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Abstract

Implementing access control efficiently and effectively in an open and distributed grid
environment is a challenging problem. One reason for this is that users requesting access to
remote resources may be unknown to the authorization service that controls access to the
requested resources. Hence, it seems inevitable that pre-defined mappings of principals in one
domain to those in the domain containing the resources are needed. A second problem in
such environments is that verifying the authenticity of user credentials or attributes can be
difficult. In this paper, we propose the concept of role signatures to solve these problems by
exploiting the hierarchical structure of a virtual organization within a grid environment. Our
approach makes use of a hierarchical identity-based signature scheme whereby verification
keys are defined by generic role identifiers defined within a hierarchical namespace. We show
that individual member organizations of a virtual organization are not required to agree
on principal mappings beforehand to enforce access control to resources. Moreover, user
authentication and credential verification is unified in our approach and can be achieved
through a single role signature.

1 Introduction

Grid computing [13, 14] is a form of large-scale highly distributed computing, offering users ac-
cess to vast repositories of electronic resources. These resources and users, from geographically
dispersed organizations, are connected through a uniform grid infrastructure. These organizations
are grouped in virtual organizations (VOs), which, in turn, enable collaboration between users
and inter-operability of resources of different platforms, typically to solve resource-intensive and
scientifically complex problems.

Access control is a central security issue within grid environments. A VO potentially spans mul-
tiple administrative domains; hence the VO must establish agreements with the resource providers
(or owners) in terms of sharing policies a priori. This sharing is, necessarily, highly controlled, with
resource providers and users defining clearly and carefully what is shared, who is allowed to share,
and the conditions under which sharing occurs. The shared resources may be basic computational
resources, such as compute cycles and storage; sophisticated scientific instruments, such as sensors
and telescopes; data elements, such as files and information in databases; or services provided by
specialized application programs. Note that while all the physical organizations within a VO may,
in principle, agree to allow members of the VO (some) access to their resources, they still retain
ultimate control over the policies that govern access to their respective resources [14].

In a closed distributed computing environment, there is a centralized repository for principal
names, and all authorization services trust that repository to attest to the identity of, or authen-
ticity of keys associated with, those principals. Kerberos is the de facto standard for supporting
authentication and authorization in such environments.
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The most problematic issue for an authorization service in any open distributed computing
environment is that access requests may be received from a user that is not known to the autho-
rization service. It is certainly possible to use signed assertions and a public key infrastructure
(PKI) to determine that the user has been previously authenticated by some security domain D1,
even one not previously known to the security domain D2 to which the request was directed. It
may even be possible to use similar types of assertions to determine that a user has a particular
attribute, role r, say, in D1. However, there still remains the difficult problem of interpreting r
in the context of D2’s authorization policy. It seems inevitable that there must be some prior
agreement between D1 and D2 about what r should mean to D2. This pre-supposes that D2 is
aware of the roles defined in D1’s security policy.

In grid applications, the most basic means of controlling access to resources is through the
use of gripmap files [8, 34], mapping user identities to permissions. This is analogous to the
conventional approach of using access control lists. One major limitation of this approach is
that it essentially requires each member organization (MO) within a VO to maintain a list of
all users who are authorized to access its resources. Clearly, this approach incurs substantial
administrative overheads for each MO. This prompted the development of more scalable access
control mechanisms, including Community Authorization Service (CAS) [24], Virtual Organization
Membership Service (VOMS) [2], and Privilege and Role Management Infrastructure Standards
Validation (PERMIS) [9].

The issues of identity-permission mapping and pre-establishment of user accounts can be alle-
viated by employing a centralized CAS server within a VO. The CAS server maintains a mapping
between users in the VO and the permissions for which they are authorized. A user obtains a
signed assertion from the CAS server before making an access request, indicating the permissions
for which the user is authorized. Each MO maintains a CAS server account and runs an external
job request using the CAS server account. In other words, the local CAS server account “imper-
sonates” the remote user, and uses the permissions encoded in the CAS server’s assertion for access
control. Obviously, it is the responsibility of the CAS server to identify the correct permissions
that should be used to run the job. This means that the CAS server has to be aware of all users in
the VO and the resources for which they are authorized throughout the VO. Again, this is likely
to incur substantial overheads.

VOMS is architecturally similar to CAS in that the VOMS server also issues signed assertions
to users on request, who then present these assertions to remote resource providers. The primary
difference between CAS and VOMS is that the VOMS server issues assertions about the user’s
attributes, such as group or role membership. Nevertheless, we still require the existence of
mappings between different groups and roles within the VO.

While both CAS and VOMS are examples of a push model (in which the user obtains creden-
tials and “pushes” them to the resource provider), PERMIS adopts a pull model. It is a role-based
access control infrastructure customized for managing role-based access control to resources within
grid environments. It makes use of attribute certificates, issued by a trusted Attribute Authority
(AA), to bind user identities to VO roles and policies. These attribute certificates are stored in
a public directory. Once a user has authenticated himself to a resource provider, the resource
provider passes the user’s request to a policy engine, which then retrieves attribute certificates
associated with the user’s identity and makes an authorization decision. PERMIS relies on priv-
ilege management infrastructure (PMI), which seems to result in an architecture that is more
complicated than either CAS and VOMS.

In short, it seems inevitable that pre-defined mappings will need to be defined between prin-
cipals in one security domain to those in another. It is fair to say, therefore, that authorization
is considerably more difficult than authentication in open distributed systems. Indeed, it seems
practically impossible to evaluate an access request from a user that is not previously known to the
authorization service, unless there exists some a priori agreement between the domain containing
the authorization service and the user’s domain.

In addition to the problem of principal mapping, we also note that all of the above approaches
and existing authorization frameworks that we know of for open distributed computing environ-
ments, such as KeyNote [4], SPKI/SDSI [12], RBTM [20] and Akenti [32], rely on some form of
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certificate-based PKI. Essentially these frameworks rely on signed statements or assertions, attest-
ing to the user or the associated public key having a particular attribute. A set of such attributes
is used to map the user to principals in the relevant authorization policy. The richer the policy
language, the more complex the recovery of these assertions and proving compliance of the user
with the policy. A considerable amount of research effort has been devoted to credential chain
discovery algorithms in both SPKI/SDSI [10] and RBTM [21], for example. In essence, existing
approaches may require management, particularly verification, of a large number of credentials.

In this paper, then, we consider the problems of interdomain principal mapping and authenti-
cation of user credentials that make authorization so difficult in open distributed environments.
We believe the nature of grid computing and VOs offers some opportunities to reduce the impact
of the difficulties posed by principal mapping, credential verification and credential chain discov-
ery. Typically, a VO will have a hierarchical structure, enabling MOs and principals within those
organizations to be identified uniquely within a hierarchical namespace. We assume that the VO
specifies a small number of generic roles that can be used as principals in the authorization policy
of each MO. We also make the common assumptions that the VO is a principal who is trusted to
enrol new MOs into the VO, and that MOs are trusted to assign their own users to generic roles.

We then employ a hierarchical identity-based signature scheme (HIBS), using the identifiers
in the hierarchical namespace defined by the VO to define signing-verifying key pairs for generic
roles. Access requests are signed using a role’s signing key, hence the moniker role signatures, and
can be verified by any authorization service using the verification key, which is defined by the role
identifier. If the identifier is correctly formed and the signature on the request can be verified,
then the user is known to be authorized for that role in his home organization. The verifier then
uses its local policy to map the generic role to local roles and thus evaluate the request.

The main contributions of our approach are:

• There does not need to be agreement between individual member organizations about how
to map principal identifiers. This means that the composition of the VO can be dynamic
without compromising the effectiveness of the authorization mechanisms in member organi-
zations. New member organizations can join the VO and need only define some additional
rules mapping their local roles to the VO roles.

• User authentication and credential verification is unified and credential verification is ren-
dered trivial. The authorization service is required to verify a single signature to both
confirm that the user is an authenticated member of some other member organization and
occupies a particular generic role within that organization.

In the next section, we describe what policies need to be defined by member organizations.
In Section 3, we describe the Gentry–Silverberg HIBS scheme and use this to construct role
signatures for generic roles. In Section 4, we describe our security architecture, and how users are
authenticated, keys distributed and access requests evaluated. We then discuss related work in
Section 5. We conclude with some ideas for future work.

2 Access control policies

Most current computational grids are used by scientists and researchers within academic commu-
nities. Within Europe, for example, we have the UK National e-Science community.1 A central,
national-scale certification authority (CA) issues public-key certificates to VOs, which in turn is-
sue certificates to MOs in their respective VOs. A user u in member organization Org1 might be
authenticated by Org1 and issued with a short-term certificate signed using Org1’s signing key; u
can present this certificate to another MO Org2 to prove that he is an authenticated user within
the VO. These kinds of interactions between users, their home MO and the resource provider MO
are central to existing approaches to authorization in grid computing.

1See the UK National e-Science Centre http://www.nesc.ac.uk
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We assume that a VO comprises a countable set of MOs Org1, Org2 . . . and that membership
of this set may change over time. Each MO defines and maintains an access control policy (ACP).
As usual, a policy decision point (PDP) for a resource controlled by a particular organization uses
the ACP to decide requests for access to that resource from users authenticated directly by that
organization.

We also assume that the VO defines a finite set of generic role identifiers vr1, . . . , vrm. Each
MO extends its ACP so that users in that MO are assigned to zero or more of the generic roles.
These role identifiers will be used to map users in one MO to roles in another MO. In addition,
the ACP must be extended to specify how members of generic roles in other MOs are mapped
to local roles. We now examine the options for policy specification. We write VR for the set of
generic roles identified within a VO. Given a set of local role identifiers R, we write R∗ for R∪VR.

Our access control policies make use of concepts from RBAC96 [28], RBTM [20] and OASIS [35].
Each MO Orgi defines a “local” set of roles Ri and defines

• a user-role assignment relation UAi ⊆ Ui × R∗i , where Ui is the set of authorized users in
Orgi;

• a permission-role assignment relation PAi ⊆ Pk ×R∗i , where Pi is the set of permissions for
resources maintained and protected by Orgi;

• a role hierarchy relation RH i ⊆ R∗i ×R∗i , where the graph (R∗i ,RH i) is directed and acyclic.

We write (R∗i , 6) for the reflexive transitive closure of RH i. Henceforth, we drop the subscript i
whenever no ambiguity can arise.

Hence, a user u ∈ Ui may be assigned directly to a generic role vr via the UAi relation, or
assigned implicitly via inheritance in the RH i relation. Moreover, a user v ∈ Uj assigned to
generic role vr is mapped directly onto vr in Orgi (and any other junior roles implied by the RH i

relation).
This is equivalent to the following RT rules [20].

Orgi.vr ← Orgi.memberOrg.vr,

Orgi.memberOrg ← V O.memberOrg,

which can be reduced to the rule

Orgi.vr ← V O.memberOrg.vr.

This means that any member of generic role vr defined by any MO is a member of generic role vr
in Orgi. In particular, in order to be assured that a user is authorized for generic role vr, Orgi

needs to confirm that there exists a credential from the VO asserting that the MO is a legitimate
member of the VO and a credential from the MO asserting that the user is a legitimate member
of the role vr. In other words, if Orgj signs a credential of the form Orgj .vr ← u (meaning u
is a member of role vr defined by Orgj), then Orgi may deduce that u is a member of Orgj .vr,
provided that Orgi can be convinced that Orgj is a genuine MO. The latter check requires the
existence of a credential of the form V O.memberOrg ← Orgj signed by the VO principal. In
principle, then, the authenticity of two different credentials needs to be established by Orgi. In
Section 3 will show that these credentials can be encoded in a single role signature.

Some organizations may not want such a tightly coupled interaction between local roles and
generic roles. In this case, no authorizations are assigned directly to generic roles. Instead,
mappings between generic roles and local roles are defined using something analogous to RT -style
rules or OASIS-style role triggers. Hence an organization may choose to omit generic roles from
either the role hierarchy or the user-role assignment relation.

We extend the basic ACP described above to include rules that map generic roles to local roles
and vice versa.
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• For each generic role vr that Orgi chooses to recognize, Orgi defines one or more rules of
the form r ← vr1 ∩ · · · ∩ vrm, where r ∈ Ri and m > 1. This is shorthand for the following
RT -style rules:

Orgi.r ←
m⋂

j=1

Orgi.memberOrg.vrj ,

Orgi.memberOrg ← V O.memberOrg,

which can be reduced to the rule

Orgi.r ←
m⋂

j=1

V O.memberOrg.vrj .

That is, any user who is a member of each of the generic roles vr1, . . . , vrm defined by any
MO (that is recognized by the VO) is a member of role r in Orgi. It can be seen that this
requires checking m + 1 credentials. In Section 3, we show how key aggregation can be used
to construct a single role signature, whose verification proves that all m + 1 credentials are
valid.

• For each generic role vr that Orgi chooses to assign to its local users, Orgi defines one or
more rules of the form vr ← r. This is shorthand for Orgi.vr ← Orgi.r, and means that
any user in Orgi that is a member of role r is also a member of generic role vr.

In conventional RBTM, if user u ∈ Ui is indeed a member of role r ∈ Ri, then Orgi may issue
a signed credential asserting Orgi.vr ← u. Let us suppose that organization Orgj defines a
rule of the form r′ ← vr. Then organization Orgj can take the statement Orgi.vr ← u and
a statement of the form V O.memberOrg ← Orgi, and deduce that u is a member of the
role r′.

As we have seen in the examples, in conventional RBTM (and other trust management frame-
works) it is common for the authorization service to verify the authenticity of a number of different
credentials in order to evaluate an access request. In Section 3, we demonstrate how the structure
of many virtual organizations and hierarchical identity-based signature schemes can be exploited
to simplify the credential verification. Essentially, we associate each generic role with a unique
identifer within the VO namespace and use this to generate a private key that is used to sign
access requests — role signatures. Signature verification is performed using a key that can be
derived from the identifier by any principal, thereby enabling that principal (or the PDP acting
for that principal) to verify that the user is indeed a member of a particular generic role.

3 Role signatures

3.1 Identity-based cryptography

The idea of generating public keys based on user names, or some other publicly available infor-
mation that could uniquely identify a user (such as an email address), was conceived by Shamir
more than two decades ago [29]. The corresponding private keys are computed and distributed
by a trusted Private Key Generator (PKG). The usual role of a trusted third party (the CA) in
a PKI is to attest to the authenticity of public keys. In identity-based cryptography, public keys
are derived from public information and their authenticity can be assumed. Hence, the job of the
trusted third party (the PKG) is to ensure the correct binding of private keys to identities.

The main motivation for this approach is to eliminate the need for certificates and the problems
associated with them [18]. Since a user’s public key is based on some publicly available information
that uniquely represents the user, an identity-based cryptosystem eliminates public key directory
maintenance and certificate management. At the time, however, Shamir was only able to develop
an identity-based signature scheme, based on the RSA primitive.
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Only in the early 2000s did the emergence of cryptographic schemes based on pairings on
elliptic curves result in the construction of a feasible and secure identity-based encryption (IBE)
scheme. This area began with the novel work of Sakai et al. [27] on pairing-based key agreement
protocols and signature schemes, and subsequent work on the three-party key agreement protocol
by Joux [19]. Boneh and Franklin [6] then presented the first practical and secure IBE scheme
based on the Weil pairings. These three key contributions have stimulated the development of a
wide range of pairing-based cryptographic schemes and protocols. The basic concept of pairings
is described in Appendix A; a more detailed survey on cryptography from pairings can be found
in [23].

3.2 The Gentry–Silverberg hierarchical identity-based signature
scheme

Shortly after Boneh and Franklin proposed their identity-based encryption scheme [6], Gentry and
Silverberg developed a hierarchical identity-based encryption (HIBE) scheme and a hierarchical
identity-based signature (HIBS) scheme [16]. These schemes are provably secure, practical, and
fully scalable, with total collusion resistance, regardless of the number of levels in the hierarchy.

It is assumed that entities can be arranged in a rooted tree and that entities at one level are
trusted to issue private keys to entities immediately below them in the tree. More specifically,
the root PKG, located at level 0, produces private keys for entities at level 1, who in turn act as
PKGs for entities in their respective domains at level 2, etc. In the context of this paper, the root
PKG is the TA, who issues keys to VOs, who in turn issue keys to MOs, who in turn create role
signing keys.

Each node in the tree has an identifer. The identifier of an entity is the concatenation of the
node identifiers in the path from the root to the node associated with the entity. Hence, the string
id1.id2. · · · .idt represents an entity at level t whose ancestor at level 1 has identifier id1 and whose
ancestor at level j has identifier id1. · · · .idj .

We now informally describe the Gentry–Silverberg HIBS scheme. A more formal description
of the scheme is given in Appendix B.

Root Setup: This algorithm is run by the root PKG. It takes as input a security parameter and
outputs a master secret s0 and a set of system parameters.

Lower-level Setup: A lower-level entity (lower-level PKG or user) at level t picks a random
secret st, which will be used for extracting private keys or signing messages.

Extract: This algorithm is used by a PKG at level t − 1 to generate a private key St for an
entity at level t. The algorithm also generates a set of “Q-values”, Q1, . . . , Qt−1.2 The
algorithm takes the entity’s identifier id1.id2. · · · .idt, the parent’s private key (and other
secret information), and the system parameters as inputs.

Sign: This algorithm is used by an entity at level t for signing and takes a private key St, a
message M and the system parameters as inputs. The output signature is of the form
〈σ,Q1, . . . , Qt〉.

Verify: This algorithm is used to verify the validity of the signature. It takes a signature
〈σ,Q1, . . . , Qt〉, a message M , the identifier id1.id2. · · · .idt of the signer and the system
parameters as inputs.

It is worth noting that there are other HIBS schemes in the literature, for example [5], that
may be used for role signatures. Our proposal is based on Gentry–Silverberg’s scheme because it
can be extended to support aggregation of signing keys in a natural way.

2Q-values are needed for the soundness and correctness of the Gentry–Silverberg HIBS scheme.
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3.3 Key aggregation

As explained in Section 2, MOs may specify rules of the form r ← vr1∩· · ·∩vrm. In order to handle
rules of this type, we observe that the Gentry–Silverberg HIBS scheme can be straightforwardly
extended to include the idea of aggregate keys. In other words, a user may sign a message to prove
possession of two or more signing keys, provided those keys are associated with entities having the
same parent in the hierarchy.

We assume that there exist a set of signing keys St,1, . . . , St,m, where St,i is the signing key for
an entity with identifier id1. · · · .idt−1.idt,i, i = 1, . . . , m. We introduce two new algorithms.

AggSign: This algorithm takes as input a set of signing keys St,1, . . . , St,m, a message M and
the system parameters, and outputs a signature of the form 〈σ,Q1, . . . , Qt−1, Qagg〉.

AggVerify: Given a signature 〈σ,Q1, . . . , Qt−1, Qagg〉, a message M and identifiers associated
with the signing keys, this algorithm verifies whether or not the signature is valid.

Further details of these algorithms can be found in Appendix C. A formal security analysis
of the Gentry–Silverberg HIBS scheme which supports aggregation of signing keys is beyond the
scope of this paper.

3.4 HIBS, VOs and roles

The existing grid infrastructure in the UK has a root CA, which is the root of trust, and is
responsible for attesting to the authenticity of public keys associated with VOs working on grid
projects. Below the root CA we have the VOs who are responsible for issuing public keys to
organizations such as universities and research laboratories that wish to participate in a particular
VO. We treat the root CA as a level 0 entity in a tree, the VOs as level 1 entities, the MOs as level
2 entities, and generic roles as level 3 entities. It is important to stress at this point that we are
using identifiers (for VOs, MOs and generic roles), rather than (user) identities in our framework.

We then apply the Gentry–Silverberg HIBS scheme to this hierarchical structure, replacing the
CA with a root PKG or trusted authority (TA). The TA is responsible for issuing signing keys to
VOs. We view the issuance of a signing key as analogous to assigning a role to a principal. Hence,
if the TA issues a signing key to principal V O1, this means that V O1 is a legitimate VO principal
(recognized by the TA). This signing key will be derived from the identifier V O1. Similarly, if the
principal V O1 issues a signing key to Org1, this means that Org1 is a legitimate MO principal in
V O1. This signing key will be derived from the identifier V O1.Org1. Finally, Org1 may issue a
signing key to user u, based on the generic role identifier V O1.Org1.vr. This is the simplest form
of generic role identifier: additional information can be encoded in the identifier to specify the
user to which the role is assigned or the lifetime of a key Why is it more useful .

A user may use this key to sign an access request. If the PDP in Org2 can verify the signature
on the request using the verification key associated with V O1.Org1.vr, then the PDP in Org2 can
be convinced that V O1 is a legitimate VO (as far as the TA is concerned), Org1 is a legitimate MO
(as far as the VO is concerned), and u is a legitimate user assigned to role vr (as far as the MO is
concerned). The PDP in Org2 may then use its policy to map the generic role to local roles, and
hence evaluate the access request. Note the definition of a comparatively small number of generic
roles and a single signature verification are sufficient to both solve the principal mapping problem
and eliminate credential chain discovery. Moreover, the use of aggregate signing keys enables MOs
to articulate policy rules of the form r ← vr1 ∩ · · · ∩ vrm. In this case, the user should possess a
set of signing keys associated with role identifiers V O1.Org1.vr1, . . . , V O1.Org1.vrm.

So far we have looked at how basic role-only identifiers are used to construct the associated
signing keys. We now discuss more fine-grained ways of specifying identifiers.

3.4.1 Key lifetimes

It is well known that effective revocation of public-private key pairs is rather difficult to achieve.
Within our framework, this is related to user-role revocation. Many practical applications prefer,
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instead, to use ephemeral keys that have a limited time period for which they are valid. In a
grid environment, for example, short-lived keys are used for secure job submissions, to minimise
the risk of exposing long-term keys. This is analogous to the relatively short lifetimes given to
Kerberos tickets. Job-signing keys within a grid environment are not usually valid for longer than
12 hours.

Therefore, we envisage that role identifiers will include a lifetime L. A typical identifier would
have the form V O1.Org1.vr‖L1. That means that the corresponding signing key would only be
valid for time L1 after its issuance and key revocation is not a major concern. Note that L1 can
also be set to the validity period of the RBAC session3 associated with role vr.

3.4.2 User identifiers

We remark that the use of signing keys based on role-only identifiers provides user privacy and
pseudo-anonymity. However, in some applications, it may be desirable for a resource provider
to keep track of the identities of users who accessed its resources, for auditing and accountabil-
ity purposes. This can be achieved by including a local user identifier Uid in a role identifier,
V O1.Org1.vr‖Uid1‖L1, for example. The use of user identifiers and lifetimes may be essential for
commercial grid applications when billing comes into play.

A role is likely to be shared by more than one user, and hence a signing key, which is based on a
role-only identifier, may well be shared by a group of users. The inclusion of user identifiers within
role identifiers obviates potential issues caused by key sharing. It is worth noting that although
user identifiers are used in role identifiers, principal mappings are still based on roles only.

3.4.3 Generic role sets

There may also be situations where it is more appropriate for a user presenting all roles
to which she is entitled within a single identifier. The user can obtain, from her organiza-
tion, a signing key associated with all her roles vr1, . . . , vrm. Her role identifier now becomes
V O1.Org1.(vr1, . . . , vrm)‖Uid1‖L1. One advantage of this approach is that the user is relieved
of her responsibility in selecting the appropriate signing keys for a particular session. Clearly, on
the other hand, the limitation of this method is that it would undermine the principle of least
privilege, which may be desirable in some system environments.

We have described how additional fields, such as lifetime and user identifier, can be optionally
appended to role identifiers to construct more meaningful signing keys with more specific and
fine-grained attributes. In the next section we show how the concept of role signatures can be
easily integrated into an existing security architecture for grid computing.

4 Security architecture

Our access control framework is built on a grid authentication framework recently proposed
by Crampton et al. [11]. The password-enabled and certificate-free grid security infrastructure
(PECF-GSI) is based on hierarchical identity-based cryptography, allows users to perform single
sign-on based only on passwords and does not require a PKI. Nevertheless, it supports essential grid
security services, such as mutual authentication and delegation, using public key cryptographic
techniques.

The fact that users are authenticated using only passwords significantly increases the user-
friendliness of the infrastructure and allows users to join or leave a VO in a flexible way. This is
mainly because users do not have to go through the hassle of obtaining a public key certificate
when joining a VO.

Figure 1 illustrates a fragment of the hierarchical namespace. We assume that every member
organization in the VO is aware of the generic role identifiers vr1 and vr2 defined by the VO.

3In an RBAC session, a user activates a number of the roles to which he is assigned, thereby gaining the privileges
associated with those roles for that interaction with the system.
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Figure 1: Hierarchy of principals and roles in the VO

4.1 System initialization

The TA runs the Root Setup of the Gentry–Silverberg HIBS schemes to produce a master secret
s0 and the system parameters.

An authentic set of the TA parameters must be made available to authentication and hosting
servers within the grid. One way to achieve this is by bootstrapping these parameters into the
grid system. Alternatively, distribution of the parameters is also possible through the use of a
certificate obtained from a conventional CA that certifies the parameters.

4.2 Key issuance

Once the system parameters have been established, the TA (at level 0) can issue private keys to
VOs, using its master secret s0 and the Gentry–Silverberg Extract algorithm. For example, the
long-term private key of the VO (with identifier V O) is S1,1 = s0P1,1, where P1,1 = H1(V O) is
the matching public key. Note that s0P1,1 refers to a point multiplication between the master
secret s0 and the public key P1,1; while H1, a component of the system parameters, denotes a
mapping of a string onto a group element (see Appendices A and B for further details). The
associated Q-value, Q1,1 is s1,1P0, where s1,1 is a secret value randomly chosen by VO using the
Lower-level Setup algorithm, and P0 is available from the system parameters. Note that we
use i and j as subscripts in Pi,j , Si,j and Qi,j to represent hierarchy depth index and row index
(within the same level of hierarchy), respectively.

Subsequently, the VO at level 1 issues private keys to principals at level 2, e.g. Orgi, which
in turn issuing private keys corresponding to some generic roles, e.g. vri, to lower level principals
by performing the same algorithms. The key sets that each principal derives are summarized in
Table 1.

4.3 User authentication and single sign-on

In PECF-GSI, a user authenticates to a domain authentication server through a password-based
TLS protocol [1]; hence authentication between the user and the server can take place without
relying on a PKI.
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Table 1: Key sets of various principals in the VO hierarchy

Identifier Public Key Private Key Q-value

V O P1,1 = H1(V O) S1,1 = s0P1,1 Q1,1 = s1,1P0

Orgi P2,i = H1(V O.Orgi) S2,i = S1,1 + s1P2,i Q2,i = s2,iP0

vri P3,i = H1(V O.Orgi.vri) S3,i = S2,i + s2P3,i Q3,i = s3,iP0

When performing single sign-on, the user establishes a secure TLS channel with the authen-
tication server based on a shared password. The authentication server then creates a proxy
(short-lived) credential and transmits it to the user. An authenticated copy of the TA system
parameters are sent to the user, enabling her to execute the Sign algorithm. In addition, the
user is sent an up-to-date Identity Revocation List (IRL) so that she can be sure that a resource
provider to which she submits her job request is still legitimate, respectively.

The user is only required to sign-on once and use the fresh proxy credential generated by the
authentication server until the credential expires.

Each user in an MO is authorized for a number of roles in the local RBAC policy maintained
by the MO. This may include a number of generic roles defined by the VO, either directly using
the UA relation, or indirectly using RT-style rules.

Suppose that user A is authorized for two generic roles, vr1 and vr2, by Org1’s ACP. Once
A and Org1 have successfully mutually authenticated, Org1 issues proxy credentials for roles vr1

and vr2 (that is the key pairs (P3,1, S3,1) and (P3,2, S3,2)) to A through a secure TLS channel.
As explained in Section 3.4, there are several ways in which A’s role identifiers can be specified.
In our following example scenario, we assume that user A is given two signing keys associated
with identifiers V O.Org1.vr1‖A‖LA and V O.Org1.vr2‖A‖LA, respectively. Here, LA denotes the
lifetime of the key issued to A. We assume there is a common format for key lifetimes within the
VO and system clocks are loosely synchronized.

4.4 Job submission

Our job submission model is based on the Globus Toolkit’s Grid Resource Allocation and Man-
agement (GRAM) [34]. GRAM is designed to provide a single common protocol and API for
requesting and using remote system resources, by providing a uniform and flexible interface to
local job scheduling systems. To invoke a job using GRAM, a user creates a job request, describes
the job to be run, and sends it to a GRAM adapter running on a resource. The GRAM adapter
maps the request onto an appropriate request to a local scheduler. The local scheduler has an in-
terface called Managed Job Factory (MJF) which then creates one or more managed job instances
to execute the submitted job.

4.4.1 Access request

Before submitting a job to the computational grid within the VO, A first selects the appropriate
credential or signing key, depending on the job and the types of resources that A needs to access.

Let’s assume that A submits a job using the key S3,1 corresponding to the identifier
V O.Org1.vr1‖A‖LA, which requires access to some resource hosted by Org2. She can then
use the credential to produce a role signature of the form 〈σ,Q1,1, Q2,1, Q3,1〉 over the job re-
quest, Req, using the Gentry–Silverberg Sign algorithm. A submits Req, V O.Org1.vr1‖A‖LA

and 〈σ,Q1,1, Q2,1, Q3,1〉 via GRAM to Org2. Naturally, A would use the AggSign algorithm if
she wished to sign a request indicating authorization for both vr1 and vr2.

4.4.2 Access decision

Upon receiving the signed job request and the relevant information from A, (the PDP for) Org2

performs the following steps:
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1. verify the role signature (using Verify or AggVerify as appropriate);

2. if the role signature can be successfully verified, extract the appropriate generic role(s) from
the identifier;

3. map the generic role(s) to local roles using the ACP defined by Org2 for those generic role(s);

4. access is granted if the local role is authorized for Req.

Since Org2 trusts Org1 in issuing S3,1 to the correct principal, Org2 can be convinced of A
being an authorized user with the appropriate role, if the signed request is valid.

5 Related work

5.1 Credential verification in RBTM

Assuming that a PDP trusts a TA to only issue keys to valid VOs, any VO that the TA trusts to
only issue keys to valid MOs, and any MO that a trusted VO trusts to only issue role keys to valid
users, the verification of a role signature is equivalent to verifying a form of linked containment
rule in the RT language. Specifically, consider the following rules:

Org2.r ← Org2.MO.vr

Org2.MO ← Org2.V O.MO

Org2.V O ← TA.V O

TA.V O ← V O1

V O1.MO ← Org1

Org1.vr ← u

These RT0 rules would enable Org2 to conclude that u was authorized to be a member of role
Org2.r, provided the authenticity of the credentials TA.V O ← V O1, V O1.MO ← Org1 and
Org1.vr ← u could be verified. We claim that role signatures makes policy specification easier
(compare the rules that Org2 needs to define above, with those required in Section 2) and credential
verification easier. Of course, the comparison is slightly unfair, because RBTM is for arbitrary
open distributed environments, whereas the grid environments we are discussing have a natural
hierarchical disposition.

5.2 Policy-based and attribute-based cryptography

A number of authors have considered the idea of policy-based cryptography [3, 30] in recent years.
This can be used to implement access control by encrypting resources. A user is only able to read
a resource if she has the appropriate encryption key. This approach is rather limited in the type
of interactions that can be controlled between the user and the resource.

Bagga and Molva [3] recently introduced a policy-based signature scheme, derived from an
identity-based ring signature scheme of [36], which provides the inspiration for our work. However,
the policies are expressed as monotonic logical expressions involving complex conjunctions and
disjunctions of conditions. Bagga and Molva cite a motivating example in which Bob has an ACP
such that Alice is authorized to access some sensitive resource if she is an IEEE member and she
is an employee of either university X or university Y .

The policy is expressed as 〈IEEE, Alice:member〉 ∧ [〈X, Alice:employee〉 ∨
〈Y , Alice:employee〉]. This way of expressing policies does not seem to be practical, since
Bob has to specify each policy for each requester who wants to access the resources. Moreover, it
assumes that Bob knows something about every user that will make an access request. In short,
while the cryptographic techniques they use to enforce such policies are interesting, it seems
unlikely that such policies will be useful in practice.

11



We note in passing that (presumably the intent of) Bob’s ACP could be expressed in the
following way:

Bob.r ← IEEE .member ∩ Bob.uni .employee

where r is a role name mapped to some appropriate permissions. This style of ACP is far more
appropriate in an open distributed environment. In this paper, we have shown how role signa-
tures can be used to demonstrate that a user is authorized for a particular generic role within
a single contiguous namespace. More importantly, our work examines the fundamental principal
mapping problem which underlies the use of policy-based cryptography, rather than designing new
cryptographic schemes that support access control and policy enforcement.

Apart from policy-based cryptography, there are also proposals on attribute-based systems [17,
25], which are based on Sahai and Waters’s attribute-based encryption (ABE) scheme [26]. ABE
is closely related to the work of Bagga and Molva [3] and of Smart [30]. In ABE, the recipient’s
identifier comprises a set of attributes Ψ. A policy enforcer (sender) can specify another set of
attributes Ψ′, such that the recipient can only decrypt the ciphertext if his identifier Ψ has at
least k attributes in common with the set Ψ′. Here k is a parameter set by the system.

As with [3, 30], the proposals of [17, 25] attempt to present constructions of more expressive
cryptographic schemes in terms of policy specification and enforcement, without dealing with the
underlying principal mapping issue. The central idea of their work is about using a thresholding
primitive to control access to some data (through encryption), whereby only users who fulfill
k-of-n attributes can access the data (through decryption). On the other hand, we study how a
hierarchical identity-based signature scheme can be used to provide role signatures that potentially
greatly simplify inter-domain principal mappings and credential verification.

5.3 Role-based cascaded delegation

Perhaps the work that is most similar in spirit to ours, is that of Tamassia et al. on role-based cas-
caded delegation (RBCD) [31]. RBCD combines the advantages of RBTM with those of cascaded
delegation [22]. Their proposal uses a hierarchical certificate-based encryption scheme [15], itself
based on an aggregate signature scheme [7], to simplify credential accumulation and verification.
The basic idea is to encode the chain of credentials into a single signed delegation credential.

RBCD is described using an extended example, making it difficult to analyze the approach
formally. Each component of a delegation credential has the form (iss, r, p), where iss is the issuer
of the credential, p is the subject of the credential who is authorized for role r. The delegation
credential in the example used by Tamassia et al. has the form

(H, H.guest,M.professor)
(M, M.professor,Bob)
(Bob, H.guest, L.assistant)
(L,L.assistant, Alice)

The scenario is that

• hospital H says that any member of the professor role at the medical school M is also a
member of the role H.guest;

• M says that Bob is a member of the professor role;

• Bob says that any member of the lab assistant role at lab L is a member of role H.guest;

• L says that Alice is a member of the lab assistant role.

It is suggested by the authors that this implies that H, on receipt of this delegation credential
from Alice, can verify that she is indeed a member of the H.guest role.

However, H needs to know about the professor role at M , and M is required to know
that the professor role is important to H. RBCD also assumes that credentials of the form
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(Bob,H.guest, L.assistant) are regarded as trustworthy by the hospital. It also assumes that Bob
is aware that he can issue credentials of this form, and knows to include the (M, M.professor,Bob)
credential in the delegation credential. In short, the problem of principal mapping is not addressed
by RBCD.

6 Future work

6.1 Multiple namespaces

It may well be useful to have a number of distinct hierarchical namespaces having different root
TAs, with principals having distinct identities in different namespaces. We may have ethz .edu and
ethz .cern.e-science, for example. Informally, the first identifier means that Swiss Federal Institute
of Technology, Zurich is an accredited higher education institution, while the second means that
Swiss Federal Institute of Technology is an accredited member of the virtual organization working
on data generated by the large hadron collider at CERN. It will be a challenging problem to devise
a role signature scheme that enables a user to sign a request using keys from multiple namespaces.

6.2 More meaningful identifiers

Currently, we use an identifier that is analogous to a fully qualified domain name. However,
consider a scenario in which there may be more than one type of MO in a grid: we might have
industrial and academic partners, for example; academic partners might be treated as members
of an AcMO role and industrial partners as members of an IndMO role. In this scenario, the
fully qualified domain names V O1.ibm.vr1 and V O1.mit.vr1 fails to distinguish between the roles
played by a particular entity. At the level of generic roles, it might be useful to explicitly identify
the user associated with a generic role, particularly for auditing and accountability.

To address these issues, we think it would be interesting to investigate the use of X.500-style
distinguished names. Specifically, an entity identifier is based on the fully qualified domain name,
but it is expanded to a sequence of role-identifier pairs. Hence, for example, we might have
an identifiers of the form vr1 = Alice, AcMO = mit, V O = V O1 and vr1 = Bob, IndMO =
ibm, V O = V O1. This type of approach would also be useful when considering the generation of
proxy credentials, something widely used in grid computing.

6.3 Delegation and proxy credentials

Delegation of credentials in the context of grid computing means that a user issues a proxy
credential to an entity or a proxy acting on the user’s behalf [33]. Using the approach to identifiers
suggested in the previous section, each user has their own namespace and can issue new keys based
on a role key. In the example above, given an identifier for Alice, vr1 = Alice, MO = rhul, V O =
V O1, we can construct a proxy identifier of the form vr2 = AliceProxy, vr1 = Alice,MO =
rhul, V O = V O1. The assignment of vr2 6= vr1 to the proxy could be used by Alice to limit the
privileges of her proxy.

7 Conclusions

We have proposed the use of role signatures for access control in grid environments. Our work
build on three assumptions:

• it is reasonable to define a comparatively small number of generic roles that will be recognized
throughout a virtual organization;

• the structure of a virtual organization defines a hierarchical namespace;

• members of the virtual organization are trusted to assign their respective users to generic
roles.

13



We have shown how an hierarchical identity-based signature scheme can be adapted to provide
role signatures, where the corresponding verification keys are associated with generic roles. It
seems reasonable to assume that this approach will be applicable to any form of dynamic coalition
with some hierarchical structure, not just virtual organizations in grid computing.

Our approach provides greater flexibility than conventional grid access control mechanisms, in
the sense that generic roles defined by a member organization can be mapped to local roles of
another member organization without relying on additional dedicated authorization servers. Key
management in our proposal is simple as role signatures can be used to both authenticate users
and make access control decisions. Moreover, our approach also allows aggregation of signing keys,
so that the keys can be associated with multiple roles.

To conclude, our work provides nice balance between expressiveness of policy and ease of
credential verification as compared to existing role-based access control and trust management
frameworks.
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A Pairings

Let G1 and G2 be two groups of order q for some large prime q, where G1 is an additive group
and G2 denotes a related multiplicative group. Typically, G1 is a subgroup of the group of points
on a suitable elliptic curve over a finite field, G2 is obtained from a related finite field, and ê is
obtained from the Weil or Tate pairing on the curve.

An admissible pairing in the context of identity-based cryptography is a function ê : G1×G1 →
G2 with the following properties:

Bilinear: Given P, Q, R ∈ G1, we have

ê(P, Q + R) = ê(P, Q) · ê(P,R) and
ê(P + Q,R) = ê(P, R) · ê(Q,R).

Hence, for any a, b ∈ Z∗q , we have

ê(aP, bQ) = ê(abP,Q) = ê(P, abQ)

= ê(aP,Q)b = ê(P,Q)ab.
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Non-degenerate: There exists P ∈ G1 such that ê(P, P ) 6= 1.

Computable: Given P, Q ∈ G1, ê(P,Q) can be efficiently computed.

B The Gentry–Silverberg HIBS scheme

Root Setup: The root PKG chooses a generator P0 ∈ G1, picks a random secret s0 ∈ Z∗q ,
and sets Q0 = s0P0. It also selects cryptographic hash functions H1 : {0, 1}∗ → G1 and
H2 : {0, 1}∗ → G1. The root PKG’s master secret is s0 and the system parameters are
〈G1,G2, ê, P0, Q0,H1,H2〉.

Lower-level Setup: A lower-level entity (lower-level PKG or user) at level t picks a random
secret st ∈ Z∗q .

Extract: For entity e (with identifier id1.id2. · · · .idt), the entity’s parent:

• computes Pt = H1(id1. · · · .idt) ∈ G1,
• sets the secret point

St =
t∑

i=1

si−1Pi = St−1 + st−1Pt,
4

• defines Q-values by setting Qi = siP0 for 1 ≤ i ≤ t− 1.

Entity e is given both St and the Q-values by its parent.

Sign: Given a private key St and a message M ∈ {0, 1}∗, e computes

h = H2(id1. · · · .idt,M) ∈ G1 and σ = St + sth.

The algorithm outputs 〈σ,Q1, . . . , Qt〉 as the signature.

Verify: Given a signature 〈σ,Q1, . . . , Qt〉 of a message M signed by e, the verifier checks if:

ê(P0, σ) = ê(Q0, P1)ê(Qt, h)
t∏

i=2

ê(Qi−1, Pi),

where h = H2(id1. · · · .idt,M).

To reduce the time taken to perform signature verification, which is particularly useful
in situations where many signatures from the same signer need to be verified, the values
ê(Q0, P1) and

∏t
i=2 ê(Qi−1, Pi) can be pre-computed. This means that only two pairing

computations are required when verification is performed.

C Aggregation of signing keys

AggSign: Given signing keys St,1, . . . , St,m and a message M , the signer: chooses a secret value
sagg ∈ Z∗q ; computes

h = H2(id1. · · · .idt−1.(idt,1|| . . . ||idt,m),M);

computes

σ = saggh +
m∑

i=1

St,i

and Qagg = saggP0. The algorithm outputs the signature 〈σ,Q1, . . . , Qt−1, Qagg〉.
4Note that St−1 is the parent’s secret point and st−1 is a secret value known only to the parent.
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AggVerify: Given a signature 〈σ,Q1, . . . , Qt−1, Qagg〉 of a message M signed by the keys
St,1, . . . , St,m, the verifier checks if ê(P0, σ) is equal to

ê

(
Qt−1,

m∑

i=1

Pt,i

)
· ê(Qagg, h) ·

(
t−1∏

i=1

ê(Qi−1, Pi)

)m

In order to justify the correctness of the AggVerify algorithm, consider

ê

(
Qt−1,

m∑

i=1

Pt,i

)
· ê(Qagg, h) ·

(
t−1∏

i=1

ê(Qi−1, Pi)

)m

= ê

(
st−1P0,

m∑

i=1

Pt,i

)
· ê(saggP0, h) ·

(
t−1∏

i=1

ê(si−1P0, Pi)

)m

= ê

(
st−1P0,

m∑

i=1

Pt,i

)
· ê(saggP0, h) ·

(
t−1∏

i=1

ê(P0, si−1Pi)

)m

=

(
m∏

i=1

ê(st−1P0, Pt,i)

)
· ê(saggP0, h) ·

(
ê

(
P0,

t−1∑

i=1

si−1Pi

))m

=

(
m∏

i=1

ê(P0, st−1Pt,i)

)
· ê(P0, saggh) · (ê (P0, St−1))

m

=

(
m∏

i=1

ê(P0, st−1Pt,i)

)
· ê(P0, saggh) ·

(
m∏

i=1

ê (P0, St−1)

)

=

(
m∏

i=1

ê(P0, st−1Pt,i) · ê(P0, St−1)

)
· ê(P0, saggh)

=

(
m∏

i=1

ê(P0, St−1 + st−1Pt,i)

)
· ê(P0, saggh)

=

(
m∏

i=1

ê(P0, St,i)

)
· ê(P0, saggh)

= ê

(
P0, saggh +

m∑

i=1

St,i

)

= ê(P0, σ)
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