
On a Possible Privacy Flaw in Direct
Anonymous Attestation (DAA)

Adrian Leung, Liqun Chen, and Chris J. Mitchell

Technical Report
RHUL–MA–2007–10
23 December 2007

Royal Holloway
University of London

Department of Mathematics
Royal Holloway, University of London
Egham, Surrey TW20 0EX, England

http://www.rhul.ac.uk/mathematics/techreports

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Royal Holloway Research Online

https://core.ac.uk/display/78876431?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Abstract

A possible privacy flaw in the TCG implementation of the Direct
Anonymous Attestation (DAA) protocol has recently been discovered
by Rudolph. This flaw allows a DAA Issuer to covertly include identi-
fying information within DAA Certificates, enabling a colluding DAA
Issuer and one or more verifiers to link and uniquely identify users,
compromising user privacy and thereby invalidating the key feature
provided by DAA. In this paper we argue that, in typical usage sce-
narios, the weakness identified by Rudolph is not likely to lead to a
feasible attack; specifically we argue that the attack is only likely to be
feasible if honest DAA signers and verifiers never check the behaviour
of issuers. We also suggest possible ways of avoiding the threat posed
by Rudolph’s observation.

1 Introduction

Direct Anonymous Attestation (DAA), proposed by Brickell, Camenisch and
Chen, [1, 2], is a special type of group signature scheme that can be used
to anonymously authenticate a principal, also referred to as a prover, to a
remote verifier. DAA has been adopted by the Trusted Computing Group1

in version 1.2 of the Trusted Computing Trusted Platform Module (TPM)
Specifications [4]. The key features provided by DAA are the capability for
a prover (a group member) to anonymously convince a remote verifier that:

• it is in possession of a DAA Certificate obtained from a specific DAA
Issuer, without having to reveal the DAA Certificate to a verifier (via
a signature-based proof of knowledge);

• a DAA Signature computed by a prover on a message m, has been gen-
erated using a valid DAA Certificate issued by a specific DAA Issuer;
colluding verifiers are unable to link two different DAA Signatures cre-
ated by the same prover, and, in particular, verifiers are not given the
DAA Certificate.

Moreover, the DAA scheme provides a flexible way of achieving a number
of different levels of ‘linkability’. Under an agreement between the prover
and verifier, DAA Signatures can be either ‘random-base’ or ‘name-base’.
Two random-base signatures signed by the same prover (TPM) for the same
verifier cannot be linked. However, name-base signatures are associated with

1http://www.trustedcomputinggroup.org/

1



the verifier’s name; as a result, two name-base signatures signed by the same
prover (TPM) for the same verifier can be linked.

These features help to protect the privacy of a prover. Another important
feature of DAA (distinguishing it from other types of group or ring signature
schemes) is that the powers of the supporting Trusted Third Party (i.e. the
DAA Issuer in its role as the group manager) are minimised, as it cannot link
the actions of users (i.e. provers) and hence compromise the user’s privacy
even when it colludes with a verifier. This unlinkability property is the key
feature of DAA.

However, an attack was recently discovered by Rudolph [3] which poten-
tially compromises the unlinkability property of DAA. The attack could allow
a DAA Issuer to embed covert identifying information into DAA Certificates
(of provers) and to subsequently link the transactions of the users/provers
to whom the DAA Certificates belong [3]. As a result, DAA Signatures orig-
inating from the same users/provers become linkable, and users can thereby
be uniquely identified. In this paper, we argue that Rudolph’s attack may
be infeasible in practice, and we discuss why an attempt to launch such an
attack could easily be discovered in an environment where there is at least
one honest verifier. We also propose approaches which could prevent the
attack from taking place.

The remainder of this paper is organised as follows. In Section 2 we
briefly describe the workings of DAA as well as outlining the privacy attack.
In Section 3 we explain why the attack is likely to be unrealistic in many
practical scenarios, and, in Section 4, we discuss possible modifications to the
use of DAA in the TCG specifications that can prevent the attack. Finally,
conclusions are drawn in Section 5.

2 The Privacy Attack on DAA

In this section, we only describe those aspects of the DAA protocol necessary
to understand the Rudolph attack. For full details of DAA, including a proof
of its security, see [1] and chapter 5 of [2]. A brief description of the attack
then follows.

2.1 DAA Overview

We first introduce the entities involved in the DAA protocol and the roles
they play.

• The Certification Authority (CA) acts as a Trusted Third Party (TTP).
Its role is to certify the authenticity of the DAA Issuer’s longer-term

2



public key, CKI . It does not directly participate in the DAA protocol.

• The DAA Issuer (or just the Issuer) is a third party that issues DAA
Certificates (i.e. anonymous credentials) to provers. It must be trusted
by all other participants in the DAA protocol to perform its role in a
trustworthy manner.

• The Prover (or the User) generates DAA Signatures that are verified
by verifiers. In the context of Trusted Computing, the prover is the
TPM.

• The Verifier verifies DAA Signatures computed by provers.

Note that, apart from the CA, all the entities above take direct part in the
DAA protocol. Also, in normal circumstances, the numbers of CAs and DAA
Issuers are likely to be very small by comparison with the number of provers.

The DAA Scheme consists of two sub-protocols (or phases), namely the
DAA Join Protocol and the DAA Sign Protocol. In the Join Protocol (shown
in Figure 1), a prover interacts with a DAA Issuer I in order to obtain an
anonymous credential on a secret value f (also referred to as the DAA Secret),
known only to the prover. This anonymous credential, also known as the
DAA Certificate, is jointly computed by the DAA Issuer and the prover as a
function of a blinded value of f , the shorter-term public key of I, PKI , and
other parameters. The DAA Certificate is later used by a prover during the
DAA Sign Phase in the DAA Signature computation. As part of the DAA
Join protocol, the prover is authenticated to the DAA Issuer using its unique
and long lived Endorsement Key (EK). Note that the public part of the EK
can be used to unique identify a prover. The Issuer authenticates itself to
the prover using its shorter-term public key PKI , which the prover verifies
using a certificate signed by the Issuer with its longer-term public key CKI ,
which is in turn certified by the CA.

In the DAA Sign Phase, the prover DAA-signs a message m, using its
DAA Secret f , the DAA Certificate, and other public parameters. The out-
put of the DAA-signing process is known as the DAA Signature σ. This DAA
Signature enables the prover to prove to a verifier (using a signature-based
proof of knowledge) that (i) it is in possession of a DAA Certificate, and (ii)
the DAA Signature on message m was computed using its DAA Secret f ,
the DAA Certificate in (i), and other public parameters. Verifying a DAA
Signature requires knowledge of the DAA Issuer’s public key PKI (i.e. the
public key of the DAA Issuer that was used to create the DAA Certificate).
Hence prior to running the DAA Sign protocol, a verifier must have obtained
an authentic copy of PKI .

3



Figure 1: The DAA Scheme

The DAA Sign Protocol has the property that colluding verifiers verifying
DAA Signatures from the same prover are unable to link different DAA
Signatures originating from the same prover (as shown in Figure 1). This
property applies even if a DAA Issuer colludes with a verifier, i.e. they are
still unable to link and uniquely identify a particular prover.

2.2 The Rudolph attack

The privacy breaching attack on DAA proposed by Rudolph [3] operates un-
der an assumption about the use of DAA, which we first describe. Specifically,
Rudolph assumes that the DAA Issuer’s longer-term public key CKI , as well
as the (shorter-term) public key PKI (along with its certificate chain) used
to compute the DAA Certificate, are communicated to the verifier via the
prover during the DAA Sign Phase (as shown in Figure 2). Whether or not
this is a realistic assumption is not clear; other possibilities include use of a
publicly accessible certificate repository. In any event, as we describe below,
the verifier will need to know which of the DAA Issuer’s shorter-term keys
has been used to create the DAA Certificate on which the DAA Signature is
based.

The attack works as follows. As shown in Figure 1, during the DAA Join
Phase the DAA Certificate is computed using the DAA Issuer’s public key
PKI and other parameters. The key PKI is a shorter-term public key which
is certified using the longer-term public key CKI , which in turn is certified
by a trusted CA (as shown in Figure 1). This key hierarchy is an intentional
design feature of DAA, chosen to make the TPM’s key life cycle and the
Issuer’s key life cycle independent. This is because the TPM computes its
DAA private key as a digest of a secret seed and the Issuer’s longer-term

4



Figure 2: The Rudolph Attack

public key. This ensures that the TPM uses the Issuer key that matches its
DAA private key. If the Issuer had only a single key, then, when the Issuer
changed its key, every TPM would also have to update its key. To avoid this
problem, the Issuer is given the two types of key described above.

Unfortunately, this flexibility can potentially be exploited by a curious
DAA Issuer to compromise the privacy properties of DAA. As observed by
Rudolph, a DAA Issuer could embed covert identifying information into a
public key without the knowledge of an honest prover. The Issuer simply
uses a different public key PKI to generate DAA Certificates for each prover
with which it interacts. As a result, the Issuer will be able to compile a table
mapping between a prover’s public EK (its unique key) and the public key
used to generate the DAA Certificate for this prover.

Suppose a verifer has obtained the Issuer’s public key PKI from the
prover. Whenever a prover executes the DAA Sign protocol with a collud-
ing verifier (i.e. one that colludes with the Issuer to identify a prover), and
assuming that the public key PKI used to generate its DAA Certificate is
communicated to a verifier via the prover, the DAA Issuer and the colluding
verifier can easily link the transactions of a prover and uniquely identify it.
A verifier needs only inform the DAA Issuer of the value of PKI . The DAA
Issuer can then consult the EK-PKI mapping it has compiled, and determine
the prover’s EK. Similarly, with the aid of the Issuer, colluding verifiers are
able to uniquely identify a particular prover.

3 How realistic is the Rudolph attack?

We now consider how the Rudolph attack might work in practice, and in
particular we examine two possible attack scenarios.

5



3.1 Scenario 1: Linking large numbers of users

In this scenario, the aim of the DAA Issuer is to identify large numbers of
provers. We believe that this attack scenario is infeasible in practice. We
demonstrate (i) why this attack scenario is unrealistic (even if all the verifiers
collude) because of the communications and computation burden involved in
performing such an attack; and (ii) how the attack can easily be detected if
there is at least one honest verifier:

(i) The Rudolph attack only works if the DAA Issuer and all the verifiers
collude. Suppose we have a scenario where there is one DAA Issuer,
n provers (all joining the network or system at different times), and
k verifiers (which all collude with the Issuer in an attempt to link or
uniquely identify the provers). For the attack to work, the colluding
verifiers have to shoulder an additional communication and computa-
tional burden (see Table 1 for a summary of the communication and
computational overheads). First and foremost, to be able to link all
the n provers, the DAA Issuer would need to use n different public keys
PKI , one for each provider. These n public keys would also need to be
communicated to each of the colluding verifiers. If a trusted directory
is used to hold copies of the public keys, then the Issuer would need
to upload a total of n public keys to this directory (if the provers join
at different times then this may involve sending up to n separate up-
load messages). If the verifiers obtain the public keys from the Issuer
directly, then the total communications overhead for an Issuer may be
up to nk messages (as compared to k messages if the Issuer only uses
one key).

A colluding verifier, regardless of the mechanism used to retrieve Issuer
public keys, will need to obtain up to n Issuer public keys for the n
provers. This means that the communications overhead for a verifier
may be up to n messages. Furthermore, whenever there is a new prover,
the verifiers might need to obtain the new public key for this prover.

In terms of computational overheads, the process of generating a large
number of public keys can be performed efficiently (as pointed out by
Rudolph [3]). However, the work to be performed by the verifier in
trying to identify the prover may become infeasibly large, depending
on how Issuer public keys are distributed. If the prover sends the
Issuer-signed certificate for the Issuer public key PKI to the verifier as
part of the DAA Sign protocol, as assumed by Rudolph, then there
is no problem. However, if the key is obtained from a directory, then
significant computational problems arise. This is because the verifier

6



will have no way of knowing which of the n Issuer public keys have been
used to create the DAA certificate, and hence which of them should be
used to attempt to verify the DAA Signature. The only solution would
be for the verifier to attempt to verify the signature using every possible
key, which would involve up to n verifications. Given the ubiquity of
trusted computing hardware, a typical value of n might be 105 or 106,
which would make such a process computationally infeasible.

Table 1: Communications and computation costs for honest and colluding
entities.

Costs Incurred By
Type of Costs Honest Honest Colluding Colluding

Issuer Verifier Issuer Verifier

Communication 1 1 nk n
(no. of messages)

Computation - 1 - n
(no. of DAA Sign

Verifications)

(ii) The attack will easily be discovered if there is at least one honest veri-
fier or if Issuer public keys are stored in public directories, as we now
describe.

– Consider first an environment in which there is at least one hon-
est verifier. When the honest verifier attempts to verify a DAA
Signature, it first needs to retrieve the Issuer’s public key from
the Issuer (or from a trusted directory). If the Issuer (or the
trusted directory) submits a large number of public keys to the
verifier, then suspicions about its trustworthiness will immediately
be aroused. Even if the honest verifier is given the Issuer public
key by the prover rather than retrieving it from a directory, then
it could still detect misbehaviour if it keeps a log of all the Issuer
public keys that it has been passed. If one particular Issuer is
using large numbers of different public keys, then this will quickly
become obvious to such a verifier.

7



– Suppose an Issuer uploads multiple public keys to a directory or
other repository. This will immediately be obvious both to the
operator of the directory (which may report suspicious behaviour)
as well as to any user of the directory.

3.2 Scenario 2: Linking a small set of users

On the other hand, if the aim of the DAA Issuer is to link all transactions
involving a single user (e.g. a high-profile user or one that makes high value
transactions), or a very small set of users, then the attack is much more
likely to succeed in a way that is hard to detect. For example, if a DAA
Issuer only wants to distinguish transactions involving one user, then the
Issuer only needs to have two public keys PKI . Hence, the communication
and computation problems discussed in the previous section would not be
an issue in this attack scenario, nor would there be a large number of Issuer
public keys in circulation to arouse suspicions.

Nevertheless, if a verifier deals with many provers who are clients of the
same Issuer, the suspicions of an honest verifier might be aroused if one Issuer
public key, or some small set of such keys, is used much less than others. In
particular, if the DAA Signatures are of the name-base type, allowing a
verifier to link DAA Signatures signed by the same prover (TPM) for the
same verifier, then the verifier will be able to observe significant differences
in the numbers of clients for an Issuer’s public keys.

4 Preventing the Rudolph attack

Despite the issues raised in the previous section, the Rudolph attack will
work if a verifier obtains the Issuer’s public key from a prover (as described
in [3]), and if no honest verifier keeps track of the Issuer public keys it has
received or if the goal of the attackers is only to track a few users. Even
worse, a prover would be completely oblivious to such an attack, as there
is no way for a prover to tell if a DAA Issuer is embedding covert identity
information into the public key that is used to generate its DAA Certificate
(e.g. by using a different public key for each prover).

We now examine a number of possible ways of preventing the Rudolph
attack. We also discuss the limitations of these approaches.

8



4.1 Modifying the TCG Specifications

We first observe that addressing the root cause of the problem would involve
changing the TCG specifications to prevent a DAA Issuer from self-certifying
an arbitrary number of public keys. This could be achieved by requiring the
Issuer to use a private key for which the public key has been directly certified
by a third party CA (in the notation used above, this would mean that the
issuer key CKI would be used to generate DAA certificates).

There are two problems with such a approach. Firstly, the CA would then
need to be trusted not to generate large numbers of certificates for an Issuer.
Whilst this could be supported by requiring any CA that generates Issuer
certificates to adhere to an appropriate Certification Practice Statement, it
still means that a significant amount of trust is placed in a single third party,
a situation which the design of DAA seeks to avoid.

Secondly, as explained above, this means that the key life cycle of the
TPM and the Issuer become linked. Addressing this issue would require
further changes in the operation of the TPM.

An alternative approach would retain the two levels of Issuer public keys,
but would require both types to be certified by a CA. As in the existing
scheme, the first level key would be used to compute the DAA secret, and
the second level key would be used to create the DAA Certificate. Certificates
for second level keys could mention the first level key to link the two together.
This could address the Rudolph attack without causing a key life cycle issue.

4.2 Using a Trusted Auditor

We next explore another possible approach which does not involve modifying
the TCG specifications too much. We propose that a prover obtains DAA
Certificates only from DAA Issuers that use the same public key for a very
large set of users. Thus the challenge is to enable a prover to determine the
key usage behaviour of a DAA Issuer.

If a prover is able to obtain assurance that a specific Issuer’s public key
has being used more than a certain number of times (i.e. to generate a certain
number of DAA Certificates), then it is immediately able to derive confidence
that it will not be uniquely identified, and at the same time gain information
about the level of anonymity that it is being afforded. For example, if a
prover knows that the public key used to generate its DAA Certificate has
been used to generate a thousand other DAA Certificates, then it knows
that it cannot be distinguished from a thousand other entities. On the other
hand, if it knows that a particular public key has only been used to generate
three other DAA Certificates, then the level of anonymity afforded to it is

9



potentially very limited.
We now suggest two possible approaches designed to give a prover this

type of assurance. We also discuss the possible limitations of the suggested
approaches.

A modification to the use of DAA. This approach requires the intro-
duction of a new type of trusted third party, which we refer to as a Trusted
Auditor (TA). We make use of the TA (which is not necessarily unique) to
give provers assertions about the “trustworthiness” of individual DAA Is-
suers. Since the CA needs to be trusted by the protocol participants, and
since it is already employed to certify the longer-term public key CKI of the
Issuer, a CA could act as a TA, although this does need to be the case.

We propose that the following additional steps be performed by a prover
during the DAA Join protocol. During the Join phase, and after a DAA Cer-
tificate has been successfully created, the prover establishes a secure channel
with the TA. This can be achieved by the prover first establishing a uni-
laterally authenticated secure channel using a public key certificate for the
TA, e.g. using SSL/TLS. The prover can then sends its EK credential to
the TA via this channel, and use this credential to authenticate itself, e.g.
by decrypting data sent to it encrypted using the EK. Finally, the prover
uses this channel to send a statement that a specific DAA Issuer has used a
particular public key PKI to derive its DAA Certificate, i.e.

Prover → TA : IDIssuer ,CKI ,PKI

Using these messages, the TA can compile a list of the form given in
Table 2. A copy of this list signed by the TA (to prove authenticity) can then
be communicated to a prover prior to the Join Phase. Since it is desirable
not to publicise the public EK values of individual trusted platforms, this
information can be removed from the list before it is distributed. The list of
public EKs can be replaced by the total number of different EKs for which
credentials have been generated using a particular Issuer public key.

This approach suffers from one problem. The public part of the Endorse-
ment Key (EK) of every prover is revealed to the TA. Since the EK pair
for a trusted platform is fixed, the public EK functions as a fixed identifier
for a platform, and hence revealing it is not desirable. Indeed, DAA was
introduced to avoid the need to reveal the link between the public EK and
other prover public keys to a Privacy CA. Nevertheless, this scheme does not
pose the same threat to user privacy as the use of a Privacy CA, since the
TA does not learn the link between the EK and any other prover keys.

10



Table 2: Mapping of EKs to a PKI for individual Issuers

No. Issuer Name Longer-term CKI Shorter-term PKI Users
EK1

PKA1
I

...
1. Alice CKA

I EK2000

EK1

PKA2
I

...
EK10

EK1

2. Bob CKB
I PKB1

I

...
EK200

An alternative approach. A possible alternative to the above approach
avoids revealing the EK to a third party, although it still relies on a TA
to provide assertions regarding the trustworthiness of the DAA Issuer (i.e
reporting on the number of DAA Certificates generated for a particular public
key for a specific Issuer). A prover and DAA Issuer run the DAA Join
protocol as normal, thereby obtaining a DAA Certificate (for the prover’s
unique DAA Secret f). The prover then conducts an instance of the DAA
Sign protocol with the TA, which acts as the verifier. The prover DAA-signs
the following information sent to the TA (acting as verifier), so that the TA
can compile a table similar to that shown in Figure 2.

Prover → TA : IDIssuer ,CKI ,PKI

One possible problem with this approach is that, because no use is made of
the EK, a malicious Issuer could fabricate DAA-signed messages of the above
form, and send them to the TA. The DAA signature signed for the TA could
be of the name-base type, which will guarantee that each DAA secret can
only provide one piece of evidence. However, the messages could be based on
any number of ‘fake’ DAA Certificates, that are valid in that they have been
created by the DAA Issuer, but have never been sent to a genuine prover.
Such messages will be indistinguishable from messages sent from genuine
provers, and hence the number of uses of a key can be artificially inflated.

Nevertheless, a table created in this way will still reveal if an Issuer has
created more public keys than would be expected in ‘normal’ behaviour; this
may be sufficient to deter an Issuer from using the Rudolph attack on a large
scale.

11



4.3 A User-Centric Approach

To determine the trustworthiness of an Issuer, two or more users could collab-
orate to compare the PKI values that they have obtained from a particular
Issuer. If all of them have the same key PKI , then there is good chance
that the Issuer is using the same PKI for a large set of users. However, if
the users find that two or more different keys PKI have been used, then the
trustworthiness of that issuer is immediately called into question. This ap-
proach is suited to a distributed or peer-to-peer environment, and does not
require the involvement of a trusted third party. Clearly, the effectiveness of
the technique will depend on the number of cooperating users.

5 Concluding Remarks

A privacy flaw in DAA was recently pointed out by Rudolph [3]. In this paper
we have analysed the feasibility of attacks exploiting this property. We then
examined possible approaches which could be used to prevent (or reveal)
the attack as well as the limitations of these approaches. These approaches
could make a successful attack very difficult to perform; however, all of the
suggestions have certain drawbacks. It remains an open problem to find
a ‘perfect’ solution to the Rudolph attack. Indeed, the DAA scheme itself
cannot stop an issuer from using a different key with each TPM, no matter
whether the key is certified by the Issuer’s longer-term key or by another CA.
It is a very tough challenge for any application to completely avoid such a
threat.

It should be noted that this attack is not an attack on the DAA protocol
itself, but is rather a weakness introduced in the particular use of DAA. In
fact, an implementation of an arbitrary group signature scheme might have a
similar problem if the size of a group is very small, e.g. for groups containing
just a single member. However, in other implementations of group signatures,
a group manager might not have any motivation to break the anonymity of
its members, because the manager has the ability to open the identity of a
signer from its signature.

Acknowledgements

We thank Stéphane Lo-Presti for many valuable comments and helpful dis-
cussions, and Rene Mayrhofer for bringing the Rudolph attack to our atten-
tion.

12



References

[1] E. Brickell, J. Camenisch, and L. Chen. Direct anonymous attestation.
In Proceedings of the 11th ACM Conference on Computer and Commu-
nications Security, Washington DC, USA, October 25–29, 2004, pages
132–145. ACM Press, 2004.

[2] C. J. Mitchell, editor. Trusted Computing. IEE Press, London, 2005.

[3] C. Rudolph. Covert identity information in direct anonymous attes-
tation (DAA). In H. Venter, M. Eloff, L. Labuschagne, J. Eloff, and
R. von Solms, editors, 22nd IFIP TC-11 International Information Se-
curity Conference (SEC2007) on “New Approaches for Security, Privacy
and Trust in Complex Environments”, Sandton, South Africa, May 14-
16, 2007. Proceedings, volume 232 of IFIP International Federation for
Information Processing, pages 443–448. Springer, Boston, 2007.

[4] Trusted Computing Group (TCG). TCG Specification Architecture
Overview. Version 1.2, The Trusted Computing Group, Portland, Ore-
gon, USA, April 2004.

13


