = X or XV = X), and a value T ∈ G. B

must eventually output a message M∗, a value T ∗, and an NIDV EDL NG signature

σ∗NG = 〈r∗1, h∗, r∗2〉. B wins the game if 〈M∗, T ∗, σ∗NG〉 is accepted by Verify and no Sign

query was previously made on M∗, T ∗.

In order to win the above game, B in turn simulates an NIDV soundness game for E.

NIDV Soundness Simulation:

B gives the parameters 〈g, p, q〉 and the descriptions of the spaces PK,SK,M,S,P to

E. B generates a set of participants U , where |U | = ρ(l) and ρ is a polynomial function

of the security parameter l. For some random participant J , B sets XJ = X, and for each

I 6= J , B runs KeyGen to generate a private key xI and public key XI . We define the set

of all participants’ public keys to be X . E is given X .

B now simulates the challenger by simulating all the queries which E can make as

follows:

H1-Queries: E can query the random oracle H1 at any time. B simulates the random

oracle by keeping a list LH1 of tuples 〈stri, ri〉. When the oracle is queried with an

input str ∈ {0, 1}∗, B responds as follows:

1. If the string str is already in LH1 in the tuple 〈str = stri, ri〉, then B outputs

gri mod p.

2. Otherwise B selects a random r ∈ Zq, outputs gr mod p and adds 〈str, r〉 to

LH1 .

H2-Queries: E can query any string str on the H2 oracle. If str = r1,M where r1 ∈ G3

and M = m,σ,XP , XV where m ∈ M, σ ∈ S, XP , XV ∈ X and XV 6= XP , then B

59

4.7 Security of the Concrete Scheme

first queries m on H1. B then simulates the H2 oracle by passing all H2 queries to

C and passing C’s response back to E.

EGen Queries: E can request an element of a particular language L(XI) (or its com-

plement). On input a public key XI , a bit b and message m ∈ M, B proceeds as

follows. If XI 6= XJ then B runs USign(xI ,m) to produce a signature σ ∈ S such

that (m, σ) ∈ L(XI). If XI = XJ then B queries m on the H1 oracle and receives

some gri as response. B retrieves the value ri from LH1 and sets σ = Xri
I mod p. If

b = 1 then B outputs 〈m, σ〉, otherwise B picks a random σ′ ∈ S where σ′ 6= σ and

outputs 〈m,σ′〉. Since USign is deterministic, if σ′ 6= σ, then (m,σ′) /∈ L(XI).

PGen Queries: E can request an NIDV EDL proof for input 〈XP , XV , m, σ〉 where

XP , XV ∈ X , XV 6= XP , m ∈M and σ ∈ S.

B queries m on H1 and receives some H1(m) = gri . B retrieves the value ri from

LH1 and computes σ′ = Xri
P mod p. If σ′ 6= σ then B outputs invalid.

If σ′ = σ and XP 6= XJ , then B runs NIDV EDL PGen(XP , XV , xP ,m, σ) to produce

a proof π = 〈w, r, h, d〉, and B outputs π to E.

If σ′ = σ and XP = XJ , then B sets M = m,σ,XP , XV and T = H1(m) and makes

a Sign query to C on M and T . C responds with an NIDV EDL NG signature

σNG = 〈r1, h, r2〉 where r2 = 〈w, r, d〉. B sets π = 〈w, r, h, d〉 and outputs π to E.

FakePGen Queries: E can request a fake NIDV EDL proof on input 〈XP , XV ,m, σ′〉
where XP , XV ∈ X , XV 6= XP , m ∈M, and σ′ ∈ S.

If XV 6= XJ then B runs NIDV EDL FakePGen(XP , XV , xV ,m, σ) to produce a proof

π = 〈w, r, h, d〉, and B outputs π to E.

If XV = XJ then B sets M = m,σ,XP , XV and T = H1(m) and makes a Sign query

to C on M and T . C responds with an NIDV EDL NG signature σNG = 〈r1, h, r2〉
where r2 = 〈w, r, d〉. B sets π = 〈w, r, h, d〉 and outputs π to E.

Corrupt Queries: E can request the private key corresponding to any public key XI ∈
X . If XI = XJ , then B aborts and terminates E. Otherwise B returns the appro-

priate private key xI .

Output: Finally E outputs 〈X∗
P , X∗

V ,m∗, σ∗, π∗〉, where X∗
P , X∗

V ∈ X , X∗
P 6= X∗

V , X∗
V

is uncorrupted, m∗ ∈ M, σ∗ ∈ S and π∗ ∈ P. E wins if 〈X∗
P , X∗

V ,m∗, σ∗, π∗〉
is accepted by PVerify, no FakePGen query was made on 〈X∗

P , X∗
V ,m∗, σ∗〉, and

either:

60

4.7 Security of the Concrete Scheme

1. X∗
P is uncorrupted and no PGen query was made on 〈X∗

P , X∗
V ,m∗, σ∗〉, or

2. (m∗, σ∗) /∈ L(X∗
P).

B takes E’s output π∗ where π∗ = 〈w∗, r∗, h∗, d∗〉, and sets M∗ = m∗, σ∗, X∗
P , X∗

V ,

T ∗ = H1(m∗) and σ∗NG = 〈r∗1, h∗, r∗2〉 where

r∗1 = gw∗X∗
V

r∗ mod p, gd∗X∗
P

h∗+w∗ mod p, T ∗d
∗
σ∗h

∗+w∗ mod p

and r∗2 = 〈w∗, r∗, d∗〉.
B outputs M∗, T ∗ and σ∗NG to C. If E satisfied output condition 1, then E never made

any FakePGen or PGen queries on 〈X∗
P , X∗

V ,m∗, σ∗〉. If E satisfied output condition 2

then E never made any FakePGen queries on 〈X∗
P , X∗

V ,m∗, σ∗〉 and B would have output

invalid for any PGen queries on 〈X∗
P , X∗

V ,m∗, σ∗〉 E had made. In either case, B never

made any Sign queries on M∗ = m∗, σ∗, X∗
P , X∗

V and T ∗ = H1(m∗).

The only way that E could detect an inconsistency in the game is if B aborts or if B

incorrectly answers any PGen query. We therefore have to check that B’s simulation of

these queries is indistinguishable from that output by a real challenger.

We notice that any PGen query on 〈XP , XV , m, σ〉 will output invalid if and only if

(m,σ) /∈ L(XP). We therefore need to check that if algorithm NIDV EDL PGen is run

on 〈XP , XV ,m, σ〉 to produce a proof π, then 〈XP , XV ,m, σ, π〉 will be accepted by NIDV

EDL PVerify if and only if (m,σ) ∈ L(XP).

The correctness of the NIDV EDL scheme guarantees that if (m,σ) ∈ L(XP) then

NIDV EDL PVerify(XP , XV ,m, σ, π) will output accept. It is also trivial to verify that if

(m,σ) /∈ L(XP) then NIDV EDL PVerify(XP , XV ,m, σ, π) will output reject. We leave the

details to the reader. Therefore E can detect no inconsistency in B’s simulation of an

NIDV soundness game unless B aborts.

The probability that B does not have to abort, E wins the game, and that either

X∗
V = XJ , or X∗

P = XJ , is η′/ρ, which is non-negligible in security parameter l if η is. In

this case, B would not have had to abort, and B wins the NG unforgeability game with

probability η = η′/ρ making at most µ2 queries to the random oracle H2, and at most

µs = µp + µf Sign queries to C.

Step 2 We now define an algorithm C ′ that replaces B’s challenger C and uses B to

solve the discrete logarithm problem in G. C ′ will simulate the random oracle H2 and

the challenger in an NG unforgeability game with B. C ′’s goal is to solve the discrete

61

4.7 Security of the Concrete Scheme

logarithm problem on input 〈g,X, p, q〉, that is to find x ∈ Zq such that gx = X mod p,

where g is of prime order q modulo prime p and generates group G.

NG Unforgeability Simulation:

C ′ initializes the NG unforgeability game for B as follows. C ′ gives B the public key

X, the public parameters 〈p, q, g〉, descriptions of the spaces PK,SK,M,S,P as they are

defined in NIDV EDL Setup, and access to the random oracle H2.

C ′ now simulates all the queries which B can make as follows:

H2-Queries: B can query the random oracle H2 at any time. C ′ simulates the random

oracle by keeping a list LH2 of tuples 〈stri, ri〉. When the oracle is queried with an

input str ∈ {0, 1}∗, C ′ responds as follows:

1. If the string str is already in LH2 in the tuple 〈str = stri, ri〉, then B outputs

ri.

2. Otherwise B selects a random r ∈ Zq, outputs r and adds 〈str, r〉 to LH2 .

Sign Queries: C ′ will also answer Sign queries made by B. All of B’s queries are on

messages M = m, σ,XP , XV where XP = X or XV = X, and values T ∈ G. C ′

picks random w, r, h ∈ Zq and computes

r1 = gwXr
V mod p, gdXh+w

P mod p, T dσh+w mod p.

C ′ constructs the string str = r1,M , and adds the tuple 〈str, h〉 to LH2 . C ′ then

sets r2 = 〈w, r, d〉 and σNG = 〈r1, h, r2〉 which it outputs to B.

Output: Finally B should output a message M∗ = m∗, σ∗, X∗
P , X∗

V where X∗
P = X or

X∗
V = X, a value T ∗ and an NIDV EDL NG signature σ∗NG = 〈r∗1, h∗, r∗2〉. B wins

the game if 〈M∗, T ∗, σ∗NG〉 is accepted by Verify and no Sign query was previously

made on M∗, T ∗.

Since H2 is a random oracle, C ′ can simulate NIDV EDL NG signatures that are indistin-

guishable from true NIDV EDL NG signatures, so B can detect no inconsistency in the

game.

From Step 1, we know that B that makes at most µ2 queries to the random oracle

H2, at most µs = µp + µf Sign queries, and wins the above game in time at most τ with

non-negligible probability η = η′/ρ where η > 10(µs + 1)(µs + µ2)/2l.

62

4.7 Security of the Concrete Scheme

By Lemma 2.6, (the NG Forking Lemma), C ′ can rewind B (and therefore also E)

with the same random coins and repeat its simulation with a different random oracle H2 so

that B outputs another NG signature σNG = 〈r∗1, h, r2〉 on M∗ = m∗, σ∗, X∗
P , X∗

V , together

with a value T , where h 6= h∗, r2 = 〈w, r, d〉 and

r∗1 = gwX∗
V

r mod p, gdX∗
P

h+w mod p, T dσ∗h+w mod p.

However we know that in Step 1, B was constructed in such a way that T ∗ = H1(m∗)

and T = H1(m∗) where H1 is simulated by B. In each case B is run on the same

random coins and therefore simulates H1 in the same way until the H2 query on r∗1, M
∗ =

m∗, σ∗, X∗
P , X∗

V is made. Therefore since B will always query m∗ on H1 before making the

corresponding H2 query on r∗1,M
∗, we know that T ∗ = T .

We therefore obtain the equations

gw∗X∗
V

r∗ = gwX∗
V

r mod p (4.1)

gd∗X∗
P

(h∗+w∗) = gdX∗
P

(h+w) mod p (4.2)

T ∗d
∗
σ∗(h

∗+w∗) = T ∗dσ∗(h+w) mod p. (4.3)

We now need to distinguish between two cases, depending on whether E wins the

NIDV soundness game (simulated by B) by satisfying output condition 1 or 2. If E wins

the game by satisfying condition 1, then we say that E is a Type-1 adversary, otherwise

we say that E is a Type-2 adversary.

Case 1. We suppose that E is a Type-1 adversary. In this case, X∗
P and X∗

V were

both uncorrupted in the NIDV soundness game, and we could have that X∗
P = X or that

X∗
V = X. We now consider two subcases, depending on whether r∗ 6= r or r∗ = r. If

r∗ 6= r then if X∗
V = X then C ′ can solve (4.1) for the discrete logarithm of X∗

V = X. The

probability that X∗
V = X is 1/2 since XJ = X was chosen randomly from X and we know

that X∗
V = X or X∗

P = X. If r∗ = r, then w∗ = w. If X∗
P = X then since h∗ 6= h we have

that h∗ + w∗ 6= h + w, so C ′ can solve (4.2) for the discrete logarithm of X∗
P = X. The

probability that X∗
P = X is 1/2 since XJ = X was chosen randomly from X and we know

that X∗
V = X or X∗

P = X.

Case 2. We suppose that E is a Type-2 adversary. In this case, we know that X∗
V is

uncorrupted and that (m∗, σ∗) /∈ L(X∗
P). Since X∗

V is uncorrupted we could have that

X∗
V = X. As in Case 1, if r∗ 6= r and X∗

V = X then C ′ can solve (4.1) for the discrete

63

4.7 Security of the Concrete Scheme

logarithm of X∗
V = X. The probability that X∗

V = X is at least 1/2 since XJ = X

was chosen randomly from X and we know that X∗
V = X or X∗

P = X. If r∗ = r, then

w∗ = w. But since h∗ 6= h we can rewrite equations (4.2) and (4.3) as X∗
P = g

d−d∗
h∗−h and

σ∗ = T ∗
d−d∗
h∗−h . But this contradicts our assumption that (m∗, σ∗) /∈ L(X∗

P).

In cases 1 and 2, since the NG Forking Lemma produces a second appropriate signa-

ture with expected time at most τ ′ = 120686µsτ , we find that C ′ can solve the discrete

logarithm problem in time at most τ ′ and with probability at least η/2. If η′ is non-

negligible, then η is also non-negligible, and this contradicts the hardness of the discrete

logarithm problem. Therefore no algorithm B as defined in Step 1 can have non-negligible

probability of winning the NG unforgeability game, and in turn no polynomially bounded

adversary E can have non-negligible probability of winning the soundness game of Section

4.3.3. ¤

4.7.2 Security of the NIDV IDL proof system

Theorem 4.4 The NIDV IDL proof of Section 4.6.4 is correct.

Proof: It is trivial to verify that if NIDV IDL PGen is run on input 〈XP , XV , xP ,m, σ〉
where (m,σ) /∈ L(XP) and produces a proof π = 〈C, w, r, h, d1, d2〉, then NIDV IDL PVerify

on input 〈XP , XV , m, σ, π〉 will output accept. ¤

Theorem 4.5 The NIDV IDL proof of Section 4.6.4 is non-transferable.

Proof: We define algorithm NIDV IDL FakePGen as follows. On input 〈XP , XV , xV ,m, σ′〉,
where XP , XV ∈ PK, XV 6= XP , xV ∈ SK, m ∈ M and σ′ ∈ E , NIDV IDL FakePGen

produces proof π′ ∈ P as follows:

NIDV IDL FakePGen chooses random y′ ∈ Z∗q , and checks that H1(m)y′ 6= σ′. If

H1(m)y′ = σ′ then a new y′ is chosen. The algorithm then chooses random s′, t′, u′, d′1, d
′
2 ∈

Zq and calculates:

C ′ =

(
H1(m)y′

σ′

)t′

mod p

G′ = gd′1X
−d′2
P mod p

D′ = Cs′H1(m)d′1(σ′)−d′2 mod p

c′ = gu′ mod p

h′ = H2(C ′, c′, G′, D′,m, σ′, XP , XV)

64

4.7 Security of the Concrete Scheme

w′ = s′ − h′ mod q

r′ = (u′ − s′ + h′)x−1
V mod q

NIDV IDL FakePGen outputs π′ = 〈C ′, w′, r′, h′, d′1, d
′
2〉. It is easy to check that

〈XP , XV , m, σ′, π′〉 will be accepted by NIDV IDL PVerify. We now show that π′ is in-

distinguishable from any π = 〈C, w, r, h, d1, d2〉 produced by running NIDV IDL PGen on

input 〈XP , XV , xP ,m, σ〉.
Examining proofs π′ and π we find that:

• C and C ′ are both computed as some power of H1(m) multiplied by σ−1 mod p, all

to some random power in Z∗q , and are therefore indistinguishable.

• Since w is chosen randomly from Z∗q , and w′ depends on the random value s′ ∈ Z∗q ,
w and w′ are uniformly distributed in Z∗q and therefore indistinguishable.

• Since r is chosen randomly from Z∗q , and r′ depends on the random value u′ ∈ Z∗q , r

and r′ are uniformly distributed in Z∗q and therefore indistinguishable.

• Since d1 depends on the random value r1 ∈ Z∗q , and d′1 is chosen randomly from Z∗q ,
d1 and d′1 are uniformly distributed in Z∗q and therefore indistinguishable.

• Since d2 depends on the random value r2 ∈ Z∗q , and d′2 is chosen randomly from Z∗q ,
d2 and d′2 are uniformly distributed in Z∗q and therefore indistinguishable.

In proof π (similarly π′), C, w, r, d1 and d2 (similarly C ′w′, r′, d′1 and d′2) are indepen-

dent since each depends on a randomly chosen value (or is randomly chosen itself). Now

h and h′ are both outputs from the same hash function on indistinguishable inputs (if

(m,σ) and (m,σ′) are indistinguishable), therefore h and h′ are indistinguishable, and the

distributions of π and π′ are indistinguishable. ¤
As for the NIDV EDL proof, in order to analyze the soundness of the NIDV IDL proof,

we first need to introduce a related non-generic (NG) signature scheme, which we refer to

as the NIDV IDL NG signature scheme. Our concrete NIDV IDL NG signature scheme is

defined as follows.

• The Setup and KeyGen algorithms are identical to those of the concrete NIDV IDL

scheme except that the hash function H1 is not required.

• The Sign algorithm for some public key X ∈ PK takes as input a message M where

M may be of one of two forms:

65

4.7 Security of the Concrete Scheme

1. M = m,σ,X, XV where (m,σ) /∈ L(X) and XV ∈ PK. The signing algorithm

also takes as input a value T ∈ G and the private key x ∈ SK corresponding to

X. The algorithm runs in an identical way to NIDV IDL PGen(X,XV , x, m, σ)

except that T replaces H1(m) in producing a proof π = 〈C, w, r, h, d1, d2〉. The

algorithm sets r2 = 〈C,w, r, d1, d2〉 and r1 = C, gwXr
V mod p, gd1X−d2

P mod

p, Ch+wT d1σ−d2 mod p, and outputs σNG = 〈r1, h, r2〉.
2. M = m,σ,XP , X where m ∈ M, σ ∈ S and XP ∈ PK. The signing al-

gorithm also takes as input a value T ∈ G and the private key x ∈ SK
corresponding to X. The algorithm runs in an identical way to NIDV IDL

FakePGen(XP , X, x, m, σ) except that T replaces H1(m) in producing a proof

π = 〈C,w, r, h, d1, d2〉. The algorithm sets r2 = 〈C, w, r, d1, d2〉 and r1 =

C, gwXr
V mod p, gd1X−d2

P mod p, Ch+wT d1σ−d2 mod p, and outputs σNG = 〈r1,

h, r2〉.

• The Verify algorithm on input M = m,σ,XP , XV , a value T ∈ G and a signature

σNG = 〈r1, h, r2〉 where XP = X or XV = X and r2 = 〈C,w, r, d1, d2〉, sets π =

〈C,w, r, h, d1, d2〉 and runs in an identical way to NIDV IDL PVerify(XP , XV ,m, σ, π)

except that T replaces H1(m) in the verification process.

Theorem 4.6 The NIDV IDL proof of Section 4.6.4 is sound in the random oracle model

assuming the hardness of the discrete logarithm problem in G.

Proof:

The proof of this theorem is similar to the proof of Theorem 4.3, so we highlight the

areas of the proof that differ, and where the proof is highly duplicated, we leave the details

to the reader.

As before, we suppose that H1 and H2 are random oracles and there exists an algorithm

E that makes at most µi queries to the random oracles Hi, i = {1, 2}, at most µp PGen

and µf FakePGen queries, and wins the soundness game of Section 4.3.3 in time at

most τ with non-negligible probability η′ (in security parameter l) where the number of

participants is bounded by ρ and η′ > 10ρ(µp + µf + 1)(µp + µf + µ2)/2l.

As in the proof of Theorem 4.3 we divide the proof into two steps. In Step 1, we show

how E can be used to construct an algorithm B that makes at most µ2 queries to the

random oracle H2, at most µs = µp+µf Sign queries to its challenger C, and wins the NG

version of the unforgeability game of Section 2.3.1 for the NIDV IDL NG signature scheme

in time at most τ with non-negligible probability η = η′/ρ > 10(µs + 1)(µs + µ2)/2l.

66

4.7 Security of the Concrete Scheme

In Step 2, we then replace C with an algorithm C ′ that uses B to solve the discrete

logarithm problem in G. Step 2 of the proof will make use of Lemma 2.6, the NG Forking

Lemma.

Step 1 We will show that there exists an algorithm B that uses E to forge an NIDV

IDL NG signature with non-negligible probability when interacting with a challenger C in

the NG version of the unforgeability game of Section 2.3.1.

The challenger C initializes the NG unforgeability game for B and gives B the public

key X, the public parameters 〈p, q, g〉, descriptions of the spaces PK,SK,M,S,P, and

access to the random oracle H2.

B can make H2 as well as Sign queries on any message M = m,σ,XP , XV (where

m ∈ M, σ′ ∈ S, XP , XV ∈ PK, and XP = X or XV = X), and a value T ∈ G.

B must eventually output a message M∗, a value T ∗, and an NIDV IDL NG signature

σ∗NG = 〈r∗1, h∗, r∗2〉. B wins the game if 〈M∗, T ∗, σ∗NG〉 is accepted by Verify and no Sign

query was previously made on M∗, T ∗.

In order to win the above game, B in turn simulates an NIDV soundness game for E.

NIDV Soundness Simulation:

B initializes the game for E exactly as in the proof of Theorem 4.3, and answers the

H1, H2 and Corrupt queries exactly as before. The other queries are answered as follows.

EGen Queries: B answers these queries as in the proof of Theorem 4.3, except that in

this case if b = 0 then B outputs a valid signature, otherwise B picks a random

invalid signature and outputs this.

PGen Queries: E can request an NIDV EDL proof for input 〈XP , XV , m, σ〉 where

XP , XV ∈ X , XV 6= XP , m ∈M and σ ∈ S.

B queries m on H1 and receives some H1(m) = gri . B retrieves the value ri from

LH1 and computes σ′ = Xri
P mod p. If σ′ = σ then B outputs invalid.

If σ′ = σ and XP 6= XJ , then B runs NIDV IDL PGen(XP , XV , xP ,m, σ) to produce

a proof π = 〈C, w, r, h, d1, d2〉, and B outputs π to E.

If σ′ = σ and XP = XJ , then B sets M = m,σ,XP , XV and T = H1(m) and makes

a Sign query to C on M and T . C responds with an NIDV IDL NG signature

σNG = 〈r1, h, r2〉 where r2 = 〈C, w, r, d1, d2〉. B sets π = 〈C, w, r, h, d1, d2〉 and

outputs π to E.

67

4.7 Security of the Concrete Scheme

FakePGen Queries: E can request a fake NIDV proof on input 〈XP , XV ,m, σ′〉 where

XP , XV ∈ X , XV 6= XP , m ∈M, and σ′ ∈ S.

If XV 6= XJ then B runs NIDV IDL FakePGen(XP , XV , xV ,m, σ) to produce a proof

π = 〈C, w, r, h, d1, d2〉, and B outputs π to E.

If XV = XJ then B sets M = m,σ,XP , XV and T = H1(m) and makes a Sign query

to C on M and T . C responds with an NIDV IDL NG signature σNG = 〈r1, h, r2〉
where r2 = 〈C,w, r, d1, d2〉. B sets π = 〈C,w, r, h, d1, d2〉 and outputs π to E.

Output: Finally E outputs 〈X∗
P , X∗

V ,m∗, σ∗, π∗〉, where X∗
P , X∗

V ∈ X , X∗
P 6= X∗

V , X∗
V

is uncorrupted, m∗ ∈ M, σ∗ ∈ S and π∗ ∈ P. E wins if 〈X∗
P , X∗

V ,m∗, σ∗, π∗〉 is

accepted by NIDV IDL PVerify, no FakePGen query was made on 〈X∗
P , X∗

V ,m∗, σ∗〉,
and either:

1. X∗
P is uncorrupted and no PGen query was made on 〈X∗

P , X∗
V ,m∗, σ∗〉, or

2. (m∗, σ∗) ∈ L(X∗
P).

B takes E’s output π∗ where π∗ = 〈C∗, w∗, r∗, h∗, d∗1, d
∗
2〉, and sets M∗ = m∗, σ∗, X∗

P , X∗
V ,

T ∗ = H1(m∗) and σ∗NG = 〈r∗1, h∗, r∗2〉 where

r∗1 = C∗, gw∗X∗
V

r∗ mod p, gd∗1X∗
P
−d∗2 mod p, C∗h∗+w∗T ∗d

∗
1σ∗−d∗2 mod p

and r∗2 = 〈C∗, w∗, r∗, d∗1, d
∗
2〉.

B outputs M∗, T ∗ and σ∗NG to C. The rest of Step 1 follows in the same way as in

Step 1 of the proof of Theorem 4.3.

Once again we find that the probability that B does not have to abort, E wins the

game, and that either X∗
V = XJ , or X∗

P = XJ , is η′/ρ, which is non-negligible in security

parameter l if η is. In this case, B would not have had to abort, and B wins the NG

unforgeability game with probability η = η′/ρ making at most µ2 queries to the random

oracle H2, and at most µs = µp + µf Sign queries to C.

Step 2 We now define an algorithm C ′ that replaces B’s challenger C and uses B to

solve the discrete logarithm problem in G. As in the proof of Theorem 4.3, C ′ will simulate

the random oracle H2 and the challenger in an NG unforgeability game with B. C ′’s goal

is to solve the discrete logarithm problem on input 〈g,X, p, q〉, that is to find x ∈ Zq such

that gx = X mod p, where g is of prime order q modulo prime p and generates group G.

NG Unforgeability Simulation:

68

4.7 Security of the Concrete Scheme

The challenger C ′ initializes the NG unforgeability game for B exactly as before,

giving B the public key X, the public parameters 〈p, q, g〉, descriptions of the spaces

PK,SK,M,S,P, and access to the random oracle H2.

C ′ now simulates the challenger exactly as before except for Sign queries which C ′

simulates as follows.

Sign Queries: C ′ will also answer Sign queries made by B. All of B’s queries are on

messages M = m,σ,XP , XV where XP = X or XV = X, and values T ∈ G.

C ′ picks random t, w, r, h, d1, d2 ∈ Zq and computes:

C =
(

Xri
P

σ

)t

mod p

r1 = C, gwXr
V mod p, gd1X−d2

P mod p, Ch+wtd1σ−d2 mod p.

C ′ constructs the string str = r1,M , and adds the tuple 〈str, h〉 to LH2 . r2 =

〈C,w, r, d1, d2〉 and σNG = 〈r1, h, r2〉 which it outputs to B.

Since H2 is a random oracle, C ′ can simulate NIDV IDL NG signatures that are

indistinguishable from true NIDV IDL NG signatures, so B can detect no inconsistency

in the game.

From Step 1, we know that B that makes at most µ2 queries to the random oracle

H2, at most µs = µp + µf Sign queries, and wins the above game in time at most τ with

non-negligible probability η = η′/ρ > 10(µs + 1)(µs + µ2)/2l.

By Lemma 2.6, (the NG Forking Lemma), C ′ can rewind B (and therefore also E)

with the same random coins and repeat its simulation with a different random oracle H2 so

that B outputs another NG signature σNG = 〈r∗1, h, r2〉 on M∗ = m∗, σ∗, X∗
P , X∗

V , together

with a value T , where h 6= h∗, r2 = 〈C∗, w, r, d1, d2〉 and

r∗1 = C∗, gwX∗
V

r mod p, gd1X∗
P
−d2 mod p, ∗Ch+wT d1σ∗−d2 mod p.

By the same argument as in the proof of Theorem 4.3, we know that T ∗ = T , and we

obtain the equations

gw∗X∗
V

r∗ = gwX∗
V

r mod p (4.4)

gd∗1X∗
P
−d∗2 = gd1X∗

P
−d2 mod p (4.5)

C∗h∗+w∗T ∗d
∗
1σ∗−d∗2 = C∗h+wT ∗d1σ∗−d2 mod p. (4.6)

69

4.7 Security of the Concrete Scheme

Once again, we distinguish between two cases, depending on whether E wins the NIDV

soundness game (simulated by B) by satisfying output condition 1 or 2. If E wins the

game by satisfying condition 1, then we say that E is a Type-1 adversary, otherwise we

say that E is a Type-2 adversary.

Case 1. We suppose that E is a Type-1 adversary. In this case, X∗
P and X∗

V were

both uncorrupted in the NIDV soundness game, and we could have that X∗
P = X or that

X∗
V = X. Now if r∗ 6= r then if X∗

V = X then C ′ can solve (4.4) for the discrete logarithm

of X∗
V = X. The probability that X∗

V = X is 1/2 since XJ = X was chosen randomly

from X and we know that X∗
V = X or X∗

P = X. If d2 6= d∗2 and X∗
P = XJ then C ′ can

solve (4.5) for the discrete logarithm of X∗
P = X. The probability that X∗

P = X is 1/2

since XJ = X was chosen randomly from X and we know that X∗
V = X or X∗

P = X.

Alternatively, if r∗ = r and d2 = d∗2, then w = w∗ and d1 = d∗1. However this is impossible

since h 6= h∗.

Case 2. We suppose that E is a Type-2 adversary. In this case, we know that X∗
V is

uncorrupted and that (m∗, σ∗) ∈ L(X∗
P). As in Case 1, if r∗ 6= r and X∗

V = XJ then C ′

can solve (4.4) for the discrete logarithm of X∗
V = X. The probability that X∗

V = X is

at least 1/2 since XJ = X was chosen randomly from X and we know that X∗
V = X or

X∗
P = X. If r = r∗, then w = w∗, and therefore h + w 6= h∗ + w∗ (since h 6= h∗). By

equation (4.6) we find that d1 6= d∗1 or d2 6= d∗2, and by equation (4.4), we find that d1 6= d∗1
and d2 6= d∗2. We can therefore rewrite equations (4.5) and (4.6) as

X∗
P = g

d1−d∗1
d2−d∗2

σ∗ = (T ∗)
d1−d∗1
d2−d∗2 C∗ h+w−h∗−w∗

d2−d∗2

Since C∗ 6= 1 and C∗ is raised to a non-zero power, this contradicts our assumption that

(m∗, σ∗) ∈ L(X∗
P).

In cases 1 and 2, since the NG Forking Lemma produces a second appropriate signa-

ture with expected time at most τ ′ = 120686µsτ , we find that C ′ can solve the discrete

logarithm problem in time at most τ ′ and with probability at least η/2. If η′ is non-

negligible, then η is also non-negligible, and this contradicts the hardness of the discrete

logarithm problem. Therefore no algorithm B as defined in Step 1 can have non-negligible

probability of winning the NG unforgeability game, and in turn no polynomially bounded

adversary E can have non-negligible probability of winning the soundness game of Section

4.3.3.

70

4.7 Security of the Concrete Scheme

¤

4.7.3 Application to the core signature scheme

Since our NIDV EDL and IDL proof systems are secure, they can be composed with

our concrete scheme to form secure NIDV confirmation and denial proofs for the NIDV

undeniable signature scheme. All that remains for the whole NIDV undeniable signature

scheme to be secure is to show that the core signature scheme satisfies the unforgeability

and invisibility properties.

Theorem 4.7 The core signature scheme of Section 4.6.1 is unforgeable in the random

oracle model assuming the hardness of the Computational Diffie-Hellman problem in G.

The proof of Theorem 4.7 is similar to the proof of unforgeability in [92] (corrected in

[91]), although we use a slightly different security model and therefore provide our own

proof of security.

Proof: We suppose that H1 and H2 are random oracles, and suppose there exists an

algorithm E in a game with at most ρ participants that makes at most µi queries to the

random oracles Hi, i = {1, 2}, at most µs USign queries, and at most µc Conf/Deny

queries, and wins the unforgeability game of Section 4.5.1.1 in time at most τ with prob-

ability at least η, where η is non-negligible in security parameter l.

We show how to construct an algorithm B that uses E to solve the computational

Diffie-Hellman problem. B will simulate the random oracles and the challenger C in a

game with E. B’s goal is to solve the computational Diffie-Hellman problem on input

〈g, ga, gb, p, q〉, that is to find gab ∈ Zq, where g is of prime order q modulo prime p.

Simulation: B initializes the game using Setup and the parameters g, p and q. B gives

the parameters 〈g, p, q〉 and the descriptions of the spaces PK,SK,M,S,P to E. B

generates a set of participants U , where |U | = ρ(l) and ρ is a polynomial function of the

security parameter l. For some random participant J , B sets XJ = ga mod p, and for each

I 6= J , B runs KeyGen to generate a private key xI and public key XI . We define the set

of all participants’ public keys to be X . E is given X . In addition, B randomly chooses

bit β ∈ {0, 1} and an integer k ∈ {1, .., µ1}.

H1-Queries: B simulates the random oracle by maintaining a list LH1 of tuples 〈stri, ri〉.
When H1 is queried with an input str ∈ {0, 1}∗, B responds as follows:

71

4.7 Security of the Concrete Scheme

1. If the query str is already in LH1 then it must be contained in some tuple

〈str = stri, ri〉. If this is the kth tuple on the list, then B outputs (gb)ri mod p.

Otherwise B outputs gri mod p.

2. If str is not already in LH1 , B selects a random r ∈ Zq. If str is the kth distinct

H1 query then B outputs (gb)r mod p and adds 〈str, r〉 to LH1 . Otherwise B

outputs gr mod p and adds 〈str, r〉 to LH1 .

H2-Queries: B simulates the H2 oracle in the same way as the H2 oracle in the proof of

Theorem 4.3.

USign Queries: E can request an undeniable signature for input 〈XI ,m〉 where XI ∈ X ,

and m ∈M. If XI 6= XJ then B runs USign(xI , m) to produce a signature σ ∈ S. If

XI = XJ then B queries m on the H1 oracle and receives some response gri . If the

tuple on LH1 containing m is the kth tuple, then B aborts. Otherwise B retrieves

the value ri from the tuple containing m on LH1 and computes σ = Xri
I mod p. B

outputs σ.

Conf/Deny Queries: E can request a confirmation or denial proof for input 〈XP , XV ,m,

σ〉 where XP , XV ∈ X , XV 6= XP , m ∈ M and σ ∈ S. B keeps a list LCD of all

distinct Conf/Deny queries that E makes.

Case 1 If XP 6= XJ then C takes the private key xP corresponding to XP and

proceeds as follows. C runs ConfGen(XP , XV , xP ,m, σ) to produce an NIDV proof

πC ∈ PC . If ConfVerify(XP , XV ,m, σ, πC) returns accept, then C outputs πC . Other-

wise C runs DenyGen(XP , XV , xP ,m, σ) to produce an NIDV proof πD ∈ PD which

it outputs.

Case 2 If XP = XJ then B queries m on the H1 oracle. If the tuple 〈m, ri〉 on LH1

containing m is not the kth tuple, B retrieves the value ri from the tuple on LH1

and computes σ′ = Xri
I mod p.

Case 2a If σ′ = σ then B simulates ConfGen by simulating an NIDV EDL proof as

follows. B picks random w, r, t, h ∈ Zq and computes:

c = gwXr
V mod p

G = gdX
(h+w)
P mod p

D = H1(m)dσ(h+w) mod p

If the H2 oracle has previously been queried on input c,G, D,m, σ,XP , XV , then B

72

4.7 Security of the Concrete Scheme

starts again by picking new w, r, t, h. Otherwise B sets str = c,G, D,m, σ,XP , XV ,

adds the tuple 〈str, h〉 to LH2 , and outputs πC = 〈w, r, h, d〉.
Case 2b If XP = XJ , and σ′ 6= σ or 〈m, ri〉 is the kth tuple on LH1 , then B proceeds

as follows.

If 〈m, ri〉 is the kth tuple on LH1 , then B selects some random value y ∈ Z∗q and

computes σ′ = gbriy = H1(m)y mod p. If σ′ = σ, then B starts again by picking a

new y.

Now B has some value σ′ 6= σ (generated at the beginning of Case 2 or in Case 2b)

and B simulates DenyGen by simulating an NIDV IDL proof as follows. B picks

random t, w, r, h, d1, d2 ∈ Zq and computes:

C = (
σ′

σ
)t mod p

c = gwXr
V mod p

G = gd1X−d2
P mod p

D = Ch+wH1(m)d1σ−d2 mod p

If the H2 oracle has previously been queried on input C, c,G, D,m, σ,XP , XV , then

B starts the DenyGen simulation again by picking new t, w, r, h, d1, d2. Otherwise

B sets str = C, c,G, D, m, σ,XP , XV , adds the tuple 〈str, h〉 to LH2 , and outputs

πD = 〈C, w, r, h, d1, d2〉.
A denial proof may be incorrect if XP = XJ and 〈m, ri〉 is the kth tuple on LH1 .

However we deal with this possible inconsistency later in the proof.

FakeConf Queries: E can request a fake confirmation proof for input 〈XP , XV ,m, σ〉
where XP , XV ∈ X , XV 6= XP , m ∈ M and σ ∈ S. If XV 6= XJ then B runs

FakePGen of the NIDV EDL proof system on input 〈XP , XV , xV , m, σ〉 to generate a

fake NIDV EDL proof π′C which B outputs. If XV = XJ then B simulates an NIDV

EDL proof as follows. B picks random w, r, t, h ∈ Zq and computes:

c = gwXr
V mod p

G = gdX
(h+w)
P mod p

D = H1(m)dσ(h+w) mod p

If the H2 oracle has previously been queried on input c,G, D,m, σ,XP , XV , then B

starts again by picking new w, r, t, h. Otherwise B sets str = c,G, D,m, σ,XP , XV ,

adds the tuple 〈str, h〉 to LH2 , and outputs π′C = 〈w, r, h, d〉.

73

4.7 Security of the Concrete Scheme

FakeDeny Queries: E can request a fake denial proof for input 〈XP , XV ,m, σ〉 where

XP , XV ∈ X , XV 6= XP , m ∈ M and σ ∈ S. If XV 6= XJ then B runs FakePGen of

the NIDV IDL proof system on input 〈XP , XV , xV ,m, σ〉 to generate a fake NIDV

IDL proof π′D which B outputs. If XP = XJ then B simulates an NIDV IDL proof

as follows. B picks random y, t, w, r, h, d1, d2 ∈ Zq and computes:

C =
(

H1(m)y

σ

)t

mod p

c = gwXr
V mod p

G = gd1X−d2
P mod p

D = Ch+wH1(m)d1σ−d2 mod p

If C = 1 or H2 has previously been queried on input C, c,G, D,m, σ,XP , XV ,

then B starts again by picking new y, t, w, r, h, d1, d2. Otherwise B sets str =

C, c, G,D, m, σ,

XP , XV , adds the tuple 〈str, h〉 to LH2 , and outputs π′D = 〈C, w, r, h, d1, d2〉.

Corrupt Queries: E can request the private key corresponding to any public key XI ∈
X . If XI = XJ , then B aborts and terminates E. Otherwise B returns the appro-

priate private key xI .

Output: Finally E produces X∗
I ∈ X , m∗ ∈M and σ∗ ∈ S, where X∗

I is uncorrupted and

no USign query was previously made on 〈X∗
I ,m∗〉. E wins the game if (m∗, σ∗) ∈

L(X∗
I).

We know that E produces a valid forgery on some message m with probability at least

η and in time at most τ . Unless E queries the random oracle H1 on m at some point

in the game, then E’s advantage is negligible. Since E’s probability of winning the game

is non-negligible, we assume that E queries H1 on m at some point during the game.

Therefore the probability that E produces a valid forgery σ′ for public key XJ and on

message m = m′ where m′ is in the kth tuple (say 〈m′, r〉) on LH1 , is at least η/(µ1ρ).

From now on we assume that E has produced a valid forgery σ′ for XJ on m′ (this

occurs with non-negligible probability at least η/(µ1ρ) and in time τ).

If β = 0 then B outputs (σ∗)r−1
where the tuple 〈m∗ = m′, r〉 on LH1 is the kth tuple.

If β = 1 then B randomly picks a Conf/Deny query made by E of the form 〈m′, σ〉 and

outputs σr−1
where 〈m′, r〉 is the kth tuple on LH1 . If no such Conf/Deny query was

made by E, then B proceeds as if β = 0.

74

4.7 Security of the Concrete Scheme

If at any stage in the game, E made a Conf/Deny query on input 〈XJ , XV ,m′, σ′〉 for

any XV ∈ X , we say that a critical Conf/Deny query occurred. If a critical Conf/Deny

query occurred, then B would have responded incorrectly, and from this point onwards E’s

behaviour is undefined. If no critical Conf/Deny query occurred, then no inconsistency

could have arisen in the way B answered the Conf/Deny queries, so E’s view of the game

would be as in a real game.

Case 1: We assume that no critical Conf/Deny query occurred, and therefore no incon-

sistency in the way B responded to Conf/Deny queries could have occurred. In this case,

with probability at least η/(µ1ρ), E’s output would have been 〈X∗
I ,m∗, σ∗〉 = 〈XJ ,m′, σ′〉.

In addition, E would not have made a USign query on XJ ,m′, and would not have made

a Corrupt query on XJ , so B would have not have aborted during the simulation.

In this case, B solves the CDH problem if β = 0 and 〈X∗
I ,m∗, σ∗〉 = 〈XJ , m′, σ′〉, which

occurs with probability at least η/(2µ1ρ) and in time τ .

Case 2: We assume that at some point a critical Conf/Deny query occurred, resulting

in an inconsistency in the way B responded to Conf/Deny queries arose. From this

point onwards E’s behavior is undefined, and we can say nothing about whether E’s

output 〈m∗, σ∗〉 is valid or not. However we do know that in this case, the valid message

signature pair 〈m′, σ′〉 for XJ was queried on Conf/Deny.

In this case, B solves the CDH problem if β = 1, E has produced a valid forgery σ′ for

XJ on m′, and the random Conf/Deny query 〈m′, σ〉 is in fact the critical query 〈m′, σ′〉
on XJ , which occurs with probability at least η/(2µ1ρµc) and in time τ . The only problem

is that if an inconsistency arises, then E may not terminate within time τ . Therefore if

E does not terminate in time τ , then B terminates E and assumes that a critical query

did occur (and so proceeds as if β = 0).

From cases 1 and 2, we can see that B solves the CDH problem in time τ with

probability at least

γ = min{η/(2µ1ρ), η/(2µ1ρµc)} = η/(2µ1ρµc).

This is non-negligible, contradicting the hardness of the CDH problem.

¤

Theorem 4.8 The core signature scheme of Section 4.6.1 is invisible in the random oracle

model assuming the hardness of the Decision Diffie-Hellman problem in G.

75

4.7 Security of the Concrete Scheme

Proof: We suppose that H1 and H2 are random oracles, and suppose there exists an

algorithm E in a game with at most ρ participants that makes at most µi queries to the

random oracles Hi, i = {1, 2}, at most µs USign queries, and wins the invisibility game

of Section 4.5.1.2 in time at most τ with probability at least η, where η is non-negligible

in security parameter l.

We show how to construct an algorithm B that uses E to solve the Decision Diffie-

Hellman problem. B will simulate the random oracles and the challenger C in a game with

E. B’s goal is to solve the Decision Diffie-Hellman problem on input 〈g, ga, gb, gc, p, q〉,
that is to decide whether ab = c mod q, where g is of prime order q modulo prime p. If

ab = c then B should output 1 otherwise B should output 0.

Simulation: B initializes the game as in the proof of Theorem 4.7, except that in this

case B is not required to pick a random bit b and integer k.

Phase 1: B simulates the random oracles H1 and H2 and answers all USign, Conf/Deny,

FakeConf, FakeDeny and Corrupt queries exactly as in the proof of Theorem 4.7.

Once again, B may answer a Conf/Deny query incorrectly, but we deal with this

possible inconsistency later in the proof.

Challenge: Finally, E outputs 〈X∗
I ,m∗〉, where X∗

I is uncorrupted and E made no USign

query on 〈X∗
I , m∗〉 in Phase 1. B queries m∗ on H1 and retrieves the tuple 〈m∗, r〉 on

LH1 . If 〈m∗, r〉 is not the kth tuple on LH1 , or X∗
I 6= XJ , then B aborts. Otherwise

B outputs σ∗ = (gc)r = gcr mod p.

Phase 2: E can continue to make USign, Conf/Deny, FakeConf, FakeDeny and

Corrupt queries, and these are answered as in Phase 1. But E cannot make a

Conf/Deny query on 〈X∗
I , XV , m∗, σ∗〉 for any XV ∈ X , and E cannot make a

USign query on 〈X∗
I ,m∗〉.

Output: Finally E outputs a bit β.

B outputs β as its solution to the DDH problem on 〈g, ga, gb, gc, p, q〉.
Unless E queries the random oracle H1 on m∗ at some point in the game, then E’s

advantage is negligible. Since E’s probability of winning the game is non-negligible, we

assume that E queries H1 on m∗ at some point during the game.

We note that if ab = c mod q then σ∗ is a valid signature for X∗
I , and if ab 6= c mod q,

then σ∗ is simply a random element from the signature space. Therefore B correctly

76

4.8 DV Signatures

answers E’s challenge.

We note that an inconsistency in B’s simulation of the game could arise if B answers

a Conf/Deny query on input 〈X∗
I , XV ,m∗, σ〉 where X∗

I = XJ , the tuple 〈m∗, r〉 is the

kth tuple on LH1 , and (m∗, σ) ∈ L(X∗
I). In this case B responds incorrectly with a

denial (NIDV IDL) proof. But in this case no previous USign query could have been

made on 〈X∗
I ,m∗〉, since otherwise B would have aborted. So if (m∗, σ) ∈ L(X∗

I), then

E has successfully forged a signature on m. But by Theorem 4.7, the NIDV undeniable

signature scheme is unforgeable. Therefore such an inconsistency only arises with negligible

probability.

The probability that B does not abort is therefore at least 1/(ρµ1), so B solves the

DDH problem in time τ and with probability η/(ρµ1) which is non-negligible, contradicting

the hardness of the DDH problem. ¤

Theorem 4.9 The NIDV undeniable signature scheme of Section 4.6.1 is secure.

Proof: This result follows immediately from the security of the NIDV EDL (confirmation)

proof and NIDV IDL (denial) proof with which the core signature scheme is composed, as

well as Theorems 4.7 and 4.8. ¤
Alternative constructions for NIDV EDL and IDL proofs may be possible. For example,

it may be the case that the techniques of [46] could yield more general constructions of

such NIDV proofs, although we believe that such general constructions are unlikely to be

more efficient than the concrete examples presented here.

4.8 DV Signatures

We present a formal definition for DV signature schemes. The definition is a mixture of the

definition of NIDV proofs from Section 4.2 and the definition of two-party ring signature

schemes from Section 3.3.

Definition 4.7 A DV signature scheme is defined via the following algorithms:

Setup(l): A probabilistic algorithm which takes a security parameter l as input and returns

the system parameters params. Amongst the public parameters are descriptions of

the following spaces: a public key space PK, a private key space SK, a message

space M and a signature space S.

77

4.9 Security for DV Signatures

KeyGen(params): A probabilistic algorithm which which takes as input the system pa-

rameters params and outputs a public key X ∈ PK and a corresponding private

key x ∈ SK.

DVSign(XS , XV , xS ,m): A (possibly probabilistic) signature generation algorithm which

takes as input the signer’s public key XS ∈ PK, and corresponding private key

xS ∈ SK, the designated verifier’s public key XV ∈ PK, XV 6= XS , and a message

m ∈M, and outputs a signature σ ∈ S.

DVVerify(XS , XV , m, σ): A verification algorithm which takes as input the signer’s public

key XS ∈ PK, the designated verifier’s public key XV ∈ PK, XS 6= XV , a signature

σ ∈ S and a message m ∈M, and outputs either accept or reject.

We note that some definitions of DV signatures [77, 98] include an algorithm Simulate

which describes how a designated verifier may simulate a DV signature produced by a

signer. However, as for our definition of NIDV proofs, we require the existence of such an

algorithm in the definition of non-transferability, and therefore consider this algorithm to

be necessary for the scheme’s security, rather than part of the scheme’s formal definition.

4.9 Security for DV Signatures

As for the formal definition of a DV signature scheme, we derive the notions of security

for DV signatures from the security notions of NIDV proofs presented in Section 4.3

and the security notions for ring signatures presented in Section 3.4. We say that a DV

signature scheme is secure if it satisfies the notions of correctness, non-transferability and

unforgeability. These are defined as follows.

4.9.1 Correctness

A DV signature scheme is correct if when DVSign is run on any input 〈XS , XV , xS ,m〉 and

outputs a signature σ, then DVVerify on input 〈XS , XV ,m, σ〉 outputs accept.

4.9.2 Non-transferability

We say that a DV signature scheme is non-transferable if there exists a polynomial time

algorithm FakeDVSign that on input a tuple 〈XS , XV , xV ,m〉, where XS is the public key

of the signer, XV 6= XS is the public key of the designated verifier, xV is the private

key of the designated verifier, and m is a message, produces a signature σ′ such that

78

4.9 Security for DV Signatures

〈XS , XV ,m, σ′〉 is accepted by DVVerify and the distributions of signatures σ′ generated

by FakeDVSign are polynomially indistinguishable from those of signatures σ produced by

DVSign when run on input 〈XS , XV , xS , m〉, even if the private keys xS and xV are known.

4.9.3 Unforgeability

Unforgeability of a DV signature scheme is defined via the following game between a

challenger C and an adversary E:

Initialize: C firstly runs Setup for a given security parameter l to obtain the public

parameters params. C runs KeyGen to generate the public and private keys Xi and

xi for each participant, where the number of participants is bounded by n, where n

is a polynomial function of l. We define the set of all participants’ public keys to be

X . E is given params and X while C retains the private keys.

E can make the following queries to the challenger C:

DVSign Queries: E can request a DV signature on input 〈XS , XV ,m〉 where XS , XV ∈
X , XV 6= XS , and m ∈ M. C runs DVSign(XS , XV , xS ,m) to produce a signature

σ which it outputs.

FakeDVSign Queries: E can request a fake DV signature on input 〈XS , XV ,m〉 where

XS , XV ∈ X , XV 6= XS , and m ∈ M. C runs FakeDVSign as defined in the non-

transferability game of Section 4.9.2 on input 〈XS , XV , xV ,m〉 to produce a signature

σ′ which it outputs.

Corrupt Queries: E can request the private key corresponding to any public key Xi ∈
X . C outputs the corresponding private key xi.

Output: Finally E outputs 〈X∗
S , X∗

V ,m∗, σ∗〉, where X∗
S , X∗

V ∈ X , X∗
V 6= X∗

S , m∗ ∈ M
and σ∗ ∈ S. E wins the game if 〈X∗

S , X∗
V ,m∗, σ∗〉 is accepted by DVVerify, no

DVSign query was made on 〈X∗
S , X∗

V ,m∗〉, no FakeDVSign query was made on

〈X∗
S , X∗

V ,m∗〉, and neither X∗
S nor X∗

V have been corrupted.

Definition 4.8 We say that a DV signature scheme is unforgeable if the probability of

success of any polynomially bounded adversary in the above game is negligible (as a

function of the security parameter l).

79

4.9 Security for DV Signatures

4.9.4 Notes on the Security Definitions for DV Signatures

Non-transferability: As we mentioned earlier, the algorithm FakeDVSign corresponds

to the Simulate algorithm that other authors choose to include as part of the for-

mal definition of DV signatures. We choose to define such an algorithm as part of

the security definition of non-transferability. We note that our definition of non-

transferability does not restrict a distinguisher’s access to the private keys xS and

xV , so the signatures should be indistinguishable even with knowledge of the private

keys.

Non-transferability of DV signatures is similar to the anonymity property of ring

signatures although there are some subtle differences. The definition of ring signa-

tures automatically implies that all ring members can create valid ring signatures,

and anonymity simply guarantees that these signatures are indistinguishable, hence

concealing the identity of the true signer. However the definition of a DV signature

scheme does not guarantee the existence of a FakeDVSign algorithm. Instead, this is

guaranteed by the definition of non-transferability. In addition, non-transferability

guarantees indistinguishability between signatures created using FakeDVSign and

signatures created using DVSign.

FakeDVSign queries: The existence of FakeDVSign from Section 4.9.2 enables the chal-

lenger in the game of unforgeability to answer FakeDVSign queries. We consider

it important to model such queries for NIDV undeniable signatures (as in the case

of NIDV proofs) since an adversary may have access to such “fake” DV signatures

that are produced by dishonest verifiers using FakeDVSign.

4.9.5 Comparison to Other Work

The only other work that contains formal security definitions for DV signatures is by

Lipmaa et al. [77]. Therefore we compare our security model to theirs.

Lipmaa et al. also define the notions of correctness, non-transferability and unforge-

ability. These definitions are similar to ours although their models are not fully multiparty

since they only model a single signer interacting with a single designated verifier. By con-

trast, we model a group of interacting participants where each participant can assume the

role of signer or designated verifier at different times.

As in many papers on DV signatures, Lipmaa et al. include a Simulate algorithm as part

of their definition. Their definition of non-transferability is therefore only concerned with

80

4.10 Concrete DV Signature Schemes

indistinguishability of signatures generated by DVSign and Simulate. However their model

of unforgeability does grant the adversary access to signatures generated by Simulate,

whereas we permit the adversary to make FakeDVSign queries.

Lipmaa et al. go on to discuss two other security properties for DV signatures, which

they call non-delegatability and non-disavowability.

Informally, a DV signature is delegatable if a signer S can, without disclosing his

private key xS , delegate her signing rights to another entity. For example, S may be

able to disclose some function f(xS) from which it is infeasible to determine xS , but

with which an entity can create valid DV signatures for S. This is a valid concern for

all signature schemes since if a signature is delegatable, a verifier can no longer be sure

that the signature was created by the real signer. However it is unclear how one would

model such an attack. Lipmaa et al. propose a definition for non-delegatability which

involves black-box knowledge extractors, although they do not clarify exactly what access

the adversary has to private keys (or functions of private keys). Moreover, in their proof

of non-delegatability for a concrete scheme, the adversary appears to have the same oracle

access and the same objective as in the unforgeability game, implying that unforgeability

is in fact equivalent to non-delegatability. We do not consider non-delegatability in our

model of security.

Lipmaa et al. call a DV signature scheme non-disavowable if neither the signer nor the

designated verifier can prove to a third party (even if they cooperate) which of them really

created a DV signature. Our definition of non-transferability implies non-disavowability

since we require that signatures created by DVSign and FakeDVSign are indistinguishable,

even if the private keys of the signer and designated verifier are known.

4.10 Concrete DV Signature Schemes

4.10.1 DV Signatures from Ring Signatures

As mentioned earlier, a DV signature scheme may be constructed from a 2-party ring

signature scheme. We refer the reader back to Chapter 3 where we defined ring signature

schemes and their security. We assume that we have a non-separable ring signature scheme

(e.g. the concrete scheme presented in Section 3.5) which has explicit Setup and KeyGen

algorithms.

Theorem 4.10 A secure DV signature scheme may be constructed from a secure non-

separable 2-party ring signature scheme.

81

4.10 Concrete DV Signature Schemes

Proof: We provide a sketch of the proof of this theorem. We first show how a DV signature

scheme can be constructed from a secure 2-party ring signature scheme. We then discuss

how the security of the ring signature scheme ensures that the resulting DV signature

scheme is also secure.

The DV signature Setup and KeyGen algorithms are identical to those of the ring

signature scheme. Suppose we have a signer S and a designated verifier V with public and

private key pairs 〈XS , xS〉 and 〈XV , xV 〉 respectively. We relabel the key pairs of S and

V as 〈X1, x1〉 and 〈X2, x2〉 respectively, and set the ring R = {X1, X2}. Now DVSign and

DVVerify are defined as follows.

• DVSign(XS , XV , xS ,m) is defined by running RingSign(m, R, 1, x1), and

• DVVerify(XS , XV ,m, σ) is defined by running RingVerify(m,R, σ).

It is easy to see that the correctness of the ring signature scheme implies correct-

ness of the DV signature scheme. In order to show that the DV signature scheme is

non-transferable, we must define a suitable FakeDVSign. This may be done by letting

FakeDVSign be defined as running RingSign(m,R, 2, x2). It is clear that signatures gen-

erated by FakeDVSign will be accepted by DVVerify. It is now easy to verify that the

anonymity of the underlying ring signature scheme ensures that the DV signature scheme

is non-transferable. It remains to show that the DV scheme is unforgeable.

We notice that the unforgeability games for ring signatures and DV signatures are

identical except for the FakeDVSign queries in the game for DV signatures. However

since FakeDVSign queries are answered by running FakeDVSign, such queries correspond

exactly to RingSign queries for R with sig = 2 which are allowed in the unforgeability

game for ring signatures. Therefore all queries that an adversary in the DV signature

unforgeability game could ask correspond to queries in the ring signature unforgeability

game, so the unforgeability of the ring signature scheme implies unforgeability of the DV

signature scheme.

¤
We note that it is also possible to construct a secure DV signature scheme from a

separable 2-party ring signature scheme, and in this case the DV signature scheme is also

separable.

82

4.10 Concrete DV Signature Schemes

4.10.2 DV Signatures from NIDV Undeniable Signatures

It is also possible to construct a DV signature scheme from an NIDV undeniable signature

scheme. In this case, the DV signature Setup and KeyGen algorithms are identical to those

of the NIDV undeniable signature scheme. Suppose we have a signer S and a designated

verifier V with public and private key pairs 〈XS , xS〉 and 〈XV , xV 〉 respectively. Now

DVSign and DVVerify are defined as follows.

• DVSign(XS , XV , xS ,m) is defined by running USign(xS ,m) to produce an undeniable

signature σ, and then ConfGen(XS , XV , xS ,m, σ) to produce an NIDV proof π. The

output is 〈σ, π〉

• DVVerify(XS , XV ,m, 〈σ, π〉) is defined by running ConfVerify(XS , XV ,m, σ, π).

As in Section 4.10.1, correctness is easy to verify. It can also be shown that the

DV signature scheme is unforgeable if the NIDV undeniable signature scheme is secure.

However the DV signature scheme does not satisfy the definition of non-transferability.

This is because, given a DV signature 〈σ, π〉 output by the scheme defined above, σ is an

undeniable signature for the signer with public key XS , so the signer can distinguish this

from a random element in the signature space.

We could weaken the definition of non-transferability for DV signatures to say that

the distributions of signatures produced by FakeDVSign should be polynomially indistin-

guishable from the distributions of signatures produced by DVSign without knowledge of

the signer’s private key. In this case, by letting FakeDVSign be defined by running the

FakePGen algorithm corresponding to ConfGen, it is possible to show that the DV signature

scheme defined above satisfies the weaker notion of non-transferability.

4.10.3 A Concrete DV Signature Scheme from an NIDV EDL Proof

Instead of trying to construct a DV signature scheme directly from an NIDV undeniable

signature scheme, it may be possible to modify the NIDV proof system itself to obtain a

DV signature scheme that is fully secure.

As an example, we now show how the NIDV EDL proof of Section 4.6.3 can be con-

verted into a DV signature scheme. The DV signature scheme is defined by the following

algorithms.

Setup(l): For some security parameter l, let p and q be large primes, where q|(p − 1).

Let G be the multiplicative subgroup of Z∗p of order q and let g be a generator of

83

4.10 Concrete DV Signature Schemes

G. We also assume that H : {0, 1}∗ → Zq is a cryptographic hash function. We

set PK = G, SK = Z∗q , M = {0, 1}∗ and S = Z4
q . The public parameters params

include 〈p, q, g, H〉 as well as the descriptions of the spaces PK,SK,M and S.

KeyGen(params): To set up a user I’s public and private keys, the private key xI is chosen

at random from Z∗q , and the public key is XI = gxI mod p.

DVSign(XP , XV , xP ,m): On input XP , XV ∈ PK, XV 6= XP , xP ∈ SK, and m ∈M, the

algorithm picks random w, r, t ∈ Zq and computes:

c = gwXr
V mod p

G = gt mod p

h = H2(c,G, m, XP , XV)

d = t− xP (h + w) mod q

The algorithm outputs σ = 〈w, r, h, d〉.

DVVerify(XP , XV ,m, σ): On input XP , XV ∈ PK, XV 6= XP , message m ∈ M, and

signature σ = 〈w, r, h, d〉 ∈ S, the algorithm computes:

c = gwXr
V mod p

G = gdX
(h+w)
P mod p

and verifies that h = H2(c,G, m, XP , XV). If the last equation holds, then the

algorithm outputs accept, otherwise it outputs reject.

4.10.4 Security of our Concrete DV Signature Scheme

We now present some security results for the concrete DV signature scheme. Most of the

security results follow from the security results for the NIDV EDL proof in Section 4.7.1

with some minor modifications.

Theorem 4.11 The DV signature scheme of Section 4.10.3 is correct.

Proof: It is trivial to verify that signatures generated by DVSign will be accepted by

DVVerify.

¤

Theorem 4.12 The DV signature scheme of Section 4.10.3 is non-transferable.

84

4.10 Concrete DV Signature Schemes

Proof: FakeDVSign is defined in an almost identical way to the way NIDV EDL FakePGen

is defined in the proof of Theorem 4.2. On input 〈XP , XV , xV ,m〉, where XP , XV ∈ PK,

XV 6= XP , xV ∈ SK, m ∈M, FakeDVSign produces a σ′ ∈ S as follows.

FakeDVSign chooses random d′, α′, β′ ∈ Zq and calculates:

c′ = gα′ mod p

G′ = gd′X−β′
P mod p

h′ = H2(c′, G′, m,XP , XV)

w′ = β′ − h′ mod q

r′ = (α′ − w′)x−1
V mod q

FakeDVSign outputs σ′ = 〈w′, r′, h′, d′〉. As in the proof of Theorem 4.2, it is easy to

verify that that 〈XP , XV ,m, σ′〉 will be accepted by DVVerify and that σ′ is indistinguish-

able from any σ produced by running DVSign on input 〈XP , XV , xP ,m〉. ¤
In order to analyze the unforgeability of our DV signature scheme, we first need to

introduce a related generic signature scheme, which we call the GDV signature scheme.

Our concrete GDV signature scheme is defined as follows.

• The Setup and KeyGen algorithms are identical to those of the concrete DV signature

scheme.

• The Sign algorithm for a public key X ∈ PK takes as input a message M =

m,XP , XV where m ∈ M, XV ∈ PK, XP = X or XV = X, and the private

key x ∈ SK corresponding to X. If XP = X then the algorithm runs in an iden-

tical way to DVSign(X, XV , x, m) to produce a DV signature σ = 〈w, r, h, d〉. If

XV = X then the algorithm runs in an identical way to FakeDVSign(XP , X, x, m)

to produce a DV signature σ = 〈w, r, h, d〉. The algorithm sets r2 = 〈w, r, d〉 and

r1 = gwXr
V mod p, gdXh+w

P mod p, and outputs σG = 〈r1, h, r2〉.

• The Verify algorithm on input M = m,σ,XP , XV , where XP = X or XV = X, and

a signature σG = 〈r1, h, r2〉 where r2 = 〈w, r, d〉, sets σ = 〈w, r, h, d〉 and runs in an

identical way to DVVerify(XP , XV , xP ,m, σ).

Theorem 4.13 The DV signature scheme of Section 4.10.3 is unforgeable in the random

oracle model assuming the hardness of the discrete logarithm problem in G.

Proof:

85

4.10 Concrete DV Signature Schemes

We suppose that H2 is a random oracle and there exists a polynomial time algorithm E

that makes at most µ2 queries to the random oracle H2, at most µs PGen and FakePGen

queries, and wins the unforgeability game of Section 4.9.3 in time at most τ with non-

negligible probability η′ (in security parameter l) where the number of participants is

bounded by ρ and η′ > 5ρ(µs + 1)(µs + µ2)/2l.

As in the proof of Theorem 4.3, we divide the proof into two steps. In Step 1, we show

how E can be used to construct an algorithm B that makes at most µ2 queries to the

random oracle H2, at most µs Sign queries to its challenger C, and wins the unforgeability

game of Section 2.3.1 for the GDV signature scheme in time at most τ with non-negligible

probability η = 2η′/ρ > 10(µs + 1)(µs + µ2)/2l.

In Step 2, we then replace C with an algorithm C ′ that uses B to solve the discrete

logarithm problem in G. Step 2 of the proof will make use of Lemma 2.5, the Forking

Lemma.

Step 1 We will show that there exists an algorithm B that uses E to forge a GDV

signature with non-negligible probability when interacting with a challenger C in the

unforgeability game of Section 2.3.1.

The challenger C initializes the unforgeability game for B and gives B the public key

X, the public parameters 〈p, q, g〉, descriptions of the spaces PK,SK,M,S,P, and access

to the random oracle H2.

B can make H2 as well as Sign queries on any message M = m,σ,XP , XV (where

m ∈ M, σ′ ∈ S, XP , XV ∈ PK and XP = X or XV = X). B must eventually output

a message M∗ and a GDV signature σ∗G = 〈r∗1, h∗, r∗2〉. B wins the game if 〈M∗, σ∗G〉 is

accepted by Verify and no Sign query was previously made on M∗.

In order to win the above game, B in turn simulates an DV signature unforgeability

game for E.

DV Signature Unforgeability Simulation:

B gives the parameters 〈g, p, q〉 and the descriptions of the spaces PK,SK,M,S to E.

B generates a set of participants U , where |U | = ρ(l) and ρ is a polynomial function of

the security parameter l. For some random participant J , B sets XJ = X, and for each

I 6= J , B runs KeyGen to generate a private key xI and public key XI . We define the set

of all participants’ public keys to be X . E is given X .

B now simulates the challenger by simulating all the queries which E can make as

follows:

86

4.10 Concrete DV Signature Schemes

H2-Queries: E can query any string str on the H2 oracle. B simulates the H2 oracle by

passing all H2 queries to C and passing C’s response back to E.

DVSign Queries: E can request a DV signature for input 〈XP , XV ,m〉 where XP , XV ∈
X , XV 6= XP and m ∈M.

If XP = XJ then B sets M = m,XP , XV and makes a Sign query to C on M .

C responds with a generic signature σG = 〈r1, h, r2〉 where r2 = 〈w, r, d〉. B sets

σ = 〈w, r, h, d〉 and outputs σ to E.

If XP 6= XJ then B runs DVSign(XP , XV , xP ,m) to produce a DV signature σ which

B outputs to E.

FakeDVSign Queries: E can request a fake DV signature on input 〈XP , XV ,m〉 where

XP , XV ∈ X , XV 6= XP and m ∈M.

If XV = XJ then B sets M = m,XP , XV and makes a Sign query to C on M .

C responds with a generic signature σG = 〈r1, h, r2〉 where r2 = 〈w, r, d〉. B sets

σ = 〈w, r, h, d〉 and outputs σ to E.

If XV 6= XJ then B runs FakeDVSign(XP , XV , xV ,m) to produce a DV signature σ

which B outputs to E.

Corrupt Queries: E can request the private key corresponding to any public key XI ∈
X . If XI = XJ , then B aborts and terminates E. Otherwise B returns the appro-

priate private key xI .

Output: On termination, E outputs 〈X∗
P , X∗

V ,m∗, σ∗〉, where X∗
P , X∗

V ∈ X , X∗
V 6= X∗

P ,

m∗ ∈ M, σ∗ ∈ S, and X∗
P and X∗

V are uncorrupted. E wins if 〈X∗
P , X∗

V ,m∗, σ∗〉
is accepted by DVVerify, no DVSign query was made on 〈X∗

P , X∗
V ,m∗〉 and no

FakeDVSign query was made on 〈X∗
P , X∗

V ,m∗〉.

B takes E’s output σ∗ where σ∗ = 〈w∗, r∗, h∗, d∗〉, and sets M∗ = m∗, X∗
P , X∗

V and

σ∗G = 〈r∗1, h∗, r∗2〉 where

r∗1 = gw∗X∗
V

r∗ mod p, gd∗X∗
P

h∗+w∗ mod p

and r∗2 = 〈w∗, r∗, d∗〉. B outputs M∗ and σ∗G to C.

With probability at least 2/ρ one of the public keys X∗
P or X∗

V is equal to XJ and no

Corrupt query was made on XJ . In this case, B did not abort, and if E wins the DV

signature unforgeability game, then B wins the generic signature unforgeability game. So

87

4.10 Concrete DV Signature Schemes

B wins the generic signature unforgeability game, where X∗
P or X∗

V equals XJ , and XJ is

uncorrupted, with non-negligible probability η ≥ 2η′/ρ where η ≥ 10(µs + 1)(µs + µ2)/2l

and in time τ , with at most µ2 queries to the random oracle H2 and µs Sign queries.

Step 2 We now replace B’s challenger C with an algorithm C ′ that uses B to solve

the discrete logarithm problem in G. C ′ will simulate the random oracle H2 and the

challenger in an unforgeability game for the GDV signature scheme with B. C ′’s goal is

to solve the discrete logarithm problem on input 〈g, X, p, q〉, that is to find x ∈ Zq such

that gx = X mod p, where g is of prime order q modulo prime p and generates group G.

Generic Signature Unforgeability Simulation:

The challenger C ′ initializes the unforgeability game for B as follows. C ′ gives B the

public key X, the public parameters 〈p, q, g〉, descriptions of the spaces PK,SK,M,S,

and access to the random oracle H2.

C ′ now simulates the challenger by simulating all the queries which B can make as

follows:

H2-Queries: B can query the random oracle H2 at any time. C ′ simulates the random

oracle by keeping a list LH2 of tuples 〈stri, ri〉. When the oracle is queried with an

input str ∈ {0, 1}∗, C ′ responds as follows:

1. If the string str is already in LH2 in the tuple 〈str = stri, ri〉, then B outputs

ri.

2. Otherwise B selects a random r ∈ Zq, outputs r and adds 〈str, r〉 to LH2 .

Sign Queries: C ′ will also answer B’s Sign queries on any message M = m,XP , XV

where XP = X or XV = X. C ′ picks random w, r, t, h ∈ Zq and computes

r1 = gwXr
V mod p, gdXh+w

P mod p.

C ′ constructs the string str = r1,M , and adds the tuple 〈str, h〉 to LH2 . C ′ then

sets r2 = 〈w, r, d〉 and σG = 〈r1, h, r2〉 which it outputs to B.

Output: Finally B should output a message M∗ = m∗, X∗
P , X∗

V where X∗
P = X or X∗

V =

X and a GDV signature σ∗G = 〈r∗1, h∗, r∗2〉. B wins the game if 〈M∗, σ∗G〉 is accepted

by Verify and no Sign query was previously made on M∗.

Since H2 is a random oracle, C ′ can simulate GDV signatures that are indistinguishable

from true GDV signatures, so B can detect no inconsistency in the game.

88

4.11 Conclusions and Open Problems

From Step 1, we know that B that makes at most µ2 queries to the random oracle H2,

at most µs Sign queries, and wins the above game in time at most τ with non-negligible

probability η = 2η′/ρ > 10(µs + 1)(µs + µ2)/2l.

By Lemma 2.5 of Section 2.3.4 (the Forking Lemma), C ′ can rewind B (and therefore

also E) with the same random coins and repeat its simulation with a different random

oracle H2 so that B outputs another GDV signature σG = 〈r∗1, h, r2〉 on M∗ = m∗, X∗
P , X∗

V ,

where h 6= h∗, r2 = 〈w, r, d〉 and

r∗1 = gwX∗
V

r mod p, gdX∗
P

h+w mod p.

We therefore obtain the equations

gw∗X∗
V

r∗ = gwX∗
V

r mod p (4.7)

gd∗X∗
P

(h∗+w∗) = gdX∗
P

(h+w) mod p (4.8)

Now if r∗ 6= r and X∗
V = X then C ′ can solve (4.7) for the discrete logarithm of

X∗
V = X. The probability that X∗

V = X is 1/2 since XJ = X was chosen randomly from

X and we know that X∗
V = XJ or X∗

P = XJ . If r∗ = r, then w∗ = w, and since h∗ 6= h

we have that h∗ + w∗ 6= h + w. So if X∗
P = X then C ′ can solve (4.8) for the discrete

logarithm of X∗
P = X. The probability that X∗

P = X is 1/2 since XJ = X was chosen

randomly from X and we know that X∗
V = XJ or X∗

P = XJ .

Since the Forking Lemma produces a second appropriate signature with expected time

at most τ ′ = 120686µsτ , we find that C ′ can solve the discrete logarithm problem in time

at most τ ′ and with probability at least η/2. If η′ is non-negligible, then η is also non-

negligible, and this contradicts the hardness of the discrete logarithm problem. Therefore

no such polynomially bounded adversary B can have non-negligible probability of winning

the generic signature unforgeability game, and in turn no polynomially bounded adversary

E can have non-negligible probability of winning the unforgeability game of Section 4.9.3.

¤

4.11 Conclusions and Open Problems

We have presented models of security for NIDV proof systems, NIDV undeniable signatures

and DV signatures and argued that NIDV proofs can have applications outside of the

context of undeniable signatures such as in deniable proofs of knowledge or possession.

We then repaired the original NIDV undeniable signature scheme of [70], producing a

89

4.11 Conclusions and Open Problems

concrete scheme that is efficient and proven secure. We then showed how secure DV

signature schemes can be constructed from secure 2-party ring signature schemes, and

gave an example of how a secure DV signature scheme can be constructed from an NIDV

proof, using our concrete NIDV EDL proof as an example.

In future work, it would be interesting to investigate how to extend our model to

include strong designated verifier proofs [98, 109, 70]. It would also be interesting to

provide models of security for NIDV versions of confirmer signatures [22, 36, 47, 27] and

other signature schemes closely related to undeniable signatures.

90

Chapter 5

Concurrent Signatures

5.1 Introduction

The problem of fair exchange of signatures is a fundamental and well-studied problem in

cryptography, with potential application in a wide range of scenarios in which the parties

involved are mutually distrustful. Ideally, we would like the exchange of signatures to be

done in a fair way, so that by engaging in a protocol, either each party obtains the other’s

signature, or neither party does. It should not be possible for one party to terminate the

protocol at some stage leaving the other party committed when they themselves are not.

The literature contains essentially two different approaches to solving the problem of

fair exchange of signatures.

Early work on solving the problem was based on the idea of timed release or timed fair

exchange of signatures [21, 53, 58]. Here, the two parties sign their respective messages

and exchange their signatures “little-by-little” using a protocol. Typically, such protocols

are highly interactive with many message flows. Moreover, one party, say B, may often be

at an advantage in that he sometimes has (at least) one more bit of A’s signature than she

has of B’s. This may not be a significant issue if the computing power of the two parties

are roughly equivalent. But if B has superior computing resources, this may put him at a

significant advantage since he may terminate the protocol early and use his resources to

compute the remainder of A’s signature, while it may be infeasible for A to do the same.

Even if the fairness of such protocols could be guaranteed, they may still be too interactive

for many applications. See [57] for further details and references for such protocols.

An alternative approach to solving the problem of fair exchange of signatures involves

the use of a (semi-trusted) third party or arbitrator T who can be called upon to handle

disputes between signers. The idea is that A registers her public key with T in a one-

91

5.1 Introduction

time registration, and thereafter may perform many fair exchanges with other entities.

To take part in a fair exchange with B, A creates a partial signature which she sends to

B. Entity B can be convinced that the partial signature is valid (perhaps via a protocol

interaction with A) and that T can extract a full, binding signature from the partial

signature. However, the partial signature on its own is not binding for A. B then fulfils

his commitment by sending A his signature, and if valid, A releases the full version of her

signature to B. The protocol is fair since if B does not sign, then A’s partial signature

is worthless to B, and if B does sign but A refuses to release her full signature then B

can obtain it from T . The third party is only required in case of dispute; for this reason,

protocols of this type are commonly referred to as optimistic fair exchange protocols. See

[4, 5, 19, 6, 28, 52, 56, 94] for further details of such schemes.

The main problem with such an approach is the requirement for a dispute-resolving

third party with functions beyond those required of a normal Certification Authority. In

general, appropriate third parties may not be available.

It is our belief that the full power of fair exchange is not necessary in many application

scenarios. We therefore introduce a somewhat weaker concept, which we name concurrent

signatures. The cost of concurrent signatures is that they do not provide the full security

guarantees of a fair exchange protocol. Their benefit is that they have none of the dis-

advantages of previous solutions: they do not require a special trusted third party1, and

they do not rely on a computational balance between the parties. Moreover, our concrete

realization is computationally and bandwidth efficient. Informally, concurrent signatures

appear to be as close to fair exchange as it’s possible to get whilst staying truly practical

and not relying on special third parties.

We introduce the notion of concurrent signatures and concurrent signature protocols.

In a concurrent signature protocol, two parties A and B interact without the help of a third

party to sign (possibly identical) messages mA and mB in such a way that both A and

B become publicly committed to their respective messages at the same moment in time

(i.e. concurrently). This moment is determined by one of the parties through the release

of an extra piece of information k which we call a keystone. Before the keystone’s release,

neither party is publicly committed through their signatures, while after this point, both

are. In fact, from a third party’s point of view, before the keystone is released, either party

could have been responsible for producing both signatures, so these initial signatures are

non-transferable (i.e. not binding for the signer).
1Our concurrent signatures will still require a conventional CA for the distribution of public keys, but

not a trusted third party with any other special functions.

92

5.1 Introduction

We note that the party who controls the keystone k has a degree of extra power: it

controls the timing of the keystone release, to whom it is released and indeed whether the

keystone is released at all. Upon receipt of B’s signature σB, A might privately show σB

and k to a third party C and gain some advantage from doing so. This is the main feature

that distinguishes concurrent signatures from fair exchange schemes. In a fair exchange

scheme, each signer A should either have recourse to a third party to release the other

party B’s signature or be assured that the B cannot compute A’s signature significantly

more easily than A can compute B’s. With concurrent signatures, only when A releases

the keystone do both signatures become simultaneously binding (i.e. both signers become

publicly committed by their signatures), and there is no guarantee that A will do so.

However, in the real world, there are often existing mechanisms that can naturally be

used to guarantee that B will receive the keystone should his signature be used. These

existing mechanisms can provide a more natural dispute resolution process than reliance

on a special trusted party. We argue that concurrent signatures are suited to any fair

exchange application where:

• There is no sense in A withholding the keystone because she needs it to obtain

a service from B. For example, suppose B sells computers. A signs a payment

instruction to pay B the price of a computer, and B signs that he authorizes her to

pick one up from the depot (B’s signature may be thought of as a receipt). Now

A can withhold the keystone, but as soon as she tries to pick up her computer, the

depot will ask for a copy of B’s signature authorizing her to collect one. In this way

B can obtain the keystone which validates A’s payment instruction. In this example,

the application itself forces the delivery of the keystone to B.

• There is no possibility of A keeping B’s signature private in the long term. For

example, consider the routine “four corner” credit card payment model. Here C

may be A’s acquiring bank, and B’s signature may represent a payment to A that

A must channel via C to obtain payment. Bank C would then communicate with

B’s issuing bank D to obtain payment against B’s signature and D could ensure

that B’s signature, complete with keystone, reaches B (perhaps via a credit card

statement). As soon as B has the keystone, A becomes bound to her signature.

In this application, the back-end banking system provides a mechanism by which

keystones would reach B if A were to withhold them.

• There is a single third party C who verifies both A and B’s signature. Now, if A tries

to present B’s signature along with k to C whilst withholding k from B, B will be

93

5.1 Introduction

able to present A’s signature to C and have it verified. As an application, consider

the (perhaps somewhat artificial) scenario where A and B are two politicians from

different parties who want to form a coalition to jointly release a piece of information

M to the press C in such a way that neither of them is identified as being the sole

signatory to the release. Concurrent signatures seem just right for this task. In

this case A and B both produce initial (non-transferable) signatures on the same

message M . Here the keystone is not necessarily returned to B, but it does reach

the third party C to whom B wishes to show A’s signature.

We also consider an example where concurrent signatures provide a novel solution to

an old problem: that of fair tendering of contracts (our signatures can also be used in a

similar way in auction applications). Suppose that A has a bridge-building contract that

she wishes to put out to tender, and suppose companies B and C wish to put in proposals

to win the contract and build the bridge. This process is sometimes open to abuse by A

since she can privately show B’s signed proposal to C to enable C to better B’s proposal.

Using concurrent signatures, B would sign his proposal to build the bridge for an amount

X, but keep the keystone private. If A wishes to accept the proposal, she returns a payment

instruction to pay B amount X. She knows that if B attempts to collect the payment,

then A will obtain the keystone through the banking system. But A may also wish to

examine C’s proposal before deciding which to accept. However there is no advantage for

A to show B’s signature to C since at this point B’s signature is non-transferable and so

C will not be convinced of anything at all by seeing it. After all, A may have created the

signature herself in an attempt to get a better proposal from C. We see that the tendering

process is therefore immune to abuse of this kind by A. We note that this example makes

use of the non-transferability of our signatures prior to the keystone release, and although

the solution can be realized by using standard fair exchange protocols, such protocols do

not appear to previously have been suggested for this purpose.

Our schemes are not abuse-free in the sense of [6, 56], since the party A who holds the

keystone can always determine whether to complete or abort the exchange of signatures,

and can demonstrate this by showing an outside party C the signature from B with the

keystone before revealing the keystone to B. However the above example shows that abuse

can be addressed by our schemes in certain applications.

94

5.1 Introduction

5.1.1 Technical Approach

We briefly explain how concurrent signature schemes can be built using (two-party) ring

signature schemes, which were defined in Section 3.3.

A ring signature has the property that it could have been produced by either of two

parties. The anonymity property of the underlying ring signature scheme also ensures that

it is infeasible to determine which of the two possible signers created the signature. These

properties allow both possible signers to deny having produced a specific NT signature.

However, we note that if A creates an NT signature which either A or B could have

created, and sends this to B, then B is convinced of the authorship of the signature since

he knows that he did not create it himself. However B cannot transfer this conviction and

prove A’s involvement to a third party since he could have created the signature himself.

The same situation applies when the roles of A and B are reversed.

When generating a two-party ring signature, a party A will usually choose some random

bits f to combine with a party B’s public key. A will then use her private key to complete

the signature. Now, if the value f was not chosen randomly but rather was generated

from some preimage k, then A can demonstrate authorship of the signature by revealing

the preimage k of f . The ring signature alone is not binding for A, but the ring signature

together with the preimage k constitutes a binding signature for A. We use this concept

to construct concurrent signatures.

We begin by taking a two-party ring signature scheme of a specific form (i.e. one where

randomness is chosen for combination the public keys of each non-signer) and using it to

construct what we call a non-transferable signature scheme (NT signature scheme). NT

signature schemes are almost identical to ring signature schemes, and are formally defined

as part of a concurrent signature scheme in the sequel.

The general idea is that a party A generates an NT signature σA, using B’s public key

and a preimage k to generate the value f . The value k is called the keystone and is kept

private by A. A sends σA to party B.

Party B can verify that A created the signature σA but cannot demonstrate this to a

third party. Now B generates his own NT signature σB using A’s public key and the same

value f , and sends σB to A.

Now A can verify that B generated σB, but as long as k remains secret, neither

party can demonstrate authorship to a third party. However if A releases the keystone k,

then any third party can be convinced of the authorship of both signatures, since both

95

5.1 Introduction

signatures use the value f for which k is a preimage. Thus the pairs 〈k, σA〉 and 〈k, σB〉
amount to a simultaneously binding pair of signatures on A and B’s messages. We call

these pairs concurrent signatures.

We note that Rivest et al. in their pioneering work on ring signatures [97] considered

the situation in which an anonymous signer A wants to have the option of later proving her

authorship of a ring signature. Their solution was to choose the bits hB pseudo-randomly

and later to reveal the seed used to generate hB. Here we use the same trick for a new

purpose: to ensure that either both or neither of the parties can be identified as signers

of messages.

An NT signature scheme is almost identical to a two-party ring signature scheme. The

main difference is that an NT signature scheme needs to be of a specific structure in order

to accommodate a keystone, and the random bits hB are taken as input to the signature

algorithm instead of being chosen randomly within the algorithm.

We point out that any suitable NT signature scheme can be used to produce a concur-

rent signature protocol. We base our concrete scheme on the non-separable ring signature

scheme of Section 3.5, although alternate concurrent signature schemes may be constructed

from other suitable ring signature schemes such as the short ring signature scheme of [19].

It may also be possible to construct a concurrent signature scheme from designated verifier

signatures presented in Chapter 4. However these are often not of the correct form unless

constructed from a 2-party ring signature scheme.

We give generic definitions of concurrent signature schemes and concurrent signature

protocols, define a suitably powerful multi-party adversarial model for this setting, and

give a formal definition of what it means for such schemes and protocols to be secure.

5.1.2 Published Work

An earlier version of this work appears in [41] and forms the basis for this chapter. However

the nomenclature in this chapter differs slightly from the published work. In particular,

what we refer to as non-transferable (NT) signatures in this chapter are referred to as

ambiguous signatures in [41]. This is to avoid confusion between NT signatures and the

security property of anonymity for ring signature schemes. We rename the function that

transforms a keystone k into a suitable h value. In [41] this function was called KGen, but

to avoid confusion with the key generation algorithm KeyGen, we now refer to this function

as KCommit. In [41], the outputs of the function KGen were called keystone footprints.

Here we rename refer to the outputs of KCommit as keystone footprints.

96

5.2 Formal Definitions

5.2 Formal Definitions

5.2.1 Concurrent Signature Algorithms

We now give a more formal definition of concurrent signature schemes and the protocol

for exchanging concurrent signatures.

Definition 5.1 A concurrent signature scheme is a digital signature scheme comprised of

the following algorithms:

Setup: A probabilistic algorithm that on input a security parameter l, outputs the public

parameters including descriptions of: the public key space PK, the private key space

SK, the message spaceM, the signature space S, the keystone space K, the keystone

footprint space F , and a function KCommit : K → F .

KeyGen: A probabilistic algorithm which takes as input the public parameters and outputs

a public key X ∈ PK and a corresponding private key x ∈ SK.

NTSign: A probabilistic algorithm that on inputs 〈Xi, Xj , xi, hj ,m〉, where Xi, Xj ∈ PK,

Xj 6= Xi, xi ∈ SK is the private key corresponding to Xi, hj ∈ F , and m ∈ M,

outputs a signature σ = 〈s, hi, hj〉 on m, where s ∈ S, hi, hj ∈ F .

NTVerify: An algorithm which takes as input S = 〈σ,Xi, Xj ,m〉, where σ = 〈s, hi, hj〉,
s ∈ S, hi, hj ∈ F , Xi, Xj ∈ PK, and m ∈M, outputs accept or reject.

CSVerify: An algorithm which takes as input 〈k, kpos, S〉 where k ∈ K is a keystone,

kpos ∈ {1, 2}, and S is of the form S = 〈σ,Xi, Xj ,m〉, where σ = 〈s, hi, hj〉 with

s ∈ S, hi, hj ∈ F , Xi, Xj ∈ PK, and m ∈M. If kpos = 1 then the algorithm checks

if KCommit(k)= hi, and if not, it terminates with output reject. If kpos = 2 then the

algorithm checks if KCommit(k)= hj , and if not, it terminates with output reject.

The algorithm then runs NTVerify(S) (in which case the output of CSVerify is just

that of NTVerify).

We call a signature σ that is output by NTSign an NT signature, and if NTVerify(σ,Xi,

Xj ,m) returns accept, then we say that σ is a valid NT signature on m for Xi and Xj .

An NT signature σ on message m for Xi and Xj , together with a keystone k is

called a concurrent signature. The value kpos determines the position of the keystone

footprint within the NT signature. Therefore if CSVerify(k, 2, S = 〈σ,Xi, Xj ,m〉) where

97

5.2 Formal Definitions

σ = 〈s, hi, hj〉 returns accept, then we say that the pair 〈k, σ〉 is a valid concurrent sig-

nature on m for Xi. Similarly, if CSVerify(k, 1, S = 〈σ,Xi, Xj ,m〉) where σ = 〈s, hi, hj〉
returns accept, then we say that the pair 〈k, σ〉 is a valid concurrent signature on m for

Xj .

5.2.2 Concurrent Signature Protocol

We now describe a concurrent signature protocol between two parties A and B. Since

one party needs to create the keystone and send the first NT signature, we call this party

the initial signer. A party who responds to this initial signature by creating another NT

signature with the same keystone footprint we call a matching signer. Without loss of

generality, we assume A to be the initial signer, and B the matching signer. From here

on, we will use subscripts A and B to indicate initial signer A and matching signer B.

The signature protocol works as follows:

We assume that Setup has been run to determine the public parameters, and A and B

have run KeyGen to determine their public and private keys. We assume that A’s public

and private keys are XA and xA, and B’s public and private keys are XB and xB.

Step 1: A picks a random keystone k ∈ K, and computes f= KCommit(k). A picks a

message mA ∈M to sign and then computes her NT signature as

σA = 〈sA, hA, f〉 = NTSign(XA, XB, xA, f, mA),

and sends this to B.

Step 2: Upon receiving A’s NT signature σA, B verifies the signature by checking that

NTVerify(〈sA, hA, f〉, XA, XB,mA) returns accept. If not then B aborts, otherwise B picks

a message mB ∈M to sign and computes his NT signature as

σB = 〈sB, hB, f〉 = NTSign(XB, XA, xB, f, mB)

and sends this back to A. Note that B uses the same value f in his signature as A did to

produce σA.

Step 3: Upon receiving B’s signature σB, A verifies that NTVerify(〈sB, hB, f〉, XB, XA,mB)

returns accept, where f is the same keystone footprint as A used in Step 1. If not then A

aborts, otherwise A sends keystone k to B.

98

5.3 Formal Security Model

Note that inputs 〈k, 2, SA〉 and 〈k, 2, SB〉 will now both be accepted by CSVerify, where

SA = 〈〈sA, hA, f〉, XA, XB,mA〉 and SB = 〈〈sB, hB, f〉, XB, XA,mB〉.
By following the concurrent signature protocol, the value kpos will only ever be set to

2. However there may be other ways to produce a valid NT signature, where the keystone

corresponds to the first h value, and these signatures should still be considered valid. For

example, if the NT signature scheme is constructed from a ring signature scheme, then a

signer may choose to reverse the order of the public keys and h values, and could produce

a concurrent signature where the value kpos is 1.

5.3 Formal Security Model

Concurrent signatures naturally involve more than one party, and any party may interact

with many other parties and in different roles. Our security model is therefore multiparty

and assumes a system with a number of different participants that is polynomial in the

security parameter l.

We say that a concurrent signature scheme is secure if it satisfies the notions of cor-

rectness, non-transferability, unforgeability and fairness. These are defined as follows.

5.3.1 Correctness

Definition 5.2 We say that a concurrent signature scheme is correct if the following

conditions hold.

If σ = 〈s, hi, f〉 = NTSign(Xi, Xj , xi, f,m), and S = 〈σ,Xi, Xj ,m〉, then NTVerify(S)

returns accept. Moreover, if KCommit(k) = f for some k ∈ K, then CSVerify(k, 2, S)

returns accept.

5.3.2 Non-transferability

We say that a concurrent signature scheme is non-transferable if there exists a polynomial

time algorithm FakeNTSign that on input tuples 〈Xi, Xj , xj ,M〉, where Xi, Xj ∈ PK, Xj 6=
Xi, xj ∈ SK is the private key corresponding to Xj , and M ∈M, outputs NT signatures

σ′ = 〈s′, h′i, h′j〉 such that 〈σ,Xi, Xj ,M〉 is accepted by NTVerify and the distribution of

σ′ is polynomially indistinguishable from that of signatures σ produced by NTSign when

run on inputs 〈Xi, Xj , xi, f, M〉 where f = KCommit(k) for some random k ∈ K.

99

5.3 Formal Security Model

5.3.3 Unforgeability

We give a formal definition of existential unforgeability of a concurrent signature scheme

under a chosen message attack in the multi-party setting. To do this, we extend the

definition of existential unforgeability against a chosen message attack of [63] to the multi-

party setting. Our extension is strong enough to capture an adversary who can simulate

and observe concurrent signature protocol runs between any pair of participants. It is

defined using the following game between an adversary E and a challenger C.

Initialization: C runs Setup for a given security parameter l to obtain the public pa-

rameters and the descriptions of PK, SK, M, S, K, F , and KCommit : K → F . C

also generates the public and private keys Xi and xi for each participant, where the

number of participants is polynomial in l. E is given the public parameters and the

set of public keys {Xi}. C retains the set of private keys {xi}.
E can make the following types of query to the challenger C:

KCommit Queries: E can request that C select a keystone k ∈ K and return the

keystone footprint f = KCommit(k). If E wishes to choose his own keystone, then

he can compute his own keystone footprint using algorithm KCommit directly.

KReveal Queries: E can request that C reveal the keystone k that was used to pro-

duce a keystone footprint f ∈ F in a previous KCommit query. If f was not a

previous KCommit output then C outputs invalid, otherwise C outputs k where

f = KCommit(k).

NTSign Queries: E can request an NT signature for any input of the form 〈Xi, Xj , hj ,m〉
where hj ∈ F , Xi, Xj ∈ PK, Xj 6= Xi and m ∈ M. C responds with an NT signa-

ture σ = 〈s, hi, hj〉 = NTSign(Xi, Xj , xi, hj , m). Note that using NTSign queries in

conjunction with KCommit queries, E can obtain concurrent signatures 〈k, σ〉 for

messages and pairs of users of his choice.

FakeNTSign Queries: E can request an NT signature for any input of the form 〈Xi, Xj ,

m〉 where Xi, Xj ∈ PK, Xj 6= Xi and m ∈ M. C responds with an NT signature

σ = 〈s, hi, hj〉 = FakeNTSign(Xi, Xj , xj ,m).

Corrupt Queries: E can request the private key corresponding to the public key of any

participant with public key Xi. In response, C outputs the corresponding private

key xi.

100

5.3 Formal Security Model

Output: Finally E outputs a tuple σ = 〈s, hc, f〉 where s ∈ S, hc, f ∈ F , along with

public keys Xc, Xd ∈ PK, Xd 6= Xc and a message m ∈M. The adversary wins the

game if NTVerify(〈s, hc, f〉, Xc, Xd,m) returns accept, no NTSign query was made

on 〈Xc, Xd, f
′,m〉 for any f ′ ∈ F , no FakeNTSign query was made on 〈Xc, Xd,m〉,

no Corrupt query was made on Xc, and if one of the following two cases hold:

1. No Corrupt query was made on Xd, or

2. Either f was a previous output from a KCommit query or E also outputs a

keystone k such that f = KCommit(k).

Definition 5.3 We say that a concurrent signature scheme is unforgeable if the probability

of success of any polynomially bounded adversary in the above game is negligible (as a

function of the security parameter l).

Case 1 of the output conditions in the above game models forgery of an NT signature

in the situation where the adversary does not have knowledge of either of the respective

private keys. This condition is required so that the matching signer B is convinced that

A’s NT signature originated from A. Case 2 models forgery in the situation where the

adversary knows one of the private keys and so applies to the situation where one of

the two parties attempts to cheat the other. More specifically, it covers attacks where

an initial signer forges a concurrent signature of a matching signer, or where a matching

signer has access to an initial signer’s NT signature and keystone footprint (but not the

actual keystone) and forges a concurrent signature of the initial signer.

The challenger in the unforgeability game is able to answer FakeNTSign queries using

algorithm FakeNTSign from Section 5.3.2. We consider it important to model such queries

(as in the unforgeability game for DV signatures in Section 4.9.3) since an adversary may

have access to such “faked” NT signatures that are produced by dishonest entities using

FakeNTSign.

5.3.4 Fairness

We require the concurrent signature scheme and protocol to be fair for both an initial signer

A, and a matching signer B. This concept is defined via the following game between an

adversary E and a challenger C:

Initialization: This is as before in the unforgeability game of Section 5.3.3.

101

5.4 A Concrete Concurrent Signature Scheme

KCommit, KReveal, NTSign, FakeNTSign and Corrupt Queries: These queries

are answered by C as in the unforgeability game of Section 5.3.3.

Output: Finally E outputs a keystone k ∈ K, and S = 〈σ,Xc, Xd,m〉 where σ = 〈s, hc, f〉,
s ∈ S, hc, f ∈ F , Xc, Xd ∈ PK, Xd 6= Xc and m ∈M, where 〈k, 2, S〉 is accepted by

CSVerify. The adversary wins the game if either of the following cases holds:

1. f was a previous output from a KCommit query and no KReveal query on

input f was made, or

2. E also produces S′ = 〈σ′, Xd, Xc,m
′〉, with σ′ = 〈s′, h′c, f〉, s′ ∈ S, h′c, f ∈ F ,

and message m′ ∈ M, where NTVerify(S′) returns accept, but 〈k, 2, S′〉 is not

accepted by CSVerify.

Definition 5.4 We say that a concurrent signature scheme is fair if any polynomially

bounded adversary’s probability of success in the above game is negligible.

Our definition of fairness formalizes our intuitive understanding of fairness for A in the

protocol of Section 5.2.2 (in case 1 of the output conditions), since it guarantees that only

the entity who generates a keystone can reveal it, thereby converting valid NT signatures

into binding concurrent signatures. It also captures fairness for B (in case 2 of the output

conditions), since it guarantees that all valid NT signatures produced using the same

keystone footprint will all become binding. Thus B cannot be left in a position where a

keystone binds his NT signature to him while A’s initial NT signature is not also bound

to A. However we note that our definition does not guarantee that B will ever receive the

necessary keystone.

5.4 A Concrete Concurrent Signature Scheme

We present a concrete concurrent signature scheme which is based on the 2-party version

of the ring signature scheme presented in Section 3.5. The scheme is defined via the

following algorithms:

Setup: For some security parameter l, let p and q be large primes, where q|(p − 1). Let

G be a multiplicative subgroup of Z∗p of order q and let g be a generator of G. Two

cryptographic hash functions H1, H2 : {0, 1}∗ → Zq are also selected and we define

KCommit to be H1. The public parameters are params = 〈p, q, g, H1,H2〉 as well as

descriptions of the spaces PK,SK,S,F ,M,K which are defined as follows: PK = G,

SK = Z∗q , S = F=Zq and M = K={0, 1}∗.

102

5.5 Security of the Concrete Concurrent Signature Scheme

KeyGen: This algorithm takes as input the public parameters and selects a private key xi at

random from Z∗q , and the corresponding public key is computed as Xi = gxi mod p.

NTSign: This algorithm takes as input 〈Xi, Xj , xi, hj ,m〉, where Xi, Xj ∈ PK, Xj 6= Xi,

xi ∈ Zq is the private key corresponding to Xi, hj ∈ F and m ∈ M. The algorithm

picks a random value t ∈ Zq and then computes the values:

h = H2(Xi‖Xj‖m‖gtXj
hj mod p),

hi = h− hj mod q,

s = t− xihi mod q.

The algorithm outputs σ = 〈s, hi, hj〉.

NTVerify: This algorithm takes as input 〈σ,Xi, Xj ,m〉 where σ = 〈s, hi, hj〉, s ∈ S, hi, hj ∈
F , Xi, Xj ∈ PK, and m ∈M. The algorithm checks that the equation

hi + hj mod q = H2(Xi‖Xj‖m‖gsXhi
i X

hj

j mod p)

holds, and if so, outputs accept. Otherwise, it outputs reject.

CSVerify: This algorithm is defined in terms of KCommit and NTVerify, as described in

Section 5.2.1.

The NTSign algorithm is almost identical to the RingSign algorithm of Section 3.5 on

input 〈m,R = {Xi, Xj}, i, xi〉 except that hj is taken as an input parameter instead of

being chosen randomly within the signature algorithm. The NTVerify algorithm is identical

to the RingVerify algorithm of Section 3.5. We require that Xj 6= Xi since otherwise the

signature would be a standard Schnorr signature [99] and would not be non-transferable.

A concrete concurrent signature protocol can be derived directly from the algorithms

defined above and the generic protocol described in Section 5.2.2.

5.5 Security of the Concrete Concurrent Signature Scheme

We now present some security results for the concrete scheme of Section 5.4.

Theorem 5.1 The concurrent signature scheme of Section 5.4 is correct.

Proof: This is trivial to verify, and we leave the details to the reader. ¤

103

5.5 Security of the Concrete Concurrent Signature Scheme

Theorem 5.2 The concurrent signature scheme of Section 5.4 is non-transferable in the

random oracle model.

Proof: We let the algorithm FakeNTSign be defined by running algorithm RingSign of

Section 3.5 on input 〈M,R = {Xi, Xj}, j, xj〉.
We recall that this algorithm selects random t′, h′i ∈ Zq and computes

z′ = gt′X
h′i
i mod p

h′ = H(Xi‖Xj‖M‖z′)
h′j = h′ − h′i mod q

s′ = t′ − xjh
′
j mod q

The signature is σ′ = 〈s′, h′i, h′j〉. The correctness of the underlying ring signature

scheme guarantees that FakeNTSign outputs an NT signature σ′ = 〈s′, h′i, h′j〉 such that

〈σ′, Xi, Xj ,m〉 is accepted by NTVerify.

The only difference between the NTSign and FakeNTSign algorithms is that NTSign

takes the value f as input, whereas FakeNTSign selects the value h′j randomly from Zq. The

anonymity property of the underlying ring signature scheme therefore guarantee that the

distribution of σ′ is polynomially indistinguishable from that of signatures σ = 〈s, hi, f〉
produced by NTSign(Xi, Xj , xi, f,m) where f = KCommit(k) for some random k ∈ K as

long as h′j and f are indistinguishable. Since f is output by KCommit, which we model

as a random oracle, f is independent of s and hi, and is distributed uniformly at random

in Zq. The algorithm RingSign chooses h′j at random from Zq, so h′j is also independent

of s′ and h′i, and is distributed uniformly at random in Zq. Therefore and f and h′j , and

therefore also σ and σ′, are indistinguishable as required. ¤
In order to analyze the unforgeability of our concurrent signature scheme, we first

need to introduce a related non-generic (NG) signature scheme. We recall that generic

signature schemes are simply digital signature schemes (as defined in Section 2.2.3) that

take a certain form (which is described in Section 2.3.4). In addition, we recall from

Section 2.3.5 that NG signature schemes are identical to generic signature schemes except

that instead of generating signatures on a message M , NG signature schemes take an

additional value T as input when generating or verifying a signature. Security for NG

signature schemes is defined in the same way as security for digital signature schemes (in

Section 2.3.1) except that the model is adapted to accommodate the additional value T .

Our concrete NG signature scheme, which we refer to as the NG CS signature scheme,

is defined as follows.

• The Setup and KeyGen algorithms are identical to those of the concrete NIDV EDL

104

5.5 Security of the Concrete Concurrent Signature Scheme

scheme except that the keystone space K and the function KCommit are not required.

• The Sign algorithm for a public key X takes as input a message M = Xi, Xj ,m and

a private key xi ∈ SK, where Xi, Xj ∈ PK, Xi = X or Xj = X, and m ∈ M, a

value T ∈ F .

If Xi = X then the algorithm runs in an identical way to NTSign(Xi, Xj , xi, T,m)

to produce a signature σ = 〈s, hi, T 〉. The algorithm sets r2 = 〈s, T 〉, h = hi + T ,

r1 = gsXhi
i XT

j mod p, and outputs σNG = 〈r1, h, r2〉.
If Xj = X then the algorithm runs in an identical way to FakeNTSign(Xi, Xj , xj , T, m)

except that the value h′i is set to be T instead of being chosen randomly from Zq. This

produces a signature σ = 〈s′, T, h′j〉. The algorithm sets r2 = 〈s′, h′j〉, h = T + hj ,

r1 = gsXT
i X

hj

j mod p, and outputs σNG = 〈r1, h, r2〉.

• The Verify algorithm on input M = Xi, Xj ,m, where Xi = X or Xj = X, and a

signature σNG = 〈r1, h, r2〉 where r2 = 〈s, hj〉, sets σ = 〈s, h−hj , hj〉 and runs in an

identical way to NTVerify(σ,Xi, Xj ,m).

Theorem 5.3 The concurrent signature scheme of Section 5.4 is unforgeable in the ran-

dom oracle model, assuming the hardness of the discrete logarithm problem.

Proof:

We suppose that H1 and H2 are random oracles and there exists a polynomial time

algorithm E that makes at most µi queries to the random oracles Hi, i = {1, 2}, at most µn

NTSignGen and µf FakeNTSign queries, and wins the unforgeability game of Section

5.3.3 in time at most τ with non-negligible probability η′ (in security parameter l) where

the number of participants is bounded by ρ and η′ > 10ρ(µs + 1)(µs + µ2)/2l where

µs = µn + µf .

In Step 1 of the proof, we show how E can be used to construct an algorithm B

that makes at most µ2 queries to the random oracle H2, at most µs Sign queries to its

challenger C, and wins the NG version of the unforgeability game of Section 2.3.1 for the

NG CS signature scheme in time at most τ with non-negligible probability η = η′/ρ where

η > 10(µs + 1)(µs + µ2)/2l.

In Step 2 of the proof, we then replace C with an algorithm C ′ that uses B to solve

the discrete logarithm problem in G. Step 2 of the proof will make use of Lemma 2.6, the

NG Forking Lemma.

105

5.5 Security of the Concrete Concurrent Signature Scheme

Step 1 We will show that there exists an algorithm B that uses E to forge an NG CS

signature with non-negligible probability when interacting with a challenger C in the NG

version of the unforgeability game of Section 2.3.1.

The challenger C initializes the NG unforgeability game for B and gives B the public

key X, the public parameters 〈p, q, g〉, descriptions of the spaces PK,SK,S,F ,M, and

access to the random oracle H2.

B can make H2 as well as Sign queries on any message M = m,σ,Xi, Xj (where

m ∈ M, σ′ ∈ S, Xi, Xj ∈ PK, and Xi = X or Xj = X), and a value T ∈ F . B must

eventually output a message M∗, a value T ∗, and an NG CS signature σ∗NG = 〈r∗1, h∗, r∗2〉.
B wins the game if 〈M∗, σ∗NG〉 is accepted by Verify and no Sign query was previously

made on M∗, T ∗.

In order to win the above game, B in turn simulates a concurrent signature unforge-

ability game for E. CS Unforgeability Simulation:

B gives the parameters 〈g, p, q〉 and the descriptions of the spaces PK,SK,S,F ,M
as well as a description of K={0, 1}∗ to E. B generates a set of participants U , where

|U | = ρ(l) and ρ is a polynomial function of the security parameter l. B sets the public key

of some randomly selected participant to be Xα = X, and for each i 6= α, B runs KeyGen

to generate a private key xi and public key Xi. We define the set of all participants’ public

keys to be X . E is given X .

B now simulates the challenger by simulating all the queries which E can make as

follows:

H1-Queries: E can query the random oracle H1 at any time. B simulates the random

oracle by keeping a list LH1 of tuples 〈stri, ri〉. When the oracle is queried with an

input str ∈ {0, 1}∗, B responds as follows:

1. If the string str is already in LH1 in the tuple 〈str = stri, ri〉, then B outputs

gri mod p.

2. Otherwise B selects a random r ∈ Zq, outputs gr mod p and adds 〈str, r〉 to

LH1 .

H2-Queries: E can query any string str on the H2 oracle. B simulates the H2 oracle by

passing all H2 queries to C and passing C’s response back to E.

KCommit Queries: E can request that the challenger select a keystone k ∈ K and

return a keystone footprint f = H1(k). B maintains a list LK of tuples 〈k, f〉, and

106

5.5 Security of the Concrete Concurrent Signature Scheme

answers queries by choosing a random keystone k ∈ K and computing f = H1(k).

B outputs f and adds the tuple 〈k, f〉 to LK . Note that LK is a sublist of H1-List,

but is required in order to answer KReveal queries.

KReveal Queries: E can request the keystone of any keystone footprint f ∈ F produced

by a previous KCommit Query. If there exists a tuple 〈k, f〉 on LK , then B returns

k, otherwise it outputs invalid.

NTSign Queries: E can request an NT signature for input 〈Xi, Xj , hj ,m〉 where hj ∈ F ,

Xi, Xj ∈ PK, Xj 6= Xi, and m ∈M.

If Xi = Xα then B sets M = Xi, Xj ,m and T = hj and makes a Sign query to C

on M and T . C responds with an NG signature σNG = 〈r1, h, r2〉 where r2 = 〈s, T 〉.
B sets σ = 〈s, h− T, T 〉 and outputs σ to E.

If Xi 6= Xα then B runs NTSign(Xi, Xj , xi, T,m) to produce an NT signature σ

which it outputs to E.

FakeNTSign Queries: E can request a fake NT signature on input 〈Xi, Xj ,m〉 where

Xi, Xj ∈ PK, Xj 6= Xi, and m ∈M.

If Xj = Xα then B selects a random value hj ∈ F , sets M = Xi, Xj ,m and T = hj

and makes a Sign query to C on M and T . C responds with an NG signature

σNG = 〈r1, h, r2〉 where r2 = 〈s, T 〉. B sets σ = 〈s, h− T, T 〉 and outputs σ to E.

If Xj 6= Xα then B runs FakeNTSign(Xi, Xj , xj ,m) to produce an NT signature σ

which it outputs to E.

Corrupt Queries: E can request the private key for any public key Xi. If Xi = Xα,

then B terminates the simulation. Otherwise B returns the appropriate private key

xi.

Output: Finally, with non-negligible probability, E outputs a signature σ = 〈s, hc, f〉
where s ∈ S, hc, f ∈ F , along with public keys Xc, Xd ∈ PK, Xd 6= Xc, and a mes-

sage m ∈M, where NTVerify(〈s, hc, f〉, Xc, Xd,m) returns accept, σ was not output

by any NTSign query on 〈Xc, Xd, f, m〉 or FakeNTSign query on 〈Xc, Xd,m〉, no

Corrupt query was made on Xc, and one of the following two cases holds:

1. No Corrupt query was made on Xd, or

2. Either f was a previous output from a KCommit query or E also outputs a

keystone k such that f = KCommit(k).

107

5.5 Security of the Concrete Concurrent Signature Scheme

B takes E’s output σ where σ = 〈s, hc, f〉, and sets M∗ = Xc, Xd,m, T ∗ = f , h∗ =

hc +f and σ∗NG = 〈r∗1, h∗, r∗2〉 where r∗1 = gsXhc
c Xf

d mod p and r∗2 = 〈s, f〉. B outputs M∗,

T ∗ and σ∗NG to C.

Since E never made any NTSign queries on 〈Xc, Xd, f, m〉 or FakeNTSign queries

on 〈Xc, Xd,m〉, B never made any Sign queries on M∗ = Xc, Xd,m and T ∗ = f .

The probability that B does not have to abort, E wins the game, and that either

XV = XJ , or XP = XJ , is η′/ρ, which is non-negligible in security parameter l if η is. In

this case, B would not have had to abort, and B wins the NG unforgeability game with

probability η = η′/ρ making at most µ2 queries to the random oracle H2, and at most

µs = µn + µf Sign queries to C.

Step 2 We now define an algorithm C ′ that replaces B’s challenger C and uses B to

solve the discrete logarithm problem in G. C ′ will simulate the random oracle H2 and

the challenger in an NG unforgeability game with B. C ′’s goal is to solve the discrete

logarithm problem on input 〈g,X, p, q〉, that is to find x ∈ Zq such that gx = X mod p,

where g is of prime order q modulo prime p and generates group G.

NG Unforgeability Simulation:

The challenger C ′ initializes the NG unforgeability game for B as follows. C ′ gives B

the public key X, the public parameters 〈p, q, g〉, descriptions of the spaces PK,SK,S,F ,M,

and access to the random oracle H2.

C ′ now simulates the challenger in an NG unforgeability game by simulating all the

queries which B can make as follows:

H2-Queries: B can query the random oracle H2 at any time. C ′ simulates the random

oracle by keeping a list LH2 of tuples 〈stri, ri〉. When the oracle is queried with an

input str ∈ {0, 1}∗, C ′ responds as follows:

1. If the string str is already in LH2 in the tuple 〈str = stri, ri〉, then B outputs

ri.

2. Otherwise B selects a random r ∈ Zq, outputs r and adds 〈str, r〉 to LH2 .

Sign Queries: C ′ will also answer B’s Sign queries on any messages M = Xi, Xj ,m

where Xi = X or Xj = X, and values T ∈ F . C ′ picks random s, h ∈ Zq and

computes

r1 = gsXh−T
i XT

j mod p.

108

5.5 Security of the Concrete Concurrent Signature Scheme

C ′ constructs the string str = M, r1, and adds the tuple 〈str, h〉 to LH2 . C ′ then

sets r2 = 〈s, T 〉 and σNG = 〈r1, h, r2〉 which it outputs to B.

Output: Finally B should output a message M∗ a value T ∗ and an NG CS signature

σ∗NG = 〈r∗1, h∗, r∗2〉. B wins the game if 〈M∗, σ∗NG〉 is accepted by Verify and no Sign

query was previously made on M∗, T ∗.

Since H2 is a random oracle, C ′ can simulate NG CS signatures that are indistinguish-

able from true NG CS signatures, so B can detect no inconsistency in the game.

From Step 1, we know that B that makes at most µ2 queries to the random oracle

H2, at most µs = µn + µf Sign queries, and wins the above game in time at most τ with

non-negligible probability η = η′/ρ > 10(µs + 1)(µs + µ2)/2l.

By Lemma 2.6 of Section 2.3.5, (the NG Forking Lemma), C ′ can rewind B (and

therefore also E) with the same random coins and repeat its simulation with a different

random oracle H2 so that B outputs another NG CS signature σNG = 〈r∗1, h, r2〉 on M∗ =

Xc, Xd,m, together with a value T , where h 6= h∗, r2 = 〈s′, T 〉 and r∗1 = gs′Xh−T
c XT

d mod

p.

This means that B in fact obtained two valid NT signatures σ = 〈s, hc, f〉 and σ′ =

〈s′, h′c, f ′〉 from E where the set of public keys and message for each signature are identical

and where h′c + f ′ 6= hc + f mod q and

gs′Xc
h′cXd

f ′ = gsXc
hcXd

f mod p. (5.1)

We now need to distinguish between two cases, depending on whether E wins the CS

unforgeability game (simulated by B) by satisfying output condition 1 or 2. If E wins the

game by satisfying condition 1, then we say that E is a Type-1 adversary, otherwise we

say that E is a Type-2 adversary.

Case 1. We suppose that E is a Type-1 adversary. In this case, Xc and Xd were both

uncorrupted in the NIDV soundness game, and we could have that Xc = X or that

Xd = X. If hc 6= h′c and Xc = Xα, then C ′ can solve equation 5.1 for the discrete

logarithm of Xc = Xα. The probability that Xc = Xα is 1/2 since Xα = X was chosen

randomly from the set of participants and we know that Xc = Xα or Xd = Xα. If hc = h′c
then f 6= f ′. In this case, if Xd = Xα then C ′ can solve equation 5.1 for the discrete

logarithm of Xd = Xα. The probability that Xd = Xα is 1/2 since Xα = X was chosen

randomly from the set of participants and we know that Xc = Xα or Xd = Xα.

109

5.5 Security of the Concrete Concurrent Signature Scheme

Case 2. We suppose that E is a Type-2 adversary. In this case, we know that Xc is

uncorrupted (and we could have that Xc = X) and either f was a previous output from

a KCommit query or E also outputs a keystone k such that f = KCommit(k).

If hc = h′c, then f 6= f ′, so the values hc and f (similarly h′c and f ′) must have

been computed after the H2 query which resulted in h (or h∗), and satisfy the equations

f = h−hc and f ′ = h′−h′c. But we know that f is also an output of H1 in the concurrent

signature unforgeability game, either from a direct H1 query, or via a KCommit query,

and the probability that an output from an H1 query matches (some function of) an

output from an H2 query is at most µ2µ1/q. This is negligible, so we assume that f = f ′,

and therefore that hc 6= h′c.

Since hc 6= h′c, if Xc = Xα = X then C ′ can now solve equation 5.1 for x, the discrete

logarithm of Xc = Xα = X. The probability that Xc = Xα is 1/2 since Xα = X was

chosen randomly from the set of participants and we know that Xc = Xα or Xd = Xα.

From Cases 1 and 2 we find that the probability that C ′ can solve equation 5.1 for the

discrete logarithm of X is at least

γ = min{η/2,
η(q − µ1µ2)

2q
} =

η(q − µ1µ2)
2q

which is non-negligible in security parameter l.

Since the NG Forking Lemma produces a second appropriate signature with expected

time at most τ ′ = 120686µsτ , we find that C ′ can solve the discrete logarithm problem in

expected time τ ′/γ = 120686µsτ/γ.

This contradicts the hardness of the discrete logarithm problem. Therefore no such

polynomially bounded adversary B can have non-negligible probability of winning the NG

signature unforgeability game, and in turn no polynomially bounded adversary E can have

non-negligible probability of winning the unforgeability game of Section 5.3.3.

¤

Theorem 5.4 The concurrent signature scheme of Section 5.4 is fair in the random oracle

model.

Proof: We suppose that H1 and H2 are random oracles, and suppose that there exists

an algorithm E that with non-negligible probability wins the fairness game of Section

5.3.4. At the end of the game, we assume that E outputs outputs a keystone k ∈ K, and

S = 〈σ,Xc, Xd,m〉 where σ = 〈s, hc, f〉, s ∈ S, hc, f ∈ F , Xc, Xd ∈ PK, Xd 6= Xc and

m ∈M, where 〈k, 2, S〉 is accepted by CSVerify and one of the following cases holds:

110

5.6 Extensions and Open Problems

1. f was a previous output from a KCommit query and no KReveal query on input

f was made, or

2. E also produces S′ = 〈σ′, Xd, Xc,m
′〉, with σ′ = 〈s′, h′c, f〉, s′ ∈ S, h′c, f ∈ F , and

message m′ ∈ M, where NTVerify(S′) returns accept, but 〈k, 2, S′〉 is not accepted

by CSVerify.

We show that such an E cannot exist.

Suppose case 1 of the output conditions occurs. Then E has found a keystone k and

an output of a KCommit query f such that f = H1(k), but without making a KReveal

query on input f . Since H1 is a random oracle, E’s probability of producing such a k is

at most µ1µ2/q, where µ1 is the number of H1 queries made by E and µ2 is the number

of KCommit queries made by E. Since both µ1 and µ2 are polynomially bounded in

the security parameter l and q is exponential in l, this probability is negligible. This

contradicts our assumption that E wins the game with non-negligible probability, so Case

1 cannot occur.

Suppose case 2 of the output conditions occurs. Since 〈k, 2, S〉 is accepted by CSVerify,

we must have that NTVerify(S) returns accept and KCommit(k)=f . But then, since S and

S′ share the value f and NTVerify(S′) returns accept, we must also have that 〈k, 2, S′〉 is

accepted by CSVerify. This is a contradiction, so Case 2 cannot occur. ¤

5.6 Extensions and Open Problems

5.6.1 The Scheme Can Use a Variety of Keys

Our concurrent signature scheme can be based on any ring signature scheme, as long as

it is of the correct form and compatible with the keystone idea. Thus it is feasible to

build concrete concurrent signature schemes using a variety of key types. The security of

such schemes could then be based on a variety of underlying hard problems. Furthermore,

the key pairs in a single concurrent signature scheme may be of different types if the

concurrent signature scheme is constructed using a separable ring signature scheme which

is compatible with the keystone idea.

5.6.2 The Multi-party Case

It would be interesting to see if concurrent signatures could be extended to the multi-party

case, that is, where many entities can fairly exchange signatures concurrently. The existing

111

5.6 Extensions and Open Problems

two party scheme can trivially be extended to include multiple matching signers by using

a ring signature scheme with the appropriate number of signers. However it appears to be

difficult to construct an appropriate model of security for fairness in the multiparty case.

We illustrate some of these issues by an example.

In the 2-party case, the matching signer is convinced of the initial signer’s participation

before responding. In the multiparty case, an intermediate signer may like assurance that

the following signers will be committed before the keystone is revealed. However this

release may be under the control of the initial signer, requiring the intermediate signers

to trust the initial signer more than is necessary in the 2-party case. It would therefore be

interesting to investigate methods whereby the revelation of keystones does not depend

entirely on the initial signer, but on the other signing parties as well.

Susilo et al. propose a solution for the tripartite case in [107], however so far there have

been no proposals extending the notion of concurrent signatures to the general multiparty

case.

5.6.3 Extensions to Concurrent Signatures

A few authors have extended the idea of concurrent signature schemes (as was presented

in [41]). In [108], Susilo et al. present the notion of perfect concurrent signatures. This

paper improves the notion of ambiguity in [41] (or non-transferability as we refer to it in

this chapter) by ensuring that even if both signers are known to be trustworthy, it is still

infeasible to determine which ambiguous (NT) signature corresponds to which signer. By

contrast, our ambiguous (NT) signatures use a common value, so if two signers are known

to have followed the protocol, then the position of the common value indicates the position

of the keystone which in turn indicates the true authorship of each signature. However

concurrent signatures are designed to be used in environments where signers do not trust

each other, so the value of the improvements made in [108] are questionable.

In parallel work to [108], Nguyen also presents a proposal to improve the ambiguity

(or non-transferability) properties of concurrent signatures in [89]. The goals of the two

papers appear to be very similar, although the solutions are slightly different.

The original work of [41] in fact briefly discusses the extension of concurrent signature

schemes to the identity-based setting, and argues that the extension is trivial. Neverthe-

less, Chow and Susilo extend the ideas in [108] to the identity-based setting in [44].

112

5.7 Conclusion

5.7 Conclusion

We introduced the notion of concurrent signatures, presented a concurrent signature

scheme and related its security to the hardness of the discrete logarithm problem in an

appropriate security model. We have also discussed some applications for concurrent signa-

tures, and the advantages they have over previous work. In particular, we have compared

concurrent signatures to techniques for fair exchange of signatures, and presented some

applications in which the full security of fair exchange may not be necessary and the more

pragmatic solution of concurrent signatures suffices.

113

Part II

Key Agreement Protocols

114

Chapter 6

Introduction to Key Agreement

6.1 Basic Concepts

We start by defining some fundamental concepts that will be necessary for our discussions

on key agreement protocols.

A protocol in which a shared secret intended for cryptographic use becomes available

to two or more parties is called a key establishment protocol. Key establishment protocols

result in shared secrets which are typically called session keys. A session key is usually

intended to be an ephemeral secret, i.e., a secret value which will only be used for a short

time period or session, after which it is securely erased.

The class of key establishment protocols may be subdivided into key transport protocols

and key agreement protocols which are defined as follows.

Definition 6.1 [87] A key transport protocol is a key establishment protocol where one

party creates or otherwise obtains a secret value, and securely transfers it to the other(s).

Definition 6.2 [87] A key agreement protocol is a key establishment technique in which a

shared secret is derived by two (or more) parties as a function of information contributed

by, or associated with, each of these, (ideally) such that no party can predetermine the

resulting value.

In this thesis we are concerned with key agreement rather than key transport, therefore

we focus on key agreement from now on.

When discussing communications on a channel, we require the following terminology:

Passes: The number of passes in a protocol is the total number of messages exchanged

in the protocol.

115

6.2 The Diffie-Hellman Protocol

Broadcast: A broadcast message is a message that is sent to every party in a protocol.

Rounds: A round consists of all the messages that can be sent and received in parallel

in a protocol.

These notions can be affected by the type of network in which the protocol is operating.

For example, not all networks allow messages to be broadcast, and in this case, a separate

message must be sent to all parties.

We occasionally call a generic execution of a protocol between two or more participants

a run of the protocol.

6.1.1 Adversarial Assumptions

As in Section 2.3, we define an adversary or attacker of a cryptographic protocol to be

an entity which tries to defeat the intended security objective of the protocol. A passive

adversary is one which only monitors communication channels. An active adversary is one

which attempts to delete, add, or in some way modify the transmissions on a channel. We

call such attacks made by an active adversary active attacks.

It is typically assumed that protocol messages are transmitted over channels or net-

works which are unprotected against attacks by an active adversary. When analyzing the

security of a protocol, we therefore assume that the adversary has complete control over

the network, with the ability to record, alter, delete, insert, redirect, reorder, replay past

messages, and inject new messages. In addition, it is common to assume that an adver-

sary is also capable of engaging unsuspecting authorized parties by initiating new protocol

executions.

6.2 The Diffie-Hellman Protocol

The Diffie-Hellman key agreement protocol [50] revolutionized cryptography by introduc-

ing a fundamental technique for constructing key agreement protocols. Diffie-Hellman

key agreement provided the first practical solution to the key distribution problem, allow-

ing two parties who previously had no shared secret to establish such a shared secret by

exchanging messages over an open channel.

Protocol 1 defines the original Diffie-Hellman protocol between two entities A and B.

Intuitively, the security of Protocol 1 appears to be related to the computational Diffie-

Hellman (CDH) problem (defined in Section 2.1.3) since a passive adversary would have

116

6.2 The Diffie-Hellman Protocol

Protocol 1: The Diffie-Hellman protocol (original version).

A and B begin by selecting an appropriate (large) prime p and a generator g of Z∗p.
The following steps must be taken each time a session key is required:

1. A selects an ephemeral random integer a, 1 ≤ a ≤ p− 2,

2. B selects an ephemeral random integer b, 1 ≤ b ≤ p− 2.

A and B then exchange the following messages, in either order:

A −→ B : ga mod p

B −→ A : gb mod p

On receipt of the message gb mod p, A computes KA = (gb mod p)a mod p, and on
receipt of the message ga mod p, B computes KB = (ga mod p)b mod p. We find
that KA = KB = K = gab mod p which can be used as a secret session key shared
between A and B. The ephemeral values a and b should be erased on completion of
the protocol.

to solve the CDH problem in order to determine the session key. In fact, when analyzed

in an appropriate security model in which the adversary’s task is to distinguish session

keys from random strings, the security of this protocol is related to the decisional Diffie-

Hellman problem (also defined in Section 2.1.3), and only provides secrecy of the resulting

key against passive adversaries.

The original Diffie-Hellman protocol is in fact insecure against active adversaries since

neither A nor B have any assurance of the source of the messages they receive or the

identity of the party with whom they share the resulting key. This is demonstrated by a

well-known attack on the original Diffie-Hellman protocol, known as a man-in-the-middle

attack.

6.2.1 Man-in-the-Middle Attacks

The man-in-the-middle attack on Protocol 1 works as follows.

As for Protocol 1, we assume that A and B have selected an appropriate (large) prime

p and a generator g of Z∗p, and the following steps have been performed:

1. A selects an ephemeral random integer a, 1 ≤ a ≤ p− 2,

2. B selects an ephemeral random integer b, 1 ≤ b ≤ p− 2.

If an adversary E wishes to launch a man-in-the-middle attack on this protocol run,

117

6.3 Authenticated Key Agreement

E selects ephemeral random integers a′, b′, 1 ≤ a′, b′ ≤ p− 2. A and B then transmit the

following messages, which E intercepts and replaces as follows:

A E B

ga mod p −→ ga′ mod p −→
←− gb′ mod p ←− gb mod p

On receipt of the message gb′ mod p, A computes KA = (gb′ mod p)a mod p, and E

computes KEA = (ga mod p)b′ mod p.

On receipt of the message ga′ mod p, B computes KB = (ga′ mod p)b mod p, and E

computes KEB = (gb mod p)a′ mod p.

Although A and B believe that they share a key, they do not since KA 6= KB. Instead,

A shares a key KA = KEA with E, and B shares a key KB = KEB with E.

Now when A sends a message to B encrypted with KA, E can decipher it with KEA,

re-encrypt it with KEB, and send it to B. Similarly, E can decrypt messages sent by B

to A with KEB, re-encrypt them with KEA, and send them to A. In this way, A and B

believe that they share a secure channel, while in fact E controls all the communication

between them.

6.3 Authenticated Key Agreement

Protocol 1 is vulnerable to a man-in-the-middle attack since it not authenticated. By

this we mean that entities who participate in the protocol have no way of verifying the

identities of other entities with whom they may share the resulting key.

We now informally define some notions of authentication for key agreement protocols.

Although the following notions apply to key establishment protocols in general, we are

concerned only with key agreement protocols and therefore restrict our definitions to this

case. The following definitions are formalized later in the thesis.

Definition 6.3 [87] Key authentication is the property whereby one party is assured that

no other party aside from a specifically identified second party (and possibly additional

identified trusted parties) may gain access to a particular secret key.

Definition 6.4 An authenticated key agreement protocol is a key agreement protocol

which provides key authentication.

We suppose that entity A runs an authenticated key agreement protocol Π. The key

authentication property of Π does not guarantee that the second party (B, say) actually

118

6.3 Authenticated Key Agreement

possesses the secret key, or that B was even involved in the protocol run. However it does

guarantee that if any entity other than A can compute the secret key, then that entity

must be B. For this reason, key authentication is sometimes referred to more precisely as

(implicit) key authentication.

Definition 6.5 [87] Key confirmation is the property whereby one party is assured that

a second (possibly unidentified) party actually has possession of a particular secret key.

In practice, there are various ways to demonstrate possession of a key, including pro-

ducing a one-way hash of the key itself or encrypting a known value using the key. The

disadvantage of such methods is that some information about the value of the key is

revealed, even if the information is not useful to a computationally bounded adversary.

Alternatively, zero-knowledge techniques [34, 59, 62] may be employed to demonstrate

possession of a key while providing no additional information regarding its value.

Definition 6.6 [87] Explicit key authentication is the property obtained when both (im-

plicit) key authentication and key confirmation hold.

Definition 6.7 [87] Entity authentication is the process whereby one party is assured

(through the acquisition of corroborative evidence) of the identity of a second party in-

volved in a protocol and that the second party actually participated in the protocol.

The guarantee that the second party actually participated in the protocol ensures

that the corroborative evidence that the first party receives is fresh, meaning that it is

new evidence and has not simply been replayed (by some unauthorized entity) from some

previous interaction with the second party.

Entity authentication is not a requirement in all protocols, although it can be used

as a tool to construct authenticated key agreement protocols. However in this case, it is

critical that in such a protocol, the party whose identity is corroborated is the same party

with which the key is agreed.

There are many ways in which a key agreement may be authenticated. For example,

entities that share a long-term secret may wish to generate an ephemeral secret session

key. In this case, the entities may make use of the long-term shared secret in order to

authenticate a key agreement protocol. An alternative approach is to use public key cryp-

tography (where each entity has a long-term public and private key pair) to authenticate

the key agreement protocol. In this case, certificates (or some PKI) would be required to

authenticate the public keys. We examine this approach in more detail in the next section.

119

6.3 Authenticated Key Agreement

6.3.1 Security Attributes

There are a number of ways in which an attacker can attempt to break a key agreement

protocol, and when constructing a key agreement protocol, the designer must consider

what types of attack the protocol must resist.

Such analysis has let to the development of various desirable security attributes for key

agreement protocols. We list the most common ones as described in [16, 76, 87]. These

attributes can be vital in excluding certain realistic attacks.

Known session key security: A protocol has known session key security if knowledge

of previous session keys does not allow an adversary to compromise other previous

session keys or future session keys.

(Perfect) forward secrecy: A protocol has forward secrecy if the compromise of the

long term private keys of one or more entities does not lead to the compromise of

previously agreed session keys in the presence of a passive adversary. Perfect forward

secrecy refers to the scenario when the long term private keys of all participating

entities are compromised.

No key-compromise impersonation: When an adversary compromises an entity A’s

long-term private key, then an adversary can of course impersonate A. However a

protocol is resistant to key compromise impersonation attacks if, after capturing A’s

long-term private key, an adversary cannot impersonate other entities to A in a key

agreement protocol and obtain the resulting session key.

No unknown key-share: A key agreement protocol is resistant to unknown key-share

attacks if an entity cannot be coerced into sharing a session key with a different party

to the one intended without their knowledge. For example, A cannot be coerced into

sharing a key with B when in fact A believes the key is shared with C. Unknown

key-share attacks may lead to confusion when the key is applied. In such attacks,

the adversary may even be one of the parties A, B or C.

No key control: A key agreement protocol has no key control if none of the participants

(or an adversary) can force the session key to be a preselected value (or to lie within

a small set of values), or predict the value of the session key. Mitchell et al. [88]

discuss how the responder in a protocol almost always has an unfair advantage

in controlling the value of the established session key. This can be avoided by

120

6.3 Authenticated Key Agreement

the use of commitments, although this seems to always require an extra round of

communication.

Other attributes that are often desirable for key agreement protocols include:

Key freshness: A key is fresh if it can be guaranteed to be new (i.e. it is not an old key

being reused). This is related to key control.

Efficiency: A protocol is efficient if its computational and communication complexity

is minimized. Computational complexity is affected by the cost of the computa-

tions required by the protocol and the amount of precomputation that is possible.

Communication complexity is affected by the number of passes and rounds that the

protocol requires and the type of network being used.

Role symmetry: A protocol has role symmetry when the messages transmitted and the

computations performed by all entities have the same structure.

Role symmetry is often a desirable attribute since it can simplify the implementation

of a key agreement protocol. However, as we shall see in Chapter 7, role symmetry is in

fact disallowed by many security models.

6.3.2 Authenticated Diffie-Hellman Protocols

We present some examples of simple protocols which provide implicit authentication for

the original Diffie-Hellman protocol (Protocol 1) using public key techniques. We describe

two of the authenticated key agreement protocols presented by Blake-Wilson et al. [16].

We start by describing [16, Protocol 3]. As in Protocol 1, we define the protocol

between entities A and B who can communicate over an open channel and who wish

to generate a shared secret session key. Since the protocol uses public key techniques

for authentication, A and B require public and private key pairs 〈XA, xA〉 and 〈XB, xB〉
respectively.

We assume that p and q are large primes where q|(p − 1), and g is an element of Z∗p
of order q. We also assume that H : {0, 1}∗ → {0, 1}l is a cryptographic hash function for

a fixed value l (usually the security parameter). We assume that xA and xB are chosen

randomly from Z∗q and that XA = gxA mod p and XB = gxB mod p.

The next protocol we describe is [16, Protocol 4]. It is very similar to Protocol 2

above except that the session key is generated in a slightly different way. Although the

121

6.3 Authenticated Key Agreement

Protocol 2: Protocol 3 of [16].

The following steps must be taken each time a session key is required:

1. A selects an ephemeral random integer a ∈ Zq,

2. B selects an ephemeral random integer b ∈ Zq.

A and B then exchange the following messages, in either order:

A −→ B : TA = ga mod p

B −→ A : TB = gb mod p

On receipt of the message gb mod p, A computes

KA = H(T a
B mod p,XxA

B mod p),

and on receipt of the message ga mod p, B computes

KB = H(T b
A mod p,XxB

A mod p).

We find that KA = KB = K = H(gab mod p, gxAxB mod p) which can be used as a
secret session key shared between A and B. The ephemeral values a and b are
erased on completion of the protocol.

change seems to be a minor one, the resulting protocol, Protocol 3, has different security

properties to Protocol 2 as will be discussed in Section 6.3.3.

We assume once again that p and q are large primes where q|(p − 1), and g is an

element of Z∗p of order q. We also assume that A and B have public and private key pairs

〈XA, xA〉 and 〈XB, xB〉 respectively which are generated as in Protocol 2.

We notice that in Protocol 3, the order of the message flows is important in computing

the key. The initiator of the protocol (in this case the initiator is A since she sent the first

message in the protocol) computes the session key in a different way to the responder (B

in this case). If there is confusion about who initiated the protocol (e.g. A and B both

believe that they initiated the protocol) then A and B will not generate the same session

key.

6.3.3 Security Attributes of Protocols 2 and 3

We now informally examine whether Protocols 2 and 3 appear to have the security at-

tributes of known-key security, (perfect) forward secrecy and resistance to key compromise

impersonation attacks. Despite the apparent similarity between Protocols 2 and 3, the

122

6.3 Authenticated Key Agreement

Protocol 3: Protocol 4 of [16].

The following steps must be taken each time a session key is required:

1. A selects an ephemeral random integer a ∈ Zq,

2. B selects an ephemeral random integer b ∈ Zq.

A and B then exchange the following messages, in the following order:

A −→ B : TA = ga mod p

B −→ A : TB = gb mod p

On receipt of the message gb mod p, A computes

KA = H(T xA
B mod p,Xa

B mod p),

and on receipt of the message ga mod p, B computes

KB = H(Xb
A mod p, T xB

A mod p).

We find that KA = KB = K = H(gxAb mod p, gxBa mod p) which can be used as a
secret session key shared between A and B. The ephemeral values a and b are
erased on completion of the protocol.

results of this analysis clearly illustrate some of the differences between the two protocols.

We give informal arguments why each protocol does or does not not appear to have each

of the security attributes considered.

Known session key security: Protocols 2 and 3 both appear to have known key secu-

rity since it does not seem to be feasible for an adversary to gain knowledge of a

new session key given knowledge of previous session keys. The main reason for this

is that session keys are generated as outputs of a cryptographic hash function, and

the inputs to this hash function change for each new session key established. If we

assume that the hash function is one-way, then the adversary cannot determine the

inputs to the hash function from the output. The adversary therefore does not learn

any information from previous session keys that may be useful in determining the

value of a new session key.

(Perfect) forward secrecy: Protocol 2 appears to have perfect forward secrecy. This is

because even if an adversary knows the private keys xA and xB, the adversary cannot

compute gab mod p from the values TA and TB if we assume that the computational

Diffie-Hellman problem is hard.

123

6.3 Authenticated Key Agreement

On the other hand, Protocol 3 does not have perfect forward secrecy since given the

private keys xA and xB and the values TA and TB the adversary can compute the

session key. However Protocol 3 does appear to have what might be called partial

forward secrecy, since an adversary would need both private keys to compute the

session key. With only one private key, the adversary would only be able to compute

one of the inputs to the hash function, not both.

No key-compromise impersonation: Protocol 2 is not resistant to key compromise

impersonation attacks. Given A’s private key xA, an adversary E could pretend to

be B by choosing a value b ∈ Zq, computing TB = gb mod p, and sending this to

A. E would receive A’s value TA in response. Now E can compute the value KA as

H(XxA
B mod p, T b

A mod p), and E now shares a key with A, while A believes her key

is shared with B.

On the other hand, Protocol 3 appears to be resistant to key compromise imperson-

ation attacks since it appears to be infeasible for an adversary to compute a session

key from the values xA, XB, TA and b.

It can be seen from the three security attributes analyzed above that Protocols 2 and

3 do indeed provide different security guarantees, despite their similarity. We do not

consider whether Protocols 2 and 3 are resistant to unknown key-share attacks and key

control since these properties require more complex analysis to establish.

The question of whether Protocols 2 and 3 should be considered secure depends on

one’s definition of security. Constructing a good definition of security for authenticated

key agreement protocols is not a trivial task, and is the subject of Chapter 7.

124

Chapter 7

Models of Security for Key
Agreement Protocols

7.1 Introduction

The design and analysis of key agreement protocols has proven to be a non-trivial task.

Since the pioneering paper by Diffie and Hellman [50] which presented a solution for

unauthenticated key agreement based on asymmetric techniques, many attempts have been

made to construct key agreement protocols that provide implicit or explicit authentication.

Initially, protocol analysis was heuristic, and protocols were evaluated against known

attack methods and recommended security attributes such as those listed in Section 6.3.1.

However this was no guarantee that a given protocol would not fall prey to some new form

of attack.

In 1993 Bellare and Rogaway [12] proposed the first formal treatment for the analysis

of security of authenticated key agreement protocols. Their aim was to provide better

security guarantees than are attainable from heuristic analysis. They proposed defini-

tions for secure authenticated key agreement protocols as well as secure authenticated key

agreement protocols with key confirmation using an appropriate security model. We refer

to the model of Bellare and Rogaway [12] as the BR model.

Their model of security assumes that any two communicating parties have a shared

long-term secret which can be used for authentication within the protocol. They also

model multiple communicating parties who can participate in concurrent protocol runs.

In their model the adversary is assumed to have complete control over the network.

Shortly after this work, Bellare and Rogaway adapted their original model of secu-

rity to the 3-party case, in which a trusted authority participates in the key agreement

125

7.2 The BJM Model

protocol [13] Other works [9, 16, 17] adapted the original BR model to the public key

setting. Further extensions of the BR model include adaptations to the smart-card based

setting [102], the identity-based setting [39], the tripartite key agreement setting [3], and

adaptations to model dictionary attacks (in the password-based setting) [78, 10, 64].

Since the work in this thesis focusses on key agreement protocols in the public key

setting, we present the security model of Blake-Wilson, Johnson and Menezes [16] (which

we call the BJM model). This is possibly the most well-known adaptation of the BR model

to the public key setting. In this model, each participant is assumed to possess a public

and private key pair (where the public key is authenticated via some PKI), and these keys

are used to provide authentication within the key agreement protocol.

7.2 The BJM Model

As in the original paper by Bellare and Rogaway [12], Blake-Wilson et al. [16] provide

definitions of security for authenticated key agreement protocols (which they call AK

protocols) and authenticated key agreement protocols with key confirmation (which they

call AKC protocols). Although much of the notation we use follows that in [16], we change

some of the notation to be consistent with subsequent models presented in this chapter.

This will simplify comparisons between the models. We also present some aspects of the

security model slightly differently to the way in which they are presented in [16], but this

does not affect the functionality of the security model or the definition of security.

In the BJM model, all communication between protocol participants is controlled by

the adversary. This is achieved by modeling protocol participants by oracles, who com-

municate only with the adversary. Oracles therefore never communicate directly with

one another, only indirectly via the adversary. The adversary can read messages sent by

oracles, provide its own messages, modify messages and delay or erase messages. The

adversary may also initiate protocols, modeling the ability of parties to engage in many

sessions of the protocol in parallel.

Although not usually made explicit in security models for key agreement, we assume

that the key agreement protocol Π being run has some algorithm Setup. On input a

security parameter l, Setup generates the public parameters params for the protocol. We

also assume that there is a key generation algorithm KeyGen which on input params

generates a public and private key pair 〈PK,SK〉 for a given protocol participant.

126

7.2 The BJM Model

7.2.1 Protocol Participants

The model includes a set U of participant identifiers (IDs), and each instance of a partic-

ipant is modeled by an oracle, e.g. Πi
U,V would model a participant U ∈ U carrying out

a protocol session in the belief that it is communicating with another participant V ∈ U ,

which we call U ’s intended partner, for the ith time (i.e. the ith run of the protocol be-

tween U and V). Each oracle Πi
U,V keeps a public transcript T i

U,V which records messages

that it has sent or received as a result of queries it has answered. Participant oracles are

modeled by probabilistic polynomial time Turing machines.

Each participant U ∈ U has a public and private key pair 〈PKU , SKU 〉 which we

assume is authenticated by some CA (or via some PKI), and each oracle instance of U

has access to these keys.

When an oracle Πi
U,V receives some input M , it is recorded on T i

U,V and Πi
U,V proceeds

according to the protocol. If the oracle produces some output, then this is also recorded

on T i
U,V .

At any stage, Πi
U,V may be in one of three states. The state of Πi

U,V is denoted δi
U,V

and can be set to one of the following:

undecided: This is the initial state of the oracle and means that Πi
U,V has not yet termi-

nated the protocol.

accepted: This is the state of the oracle if it has successfully terminated the protocol

holding some session key ski
U,V .

rejected: This is the state of the oracle if it has terminated the protocol without holding

a session key.

Upon termination, the oracle state (but not the session key if any) is recorded on the

transcript T i
U,V

The model also includes an adversary, E, who is not a participant. E is modeled by a

probabilistic polynomial time Turing Machine and can interact with all the participants’

oracles via queries. In addition E has access to the transcript of each oracle. Participant

oracles only respond to queries by the adversary and do not communicate directly amongst

themselves.

127

7.2 The BJM Model

7.2.2 Oracle Queries

In attacking a key agreement protocol, we allow an adversary E to interact with a chal-

lenger C that simulates a set of participant oracles running the protocol. E can interact

with the oracles by making various queries, and the responses are simulated by C.

For some security parameter l, C runs the Setup algorithm to generate the public

parameters params. C also generates a set of participant IDs U , where |U|=nP and nP

is a polynomial function of l. For each participant U ∈ U , C runs the KeyGen algorithm

to generate a public and private key pair 〈PKU , SKU 〉. In addition, we assume that each

participant U ∈ U can engage in at most nS sessions with any other participant V ∈ U
where nS is a polynomial function in l.

The set of oracles with which E can interact is

{Πi
U,V : U, V ∈ U , i ∈ {1, ..., nS}}

where each oracle Πi
U,V has access to the public and private keys of participant U , the

public parameters, and the public keys of all the other participants. E is given params, U
and all the public keys. In addition, E has access to the oracle transcripts and can make

the following queries:

Send(Πi
U,V ,M): E can send message M to Πi

U,V . M is recorded on T i
U,V and C (simu-

lating Πi
U,V) responds according to the protocol. Any output is recorded on T i

U,V .

If M = λ, then Πi
U,V initiates a protocol run (with intended partner V). An oracle

Πi
U,V is called an initiator oracle if the first message it has received is λ. If Πi

U,V did

not receive a message λ as its first message, then it is called a responder oracle.

Reveal(Πi
U,V): E may request the session key held by Πi

U,V . If Πi
U,V has accepted (i.e.

δi
U,V =accepted) and holds a session key ski

U,V , then this is output. An oracle Πi
U,V

is called revealed if it has responded to a Reveal query.

Corrupt(U,PK ′
U , SK ′

U): E may request the long-term private key of participant U , or

may choose to replace U ’s key pair with the key pair 〈PK ′
U , SK ′

U 〉. C outputs

SKU , and replaces U ’s key pair 〈PKU , SKU 〉 with 〈PK ′
U , SK ′

U 〉. All corresponding

participant oracles are updated with the new key pair. A participant U is called

corrupted if U has responded to a Corrupt query.

We say that E has revealed an oracle if it has issued a Reveal query to that oracle,

and E has corrupted a participant if it has issued a Corrupt query to that participant.

128

7.2 The BJM Model

7.2.3 Matching Conversations

The BJM model defines the notion of a matching conversation, which is used to reason

about two oracles that have engaged in communication (via the adversary).

In order to determine whether two oracles have had a matching conversation, we

examine the transcripts of the oracles in the presence of an adversary. For any oracle

Πi
U,V , its conversation is captured on its transcript T i

U,V , which can be represented by a

sequence:

T i
U,V = (τ1, α1, β1), (τ2, α2, β2), ..., (τm, αm, βm)

This sequence records that at time τ1, oracle Πi
U,V received α1 and output β1, then at

time τ2 > τ1, the oracle received α2 and output β2, and so on, until at time τm, the oracle

received αm and output βm.

In a particular execution of a protocol, the adversary’s i-th query to an oracle is said

to occur at time τ = τi. We do not specify an exact value for a given time τi, but we

demand that τi < τj when i < j. Notions of time that satisfy these requirements include

“abstract time” where τi = i, or “Turing machine time” where τi is the i-th step in the

adversary’s computation.

We notice that if α1 = λ, then Πi
U,V is an initiator oracle, otherwise Πi

U,V is a responder

oracle. In what follows, we assume that the number of message passes R in the protocol

is odd, so R = 2γ + 1 for some γ ∈ N. The case for R even is analogous.

Definition 7.1 [16] Consider two oracles Πi
U,V and Πj

V,U who run Π in the presence of

an adversary E, where Πi
U,V is an initiator oracle with transcript T i

U,V , and Πj
V,U is a

responder oracle with transcript T j
V,U . If there exist τ0, τ1, .., τR such that T i

U,V is prefixed

by

(τ0, α0 = λ, β0), (τ2, β1, β2), ..., (τR−1, βR−2, βR−1)

and T j
V,U is prefixed by

(τ1, β0, β1), (τ3, β2, β3), ..., (τR, βR−1, ∗)

then we say that Πi
U,V and Πj

V,U have engaged in a matching conversation.

We note that in T j
V,U , the value ∗ means that any entry, possibly none, is allowed here.

The definition of matching conversations models the situation where a participant

U believes he is communicating with a participant V (and vice versa), one of them is

the initiator and the other is the responder, and the adversary acts like a wire, and

129

7.2 The BJM Model

simply passes messages unaltered to and fro between the participants. We refer to such

an adversary as a benign adversary.

If an oracle Πi
U,V has had a matching conversation with one of its intended partner’s

(V ’s) oracles Πj
V,U , then we say that Πj

V,U is the matching oracle of Πi
U,V (and vice versa).

7.2.4 Freshness

The adversary can learn information about various session keys through its queries, since

it can obtain session keys of any oracle that has accepted a session key via a Reveal query,

and it can obtain the long-term private key of any participant via a Corrupt query.

However in order to model the security of a key agreement protocol, we need to identify

oracles about whose session keys the adversary should not have learned any information.

Such oracles are called fresh.

Definition 7.2 An oracle Πi
U,V is called fresh if it has accepted (and therefore holds a

session key ski
U,V), it is not revealed, neither U nor V has been corrupted, and there is no

revealed oracle Πj
V,U with which it has had a matching conversation.

It is important to note that an oracle Πi
U,V may be fresh but may not have had a

matching conversation with any oracle at all (i.e. it may not have a matching oracle).

This is possible since all oracles communicate only with the adversary and never directly

between themselves. Indeed, the adversary may be able to format its messages to Πi
U,V in

such a way that Πi
U,V accepts, but no other oracle is involved in the protocol run.

7.2.5 The BJM Game and Test Query

The security of a key agreement protocol is modeled via the following game between a

challenger C and an adversary E.

Initialization(l): On input a security parameter l, C runs the Setup algorithm to gen-

erate the system parameters params. C also generates a set of participant IDs U ,

where |U| = nP and nP is a polynomial function of l. For each participant U ∈ U , C

runs the KeyGen algorithm to generate a public and private key pair 〈PKU , SKU 〉.
Each oracle Πi

U,V for any V ∈ U and i ∈ {1, ..., nS} will have access to the private

key SKU . In addition, we assume that each participant U ∈ U can engage in at

most nS sessions with another participant V ∈ U where nS is a polynomial function

in l. E is given params, U and all the public keys.

130

7.2 The BJM Model

Phase 1: C simulates a set of oracles

{Πi
U,V : U, V ∈ U , i ∈ {1, ..., nS}}.

to which E can make Send, Reveal and Corrupt queries as were defined in Section

7.2.2.

Test(Πi
U∗,V ∗): At some point, E may make a Test query to some fresh oracle Πi

U∗,V ∗ . C

randomly selects a bit b. If b = 1, then C outputs the session key ski
U∗,V ∗ , otherwise

C outputs a randomly chosen element from the session key space.

Phase 2: E can continue making Send, Reveal and Corrupt queries to the oracles,

except that E is forbidden from revealing Πi
U∗,V ∗ or its matching oracle (if any), and

E cannot corrupt U∗ or V ∗.

Output: Finally E outputs a bit b′.

E wins the game if b = b′, and we define E’s advantage in winning the game as

AdvantageE(l) = |Pr[b′ = b]− 1/2|.

We note that the original game in [16] was not adaptive, i.e. the Test query was the

final query that the adversary could make, so there was no Phase 2. However the non-

adaptive model was shown to be insufficiently powerful by Rackoff, and the model was

fixed in [9]. We have adopted this fix here, and have presented the adaptive version of the

model of [16].

7.2.6 AK security

We now present the definition of an authenticated key agreement (AK) protocol, as given

in [16].

Definition 7.3 A protocol Π is a secure AK protocol if the following two conditions hold:

1. In the presence of the benign adversary, oracles Πi
U,V and Πj

V,U always accept holding

the same session key sk = ski
U,V = skj

V,U , and sk is distributed uniformly at random

over the session key space.

2. For every adversary E:

(a) If oracles Πi
U,V and Πj

V,U have matching conversations and U and V are uncor-

rupted, then both oracles accept holding the same session key sk;

(b) AdvantageE(l) is negligible in l.

131

7.2 The BJM Model

7.2.6.1 Notes on AK Security

Conditions 1 and 2(a) in the definition of AK security simply guarantee that the protocol

is correct and achieves its goal when not under attack. In fact, conditions 1 and 2(a) are

almost identical and indeed condition 1 may be discarded if we include the session key

uniformity in 2(a).

The condition 2(b) guarantees that an adversary cannot distinguish a fresh oracle’s

session key from random, i.e. an adversary can learn no information about a fresh oracle’s

session key, even by making Send, Reveal and Corrupt queries to any oracles (except

the fresh oracle and its intended partner).

A condition that is not immediately obvious, but which is implied by the model, is

that if an adversary E can, with non-negligible probability, make any two oracles running

protocol Π accept and hold the same session key sk, where the oracles are not matching

oracles, then E can win the game with non-negligible probability. In this instance, Π is

not a secure AK protocol.

This property is best illustrated by the following example. Suppose that with non-

negligible probability η, E can make Πi
U,V and Πj

K,L accept, holding the same session key

sk, but where Πi
U,V and Πj

K,L are not matching oracles (since they did not have a matching

conversation). Then E can reveal the session key sk held by Πj
K,L, and can select Πi

U,V

for the Test query (this is allowed because Πi
U,V is still considered to be fresh). E can

now win the game with probability η since it knows the session key sk of Πi
U,V .

This condition implies that for any secure AK protocol, if oracles Πi
U,V and Πj

K,L

accept holding the same session key, then with overwhelming probability they are matching

oracles (i.e. they have had a matching conversation). This result, together with condition

2(a) of the security definition means that, with overwhelming probability, two oracles Πi
U,V

and Πj
K,L running a secure AK protocol accept holding the same session key if and only

if they are matching oracles.

7.2.7 AKC security

In order to define security for authenticated key agreement protocols with key confirma-

tion, we require one further notion.

We consider an adversary E interacting with a challenger C simulating a set of oracles

{Πi
U,V : U, V ∈ U , i ∈ {1, ..., nS}} running protocol Π. As in the game above, we allow

the adversary to make Send, Reveal and Corrupt queries to the oracles. We then let

132

7.2 The BJM Model

No-MatchingE(l) denote the event that at some point during the interaction between the

oracles and E, there exists an oracle Πi
U,V which has accepted (and which holds a session

key ski
U,V), where U and V are uncorrupted, but where Πi

U,V did not have a matching

conversation with any other oracle Πj
V,U .

We now present the definition of an authenticated key agreement protocol with key

confirmation (AKC protocol), as given in [16].

Definition 7.4 A protocol Π is a secure AKC protocol if the following two conditions

hold:

1. In the presence of the benign adversary, oracles Πi
U,V and Πj

V,U always accept holding

the same session key sk = ski
U,V = skj

V,U , and sk is distributed uniformly at random

over the session key space;

2. For every adversary E:

(a) If oracles Πi
U,V and Πj

V,U have matching conversations and U and V are uncor-

rupted, then both oracles accept holding the same session key sk;

(b) The probability of No-MatchingE(l) is negligible;

(c) AdvantageE(l) is negligible in l.

7.2.7.1 Notes on AKC Security

Conditions 1, 2(a) and 2(c) of the AKC definition are the same as those in the AK

definition, so a secure AKC protocol is a secure AK protocol. However the definition of

AKC security has the additional No-Matching condition 2(b).

The No-Matching condition means that in a secure AKC protocol, the only way for an

adversary to get an uncorrupted entity to accept in a run of the protocol with any other

uncorrupted entity is by allowing it to have a matching conversation with another oracle

(i.e. relaying communications like a wire).

The No-matching condition together with condition 2(a) ensures that in a secure AKC

protocol, an oracle Πi
U,V will accept if and only if it had a matching conversation with

some other oracle Πj
V,U . In addition, condition 2(a) ensures that if two oracles have had a

matching conversation, then they both accept holding the same session key. Therefore no

oracle Πi
U,V will accept unless it has indeed communicated with an oracle Πj

V,U and the

two oracles share the same key. This provides the property of key confirmation.

133

7.2 The BJM Model

7.2.8 Security Attributes of the BJM Model

We recall the security attributes presented in Section 6.3.1 which are commonly required of

authenticated key agreement protocols. We consider which of these attributes are implied

by the above definitions of secure AK or AKC protocols.

Known-key security: The property of known-key security is implied by the definitions

of AK and AKC security. This can be seen by the following two properties of the

model:

1. E is allowed to make Reveal queries to any oracles except for Πi
U∗,V ∗ and its

matching oracle Πj
V ∗,U∗ to obtain any session keys except for the session key

ski
U∗,V ∗ .

2. Even with the knowledge of many other session keys, E’s ability to distinguish

between ski
U∗,V ∗ and a random number is still negligible if Πi

U∗,V ∗ is fresh.

Unknown key-share: We recall that a key agreement protocol is resistant to unknown

key-share attacks if an entity cannot be coerced into sharing a session key with a

different party to the one intended without that entity’s knowledge.

Suppose that two oracles Πi
U,V and Πt

K,L share a session key. Then with overwhelm-

ing probability, we have that Πt
K,L = Πj

V,U for some j ∈ {1, ..., nS}. This is because,

as was pointed out in Section 7.2.6.1, the definitions of AK and AKC security imply

that if any two oracles share a session key, then with overwhelming probability, they

must have had matching conversations.

So U can only share a key with his intended partner (in this case V), and no unknown

key-share attack can succeed. Hence the definitions of AK and AKC security imply

resilience to unknown key-share attacks.

We note that the definitions of AK and AKC security do not imply that a secure

protocol has forward secrecy or is resistant to key compromise impersonation attacks.

In order to model these attacks, we would have to allow E to corrupt the participant

corresponding to the oracle on which it makes the Test query (or its intended partner),

and the definition of freshness in the BJM model does not allow this.

Moreover, the definitions of AK and AKC security do not imply resistance to key

control attacks that are launched by one of the protocol participants (although key control

attacks launched by an outside adversary are captured by the BJM model). In the BJM

134

7.3 A Modified BJM Model

model, all participants are assumed to be honest participants unless they are corrupted

(in which case E can impersonate a participant). But the BJM model does not allow E to

corrupt the participant corresponding to the oracle on which it will make a Test query (or

that oracle’s intended partner). However we do know that if the participants are honest

and the protocol is not attacked, then the session key established is distributed uniformly

at random in the session key space.

7.3 A Modified BJM Model

The BJM approach provides a reasonable model of security for authenticated key agree-

ment protocols. However it does not capture certain security attributes (such as forward

secrecy and resilience to key compromise impersonation attacks), and in some ways it ap-

pears to be unnecessarily complex. For example, the definition of matching conversations

is very complicated, and the notation Πj
U,V for oracles can be rather confusing, especially

since Πj
U,V may not be communicating with participant V at all.

We therefore present a modification of the BJM model (which we call the mBJM

model) which captures more attacks than the BJM model and which we believe simplifies

some of the concepts in the BJM model. Our modifications of the BJM model are inspired

largely by the model of Bellare et al. [10], which, although developed in the password-

based setting, addresses many of the issues of the BJM model. We will use our mBJM

model in the next chapter to examine the security of some concrete protocols.

The mBJM model presented in this chapter is based on the mBR model presented in

[73]. We have changed the name since the model is more closely related to the BJM model

than to the BR model.

Our model includes a set of participant IDs U , where each participant U ∈ U has a

long-term public key PKU and a long-term private key SKU . We use Πi
U to denote an

oracle modeling the ith instance of participant U .

Oracles follow the rules of the protocol, responding to input messages. Each oracle

maintains a public transcript T i
U which records all messages they have sent or received as

a result of queries they have answered.

At any stage Πi
U may be in one of three states. The state of Πi

U is denoted δi
U and can

be set to one of the following:

undecided: This is the initial state of the oracle and means that Πi
U has not yet terminated

the protocol.

135

7.3 A Modified BJM Model

accepted: This is the state of the oracle if it has successfully terminated the protocol

(accepted) holding some session key ski
U .

rejected: This is the state of the oracle if it has terminated the protocol without holding

a session key.

An oracle Πi
U may accept at any time, and once accepted it should hold a role rolei

U ∈
{initiator, responder}, a partner ID pidi

U ∈ U (this corresponds to the intended partner

in the BJM model and is the ID of the oracle with which it assumes it is communicating),

a session ID sidi
U and a session key ski

U . We note that the value i in Πi
U is not the same

as the sidi
U but rather an internal session counter for each oracle. This may act as an

internal identifier for the session until sidi
U is established, and thereafter the session is

(uniquely) identified by sidi
U . By the end of the protocol, the role, partner ID, session ID

and oracle state (but not the session key if any) are recorded on T i
U .

As in the BJM model, the mBJM model includes an adversary E that is modeled by

a probabilistic polynomial time Turing Machine. E can interact with all the participants’

oracles via queries and has access to the transcript of each oracle. Participant oracles only

respond to queries by the adversary and do not communicate directly amongst themselves.

7.3.0.1 Partners

Definition 7.5 When running the protocol, if oracles Πi
U holding (ski

U , sidi
U , pidi

U) and

Πj
U ′ holding (skj

U ′ , sid
j
U ′ , pidj

U ′) have both accepted and the following conditions hold:

1. sidi
U = sidj

U ′ , ski
U = skj

U ′ , pidi
U = U ′ and pidj

U ′ = U ,

2. rolei
U = initiator and rolej

U ′ = responder or vice versa,

3. No oracle in E’s game besides Πi
U or Πj

U ′ accepts with session ID equal to sidi
U ,

then Πi
U and Πj

U ′ are said to be partners.

This definition roughly corresponds to the definition of matching oracles in the BJM

model, and will be used to define freshness of an oracle in the mBJM game.

7.3.1 Oracle Queries

As in the BJM model, the security of a key agreement protocol is modelled via the following

game between a challenger C and an adversary E.

136

7.3 A Modified BJM Model

For some security parameter l, C runs the Setup algorithm to generate the system

parameters params. C also generates a set of participant IDs U , where |U|=nP and nP

is a polynomial function of l. For each participant U ∈ U , C runs the KeyGen algorithm

to generate a public and private key pair 〈PKU , SKU 〉. In addition, we assume that each

participant U ∈ U can engage in at most nS sessions with any other participant V ∈ U
where nS is a polynomial function in l.

The set of oracles with which E can interact is

{Πi
U : U ∈ U , i ∈ {1, ..., nS}}

where each oracle Πi
U has access to the public and private keys of participant U , the public

parameters, and the public keys of all the other participants. E is given params, U and

all the public keys. In addition, E has access to the oracle transcripts and can make the

following queries:

Send(Πi
U ,M): E can send the oracle Πi

U a message M . M is recorded on T i
U and Πi

U

responds according to the protocol. Any output is recorded on T i
U . If M = λ

and M is the first message received by Πi
U , then Πi

U initiates a protocol run (with

some intended partner pidi
U), sets rolei

U = initiator. In this case Πi
U is called an

initiator oracle. If Πi
U did not receive a message λ as its first message, then it sets

rolei
U = responder and is called a responder oracle.

Reveal(Πi
U): E may request the session key held by Πi

U . If Πi
U has accepted and holds

a session key ski
U , then this is output. An oracle Πi

U is called revealed if it has

responded to a Reveal query.

Corrupt(U): E may request the long-term private key of participant U , and may choose

to replace U ’s key pair with the key pair 〈PK ′
U , SK ′

U 〉. C outputs SKU , and replaces

U ’s key pair 〈PKU , SKU 〉 with 〈PK ′
U , SK ′

U 〉. All corresponding participant oracles

are updated with the new key pair. A participant U is called corrupted if U has

responded to a Corrupt query.

We say that E has revealed an oracle if it has issued a Reveal query to that oracle,

and E has corrupted a participant if it has issued a Corrupt query to that participant.

7.3.2 Freshness

The definition of freshness serves the same purpose as in the BJM model, i.e. to identify

oracles about whose session keys the adversary should have learned no information.

137

7.3 A Modified BJM Model

Definition 7.6 An oracle Πi
U is called fresh if it is not revealed, it does not have a revealed

partner, and if the participant pidi
U is uncorrupted.

We note that, unlike in the BJM model, an oracle Πi
U may still be considered fresh if U

is corrupted. This will be important for modeling key compromise impersonation attacks.

7.3.3 The mBJM Game and the Test Query

As in the BJM model, the security of a key agreement protocol in our mBJM model is

modeled via a game between a challenger C and an adversary E. This game is as follows:

Initialization(l): On input a security parameter l, C runs the Setup algorithm to gen-

erate the system parameters params. C also generates a set of participant IDs U ,

where |U| = nP and nP is a polynomial function of l. For each participant U ∈ U , C

runs the KeyGen algorithm to generate a public and private key pair 〈PKU , SKU 〉.
Each oracle Πi

U for any i ∈ {1, ..., nS} will have access to the public and private key

pair 〈PKU , SKU 〉, as well as the public parameters and the public keys of all other

participants. In addition, we assume that each participant U ∈ U can engage in

at most nS sessions with any other participant U ′ ∈ U , where nS is a polynomial

function in l. E is given params, U and all the public keys.

Phase 1: C simulates a set of oracles

{Πi
U : U ∈ U , i ∈ {1, ..., nS}}.

to which E can make Send, Reveal and Corrupt queries as were defined in Section

7.3.1.

Test(Πi
U∗): At some point, E may make a Test query to some fresh oracle Πi

U∗ . C

randomly selects a bit b. If b = 1, then C outputs the session key ski
U∗ , otherwise C

outputs a randomly chosen element from the session key space.

Phase 2: E can continue making Send, Reveal and Corrupt queries to the oracles,

except that E is forbidden from revealing Πi
U∗ or its partner oracle (if any), and E

cannot corrupt participant pidi
U∗ .

Output: Finally E outputs a bit b′.

E wins the mBJM game if b = b′, and we define E’s advantage in winning the game as

AdvantageE(l) = |Pr[b′ = b]− 1/2|.

138

7.3 A Modified BJM Model

7.3.4 Definition of security

A benign adversary is defined as in the BJM model and is one who simply relays messages

between parties without modification. We then define the notion of a secure authenticated

key agreement protocol as follows:

Definition 7.7 A protocol is an mBJM-AK secure protocol if the following two conditions

hold:

1. In the presence of a benign adversary, two oracles running the protocol both accept

holding the same session key and session ID, and the session key is distributed

uniformly at random on the session key space.

2. For any adversary E, AdvantageE(l) is negligible.

We say that protocol Π is mBJM-AK insecure if it is not mBJM-AK secure. That is,

there exists an adversary E which, with non-negligible probability (in l), wins the mBJM

game against challenger C. We say that such an adversary E can successfully mBJM

attack protocol Π.

7.3.4.1 Notes on mBJM-AK Security

Our definition of mBJM-AK security is similar to the definition of AK security in the BJM

model. We recall that in the BJM model, the definition of AK security guaranteed that

if two oracles shared the same session key, then with overwhelming probability, they were

matching oracles. The analogous result for mBJM-AK security in the mBJM model is

that if two oracles running a secure mBJM-AK protocol accept holding the same session

key, then with overwhelming probability, they are partners. We recall that the converse

must be true since, by Definition 7.5, two oracles must share the same session key to be

partners.

Our model is very similar to the BJM model except that we work with partners instead

of matching oracles, we use the notion of partner IDs instead of the notation Πi
U,V , and we

allow a corrupted participant’s oracle to still be considered fresh. We allow this because

corruption in our mBJM model is simply a query to a participant which reveals the long-

term secret key of the participant. The adversary does not learn any other internal state of

the participant’s oracles and does not gain control of these oracles. Therefore a corrupted

participant’s oracle may still be considered to be fresh and can therefore still be chosen as

a Test oracle. This allows us to model key compromise impersonation attacks.

139

7.3 A Modified BJM Model

Most of these deviations from the BJM model are inspired by the model of Bellare et al.

[10]. The main difference between our mBJM model and that of [10] is that our model is in

the public key setting. In addition we do not explicitly distinguish between acceptance and

termination as is done in [10], and we do not model perfect forward secrecy. The perfect

forward secrecy property can be added as is done in [10] by permitting the adversary to

corrupt both participants of the Test session on the condition that the adversary does not

alter the massages transmitted in the Test session in any way.

7.3.5 Security Attributes of the mBJM Model

We recall that the definition of AK security ensured that a key agreement protocol has

known-key security and resistance to unknown key-share attacks. Using similar arguments

to Section 7.2.8, the same can be shown for key agreement protocols that are mBJM-AK

secure.

In addition, the definition of mBJM-AK security also ensures resistance to key com-

promise impersonation attacks. We recall from Section 6.3.1 that a key compromise im-

personation attack on an entity A has occurred if an adversary is able to impersonate some

other entity (say B) to A in a key agreement protocol and obtain the resulting session key

by compromising A’s long-term private key (but not B’s long-term private key). Such at-

tacks are captured by our model since the adversary is permitted to corrupt a participant,

continue to interact with the corrupted participant’s oracles, and then select one of these

oracles for a Test query.

Our definition of mBJM-AK security does not model perfect forward secrecy. However

as mentioned before, our model can be extended (as is done in [10]) to model perfect

forward secrecy as well.

We direct the reader to [8, 10, 12, 16, 32, 101] for details of alternative models illus-

trating different approaches to dealing with partnering, corruptions and freshness.

7.3.6 mBJM-AKC Security

The definition of mBJM-AK security can be extended to a definition of security in the

mBJM model for authenticated key agreement protocols with key confirmation (AKC)

protocols as is done in [16].

As for the definition of AKC security in Section 7.2.7, we require an additional condi-

tion, which we call No-Partnering. This is closely related to the No-Matching condition

in Definition 7.4. We let No-PartneringE(l) denote the event that at some point during

140

7.4 Identity-based Models

the interaction between the oracles and E, there exists an oracle Πi
U which has pidi

U = V

where V is uncorrupted, which has accepted (and which holds a session key ski
U), but

where Πi
U has no partner.

Definition 7.8 A protocol is an mBJM-AKC secure protocol if the following three con-

ditions hold:

1. In the presence of a benign adversary, two oracles running the protocol both accept

holding the same session key and session ID, and the session key is distributed

uniformly at random on the session key space.

2. The probability of No-PartneringE(l) is negligible;

3. For any adversary E, AdvantageE(l) is negligible.

7.4 Identity-based Models

The BJM and mBJM models are suitable for protocols in the standard public key setting.

However the models do need to be modified slightly in order to model protocols which use

identity-based long-term public and private keys. This is because identity-based public

keys can be derived from any identifying string in a dynamic way by the adversary. A

security model in an identity-based environment should adequately model such features

of the identity-based environment.

In the usual public key setting, the challenger determines the set of public keys at the

beginning of the game. By contrast, in the identity-based setting we allow the adversary

to generate identity-based public keys dynamically during the attack game.

Since public keys can always be derived from identifiers, when modeling protocols in

the identity-based setting, we therefore only need to work with the identifiers (IDs) of

protocol participants, and not their actual public keys.

We now consider how the BJM model can be adapted to the identity-based (ID-based)

setting. We call the identity-based version of the BJM model the ID-BJM model, and this

model will be required in the next chapter to examine the security of specific identity-based

key agreement protocols.

We note that similar changes would be required to adapt the mBJM model to the

identity-based setting, but this will not be required in this thesis, so we leave the details

to the reader.

141

7.4 Identity-based Models

7.4.1 The ID-BJM model

The ID-BJM model is very similar to the BJM model, with each participant having a

unique identifier U , and instances of U are modeled as oracles Πi
U,V , where this represents

participant U communicating with intended partner V for the i-th time. Each oracle main-

tains a transcript T i
U,V and state δi

U,V as in the BJM model, and matching conversations

are defined as before.

However in the ID-based setting, a participant’s public key is generated directly from

his identifier U . This means that the adversary E can generate new public keys from any

identifier of its choice. In order to model this, we therefore modify the oracle queries that

E can make.

As in the BJM model, E can make various queries to a challenger C that simulates a

set of oracles (or participants) running the protocol. However in the ID-based setting, C

does not generate a set of participant IDs beforehand. Rather, C sets U to be the ID space

(usually U = {0, 1}∗). The specific participant IDs will be chosen by E in the game itself,

and C will initialize new participants and their oracle instances as required. However the

number of new participant IDs that E can generate is bounded by some value nP , and

we also still assume that each participant U can engage in at most nS sessions with any

other participant V ∈ U , where nP and nS are polynomial functions in l.

C also simulates the trusted authority (TA) in this environment, and therefore gen-

erates the public parameters of the TA and gives these to E. C also generates a master

secret s from which it can generate a private key SKU from any given ID U . C keeps s

private. E can make the following queries:

Send(U, V, i,M): Message M is sent to Πi
U,V . If participants U and V do not yet exist,

then C firstly initializes these participants (and their oracle instances) and generates

their public and private keys using their IDs U and V and the master secret s. M

is recorded on T i
U,V and Πi

U,V responds according to the protocol. Any output is

recorded on T i
U,V . If M = λ and M is the first message received by Πi

U,V , then Πi
U,V

initiates a protocol run (with intended partner V). In this case oracle Πi
U,V is called

an initiator oracle. If Πi
U,V did not receive a message λ as its first message, then it

is called a responder oracle.

Reveal(Πi
U,V): E may only request the session key held by an existing oracle Πi

U,V . If

Πi
U,V has accepted and holds a session key ski

U,V , then this is output. An oracle

Πi
U,V is called revealed if it has responded to a Reveal query.

142

7.5 A Modular Approach to the Construction of KA Protocols

Private key extract(U): E may request the private key corresponding to ID U . If

participant U does not yet exist, then C firstly initializes this participant (and its

oracle instances) and generates its public and private keys using its ID U and the

master secret s. C outputs the private key SKU . The private key of U is said to

have been extracted if U has responded to a Private key extract query.

The definition of freshness is then modified appropriately to be:

Definition 7.9 An oracle Πi
U,V is called fresh if it has accepted (and therefore holds a

session key ski
U,V), it is not revealed, the private keys of neither U nor V has been extracted,

and there is no revealed oracle Πj
V,U with which it has had a matching conversation.

The ID-BJM game and definitions of AK and AKC security are identical to the BJM

game and definitions of AK and AKC security, except that Corrupt queries are replaced

by Private key extract queries, and the Send, Reveal and Private key extract

queries are answered as described above.

7.5 A Modular Approach to the Construction of KA Pro-
tocols

The above definitions of security for key agreement protocols provide a strong security

guarantee for a key agreement protocol, provided a proof of security can be constructed.

However in general it appears to be rather difficult to prove efficient key agreement pro-

tocols secure in these models, and therefore relatively few protocols have full proofs of

security in these models.

To address this problem, a more “modular” approach to constructing key agreement

protocols was advocated by Bellare, Canetti and Krawczyk [8]. Instead of designing a key

agreement protocol and then attempting to prove its security in a suitable model, Bellare

et al. proposed an approach by which secure protocols can be constructed.

The approach entails constructing a basic protocol which is secure given communication

over ideally authenticated channels. These are called authenticated links. In other words,

the basic protocol should be secure against a passive adversary.

This basic protocol then needs to be transformed into a protocol which is secure given

unauthenticated links (or insecure channels). This is achieved by applying what are called

authenticators to each message flow in the protocol (and we then say that the resulting

protocol is authenticated).

143

7.6 Universal Composability

Informally, if an authenticator is secure, then the origin of each authenticated message

is verifiable and no adversary can forge the origin of a message or alter the message contents

without detection. Therefore if the underlying unauthenticated protocol is secure against

passive attacks, then the authenticated protocol is secure against all (active and passive)

adversaries.

The advantage of such an approach is that the basic protocol and the authenticator may

be constructed and proven secure independently, and the resulting protocol is guaranteed

to be secure. In fact, libraries of basic protocols and authenticators may be built up

(as is done in [8, 23, 32, 67, 110, 111]), from which many different secure key agreement

protocols may be constructed. Such a modular approach greatly simplifies the protocol

design process, thereby reducing the risk of errors.

The disadvantage of using this modular approach is that it is only useful for con-

structing new protocols, and results in protocols of a specific form. However this modular

approach sheds no light on how to evaluate the security of the many existing protocols in

the literature that have not been constructed in this modular way.

In addition, cryptographic primitives such as encryption, signatures or MACs are usu-

ally required to build secure authenticators, and the application of these authenticators

often increases the computational and communication complexity of a protocol. Therefore

the modular method of construction advocated by Bellare et al. [8] generally does not re-

sult in the most efficient key agreement protocols. Of course protocols constructed using

this modular approach may be modified to be more efficient using various techniques, but

then the security proof may no longer be valid.

7.6 Universal Composability

A proof that a particular protocol Π is secure in some security model (such as the BJM

model) ensures that if Π is exposed to attacks of the type captured by the security model,

then it remains secure. However the proof of security does not provide us with any

guarantees of what will happen if our protocol is exposed to attacks or influences outside

of the security model (i.e. events that are not captured by the security model).

The security models that we have considered so far generally model a set of participants

which only run the protocol Π. Therefore, a proof of security in such a model guarantees

that the protocol is secure against adversaries with capabilities specified by the model

and in an environment in which participants run only the protocol Π. However in today’s

world, protocols are very rarely run in isolation. A single machine may be running many

144

7.6 Universal Composability

different protocols concurrently with many other entities or machines, and these other

interactions may be related to the key agreement protocol Π. We would like to know that

even in such an environment, where our protocol Π is composed with many other protocols

or processes, it will remain secure.

Recent developments in provable security for key agreement protocols [29, 30, 32,

33, 31] have therefore been concerned with whether such protocols remain secure when

composed with an unbounded number of unknown (and perhaps even malicious) protocols,

or more generally, when the protocol is used as a component of an arbitrary distributed

system. This has resulted in the development of what is called the universal composition

framework (UC framework). For completeness, we give a brief overview of this framework.

The UC framework [29, 30] attempts to model protocols running in an arbitrary en-

vironment. It is claimed by Canetti and Krawczyk that a proof of security for a protocol

Π in the UC framework guarantees that Π may be composed in an arbitrary distributed

system and will still achieve its goals.

A definition of security of a protocol in the UC framework is formulated in a slightly

different way to the way in which it is formulated in models such as the BJM model.

In the UC framework, we ascertain the goals or functionality of a protocol in order to

construct an ideal process which achieves the goals of the protocol in a secure way. In the

ideal process, all parties usually interact with a trusted third party or ideal functionality

which performs the function of the protocol. The ideal process can therefore be thought

of as a formal specification of the goals and security requirements of the protocol.

As in previous models (such as the BJM model), a protocol instance in the UC frame-

work is modeled by a probabilistic polynomial time Turing machine, and interacts with

an adversary which is also modeled by a probabilistic polynomial time Turing machine.

However unlike in previous models, an additional machine called the environment is added

to the model of computation. The environment can interact with the protocol being run

as well as the adversary. This environment machine represents everything that is external

to the current protocol execution.

Informally, a protocol is then considered to be secure if it securely realizes its goals, or

emulates the ideal process from the point of view of the environment. The environment

therefore serves as an interactive distinguisher between the protocol and the ideal process.

This means that an adversary interacting with the protocol has the same affect as (and

can cause no more damage than) an adversary interacting with the ideal process.

We remark that the UC framework has been used to model not only key agreement

145

7.6 Universal Composability

protocols, but also many other cryptographic primitives and protocols (such as public key

encryption, digital signatures and protocols involving more than two parties). However

since we are only concerned with key agreement protocols at this stage, we have only

presented an informal description of the UC framework in the context of key agreement

protocols.

The UC framework provides a very strong definition of security. But it appears to be

even more difficult to construct protocols that realize UC security than it is to construct

protocols that realize other definitions of security (e.g. AK security in the BJM model).

Various relaxations of the UC model have been proposed, although these result in a loss

of security, particularly with respect to composability. Canetti and Krawczyk [33] present

certain key agreement protocols that achieve UC security as well as protocols that achieve

a relaxed version of UC security. However all the protocols that have been shown to

achieve this level of security are constructed using the modular approach of Bellare et al.

[8]. It is not known whether simpler, more efficient protocols that are not constructed

using the modular approach can be shown to be UC secure.

146

Chapter 8

Modular Security Proofs for Key
Agreement Protocols

8.1 Introduction

It is becoming increasingly common for designers of key agreement protocols (and indeed

designers of all cryptographic primitives) to have to provide proofs of security for their

protocols in appropriate security models before their protocols will be considered for prac-

tical use. However at the same time, protocol designers are also under pressure to provide

protocols that are optimized for efficiency.

The modular approach of [8] for constructing key agreement protocols (which was

described in Section 7.5) can be employed to construct secure protocols, and if the protocol

designer has access to libraries of secure basic protocols and authenticators, the protocol

designer may have a large number of secure protocols from which to choose. However, as

was pointed out in Section 7.5, protocols generated in such a manner are often not the

most efficient.

In many environments, the benefits of being able to easily design secure protocols

outweigh the possible disadvantages. However there exist environments in which efficiency

is of utmost importance, and most key agreement protocols optimized for efficiency are

not constructed in a modular way. Indeed we can find several efficient key agreement

protocols in the literature which do not have formal proofs of security (such as protocols

in [16, 51, 76, 79, 103]) or have only proofs of security in weakened security models (such

as protocols in [3, 39, 83]. Since the structure of these protocols is not compatible with

the modular approach in [8], complete proofs of security for such protocols still appear to

be difficult to construct.

147

8.2 Gap Assumptions

In this chapter, we consider protocols which are not designed in a modular way but

which we nevertheless wish to prove secure in an appropriate security model. Since this

type of protocol is not designed in a modular way, typical proofs of security are often

complicated and error-prone. We therefore develop a technique by which the proof process

for a large class of key agreement protocols can be simplified.

Informally, our technique for proving the security of a protocol Π works as follows.

The first step is to prove that protocol Π has a property that we call strong partnering

(which is defined in Section 8.3.1). The second step is to prove that a related protocol π

is secure in a highly reduced security model. Finally, as the main result of the chapter, we

show how the proof of security of π in the reduced model can be translated into a proof

of security for Π in the full security model using a Gap assumption.

Each step above is far simpler than a single proof of security in the full security model.

The result is a modular technique for constructing proofs of security for a large class of

key agreement protocols which are not constructed using the modular approach of [8].

We then use this technique to consider certain key agreement protocols in the literature

that were previously without proofs or that only had incomplete proofs of security. Using

our techniques, full proofs of security can be generated for protocols in [16, 39, 103]

(possibly after slight modifications to the protocols if necessary). We focus in detail on

Protocol 3 in Section 6.3.2 (originally presented in [16, Protocol 4]), and the identity-based

key agreement (AK) protocols of [39] and [103].

We also hope that our methods will aid future designers of lightweight key agreement

protocols in the formal analysis of their protocols in simplifying their task by breaking it

up into components.

8.1.1 Published Work

An earlier version of this work appears in [73] and forms the basis for this chapter. The

nomenclature in this chapter differs slightly from the published work. In particular, what

we refer to here as the mBJM model is referred to as the mBR model in [73].

8.2 Gap Assumptions

Our technique makes use of Gap assumptions, as defined by Okamoto and Pointcheval

[93]. Informally, a Gap problem is usually the problem of solving some computational

problem (e.g. computational Diffie-Hellman) with the help of a corresponding decisional

148

8.2 Gap Assumptions

oracle (in this case a decisional Diffie-Hellman oracle). The decisional problem may be

easy or hard; irrespective of this a Gap problem may still be defined.

Gap assumptions have recently found several applications in cryptography. In par-

ticular, Gap assumptions have been used in [1, 69, 110] to prove the security of certain

key agreement protocols. However we show how Gap assumptions can be systematically

applied to a class of protocols in order to obtain proofs of security, whereas previous works

applied Gap assumptions in an ad-hoc manner.

Following the notation of Okamoto and Pointcheval [93], we informally define a family

of Gap problems.

Let f : X × Y → {0, 1} be any relation on sets X and Y . The computational problem

(or inverting problem in the language of [93]) of f is, given x ∈ X, to compute any y ∈ Y

such that f(x, y) = 1 if such a y exists, or to return Fail otherwise.

The decisional problem of f is, given (x, y) ∈ X × Y , to decide whether f(x, y) = 1 or

not.

Definition 8.1 The Gap problem of f is to solve the computational problem of f using

an oracle which solves the decisional problem of f .

We always refer to Gap problems in terms of computational and decisional problems.

Although the definition of Gap problems in [93] is not restricted to this case, we only

present this scenario since we will only use Gap problems in this context. As an example,

we define the computational, decisional and Gap Diffie-Hellman problems.

Let p and q be primes where q|p − 1. Let G be a multiplicative subgroup of Z∗p, of

order q, and let g ∈ G generate G. We denote by DL(g, h) ∈ Zq the discrete logarithm of

h ∈ G with respect to base g. So gDL(g,h) = h mod p.

Given a, b, c ∈ Zq, we define the Diffie-Hellman relation fDH as follows:

fDH : (G×G)×G → {0, 1}, where fDH(ga, gb, gc) =
{

1 if gab = gc mod p
0 otherwise

We can now define the computational, decisional and Gap problems of fDH , better

known as the computational, decisional and Gap Diffie-Hellman problems, respectively.

Computational Diffie-Hellman (CDH) Problem: Given ga, gb ∈ G, where a, b ∈R

Zq, compute gc ∈ G, such that fDH(ga, gb, gc) = 1. That is, compute gc = gab mod p.

Decisional Diffie-Hellman (DDH) Problem: Given ga, gb, gc ∈ G, where a, b ∈R Zq,

determine fDH(ga, gb, gc). That is, determine whether c = ab mod q or not.

149

8.3 Modular Security Proofs in the mBJM Model

Gap Diffie-Hellman (GDH) Problem: Given ga, gb ∈ G where a, b ∈R Zq, as well as

an oracle that solves the DDH problem in G, compute gab mod p.

The corresponding assumptions are that the above problems are hard, that is, they are

infeasible to solve in polynomial time in a security parameter used to define the problem

instances.

8.3 Modular Security Proofs in the mBJM Model

The model of security in which we work in this chapter is the mBJM model presented in

Section 7.2. However analogous versions of our results also hold in the models of [12, 16, 32]

and the ID-BJM model of Section 7.4.1. We refer the reader back to Chapter 7 for details

of the mBJM security model.

From now on, we assume that we are only dealing with key agreement protocols that

produce a hashed session key on completion of the protocol. By this we mean that the key

agreement protocol Π specifies that the session key be computed as the hash H of some

string.

Definition 8.2 Suppose Π is a protocol in the mBJM model that produces a hashed ses-

sion key using the cryptographic hash function H. Then the session string for a particular

oracle Πi
U is denoted ssΠi

U
, and is defined to be the string which is hashed to produce the

session key ski
U . So we have that ski

U = H(ssi
U).

This reliance on hashing to produce a session key does not seem to be too strong a

restriction since it is fairly common to use a key derivation function to obtain a session key

from a secret value established during a key agreement protocol, and this key derivation

function is usually implemented via a hash function.

We make this restriction since our modular proof technique will only work on key

agreement protocols that produce hashed session keys. It will also require that we model

the hash function by a random oracle in the proof of security.

8.3.1 Protocol Partnering

When trying to establish that a protocol Π is secure in the mBJM model, we need to

ensure that an adversary cannot trivially win the game defined in Section 7.3.3 by an

attack on the partnering properties of Π.

150

8.3 Modular Security Proofs in the mBJM Model

Definition 8.3 Suppose Π is a key agreement protocol. If there exists an adversary E,

which when attacking Π in an mBJM game defined in Section 7.3.3 and with non-negligible

probability in the security parameter l, can make some two oracles Πi
U and Πj

U ′ accept

holding the same session key when they are not partners, then we say that Π has weak

partnering. If Π does not have weak partnering, then we say that Π has strong partnering.

If a protocol Π had weak partnering, then there would exist an adversary E that could

make oracles Πi
U and Πj

U ′ accept holding the same session key but without being partners.

The rules of the mBJM game would then allow the adversary to reveal the session key held

by Πi
U , and then choose Πj

U ′ for the Test query, allowing E to trivially win the security

game.

Therefore, for Π to be a secure key agreement protocol as defined in Definition 7.7, Π

must have strong partnering. This can be ensured by including appropriate “partnering

information” in the session string ssΠi
U

(and therefore in the computation of the session

key ski
U), where partnering information is information from which it can be established

whether the two session participants are partners or not. If appropriate partnering in-

formation is included in the session string, then weak partnering (i.e. where two oracles

generate equal session keys with different partnering information) implies a collision in

the hash function H. Since H is modeled as a random oracle, this occurs with negligible

probability, so the protocol has strong partnering. In fact, we only really require H to be

collision resistant to ensure strong partnering.

In the mBJM model, partnership is defined via session keys, session IDs and partner

IDs. For oracles Πi
U and Πj

U ′ to accept holding the same (unique) session key but without

being partners, they must have different sids and/or pids. To guarantee that protocol Π

has strong partnering in the mBJM model, we must therefore ensure that the session IDs

are unique to each session and that (with overwhelming probability) ski
U = skj

U ′ only if

rolei
U 6= rolej

U ′ , sidi
U = sidj

U ′ , pidi
U = U ′ and pidj

U ′ = U . In this case we can use the

values sidi
U , U and pidi

U (if U is the initiator and pidi
U is the responder) or sidi

U , pidi
U

and U (if U is the responder and pidi
U is the initiator) as the partnering information, and

the inclusion of this information in the session string will ensure strong partnering.

The idea of including appropriate partnering information in the session string to en-

sure strong partnering applies equally to our mBJM model as it does to the BR, BJM

and ID-BJM models, even though the concept of partnering is slightly different in each of

these models. For example, in the models of [12, 13, 16], partnering is defined via match-

ing conversations, or matching transcripts, and where each participant believes they are

151

8.3 Modular Security Proofs in the mBJM Model

communicating with the other. Therefore a key agreement protocol secure in these models

can never allow two oracles to share the same key without having matching transcripts

and corresponding intended partners. Strong partnering in these models can therefore be

ensured by including the identities of the two participants (starting with the initiator) as

well as the protocol message flows (obtained from the protocol transcripts) in the session

string of each oracle.

8.3.2 Reduced Games

We now consider two reduced mBJM games. The first game is identical to the mBJM game

defined in Section 7.3.3 except that the adversary E is not allowed to make any Reveal

queries. We call this reduced game a No-Reveals mBJM (NR-mBJM) game. The second

game is identical to the NR-mBJM game, except that the adversary no longer makes the

normal Test query. Instead, to win the game, the adversary must select an accepted and

fresh oracle on which to make a (modified) Test query at the end of its computation and

output the session key held by this oracle. Since the adversary in this game must actually

compute the session key of an oracle (instead of having to decide between a session key

and a random value from the key space), we call this game a computational NR-mBJM

(cNR-mBJM) game. We define E’s advantage, denoted AdvantageE(l), in the cNR-mBJM

game to be the probability that E outputs a session key sk such that sk = skΠi
U

where

Πi
U is the oracle selected by the adversary for the (modified) Test query.

We define NR-mBJM (and cNR-mBJM) security as follows:

Definition 8.4 A protocol Π is a (c)NR-mBJM-secure key agreement protocol if:

1. In the presence of the benign adversary, two oracles running the protocol both accept

holding the same session key and session ID, and the session key is distributed

uniformly at random on {0, 1}l; and

2. For any adversary E, AdvantageE(l) in the (c)NR-mBJM game is negligible.

We say that protocol Π is (c)NR-mBJM-insecure if it is not (c)NR-mBJM-secure.

That is, there exists an adversary E which, with non-negligible probability (in l), wins

the (c)NR-mBJM game against challenger C. We say that such an E can successfully

(c)NR-mBJM-attack protocol Π.

As part of our modular proof technique for a given protocol Π which produces hashed

session keys on completion of the protocol, we will consider a related protocol π. When it

152

8.3 Modular Security Proofs in the mBJM Model

is not clear from the context, we will use use the notation Πi
U for an oracle running Π and

skΠi
U
, sidΠi

U
and pidΠi

U
for the session key, session ID and partner ID of Πi

U . Similarly, we

will use the notation πi
U for an oracle running π and skπi

U
, sidπi

U
and pidπi

U
for the session

key, session ID and partner ID of πi
U . When it is clear which protocol we are referring to,

we will revert back to the simpler notation introduced in Section 7.3.

Protocol π is defined in the same way as Π except that the session key generated by

π is defined to be the session string of Π rather than the hash of this string. That is,

skπi
U

= ssΠi
U
. As part of our proof technique it will be necessary to prove that protocol π

is cNR-mBJM secure. Since the cNR-mBJM game is a highly reduced game, it is usually

fairly easy to establish a protocol’s security in this model. Although it may not be obvious

how a proof of security in this reduced model may be helpful, in Section 8.3.3 we present

a theorem which shows how a proof of cNR-mBJM security for π can be transformed into

a proof of mBJM security for Π using a Gap assumption, provided that Π has strong

partnering.

The reason that we defined NR-mBJM security when cNR-mBJM security is our main

focus is that, although it is a more complex game than the cNR-mBJM game, a number

of recent papers presenting new key agreement protocols prove that the protocols meet

such a weakened definition of security [3, 16, 39, 83]. That is, they take an appropriate

security model, and prove the security of their protocols in the No-Reveals (NR) variant

of the security model.

It is trivial to see that if protocol Π is NR-mBJM secure, then it is also cNR-mBJM

secure. We also have the following result relating the NR-mBJM security of Π and the

cNR-mBJM security of the related protocol π.

Theorem 8.1 If protocol Π produces a hashed session key via hash function H and is

NR-mBJM secure, then the related protocol π is cNR-mBJM secure.

Proof: We provide a sketch of the proof of this theorem. The details are left to the reader.

We show that if there exists an adversary E that can cNR-mBJM-attack π, then we can

build an adversary A that can NR-mBJM-attack Π.

Suppose that an adversary E wins the cNR-mBJM game for protocol π with non-

negligible probability η. Suppose also that A runs an NR-mBJM game with challenger C.

A in turn acts as a challenger for E in a cNR-mBJM game. A passes all E’s queries to

C and returns all C’s outputs to E. Finally E will output the session key skπi
U

of some

fresh oracle πi
U . Recall however that skπi

U
= ssΠi

U
.

153

8.3 Modular Security Proofs in the mBJM Model

A then chooses Πi
U for the Test query and receives a key sk. If sk = H(skπi

U
) then

A outputs 1, otherwise A outputs 0. It is easy to see that A wins the NR-mBJM game

against Π with probability η. ¤
We note that in the proof of the above theorem, no assumption is required concerning

the properties of H.

8.3.3 Handling Reveal Queries using Gap Assumptions

We now consider a protocol Π which has strong partnering and for which the related

protocol π is known to be cNR-mBJM secure. Our aim is to translate these results into a

proof of mBJM security for Π. In order to do this, we will need to be able to construct a

challenger C in an mBJM game for Π which can answer an adversary E’s Reveal queries.

At first glance, it seems that C needs to be able to compute the session key skU for

any oracle Πi
U that E may wish to reveal during the mBJM game. However this is not

the case if Π produces a hashed session key (via hash function H) and if H is modelled as

a random oracle. We will see below in Theorem 8.2 that in this case, C only needs to be

able to solve the following decisional problem:

Given the public parameters, the transcript T i
U of oracle Πi

U in an mBJM game,

as well as PU and PU ′ (the public keys of U and U ′ where pidi
U = U ′) and s,

where s is a string, decide whether s = ssΠi
U
, where ssΠi

U
is the session string

of oracle Πi
U .

We call this decisional problem the session string decisional problem for protocol Π.

We note that the corresponding computational problem is to compute the session string

of Π, which is the same as computing the session key of π.

We now present the main result of this chapter.

Theorem 8.2 Suppose that key agreement protocol Π produces a hashed session key on

completion of the protocol (via hash function H) and that Π has strong partnering. If the

cNR-mBJM security of the related protocol π is probabilistic polynomial time reducible

to the hardness of the computational problem of some relation f , and the session string

decisional problem for Π is polynomial time reducible to the decisional problem of f , then

the mBJM security of Π is probabilistic polynomial time reducible to the hardness of the

Gap problem of f , assuming that H is a random oracle.

Proof:

154

8.3 Modular Security Proofs in the mBJM Model

Since the cNR-mBJM security of π is probabilistic polynomial time reducible (in secu-

rity parameter l) to the hardness of the computational problem of some relation f , there

exists an algorithm A that, on input a problem instance of the computational problem

of f and acting as a challenger for an adversary E which has non-negligible probability

η of winning the cNR-mBJM game for π in time τ , is able to solve the computational

problem of f with some non-negligible probability g(η) and in time h(τ), where g and h

are polynomial functions.

We now define an algorithm B which, given an adversary D which has non-negligible

probability η′ of winning the mBJM game for Π in time τ ′, is able to solve the Gap

problem of f with some non-negligible probability g′(η′) and in time h′(τ ′) where g′ and

h′ are polynomial functions. B will act as a challenger for D. B will also run algorithm

A and will simulate an adversary for A. Since B attempts to solve the Gap problem of f ,

B will also have access to a decisional oracle for f .

Since Π has strong partnering, we know that if two oracles in D’s attack share the same

session key, then they must be partners (with overwhelming probability). We therefore

know that D will never reveal a session key sk where sk is equal to the Test query oracle

Πi
T ’s session key skΠi

T
. This is because D is not permitted to reveal the session key of the

oracle on which a Test query was made or its partner (if it exists).

We also assumed that the session string decisional problem for Π is polynomial time

reducible to the decisional problem of f . That is, there exists some algorithm C which,

given a decisional oracle for f , is able to solve the session string decisional problem for Π

in polynomial time τ ′′ (and with probability 1).

Since B’s goal is to solve the Gap problem of f , B is initialized with an instance of the

computational problem of f . B then runs A on the instance of the computational problem

of f and simulates an adversary E for A. A sets up a cNR-mBJM game for B and gives

all the public parameters to B. B in turn passes these public parameters to adversary D.

B now answers all of D’s queries as follows.

B passes all D’s queries besides Reveal and H queries to A. Since, in any session,

protocol π is identical to protocol Π until the session is completed and the session key is

computed, these queries will all be answerable by A. B passes A’s responses back to D.

In order for B to answer D’s Reveal queries, B maintains a Guess session key list

(G-List). Each element on the G-List is a tuple of the form (T j
V , PV , PV ′ , R

j
V) where T j

V

is the transcript of oracle Πj
V , PV is the public key of V , PV ′ is the public key of V ′ where

pid
Πj

V
= V ′, and Rj

V is a random guess for the session key skj
V of oracle Πj

V . Initially the

155

8.3 Modular Security Proofs in the mBJM Model

G-List is empty.

In order for B to answer E’s H queries, B maintains an (initially empty) H-List

containing tuples of the form (si, ski, str). For each H query on string s that D makes,

B checks whether s is on the H-List as the first component in some tuple (si, ski, str).

If it is, then B outputs ski. If s is not on the H-List then B uses the algorithm C to

determine whether s is a valid session string for any oracle Πj
V on the G-List. If s = ss

Πj
V

is the session string for some oracle Πj
V on the G-List, then B outputs Rj

V and adds the

tuple (s,Rj
V , str) where str=“V,j” to the H-List. Otherwise B selects a random sk from

the session key space, adds the tuple (s, sk, str) (where str is the empty string λ) to the

H-List, and outputs sk.

When D makes a Reveal query on any oracle Πi
U which has accepted, B proceeds as

follows. If Πi
U has an entry on the G-List of the form (T i

U , PU , PU ′ , R
i
U), B outputs the

value Ri
U . Otherwise B checks whether any entry on the H-List of the form (si, ski, str)

where str = λ has si = ssΠi
U

using algorithm C. If such an entry (si, ski, str) exists, then

str is set to “U,i” on the H-List and the entry (T i
U , PU , PU ′ , R

i
U) is added to the G-List,

where Ri
U = si, T i

U is the transcript of Πi
U , PU is the public key of U and PU ′ is the public

key of U ′ where pidΠi
U

= U ′. Otherwise a random session key Ri
U is selected and the entry

(T i
U , PU , PU ′ , R

i
U) is added to the G-List. To answer the Reveal query, B outputs the

value Ri
U in every case.

In this way, B can consistently answer D’s Reveal and H queries. At some point D

selects an oracle Πi
T for the Test query. B selects a random element sk from the session

key space and gives this to D.

Since Π has strong partnering, skΠi
T

will not be equal to any other revealed session

key, so the only way that D could distinguish (with non-negligible probability) whether

sk = skΠi
T
, would be to query the session string ssΠi

T
on H.

If D does not query H on the Test query oracle’s session string ssΠi
T
, then D can

only win with probability 1/SH where SH is the size of the output space of H, which we

assume is negligible in security parameter l. If D wins the game, then with overwhelming

probability 1 − 1/SH , D queries H on ssΠi
T
. B can detect this value by checking which

of the tuples (si, ski, str) on the H-List with str = λ has si = ssΠi
T

using algorithm C. B

gives this si to A as A’s adversary E’s output of the Test query.

Since ssΠi
T

= skπi
T
, B has simulated a valid adversary E for A which has non-negligible

success probability η = η′ · (1 − 1/SH) and which runs in polynomial time τ = τ ′ + τ ′′ ·
NH · (NR +1). Here NH and NR are the number of H and Reveal queries that D makes,

156

8.4 Applying the Technique to Different Security Models

respectively. So A outputs the solution to the instance of the computational problem of

f with non-negligible probability g(η) and in time h(τ).

Therefore B solves the Gap problem of f with non-negligible probability g(η) and in

time h(τ).

¤

8.4 Applying the Technique to Different Security Models

Analogous results to the ones in Section 8.3 can be obtained for the security models of

[10, 12, 13, 16, 32] and the ID-BJM model of Section 7.4.1.

For each of these models, an equivalent definition of strong partnering can be made.

In the models of [10, 32], partnering is defined in a similar way to the way it is defined in

our mBJM model, but in the models of [12, 13, 16] partnering is defined via the concept

of matching conversations, so strong partnering would be defined in this context as well.

NR and cNR versions of the security model can also be defined in the same way as for

the mBJM model, and the definition of the related protocol π is independent of the model

used. It is then possible to prove analogous versions of Theorem 8.2 (and Theorem 8.1)

for these models. These in turn illustrate how proofs in these models can be constructed

in a modular way.

As an example, we present the analogous version of Theorem 8.2 for the BJM model

of Section 7.2.

We consider a protocol Π in the BJM model. We can define the NR-BJM and cNR-

BJM games in exactly the same way as the NR-mBJM and cNR-mBJM games were defined

in Section 8.3.2. The session string decisional problem and the related protocol π can also

be defined exactly as before. It remains to show how strong partnering is defined in the

BJM model.

Definition 8.5 Suppose Π is a key agreement protocol. If there exists an adversary E,

which when attacking Π in a BJM game defined in Section 7.2.5 and with non-negligible

probability in the security parameter l, can make any two oracles Πi
U,V and Πt

K,L accept

holding the same session key when they are not matching oracles, then we say that Π

has weak partnering. If Π does not have weak partnering, then we say that Π has strong

partnering.

To ensure that the protocol Π has strong partnering, we must ensure that (with over-

157

8.4 Applying the Technique to Different Security Models

whelming probability) ski
U,V = skt

K,L if and only if K = V and L = U , and Πi
U,V and Πj

V,U

are matching oracles (or partners). If a protocol Π does not have strong partnering, then

this can be ensured by modifying the protocol slightly to include the partnering informa-

tion in the computation of the session key. In the BJM model, the partnering information

is the information required to determine whether two oracles had matching conversations

or not.

We recall from Definition 7.1 that in order to have matching conversations, each mes-

sage that one oracle sends must be received by the other without modification, and in the

correct order. Moreover, there can also be no confusion as to which oracle is the initiator

and which is the responder.

Suppose that in a protocol run between oracles Πi
U,V and Πj

V,U , oracle Πi
U,V sends

and receives a sequence of messages β0, .., βn where this does not include the initializing

message λ or the termination output ∗. If the IDs of the initiator and responder (in

that order) as well as the sequence β0, .., βn are included in the session string ssΠi
U,V

(and

therefore in the computation of the session key ski
U,V), then strong partnering can be

guaranteed.

We now state versions of Theorems 8.1 and 8.2 adapted to the BJM model.

Theorem 8.3 If a protocol Π produces a hashed session key via hash function H and is

NR-BJM secure, then the related protocol π is cNR-BJM secure.

Proof: The proof of this Theorem is identical to the proof of Theorem 8.1 except that

references to NR-mBJM and cNR-mBJM games (and the resulting notation) are replaced

by NR-BJM and cNR-BJM games (and the resulting notation). ¤

Theorem 8.4 Suppose that key agreement protocol Π produces a hashed session key on

completion of the protocol (via hash function H) and that Π has strong partnering. If

the cNR-BJM security of the related protocol π is probabilistic polynomial time reducible

to the hardness of the computational problem of some relation f , and the session string

decisional problem for Π is polynomial time reducible to the decisional problem of f , then

the BJM security of Π is probabilistic polynomial time reducible to the hardness of the

Gap problem of f , assuming that H is a random oracle.

Proof:

The proof of this theorem is almost identical to the proof of Theorem 8.2 except that

references to mBJM, NR-mBJM and cNR-mBJM games (and the resulting notation) are

158

8.5 Applying the Technique to Existing Protocols

replaced by BJM, NR-BJM and cNR-BJM games (and the resulting notation), and the

term partners is replaced by matching oracles. The changes to the security model otherwise

have no effect on the proof of the theorem. ¤
The ID-BJM model is identical to the BJM model except for the way that participants

in the game are initialized and private keys are extracted. Therefore NR-ID-BJM and

cNR-ID-BJM games can be defined in exactly the same way as the NR-BJM and cNR-

BJM games are defined, and the session string decisional problem, the related protocol π

and strong partnering can all be defined exactly as in the BJM model.

It is therefore easy to see that Theorems 8.3 and 8.4 apply equally well to the ID-BJM

model as they do to the BJM model.

8.5 Applying the Technique to Existing Protocols

We now consider Protocol 3 from Section 6.3.2 (originally presented in [16, Protocol 4]).

This protocol was conjectured to be secure in [16] but this has never been proven. In fact

there is not even a partial proof of security for this protocol.

However, when modified to ensure strong partnering, the protocol can be proven secure

in the mBJM model. We now present the modified version of Protocol 3 which we refer

to as Protocol 4.

As in Section 6.3.2, the modified key agreement protocol requires a Setup algorithm

which generates large primes p and q where q|p − 1. The group G is chosen to be a

multiplicative subgroup of Z∗p, where G has order q, and element g ∈ G generates G. A

cryptographic hash function H : {0, 1}∗ → {0, 1}l for a fixed value l (usually the security

parameter) is also selected.

Suppose that A and B are participants with public and private key pairs 〈XA, xA〉 and

〈XB, xB〉 respectively, where xA and xB are chosen randomly from Z∗q , XA = gxA mod p

and XB = gxB mod p. A and B run Protocol 4 to generate a shared session key.

It is easy to see that in Protocol 4 we have

KA = KB = K = H(gxAb mod p, gxBa mod p,A,B, TA, TB).

So K can be used as a secret session key shared between A and B. The ephemeral values

a and b are erased on completion of the protocol.

The modified version of Protocol 4 in which the session key is equal to the session

string of Protocol 4 is denoted by Protocol 4′.

159

8.5 Applying the Technique to Existing Protocols

We now establish the security of Protocol 4 in the mBJM model using Theorem 8.2.

To do this we need to establish a pair of lemmas.

Protocol 4: Modified from Protocol 3 to ensure strong partnering.

The following steps must be taken each time a session key is required:

1. A initiates session Πi
A, setting pidi

A = B and rolei
A = initiator. A selects an

ephemeral random value a ∈ Zq,

2. B initiates session Πj
B setting pidj

B = A and rolej
B = responder. B selects an

ephemeral random value b ∈ Zq.

A and B then exchange the following messages, in the following order:

A −→ B : TA = ga mod p

B −→ A : TB = gb mod p

On receipt of the message gb mod p, A checks that XB, TB ∈ G and computes

sidi
A = A,B, TA, TB and KA = H(T xA

B mod p,Xa
B mod p, sidi

A)

and accepts with session key ski
A = KA. On receipt of ga mod p, B checks that

XA, TA ∈ G and computes

sidj
B = A,B, TA, TB and KB = H(Xb

A mod p, T xB
A mod p, sidj

B)

and accepts with session key skj
B = KB.

Lemma 8.5 The cNR-mBJM security of Protocol 4′ is probabilistic polynomial time

reducible to the hardness of the CDH problem in G.

Proof: We assume that for security parameter l there exists an adversary E for Protocol 4′

that can win the cNR-mBJM game with non-negligible advantage η and in polynomial time

τ . Suppose that the number of participants in E’s game is nP and that the maximum

number of sessions each participant may be involved in is nS , where nP and nS are

polynomial functions of l.

We now construct from E an algorithm F which solves the CDH problem in G with

non-negligible probability. That is, given as input elements g, gx, gy ∈ G, F ’s task is to

compute and output the value gxy mod p.

F simulates a challenger in a cNR-mBJM game with E. F sets up the game with the

group G and generator g ∈ G. F generates a set of participants of size nP . For each

160

8.5 Applying the Technique to Existing Protocols

participant I, F sets I’s private key to be a randomly chosen xI ∈ Zq and sets I’s public

key to be XI = gxI mod p. However for some randomly selected participant P , F sets

P ’s public key to be XP = gx. F also picks a random participant Q 6= P , and a random

session number t ∈ {1, .., nS}. F starts E and answers E’s queries as follows.

Send: E may make a special Send query Πs
I which sets pidI = XI′ and instructs I to

initiate a protocol run with its partner I ′. E can also send any oracle Πs
I a message

M , and the oracle responds according to the protocol. However if E initializes or

sends a message to oracle Πt
Q, then Πt

Q outputs gy.

Corrupt(U): If E corrupts participant P , then F aborts. Otherwise F gives E the long-

term private key of the participant.

The probability that E chooses oracle Πt
Q for the Test query and that pidQ = XP is

at least 1
n2

P .nS
. In this case, we note that E could not have corrupted participant P , and

so F would not have aborted.

E finally outputs a session key of the form (a, b, c) where a, b ∈ G and c ∈ G4. If

Πs
I was an initiator, then F outputs b as its guess for the value gxy mod p, otherwise F

outputs a as its guess. It is now easy to see that F solves the CDH problem on input

g, gx, gy with probability at least η′ = η.(1
n2

P .nS
) (which is non-negligible in l), and in time

τ . ¤
It is interesting to note how short the proof of this theorem is; this is due to the

simplicity of the cNR-mBJM model.

We note that a common error when proving that a protocol Π is mBJM-secure (or even

NR-mBJM or cNR-mBJM secure) is to make the assumption that the Test query oracle

Πi
U has a partner, and that the input to Πi

U comes from this partner. In fact the challenger

has no control over the input to Πi
U since the adversary controls all communications

between oracles. This error can be seen in papers such as [40, 84] where proofs of security

were attempted in the full security model. Their corrected versions [39, 83] only provide

proofs in the NR versions of the original models.

Lemma 8.6 Protocol 4 has strong partnering in the random oracle model.

Proof: With overwhelming probability, the session ID is unique to each session since it

includes the values TA and TB which are randomly chosen by each oracle. It is also trivial

to verify that appropriate partnering information is included in the session string, and

therefore strong partnering is guaranteed. We leave the details to the reader. ¤

161

8.6 Applying the Technique to Protocols with Partial Proofs

Corollary 8.7 Protocol 4 is secure in the random oracle model assuming the hardness of

the Gap Diffie-Hellman problem in G.

Proof: This result comes immediately from Theorem 8.2, and Lemmas 8.5 and 8.6, and

the simple observation that the session string decisional problem for Protocol 4 is reducible

to the decisional Diffie-Hellman problem (in linear time).

¤

8.5.1 Notes on Protocol 4

We note that Protocol 4 can easily be extended to have perfect forward security by in-

cluding the value gab mod p in the session string. This extended Protocol 4 can then be

proven secure in an extended mBJM model which models perfect forward secrecy.

In Protocol 4, each participant sets their pid at the start of the protocol. However

without some prior communication, there may be confusion as to the identity of the

protocol participants. In this case, the participants may have incorrect pid values, even in

a protocol run between two honest participants, and the participants will fail to generate

the same session key.

This does not affect the security of the protocol in the mBJM model, but it is not

an acceptable situation in practice. It is therefore advisable to include the participant

identities in the message flows and for the responder’s pid to be set after receipt of the

message from the initiator.

In the mBJM security model, it is assumed that public keys are properly authenticated,

and a participant’s identity is securely bound to their public key via some PKI. However

in reality, we may not be able to make this assumption, and this can lead to attacks such

as unknown key-share attacks [72, 85]. It may therefore also be advisable to include the

identities of the protocol participants as well as their public keys in the computation of

the session key.

8.6 Applying the Technique to Protocols with Partial Proofs

Our technique can also be applied to key agreement protocols in the literature with only

partial proofs. We find numerous protocols [16, 39, 83] which use a hash function to

derive a session key and which have proofs of security reducing to the hardness of some

162

8.7 When the Modular Technique Cannot be Used

computational problem f , but only in the NR version of the security model used1. If

the necessary conditions are met for such protocols, full proofs of security in the relevant

model can be obtained as follows.

1. It must be shown that the protocol Π has strong partnering. If Π does not have strong

partnering, this can be achieved by modifying the protocol to include the appropriate

partnering information (for the security model used) in the session string. It should

be checked that such modifications do not affect the existing proof of security.

2. The appropriate version of Theorem 8.1 can now be applied to Π to guarantee that

the related protocol π is secure in the cNR version of the security model used.

3. It must be shown that a decisional oracle for f can be used to solve the session string

decisional problem of Π.

4. The appropriate version of Theorem 8.2 may now be used to obtain a complete

security proof for Π in the full version of the security model used. Security will

depend on the hardness of the Gap problem of f .

The proof of security for [16, Protocol 3] can be completed in the manner described

above, although the protocol does require some modifications to achieve strong partnering.

A suitably modified version of this protocol is in fact presented in [71] together with a proof

of security. Interestingly, [16, Protocol 3] and the modified version in [71] are vulnerable to

a key compromise impersonation attack. However this does not affect the proof of security

since the model of [16] does not capture security against these attacks.

Unfortunately, the partial proofs for the protocols in [39, 83] cannot be completed

using our modular technique. This is because the partial proof of security in [83] is in

fact incorrect, and the session string decisional problem is not reducible to the decisional

problem of f in [39]. In the next section we show how to adapt our modular technique to

the protocol of [39].

8.7 When the Modular Technique Cannot be Used

When applying the modular technique to prove the security of a given protocol, various

conditions must hold in order to obtain a full proof of security. However the protocol under
1A proof for the protocol of [39] appearing in [43] allows the adversary to make some but not all Reveal

queries

163

8.7 When the Modular Technique Cannot be Used

consideration may not satisfy these conditions, and in such circumstances the modular

technique cannot be applied. However it may still be possible to obtain a full proof of

security for the protocol using similar ideas.

As examples, we consider the AK protocol of Chen and Kudla (Protocol 2 in [39, 40])

which is proven secure in the NR-ID-BJM model, and the AK protocol of Smart [103],

which until now has not been proven secure.

In order to define these two protocols, we first need to introduce some mathematical

background. We introduce the notion of bilinear maps (or pairings) on elliptic curves.

Pairings have been used extensively in the construction of identity-based cryptographic

primitives, and they are required for both the protocols of Chen and Kudla and Smart.

8.7.1 Pairings and Related Problems

Let G1 and G2 denote two groups of prime order q, where G1, with an additive notation,

denotes a subgroup of the group of points on an elliptic curve; and G2, with a multiplicative

notation, denotes a subgroup of the multiplicative group of a finite field. A pairing is a

bilinear map ê : G1 × G1 → G2 between these two groups. The map must satisfy the

following properties:

Bilinear: Given P,Q, W ∈ G1 then

ê(P + Q,W) = ê(P, W) · ê(Q,W), and ê(P, Q + W) = ê(P, Q) · ê(P, W),

and consequently for any a ∈ Zq, ê(aP, Q) = ê(P, aQ) = ê(P, Q)a.

Non-degenerate: There exists a P ∈ G1 such that ê(P, P) 6= 1.

Computable: If P, Q ∈ G1, then ê(P,Q) ∈ G2 is efficiently computable.

A bilinear map satisfying the above properties is called an admissible bilinear map.

An admissible bilinear map can obtained by modifying either the Weil pairing [86] or the

Tate pairing [54].

The main computational problem associated with pairings is the computational bilinear

Diffie-Hellman problem (CBDH problem), and is defined as follows.

Definition 8.6 Let G1 and G2 denote two groups of prime order q, let P be a generator

of G1, and let ê : G1 × G1 → G2 be an admissible bilinear map. The CBDH problem

in 〈G1, G2, ê〉 is as follows: Given P, xP, yP, zP ∈ G1 for some x, y, z ∈ Z∗q , compute

W = ê(P, P)xyz ∈ G2.

164

8.7 When the Modular Technique Cannot be Used

We say that algorithm A has advantage ε in solving the CBDH Problem in 〈G1, G2, ê〉
if

Pr[A(P, xP, yP, zP) = ê(P, P)xyz] ≥ ε

This probability is measured over the random choices of P, xP, yP, zP ∈ G and the random

inputs of A, if any.

The decisional problem arising from the CBDH problem is the decisional bilinear Diffie-

Hellman problem (DBDH problem), and is defined as follows.

Definition 8.7 Let G1 and G2 denote two groups of prime order q, let P be a generator

of G1, and let ê : G1×G1 → G2 be an admissible bilinear map. Given P, xP, yP, zP ∈ G1

for some x, y, z ∈ Z∗q , as well as W ∈ G2, the DBDH problem in 〈G1, G2, ê〉 is to determine

if ê(P, P)wxy = W .

The CBDH and DBDH problems can be used to define a related Gap problem.

Definition 8.8 Let G1 and G2 denote two groups of prime order q, let P be a generator

of G1, and let ê : G1 ×G1 → G2 be an admissible bilinear map. The Gap bilinear Diffie-

Hellman (GBDH) problem in 〈G1, G2, ê〉 is as follows: Given P, xP, yP, zP ∈ G1 for some

x, y, z ∈ Z∗q , as well as an oracle that solves the DBDH problem in 〈G1, G2, ê〉, compute

W = ê(P, P)xyz ∈ G2.

Informally, the computational, decisional and Gap bilinear Diffie-Hellman assumptions

are that no polynomially bounded adversary has non-negligible advantage in solving the

computational, decisional and Gap bilinear Diffie-Hellman problems, respectively.

8.7.2 The Chen-Kudla Protocol

We start by considering the AK protocol of Chen and Kudla (AK-CK protocol) [39,

Protocol 2]. Although this protocol has a partial proof of security, the session string

decisional problem is not reducible to the appropriate decisional problem. This obstacle

prevents us from applying the identity-based version of Theorem 8.4 to obtain a full proof

of security. However, after slight modifications to ensure strong partnering, it is still

possible to obtain a full proof of security for this protocol.

The identity-based AK-CK protocol [39, 40] requires a trusted authority (TA) from

which each protocol participant can acquire their private identity-based key.

To provide a private key generation service, the TA selects groups G1 and G2 of prime

order q, a generator P of G1, and an admissible map ê : G1×G1 → G2. The TA selects a

165

8.7 When the Modular Technique Cannot be Used

master private key s chosen randomly from Z∗q . The TA also selects a cryptographic hash

function H1 : {0, 1}∗ → G1. The public parameters of the TA are descriptions of G1, G2

and 〈P, sP, ê,H1〉. When a user A requests the private key for their identity A, the TA

issues a private key SA = sH1(A).

If two participants with identities A and B (we refer to these participants simply as

A and B) wish to share a session key, they obtain the public parameters of the TA and

select an additional cryptographic hash function H2 : {0, 1}∗ → {0, 1}l for a fixed value

l (usually the security parameter). We assume that A and B have corresponding private

keys SA and SB that are issued by the TA. The AK-CK protocol (modified for strong

partnering) is shown in Protocol 5.

Protocol 5: A Modification of the AK-CK Protocol to ensure strong partnering.

The following steps must be taken each time a session key is required:

1. A selects an ephemeral random value a ∈ Z∗q ,
2. B selects an ephemeral random value b ∈ Z∗q .

A and B then exchange the following messages, in the following order:

A −→ B : TA = aH1(A)

B −→ A : TB = bH1(B)

On receipt of TB, A checks that TB ∈ G1 and computes

KA = H2(ê(SA, TB + aH1(B)), A, B, TA, TB)

and accepts with session key ski
A,B = KA. On receipt of TA, B checks that TA ∈ G1

and computes
KB = H2(ê(TA + bH1(A), SB), A, B, TA, TB)

and accepts with session key skj
B,A = KB.

It is easy to see that in Protocol 5 we have

KA = KB = K = H2(ê(H1(A),H1(B))s(a+b), A, B, TA, TB))

which can be used as a secret session key shared between A and B. The ephemeral values

a and b are erased on completion of the protocol.

Protocol 5 differs from the AK-CK protocol in that the values A,B, TA and TB are

included in the session string to ensure that the protocol has strong partnering.

Lemma 8.8 Protocol 5 has strong partnering in the random oracle model.

166

8.7 When the Modular Technique Cannot be Used

Proof: It is trivial to verify that this condition holds because the ordered protocol tran-

script and participant IDs (partnering information) are included in the session string. We

leave the details to the reader. ¤
Although we cannot use our modular technique to prove the security of Protocol 5, we

can still obtain a proof of security for Protocol 5 in the ID-BJM model. To do this, we use

some of the techniques used in the proof of Theorem 8.2, and the security of the protocol

relies on the hardness of the GBDH assumption.

Theorem 8.9 Protocol 5 is ID-BJM AK secure, assuming the hardness of the Gap bi-

linear Diffie-Hellman problem in 〈G1, G2, ê〉, and assuming that H1 and H2 are random

oracles.

Proof:

Conditions 1 and 2(a) of Definition 7.3 are trivial to verify. It remains to prove that

condition 2(b) holds.

We assume that there exists an adversary E who can win the ID-BJM game with non-

negligible advantage η(l) (where l is the security parameter), making at most µ1 queries

to the H1 random oracle, µ2 queries to the H2 random oracle, and where E initiates at

most µS sessions (i.e. for any oracle Πn
I,J , n ∈ {1, ..., µS}).

We now construct from E an algorithm F which solves the CBDH problem with non-

negligible probability. F takes as input descriptions of the two groups G1, G2, the bilinear

map ê, a generator P of G1, and a triple of elements xP, yP, zP ∈ G1 with x, y, z ∈ Z∗q
where q is the prime order of G1 and G2. In addition, F has access to a DBDH oracle,

which on input any 〈aP, bP, cP, W 〉 outputs 1 if W = ê(P, P)abc and 0 otherwise. F ’s task

is to compute and output the value gxyz ∈ G2 where g = ê(P, P).

Using similar techniques to the proof of Theorem 8.2, F will use the DBDH oracle

to ensure consistency between the way that the H2 oracle is simulated and the way that

Reveal queries are answered. Due to the way that F simulates the game, F will not able

to compute the session keys of all oracles, and E may be able to detect this by making

H2 queries on the appropriate session strings. However F will use the DBDH oracle to

detect such session strings, and will therefore be able to answer Reveal and H2 queries

in a consistent manner.

F chooses distinct random integers u and v from {1, ..., µ1} and a value p ∈ {1, ..., µS}.
F gives E the public parameters consisting of the descriptions of the groups G1, G2, the

parameters 〈P, xP, ê〉, and access to the random oracles H1 and H2. F will simulate all

167

8.7 When the Modular Technique Cannot be Used

oracles required during the game and answers all E’s queries as follows.

H1 queries: F simulates the random oracle H1 by keeping a list of tuples 〈I, rIQI〉 which

is called the H1-List. When the H1 oracle is queried with an input I ∈ {0, 1}∗, F

responds as follows. If I is already on the H1-List in the tuple 〈I, rI , QI〉, then F

outputs QI . Otherwise:

1. If I is the v-th distinct H1 query, then the oracle outputs QI = yP and adds

the tuple 〈I,⊥, QI〉 to the H1 list. Otherwise F selects a random rI ∈ Z∗q and

outputs QI = rIP , and then adds the tuple 〈I, rI , QI〉 to the H1 list.

2. In addition, F sets up a new participant I with public key QI and private key

SI = rIxP .

We assume that U was the u-th distinct identity to be queried on H1, and that V

was the v-th distinct identity to be queried on H1. We note that for participant V ,

where QV = yP , F is unable to compute the private key SV .

As in the proof of Theorem 8.2, F maintains a guess session key list, called the

G-List. For each oracle of the form Πn
V,J (for any participant J) there is an entry

on the G-List of the form 〈n, J, skn
V,J〉 where skn

V,J is the session key of oracle Πn
V,J .

Initially the session keys on the list are set to ⊥.

Send queries: E can send a message m to any oracle Πn
I,J . If Πn

I,J = Πp
U,V , then F

retrieves the value rU on the H1 List such that H1(U) = rUP and outputs zH1(U) =

rUzP . Otherwise F chooses a random α ∈ Z∗q and outputs αH1(I).

H2 queries: E can query any string s on the H2 random oracle. In order to answer these

queries, F maintains an H2-List of tuples 〈s, t〉 where t ∈ {0, 1}l.

If s is already on the H1-List in the tuple 〈s, t〉, then F outputs t. Otherwise if s

is not of the form g, V, J, TV , TJ or g, J, V, TJ , TV for some participant J and some

g ∈ G2, then F selects a random t ∈ {0, 1}l, adds the tuple 〈s, t〉 to the H2-List and

outputs t.

Suppose that s is of the form g, V, J, TV , TJ or g, J, V, TJ , TV for some participant J

and some g ∈ G2. Then for each oracle Πn
V,J for any n ∈ {1, ..., µS} on the G-List

with skn
V,J 6=⊥, F proceeds as follows. If Πn

V,J received a message TJ and output

TV = αQV , then F submits the tuple 〈yP, αH1(J) + TJ , xP, g〉 to the DBDH oracle

and receives a response b.

168

8.7 When the Modular Technique Cannot be Used

If, for any of these queries to the DBDH oracle, b = 1, then F outputs skn
V,J .

Otherwise F outputs a random t ∈ {0, 1}l, adds the tuple 〈s, t〉 to the H2-List and

outputs t.

Reveal queries: E can request the session key of any oracle Πn
I,J that has accepted.

If Πn
I,J = Πp

U,V then F terminates E and aborts. If Πn
I,J 6= Πn

V,J (for all J), then

F outputs skn
I,J . Otherwise, we have that Πn

I,J = Πn
V,J for some participant J , and

we assume that Πn
V,J received a message TJ and output TV = αQV . F proceeds as

follows.

F considers each tuple 〈s, t〉 on the H2-List where s is of the form g, V, J, TV , TJ or

g, J, V, TJ , TV for some g ∈ G2. For each such tuple on the H2-List, F submits the

tuple 〈yP, αH1(J) + TJ , xP, g〉 to the DBDH oracle and receives a response b.

If, for any of these queries to the DBDH oracle, b = 1, then F sets sk = t where

t = H2(s). Otherwise F selects a random sk ∈ {0, 1}l. F then sets the value

skn
V,J = sk on the G-List and outputs sk.

Private Key Extract queries: On input an identity I, F queries I on the H1 oracle.

If I 6= V then F retrieves the value rI from the tuple 〈I, rI , QI〉 on the H1 list, and

outputs SI = rIxP . Otherwise F terminates E and aborts.

Test query: At some point in the simulation, E will ask a Test query of some oracle.

If E does not choose the oracle Πp
U,V for the Test query, then F aborts. F simply

outputs a random session key sk∗ ∈ {0, 1}l.

Output: When E has finished querying oracles, E outputs a bit b′.

The probability that F does not abort at some point in the simulation is 1/µ2
1µS since u and

v were chosen randomly from {1, ..., µ1}. In this case, E cannot detect any inconsistency

in F ’s simulation, and has probability η of winning the game where oracle Πp
U,V was chosen

for the Test query.

If E wins the game where oracle Πp
U,V was chosen for the Test query, then with over-

whelming probability 1− 1/2l, E queried the session string ssp
U,V on H2. If this is not the

case, then E cannot distinguish between a random key and the true session key for the Test

session. F therefore picks a random tuple 〈s, t〉 on the H2 List where s = g, U, V, TU , TV

(if Πp
U,V is an initiator oracle) or s = g, V, U, TV , TU (if Πp

U,V is a responder oracle) and

guesses that s = ssp
U,V (this occurs with probability at least 1/µ2).

169

8.7 When the Modular Technique Cannot be Used

F retrieves the value rU on the H1 List such that H1(U) = rUP and computes

SU = rUxP . We recall that H1(V) = yP and TU = rUzP , so if s = ssp
U,V then

g = ê(SU , TV + zyP) = ê(rUxP, TV) · ê(rUxP, zyP). F therefore outputs (g/δ)1/γ as

its guess for ê(P, P)xyz, where δ = ê(rUxP, TV) and γ = rU .

F solves the CBDH problem with probability η/µ2
1µ2µS(1−1/2l) which is non-negligible

in l, contradicting the hardness of the CBDH problem.

¤

8.7.3 Smart’s Protocol

The setup procedure for Smart’s AK protocol is identical to the setup for the AK-CK

protocol. The public parameters of the TA, as before, are descriptions of G1, G2 and

〈P, sP, ê,H1〉. When a user A requests the private key for their identity A, the TA issues

a private key SA = sH1(A).

As before, we assume that A and B have corresponding private keys SA and SB that

are issued by the TA. Smart’s AK protocol (modified for strong partnering) is shown in

Protocol 6.

Protocol 6: A Modification of Smart’s AK Protocol to ensure strong partnering.

The following steps must be taken each time a session key is required:

1. A selects an ephemeral random value a ∈ Z∗q ,
2. B selects an ephemeral random value b ∈ Z∗q .

A and B then exchange the following messages, in the following order:

A −→ B : TA = aP

B −→ A : TB = bP

On receipt of TB, A checks that TB ∈ G1 and computes

KA = H2(ê(aH1(B), sP) · ê(SA, TB), A, B, TA, TB)

and accepts with session key ski
A,B = KA. On receipt of TA, B checks that TA ∈ G1

and computes

KB = H2(ê(bH1(A), sP) · ê(SB, TA), A, B, TA, TB)

and accepts with session key skj
B,A = KB.

170

8.7 When the Modular Technique Cannot be Used

It is easy to see that in Protocol 6 we have

KA = KB = K = H2(ê(bH1(A) + aH1(B), sP), A,B, TA, TB))

which can be used as a secret session key shared between A and B. The ephemeral values

a and b are erased on completion of the protocol.

We can show that Protocol 6 has strong partnering, and it is possible to obtain a

proof of security of Smart’s protocol in the cNR-ID-BJM model assuming the hardness

of the CBDH problem. Unfortunately, as with Protocol 5, we cannot apply the modular

technique because the session string decisional problem is not reducible to the DBDH

problem.

Despite the fact that we cannot make us of the modular technique for Protocol 6, as

with Protocol 5, we can still obtain a full proof of security for Protocol 6 in the ID-BJM

model using the proof techniques of Theorem 8.2. This proof is very similar to the proof

of Theorem 8.9.

However if we make a small modification to Protocol 6, we find that the session string

decisional problem is reducible to the DBDH problem, and we can obtain a full proof of

security for the resulting protocol using our modular technique. The modified version of

Protocol 6 requires exactly the same setup as Protocol 6 and is shown in Protocol 7.

We notice that the only difference between Protocols 6 and 7 is in the generation of

the key. In Protocol 6, the outputs of the pairing computations are multiplied together,

whereas in Protocol 7, the outputs of the pairing computations are concatenated.

The modified version of Protocol 7 in which the session key is equal to the session

string of Protocol 7 is denoted by Protocol 7′.

We now establish the security of Protocol 7 in the ID-BJM model using the identity-

based version of Theorem 8.4. To do this we need to establish a pair of lemmas.

Lemma 8.10 The cNR-ID-BJM security of Protocol 7′ is probabilistic polynomial time

reducible to the hardness of the CBDH problem in 〈G1, G2, ê〉.

Proof: We assume that for security parameter l there exists an adversary E for Protocol

7′ that can win the cNR-ID-BJM game with non-negligible advantage η(l) (where l is the

security parameter), making at most µ1 queries to H1, µC Private Key Extract queries,

and where E initiates at most µS sessions (i.e. for any oracle Πn
I,J , n ∈ {1, ..., µS}).

We now construct from E an algorithm F which solves the CBDH problem with non-

negligible probability. F takes as input descriptions of the two groups G1, G2, the bilinear

171

8.7 When the Modular Technique Cannot be Used

Protocol 7: A Modification of Protocol 6 to allow modular proofs.

The following steps must be taken each time a session key is required:

1. A selects an ephemeral random value a ∈ Z∗q ,
2. B selects an ephemeral random value b ∈ Z∗q .

A and B then exchange the following messages, in the following order:

A −→ B : TA = aP

B −→ A : TB = bP

On receipt of TB, A checks that TB ∈ G1 and computes

KA = H2(ê(aH1(B), sP), ê(SA, TB), A, B, TA, TB)

and accepts with session key ski
A,B = KA. On receipt of TA, B checks that TA ∈ G1

and computes

KB = H2(ê(bH1(A), sP), ê(SB, TA), A,B, TA, TB)

and accepts with session key skj
B,A = KB.

map ê, a generator P of G1, and a triple of elements xP, yP, zP ∈ G1 with x, y, z ∈ Z∗q
where q is the prime order of G1 and G2. F ’s task is to compute and output the value

gxyz ∈ G2 where g = ê(P, P).

F simulates a challenger in a cNR-ID-BJM game with E. F chooses distinct random

integers u and v from {1, ..., µ1} and a value p ∈ {1, ..., µS}. F gives E the public param-

eters consisting of the descriptions of the groups G1, G2, the parameters 〈P, xP, ê〉, and

access to the random oracle H1. F will simulate all oracles required during the game and

answers all E’s queries as follows.

H1 queries: F simulates the random oracle H1 by keeping a list of tuples 〈I, rIQI〉 which

is called the H1-List. When the H1 oracle is queried with an input I ∈ {0, 1}∗, F

responds as follows. If I is already on the H1-List in the tuple 〈I, rI , QI〉, then F

outputs QI . Otherwise:

1. If I is the v-th distinct H1 query, then the oracle outputs QI = yP and adds

the tuple 〈I,⊥, QI〉 to the H1 list. Otherwise F selects a random rI ∈ Z∗q and

outputs QI = rIP , and then adds the tuple 〈I, rI , QI〉 to the H1 list.

2. In addition, F sets up a new participant I with public key QI and private key

172

8.7 When the Modular Technique Cannot be Used

SI = rIxP .

We assume that U was the u-th distinct identity to be queried on H1, and that V

was the v-th distinct identity to be queried on H1. We note that for participant V ,

where QV = yP , F is unable to compute the private key SV .

Send queries: E can send a message m to any oracle Πn
I,J . If Πn

I,J = Πp
U,V , then F

outputs zP . Otherwise F chooses a random α ∈ Z∗q and outputs αP .

Private Key Extract queries: On input an identity I, F queries I on the H1 oracle.

If I 6= V then F retrieves the value rI from the tuple 〈I, rI , QI〉 on the H1 list, and

outputs SI = rIxP . Otherwise F terminates E and aborts.

The probability that E chooses oracle Πp
U,V for the Test query is at least 1

µ2
1·µS

. In this

case, we note that E could not have made a Private key extract query on V , so F

would not have aborted.

E finally outputs a session key of the form (a, b, I, J, c, d) where a, b ∈ G2, I, J ∈ {0, 1}∗
and c, d ∈ G1. If Πp

U,V was an initiator, then F outputs a as its guess for the value gxyz ∈ G2

where g = ê(P, P), otherwise F outputs b as its guess. It is now easy to see that F solves

the CBDH problem on input xP, yP, zP ∈ G1 with probability at least η′ = η
µ2

1·µS
(which

is non-negligible in l). ¤

Lemma 8.11 Protocol 7 has strong partnering in the random oracle model.

Proof: It is trivial to verify that this condition holds because the ordered protocol tran-

script and participant IDs (partnering information) are included in the session string. We

leave the details to the reader. ¤

Corollary 8.12 Protocol 7 is secure in the ID-BJM model assuming that H1 and H2 are

random oracles, and assuming the hardness of the Gap Bilinear Diffie-Hellman problem

in 〈G1, G2, ê〉.

Proof: This result comes immediately from the identity-based version of Theorem 8.4,

and Lemmas 8.10 and 8.11, and the simple observation that the session string decisional

problem for Protocol 7 is reducible to the DBDH problem (in constant time). ¤

173

8.8 Special Gap Groups

8.8 Special Gap Groups

The Gap assumptions may not be acceptable to all, since in developing security proofs,

one must assume the use of an oracle which is not known to exist: a decisional oracle.

For instance, for Protocol 1, the proof of security ultimately requires an oracle which

solves DDH in the group G. This is thought to be a hard problem, so there is no known

method of constructing such an efficient oracle. Nevertheless, the security proof still gives

a concrete basis for assessing the security of the protocol.

However there do exist groups in which the computational problem is thought to be

hard but where the decisional problem is known to be easy, for instance, groups of points

on an elliptic curve on which an efficient bilinear map (or pairing operation) is defined. In

such groups, the pairing operation can be used to construct an efficient DDH oracle, and

the Gap problem is in fact equivalent to the computational problem. Therefore if Protocol

1 had been defined over such a group, then its security would in fact reduce to the CDH

problem in that group.

Of course, one may object to using a group in which the decisional problem is known

to be easy since this may indicate other, yet to be discovered weaknesses of the group.

8.9 Conclusions and Open Problems

We have presented a modular technique that makes use of Gap assumptions for simplifying

proofs of security for key agreement protocols which are not built using the modular

approach of [8]. Protocols of this type have traditionally been notoriously hard to prove

secure, and we have indicated how the proofs of security of many such protocols in the

literature may be constructed or completed using our technique. Our technique works not

only with the model presented in this chapter, but also with the models of [12, 13, 16, 32].

We considered in detail a long-standing protocol presented in [16] which previously

lacked a proof of security. We then provided a full proof of security for a slightly modified

version of this protocol using the techniques introduced in this chapter. We also considered

protocols in [16, 39, 103] which up till now had only partial proofs of security or no security

proofs at all. For such protocols we indicated how full proofs of security may be constructed

(either using our modular technique, or the proof techniques used in this chapter), and we

provide full proofs of security for the (slightly modified) AK protocols of [39] and [103].

In future work, it would be interesting to extend the idea of modular proofs to multi-

party protocols as well as other types of key agreement protocols such as key agreement

174

8.9 Conclusions and Open Problems

protocols with key confirmation. It would also be interesting to investigate the use of Gap

assumptions in other cryptographic primitives, such as encryption or signature schemes,

and extend the idea of modular proof techniques to these primitives.

175

Bibliography

[1] M. Abdalla, O. Chevassut, and D. Pointcheval. One-time verifier-based encrypted

key exchange. In S. Vaudenay, editor, Public Key Cryptography - PKC 2005, volume

3386 of Lecture Notes in Computer Science, pages 47–64. Springer-Verlag, 2005.

[2] M. Abe, M. Ohkubo, and K. Suzuki. 1-out-of-n signatures from a variety of keys.

In Y. Zheng, editor, Advances in Cryptology – ASIACRYPT 2002, volume 2501 of

Lecture Notes in Computer Science, pages 415–432. Springer-Verlag, 2002.

[3] S. Al-Riyami and K. Paterson. Authenticated three party key agreement protocols

from pairings. In K. Paterson, editor, Proceedings of 9th IMA International Con-

ference on Cryptography and Coding, volume 2898 of Lecture Notes in Computer

Science, pages 332–359. Springer-Verlag, 2003.

[4] N. Asokan, V. Shoup, and M. Waidner. Optimistic fair exchange of digital signatures.

In K. Nyberg, editor, Advances in Cryptology - EUROCRYPT 1998, volume 1403

of Lecture Notes in Computer Science, pages 591–606. Springer-Verlag, 1998.

[5] N. Asokan, V. Shoup, and M. Waidner. Optimistic fair exchange of digital signatures.

IEEE Journal on Selected Areas in Communications, 18(4):593–610, 2000.

[6] B. Baum-Waidner and M. Waidner. Round-optimal and abuse free optimistic multi-

party contract signing. In U. Montanari et al., editor, ICALP ’00: Proceedings

of the 27th International Colloquium on Automata, Languages and Programming,

pages 524–535. Springer-Verlag, 2000.

[7] M. Bellare, A. Boldyreva, and A. Palacio. An uninstantiable random-oracle-model

scheme for a hybrid-encryption problem. In C. Cachin and J. Camenisch, editors,

Advances in Cryptology - EUROCRYPT 2004, volume 3027 of Lecture Notes in

Computer Science, pages 171–188. Springer-Verlag, 2004.

176

BIBLIOGRAPHY

[8] M. Bellare, R. Canetti, and H. Krawczyk. A modular approach to the design and

analysis of authentication and key exchange protocols. In Proceedings of the 30th

Annual ACM Symposium on the Theory of Computing STOC, pages 419–428. ACM,

1998.

[9] M. Bellare, E. Petrank, C. Rackoff, and P. Rogaway. Authenticated key exchange

in the public key model. Manuscript, 1995-96.

[10] M. Bellare, D. Pointcheval, and P. Rogaway. Authenticated key exchange secure

against dictionary attacks. In B. Preneel, editor, Advances in Cryptology – EURO-

CRYPT 2000, volume 1807 of Lecture Notes in Computer Science, pages 139–155.

Springer-Verlag, 2000.

[11] M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing

efficient protocols. In ACM Conference on Computer and Communications Security,

pages 62–73. ACM, 1993.

[12] M. Bellare and P. Rogaway. Entity authentication and key distribution. In D. Stin-

son, editor, Advances in Cryptology - CRYPTO 1993, volume 773 of Lecture Notes

in Computer Science, pages 232–249. Springer-Verlag, 1994.

[13] M. Bellare and P. Rogaway. Provably secure session key distribution: The three party

case. In Proceedings of the 27th Annual ACM Symposium on Theory of Computing

STOC, pages 57–66. ACM, 1995.

[14] A. Bender, J. Katz, and R. Morselli. Ring signatures: Stronger definitions, and

constructions without random oracles. 3rd Theory of Cryptography Conference -

TCC 2006 (to appear), 2006. Available at http://eprint.iacr.org/2005/304.

[15] E. Biham, R. Chen, A. Joux, P. Carribault, C. Lemuet, and W. Jalby. Collisions

of SHA-0 and reduced SHA-1. In R. Cramer, editor, Advances in Cryptology –

EUROCRYPT 2005, volume 3494 of Lecture Notes in Computer Science, pages 36–

57. Springer-Verlag, 2005.

[16] S. Blake-Wilson, D. Johnson, and A. Menezes. Key agreement protocols and their

security analysis. In M. Darnell, editor, Cryptography and Coding, volume 1355 of

Lecture Notes in Computer Science, pages 30–45. Springer-Verlag, 1997.

[17] S. Blake-Wilson and A. Menezes. Entity authentication and key transport protocols

employing asymmetric techniques. In Security Protocols Workshop, 1997.

177

BIBLIOGRAPHY

[18] D. Boneh and M. Franklin. Identity-based encryption from the Weil pairing. In

J. Kilian, editor, Advances in Cryptology – CRYPTO 2001, volume 2139 of Lecture

Notes in Computer Science, pages 213–229. Springer-Verlag, 2001.

[19] D. Boneh, C. Gentry, B. Lynn, and H. Shacham. Aggregate and verifiably en-

crypted signatures from bilinear maps. In E. Biham, editor, Advances in Cryptology

– EUROCRYPT 2003, volume 2656 of Lecture Notes in Computer Science, pages

416–432. Springer-Verlag, 2003.

[20] D. Boneh and R. Lipton. Algorithms for black-box fields and their application to

cryptography (extended abstract). In N. Koblitz, editor, Advances in Cryptology –

CRYPTO 1996, volume 1109 of Lecture Notes in Computer Science, pages 283–297.

Springer-Verlag, 1996.

[21] D. Boneh and M. Naor. Timed commitments. In M. Bellare, editor, Advances in

Cryptology – CRYPTO 2000, volume 1880 of Lecture Notes in Computer Science,

pages 236–254. Springer-Verlag, 2000.

[22] J. Boyar, D. Chaum, I. Damg̊ard, and T. P. Pedersen. Convertible undeniable

signatures. In A. Menezes and S. Vanstone, editors, Advances in Cryptology –

CRYPTO 1990, volume 537 of Lecture Notes in Computer Science, pages 189–205.

Springer-Verlag, 1991.

[23] C. Boyd, W. Mao, and K. Paterson. Key agreement using statically keyed authen-

ticators. In M. Jakobsson et al., editor, Applied Cryptography and Network Secu-

rity: Second International Conference, ACNS 2004, volume 3089 of Lecture Notes

in Computer Science, pages 388–401. Springer-Verlag, 2004.

[24] G. Brassard, D. Chaum, and C. Crépeau. Minimum disclosure proofs of knowledge.

Journal of Computer and System Sciences, 37(2):156–189, 1988.

[25] E. Bresson, J. Stern, and M. Szydlo. Threshold ring signatures for ad-hoc groups. In

M. Yung, editor, Advances in Cryptology – CRYPTO 2002, volume 2442 of Lecture

Notes in Computer Science, pages 465–480. Springer-Verlag, 2002.

[26] J. Camenisch. Efficient and generalized group signatures. In W. Fumy, editor,

Advances in Cryptology – EUROCRYPT 1997, volume 1233 of Lecture Notes in

Computer Science, pages 465–479. Springer-Verlag, 1997.

178

BIBLIOGRAPHY

[27] J. Camenisch and M. Michels. Confirmer signature schemes secure against adaptive

adversaries. In B. Preneel, editor, Advances in Cryptology – EUROCRYPT 2000,

volume 1807 of Lecture Notes in Computer Science, pages 243–258. Springer-Verlag,

2000.

[28] J. Camenisch and V. Shoup. Practical verifiable encryption and decryption of dis-

crete logarithms. In D. Boneh, editor, Advances in Cryptology – CRYPTO 2003,

volume 2729 of Lecture Notes in Computer Science, pages 126–144. Springer-Verlag,

2003.

[29] R. Canetti. Universally composable security: A new paradigm for cryptographic

protocols. Cryptology ePrint Archive, Report 2000/067, last updated January 2005,

2000. Available at http://eprint.iacr.org/.

[30] R. Canetti. Universally composable security: A new paradigm for cryptographic

protocols. In Proceedings of the 42nd IEEE symposium on Foundations of Computer

Science - FOCS 2001, pages 136–145. IEEE Computer Society, 2001.

[31] R. Canetti, S. Halevi, J. Katz, Y. Lindell, and P. D. MacKenzie. Universally com-

posable password-based key exchange. In R. Cramer, editor, Advances in Cryptology

- EUROCRYPT 2005, volume 3494 of LNCS, pages 404–421. Springer-Verlag, 2005.

[32] R. Canetti and H. Krawczyk. Analysis of key-exchange protocols and their use

for building secure channels. In B. Pfitzmann, editor, Advances in Cryptology –

EUROCRYPT 2001, volume 2045 of Lecture Notes in Computer Science, pages

453–474. Springer-Verlag, 2001.

[33] R. Canetti and H. Krawczyk. Universally composable notions of key exchange and

secure channels. In L. Knudsen, editor, Advances in Cryptology – EUROCRYPT

2002, volume 2332 of Lecture Notes in Computer Science, pages 337–351. Springer-

Verlag, 2002.

[34] D. Chaum. Demonstrating that a public predicate can be satisfied without revealing

any information about how. In A. M. Odlyzko, editor, Advances in Cryptology -

CRYPTO 1986, volume 263 of LNCS, pages 195–199. Springer-Verlag, 1986.

[35] D. Chaum. Zero-knowledge undeniable signatures. In I. Damg̊ard, editor, Advances

in Cryptology – EUROCRYPT 1990, volume 473 of Lecture Notes in Computer

Science, pages 458–464. Springer-Verlag, 1990.

179

BIBLIOGRAPHY

[36] D. Chaum. Designated confirmer signatures. In A. D. Santis, editor, Advances in

Cryptology – EUROCRYPT 1994, volume 950 of Lecture Notes in Computer Science,

pages 86–91. Springer-Verlag, 1994.

[37] D. Chaum and H. van Antwerpen. Undeniable signatures. In G. Brassard, editor,

Advances in Cryptology – CRYPTO 1989, volume 435 of Lecture Notes in Computer

Science, pages 212–216. Springer-Verlag, 1990.

[38] D. Chaum and E. van Heyst. Group signatures. In D. Davies, editor, Advances in

Cryptology – EUROCRYPT 1991, volume 547 of Lecture Notes in Computer Science,

pages 257–265. Springer-Verlag, 1991.

[39] L. Chen and C. Kudla. Identity based authenticated key agreement from pairings.

Cryptology ePrint Archive, Report 2002/184, 2002. Available at http://eprint.

iacr.org/.

[40] L. Chen and C. Kudla. Identity based authenticated key agreement from pairings. In

IEEE Computer Security Foundations Workshop – CSFW-16 2003, pages 219–233.

IEEE Computer Society Press, 2003.

[41] L. Chen, C. Kudla, and K. Paterson. Concurrent signatures. In C. Cachin and

J. Camenisch, editors, Advances in Cryptology - EUROCRYPT 2004, volume 3027

of Lecture Notes in Computer Science, pages 287–305. Springer-Verlag, 2004.

[42] M. Cherepnev. On the connection between the discrete logarithms and the Diffie-

Hellman problem. Discrete Math. Appl., 1996.

[43] K.-K. Choo, C. Boyd, and Y. Hitchcock. On session key construction in provably-

secure key establishment protocols. In S. Vaudenay, editor, Proceedings of Inter-

national Conference on Cryptology in Malaysia - Mycrypt 2005, volume 3715 of

Lecture Notes in Computer Science, page 116 131. Springer-Verlag, 2005. Available

at http://eprint.iacr.org/2005/206.

[44] S. Chow and W. Susilo. Generic construction of (identity-based) perfect concurrent

signatures. In S. Qing et al., editor, Proceedings of the 7th International Conference

on Information and Communications Security - ICICS 2005, volume 3783 of Lecture

Notes in Computer Science, pages 194 – 206. Springer-Verlag, 2005.

180

BIBLIOGRAPHY

[45] D. Coppersmith and I. Shparlinski. On polynomial approximation and the paral-

lel complexity of the discrete logarithm problem and breaking the Diffie-Hellman

cryptosystem. Preprint, Nov. 1996.

[46] R. Cramer, I. Damgard, and B. Schoenmakers. Proofs of partial knowledge and

simplified design of witness hiding protocols. In Y. Desmedt, editor, Advances in

Cryptology - CRYPTO 1994, volume 893 of Lecture Notes in Computer Science,

pages 174–187. Springer-Verlag, 1995.

[47] I. Damg̊ard and T. Pedersen. New convertible undeniable signature schemes. In

U. Maurer, editor, Advances in Cryptology – EUROCRYPT 1996, volume 1070 of

Lecture Notes in Computer Science, pages 372–386. Springer-Verlag, 1996.

[48] B. den Boer. Diffie-Hellman is as strong as discrete log for certain primes. In

S. Goldwasser, editor, Advances in Cryptology – CRYPTO 1988, volume 403 of

Lecture Notes in Computer Science, pages 530–539. Springer-Verlag, 1989.

[49] Y. Desmedt and M. Yung. Weakness of undeniable signature schemes. In D. Davies,

editor, Advances in Cryptology – EUROCRYPT 1991, volume 547 of Lecture Notes

in Computer Science, pages 205–220. Springer-Verlag, 1991.

[50] W. Diffie and M. E. Hellman. New directions in cryptography. IEEE Transactions

on Information Theory, IT-22(6):644–654, 1976.

[51] W. Diffie, P. C. van Oorschot, and M. J. Weiner. Authentication and authenticated

key exchange. Designs, Codes and Cryptography, 2:107–125, 1992.

[52] Y. Dodis and L. Reyzin. Breaking and repairing optimistic fair exchange from

PODC 2003. In M. Yung, editor, DRM ’03: Proceedings of the 2003 ACM workshop

on Digital rights management, pages 47–54. ACM Press, 2003.

[53] S. Even, O. Goldreich, and A. Lempel. A randomized protocol for signing contracts.

Commun. ACM, 28(6):637–647, 1985.

[54] G. Frey, M. Müller, and H. Rück. The Tate pairing and the discrete logarithm

applied to elliptic curve cryptosystems. IEEE Transactions on Information Theory,

45(5):1717–1719, 1999.

[55] S. D. Galbraith and W. Mao. Invisibility and anonymity of undeniable and confirmer

signatures. In M. Joye, editor, CT-RSA 2003, volume 2612 of Lecture Notes in

Computer Science, page 8097. Springer-Verlag, 2003.

181

BIBLIOGRAPHY

[56] J. Garay, M. Jakobsson, and P. MacKenzie. Abuse-free optimistic contract signing.

In M. Wiener, editor, Advances in Cryptology – Crypto 1999, volume 1666 of Lecture

Notes in Computer Science, pages 449–466. Springer-Verlag, 1999.

[57] J. Garay and C. Pomerance. Timed fair exchange of standard signatures: [extended

abstract]. In R. Wright, editor, Financial Cryptography 2003, volume 2742 of Lecture

Notes in Computer Science, pages 190–207. Springer-Verlag, 2003.

[58] O. Goldreich. A simple protocol for signing contracts. In D. Chaum, editor, Advances

in Cryptology – CRYPTO 1983, pages 133–136. Plenum Press, 1983.

[59] O. Goldreich, S. Micali, and A. Wigderson. How to prove all NP-statements in

zero-knowledge, and a methodology of cryptographic protocol design. In A. M.

Odlyzko, editor, Advances in Cryptology - CRYPTO 1986, volume 263 of LNCS,

pages 171–185. Springer-Verlag, 1986.

[60] S. Goldwasser and Y. Kalai. On the (in)security of the Fiat-Shamir paradigm. In

44th Symposium on Foundations of Computer Science (FOCS 2003, pages 102–113.

IEEE Computer Society, 2003.

[61] S. Goldwasser and S. Micali. Probabilistic encryption. Journal of Computer and

System Sciences, 28(2):270–299, 1984.

[62] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive

proof systems. SIAM Journal on Computing, 18(1):186–208, 1989.

[63] S. Goldwasser, S. Micali, and R. Rivest. A digital signature scheme secure against

adaptive chosen-message attacks. SIAM Journal on Computing, 17(2):281–308, 1988.

[64] S. Halevi and H. Krawczyk. Public-key cryptography and password protocols. In

ACM Conference on Computer and Communications Security, pages 122–131, 1998.

[65] J. Herranz and G. Sáez. Forking lemmas for ring signature schemes. In T. Johansson

and S. Maitra, editors, Proceedings of 5th International Conference on Cryptology

in India - INDOCRYPT 2003, volume 2904 of Lecture Notes in Computer Science,

pages 266–279. Springer-Verlag, 2003.

[66] J. Herranz and G. Sáez. New ID-based ring signature schemes. In J. Lopez et al.,

editor, Proceedings of the 6th International Conference on Information and Commu-

nications Security - ICICS’04, volume 3269 of Lecture Notes in Computer Science,

pages 27–39. Springer-Verlag, 2004.

182

BIBLIOGRAPHY

[67] Y. Hitchcock, Y. Tin, J. G. Nieto, C. Boyd, and P. Montague. A password-based au-

thenticator: Security proof and applications. In T. Johansson and S. Maitra, editors,

Proceedings of 4th International Conference on Cryptology in India INDOCRYPT

2003, volume 2904 of Lecture Notes in Computer Science, pages 388–401. Springer-

Verlag, 2003.

[68] M. Jakobsson. Blackmailing using undeniable signatures. In A. D. Santis, editor,

Advances in Cryptology – EUROCRYPT 1994, volume 950 of Lecture Notes in Com-

puter Science, pages 425–427. Springer-Verlag, 1994.

[69] M. Jakobsson and D. Pointcheval. Mutual authentication and key exchange protocol

for low power devices. In P. Syverson, editor, Financial Cryptography, 5th Inter-

national Conference, FC 2001, volume 2339 of Lecture Notes in Computer Science,

page 178195. Springer-Verlag, 2002.

[70] M. Jakobsson, K. Sako, and R. Impagliazzo. Designated verifier proofs and their

applications. In U. Maurer, editor, Advances in Cryptology - EUROCRYPT 1996,

volume 1070 of Lecture Notes in Computer Science, pages 143–154. Springer-Verlag,

1996.

[71] I. Jeong, J. Katz, and D. Lee. One-round protocols for two-party authenticated

key exchange. In M. Jakobsson et al., editor, Applied Cryptography and Network

Security: the Second International Conference, ACNS 2004, volume 3089 of Lecture

Notes in Computer Science, pages 220 – 232. Springer-Verlag, 2004.

[72] B. Kaliski, Jr. An unknown key-share attack on the MQV key agreement protocol.

ACM Transactions on Information and Systems Security, 4(3):275–288, 2001.

[73] C. Kudla and K. Paterson. Modular security proofs for key agreement protocols. In

B. Roy, editor, Advances in Cryptology – ASIACRYPT 2005, volume 3788 of Lecture

Notes in Computer Science, pages 549–565. Springer-Verlag, 2005.

[74] C. Kudla and K. Paterson. Non-interactive designated verifier proofs and undeniable

signatures. In N. Smart, editor, 10th International Conference on Cryptography and

Coding, volume 3796 of Lecture Notes in Computer Science, pages 136–154. Springer-

Verlag, 2005.

[75] F. Laguillaumie and D. Vergnaud. Designated verifier signatures: Anonymity and

efficient construction from any bilinear map. In C. Blundo and S. Cimato, edi-

183

BIBLIOGRAPHY

tors, SCN 2004, volume 3352 of Lecture Notes in Computer Science, pages 105–119.

Springer-Verlag, 2005.

[76] L. Law, A. Menezes, M. Qu, J. Solinas, and S. Vanstone. An efficient protocol

for authenticated key agreement. Designs, Codes and Cryptography, 28(2):119–134,

2003.

[77] H. Lipmaa, G. Wang, and F. Bao. Designated verifier signature schemes: Attacks,

new security notions and a new construction. In L. Caires et al., editor, Automata,

Languages and Programming, ICALP 2005, volume 3580 of Lecture Notes in Com-

puter Science, pages 459–471. Springer-Verlag, 2005.

[78] S. Lucks. Open key exchange: How to defeat dictionary attacks without encrypting

public keys. In Security Protocols Workshop, 1997.

[79] T. Matsumoto, Y. Takashima, and H. Imai. On seeking smart public-key-distribution

systems. Electronics Letters, E69(2):99–106, 1986.

[80] U. Maurer. Towards the equivalence of breaking the Diffie-Hellman protocol and

computing discrete logarithms. In Y. Desmedt, editor, Advances in Cryptology —

CRYPTO 1994, volume 839 of Lecture Notes in Computer Science, pages 271–281.

Springer-Verlag, 1994.

[81] U. Maurer, R. Renner, and C. Holenstein. Indifferentiability, impossibility results on

reductions, and applications to the random oracle methodology. In M. Naor, editor,

Theory of Cryptography, TCC 2004, volume 2951 of Lecture Notes in Computer

Science, pages 21–39. Springer-Verlag, 2004.

[82] U. Maurer and S. Wolf. The relationship between breaking the Diffie-Hellman pro-

tocol and computing discrete logarithms. SIAM Journal on Computing, 28(5):1689–

1721, 1999.

[83] N. McCullagh and P. Barreto. A new two-party identity-based authenticated key

agreement. Cryptology ePrint Archive, Report 2004/122, 2005. Available at http:

//eprint.iacr.org/.

[84] N. McCullagh and P. Barreto. A new two-party identity-based authenticated key

agreement. In A. Menezes, editor, Topics in Cryptology – CT-RSA 2005, volume

3376 of Lecture Notes in Computer Science, pages 262–274. Springer-Verlag, 2005.

184

BIBLIOGRAPHY

[85] A. Menezes. Another look at HMQV. Cryptology ePrint Archive, Report 2005/205,

2005. Available from http://eprint.iacr.org/2005/205.

[86] A. Menezes, T. Okamoto, and S. Vanstone. Reducing elliptic curve logarithms to

logarithms in a finite field. IEEE Transactions on Information Theory, 39(5):1639–

1646, 1993.

[87] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone. Handbook of Applied Cryp-

tography. CRC Press, Boca Raton, 1997.

[88] C. Mitchell, M. Ward, and P. Wilson. Key control in key agreement protocols.

Electronics Letters, 34:980–981, 1998.

[89] K. Nguyen. Asymmetric concurrent signatures. In S. Qing et al., editor, Proceedings

of the 7th International Conference on Information and Communications Security -

ICICS 2005, volume 3783 of Lecture Notes in Computer Science, pages 181 – 193.

Springer-Verlag, 2005.

[90] J. Nielsen. Separating random oracle proofs from complexity theoretic proofs: The

non-committing encryption case. In M. Yung, editor, Advances in Cryptology -

CRYPTO 2002, volume 2442 of Lecture Notes in Computer Science, pages 111–126.

Springer-Verlag, 2002.

[91] W. Ogata, K. Kurosawa, and S. Heng. The security of the FDH variant of Chaum’s

undeniable signature scheme. Cryptology ePrint Archive, Report 2004/290, 2004.

Available from http://eprint.iacr.org/2004/290.

[92] W. Ogata, K. Kurosawa, and S. Heng. The security of the FDH variant of Chaum’s

undeniable signature scheme. In S. Vaudenay, editor, Public Key Cryptography -

PKC 2005, volume 3386 of Lecture Notes in Computer Science, pages 328–345.

Springer-Verlag, 2005.

[93] T. Okamoto and D. Pointcheval. The gap-problems: A new class of problems for

the security of cryptographic schemes. In K. Kim, editor, Public Key Cryptography

– PKC 2001, volume 1992 of Lecture Notes in Computer Science, pages 104–118.

Springer-Verlag, 2001.

[94] J. Park, E. Chong, and H. Siegel. Constructing fair-exchange protocols for E-

commerce via distributed computation of RSA signatures. In Proceedings of the

185

BIBLIOGRAPHY

22nd annual ACM symposium on Principles of Distributed Computing - PODC ’03,

pages 172–181. ACM Press, 2003.

[95] D. Pointcheval and J. Stern. Security proofs for signature schemes. In U. Maurer,

editor, Advances in Cryptology – EUROCRYPT 1996, volume 1070 of Lecture Notes

in Computer Science, pages 387–398. Springer-Verlag, 1996.

[96] D. Pointcheval and J. Stern. Security arguments for digital signatures and blind

signatures. Journal of Cryptology, vol. 13, pp. 361–396, 2000.

[97] R. Rivest, A. Shamir, and Y. Tauman. How to leak a secret. In C. Boyd, edi-

tor, Advances in Cryptology – ASIACRYPT 2001, volume 2248 of Lecture Notes in

Computer Science, pages 552–565. Springer-Verlag, 2001.

[98] S. Saeednia, S. Kremer, and O. Markowitch. An efficient strong designated verifier

signature scheme. In J. Lim and D. Lee, editors, Information Security and Cryptology

- ICISC 2003, volume 2971 of Lecture Notes in Computer Science, pages 40–54.

Springer-Verlag, 2003.

[99] C. Schnorr. Efficient signature generation by smart cards. J. Cryptology, 4(3):161–

174, 1991.

[100] A. Shamir. Identity-based cryptosystems and signature schemes. In G. Blakley and

D. Chaum, editors, Advances in Cryptology – CRYPTO 1984, volume 196 of Lecture

Notes in Computer Science, pages 47–53. Springer-Verlag, 1984.

[101] V. Shoup. On formal models for secure key exchange. IBM Technical Report RZ

3120, 1999. Available at http://shoup.net/papers.

[102] V. Shoup and A. Rubin. Session key distribution using smart cards. In U. Maurer,

editor, Advances in Cryptology – EUROCRYPT 1996, volume 1070 of Lecture Notes

in Computer Science, pages 321–331. Springer-Verlag, 1996.

[103] N. Smart. An identity based authenticated key agreement protocol based on the

Weil pairing. Electronics Letters, 38(13):630–632, 2002.

[104] R. Steinfeld, L. Bull, H. Wang, and J. Pieprzyk. Universal designated-verifier sig-

natures. In C. Laih, editor, Advances in Cryptology - ASIACRYPT 2003, volume

2894 of Lecture Notes in Computer Science, pages 523–542. Springer-Verlag, 2003.

186

BIBLIOGRAPHY

[105] R. Steinfeld, H. Wang, and J. Pieprzyk. Efficient extension of standard Schnorr/RSA

signatures into universal designated-verifier signatures. In F. Bao et al., editor, PKC

2004, volume 2947 of Lecture Notes in Computer Science, pages 86–100. Springer-

Verlag, 2004.

[106] D. Stinson. Cryptography: Theory and Practice, Second Edition. Chapman &

Hall/CRC, 2002.

[107] W. Susilo and Y. Mu. Tripartite concurrent signatures. In Information Security and

Privacy, 8th Australasian Conference, ACISP 2003, pages 425 – 441. Kluwer, 2005.

[108] W. Susilo, Y. Mu, and F. Zhang. Perfect concurrent signature schemes. In J. Lopez

et al., editor, Proceedings of the 6th International Conference on Information and

Communications Security - ICICS’04, volume 3269 of Lecture Notes in Computer

Science, pages 14–26. Springer-Verlag, 2004.

[109] W. Susilo, F. Zhang, and Y. Mu. Identity-based strong designated verifier signature

schemes. In H. Wang et al., editor, ACISP 2004, volume 3108 of Lecture Notes in

Computer Science, pages 313–324. Springer-Verlag, 2004.

[110] Y. Tin, C. Boyd, and J. G. Nieto. Provably secure mobile key exchange: Applying the

Canetti-Krawczyk approach. In R. Safavi-Naini and J. Seberry, editors, Information

Security and Privacy, 8th Australasian Conference, ACISP 2003, volume 2727 of

Lecture Notes in Computer Science, pages 166–179. Springer-Verlag, 2003.

[111] Y. Tin, H. Vasanta, C. Boyd, and J. G. Nieto. Protocols with security proofs for

mobile applications. In H. Wang, J. Pieprzyk, and V. Varadharajan, editors, In-

formation Security and Privacy: 9th Australasian Conference, ACISP 2004, volume

3108 of Lecture Notes in Computer Science, pages 358–369. Springer-Verlag, 2004.

[112] G. Wang. An attack on not-interactive designated verifier proofs for undeniable

signatures. Cryptology ePrint Archive, Report 2003/243, 2003. Available from

http://eprint.iacr.org/.

[113] X. Wang, X. Lai, D. Feng, H. Chen, and X. Yu. Cryptanalysis of the hash func-

tions MD4 and RIPEMD. In R. Cramer, editor, Advances in Cryptology – EU-

ROCRYPT 2005, volume 3494 of Lecture Notes in Computer Science, pages 1–18.

Springer-Verlag, 2005.

187

BIBLIOGRAPHY

[114] X. Wang, Y. Yin, and H. Yu. Finding collisions in the full SHA-1. In V. Shoup,

editor, Advances in Cryptology – CRYPTO 2005, volume 3621 of Lecture Notes in

Computer Science, pages 17–36. Springer-Verlag, 2005.

[115] X. Wang and H. Yu. How to break MD5 and other hash functions. In R. Cramer,

editor, Advances in Cryptology – EUROCRYPT 2005, volume 3494 of Lecture Notes

in Computer Science, pages 19–35. Springer-Verlag, 2005.

[116] X. Wang, H. Yu, and Y. Yin. Efficient collision search attacks on SHA-0. In V. Shoup,

editor, Advances in Cryptology – CRYPTO 2005, volume 3621 of Lecture Notes in

Computer Science, pages 1–16. Springer-Verlag, 2005.

[117] F. Zhang and K. Kim. ID-based blind signature and ring signature from pairings.

In Y. Zheng, editor, Advances in Cryptology – ASIACRYPT 2002, volume 2501 of

Lecture Notes in Computer Science, pages 533–547. Springer-Verlag, 2002.

188

