
Challenges for Trusted Computing

S. Balfe, E. Gallery, C.J. Mitchell and K.G. Paterson

Technical Report
RHUL–MA–2008–14

26 February 2008

Royal Holloway
University of London

Department of Mathematics
Royal Holloway, University of London
Egham, Surrey TW20 0EX, England

http://www.rhul.ac.uk/mathematics/techreports

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Royal Holloway Research Online

https://core.ac.uk/display/78876415?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

This article identifies and discusses some of the key challenges that need to
be addressed if the vision of Trusted Computing is to become reality. Topics
addressed include issues with setting up and maintaining the PKI required
to support the full set of Trusted Computing functionality, the practical
use and verification of attestation evidence, and backwards compatibility,
usability and compliance issues.

1 Introduction

A trusted platform, as discussed in this article, refers to a platform of the
type championed by the Trusted Computing Group (TCG). That is, a trusted
platform is one which will behave in a particular manner for a specific pur-
pose. Trusted computing refers to the collection of interrelated and interop-
erating technologies, which, when combined, help to establish a more secure
operating environment on commodity platforms. A fully-realised trusted
computing platform will allow users to reason about the behaviour of a plat-
form, as well as providing standardised mechanisms to protect user private
data against software attack [36]. A trusted platform should be able to reli-
ably gather and provide evidence of its current operating state, or any sub-
component thereof. Any divergence from an intended operating state can be
reported to interested parties, allowing them to make informed decisions as
to whether to continue to interact with the platform in question.

Trusted Computing functionality has been proposed to enhance the se-
curity of numerous applications. For example, it has been promoted as an
adjunct to the digital signature process [6, 49], in enabling secure software
download [19], in support of secure single sign-on solutions [29], in securing
peer-to-peer networks [8, 23, 45, 43], in improving the security and privacy
of a biometric user authentication process [14], in hardening mobile devices
[18] and to facilitate identity management [27, 28]. A number of authors
have also considered trusting computing’s applicability to the agent paradigm
[15, 30, 31, 35], grid security [25, 26], e-commerce transaction security [10, 9],
and to defend against the ever-growing threat posed by crimeware [7]. Fur-
ther applications are described in [5, 20, 24, 62].

Despite its many beneficial applications, Trusted Computing is not with-
out its detractors; see for example [2, 3, 4, 38, 39, 40, 46, 51, 63]. Privacy
concerns relating to trusted platforms were raised in [37]. The extent to which
Trusted Computing could be used to enable and enforce Digital Rights Man-
agement (DRM), and, more generally, the possible expropriation of platform

1

owner control, have been contentious issues [46, 60]. Anderson [2] expresses
the view that Trusted Computing could be used to support censorship, stifle
competition between software vendors, facilitate software lock-in and hinder
the deployment and use of open source software, thereby potentially enabling
market monopolisation by select vendors.

Our aim in this article is not to engage in this debate, but rather to
highlight some of the key challenges that we believe need to be addressed in
order to accelerate the widespread adoption of Trusted Computing. Many
of the challenges we identify are not purely technical in nature, but rather
involve a mixture of technical, policy and management aspects. This could
make this article somewhat different in flavour from the majority of current
research in Trusted Computing. We trust that our work will bring some
useful diversity into the field and that our approach will add to, rather than
subtract from, the value of the article for readers.

This article is structured as follows. In order to make the article self-
contained, Section 2 provides an overview of Trusted Computing technology.
In Section 3, we discuss some of the challenges that we believe may hinder the
widespread adoption and use of Trusted Computing. In particular, we focus
on: the Public Key Infrastructure (PKI) that is associated with the deploy-
ment of Trusted Computing; certificate and Trusted Platform Module (TPM)
revocation as well as the impact of hardware attacks on platforms; problems
with attestation evidence gathering and verification; backward compatibility
requirements; usability issues; and challenges arising from non-compliance
with the TCG’s technical specifications. We conclude with Section 4.

2 Trusted Computing Concepts

The provision of the full range of Trusted Computing functionality is depen-
dent upon the integration of a number of additional hardware and software
components into a computing platform:

A Trusted Platform Module (TPM): The TPM forms the core of a Trusted
Computing platform [56, 57, 58]. A TPM is a microcontroller with
cryptographic coprocessor capabilities that provides a platform with
the following features: a number of special purpose registers called
Platform Configuration Registers (PCRs), into which cryptographic
digests representing platform state altering events can be recorded; a
means of reporting the platform’s current state to remote entities; se-
cure volatile and non-volatile memory; random number generation; a
SHA-1 hashing engine; and asymmetric key generation, encryption and
digital signature capabilities.

2

Core Root of Trust for Measurement (CRTM): The CRTM should form
an immutable portion of a host platform’s initialisation code and is re-
sponsible for measuring the host platform’s state, that is, the collection
of operating system and application software components running on
the machine. The process of measuring platform state may be much
more complicated than simply taking a single hash of a monolithic piece
of code, however. For example, for a Personal Computer (PC) client
[55], the CRTM code would measure a platform’s BIOS and store a
hashed representation of the BIOS code in one (or more) of the PCRs
within a TPM. The CRTM would then hand execution control to the
BIOS, which in turn would measure, store, and transfer control to the
next component in a host platform’s boot sequence. This process would
then continue until all components are measured. Through this suc-
cession of measuring, transfer of control and execution, a transitive
trust chain from the CRTM to the host Operating System (OS) can
be formed. Attestations to the measurements recorded to the TPM’s
PCRs that make up this chain can subsequently be provided to inter-
ested parties. (We discuss the different flavours of Trusted Computing
attestation in more detail below.)

Isolation technologies: The introduction of isolation technologies, such as
Microsoft’s Next Generation Secure Computing Base (NGSCB) [32, 33]
or XEN Source’s XEN [11], were designed to take advantage of CPU
and chipset extensions incorporated in a new generation of processor
hardware [22]. Together, these new initiatives will enable a platform
to be partitioned into isolated execution environments. An isolated
execution environment, independent of how it is implemented, should
provide the following services to hosted software [33]:

• protection of the software from external interference;

• observation of the computations and data of a program running
within an isolated environment only via controlled inter-process
communication;

• secure communication between programs running in independent
execution environments; and

• a trusted channel between input/output devices and a program
running in an isolated environment.

We note that current deployments of Trusted Computing technologies
have tended to focus more on the TPM than on the CRTM or isolation tech-
nologies. This naturally limits the trustworthiness of the platform. Even so,

3

a number of proposals [8, 9, 44] demonstrate that even a limited deployment
of Trusted Computing can bring security benefits.

2.1 Trusted Computing Credentials and Hardware At-
testation

In addition to the integration of additional hardware and software compo-
nents, certification and accreditation play an important role in building a
trusted platform. In this regard, there are a number of interrelated creden-
tials that must be present before a platform can be considered to be a trusted
platform:

An endorsement credential: Each TPM is associated with a unique asym-
metric encryption key pair called an Endorsement Key (EK) pair. An
endorsement credential binds the public component of this key pair to
a TPM description and vouches that a TPM is genuine. This creden-
tial is typically generated by the TPM manufacturer, with the binding
taking the form of a digital signature created using a signing key of the
manufacturer.

One or more conformance credentials: Conformance credentials vouch
that a particular type of TPM and associated components (such as a
CRTM and the connection of the CRTM and TPM to a motherboard)
conform to the TCG specifications. These credentials are issued by en-
tities with sufficient credibility to evaluate platforms containing TPMs,
typically conformance testing facilities.

A platform credential: A platform credential proves that a TPM has been
correctly incorporated into a design which conforms to the TCG spec-
ifications. This credential is typically generated by a platform manu-
facturer. In order to create a platform credential, the platform man-
ufacturer must examine the endorsement credential, the conformance
credentials relevant to the trusted platform, and the platform to be
certified.

2.2 Identity Attestation

Since an EK is unique to a platform, it may act as a “super-cookie” in
identifying subsequent platform actions across multiple domains. To help
allay concerns that an EK may become associated with personally identifiable
information, the TCG [56] introduced the ability for a TPM to generate and

4

use an arbitrary number of pseudonyms, in the form of Attestation Identity
Key (AIK) key pairs. Unlike an EK, AIKs serve to identify a platform
as trusted without uniquely identifying it as a particular trusted platform.
However, in order for a relying party to have assurance that an AIK represents
a trusted platform, a platform must obtain AIK certification from a mutually
trusted third party. Two approaches to AIK certification have been proposed
by the TCG.

In the first approach, a trusted third party, referred to as a Privacy-
Certification Authority (P-CA), provides assurance that an AIK is bound
to a trusted platform in the form of an AIK credential. When a platform
requests an AIK credential from a P-CA, it must supply an AIK public key
as well as its endorsement, conformance and platform credentials. The P-
CA verifies these credentials, thereby obtaining assurance that the trusted
platform is genuine, and creates an AIK credential attesting to this fact.
This credential takes the form of a digital signature on the AIK public key.
However, this approach has attracted a certain amount of criticism. A P-CA
is capable of linking all AIK credentials issued to a specific platform via the
platform’s EK, putting the P-CA in a position where it is able to defeat the
anonymity protection provided by the use of AIKs. Moreover, it is unclear
what business model might support the development of commercial P-CAs.

Direct Anonymous Attestation (DAA) has been proposed as an (op-
tional) alternative to the P-CA model, and offers strong anonymity guar-
antees through advanced cryptographic techniques. These prevent the cor-
responding issuing authority from being able to link AIK credentials with
a single platform identity (EK). A DAA Issuer produces a certificate on a
blinded TPM secret. The TPM-host platform later uses this certificate and
TPM secret to produce a special type of digital signature (called a signature
proof of knowledge) on an AIK public key corresponding to the TPM secret.
A verifier of this signature does not actually get to see the certificate, but
instead receives an assurance (via a zero-knowledge protocol) that the plat-
form possesses such a certificate on the DAA public key corresponding to the
TPM secret.

2.3 Object Attestation

2.3.1 State Attestation

A platform’s state is represented by a set of integrity measurements. When
a platform component (i.e. a piece of software executing on a platform) is
“measured”, a hash of the component is recorded to one of a set of PCRs
within the host platform’s TPM (where the PCR to which a particular com-

5

ponent is recorded is platform-specific). Subsequent measurements to this
register are recorded by overwriting its current value with a hash of the con-
catenation of the new measurement and the existing contents of the register.
In this way, the cumulative contents of a TPM’s registers reflect the current
software state of the host platform, as well as the states through which the
platform has transitioned.

Platform attestation is the process by which a platform can reliably re-
port evidence of both its identity (as a valid trusted platform) and its current
state. A TPM signs the contents of (one or more of) the TPM’s PCRs which
reflect (all or part of) the current host platform’s state. The private compo-
nent of an AIK key pair is used to create the signature. This signed bundle is
communicated to an external entity in conjunction with a corresponding AIK
public key credential and a record of the platform components which have
been measured. The receiving entity validates the AIK credential, verifies
the AIK signature, and compares the signed PCR values against a set of ref-
erence integrity measurements. The TCG envisages that reference values and
associated credentials will typically be created during software development
[59].

2.3.2 Data Attestation

Sealing is the process by which sensitive data can be associated with a set
of PCR values representing a particular platform configuration, and only
released to the platform for use when the current state of the platform is such
that the PCR values match those specified at the time of sealing. The sealing
and unsealing processes are implemented using encryption and decryption,
in tandem with appropriate key management procedures.

Data can also be associated with a string of 20 bytes of authorisation
data before being sealed. When unsealing is requested, the authorisation
data must then also be submitted to the TPM. The submitted authorisation
data is then compared to the authorisation data in the unsealed string, and
the object is only released if the values match.

2.3.3 Key Attestation

A TPM can generate an unlimited number of asymmetric key pairs. For
each of these pairs, private key usage and mobility can be constrained. A
key pair can be generated so that use of its private component is contingent
upon the presence of a predefined platform state (as reflected in the TPM’s
PCRs). Additionally, a private key can be marked as either being migratable
or non-migratable. Migratable private keys can be moved from a TPM, whilst

6

non-migratable keys are inextricably bound to a single TPM.
Private keys, like data, can also be associated with a string of 20 bytes

of authorisation data. When private key usage is required, the authorisation
data must be submitted to the TPM. The submitted authorisation data is
then compared to the authorisation data associated with the key, and key
use is only permitted if the values match.

To attest to the usage, mobility and authorisation constraints associated
with a private key held by a TPM, the TCG has specified the Subject Key
Attestation Evidence (SKAE) X.509 extension [53]. SKAE provides a mech-
anism to allow a verifier to ascertain that an operation involving a private
key was performed within a TCG-compliant TPM environment. After ob-
taining an AIK credential (following the P-CA method outlined in Section
2.2), a platform can sign a data structure containing the public component
of a non-migratable TPM key pair and a description of usage attributes of
the corresponding private key. An SKAE Certification Authority (CA), af-
ter verifying the signed TPM data structure, can then create a new X.509
certificate for the public key. This certificate incorporates an extension field
attesting to the TPM-related security properties of the certified key. Such a
certificate can then be used as an aid to authentication in protocols such as
SSL/TLS [16] or IKEv2 [1].

3 Challenges for Trusted Computing

3.1 Public Key Infrastructure and Trusted Computing

As we saw in Section 2.1, for a platform to be considered trusted, it must
first obtain certificates from an endorsement CA, a platform CA, and one
or more conformance CAs. Together, these CAs are responsible for issuing
the core trusted platform credentials. However, in order to address privacy
concerns resulting from overuse of an EK (as contained in an endorsement
credential), P-CAs, and later DAA Issuers, were introduced. Subsequently,
SKAE CAs were proposed as a means of coping with difficulties in integrating
TPM-controlled keys with standard security protocols. Recently, further-
PKI-related authorities (notably Migration Authorities (MAs) and Migration
Selection Authorities (MSAs) [52]) have been introduced to address issues
concerning key migration between TPM-enabled platforms.

Thus the majority of Trusted Computing services depend fundamentally
on the deployment and successful inter-operation of a number of PKI ele-
ments. We refer to this collection of components as a Trusted Computing PKI
(TC-PKI), although it is actually a larger and more complex “eco-system” of

7

elements than would normally be contained in a single PKI. Figure 1 depicts
the main types of CA in a TC-PKI. Yet the development of any functional
PKI requires a sophisticated combination of organisational, policy-oriented,
procedural, and legislative approaches. Indeed the challenges and pitfalls of
PKI deployment are well-documented [21, 34], and high-profile system and
protocol failures that have been blamed on inappropriate deployment of PKI
abound, with SET [47] providing one of the most prominent examples. Put
simply, providing a PKI is hard.

A TC-PKI not only involves a plurality of CAs, but also a series of implicit
dependencies amongst these CAs. In a TC-PKI, a platform CA relies on the
due diligence of an endorsement CA and one or more conformance CAs in
accrediting components of a trusted platform. Similarly, both privacy CAs
and DAA Issuers rely on platform CAs, endorsement CAs and one or more
conformance CAs. Furthermore, SKAE CAs rely on the due diligence of Pri-
vacy CAs or DAA Issuers in evaluating the accreditation evidence provided
by a trusted platform.

Traditionally, Certificate Policies (CPs) (which specify what a certificate
should be used for, and the liability assumed by the CA for this use) and
Certificate Practice Statements (CPSs) (which specify the practices that a
CA employs to manage the certificates it issues) are deployed by CAs in
order to define and limit their liabilities with respect to relying parties. CPs
and CPSs are, in fact, an essential component in building a successful PKI,
since they give a relying party (which could be an end-user or another CA)
a means to manage the business risk in pursuing a particular PKI-related
course of action. In the past, uncertainty as to where liability lies has driven
up the cost of many PKI implementations [34]. In the absence of CPs and
CPSs, implicit cross-certification may exist between CAs, which, as noted in
[21], implies that CAs are equally trusted. In such a setting the security of
a certificate is reduced to that of the least trustworthy CA. Unfortunately,
CPs and CPSs are notoriously difficult and costly to create, and so their
production may act as a barrier to entities wishing to provide CA services.

In the setting of a TC-PKI, such policy statements must be produced by
every CA upon which another CA may depend. Currently, these dependen-
cies are only informally defined, and, as a result, there is no clear indication
of where any liability will lie. Further, at the time of writing, we are not
aware of any TC-specific CPs or CPSs having been created. The picture is
further complicated by the fact that all the CAs in a TC-PKI rely (at least
to some extent) on the endorsement CA. Therefore, the point in a TPM’s
life-cycle at which an EK credential is acquired impacts on a platform’s abil-
ity to obtain platform, AIK, DAA and SKAE credentials. In early normative
EK credential acquisition, as defined by the TCG [54], a TPM manufacturer

8

generates the EK credential. However, in post-manufacturing generation, as
defined by the TCG [54], a platform owner is responsible for generating the
EK credential. In this instance, the certifying body may not be recognised
by other CAs and, as a result, the certified TPM host platform may not be
able to obtain further credentials from entities outside the domain of its EK
credential issuer. In practice, this may not be an issue, as it seems likely that
non-manufacturer supplied EK credentials will not be widely used.

To summarise: Trusted Computing relies on an as yet largely unavailable
and unspecified PKI in which multiple CAs (possibly existing in different
organisational, procedural and/or jurisdictional domains) are expected to
inter-operate. This may pose a significant challenge to the future success of
this technology.

Figure 1: Trusted Computing PKI Components

3.2 Certificate and TPM Revocation

The revocation of credentials within a TC-PKI may introduce further prob-
lems. Given the complex dependencies between many of the TC-PKI creden-
tials, the compromise of an individual key and the subsequent revocation of
its associated public key certificate will result in a cascading revocation of all
dependent TPM credentials. For example, in the event of endorsement key
revocation, every AIK associated with the revoked EK must also be revoked.
In addition, all SKAE credentials associated with the newly revoked AIKs
must also be revoked. This implies that multiple CAs, potentially in inde-
pendent domains, must be contacted in a timely manner and informed about
a revocation decision. This may be a time-consuming and costly endeavour.
Further complexity is introduced when attempting to revoke a DAA creden-
tial associated with a compromised Endorsement Key pair, because a DAA
Issuer cannot link a platform’s Endorsement Key pair with a DAA credential.

We next consider revocation of a TPM itself (rather than revocation of
its credentials). For cost reasons, the level of tamper-resistance provided by

9

TPMs is likely to be limited. Moreover, the objective of the mechanisms
specified by the TCG is the prevention of information asset compromise
through software attack. That is, the software security of the platform is
predicated upon the notion that the TPM will maintain an accurate and
reliable record of all platform events. Such a focus means that the security
of the underlying hardware is assumed and that there is no purely technical
driver to promote the development of tamper-resistant TPMs.

Yet it is clear from the example of widespread gaming console modifica-
tion that, given sufficient incentive, users will actively circumvent hardware-
enforced security. In this context, recent demonstrations of a relatively unso-
phisticated hardware attack [50] through which a TPM’s PCRs can be reset
without rebooting a platform would appear to pose a significant challenge to
Trusted Computing. The ability to reset PCRs effectively destroys the tran-
sitive trust chain upon which a remote verifier relies to assess a platform.
Once this trust chain is broken, the PCRs can be repopulated with whatever
data the platform owner wishes, allowing the owner to misrepresent their
platform’s current state in a manner that is convincing to a remote verifier.
The simple attack of [50] underlines the need for any verifier to consider the
“quality” of the platform when assessing the state of a trusted platform. That
is, an attestation from a platform incorporating a well-designed TPM from a
known manufacturer should be considered more convincing than an attesta-
tion from a platform incorporating a TPM from an unknown or disreputable
supplier.

Given the above discussion, it is reasonable to assume that, before long,
TPMs will be compromised and all credentials and keys extracted. These
could then be used to emulate a TPM in software in a way that is indistin-
guishable from the true hardware TPM. The process by which a compro-
mised TPM is detected will largely be reliant on that TPM’s interactions
with P-CAs, DAA Issuers and SKAE CAs. It has been suggested in [13]
that TPM compromise could manifest itself through an excessive number of
certification requests originating from a single TPM host platform (where
“excessive” is to be determined by a risk-management policy). However,
such a naive approach to detection introduces a number of challenges:

• CAs may specify different thresholds for determining what is meant by
“excessive”, potentially leading to a high number of false positives for
CAs with low thresholds.

• Once a compromised TPM has been detected, there is a need to globally
propagate this information to prevent the compromised TPM host plat-
form from being (mis)used elsewhere. This requires the establishment

10

of a global revocation infrastructure. Such an infrastructure could be
implemented using Certificate Revocation Lists (CRLs) or through an
On-line Certificate Status Protocol (OCSP). Neither option, however,
is ideal. In the case of CRLs, there are concerns regarding CRL dis-
covery and the timely issuance of revocation information. In the case
of OCSP, in order to make its deployment economically viable, CAs
typically charge for each revocation check. It is unclear who would pay
for such a service in a TC-PKI. In the case of an OCSP request for
an SKAE certificate, the verifier would need to contact the SKAE CA,
which would need to contact the AIK CA, which in turn would need
to contact the platform, endorsement and conformance CAs.

• A CA must consider potential legal issues that might result from the
wrongful issuance of revocation statements negatively impacting on a
platform’s ability to interact with other parts of the infrastructure. As
a result of such considerations, CAs may become reluctant to announce
suspected compromises.

• To alleviate the risk of a malicious P-CA issuing falsified revocation
statements, a means by which the credibility of CAs in issuing such
statements can be assessed must be provided. It is currently unclear
what form such a mechanism might take.

3.3 Attestation Evidence Gathering and Verification

The exact parameters to be considered when performing integrity measure-
ments on platform components have yet to be standardised1. At a minimum,
the parameters must be chosen so that each software component’s integrity
measurement can be uniquely identified. These measurements must also re-
main consistent to allow ease of verification. However, in the absence of
standardisation, platform integrity measurements may fail to capture all el-
ements required by the verifier of a platform component. This is especially
true when one considers the complications introduced with respect to soft-
ware which relies on dynamically linked libraries (DLLs). In this case, a
proportion of the platform component’s code base may not be measured, as
it will not be loaded by the application prior to execution.

Moreover, given the extensible nature of modern computing systems, the
number of components that might need to be measured by a TPM is rapidly

1For example, the authors of [33] have proposed that a platform component’s integrity
measurement can be calculated from its instruction sequence, initial state (i.e. the exe-
cutable file) and input.

11

increasing. This implies that each register will have to store multiple mea-
surements. As the number of a platform’s components increases, so does
the complexity of third party verification of attestation statements. It also
becomes difficult for a challenger to verify a single component running on a
platform.

The introduction of isolation technologies, as described in Section 2,
enables a platform to be partitioned into isolated execution environments,
thereby (potentially) simplifying attestation statement verification. In this
case, a challenger of the platform may be satisfied to verify measurements
pertaining to rudimentary platform components, such as the boot software,
the isolation layer and software components running in an isolated execution
environment rather than verify all software running on the platform. This
may ease the platform attestation problem in some situations.

However, even assuming the number of platform component integrity
measurements that a challenger must verify is limited, problems relating
to platform component updates and patching will still arise. Given current
software development practices, frequent patching to OS components and
applications can be expected to be the norm for the foreseeable future. But
even the order in which patches are applied can result in a “combinatorial
explosion” of distinct configurations for a single application, each configura-
tion requiring a distinct reference value for attestation purposes. Frequent
patching may also lead to problems with respect to sealed data. If an up-
date or patch is applied to a software component to which a key or data is
sealed, this key or data must be unsealed and resealed to the updated soft-
ware component measurements. Failure to reseal to the updated component
measurements will result in the key or data being inaccessible after the patch
has been applied.

Property Based Attestation [42] has been proposed to address the problem
of managing attestation in the presence of a multitude of possible configura-
tions and system updates. This approach introduces an additional layer of
indirection into the attestation and sealing processes. Instead of expecting a
verifier to determine if a particular set of PCR values represent a trustwor-
thy software state, a platform’s state is certified (by a trusted third party) as
satisfying certain properties. A platform is then capable of attesting that its
current configuration possesses such a property, allowing a verifier to infer
whether a platform is trustworthy or not without knowing which particular
software is running. Property Based Attestation also allows data or keys to
be sealed to properties. As long as the properties of the updated platform
configuration match those of the prior configuration, problems related to
patching may be reduced. Sadeghi and C. Stüble suggest that this approach
could be realised either through a software-based “Trusted Attestation Ser-

12

vice” or through modifications to the TPM hardware.
Unfortunately, Property Based Attestation only succeeds in shifting the

problems with attestation to an entity other than the verifier, with all of
the original problems persisting for the entity that needs to verify a PCR-
based attestation. Nevertheless, the number of entities needing to verify such
complex attestations could be significantly reduced, and these entities could
be given additional resources to enable them to complete their task. More-
over, a software component satisfying a particular property is by no means
guaranteed to still satisfy that property after it has been patched, without
rerunning the (potentially expensive) evaluation procedure. This evaluation
procedure may contribute to the marginalisation of minority platforms by
“altering the economics of interoperability” [38]. The cost of establishing
that a given platform state matches some desirable property may be so great
that only a few well-funded organisations may be able to obtain such a result.
Additionally, exactly what properties can be satisfied using such an approach
remains an open question. More positively, Property Based Attestation at
least shifts the problems to an expert specialising in the particular business
of attestation.

A final issue which must be considered with respect to the successful
implementation of platform attestation is that of user observable verification.
McCune et al. [17] describe a scenario in which a user’s platform has become
infected with malware. Despite the fact that this infection can be detected
by an external entity during an attestation process, the external entity has no
way of reliably informing the end user that they have failed their attestation.
Malware may simply modify the user’s display, resulting in the user believing
their platform to be in an acceptable state, and, because of this, going on to
disclose sensitive information to the malware.

3.4 Backward Compatibility

As a consequence of the piecemeal roll-out of Trusted Computing technolo-
gies, current trusted platforms do not come equipped with CRTMs, isolation
technologies, processors or chipset extensions. Instead, current trusted plat-
forms include only a TPM meeting the relevant TCG specifications, and,
with the exception of Infineon TPMs, do not even include endorsement cre-
dentials. To the best of our knowledge, all currently available platforms
lack both conformance credentials and platform credentials. This situation
has the potential to create an awkward backward compatibility issue as and
when fully-deployed TC-PKIs become available. In particular, the absence
of these credentials will make it difficult, if not impossible, for a platform to
later acquire AIK credentials without operating at reduced assurance levels.

13

The absence of CRTMs, isolation technologies, processors and chipset
extensions from current TPM-enabled platforms makes the use of much of
the TPM Trusted Computing functionality described in Section 2 essentially
unreliable. Techniques such as sealing and attestation are unworkable if the
host platform’s state cannot be reliably measured. In order to later enable
these features on an already deployed platform, measurement functionality
(in the form of a CRTM and modified operating system) would need to
be integrated into the platform. This would require the installation of a
new OS and the BIOS to be flashed, tasks that would prove difficult for
the average user. On the other hand, this may be feasible in a corporate
environment with centralised administrative control of platforms. Indeed, in
such deployments, legacy hardwares issue may be less of an issue because
of more rapid retirement of platforms. Moreover, software-based isolation
environments can be provided through the installation of additional software
onto already deployed platforms. Nevertheless, hardware-based isolation,
enabled through the processor and chipset extensions, cannot be retrofitted to
platforms already in the field. As a result, first generation trusted platforms
can never be adequately upgraded to provide all the services associated with
a trusted platform.

3.5 Usability

Prevailing wisdom suggests that it is prudent to hide the complexities of
security technology from end-users [34]. In the past, applications that have
relied on a PKI have failed in cases where security functions have been too
unwieldy to be usable by non-experts [12]. In one example [48], the PKI
experience was considered so painful by some users that they refused to use
the technology if it involved handling certificates. The design of suitable user-
interfaces that can communicate rich security information whilst remaining
usable has historically been very difficult to achieve [61].

By contrast, using a TPM currently requires a detailed understanding of
how the underlying technology works. For example, the very act of enabling
a TPM prior to its use is a non-trivial task requiring a user to understand and
edit BIOS settings. Once enabled, a user is further confronted with setting
a TPM owner password, selecting key types fit for purpose, and enrolling
certain keys within a PKI. Further problems may arise with respect to
password use and management. In addition to setting a password for TPM
ownership, unique passwords may also be associated with protected data or
keys in a TPM. While the deployment of numerous passwords may be viewed
as a sound security decision, management of such passwords so that access
is not jeopardised may prove problematic.

14

These usability issues are a reflection of the general immaturity of Trusted
Computing technology and the associated marketplace. Whilst a huge effort
has been put into design and specification of technical aspects of Trusted
Computing by the TCG, so far less work seems to have been done to address
user-centric issues. We may hope for user-friendly configuration and man-
agement tools in future, although even these may not be sufficient to make
Trusted Computing accessible to the masses.

3.6 Non-Compliance and Inter-operability

Through the provision of a set of open standards, Trusted Computing spec-
ifies security interfaces which allow heterogeneous devices to interact. Un-
fortunately, many of the additional technological building blocks required to
instantiate a trusted platformare not standardised, nor does the TCG dictate
implementation specifics to its adopters. As a result, a number of currently
available TPMs do not comply with the TPM specifications [41]. The cur-
rent absence of conformance testing facilities implies that the production
of non-compliant TPMs may very well continue for the foreseeable future.
In turn, discrepancies in implementation between TPM manufacturers may
limit future inter-operability of different trusted platforms.

4 Conclusions

Trusted Computing is undoubtedly a powerful technology, with a huge range
of possible applications. Nevertheless, there remain a number of significant
obstacles to its widespread use, as we have discussed above. Addressing these
challenges is therefore a high priority for future research.

Perhaps the most significant of these obstacles is the deployment and
management of the PKI necessary to enable general use of the security ser-
vices supported by Trusted Computing. These issues are in many ways sim-
ilar to those which prevented the establishment of a global general-purpose
PKI. Nevertheless, deploying domain and company-specific PKIs to support
Trusted Computing well-defined and limited environments would appear rel-
atively straightforward, since the majority of the problems simply disappear
— this again reflects the experience of deploying conventional PKIs, which
have been used very successfully in specific domains.

We have also examined problems arising with the use and interpretation
of evidence generated using Trusted Computing functionality. This problem
arises in particular because of the number of different components (and ver-
sions of components). As with the PKI issues, many of the problems are

15

particularly serious when one considers universal use of Trusted Computing
— the issues are likely to be much less serious in a closed/managed environ-
ment, e.g. as established within a large organisation, notably because the
number of components will be significantly less, and there are likely to be
more resources available to evaluate the components.

In conclusion, many challenges to the successful large-scale use of Trusted
Computing remain. Nevertheless, these challenges are likely to be much less
serious for a very important class of users, namely corporate IT. Providing
the full benefits of Trusted Computing to the widest possible audience is a
major challenge for future research.

References

[1] Internet Key Exchange (IKEv2) Protocol. RFC 4306, 2005.

[2] R. Anderson. Cryptography and Competition Policy: Issues with
‘Trusted Computing’. In Proceedings of the 22nd Annual Symposium on
Principles of Distributed Computing (PODC 2003), pages 3–10, Boston,
Massachusetts, USA, 2003. ACM Press, New York, USA.

[3] R. Anderson. ‘Trusted Computing’ Frequently Asked Questions - Ver-
sion 1.1. http://www.cl.cam.ac.uk/~rja14/tcpa-faq.html, August
2003.

[4] B. Arbaugh. Improving the TCPA Specification. IEEE Computer,
35(8):77–79, August 2002.

[5] B. Balacheff, L. Chen, S. Pearson, D. Plaquin, and G. Proudler. Trusted
Computing Platforms: TCPA Technology in Context. Prentice Hall,
Upper Saddle River, New Jersey, USA, 2003.

[6] B. Balacheff, L. Chen, S. Pearson, G. Proudler, and D. Chan. Comput-
ing Platform Security in Cyberspace. Information Security Technical
Report, 5(1):54–63, 2000.

[7] S. Balfe, E. Gallery, C. J. Mitchell, and K. G. Paterson. Crimeware
and Trusted Computing. In M. Jakobsson and Z. Ramzan, editors,
Crimeware. Addison-Wesley, 2008.

[8] S. Balfe, A. D. Lakhani, and K. G. Paterson. Securing Peer-to-Peer
Networks using Trusted Computing. In C. J. Mitchell, editor, Trusted
Computing, chapter 10, pages 271–298. The Institute of Electrical En-
gineers (IEE), London, UK, 2005.

16

[9] S. Balfe and K. G. Paterson. Augmenting Internet-based Card Not
Present Transactions with Trusted Computing: An Analysis. Techni-
cal Report RHUL-MA-2006-9, Department of Mathematics, Royal Hol-
loway, University of London, London, UK, 2005. http://www.rhul.ac.
uk/mathematics/techreports.

[10] S. Balfe and K. G. Paterson. e-EMV: Emulating EMV for Internet Pay-
ments using Trusted Computing Technology. Technical Report RHUL-
MA-2006-10, Department of Mathematics, Royal Holloway, University
of London, London, UK, 2006. http://www.rhul.ac.uk/mathematics/
techreports.

[11] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-
bauery, I. Pratt, and A. Warfield. XEN and the Art of Virtualization.
In Proceedings of the 19th ACM Symposium on Operating Systems Prin-
ciples (SOSP 2003), pages 164–177, Bolton Landing, New York, USA,
19–22 October 2003. ACM Press, New York, USA.

[12] B. Beckles, V. Welch, and J. Basney. Mechanisms for Increasing the Us-
ability of Grid Security. International Journal of Man-Machine Studies,
63(1-2):74–101, 2005.

[13] E. Brickell, J. Camenisch, and L. Chen. Direct Anonymous Attestation.
In Proceedings of the 11th ACM Conference on Computer and Commu-
nications Security (CCS 2004), pages 132–145, Washington DC, USA,
2004. ACM Press, New York, USA.

[14] L. Chen, S. Pearson, and A. Vamvakas. On Enhancing Biometric Au-
thentication with Data Protection. In R. J. Howlett and L. C. Jain,
editors, Proceedings of the 4th International Conference on Knowledge-
Based Intelligent Engineering Systems and Allied Technologies, vol-
ume 1, pages 249–252, Brighton, Sussex, UK, 30th August – 1st Septem-
ber 2000. IEEE.

[15] S. Crane. Privacy Preserving Trust Agents. Technical Report HPL-
2004-197, HP Labs, Bristol, UK, 11 November 2004.

[16] T. Dierks and C. Allen. The TLS Protocol. RFC 2246, 1999.

[17] J. McCun eand A. Perrig, A. Seshadri, and Leendert van Doorn. Turtles
All The Way Down: Research Challenges in User-Based Attestation.
In Proceedings of 2nd USENIX Workshop on Hot Topics in Security
(HotSec 2007), August 2007.

17

[18] E. Gallery and C. J. Mitchell. Trusted Mobile Platforms. In A. Aldini
and R. Gorrieri, editors, Foundations of Security Analysis and Design
IV (FOSAD 2007), volume 4677 of Lecture Notes in Computer Science,
pages 282–323. Springer-Verlag, Berlin, Germany, September 2007.

[19] E. Gallery and A. Tomlinson. Secure Delivery of Conditional Access Ap-
plications to Mobile Receivers. In C. J. Mitchell, editor, Trusted Com-
puting, IEE Professional Applications of Computing Series 6, chapter 7,
pages 195–238. The Institute of Electrical Engineers (IEE), London, UK,
2005.

[20] T. Garfinkel, M. Rosenblum, and D. Boneh. Flexible OS Support and
Applications for Trusted Computing. In Proceedings of the 9th USENIX
Workshop on Hot Topics on Operating Systems (HotOS-IX), pages 145–
150, Kauai, Hawaii, USA, 18–21 May 2003. USENIX, The Advanced
Computing Systems Association, Berkeley, California, USA.

[21] P. Gutmann. PKI: It’s Not Dead, Just Resting. Computer, 35(8):41–49,
2002.

[22] Intel. LaGrande Technology Architectural Overview. Technical Report
252491-001, Intel Corporation, September 2003.

[23] M. Kinateder and S. Pearson. A Privacy-Enhanced Peer-to-Peer Reputa-
tion System. In K. Bauknecht, A. Min Tjoa, and G. Quirchmayr, editors,
Proceedings of the 4th International Conference on E-Commerce and
Web Technologies, volume 2738 of Lecture Notes in Computer Science,
pages 206–216, Prague, Czech Republic, 2–5 September 2003. Springer-
Verlag, Berlin-Heidelberg.

[24] D. Kuhlmann, R. Landfermann, H. Ramasamy, M. Schunter, G. Ra-
munno, and D. Vernizzi. An Open Trusted Computing Architecture
— Secure Virtual Machines Enabling User-Defined Policy Enforcement.
www.opentc.net, June 2006.

[25] H. Löhr, H. V. Ramasamy, A-R. Sadeghi, S. Schulz, M. Schunter,
and C. Stüble. Enhancing Grid Security Using Trusted Virtualization.
In Proceedings of the 4th International Conference on Autonomic and
Trusted Computing (ATC 2007), volume 4610 of Lecture Notes in Com-
puter Science (LNCS), pages 372–384, Hong Kong, China, 11–13 July
2007. Springer-Verlag, Berlin-Heidelberg.

[26] W. Mao, F. Yan, and C. Chen. Daonity: Grid Security with Behaviour
Conformity from Trusted Computing. In Proceedings of the 1st ACM

18

workshop on Scalable Trusted Computing (STC 2006), pages 43–46,
Alexandria, Virginia, USA, 3 November 2006.

[27] M. C. Mont, S. Pearson, and P. Bramhall. Towards Accountable Man-
agement of Identity and Privacy: Sticky Policies and Enforceable Trac-
ing Services. In Proceedings of the 14th International Workshop on
Database and Expert Systems Applications (DEXA 2003), pages 377–
382, Prague, Czech Republic, 1–5 September 2003. IEEE Computer
Society.

[28] M. C. Mont, S. Pearson, and P. Bramhall. Towards Accountable Man-
agement of Privacy and Identity Information. In E. Snekkenes and
D. Gollmann, editors, Proceedings of the 8th European Symposium on
Research in Computer Security (ESORICS 2003), volume 2808 of Lec-
ture Notes in Computer Science, pages 146–161, Gjøvik, Norway, 13-15
October 2003. Springer-Verlag, Berlin.

[29] A. Pashalidis and C. J. Mitchell. Single Sign-on using Trusted Platforms.
In C. Boyd and W. Mao, editors, Proceedings of the 6th International
Conference on Information Security (ISC 2003), volume 2851 of Lecture
Notes in Computer Science, pages 54–68, Bristol, UK, 1–3 October 2003.
Springer-Verlag, Berlin-Heidelberg.

[30] S. Pearson. Trusted Agents that Enhance User Privacy by Self-Profiling.
Technical Report HPL-2002-196, HP Labs, Bristol, UK, 15 July 2002.

[31] S. Pearson. How Trusted Computers can Enhance for Privacy Preserv-
ing Mobile Applications. In Proceedings of the 1st International IEEE
WoWMoM Workshop on Trust, Security and Privacy for Ubiquitous
Computing (WOWMOM 2005), pages 609–613, Taormina, Sicily, Italy,
13–16 June 2005. IEEE Computer Society, Washington, DC, USA.

[32] M. Peinado, Y. Chen, P. England, and J. Manferdelli. NGSCB: A
Trusted Open System. In H. Wang, J. Pieprzyk, and V. Varadhara-
jan, editors, Proceedings of 9th Australasian Conference on Information
Security and Privacy (ACISP 2004), volume 3108 of Lecture Notes in
Computer Science (LNCS), pages 86–97, Sydney, Austrailia, 13–15 July
2004. Springer-Verlag, Berlin-Heidelberg, Germany.

[33] M. Peinado, P. England, and Y. Chen. An Overview of NGSCB. In C. J.
Mitchell, editor, Trusted Computing, IEE Professional Applications of
Computing Series 6, chapter 7, pages 115–141. The Institute of Electrical
Engineers (IEE), London, UK, April 2005.

19

[34] G. Price. PKI—An Insider’s View (Extended Abstract). Technical Re-
port RHUL-MA-2005-8, Department of Mathematics, Royal Holloway,
University of London, Surrey, England, UK, June 2005.

[35] A. Pridgen and C. Julien. A Secure Modular Mobile Agent System. In
Proceedings of the 2006 International Workshop on Software Engineer-
ing for Large-Scale Multi-Agent Systems (SELMAS 2006), pages 67–74,
Shanghai, China, 22–23 May 2006. ACM Press, New York, USA.

[36] G. J. Proudler. Concepts of Trusted Computing. In C. J. Mitchell,
editor, Trusted Computing, IEE Professional Applications of Computing
Series 6, chapter 2, pages 11–27. The Institute of Electrical Engineers
(IEE), London, UK, April 2005.

[37] J. Reid, J. M. Gonzalez Nieto, and E. Dawson. Privacy and Trusted
Computing. In Proceedings of the 14th International Workshop on
Database and Expert Systems Applications (DEXA 2003), pages 383–
388, Prague, Czech Republic, 1–5 September 2003. IEEE Computer
Society.

[38] Electronic Frontier Foundation S. Schoen. Comments on LT Policy
on Owner/User Choice and Control 0.8. http://www.eff.org/

Infrastructure/trusted_computing/eff_comments_lt_policy.

pdf, December 2003.

[39] Electronic Frontier Foundation S. Schoen. Give TCPA an Owner Over-
ride. http://www.linuxjournal.com/article/7055, December 2003.

[40] Electronic Frontier Foundation S. Schoen. Comments on TCG
Design, Implementation and Usage Principles 0.95. http:

//www.eff.org/Infrastructure/trusted_computing/20041004\

_eff_comments_tcg_principles.pdf, October 2004.

[41] A-R. Sadeghi, M. Selhorst, C. Stüble, C. Wachsmann, and M. Winandy.
TCG inside?: a note on TPM specification compliance. In Proceedings
of the 1st ACM workshop on Scalable trusted computing (STC 2006),
pages 47–56, Alexandria, Virginia, USA, 2006. ACM, New York, NY,
USA.

[42] A-R. Sadeghi and C. Stüble. Property-based attestation for com-
puting platforms: caring about properties, not mechanisms. In C.F.
Hempelmann, editor, Proceedings of the 2004 workshop on New secu-
rity paradigms (NSPW 2004), pages 67–77, Nova Scotia, Canada, 2004.
ACM, New York, NY, USA.

20

[43] R. Sandhu and X. Zhang. Peer-to-peer access control architecture using
trusted computing technology. In E. Ferrari and G-J. Ahn, editors,
Proceedings of the 10th ACM symposium on Access control models and
technologies (SACMAT 2005), pages 147–158, 1–3 June 2005.

[44] L. F. G. Sarmenta, M. van Dijk, C. W. O’Donnell, J. Rhodes, and
S. Devadas. Virtual monotonic counters and count-limited objects using
a TPM without a trusted OS. In Proceedings of the 1st ACM workshop
on Scalable trusted computing (STC 2006), pages 47–56, Alexandria,
Virginia, USA, 2006. ACM, New York, NY, USA.

[45] S. E. Schechter, R. A. Greenstadt, and M. D. Smith. Trusted Comput-
ing, Peer-to-Peer Distribution, and the Economics of Pirated Entertain-
ment. In Proceedings of the 2nd Annual Workshop on Economics and
Information Security, 2003.

[46] S. Schoen. Trusted Computing: Promise and Risk. Whitepaper, Elec-
tonic Frontier Foundation, October 2003.

[47] SETCo. SET Secure Electronic Transaction 1.0 specification
— the formal protocol definition. http://www.setco.org/set_

specifications.html, May 1997.

[48] R. O. Sinnott. Development of Usable Grid Services for the Biomedical
Community. In Useability in e-Science Workshop: An International
Workshop on Interrogating Usability Issues in New scientific Practice,
within the Lab and within Society (NeSC 2006), Edinburgh, Scotland,
UK, 26–27 January 2006.

[49] A. Spalka, A. B. Cremers, and H. Langweg. Protecting the Creation
of Digital Signatures with Trusted Computing Platform Technology
against Attacks by Trojan Horse Programs. In M. Dupuy and P. Parad-
inas, editors, Proceedings of the 16th Annual Working Conference on
Information Security (IFIP/Sec’01) of Trusted Information: The New
Decade Challenge, volume 193 of IFIP Conference Proceedings, pages
403–419, Paris, France, 11–13 June 2001. Kluwer Academic Publishers,
Boston, Massachusetts, USA.

[50] E. Sparks. A Security Assessment of Trusted Platform Modules. Techni-
cal Report TR-2007-597, Department of Computer Science, Dartmouth,
Hanover, New Hampsire, USA, June 2007.

21

[51] R. Stallman. Free Software, Free Society: Selected Essays of Richard M.
Stallman, chapter 17 – Can You Trust Your Computer?, pages 115–119.
GNU Press, Boston, Massachusetts, USA, 2002.

[52] TCG. Interoperability Specification for Backup and Migration Services.
TCG specification version 1.0 revision 1.0, The Trusted Computing
Group (TCG), Portland, Oregon, USA, June 2005.

[53] TCG. Subject Key Attestation Evidence Extension. TCG specification
version 1.0 revision 7, The Trusted Computing Group (TCG), Portland,
Oregon, USA, June 2005.

[54] TCG. TCG Infrastructure Working Group Reference Architecture for
Interoperability (Part I). TCG specification version 1.0 revision 1, The
Trusted Computing Group (TCG), Portland, Oregon, USA, June 2005.

[55] TCG. TCG PC Client Specific Implementation Specification For Con-
ventional BIOS. TCG specification version 1.20 final, The Trusted Com-
puting Group (TCG), Portland, Oregon, USA, June 2005.

[56] TCG. TPM Main, Part 1: Design Principles. TCG Specification Ver-
sion 1.2 Revision 94, The Trusted Computing Group (TCG), Portland,
Oregon, USA, March 2006.

[57] TCG. TPM Main, Part 2: TPM Data Structures. TCG Specification
Version 1.2 Revision 94, The Trusted Computing Group (TCG), Port-
land, Oregon, USA, March 2006.

[58] TCG. TPM Main, Part 3: Commands. TCG Specification Version 1.2
Revision 94, The Trusted Computing Group (TCG), Portland, Oregon,
USA, March 2006.

[59] TCG. TCG Specification Architecture Overview. TCG specification
revision 1.4, The Trusted Computing Group (TCG), Portland, Oregon,
USA, August 2007.

[60] F. von Lohmann. Meditations on trusted computing. Electronic Frontier
Foundation Article, 2003.

[61] A. Whitten and J. D. Tygar. Why Johnny Can’t Encrypt: A Usability
Evaluation of PGP 5.0. In Proceedings of the 8th Conference on USENIX
Security Symposium (SSYM 1999), pages 14–14, Washington, District of
Columbia, USA, 1999. USENIX Association, Berkeley, California, USA.

22

[62] Z. Yan and Z. Cofta. A Method for Trust Sustainability Among Trusted
Computing Platforms. In S. Katsikas, J. Lopez, and G. Pernul, editors,
Proceedings of the 1st International Conference on Trust and Privacy
in Digital Business (TrustBus 2004), volume 3184 of Lecture Notes in
Computer Science (LNCS), pages 11–19, Zaragoza, Spain, 30 August–1
September 2004. Springer-Verlag, Berlin-Heidelberg, Germany.

[63] M. Yung. Trusted Computing Platforms: The Good, the Bad, and
the Ugly. In R. N. Wright, editor, Proceedings of the 7th International
Conference of Financial Cryptography (FC 2003), volume 2742 of Lec-
ture Notes in Computer Science (LNCS), pages 250–254, Guadeloupe,
Frence West Indies, 27–30 January 2003.

23

