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Abstract

This thesis is divided into two distinct parts. The first part of the thesis explores

the role Trusted Computing can play in securing Internet-based Card Not Present

(CNP) transactions. We highlight how Trusted Platform Module (TPM) enabled

Platforms, as are currently available in the marketplace, can be used as adjuncts to

CNP enabling protocols, such as SSL and 3-D Secure. As an extension to this, we

demonstrate how newer Trusted Computing technologies, such as processor, chipset

and operating system extensions, can provide a measured virtualisation layer on top

of which emulated EMV (chip and pin) cards can run.

The second part of this thesis looks at how Trusted Computing can be used to

add security functionality to a number of computing paradigms. Firstly, we examine

how Trusted Computing can be used to provide stable pseudonymous identities on

top of which reputation systems can be built for Peer-to-Peer systems. Secondly, we

examine the role Trusted Computing can play in protecting mobile agent systems.

In this regard, we examine how mechanisms for protecting both agent hosts and mo-

bile agents can be achieved by augmenting agent systems with Trusted Computing

functionality.
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Chapter 1

Introduction

Contents

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.2 Organisation of Thesis and Summary of Contributions . 18

1.3 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.4 Cryptographic Primitives . . . . . . . . . . . . . . . . . . 20

1.4.1 Hash Functions . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.4.2 Message Authentication Codes . . . . . . . . . . . . . . . . 21

1.4.3 Symmetric Encryption . . . . . . . . . . . . . . . . . . . . . 22

1.4.4 Asymmetric Encryption . . . . . . . . . . . . . . . . . . . . 22

1.4.5 Digital Signature . . . . . . . . . . . . . . . . . . . . . . . . 23

1.4.6 Public Key Certificates . . . . . . . . . . . . . . . . . . . . 23

In this chapter, we provide an overview of the thesis as a whole. We discuss the

motivation for our research and describe the contributions of the thesis.

1.1 Motivation

The Trusted Computing Group (TCG) is an industry consortium formed to develop

a set of open standards for hardware-enabled Trusted Computing. The TCG’s aim

is to establish a more secure computing environment on commodity platforms that

can protect data from software attacks [108]. Trusted Computing is based on the
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1.1 Motivation

inclusion of a hardware “root of trust” within a platform, that aims to allow users

(and third parties) to assess the “trustworthiness” of the devices with which they

interact. To achieve this, a Trusted Platform (TP) should be able to reliably gather

and provide evidence of its current operating state, or any sub-component thereof.

Any divergence from an intended operating state can be reported to interested par-

ties, allowing them to make informed decisions as to whether to continue to interact

with the platform in question. Trusted Computing, as discussed in this thesis, relates

directly to the types of systems proposed by the TCG. Namely, a trusted system is

one which will behave in a particular manner for a specific purpose1.

At present, Trusted Platforms, as they are currently deployed in the marketplace,

are incapable of providing the rich set of security services described above. The

relative absence of additional hardware and software components in the form of

new processor designs, new chipsets, new Basic Input/Output Systems (BIOSs)

and Operating System (OS) support makes any statement (attestation) made by a

current Trusted Platform unreliable. Instead, the current functionality offered by

a Trusted Platform is akin to that of a high-end smartcard. Through the use of a

Trusted Platform Module (TPM), a small microcontroller attached to a platform’s

motherboard, a Trusted Platform can produce random numbers and generate, store

and use asymmetric key pairs. As things currently stand, processor, chipset, BIOS

and OS support will not be commonplace in the market for several years to come.

However, the component-based architecture adopted by the TCG allows the current

functionality to be extended over time. Thus, Trusted Computing can currently

provide us with a limited, but useful, set of cryptographic functionality which can

be extended to provide a more secure operating environment.

Once one accepts that Trusted Computing offers an interesting and powerful

set of (near and long-term) security features, the natural question arises: for what
1https://www.trustedcomputinggroup.org/groups/glossary/
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Introduction

purposes can this technology be exploited? This thesis aims to examine this question

by taking an in-depth look at a number of application domains whose security could

be improved by the inclusion of Trusted Computing technologies. In this respect,

this thesis is split into two parts. In the first part we look at card-based electronic

payments and examine the problem of Card Not Present (CNP) fraud. We examine

how the staged roll out of Trusted Computing technology, beginning with ubiquitous

client-side TPMs, can be used to enhance the security of current CNP transactions.

In the second part, we examine how the security of Peer-to-Peer (P2P) systems and

mobile agent systems can be enhanced by the use of Trusted Computing technologies.

We note that this thesis could also have been split into near-term and long-term

applications of Trusted Computing. Here aspects of our CNP work and our Peer-

to-Peer work fall into the former, whilst the rest of our work falls into the latter.

1.2 Organisation of Thesis and Summary of Contributions

The remainder of this thesis is organised as follows. In Chapter 2, we provide an

overview of Trusted Computing. This chapter will act as a primer for the rest of

the thesis. In this chapter we will examine the Trusted Platform Module (TPM) in

considerable detail and see how it fits into the Trusted Computing paradigm. We

will also look at Operating System and chipset support for Trusted Computing in

the form of Microsoft’s Next-Generation Secure Computing Base (NGSCB) and La-

Grande technology respectively. Here we will examine how processor extensions can

be used to provide isolated execution environments in which applications can run,

free from external observation. The remaining chapters of this thesis are organised

into two parts.

Part I: In Chapter 3, we provide an overview of Internet-based Card Not Present

(CNP) transactions. We define a threat model for CNP transactions, as well as pro-

18



1.2 Organisation of Thesis and Summary of Contributions

viding an overview of the generic four corner model used in card payment systems,

before moving on to discuss some of the more significant protocols used for securing

CNP transactions. This chapter concludes with an in-depth examination of Eu-

ropay Mastercard and Visa (EMV) Integrated Circuit Cards (ICCs) for Point of

Sale (PoS) transactions. This chapter will act as background for Chapters 4 and

5. In Chapter 4, we demonstrate how the staged roll out of Trusted Computing

technology, beginning with client-side TPMs, can be used to enhance the security

of current Internet-based CNP transactions. In Chapter 5, we demonstrate how

Trusted Computing technology can be used to emulate EMV for use in Internet-

based CNP transactions.

Part II: In Chapter 6, we demonstrate how features of the TCG specifications

can be employed to enhance the security of P2P environments. In particular, we

show how the TCG protocols for Direct Anonymous Attestation (DAA) can be

used to enforce the use of stable, platform-dependent pseudonyms and thus reduce

pseudospoofing in P2P networks. Taking this a step further, we show how runs

of the DAA protocol can be used to build entity authentication at the level of

pseudonyms and can be securely linked to the establishment of secure channels with

known endpoints. Chapter 7 is concerned with the issue of mobile agent protection

and the benefits that the introduction of Trusted Computing can bring to a mobile

agent framework. In particular, we discuss how Trusted Computing technology

can be used to support secure agent migration between platforms. We describe a

number of options for securely migrating mobile agents between Trusted Computing

platforms and compare and contrast the relative merits (and deficiencies) of each

approach. We conclude with Chapter 8 in which we provide a summary of the

preceding chapters and examine possible extensions to our work.

The main contributions of this thesis can be summarised as follows:
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Introduction

• We propose the use of near-term Trusted Computing technologies as a means

of improving the security of Internet-based CNP transactions.

• We propose the use of longer-term Trusted Computing technologies as a means

of providing a secure and extensible architecture for Internet-based CNP trans-

actions.

• We provide an identity binding service for P2P networks that is resilient to

pseudospoofing attacks. We also show how Trusted Computing can be used

to bootstrap secure sub-groups within P2P networks.

• We demonstrate how Trusted Computing can provide an underlying security

infrastructure for mobile agent systems.

1.3 Publications

This thesis contains material that was previously published with A.D. Lakhani and

K.G. Paterson [16, 17], material that was published with K.G. Paterson [18, 20, 21,

22] as well as material that was published with E.M. Gallery [15]. The content of

[18], which appeared in abridged form as [21], forms the basis for Chapter 4, the

content of [20] forms the basis for Chapter 5. The content of [18] and [20] have

evolved significantly since their first publication, updated versions of which can be

found in [19] and [22] respectively. The content of [16, 17] form the basis for Chapter

6 and the content of [15] forms the basis for Chapter 7.

1.4 Cryptographic Primitives

In this section we introduce the cryptographic primitives that will be used through-

out the remainder of this thesis.
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1.4 Cryptographic Primitives

1.4.1 Hash Functions

A hash function is a cryptographic function h() that takes as input a binary string

of arbitrary (but finite) bit-length, x, and outputs a string of fixed bit-length, h(x)

[86]. A hash function may have the following properties [86]:

• Preimage resistance: For all pre-specified outputs, h(x), for which a corre-

sponding input is not known, it is computationally infeasible to find an input,

x′, such that h(x′) = h(x).

• 2nd-Preimage Resistance: Given an input, x, it is computationally infeasi-

ble to find a second input, x′, where x 6= x′, such that h(x) = h(x′).

• Collision Resistance: It is computationally infeasible to find any two dis-

tinct inputs x and x′ such that h(x) = h(x′).

For the remainder of this thesis we assume that any hash function used will

satisfy the three security properties described above.

1.4.2 Message Authentication Codes

Message Authentication Codes (MACs) are a family of functions, hk(), parame-

terised by a secret key k, that provide (symmetric) data-origin authentication and

message integrity. MACs have the following properties [86]:

• Ease of Computation: Given a known function, hk(), a key, k, and an input,

x, hk(x) should be easy to compute.

• Compression: The function hk() maps an input of arbitrary (but finite)

bit-length, x, to an output string of fixed bit-length, hk(x).
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Introduction

• Computation-resistance: Presented with zero or more text-MAC pairs,

(xi, hk(xi)), it is computationally infeasible to generate any text-MAC pair,

(x, hk(x)), for any new input x 6= xi.

For the remainder of this thesis we assume that any MAC algorithm used will

satisfy the three properties described above.

1.4.3 Symmetric Encryption

An encryption scheme is said to be symmetric if, given an encryption key and de-

cryption key pair (e,d), it is computationally easy to determine e knowing only d

(and vice-versa). Indeed, in many symmetric encryption schemes e = d. Standards

for symmetric ciphers are discussed in [39].

1.4.4 Asymmetric Encryption

Asymmetric cryptography (also known as public-key cryptography) involves the gen-

eration/assignment of two keys, one public, kp, and one private, ks, by/to an entity.

The private key should be kept secret whilst the public key can be freely distributed.

In an asymmetric encryption scheme the public key is used to encrypt a message

for a given recipient. This encrypted message can only be decrypted by the en-

tity possessing the corresponding private key. Standards for asymmetric ciphers are

discussed in [39].
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1.4 Cryptographic Primitives

1.4.5 Digital Signature

A digital signature mechanism is an asymmetric cryptographic scheme consisting of

a private signing procedure (using a private key) and a public verifying procedure

(using the corresponding public key). Digital signatures can be used to provide

origin authentication, non-repudiation and/or data integrity services. Standards for

digital signatures are discussed in [39].

1.4.6 Public Key Certificates

As part of a Public Key Infrastructure (PKI), Certification Authorities (CAs) issue

digitally signed credentials which provide a binding between a public key and an

identity (amongst other things). X.509 is a widely adopted standard for specifying

the format of these public key certificates [70]. The structure of an X.509 v3 public

key certificate can be found in [67].
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Chapter 2

An Overview of Trusted Computing
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In this chapter, we provide an overview of fundamental Trusted Computing con-

cepts and discuss a number of Trusted Computing specifications relevant to our re-

search. This chapter acts as a primer for the remainder of this thesis.
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2.1 Introduction

2.1 Introduction

Trusted Computing, refers to a collection of interrelated and interoperating technolo-

gies, which, when combined, help to establish a more secure operating environment

on commodity platforms. A fully-realised trusted computing platform will allow

users to reason about the behaviour of a platform, as well as providing standardised

mechanisms to protect user private data against software attack [108]. The ratio-

nale behind the introduction of Trusted Computing is to provide means for end-users

(and third-parties) to derive increased confidence in the platforms with which they

interact. However, as trust is perhaps one of the most over-loaded terms in security

research, a precise definition of trust is essential to our understanding of Trusted

Computing. The definition of trust provided by the TCG centres on the notion of

behavioural reputation, that trust is “the expectation that a device will behave in a

particular manner for a specific purpose.”1 What this particular manner or specific

purpose might be, however, has resulted in a fair amount of criticism; see for exam-

ple [5, 6, 10, 126, 127, 118, 128, 137, 168]. In particular, privacy concerns relating

to Trusted Platforms were raised in [111]. The extent to which Trusted Comput-

ing could be used to enable and enforce Digital Rights Management (DRM), and,

more generally, the possible expropriation of platform owner control, where raised in

[162, 118]. Finally, Anderson [5] expresses the view that Trusted Computing could

be used to support censorship, stifle competition between software vendors, facili-

tate software lock-in and hinder the deployment and use of open source software,

thereby potentially enabling market monopolisation by select vendors.

Our aim in this thesis is not to become embroiled in a debate over the possi-

ble (mis)appropriation of a technology, but to examine Trusted Computing and its

beneficial application to a number of computing paradigms. With that in mind, we

will now sketch some of the components of a Trusted Platform and the functionality
1https://www.trustedcomputinggroup.org/groups/glossary/
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An Overview of Trusted Computing

they provide.

2.2 Architecture for a Trusted Platform

Trusted Computing as discussed in this chapter, refers to the types of platforms

proposed by the Trusted Computing Group (TCG). The current documentation from

the TCG encompasses a vast set of specifications ranging from Personal Computer

(PC) [148] and server systems [146] to specifications for trusted networking [152]

and trusted mobile platforms [155]. However, it is the TCG’s specifications for

microcontroller design, in the form of the Trusted Platform Module (TPM), that

have perhaps become most synonymous with Trusted Computing [150, 153, 154]. In

addition to the TCG specification set, work outside of the TCG looks to develop new

processor designs [3, 68] as well as OS support [102, 103] for Trusted Computing.

A Trusted Platform, as defined by Pearson [99], is “a computing platform that

has a trusted component, probably in the form of built-in hardware, which it uses

to create a foundation of trust for software processes.” Figure 2.1 shows an abstract

representation of such a platform. It is perhaps most illustrative to step through

an “authenticated boot” process of a Trusted Platform to show how this “trusted

component” (and its subcomponents) interact to provide a “trustworthy” system.

Where indicated we delay discussion of some of the terminology until later in this

chapter.

2.3 Authenticated Boot

Authenticated boot is the process through which a platform’s configuration (state)

is reliably captured and stored. Trusted Computing establishes trust in a software
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2.3 Authenticated Boot

Figure 2.1: Simplified Trusted Platform Architecture

process by measuring and storing representations of a pre-defined set of platform

components (typically the POST BIOS, option ROMs, the OS loader and OS) in

a platform’s TPM. In this way, an immutable static root of trust (the BIOS) can

extend its trust boundary to iteratively incorporate code that does not natively

reside within this boundary. In each extension of the trust boundary, the target

code is measured and recorded before execution control is transferred. Through

this series of controlled handoffs a system can bootstrap larger and more complex

software components in an authenticated manner.

In a PC architecture, this process occurs as follows. When powering on a Trusted

Platform, a platform’s Root of Trust for Measurement (RTM), in combination with

a TPM (see Section 2.4) and their connections to a platform’s motherboard, forms

a platform’s Trusted Building Block (TBB). It is the TBB which is responsible for

loading a platform’s initial (static) Operating System. Here, the RTM forms an

immutable portion of the host platform’s initialisation code that executes upon a

host platform reset. This code exists either as the BIOS or the BIOS boot block, and
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An Overview of Trusted Computing

comprises the executable component of the Root of Trust for Measurement, typically

referred to as the Core Root of Trust for Measurement (CRTM) (see Section 2.4.3).

This code measures the rest of the BIOS (if present) and stores a representation of

the remaining BIOS code in the platform’s TPM. The BIOS also measures and stores

a representation of any optional Read-only Memory (ROM) code and the platform’s

OS loader code in the TPM. Once measured, the CRTM passes off control to the

OS loader, which finally measures and stores a representation of the platform’s base

(static) OS. Through this sequence of measuring and executing, a transitive trust

chain from the CRTM to the OS is formed. The measurements (as stored in the

TPM) that make up this chain can be subsequently compared against known good

measurements by either the user of the platform or some interested third party. If

a mismatch is detected then the platform has failed to boot into an expected state

and remedial action may be taken.

Alternatively, a Trusted Platform can launch a Dynamic-RTM (DRTM), which in

turn can launch dynamic operating systems whose configurations are also measured

and stored in the platform’s TPM. The concept of a DRTM, as defined by Intel

in their LaGrande system architecture [68], refers to a protected isolation domain

running on-top of a Measured Virtual Machine Monitor (MVMM). As we will see

in Section 2.7, the DRTM, much like the CRTM, is an immutable portion of the

platform, but unlike the CRTM does not require a platform reset. The DRTM is

responsible for loading dynamic Operating Systems in isolated partitions. These

partitions run in parallel to standard OS partitions, without requiring a system

reboot, and can be used to run arbitrary code free from observation from other

partitions within a single Trusted Platform.
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2.4 TPM Specifications

Figure 2.2: Components of Trusted Platform Module

2.4 TPM Specifications

The TPM forms the core of all efforts in Trusted Computing. A TPM (see Figure

2.2) is a microcontroller with Cryptographic Coprocessor (CCP) capabilities that

is uniquely bound to a platform’s motherboard. A TPM provides a platform with

the following facilities: a number of special purpose registers for recording platform

state (current configuration); a means of reporting this state to remote entities;

secure volatile and non-volatile memory; random number generation; a SHA-1 [92]

hashing engine; and asymmetric key generation, encryption and digital signature

capabilities. The TPM specifications have evolved over many years, beginning with

version 1.1b and most recently with version 1.2 revision 103 [150, 153, 154].

Before a TPM can be used to provide any of the facilities described above to

other processes, a TPM must first be “enabled”, “activated” and “owned”.

2.4.1 Taking Ownership of the TPM

The default delivery state for a new TPM is disabled, inactive and unowned. Be-

fore a TPM can become fully operational it must move though a number of states,
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culminating in TPM ownership. In taking ownership of a TPM, certain commands

require an assertion of physical presence at a platform before the command will

operate. Such operations include: enabling a TPM; activating a TPM; taking own-

ership of a TPM; clearing the existing owner of a TPM; temporarily deactivating

a TPM and temporarily disabling a TPM. To operate these commands the TPM

must obtain “unambiguous assurance” that the operation is authorised by an entity

that is physically present at a platform [153]. Examples of such assurance would

include “depressing a switch, setting a jumper, depressing a key on the keyboard or

some other such action” [153]. When a platform is turned on for the first time, the

platform informs the TPM that it is performing a boot process by sending a phys-

ical (bus) signal to the TPM. As part of this process the TPM performs a number

of self-diagnostic routines to ensure that it is functioning correctly. After this, the

TPM performs a start-up sequence which prepares the TPM for operation.

Enabling and Activating: A disabled TPM is unable to execute any com-

mands that use TPM resources. At this point a disabled TPM requires a demon-

stration of physical presence in order to transition it from a disabled to an enabled

state. Much like a disabled TPM, a deactivated TPM also cannot execute commands

that use TPM resources. However, an enabled but deactivated TPM can begin the

process of taking ownership of a TPM.

Taking Ownership: Taking ownership of a TPM is the process of inserting a

secret authorisation value (usually a password) into a TPM shielded location (see

Section 2.4.2). This secret value is later used to demonstrate proof of ownership when

using certain TPM operations that require “TPM Owner” authorisation. Any entity

that can demonstrate knowledge of this shared secret is considered the TPM Owner.

As part of the ownership process, the TPM generates a new Storage Root Key (SRK,

see Section 2.4.4). Once an owner is established, the addition of a new owner requires

the removal of the old owner. This invalidates all information associated with the
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2.4 TPM Specifications

old owner, including the SRK and all keys stored under it. Consequently, all data

that is protected with TPM keys generated by the old owner will be unrecoverable.

2.4.2 Protected Capabilities and Shielded Locations

The TPM provides a number of internally shielded locations (memory and registers

where it is safe to operate on sensitive data) that are only accessible through the use

of a set of commands with exclusive permission to access these locations (protected

capabilities). Perhaps the most important shielded locations in terms of any discus-

sion of Trusted Computing functionality are the Platform Configuration Registers

(PCRs), which we will now consider in detail.

2.4.3 Integrity Measurement and Storage

Trusted Computing defines several roots of trust within a TPM. Integrity measure-

ment and storage fall under the purview of the Root of Trust for Measurement

(RTM) and the Root of Trust for Storage (RTS) respectively. The RTM is a com-

puting engine responsible for making intrinsically reliable integrity measurements.

By the same token, the RTS is responsible for maintaining an accurate and suffi-

ciently detailed record of the events measured by the RTM. The word integrity in

this context refers to ensuring that state transitions are accurately reflected in the

current platform state.

An integrity measurement as defined in [103] is the cryptographic digest or hash

of a platform component that is capable of altering a platform’s integrity (typically a

piece of software executing on the platform). For example, an integrity measurement

of a program can be calculated by computing a cryptographic digest of a program’s

instruction sequence, its initial state (i.e. the executable file) and its input. An in-
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tegrity metric is then a digest of one or more integrity measurements [100]. Integrity

metrics are stored in a TPM’s PCRs.

Measurement: Examining the TCG integrity measurement and storage mecha-

nisms at a high level, we note two structures of particular importance, namely the

aforementioned PCRs and the Stored Measurement Log (SML), alternatively re-

ferred to as the event log. A PCR is a 20-byte storage area that acts as a repository

for recording integrity altering events within a platform. The SML is responsible

for maintaining an ordered database of integrity changing events. Each PCR has

responsibility for the maintenance of a cumulative digest of one or more of these

events (integrity metrics). The data held in a PCR, in conjunction with the relevant

portion of the SML, is used as evidence to attest to a current platform state (see

Section 2.4.5).

PCR updates occur by appending the new event to be measured to the existing

value contained in the PCR, and taking a SHA-1 hash of this value. This can be

expressed as follows:

PCRx := HASH (PCRx ‖ Integrity Measurement)

Here x is the number of the PCR being updated. This operation is commonly

referred to as extending the digest. The use of this approach guarantees that re-

lated integrity measurements will not be discarded, as the previous register value

is incorporated into the new register value. It also ensures that updates to a PCR

are not commutative: the order in which events occur and the measured values they

contain both affect the value of the stored digest.

PCRs and the SML are intimately related. Without the representative digests

contained in PCRs, the record of events maintained by the SML are unreliable (as
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2.4 TPM Specifications

there is nothing to stop someone from generating false events in the log). Without

the relevant portion of the SML, a PCR digest is devoid of any meaning (as the

context from which the digest was generated would be lost). Consistency between

the two structures is preserved by the fact that PCRs are maintained internally to

the TPM and that PCR extension operations are only permitted via TPM protected

capabilities. These PCRs provide evidence of attempted tampering of the log, since

the sequence of events tied to a specific PCR can be extracted from the SML,

rehashed and compared to the actual value contained in a PCR. Thus, the ability

to securely update PCR registers is integral to the trustworthiness of a platform.

The two most important properties abstracted from the brief discussion outlined

above are firstly, that atomicity of extensions is ensured, and secondly, that updates

are noncommutative.

Storage: Storage, as defined by the TCG, refers to two distinct concepts. The

first, which we just covered, refers to the intermediate step between measurement

and reporting. The second, which we will discuss in the next section, refers to the

protection of keys and data within a TPM. The responsibility for the protection of

said keys and other sensitive data within a TPM falls under the oversight of the

RTS. In this regard, the RTS maintains a small area of volatile memory used for

performing cryptographic operations and storing data.

2.4.4 TPM Keys and Key Usage

A TPM can potentially generate an unlimited number of asymmetric key-pairs. All

keys generated by the TPM (with one exception) are arranged in a hierarchy with

the SRK at its root (see Figure 2.3). Every node (TPM Key) in the tree has an

assigned attribute designation as well as a defined key type. Attribute designations,

in the context of a TPM Key, help to define key mobility. A key can be designated
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Figure 2.3: TPM Key Tree Hierarchy

as migratable, certified-migratable (see Section 2.4.4.1) or non-migratable. Private

keys with either of first two designations are capable of moving from one TPM to

another, whilst non-migratable private keys are inextricably bound to a single TPM

instance. Only TPM-Keys that have the migratable bit set in their TPM Key Flags

data structure are allowed to migrate from a TPM [150]. Key types are used to

define which operations a TPM Key is capable of performing. For example, a key

could be of signing type or storage type, depending on the designation of its usage.

To add a new key to the hierarchy it must be “wrapped” (encrypted) using an

existing storage key in the hierarchy, creating a key “blob”. These blobs are opaque

outside of the TPM and may be bound to the platform on which the TPM resides

(depending on the attribute designation of the storage wrapping key). If the key is

designated non-migratable then blobs may only be decrypted on the platform that

created them, as the decryption key will be fixed to a particular TPM. If, however,

both the wrapping key and the new key are migratable, then both blob and wrapping
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key can be transferred to a different platform.

Within a TPM there are two types of key pair that hold special significance.

These are the Endorsement Key pair (EK) and the Attestation Identity Key pairs

(AIK). Within a TCG-conformant platform, AIK key pairs act as aliases for the

EK key pair and are responsible for attesting to platform states (see Section 2.4.5).

AIK key pairs are used because an EK key pair is unique per TPM instance and its

use is considered a possible risk to user privacy should the EK public key become

connected with personally identifiable information. As there is no prescribed limit

on the number of AIK key pairs that can be used within a platform, this provides

an anonymity mechanism, whereby a TPM can, for example, use different AIK key

pairs each time it attests to platform integrity metrics.

2.4.4.1 Certified Migration

Certified Migration is a new concept introduced in the latest TPM specifications

[153]. Certified Migration is an operation that permits the secure transfer of Certi-

fied Migratable Keys (CMKs) from one TCG-compliant platform to another. This

transfer occurs in such a manner as to allow the new platform full usage of the

migrated key. The notion of a migratable key can be subdivided into two categories,

a Migratable Key (MK) and a CMK. MKs are keys that, while not bound to a spe-

cific TPM, can be transferred to another TPM if appropriate local authorisation is

provided. CMKs are similar, insofar as they also require appropriate authorisation

in order to migrate. However, their migration is conditional on receiving permission

from a relevant external third party called a Migration Selection Authority (MSA)

or Migration Authority (MA). An MSA is a third party responsible for approving

the migration of a CMK to a specified destination (but does not directly handle

the key itself). An MA performs a similar function to that of an MSA; however,
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an MA will act as a temporary storage area for a CMK while the CMK transits to

its ultimate destination. Without this approval, the TPM will refuse to release the

private CMK for migration.

2.4.4.2 Binding and Sealing

Protected storage functionality uses asymmetric encryption to protect the confiden-

tiality of data on a TPM host platform. Protected storage also provides implicit

integrity protection for TPM objects. Both data and keys can be associated with a

string of 20 bytes of authorisation data before being encrypted. When decryption is

requested, the authorisation data must be submitted to the TPM. The submitted

authorisation data is then compared to the authorisation data associated with the

object, and the object will only be released if the values match.

The notions of binding and sealing are of fundamental importance to Trusted

Computing. Binding refers to the encryption of data with a public key for which

the corresponding private key is non-migratable from the recipient’s TPM. In this

way, only the TPM that manages the non-migratable private key will be capable

of decrypting the message. Sealing takes binding one step further. Sealing is the

process by which sensitive data can be associated with a set of integrity metrics

representing a particular platform configuration, and encrypted. The protected data

will only be decrypted and released for use by a TPM when the current state of the

platform matches the integrity metrics to which the data is sealed.

Using sealed storage, an end-user can protect their private data by making reve-

lation of that data contingent on a platform being in a particular state. For example,

a user can seal credit card data to a state that requires a particular banking appli-

cation to be running on the platform, and nothing more. The presence of additional

memory-resident applications would change the platform state and prevent a sealed
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object from being decrypted.

Depending on how one constructs the key used for binding, binding can replicate

the TPM’s sealing mechanism. When generating a new non-migratable private key,

if we specify a set of platform metrics (as represented by PCR values) that must be

present before the private key can be used, any object encrypted with the public

binding key will be bound to the state specified at key creation. The only difference

between this approach and sealing is that it is a key that is bound to a platform

state, whereas with sealing it can be any data object.

2.4.5 Reporting and Attestation

The final root of trust within a Trusted Platform is the Root of Trust for Reporting

(RTR). Its function is to faithfully recount information held by the RTS to third

parties. The mechanism through which this is achieved is referred to as “binary

attestation”. For the remainder of this thesis, we refer to this as simply attestation.

Attestation within the context of Trusted Computing is the mechanism whereby

a TPM-enabled platform adduces certain state characteristics that govern a plat-

form’s trustworthiness. This evidence is consumed by integrity verifiers that use this

evidence, in conjunction with the perceived trustworthiness of the entity perform-

ing the attestation, to establish a trust level in the attesting platform. The TCG

attestation protocol is illustrated in Figure 2.4 and outlined below.

1. An external entity requests one or more PCR values.

2. A platform agent culls the SML for the events responsible for generating the

requested PCR values.

3. The TPM attests (signs) the requested registers using an AIK private key by
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Challenger Platform Agent TPM Repository

1. RequestPlatformConfiguration( )

2. GetEventLog( )

3. GetSignedPCR( )

4. SignPCRValue( )SignedPCR( )

5. GetPlatFormCredentials( )

PlatformCredentials( )

PlatformConfiguration( )

6. ValidatePlatformConfiguration( )

Figure 2.4: TCG Attestation Protocol [151]

calling the TPM Quote command. [154].

4. The agent then obtains credentials that vouch for the TPM (see Section 2.4.6).

These credentials, along with the relevant portion of the SML and the re-

quested signed PCR values, are returned to the requesting entity. We will

discuss TCG credentials in greater detail in Section 2.4.6.

5. The requesting entity then examines the credentials, checks signatures and

compares a hash of the received SML entries to the attested PCR values. If

they match the verifier can gain some assurances as to the state of the attestor’s

platform at the time the attestation was made.

However, in order for the values being attested to by a platform to have meaning

outside of the confines of a challenger’s platform, it is necessary for the challenger’s

platform to first obtain a credential for the AIK key pair (strictly the public com-

ponent of this key pair) from a trusted third party recognised by the verifier. How

this credential is obtained differs between version 1.1b and version 1.2 of the TCG

specifications. Version 1.1b uses what is referred to as the Privacy CA model whilst
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version 1.2 introduced an (optional) new model, Direct Anonymous Attestation

(DAA), whilst also retaining the Privacy CA model.

2.4.5.1 Privacy CA

The Privacy CA approach is employed as a means of issuing AIK credentials (see Sec-

tion 2.4.6) to TPM-enabled platforms. These credentials are in turn used to vouch

for the trustworthiness of an attestation originating from a platform. Credential

acquisition is achieved as follows:

1. A requesting TPM-enabled platform first generates an AIK key pair and gath-

ers all the necessary information for a Privacy CA to examine the platform.

This information includes the public component of the newly generated AIK

key, as well as various credentials that vouch for the trustworthiness of the

TPM-enabled platform (see Section 2.4.6). Once collected, these are sent to

the Privacy CA.

2. Provided the credentials presented by a user’s platform can be validated by a

Privacy CA, the Privacy CA will generate an X.509 certificate called an AIK

credential. A Privacy CA will encrypt the newly created AIK credential with

a symmetric key, which in turn is encrypted with the public component of the

EK of the requesting platform and returned to the requesting platform.

3. Only the specific requesting platform is capable of “activating” (decrypting)

the new AIK credential using its EK private component. Once decrypted, this

then allows the AIK private component to be used to generate third-party

verifiable signatures over platform integrity metrics (assuming the third-party

trusts the Privacy CA which generated this AIK credential).
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Significant concerns were raised over the level of “privacy” afforded by this solu-

tion [126]. In this model, the Privacy CA is capable of linking individual AIK public

keys to a particular TPM. This is because in order to obtain an AIK credential it

is necessary for a TPM to disclose its AIK-EK binding. Another potentially major

issue with the Privacy-CA model remains the distinct lack of a business case for

setting up and running such a CA.

2.4.5.2 Direct Anonymous Attestation

By contrast to the Privacy CA model, in the DAA approach the issuing authority

should not be able to link multiple AIK credentials with a single platform identity.

The DAA approach differs from the Privacy CA model in that it does not disclose

AIK keys to an issuer, and hence aims to limit the exposure of AIK-EK bindings.

Enrolling a TPM-enabled platform with a DAA issuer occurs when a platform

instigates a run of the DAA join protocol, see Figure 2.5. In this protocol, the

platform obtains a credential from a trusted third party called a DAA Issuer. In

practice, the role of the issuer might be played by the platform manufacturer or by

a third party who wishes to offer services exploiting TPM features.

During the join protocol the platform asks to become a member of the group

of platforms to which credentials have been issued by that issuer. During this pro-

cess, the platform proves that it has knowledge of a specific, TPM-controlled, non-

migratable secret value f , and is authenticated to the issuer via its EK credential

(see Section 2.4.6). If the issuer accepts in this step, then it provides the platform

with a credential in the form of a Camenisch-Lysyanskaya (CL) signature [29] on

the secret value f . It is this credential that will later enable the platform to con-

vince a verifier that it has previously successfully completed the join protocol with

a particular issuer. Note that the issuer does not actually learn f in this process.
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Figure 2.5: Simplified DAA Protocol

In order for a platform to obtain a credential for its secret value f , the plat-

form must reveal a pseudonym NI of the form ζf
I , where ζI is derived from the

issuer’s name and is an element of some suitable group. By maintaining a history of

pseudonyms that it has seen, the issuer can check if credentials have already been

issued to any given TPM. The issuer can also check for rogue platforms at this stage,

by testing if NI = ζf
I corresponds to an f appearing on a blacklist.

Once the join phase is complete, the TPM (with the help of the platform) can use

the DAA-Signing algorithm to prove to any verifier that it has an appropriate issuer

credential (in the form of a CL signature), and at the same time, sign a message m

using the secret value f as a private key. Here, m is typically the public component

of an AIK key pair, but it can also be an arbitrary external 160-bit string [27]. In the

former case, the output of the DAA-Signing algorithm amounts to an attestation

that the TPM is in possession of a valid issuer credential and has a particular

AIK. This gives the verifier a similar assurance concerning that AIK’s linkage to a

particular platform to that gained using the Privacy CA approach described above.

In turn, this allows any PCR value signed by the particular AIK to be checked as
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being genuine by the verifier. Corresponding to the DAA-Signing algorithm is a

DAA-Verify procedure that is executed by the verifier.

In the DAA-Signing protocol, the platform is only identified by a pseudonym. As

in the join phase, this pseudonym is of the form NV = ζf , where now the selection of

ζ determines the anonymity properties of the attestation process. The value of the

base ζ will typically be chosen by the verifier. In this case, if the verifier fixes on a

choice of ζ (deriving ζ from its name, for example), then this will also fix the value of

the pseudonym NV used by a particular platform. This will allow all the transactions

involving a particular TPM to be linked. As the secret value f is non-migratable,

only the TPM that generated that value should be capable of using it. If a value of f

is extracted from the TPM and distributed to other platforms, then the blacklisting

approach used during the join phase can be used to detect rogue platforms, provided

verifiers have access to the list of compromised f values. The value of ζ might also

be selected at random by the platform for each transaction with the verifier — this

would allow the platform’s transactions to become completely unlinkable.

The full cryptographic details of DAA can be found in [27], while the TCG

specification [154] contains implementation details.

2.4.5.3 Problems with Attestation

Given the potential difficulty for a verifier to assess if every operating system and ev-

ery patch has a desired trusted configuration, verifiers may be forced to concentrate

on a limited set of mainstream configurations. In this regard, the current attesta-

tion mechanism proposed by the TCG has been criticised for shifting “some of the

costs of achieving interoperability onto those who have the least incentive to bear

them” [129]. In addition, binary attestation has been noted as having the following

deficiencies [65, 120]:

42



2.4 TPM Specifications

• At present attestation only tells a verifier what version of a particular appli-

cation is running. It says nothing about how an application will behave.

• Due to the current nature of patch management, the application of patches

may potentially result in a large number of distinct configurations for a single

application.

• Revoking a particular version of an application may be difficult, given the

non-commutative nature of patching.

• The challenger in an attestation gains exact information about the software

configuration of a platform.

To combat some of these perceived inadequacies with binary attestation, the

following proposals have been put forward:

Semantic Remote Attestation [65]: In order to separate behaviour-based at-

testation from binary attestation, semantic remote attestation introduces a trusted

Java Virtual Machine (JVM) that is capable of attesting various properties of a

Java application executing within that JVM (without revealing the code identity of

the application). In this approach, software up-to-and-including the JVM must be

measured using the binary attestation mechanism outlined in Section 2.4.5. This

measured JVM can then be used to attest various properties of code running within

it. For example, in the SETI@Home project, a server may wish to test the floating

point behaviour of the system by having the JVM run a test suite of floating point

number programs. The results of this test suite can be attested to by the JVM and

provide assurances of how the system behaves with respect to its handling of such

numbers. Unfortunately, there may be a limit on what semantic remote attestation

can actually attest to using this approach as an attesting host may be unwilling to

run arbitrary code of unknown provenance.
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Property Based Attestation [120]: This approach introduces an additional layer

of indirection into the attestation process. Instead of expecting a verifier to deter-

mine if a particular state is trustworthy or not, a platform state should be certified

(by a trusted third party) as satisfying certain properties. A platform should then

be capable of attesting that its current configuration matches such a property, al-

lowing a verifier to infer whether a platform is trustworthy or not without knowing

which particular software is running. The authors of [120] suggest that this approach

could be realised either through a Trusted Attestation Service (similar to the trusted

JVM approach of semantic remote attestation) or through modifications to the TPM

hardware. Unfortunately, this approach shifts the problems with binary attestation

to an entity other than the verifier. Many of the original problems persist, and, as

with the Privacy CA, there is yet to emerge a clear business case for an entity to

provide such a service. Additionally, exactly what properties can be satisfied using

such an approach remains an open question. For the remainder of this thesis, we

predominantly concentrate on binary attestation as specified by the TCG. Where

indicated we will highlight how these alternative attestation proposals could be used

to improve our solutions.

2.4.5.4 Subject Key Attestation Evidence

The Subject Key Attestation Evidence (SKAE) X.509 extension was proposed as

a means of coping with difficulties in integrating TPM-controlled keys with stan-

dard security protocols [145]. An SKAE X.509 certificate, issued by an SKAE CA,

provides a mechanism to allow a verifier to ascertain that an operation involving a

private key was performed within a TCG-compliant TPM environment. Once is-

sued, an SKAE certificate can be used as an aid to authentication in protocols such

as SSL/TLS [42] or IKEv2 [105, 125].
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Figure 2.6: Simplified SKAE Protocol

The process of obtaining an SKAE certificate occurs as follows (see Figure 2.6):

1. A user instrusts their TPM to generate a new asymmetric key pair, Ki. In

generating this key, the user specifies mobility, usage and authorisation con-

straints for the private portion of Ki.

2. A user’s TPM signs (using the private component of a previously certified

AIK key pair), the public component of Ki to produce a TPM Certify Info

structure.

3. A user applies to an SKAE CA for certification of the public component of Ki

by creating a certificate request package incorporating the TPM Certify Info

structure.

4. If the SKAE CA is satisfied as to the AIK/public key binding, then an X.509

public-key certificate is issued by the SKAE CA to the platform. Here the

certificate not only includes the public portion of Ki which has been cryp-

tographically bound to a TPM, but also includes enough information for the
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relying party to validate this binding.

2.4.6 TCG Credentials

The issue of certification plays an important role in defining what is meant by

a Trusted Platform. In this regard there are five interrelated credentials (X.509

certificates) that adduce the existence of a correctly functioning TPM within a

platform. These credentials and their relationships are shown in Figure 2.7 and

discussed below.

Figure 2.7: TCG Credentials and their Relationships [151]
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• Endorsement credential: This credential vouches that a TPM is gen-

uine and is issued by whomever generated the EK pair, typically the TPM

manufacturer or vendor.

• Conformance credentials: These credentials vouch that the TPM design

conforms with established evaluation guidelines as laid out by the TCG. These

credentials are issued by entities with sufficient credibility to evaluate a TPM,

typically conformance testing facilities.

• Platform credential: This credential provides evidence that a platform

contains a TPM and incorporates references to both the endorsement and

conformance credentials. This is typically generated by a platform vendor.

• AIK credentials: These credentials are issued per AIK key pair and attest

that a particular AIK key pair belongs to a specified TPM, and that the AIK

key pair is tied to valid endorsement, platform and conformance credentials.

These credentials are issued by Privacy CAs.

• Validation credential: This credential provides signed reference measure-

ments (digests of the measured components, such as software, taken during

development when the components are believed to be in a stable condition)

which can be compared against load-time measurements to assure interested

parties that their application is performing as intended. These load-time mea-

surements will be signed by AIK private keys.

2.5 Trusted PC and Trusted Server Specifications

Both the Trusted PC [148] and Trusted Server [146] specifications provide generic

implementation reference documentation for building Trusted Platforms at the client

and server-side respectively.
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The Trusted PC specification deals primarily with instantiating the various ele-

ments involved in transitioning a platform from its pre-boot to its post-boot state.

Within this transition, various usage constraints are defined for TPM components,

such as usage of PCR registers, as well as guidelines for handling option ROMs. The

specification also outlines programmatic interfaces to the BIOS, as well as detailing

how physical presence can be demonstrated on a TPM-enabled platform.

The Server specification details much of the same functionality as the Trusted

PC specification, but introduces a number of new concepts that are of special in-

terest in server architectures. In particular, it highlights the distinctions between

partitions and platforms. The specification defines a partition as “the hardware

and firmware environment, which provides the support for the execution of a single

operating system image within a separated trust environment” [146]. A platform

is later defined as “the complete package of physical hardware and firmware that a

manufacturer produces for a single server product. This may be configured as one

or more partitions” [146]. The issue of dynamic reconfiguration is addressed only

insofar as stating that the measurement of asynchronous events is the responsibility

of the post-boot software environment.

2.6 TNC Specification

The Trusted Network Connect (TNC) specification [152] forms a subclass of the

Infrastructure Work Group (IWG) interoperability specification [147], and deals

predominantly with enabling the enforcement of operator-controlled policies for end-

point security in determining network access.

TNC offers a way of verifying an endpoint’s integrity to ensure that it complies

with a particular predefined policy, for example, ensuring that a certain software
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Figure 2.8: TNC Architecture

state exists on a platform prior to being granted network access, requiring that

firmware or software patch updates be installed.

Attestation (as discussed in Section 2.4.5) forms an important focus of the TNC

specifications. The process of assaying end-point integrity for compliance with policy

occurs in three distinct phases: assessment, isolation and remediation.

The assessment phase primarily involves an Access Requester (AR) wishing to

gain access to a restricted network (see Figure 2.8). In this phase, the Integrity

Measurement Verifier (IMV) on a Policy Decision Point (PDP) examines the in-

tegrity metrics coming from the Integrity Measurement Collector (IMC) on the

AR’s platform and compares them to its network access policies. From this process

of reconciliation the PDP informs a Policy Enforcement Point (PEP) of its decision

regarding the AR’s access request. The PEP is then responsible for enforcing the

PDP’s decision. As an extension to the assessment phase, in the event that the

AR has been authenticated but failed the IMV’s integrity-verification procedure, a

process of isolation may be instigated whereby the PDP passes instructions to the
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PEP which are then passed to the AR directing it to an isolation network. The final

phase, remediation, is where the AR on the isolation network obtains the requisite

integrity-related updates that will allow it to satisfy the PDP’s access policy.

2.7 Operating System and Processor Support

Recently the definition of what constitutes Trusted Computing functionality has

been revised and extended to incorporate the concepts of new OS design(s) and

hardware-enforced isolation. Hardware-enforced software isolation enables the seg-

regation of security-critical software and data so that it cannot be observed and/or

modified in an unauthorised manner by software executing in parallel execution envi-

ronments. Additionally, the presence of isolated execution environments can ensure

that any infection that does occur is contained within the execution environment in

which the infection happens.

A Trusted OS design will natively support TPM access as well as providing

sandboxed execution environments in which applications can run. In this respect,

processor and chipset extensions will provide the hardware support for the creation

of these protected environments and act as a basis for enforcing application level

sandboxing within main memory.

Isolation technologies have evolved from OS-hosted Virtual Machine Monitors

(VMMs) [161] through stand-alone VMMs [57] to para-virtualisation techniques [24].

More recent developments in isolation technology, such as Microsoft’s NGSCB OS

[102, 103] and the PERSEUS framework [104] running with the L4 µ-Kernel2, incor-

porate the concept of an isolation layer that can take advantage of initiatives in the

domain of processor and chipset extensions described in Intel’s LaGrande [68] and
2http://os.inf.tu-dresden.de/L4/
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AMD’s AMD-V [4] initiatives. This allows a platform to be partitioned into one or

more isolated execution environments, typically implemented as one or more Virtual

Machines (VMs) each of which may be running an individual OS or a virtualised

application.

An isolated execution environment, independent of how it is implemented, should

provide the following services to hosted software [103]:

• No interference: Ensures that a program is free from interference from entities

outside its execution space.

• Trusted path: Ensures the presence of a trusted path between a program and

an input device.

• Secure inter-process communication: Enables one program to communicate

with another, without compromising the confidentiality and integrity of its

own memory locations.

• Non-observation: Ensures that an executing process and the memory locations

it is working upon are free from observation by other processes.
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2.8 Summary

In this chapter, we have given an introduction to the basic concepts of Trusted

Computing. We discussed the components of Trusted Platforms and provided an

overview of the TCG specification set. For the interested reader, introductory texts

on Trusted Computing can be found in [88, 100].
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Card Payments
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In this chapter we examine the payment model used for card-based transactions

both at the Point of Sale (PoS) and for Card Not Present (CNP) transactions. We

look at a number of threats intrinsic to CNP transaction processing and examine

a number of protocols used to secure CNP transactions. Furthermore we examine

the extent to which these protocols address the identified threats. We conclude this

chapter with an overview of the Europay-Visa-Mastercard (EMV) standards for use

in PoS environments. This chapter acts as a primer for the remainder of Part I.
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3.1 Introduction

In many parts of the world, the use of magnetic stripe cards for Point Of Sale (PoS)

transactions is slowly being phased out in favour of Integrated Circuit Cards (ICCs)

compliant with the Europay-Visa-Mastercard (EMV) specifications [46, 47, 48, 49].

This process is essentially complete in Europe, well under way in the Far East, and

is under active consideration for North America. This major technology change is

motivated by the susceptibility of magnetic stripe cards to cloning, and the projected

fraud losses associated with the continued use of such cards. ICC cards, having

chips that are actively engaged in the transaction authorisation process, are much

less easily cloned. The U.K., which began the transition process in 2004, has seen

a 47% post-migration reduction in PoS fraud [9]. However, with this reduction in

PoS fraud has come an accompanying increase in Internet-based Card Not Present1

(CNP) fraud. For example, a recent report by the Association for Payment Clearing

Services (APACS) on card fraud [8] showed that CNP transactions accounted for

41% of all card fraud perpetrated in 2007 in the UK (a 45% increase from the

previous year). This translated into £223.8 million in losses for card issuers and

merchants. Specific figures are harder to come by for other countries, but it is not

unreasonable to suggest that the U.K. experience is illustrative of the global trend.

The level of fraud seen with CNP transactions has raised significant concern

amongst the card processing community. Over the years a number of proposals

have been put forward to address this problem. The most noteworthy of these are

SET [133] and 3-D Secure [12]. However, neither of these proposals have gained

widespread adoption. Indeed, the vast majority of CNP payments are protected

today just using SSL/TLS to secure data in transit and to provide a limited form

of merchant authentication. Customer authentication is provided through the cus-
1For the remainder of this thesis all references to CNP transactions refer to Internet-based CNP

transactions.

55



Card Payments

tomer’s ability to provide relevant card details such as the Personal Account Num-

ber (PAN) and the corresponding Card Security Code (CSC) over the established

SSL/TLS session.

Thus, from the merchant’s perspective, there is no guarantee that the customer is

actually the legitimate owner of the card corresponding to the details being proffered

in a payment transaction. This problem is exacerbated by the perpetual increase in

“phishing” attacks [131]: through a combination of social engineering and technical

subterfuge, customers may be tricked into revealing their card account details to

an attacker. Once revealed, these card details may be used by criminals to insti-

gate illegitimate transactions. In the past, these attacks have required some active

participation from the user. However, as attacks become more sophisticated, the hu-

man element is becoming removed, with malicious software (malware) residing on a

customer’s platform being used to capture customer account details and manipulate

customer transactions (including possibly instigating new transactions). We use the

term Transaction Generator (TG), introduced in [73], to describe such malware in

the remainder of this thesis.

On the other hand, from the customer’s perspective, there is little, if any, as-

surance that a merchant will endeavour to protect sensitive cardholder data stored

on the merchant’s servers. In a PoS environment, a customer’s suspicion may be

aroused by environmental cues, such as damage to the housing of the payment ter-

minal or the demeanour of the sales assistant. Based on this physical evidence, a

customer may decide not to engage in a transaction. However, in an on-line setting,

the environmental (browser-based) cues that are available are often either poorly

interpreted, or not heeded [41]. In an attempt to instill greater confidence for cus-

tomers, the Payment Card Industry Data Security Standard (PCI-DSS) [97] has

been proposed. This standard details 12 mandatory requirements that merchants
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and third party processors must satisfy. A customer2 then trusts that a (legitimate)

merchant is in compliance with this standard and has adopted best practice pro-

cedures to protect their credit card details. However, PCI-DSS-compliance levels

are still low, and there have been instances of companies passing a PCI-DSS con-

formance audit, only to be later shown to be non-compliant with the standard at

the time of a breach [130]. Recently, concerns over merchants running vulnerable

payment applications have become so great that beginning in January 2008, Visa

began implementing a series of mandates to eliminate the use of non-secure pay-

ment applications from the Visa payment system [159]. Visa will now only accept

payments from merchants using payment applications that adhere to, and have been

validated against, Visa’s Payment Application Best Practices (PABP) [160].

In summary, current CNP transaction processing cannot make use of the robust

security features available from EMV-compliant ICC cards, and simply reverts to

pre-EMV card authentication procedures. This weakness is now being ruthlessly

and increasingly exploited by fraudsters, and closing this attack vector represents a

significant challenge to the payment card industry.

3.2 Card Payment Processing Model

The processing model used for most card payment systems (including EMV) is typi-

cally referred to as the four-corner-model. Within this model, a number of steps are

necessary to complete a given transaction (see Figure 3.1). Prior to a customer being

able to interact with a merchant, it is necessary that they follow some issuer-specific

enrolment procedure in order to obtain a physical payment card. A merchant, like-

wise, can only accept payments from a customer if they have preregistered to accept

payments for that customer’s particular card type with their acquirer. The dashed
2For the remainder of Part I of this thesis we use terms cardholder, client, user and customer

interchangeably.

57



Card Payments

Figure 3.1: Generic model for card processing.

line in Figure 3.1 represents the boundary of the financial network domain. Pay-

ment clearing and processing is typically controlled by the card association. Payment

clearing occurs as follows:

• Step 1: The process begins with a customer (cardholder) signalling their in-

tent to purchase goods by forwarding a payment record to a merchant. The

actual characteristics of a payment record differ depending on the environment

in which the record is generated. For a PoS purchase, a payment record typ-

ically includes the information embossed on the customer’s physical payment

card, in conjunction with certain merchant supplied information (such as the

invoiced amount). In a CNP setting, an additional CSC is included in the

payment record. This CSC (also known by Visa as a CVV2 code) is a 3 or 4

digit number that is typically printed on the back of a physical payment card

and is used as an additional cardholder authenticator (under the assumption

that only the valid cardholder should know this value).

• Steps 2-5: These steps occur immediately after the merchant receives the
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customer’s payment record. In an “on-line” setting a merchant submits the

customer’s transaction details to its acquirer which will either have the trans-

action authorised or rejected based on its interactions with the customer’s card

issuer. After this, the merchant will either confirm payment or inform the cus-

tomer that their transaction has been rejected. In an “off-line” setting (see

Section 3.5) Steps 2-5 may be conducted directly between the card and the

terminal and may be approved/declined based on the pre-set risk management

routines of both.

• Steps 6-9: Based upon the transaction being approved as a result of a success-

ful outcome from Steps 2-5, steps 6-9 represent the account settlement process

through which funds are debited from a customer’s account and credited to

the merchant’s.

A significant feature of on-line card-based payment systems is that a positive

transaction authorisation (Step 5 in Figure 3.1) does not guarantee payment for a

merchant. It is merely an indication that the card account details being proffered

have not (yet) been reported stolen and that the customer has sufficient funds to

cover the transaction amount. Indeed, unless the card has been reported stolen

prior to a transaction, it is difficult for a card issuer, and by extension a merchant,

to ascertain whether a particular transaction is fraudulent or not.

In a CNP environment, the merchant trusts (hopes) that the customer is the

valid account holder for the presented payment record. This trust is largely under-

pinned by the level of indemnity offered by card issuers to their customers in the

case of lost or stolen cards being used in illegitimate transactions. However, the

level of indemnity afforded to merchants is dependent on their adherence to their

acquirer-supplied Merchant Operating Guidelines (MOGs). The MOGs lay out the

procedures that should be followed when processing CNP transactions. An example

of such a procedure might be a requirement to use an Address Verification Service
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(AVS) which compares the billing address, as entered by the customer, to that of

the card issuer’s records. If there is a match, this is seen as an indication that the

customer owns the card being used. In many cases a merchant may be held liable for

chargebacks associated with a transaction if the merchant does not properly perform

cardholder verification. This verification is more difficult to do in a CNP setting, as

the merchant is unable to physically inspect the payment card’s security features or

confirm that the customer is the genuine cardholder via a signature or PIN, as is

the case with attended/unattended PoS transactions.

3.3 Threats to CNP Transactions

This section enumerates the threats faced by the customer, the customer’s issuer,

the merchant and the merchant’s acquirer in a CNP payment system. These threats

can broadly be generalised into the following categories (ordering does not reflect

significance):

• Loss of Confidentiality and Privacy: Cardholders might wish to keep

their personal account details from being disclosed to unknown third parties.

Additionally, cardholders may like to keep multiple instances of personal infor-

mation (in the form of transactions) from becoming personally identifiable in-

formation through transaction profiling. These concerns are manifest for both

data-in-transit between the customer and the merchant and for data-at-rest,

where account details are stored at the merchant and third party processing

facilities. Should customer transaction details be captured, a fraudster will be

capable of impersonating the cardholder and instigate new (fraudulent) CNP

transactions.

Privacy of account information at rest has received a lot of press of late with
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the break-ins at CardSystems Solutions [169] and TJX Incorporated [130]. The

break-in at CardSystems Solutions occurred in spite of CardSystems Solutions

having passed a conformance audit for the PCI-DSS [169]. It was later shown

that CardSystems Solutions were not in compliance with the standard at the

time of the breach. This raises an obvious question: how does one audit to

ensure compliance as an ongoing concern? This type of rolling audit would be

desirable from both a customer and PCI-DSS/PABP standpoint as it would

allow verification prior to processing. We will examine this issue in greater

detail in Chapter 5.

• Lack of Authentication and Authorisation: A customer might wish to

authenticate the merchant’s identity as being the valid identity of the organisa-

tion he is willing to do business with. This is becoming increasingly important

as phishing and/or domain name resolution attacks become more prevalent.

Merchants might also like to authenticate the customer as being the valid

cardholder. If a merchant accepts a fraudulent transaction, it can be held

liable for the value of the fraud as well as potentially having the cost of its

processing rates increased.

Finally, issuing and acquiring banks might wish to be able to authenticate cus-

tomers’ transaction data so as not to authorise illegitimate payments. That is,

they might like to ensure that a valid customer with a valid card instigated and

authorised the payment. An issuer can be liable if it authorises a fraudulent

transaction.

• Lack of Integrity: It is important for all parties that the integrity of the

transactional data being sent (and stored) is protected. No party privy to a

transaction should be able to modify the details of a transaction.

In addition to the integrity of transaction data in transit and at rest, it is

important that the integrity of a customer’s and merchant’s software environ-

ment be protected. Changes to the software environment should be reported
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to interested parties so they can make the most appropriate decision as to

whether to continue with transaction processing or not.

• Lack of Non-repudiation: Non-repudiation is closely allied with customer

authorisation. The merchant might wish to have proof that the customer

agreed to pay a specified amount for his goods or services. In the event of a

dispute, to avoid being held liable and paying the associated chargeback costs,

the merchant would need to submit this evidence to the issuer showing that

the customer did indeed authorise a transaction.

• Phishing & Malware: As we mentioned in Section 3.1, phishing attacks,

which fool a customer into revealing sensitive card account details, are becom-

ing increasingly prominent. However, as attacks targeting customers become

more sophisticated, new attacks are being deployed that directly target vul-

nerabilities in the customer’s platform. These vulnerabilities, once exploited,

allow malicious applications (crimeware) to be surreptitiously installed, leaving

the platform prone to data exposure. In this setting, a transaction generator

residing on a customer’s platform can be used to capture customer account

details and manipulate customer transactions (including possibly instigating

new transactions).

A crimeware attack, or more generally a malware attack, must typically pass

through three stages to fulfil its goal [157]. These are distribution, infection

and execution.

– Distribution: Distribution refers to the means by which malware arrives

at a platform. Traditionally, malware has been heavily reliant on social

engineering as a means of distribution. Here a user is tricked into opening

an e-mail or instant message attachment containing malware, or indeed,

installing malware which has been integrated into an apparently useful

application.
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– Infection: Infection is the process by which malware penetrates a plat-

form. Malware may be ephemeral and leave behind no lasting executable,

as is the case with system reconfiguration attacks, such as DNS poison-

ing used in pharming. Alternatively, malware may persistently reside in

memory or be executed upon loading an infected component. The infec-

tion may target user-space objects, as is the case with malicious browser

help objects and application programs, or kernel objects, as is the case

with malicious device drivers.

In order to disguise an infection, rootkits are sometimes deployed. Basic

rootkits simply replace user-level executables with trojanised versions, for

example, replacing the Linux Process Status (PS) command with a ver-

sion that incorrectly reports running processes. However, such attacks are

trivially detectable given current anti-virus technology. Unfortunately,

more recent rootkits such as variants of the FU rootkit [52] or new rootk-

its that exploit hardware-based virtualisation, such as Microsoft’s proof

of concept Subvirt rootkit [80], are becoming adept at circumventing anti-

viral defences. Subvirt attempts to modify a system’s boot sequence so

that the legacy Operating System (OS) is loaded into a virtual machine.

This allows any system-call made by the OS to be observed and modified

by the Subvirt application.

– Execution: It is during this stage that the malicious objectives of the

malware are realised. The malware may attempt to gain unauthorised

access to information, capture user-entered details or steal proprietary

data. For example, the Bankash.G trojan horse attempts to steal user

account details such as user names and passwords and credit card infor-

mation from a compromised computer [141]. This data is collated by the

crimeware and transmitted back to the attacker for processing.

Recent studies that examine the evolution, proliferation and propagation of
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both phishing and crimeware illustrate a marked and steady rise in both the

number and complexity of applications used in the commission of cyber-crime

[7, 142]. Given the (predicted) prevalence of phishing and crimeware targeting

both end-user and their platforms, any proposed solutions for securing CNP

transactions will need to consider both as a serious and viable threat.

3.4 Protocols for Protecting CNP Transactions

The proliferation of Internet-based commerce (and the increasing level of fraud as-

sociated with it) has resulted in a great deal of effort in developing methods for

securing these transactions. In this section we discuss SSL, 3-D Secure and SET

and examine how well they address the threats identified in Section 3.3.

3.4.1 SSL/TLS

SSL/TLS [42] is a protocol suite running on top of the Transmission Control Pro-

tocol (TCP) and provides a reliable, end-to-end secure communications service.

Within this protocol, entities engage in a SSL/TLS Handshake Protocol to establish

keying material and perform authentication. This keying material is then used in

the SSL/TLS Record Layer Protocol for data integrity protection and encryption.

SSL/TLS supports a wide variety of key exchange methods, including both anony-

mous and ephemeral Diffie-Hellman exchanges, supported by digital signatures, as

well as key establishment based on RSA public key encryption. Both unilateral

(server to client) and mutual authentication are supported.

SSL/TLS has become the de facto standard for the secure transmission of CNP

transaction information such as PAN, CSC and relevant billing information. How-
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ever, this use of SSL/TLS can be seen as pragmatic use of an existing technology

rather than a systematic approach to securing CNP transactions.

One significant advantage of SSL/TLS, and perhaps the main reason for its

pervasive deployment, is that it does not mandate customer certification. However,

if we examine SSL/TLS under the headings of Section 3.3, we note a number of

deficiencies in using SSL/TLS to secure CNP payments:

• Confidentiality and Privacy

The confidentiality and privacy afforded by SSL/TLS only protects against an

adversary eavesdropping on a transaction between a customer and a merchant.

What occurs outside of an established transfer session is not within the scope

of SSL/TLS’s protection remit.

SSL/TLS provides confidentiality by encrypting and integrity protecting data

with an ephemeral shared key that is established by both the customer and the

merchant during the handshake protocol. Successful attacks targeting either

end-point allow an adversary access to CNP transaction data.

• Authentication, Authorisation and Non-repudiation

Potentially the biggest deficiency in the use of SSL/TLS for CNP payments is

the lack of customer authentication. Although SSL/TLS has a provision for

client authentication using digital signatures supported by digital certificates,

it is seldom, if ever, used due to increased costs and perceived difficulties in

enrolling customers in the required PKI.

Concerning authorisation, since the confidentiality/integrity mechanisms pro-

vided by SSL/TLS are session-specific, it is questionable if a merchant could

definitively prove that the customer authorised a transaction. In fact, since the

record layer protocol session uses symmetric key techniques to protect trans-

action messages, an unscrupulous merchant could fake an entire transaction
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session. In the event of a dispute, an arbitrator would be unable to determine

which party generated the transaction; consequently, non-repudiation services

cannot be obtained from the use of SSL/TLS.

• Integrity

The communication integrity afforded by SSL/TLS only protects against at-

tacks by parties not immediately privy to the current transaction. It says

nothing as to the integrity of the data on either end-point in the connection

or, for that matter, the security controls in place at either the merchant’s or

the customer’s platform.

• Phishing & Malware

Browser-based cues, such as warnings about merchant certificates, or the ab-

sence of a closed padlock indicating an SSL/TLS secured site, are often either

poorly interpreted, or not heeded by customers [41]. This fact is exploited in

phishing scams which rely on customers’ ignorance and inability to distinguish

real sites from fake ones. As a result customers continue to divulge credit card

details to phishing sites in spite of the protections afforded by SSL/TLS.

In addition to phishing sites, SSL/TLS is vulnerable to crimeware target-

ing both customer’s and merchant’s platforms. Crimeware may record CNP

transaction details and/or surreptitiously instigate new transactions without

a customer’s consent [73]. Furthermore, the use of client authentication would

do little to limit this threat. Without a means of securing private keys on

platforms, a TG can simply use a client’s private key to authenticate itself

prior to transaction processing.
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Figure 3.2: SET Message Structure

3.4.2 SET

SET [133] differs from SSL/TLS in that it was designed explicitly as a complete

payment protocol and addresses a number of the deficiencies found in the SSL/TLS-

based approach for facilitating on-line card-based commerce. SET allows every

entity that is party to a transaction to be authenticated by employing a certificate-

based PKI in which all participants are required to enrol. Certificates are exchanged

between transacting peers to enable mutual authentication. In making a purchase

using SET, a purchase order message is constructed by a customer so that only the

merchant can see the Order Information (OI) and only the payment gateway can see

the Payment Information (PI). This is accomplished though what is termed a “dual

signature”, whereby messages intended for the merchant and messages intended for

the payment gateway can be linked without simultaneously having to reveal both. In

the SET protocol, the PI comprises transaction related data as well as a transaction

ID carried in a “digital envelope”, see Figure 3.2. A one time session key is created

for bulk encryption; this protects the PI, the dual signature and a hash of the OI.

This key is then enciphered with the public key of the payment gateway. Only the

gateway can decrypt the envelope and obtain the key to decrypt the enciphered PI.

For a more through treatment of SET see [94, p.100-123].
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With regards to the threats listed in Section 3.3, SET fares rather favourably in

comparison to SSL/TLS.

• Confidentiality and Privacy

Confidentiality is provided through the use of both symmetric and asymmetric

cryptography. A purchase order message is constructed by the customer in

such a way that only the merchant can see the OI and only the payment

gateway can see the PI. This protects data-in-transit between the customer

and the financial network and data-at-rest at the merchant, as the merchant

never gets to see the account details of the customer. However, as is the case

with SSL/TLS, transaction details are still vulnerable on the client platform,

as are client private keys.

• Authentication and Authorisation

SET allows for every entity that is party to the transaction to be authenticated

using digital signatures and public key certificates. In order for a transaction

to be authorised, payment needs to be approved by both the customer and his

bank. The merchant forwards the encrypted PI information to the payment

gateway along with its own authorisation information. This information com-

prises, amongst other things, an authorisation block containing a transaction

ID encrypted with a session key and signed with the merchant’s private key.

This allows the payment gateway to verify both parties by their respective

signatures. Also, the gateway confirms that they are referring to the same

transaction by comparing transaction ID values.

• Integrity

Message integrity in the SET protocol is achieved through the use of digital

signatures. Messages are signed using the private key of the transacting peer.

Signatures are verified using the public key obtained from the signing entity’s

certificate.
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• Non-repudiation

SET allows for non-repudiation of transactions — assuming the transaction

gets authorised by the issuing bank. However, it remains questionable how

much weight can be given to non-repudiable evidence produced during a run

of the SET protocol, given the malware threat.

• Phishing & Malware

In comparison to SSL/TLS, SET fares favourably in terms of its resiliency

to phishing attacks. A faked merchant site is unable to extract customer

account details from a customer-generated PI. However, like SSL/TLS, SET

remains vulnerable to crimeware executing on the customer’s platform. With-

out adequate protection for a customer’s private key, a Transaction Generator

application might be able to surreptitiously generate spurious transactions.

Despite improvements over an SSL/TLS-based approach, SET is no longer being

deployed for use in CNP transactions. A number of theories have been put forward

to explain why SET never became a success. These range from ease of use to the

cost and difficulty of maintaining a stable PKI [64].

3.4.3 3-D Secure

3-D Secure is an optional adjunct to the SSL/TLS-based approach presented in Sec-

tion 3.4.1, and attempts to provide cardholder authorisation for CNP transactions

by requiring customers to authenticate themselves prior to transaction processing.

As all communication in 3-D Secure is reliant on SSL/TLS for its security, we dis-

pense with the analysis of 3-D Secure in terms of the threats presented in Section 3.3.

Instead we provide an overview of how 3-D Secure’s features can mitigate certain

shortcomings identified with SSL/TLS usage in CNP transactions.
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Before a 3-D Secure payment can be processed, a customer must preregister his

account with his card issuer. During the registration procedure a cardholder typi-

cally chooses a secret password that will be used to authorise subsequent CNP trans-

actions3. This authorisation forms an ancillary step in regular merchant checkout

processing where, after receiving a customer’s PAN and CSC, a merchant site con-

structs a Payer Authentication Request (PAReq) message and redirects the customer

to a 3-D Secure Access Control Server (ACS). The customer next authenticates him-

self to this ACS using his username and password, as established in the registration

phase. Based upon the correctness of the supplied username/password combination,

the ACS formulates a Payer Authentication Response (PARes), confirming whether

or not the customer has been authenticated, and signs it. This signed PARes mes-

sage is then passed via the customer’s browser and to the merchant plug-in. The

merchant plug-in then verifies the ACS signature and decides if it wishes to proceed

with the transaction. A validated response can later be used as evidence to show

that the customer authorised a particular payment. If the customer account number

(PAN) is not registered with any ACS, a Visa directory server informs the merchant

plug-in and normal MOTO-based authorisation procedures are attempted. This ap-

proach aims to tackle the fraudulent acquisition of card account details for use in

CNP transactions by providing a delineation between card authentication data and

customer authentication data.

3-D Secure’s real benefit comes in reducing the economies of scale possible with

PoS card skimming attacks. An attacker obtaining a customer’s card details, pos-

sibly by means of a compromised PoS terminal, will no longer be able to complete

a fraudulent CNP purchase using the obtained information, as a PAN/CSC would

no longer be sufficient to authorise a CNP transaction. Unfortunately, in this in-

stance the use of an additional static authenticator may prove only a minor barrier

to obtaining card account details. The use of an external, hardware generated one-
3Recently trials have begun that replace the use of a cardholder selected password with a one-

time-password generated by a hardware token issued to the cardholder [85]
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time-password can significantly help reduce the impact of a phishing attack by only

allowing a single new transaction to be instigated (should the criminal trick the

cardholder into disclosing a password). However, the presence of crimeware on a

customer’s platform or a phishing site that purports to provide a 3-D secure plug-in

capability could potentially dupe cardholders into revealing additional authentica-

tion data.

3.5 EMV

In this section we describe the use of EMV (chip and PIN cards) in PoS transac-

tions. EMV, as described in the current iteration of the specifications [46, 47, 48, 49],

defines the full spectrum of interactions, from the physical to the logical, between

an ICC and an integrated circuit enabled PoS terminal. EMV supports both card-

holder authentication through new Cardholder Verification Methods (CVMs) and

ICC authentication through either Static Data Authentication (SDA), Dynamic

Data Authentication (DDA) or Combined DDA and application cryptogram gen-

eration (CDA). The introduction of new CVMs and SDA/DAA/CDA functionality

aims to reduce credit and debit card fraud through improved authentication and

authorisation mechanisms. Additionally, depending on the results of card and ter-

minal risk management routines, which are designed to protect issuers and acquir-

ers respectively, transactions can be completed either on-line or off-line. An on-line

transaction is one in which the issuer is contacted to approve a transaction whilst

an off-line transaction is one that is completed locally between the card and the

terminal based on a reconciliation of issuer and acquirer risk routines as stored in

the card and terminal respectively.

A readable introduction to the technical content of the EMV specifications can

be found in [110]. This section aims to provide a brief overview of the current EMV
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specifications, particularly in relation to transaction processing and EMV key usage.

The purpose of this section is to act as a primer for Chapter 5 in which we examine

emulating EMV on a Trusted Platform for use with CNP transactions.

3.5.1 Transaction processing

The processing of an EMV transaction begins when the card is inserted into a PoS

terminal and involves a number of distinct stages. The stages, as presented here, do

not follow a linear path. Some of them operate under a “not before but not after”

semantic and some of the steps, where indicated, are optional.

1. Application Selection: The terminal issues a SELECT command [46] to

choose the appropriate EMV application from a multi-application card. The

selection procedure can be either direct or indirect and is based on the same

Application Identifiers (AIDs) being supported by both the terminal and the

ICC.

2. Initiate Application Processing: The terminal commences application

processing by issuing a GET PROCESSING OPTIONS command [48] to the

card. In response to this the card returns the Application File Locator (AFL)

and the Application Interchange Profile (AIP). The AFL provides a “table of

contents”-like structure of the publicly available information provided by the

card application. The AIP indicates the application functions that are sup-

ported by the card such as whether off-line SDA/DDA/CDA are available or

if card holder verification is supported.

3. Read Application Data: A number of READ RECORD commands [48]

are issued by the PoS terminal to the card to read the necessary data for

the transaction to proceed. As part of this step, the terminal makes sure all
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mandatory data elements are present on the card.

4. Processing Restrictions: This is a mandatory step performed by the ter-

minal and does not require any interaction with the ICC. The purpose of this

step is to ascertain the level of compatibility between the application running

on the card and the application running on the terminal [48]. Based on this

comparison, the terminal takes an appropriate action — including possibly

terminating the transaction.

5. Off-line Data Authentication: This is an optional step in which the ter-

minal issues an INTERNAL AUTHENTICATE command [48] to select one of

SDA, DDA or CDA based on terminal and card capabilities.

6. Card holder Verification: This optional step [48] allows the terminal to

potentially verify the authenticity of the cardholder in relation to the card

based on a particular CVM. It is also used by the cardholder as a means to

authorise a particular transaction. CVM methods range from no verification

required to both off-line and on-line PIN verification.

7. Terminal Risk Management and Action Analysis: The purpose of ter-

minal risk management and terminal action analysis is to protect the issuer,

acquirer and payment system from fraud [48]. Based on a variety of mea-

sures, such as floor limits, random transaction selection, or velocity checking,

a transaction may be forced to complete on-line.

Floor limits ensure that if a transaction (including attempted split transac-

tions) exceeds a certain amount, the transaction should be verified on-line.

Random transaction selection uses a biased random selection to ensure that

low value transactions are authorised on-line from time to time. Finally veloc-

ity checking forces an on-line check after a certain number of off-line checks as

determined by an issuer-controlled parameter, the Lower Consecutive Off-line

Limit.
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8. Card Risk Management and Action Analysis: Details of card risk man-

agement are proprietary to card issuers and are outside the scope of the EMV

specification. However, as a result of card action analysis [48] (which is based

on the results of the card risk management routines), an ICC may decide to

complete a transaction by either going on-line, remaining off-line, requesting

a referral or rejecting the transaction outright.

9. On-line Authorisation: During normal transaction processing the terminal

may decide to proceed with an on-line check. This could be as a result of a

number of factors. The terminal may only support on-line transaction pro-

cessing or the store attendant may have found the customer suspicious. It

could also be as a result of the outcome of either of Steps 7 or 8 above. In any

case, a transaction is deemed outside the risk profile for off-line completion and

requires further scrutiny by the customer’s card issuer. An Application Cryp-

togram (AC, see Section 3.5.2.1) is generated by the card and forwarded to the

card issuer which, after examination, determines if the transaction should go

ahead or not. The card issuer returns another AC informing the card whether

or not to proceed with the current transaction.

10. Issuer-to-Card Script Processing: In order to allow card updates in the

field, the card issuer can return scripts via the terminal to the ICC for process-

ing. These scripts are not necessarily relevant to the current transaction and

may be used to update applications during the utilisation phase of the ICC’s

lifecycle, or to transition the card into a blocked or unblocked state.

3.5.1.1 Cardholder Verification

The EMV standard specifies a number of CVMs including: no CVM required;

signature-based CVM, and on-line or off-line PIN verification. In supporting off-

line PIN verification, the ICC maintains a local copy of the cardholder’s PIN and an
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Figure 3.3: EMV - Static Data Authentication.

asymmetric key pair for PIN encryption. Typically, this PIN encryption/decryption

key pair will be the same as the ICC key pair (see Section 3.5.2). A PIN Entry

Device (PED) may use the public portion of this key pair (depending on terminal’s

support for either plain-text or encrypted PIN verification) to encrypt the PIN en-

tered by the customer. The PED forwards the newly encrypted PIN to the ICC

for comparison against the stored PIN of the customer. Based on the outcome of

this comparison (success/fail), the ICC determines if it wishes to proceed with the

transaction or not, based on card action analysis routines.

3.5.2 EMV Key Usage

The number and type of keys in an EMV-compliant ICC depends on whether the

card is SDA or DDA/CDA compliant for off-line authentication. In the case of SDA

only, the ICC maintains the public key of the issuer (in a certificate signed by a card

association CA) as well as a signature of its static application data created using the
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Figure 3.4: EMV - Dynamic Data Authentication.

card issuer’s private key, see Figure 3.3. The terminal, in turn, stores the public key

of the card association CA in order that it can verify the signed static application

data.

DDA is similar except that, in addition to the SDA keys, the ICC has its own

key pair (the ICC key pair), of which the public part is stored in an ICC certificate.

This certificate also contains the card’s static application data and is signed with

the private key of the card issuer, see Figure 3.4. Like SDA, the terminal uses its

embedded CA public key to verify the issuer’s public key certificate. This newly

verified issuer’s public key is then used to verify the ICC certificate.

In DDA, the ICC private key is used to generate a signature over the static ap-

plication data as well as a random number provided by the terminal. This challenge-

response procedure allows the terminal to determine whether the card is genuine or

not as well as to ascertain if the data personalised in the card has been altered since

card personalisation, as per SDA. CDA-enabled cards are similar to DDA cards ex-
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cept that the data over which a signature is generated includes an additional AC

(see Section 3.5.2.1).

3.5.2.1 Application Cryptograms

For SDA/DDA/CDA conformant EMV ICCs, ACs are used to protect transaction

messages generated by the ICC using AC session keys. ACs are generated by the ICC

and card issuers using Message Authentication Codes (MACs) based on a shared

secret. The ICC and its issuer share a long-term MAC master key, the ICC Appli-

cation Cryptogram Master Key, MKAC . An Application Cryptogram Session Key,

SKAC , is derived from this master key using a session key derivation function (as

defined in Annex A1.3 of [47]) that uses a card’s Application Transaction Counter

(ATC) as diversification data. An ATC is a counter that keeps track of the total

number of transactions performed by a card. In this way the key SKAC will be

different for every AC generation.

To avoid the issuer having to store a unique master key for every card the master

key is itself a result of a derivation process. The issuer uses the ICC’s PAN, the PAN

sequence number, as well as its Issuer Master Key (IMK) to dynamically generate

the shared MAC master key, MKAC .

EMV defines a number of different types of transaction messages. Depending on

the reconciliation of card and terminal risk management routines one of the following

will be generated by either the card or the cardholder’s issuer: an Application Au-

thentication Cryptogram (AAC), an Authorisation Request Cryptogram (ARQC),

an Authorisation Response Cryptogram (ARPC), or a Transaction Certificate (TC).

If the transaction is approved, the ICC will generate a TC which will be passed to

the terminal and can be used to claim payment during the clearing process. If a

transaction is declined, the ICC will generate an AAC. In the event that the trans-
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action needs to be approved on-line the ICC generates either an AAC or an ARQC,

which will be forwarded to the issuer. The issuer will then reply with an ARPC

indicating whether the transaction should be approved or declined, in which case a

TC or an AAC will be generated by the ICC.

3.6 Summary

In this chapter we have looked at the general payment model employed for securing

card-based payments. We identified a number of threats to CNP payments and

examined three of the main protocols used to secure CNP transactions. We note

that, given current advances in attack sophistication and given the (predicted) fu-

ture prevalence of crimeware, attackers may circumvent the protections afforded by

SSL/TLS, SET and 3-D Secure by directly targeting customers’ platforms. On the

other hand, we have seen that EMV offers a number of attractive security features

for PoS transactions. However, EMV was not designed for use in CNP transactions

and currently there is no easy way of making its security services amenable to CNP

transactions. We will look at a number of proposals for bringing the benefits of

EMV to CNP transactions in greater detail in Chapter 5.
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Trusted Computing and CNP Trans-
actions
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In this chapter we demonstrate how Trusted Computing technology can be used

to enhance the security of Internet-based Card Not Present (CNP) transactions. We

take a pragmatic approach, focusing here on exploiting features of Trusted Comput-

ing as it is being deployed today. Thus we rely only on the presence of client-side
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Trusted Platform Modules, rather than upon the “idealised” deployment in which

Trusted Computing functionality is fully integrated with OS and CPU. In essence,

our approach uses features of the Public Key Infrastructure (PKI) that is inher-

ent in Trusted Computing to build lightweight client-side enrolment and certifica-

tion processes; public key certificates are then used to underpin authentication for

CNP payments. Using this approach we demonstrate how Trusted Platform Module

(TPM) enabled platforms can integrate with SSL/TLS and 3-D Secure. We discuss

the threats to CNP transactions that remain even with our enhancements in place,

focussing in particular on the threat posed by malware, and how it can be ameliorated.

4.1 Introduction

This chapter examines how Trusted Computing can be used to enhance the security

of existing protocols (SSL and 3-D Secure) in the provision of secure CNP trans-

actions. We operate from the sole assumption that client platforms are equipped

with Trusted Platform Modules (TPMs) having limited but trusted cryptographic

functionality. We use the TPM’s trusted capabilities to build lightweight client-

side enrolment and certification processes. These effectively bind a platform, and

by extension its owner, to a particular card. The resulting public key certificates

and TPM signing capabilities are then used to underpin authentication for CNP

payments.

One of the most salient issues in the development of our approach is the problem

of customer enrolment, during which a customer/card binding is established. We

examine different system architectures and discuss the pros and cons of their associ-

ated enrolment procedures. Another major issue is the increasing threat of malware

(or, more specifically, crimeware) and its ability to create spurious transactions or

modify on-going ones. We also study the malware/crimeware threat, explaining how
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it can be reasonably addressed within our architecture using the secure attention

sequences (physical presence) that are a mandatory part of Trusted Computing (see

Chapter 2).

An oft-cited reason for the failure of SET was its reliance on PKI and client-

side certificates. Our approach would appear to suffer from the same problems.

Given the rise of Internet-based CNP transactions and the associated fraud levels,

we believe that the economic conditions are now far more ripe for the deployment of

solutions based on client-side certification. Moreover, we are able to take advantage

of the TPM certification infrastructure to support Trusted Computing. This PKI

needs only to be augmented with certain CA functionality, provided by a card issuer

in our approach.

We stress here that we do not need to make any further assumptions about the

deployment of Trusted Computing in order for the approach in this chapter to pro-

vide useful security benefits for CNP transactions. In particular, we need not rely on

a full-blown deployment of Trusted Computing in which the TPM is fully integrated

with the host platform’s processor, boot process and trusted Operating System. The

next chapter studies how such a deployment can be exploited to enhance the security

of CNP payments.

This chapter is structured as follows. In Section 4.2, we look at some related

work. In Section 4.3, we examine the issue of customer enrolment with particular

emphasis on the establishment of customer-centric credentials within a TPM-enabled

platform. In Section 4.4, we discuss the issues of client-side certification in the face

of the increasing threat of malware. In Section 4.5, we examine the role TPM-

enabled customer credentials can play in supplying additional security to SSL and

3-D Secure. Finally, we conclude with Section 4.6.
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4.2 Related Work

The idea of using Trusted Computing to enable client-side certification has previ-

ously been discussed in [2, 16, 145] as well as in the as-yet-unpublished Trusted

Computing Group’s TLS extensions for carrying attestations. However, none of this

work takes into consideration the threat posed from malware nor the infrastructural

requirements necessary to support client-side certification. The threat from malware

is examined in greater detail in [53, 58, 72, 73]. There, Virtual Machines (VMs) are

used to constrain the use of malware to an individual VM “compartment”. The

authors of [53, 72, 73] also suggest using visual cues as to the trustworthiness of the

VM with which an end-user interacts.

Other related work includes the use of Trusted Computing as an adjunct to

securing connected card readers for generating digital signatures, presented in [14]

and [135]. However, both approaches suffer from costs associated with the provision

of card readers to end users. Additionally, both proposals assume the presence of

trusted software to interact with the readers.

Recent works that takes a pragmatic approach to Trusted Computing, like we do

in this chapter, includes [84] and [123]. In [84], McCune et al. attempt to address

the problem of user-level malware in the absence of Trusted Computing processor

and chipset support. They propose the use of an external trusted mobile device

to establish an encrypted and authenticated channel between the user and a TPM

host. In [123], Sarmenta et al. implement virtual monotonic counters to prevent

replay attacks on an untrusted machine aided solely by TPM support. They suggest

a number of possible applications of their approach, such as n-time use keys and

n-copy migratable objects.

Finally, the use of additional hardware tokens for securing on-line commerce has
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been proposed in [165]. Here an additional universal serial bus token is deployed

which directly interfaces with a customer’s bank. The token monitors connections

from the customer’s PC and asks the customer for confirmation before committing

to a transaction. This approach is functionally similar to ours, except that we look

to use common cryptographic hardware that is becoming increasingly prevalent on

modern computer systems to achieve our solution.

4.3 Architectures for Customer Enrolment

In this section we will look at the issue of customer enrolment with a view to obtain-

ing certification of a TPM-controlled (non-migratable or certified migratable) key.

We present a number of different system architectures through which enrolment may

occur and discuss the issues of client-side certification in the face of the omnipresent

threat of malware.

4.3.1 Enrolment

This section aims to explore various architectural options for enrolling a platform,

and by extension its owner (cardholder), using a card-issuer-controlled Trusted Com-

puting CA. The goal here is for a cardholder to obtain an X.509 certificate incor-

porating both card account details as well as a cardholder’s public key, with the

corresponding private key being bound to the cardholder’s TPM. This certification

by the card issuer will effectively bind a cardholder’s hardware platform to a partic-

ular card. The cardholder can later demonstrate this binding when authenticating

himself to a merchant during a CNP transaction. Thus the TPM acts as both a

secure storage area for the cardholder’s private key as well as providing a means by

which the use of the private key can be controlled.
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In order for a card issuer to provide an enrolment facility for their customers’

platforms, it will be necessary for the card issuer to provide some form of CA func-

tionality. Given the strictures of the TCG specifications, this functionality can take

the form of a Privacy CA, an SKAE CA or possibly a hybrid of the two. As we

saw in Section 2.4.5, in order for a platform to obtain an X.509 certificate for a

TPM resident key, it is necessary to go through a number of steps. A platform at

the behest of its owner (the cardholder) first makes a request to a Privacy CA to

certify an AIK public key. The corresponding AIK private key is then used to sign

the public key of a non-migratable (or certifiable migratable) TPM key pair. This

signed public key is then sent to an SKAE CA which certifies that the private portion

satisfies certain key type and attribute designation constraints (as evidenced in the

TPM Certify Info structure) before issuing an X.509 certificate for the customer’s

public key.

4.3.2 Deciding on an Architecture

Figure 4.1 shows the general certificate enrolment hierarchy in which customers can

enrol with multiple card issuers, who in turn can enrol with multiple card associa-

tions. The cardholders themselves have no direct dealing with the card association

but instead interact with the enrolment interfaces exposed by their card issuers. In

defining these interfaces there are various design decisions related to a card issuer

providing Privacy/SKAE CA functionality. These can be broken down as follows:

Privacy CA: By acting as a Privacy CA, a card issuer can issue AIK certificates

to its customers’ TPM-enabled platforms. Unfortunately, the usefulness of this

approach is limited by the fact that an AIK private key can only used to sign

integrity metrics and non-migratable/Certified Migratable keys.
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Figure 4.1: Certificate Enrolment Hierarchy

Note that in discussing the use of a Privacy CA here, we are not suggesting that

our approach should actually benefit from the privacy-enhancing features available

from this choice. Rather, we see the card-issuer playing the role of a Privacy CA as

providing a convenient mechanism for achieving client-side authentication within the

limitations of the TCG specifications. Indeed, there is a potential privacy concern

for customers in the disclosure of a platform’s EK public component to a non-

manufacturing entity: since an EK is unique per platform instance, it may act as a

‘super-cookie’ in identifying subsequent platform actions across multiple domains.

SKAE CA: By acting as an SKAE CA, a card issuer can issue X.509 certificates

on non-migratable/Certified Migratable keys to customers’ TPM-enabled platforms.

Once this certificate is received it can be used in future transactions, either during

an SSL handshake (see Section 3.4.1) or in support of a 3-D Secure authentication

(see Section 3.4.3). In providing this service, a customer’s card issuer does not need

to provide Privacy CA functionality. This can be provided by an entity that is in the

best position to do so, typically a TPM manufacturer. However, a card issuer would

need to trust the outcome of the Privacy CA’s AIK credential issuance procedure

that precedes a customer’s SKAE application. This solution can be seen to offer ad-

ditional anonymity to a customer’s platform, as it breaks the link between an EK and
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Figure 4.2: Card Issuer Controlled Privacy/SKAE CA

an AIK by having a Privacy CA (outside of the bank’s domain) handle this mapping.

Hybrid CA: The final option is to have a card issuer act as a dual Privacy/SKAE

CA. This is perhaps the most pragmatic solution for customer enrolment as it avoids

the assumption that Privacy CAs are widely available. It also has the added benefit

of shortening the customer enrolment procedure. Instead of making two separate

CA requests, a customer generates an AIK key pair and a non-migratable/Certified

Migratable key pair and signs the public component of the non-migratable/Certified

Migratable key using his private AIK key. The AIK/SKAE certificate request pack-

age is then bundled and sent to the Hybrid CA, which processes each component

individually before issuing an AIK credential for the AIK public key and an X.509

certificate for the non-migratable/CMK public key.

Figure 4.2 shows the most general case where a Privacy CA and SKAE CA are

distinct entities. Obtaining a X.509 certificate for a TPM-bound non-migratable key

in our system is a result of the following process:

1. The cardholder instructs his TPM to create an AIK key pair, AIKi−pub and

AIKi−priv for the public and private components respectively.

2. The cardholder instructs his TPM to generate a certificate request package for
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his card issuer’s Privacy CA in order to obtain an AIK credential for his newly

generated AIK key, AIKi−pub.

3. The Privacy CA validates the cardholder’s request and issues an AIK Creden-

tial to the cardholder’s TPM.

4. The cardholder’s TPM receives the AIK Credential and the cardholder in-

structs his TPM to activate his AIK, AIKi−priv.

5. The cardholder instructs his TPM to generate a key pair Ki−pub and Ki−priv

with Ki−priv having the following properties: its type should be non-migratable

(or certified migratable), its attribute designation should be signing only, and

the use of the key should always require authorisation1 which the cardholder

now supplies, in the form of a passphrase.

6. The cardholder instructs his TPM to certify (sign) Ki−pub generated in Step 5

using AIKi−priv generated in Step 1. This creates a signed TPM Certify Info

structure [150] describing the security properties Ki−priv from Step 5.

7. The cardholder instructs his TPM to create an SKAE extension. This exten-

sion acts as a receptacle for a TPM Certify Info structure from the preceding

step.

8. The cardholder instructs his platform to create a certificate request package

incorporating the SKAE extension from the previous step. During this process

the cardholder authenticates himself to his card-issuer-controlled SKAE CA.

This authentication would involve demonstrating knowledge of the payment

card’s PAN, CSC, address as well as a secret Personal Identification Number

(PIN) or password2.
1We assume that such authorisation data can be observed by malware. Its inclusion is to mitigate

against the risk of this key later being misused in the event of a platform being stolen.
2We assume a secret PIN or password would be provided to cardholders using an out-of-band

mechanism, similar to that currently used in Internet banking.
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9. If the card issuer SKAE CA is satisfied with the above information, then the

SKAE CA issues an X.509 v.3 certificate containing a customer’s PAN (within

the subject alternative name extension) with an additional SKAE extension

incorporating the Ki−pub of the non-migratable key pair generated in Step

5. The inclusion of the PAN in the certificate provides a mechanism through

which a card can be demonstrably bound to a platform and by extension the

platform’s owner (cardholder). The omission of the CSC from the certificate

removes certain security issues with respect to CNP processing. Without a

CSC/PAN combination, an adversary cannot engage in traditional MOTO-

based payment authorisation. Thus the absence of the CSC from the X.509

certificate significantly reduces the value of the PAN to an adversary. Finally,

including a validity period can further constrain a card’s usage, as is common

in physical deployments.

10. The cardholder’s platform receives the certificate from the cardholder’s issuing

bank.

Whilst it may appear that the burden for a cardholder is significant in the above

protocol, in reality an application such as a card issuer supplied applet that interacts

with a platform’s TCG Software Stack [149] could perform the majority of the

cardholder’s interactions with a TPM. The cardholder would only need to select

and enter an authorisation string at Step 5 and enter a PIN/password at Step 9.

4.4 Client-Side Certification and Malware

The concept of client-side certification, as outlined in Section 4.3.1, works well if

we assume an attack model that centres around external threats. However, as we

have seen in Chapter 3, a model which only considers external threats is no longer
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appropriate in CNP transactions. In order for a cardholder to generate a signa-

ture using the private component of the key referenced in the X.509 certificate,

the cardholder needs to send authorisation data to his TPM to activate his signa-

ture key. It is desirable that we secure the “channel” over which this authorisation

travels. However, Trusted Computing as it exists today cannot secure this channel

from the keyboard to the TPM. Thus, authorisation information may be observed

and replayed by malware, in order to obtain access to the private key and generate

signatures on unauthorised transactions. Moreover, malware would be capable of

modifying subsequent transaction data that is sent to the TPM for signing.

4.4.1 Using Physical Presence

Our proposed mitigation for the malware problem is to use the current TCG re-

quirement for TPM-enabled platforms to be able to demonstrate physical presence

through a secure attention sequence to a TPM. Physical presence as defined by the

TCG is a signal from the platform to the TPM that indicates operator-instigated

hardware manipulation of the platform. Examples of such manipulation would in-

clude “depressing a key on the keyboard or some other such action” [153]. The

combination of customer-provided card account details and evidence of the success-

ful completion of a secure attention sequence can demonstrate that an authorised

customer instigated the transaction. Only a person physically present at a platform

can demonstrate physical presence and only an individual who knows the correct

password for Ki−priv can load the key for use in a transaction. Even if malware were

to surreptitiously observe cardholder authentication data, it would be impossible for

it to generate new clandestine transactions without the presence of a user, as mal-

ware would be incapable of generating a corresponding secure attention sequence.

Thus secure attention sequences can protect against transaction generating malware

of the type discussed in [73].
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As we saw in Section 2.4.1, the demonstration of physical presence on a platform

is typically associated with administrative functions of the TPM. However, physical

presence may also be demonstrated via the TPM SetCapability command and the

TPM GetCapability command [154]. These two commands can be used to set and

retrieve bits in the Deferred Physical Presence Bit Map (DPPBM) that forms part

of a TPM’s TPM STCLEAR DATA structure [150]. We examine this in more detail

next.

In order for a user (or more precisely an untrusted piece of software operating

on a user’s behalf) to produce verifiable evidence of a (physical) commitment to a

transaction, a user needs to issue a series of commands to his TPM. A user opens an

exclusive and logged transport session [153] and calls the TPM SetCapability to clear

a single bit in the DPPBM. This command does not require a demonstration of phys-

ical presence and is used to prevent a bit from a previous transaction being reused by

malicious software. Following this, a user again calls TPM SetCapability, but this

time to set the newly cleared bit in the DPPBM (here the setting of the bit requires

the user to demonstrate physical presence). The user next calls TPM GetCapability

to read the newly set bit indicating that physical presence has been demonstrated.

Finally, a user calls TPM ReleaseTransportSigned to generate a physical presence

certificate. The TPM ReleaseTransportSigned produces a signature (using Ki−priv

for which the user must supply the correct authorisation data) over a data struc-

ture that includes: a hash of the transport session log (consisting of the inputs,

commands, and outputs encountered during the entire transport session) and a

merchant-supplied anti-replay nonce. In our approach, this nonce will be a hash of

the current payment record concatenated with a merchant-supplied random num-

ber. This physical presence certificate, together with the merchant’s nonce, and the

transport session log, can be used to construct a physical presence package which a

third party can verify.
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4.4.2 Migration

Our architecture allows a customer’s private key that is bound to a particular TPM

to migrate in a controlled manner to another TPM-enabled platform. We achieve

this using the TPM’s certifiable migration functionality. Certifiable migration is a

TPM-specified operation [153] that permits the secure transfer of CMKs from one

TPM-enabled platform to another. This transfer occurs in such a manner as to

allow the new platform full usage of the migrated key. The process of migrating a

CMK requires the inclusion of additional infrastructure components, in the form of

either (or both) a Migration Selection Authority (MSA) and a Migration Authority

(MA) (see Section 2.4.4.1).

In our architecture, irrespective of whether an MSA or MA is used, it is important

that the customer’s card issuer is specified as the controlling entity when the key

is created. Without specifying the card issuer as either the MA or MSA, malware

would be capable of migrating the CMK directly to an untrusted platform controlled

by a fraudster.

Since the mechanism used to demonstrate physical presence is independent of

the CMK used to sign this demonstration, once the CMK has been migrated it can

be used as described in Section 4.4 to generate the physical presence package.

4.5 Augmenting Existing Protocols with Trusted Computing

This section examines the integration of client-side certification and the use of phys-

ical payment packages in SSL and 3-D Secure. At the end of this section we analyse

the benefits of our approach in securing CNP transactions.
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Figure 4.3: Augmenting SSL Authentication

4.5.1 SSL Augmentation

SSL augmentation involves the addition of client (customer) authentication as sup-

ported (but seldom used) in standard implementations of SSL. Under the assump-

tion of ubiquitous TPMs and the corresponding infrastructure that will be necessary

to support them, we can use the enrolment mechanism outlined in Section 4.3 to

provide a bootstrapping mechanism for providing client-side SSL certification.

The SSL process described here is identical to that of a standard SSL handshake

in which client (cardholder) certification is requested by the server (merchant), see

Figure 4.3. Here the server requests a certificate by sending a list of certificate

authorities with which it is willing to participate. These requested certificate au-

thorities may take the form of one or more root CAs (each CA run by a card

association) or of one or more subordinate CAs (run by card issuers) depending on

the constraints a merchant’s acquirer wishes to place on the type of payment cards
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it is willing to accept.

If the client is in possession of an X.509 certificate that satisfies the merchant’s

request, then the cardholder’s platform forwards this certificate to the merchant

along with a certificate verify message (see Figure 4.3). This certificate verify mes-

sage provides a proof of possession for the private key, Ki−priv, corresponding to the

public key, Ki−pub, referenced in the client certificate. Here a customer’s TPM is

responsible for performing customer authentication prior to using Ki−priv to gener-

ate the certificate verify message. The process of generating this certificate verify

message requires the authorisation data for Ki−priv (as supplied by the cardholder)

as well as all the handshake messages exchanged thus far. These two parameters are

input to a TPM Sign command [154]. This command checks to see if the provided

authorisation data matches the authorisation data stored with the private compo-

nent of the requested non-migratable key. If they match then the TPM uses Ki−priv

to generate a signature over the provided handshake messages. This signature is

then passed to the merchant server for validation, subsequent to which the SSL

handshake protocol proceeds as normal and the client can send its commitment to

a transaction via the physical presence package. We note, however, that in imple-

menting this modified SSL handshake the SSL session time-out parameter should

be set reasonably high to accommodate processing delays resulting from accessing

the client’s TPM.

4.5.2 3-D Secure Integration

As we reported in Section 3.4.3, there has been some movement recently in bring-

ing unconnected card-readers to market. The idea behind the provision of an ‘un-

connected’ card-reader approach is that the reader (mirroring POS terminal func-

tionality) would be capable of generating a one-time authorisation code, on a per
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Figure 4.4: 3-D Secure Authentication

transaction basis. This could then be fed into a VbV or SecureCode environment in

order to authenticate a customer to their card issuer.

An alternative approach could be to use Trusted Platforms as a means of au-

thorising transactions. In this respect, given the rapid roll-out of TPM enabled

platforms, the integration of Trusted functionality in a 3-D secure environment can

be seen as an organic development in the current deployment of Trusted Platforms.

Enrolment into a 3-D Secure-like environment would occur as laid out in Sec-

tion 4.3. We now outline an approach for a TPM-enhanced 3-D Secure purchase

transaction flow

Initiate Purchase: This stage is representative of a 3-D secure initiation proce-

dure revolving around the merchant plug-in component. In Step 1 of Figure 4.4

the customer forwards his PAN to the merchant. The merchant forwards this PAN

to the Visa Directory Server which provides the address of an appropriate Access

Control Server (ACS), (Steps 2-4 of Figure 4.4). The ACS’s response is then for-
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warded to the merchant (Step 5 of Figure 4.4). The merchant plug-in constructs a

PAReq containing cardholder, merchant, and transaction-specific information and

sends this information to the ACS via the customer’s browser (Step 6 of Figure 4.4 ).

Payment Authentication: This stage is representative of the 3-D secure payment

authentication process. The customer forwards the merchant’s PAReq as well as his

own SKAE X.509 Certificate to its ACS (Step 7 of Figure 4.4). The ACS will then

ask the customer to authenticate himself and commit to the transaction by gener-

ating a physical presence package for this transaction (Step 8 of Figure 4.4). This

approach allows the ACS server to be sure that a valid customer is proffering their

valid account details (as the customer’s PAN forms part of the X.509 certificate) and

the customer has physically performed an act that indicates approval of the transac-

tion. The ACS validates the physical payment package and compares the transaction

details contained in the PAReq to those contained in the physical presence package.

If they refer to the same transaction, the ACS produces a PARes indicating that

the customer has been authenticated and the transaction has been approved (Step 9

of Figure 4.4). This PARes is then forwarded to the merchant (Step 10 of Figure 4.4).

Payment Validation: Payment validation results from an examination, by the

merchant plug-in, of the PARes generated by the ACS server. If the ACS signature

validates correctly, then the merchant server can be assured that the transaction

has been approved by the customer’s issuer. Finally, the merchant forwards the

customer’s payment record to his acquirer (Step 11 of Figure 4.4).
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4.5.3 Security Analysis

The primary advantage of our augmented SSL and 3-D Secure protocols over their

unaugmented counterparts (the security analyses of which can be found in Sections

3.4.1 and 3.4.3 respectively), is that a remote verifier (be they merchant, acquirer

or issuer) can gain (implicit) assurances about the protection levels associated with

a customer’s private key. In this instance, the private key used to authenticate a

customer (and authorise a transaction) is not exportable to applications outside of

a specific TPM-enabled platform.

Integration of Trusted Computing’s physical presence signals with SSL and 3-

D Secure can enhance the security of CNP transactions and address the threat

posed by malware. Unfortunately, with our solution, user education surfaces as a

potential weak link in the security chain. Regrettably, the manner in which physical

presence functionality is presented to an end-user is entirely dependent on how a

manufacturer chooses to implement it. Lack of customer education may be a difficult

obstacle to surmount given the heterogeneity of physical presence implementations

amongst manufacturer devices. Attesting to physical presence may be better suited

to constrained devices such as mobile phones that conform to the upcoming Trusted

Mobile specifications [155]. Here, the range of mechanisms available for this would

be restricted by functional limitations and users would presumably become more

aware of when they are being instructed to attest to physical presence.

A second significant drawback is that the use of secure attention sequences will

not prevent malware from modifying an on-going transaction (as opposed to gen-

erating multiple new transactions). Here we have to rely on the lack of a strong

economic incentive for malware to behave in this way — we can assume that it will

simply not be beneficial for malware to modify individual transactions, since this

would lead to rapid detection for little benefit (from the malware’s perspective).
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Stronger guarantees are unlikely to be available via Trusted Computing until recent

initiatives such as Intel’s LaGrande and AMD’s AMD-V come to fruition (see Section

2.7). These efforts aim to provide additional Trusted Building Blocks in the form of

hardware features, which can be exploited by next generation Operating Systems to

provide strong security properties (such as non-interference, non-observation, and

trusted I/O paths) for executing processes.

4.6 Conclusions

The use of the payment cards as an avenue for e-commerce is increasing at an

unprecedented rate. In the physical world, the introduction of EMV for card-based

payments at point of sale terminals has seen a dramatic reduction in the level of

chargeback-related fraud. This is primarily due to the wide-spread deployment of

tamper-resistant cryptographic hardware, preventing the cloning of cards.

Unfortunately, the benefits seen in the physical deployment of EMV for card

payment transactions cannot be so easily gained in CNP scenarios. In this set-

ting, knowledge of customer account information is all that is required to perform a

transaction. This makes it impossible for a merchant or a customer’s card issuer to

determine if the valid owner of the account details being proffered is the one that

actually instigated the transaction.

This chapter has attempted to address this imbalance by analysing the role

Trusted Computing can play in augmenting two different mechanisms for securing

CNP transaction details. We showed how the integration of Trusted Computing

physical presence signals with SSL and 3-D Secure can enhance the security of CNP

transactions and partially address the threat posed by malware. In doing so, we

we note that solutions based on 3-D Secure are perhaps more amenable to the
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inclusion of physical presence signals since the merchant plug-in does not need to

be modified to support customer-supplied attestations of physical presence. Instead

all the verification logic can be embedded in the issuer’s access control server. With

SSL, much greater heterogeneity of implementations of server logic is possible, since

it is the merchant and not the financial network domain that decides on the actual

implementation. By tying payment authorisations to Trusted Computing hardware,

in the form of a TPM, we provide similar benefits to those obtained with EMV. That

is to say, knowledge of a customer’s account details is no longer sufficient to complete

a transaction; rather, a customer would need to demonstrate possession of a private

key which is physically bound to a piece of hardware under their direct control. This

approach can be easily adapted to other payment protocols such as SET, or indeed

any protocol where it is important that a human presence be determined. However, a

threat remains that a näıve user may be fooled into demonstrating physical presence

by a sophisticated piece of targeted malware.

In the next chapter, as a natural extension of this chapter, we will examine how

the extended security properties made available by potential future deployments of

Trusted Computing technology (in which Trusted Computing functionality is fully

integrated with OS and CPU) can be used to further enhance the security of card

payments.
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In this chapter we show how the functionality associated with EMV-compliant

payment cards can be securely emulated in software on platforms supporting Trusted

Computing technology. We describe a detailed system architecture encompassing
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user enrolment, card deployment (in the form of software), card activation, and sub-

sequent transaction processing. Our proposal is compatible with the existing EMV

transaction processing architecture, and thus integrates fully and naturally with the

already deployed EMV infrastructure. We show that our proposal, which effectively

makes available the full security of PoS transactions for Internet-based CNP trans-

actions, has the potential to significantly reduce the opportunity for fraudulent CNP

transactions.

5.1 Introduction

In this chapter we propose e-EMV, a system that makes use of the full array of

Trusted Computing technologies to securely emulate EMV for CNP transactions. We

describe a system architecture encompassing user enrolment, deployment of software

cards to customer platforms, card activation, and subsequent transaction process-

ing. Our e-EMV proposal uses a combination of application software, a Trusted

Platform Module (TPM) [153], a processor (with chipset extensions) [68] and Op-

erating System (OS) support [121, 102] to securely emulate the functionality of a

standard EMV-compliant card in software. We provide a detailed description, at

the level of individual TPM commands, showing how this emulation is achieved. We

also explain how the security features provided by Trusted Computing are used to

obtain an appropriate level of security for our system.

Our approach of emulating EMV on Trusted Platforms for CNP transactions

provides the following benefits:

1. It is possible to demonstrate e-EMV card ownership and authentication for

CNP transactions as in standard EMV card authentication procedures. Thus

a merchant can ensure that a customer claiming to posses a particular e-EMV
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card is the legitimate owner of that card.

2. A merchant can obtain a payment guarantee through being able to demon-

strate customer authorisation of a transaction.

3. A customer can gain an assurance prior to transaction initiation that a mer-

chant will endeavour to protect sensitive cardholder information. Such a fea-

ture is is absent from EMV’s use at Point of Sale (PoS) terminals, a fact which

is now allegedly being exploited by criminal gangs [156].

4. An executing e-EMV application can mitigate the threat posed by malware

Transaction Generators (TGs), by hosting e-EMV cards in their own isolated

memory partition, free from observation and interference.

5. Our proposal supports EMV cards that are more cryptographically capable

and offers enhanced authentication and transaction authorisation procedures,

compared to the cards and procedures used in current EMV deployments for

PoS transactions. While these enhanced security features (Dynamic Data Au-

thentication (DDA) and Combined DDA and application cryptogram genera-

tion (CDA)) are specified in the EMV standards [47], they are not ubiquitous

on today’s EMV ICCs because of their cost implications; instead, some banks

find it more economical to work with cheaper cards and accept the higher level

of risk implied by the use of Static Data Authentication (SDA) [47]. However,

our proposal, involving only software running on mass-market consumer com-

puting platforms, is not restricted in this way.

6. In e-EMV, modifications and enhancements (resulting from, for example, changes

to the EMV specifications) can be realised through relatively straightforward

software update processes. In contrast, traditional EMV requires complicated

and expensive card upgrades to achieve the same thing. This lends our e-EMV

approach an inherent degree of “future proofing”.
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The motivation for emulating EMV, rather than designing a new protocol from

scratch, comes from real-world, practical constraints. By creating an environment

where EMV transaction flows can be mapped directly to e-EMV transactions we can

avoid any expensive re-engineering of the back-end financial network. Indeed, our

proposal is compatible with the existing EMV transaction processing architecture,

and thus integrates fully and naturally with the already deployed EMV infrastruc-

ture. Additionally, as a consequence of EMV having been developed and deployed

over many years, many of the protocol bugs should already have been ironed out.

Our e-EMV proposal could result in a mutually beneficial arrangement for TPM

manufacturers and card issuers. Indeed, our e-EMV proposal could be a “killer

application” for Trusted Computing in the consumer space, something that seems

to be currently lacking.

Our e-EMV architecture closely follows the generic four corner model presented

in Chapter 3. The only differences in our approach are that the communication

channel between the customer and the merchant is now Internet-based (instead of

being based on physical proximity of card and terminal), and that both card issuers

and acquirers must provide enrolment facilities for their e-EMV clients, separate to

the facilities provided for the physical issuance of an EMV card. For a card issuer

this means providing a mechanism through which customers can establish their e-

EMV cards on their platforms. Similarly, for an acquirer this means providing a

facility whereby a merchant can download an application that can interface with an

customer’s e-EMV application. In doing so, we assume the presence of a Public Key

Infrastructure (PKI), which can be an extension of the one that currently exists

for EMV. In this regard, enrolment facilities should be able to be authenticated

by customers and merchants via public key certificates issued by a particular card

association.
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This chapter is structured as follows. In Section 5.2, we present an overview

of related work. In Section 5.3 we provide a high-level overview of our e-EMV

architecture. Section 5.4 explains in detail the procedures and processes involved

in establishing an e-EMV card within a Trusted Computing enhanced platform.

Following on from this, Section 5.5 highlights how a PoS EMV transaction flow can

be mapped to an e-EMV transaction. Section 5.6 examines how the threats posed to

CNP transactions in Chapter 3 are mitigated by e-EMV. We conclude with Section

5.7.

5.2 Related Work

Herreweghen and Wille [66] present a detailed evaluation of the security require-

ments for card-based Internet payments. These include: payment guarantee for

merchant, mutual authentication between customer and merchant, customer pri-

vacy and anonymity, and transaction authorisation.

The real world roll-out of EMV and the accompanying desire to replicate the

fraud reduction seen with PoS transactions has resulted in a number of proposals

that utilise EMV’s functionality for Internet-based payments [1, 45, 66, 78, 110].

However, these approaches have not seen any real traction in the market place. A

possible explanation for this is these proposals’ underlying assumption that cus-

tomers would make use of card readers connected to their PC platforms. This

assumption engenders an additional cost in the form of distributing card readers to

end-users. Even if the cost issue could be surmounted, these approaches alone offer

only limited security gains. This is due to the lack of a trusted path between the

card-reader and host, as well as a lack of OS support for application isolation. With-

out these, a Transaction Generator could passively observe Personal Identification

Number (PIN) entries, actively modify transaction data and possibly generate new
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transactions, enabling criminals to remotely take control of users’ payment cards.

There has, however, been a recent development in integrating EMV with CNP trans-

actions that aims (albeit indirectly) to address the TG issue. This is the proposed

use of “unconnected” card readers [85] which have been rolled out by a number of

prominent UK banks. Unfortunately, this approach also suffers with respect to the

additional costs associated with distributing card readers to end-users and, once

deployed, cannot be updated to address new threats as they emerge.

The use of Trusted Computing to combat phishing has been proposed in [2] and

[53]. The primary threat considered in [2] is external attack, whereby a credential

needs to be extracted from the client’s platform in order for it to have any value to an

attacker. No consideration is given to the ever-increasing threat posed by malware

TGs. The threat from malware is examined in greater detail in [53, 58, 72, 73]. Here,

much like in our approach, Virtual Machines (VMs) are used to constrain the use

of malware to an individual VM “compartment” (see Section 2.7 for a discussion of

the security properties of a VM). These authors also suggest using visual cues as to

the trustworthiness of the VM with which an end-user interacts, an idea originating

in [14]. Such work is complementary, but orthogonal, to our own: these cues could

be adopted in e-EMV and might help enhance customer protection from TGs.

5.3 An overview of e-EMV

This section presents a high-level overview of our e-EMV proposal. Our overall

aim is to provide functionality akin to that of a standard EMV card by replicating

that functionality through procedures and capabilities natively supported by a host

that is augmented with Trusted Computing. This allows us to provide a secure and

extensible architecture for CNP transactions.
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Figure 5.1: Enrolment Procedure.

Establishing an e-EMV card on a Trusted Computing platform is a two-stage

process consisting of an account activation stage and an application delivery stage.

In describing this architecture we are making the following important assump-

tions: we assume the presence of a PKI extending the one currently in existence

for EMV, we assume that Trusted Computing Platforms are ubiquitous within the

merchant/customer domain, and additionally, that both processor and OS support

are available to all platforms within this domain. Furthermore, we make the under-

lying assumption that a card issuer has already made the decision to extend credit

or debit facilities to a particular customer.

5.3.1 Enrolment

Enrolment in our e-EMV architecture involves a customer formally registering as a

legitimate cardholder, allowing him to obtain an e-EMV card. Much like enrolment

in the traditional EMV architecture, a card issuer within our system is responsible for

enrolling cardholders as well as later authenticating their transactions (and possibly
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the cardholders themselves). Acquirers can be seen as providing similar functionality

to their merchant customers. The stages for establishing an e-EMV card on a TPM-

enabled platform are as follows.

Account Activation: Account activation is the process through which a customer

becomes a member of a card-issuer-controlled group. In this case, group membership

is indicative of a customer activating their account within the system (Figure 5.1,

Step 1a). In the context of Trusted Computing, this means enrolling with a Privacy

CA (see Section 2.4.5) or optionally becoming a member of a card-issuer-controlled

Direct Anonymous Attestation (DAA) group (see Section 2.4.5). This is achieved by

the customer demonstrating the presence of a non-migratable TPM-controlled secret

over which certification is requested, an AIK public key (for which the corresponding

private component is maintained and managed by the TPM) in the case of the

Privacy CA or a secret value f for DAA. Note, as with Chapter 4, in discussing

the use of a Privacy CA and DAA here, we are not suggesting that our approach

should actually benefit from the privacy-enhancing features available from either of

these choices. Rather, we see the card-issuer playing the role of either a Privacy

CA or DAA issuer as providing a convenient mechanism for achieving client-side

authentication within the limitations of the TPM specifications.

At this point, the actual binding between the customer and his platform can

be established through a mechanism of the issuer’s choosing. For example, the

customer might provide information such as a passcode supplied to them in the pre-

enrolment stage (in which the card issuer agreed to extend debit/credit facilities),

communicated using an out-of-band mechanism. In addition to this authentication

information, a platform will send various platform credentials (describing the binding

of the TPM to the platform) as well as evidence of the existence of a non-migratable

TPM-controlled secret. After receiving this information, the card issuer performs

due diligence to satisfy itself as to the relationship between a customer and his
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platform. This is achieved through a reconciliation of the provided authentication

information with an examination of evidence supporting the existence of a TPM-

controlled secret. If the card issuer is satisfied by this evidence, the customer’s

platform will receive certification of their TPM-controlled secret. This certification

will later be used to demonstrate the customer’s membership of a particular card

scheme.

Enrolment for the merchant (Figure 5.1, Step 1b), by contrast, involves satisfying

the requirements for payment processing as laid down by the relevant acquirer’s

Merchant Operator Guidelines (MOGs). During the merchant enrolment procedure,

the merchant’s acquirer also becomes a certificate issuer, again in the context of the

Privacy CA or DAA models.

Secure Application Delivery: The customer downloads a small secure applica-

tion bundle (Figure 5.1, Step 2a) that fulfils the role of an e-EMV card as well

as acting as a guide through the process of creating/installing the requisite TPM

managed keys (Figure 5.1, Step 2b) [47]. This bundle, once installed, will enable

a platform to perform electronic transactions analogous to those carried out by an

EMV card at a PoS terminal. Our fully realised e-EMV application contains all

the keys required to perform CDA authentication. However, unlike an EMV card,

our e-EMV application will need to provide some of the functionality typically seen

in PoS terminals, particularly when it comes to cardholder verification (see Section

5.5).

The merchant will need to download and install a terminal plug-in application,

similar in function to a 3-D Secure merchant plug-in [12], but capable of emulating

certain EMV terminal functionalities. The most important of these will be the

authentication of customer-supplied credentials. Much like terminals in the physical

setting, merchants will require card issuer’s public key certificates in order to verify
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Figure 5.2: Transaction Architecture for e-EMV Payments.

customer transactions. This plug-in should be compliant with Visa’s PABP and

the PCI-DSS standards. We do not discuss the operation of the merchant terminal

plug-in in any greater detail in this chapter as this information is outside the scope

of the EMV specifications and is largely proprietary to individual acquirers.

5.3.2 Transaction Architecture

In order for an e-EMV application (card) to be launched, a Trusted Platform’s

OS sends an instruction sequence to the DRTM to create a new isolated memory

partition. The DRTM launches a VM into this newly created memory area, which

in turn executes our e-EMV application, free from observation by and influence of

TGs. For the details of launching a secure VM, we refer readers to [68]. With the

exception of Step 1 (see Figure 5.2), the basic flow for e-EMV transaction processing

follows EMV’s transaction processing at a PoS terminal. The steps are as follows:

Step 1 represents the browsing phase in which a customer peruses a particular

merchant site. During this step, the customer verifies that the merchant is a mem-

ber of a valid group of merchants, corresponding to a particular Privacy CA/DAA
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issuer (acquirer). Additionally, the customer’s e-EMV application, acting on the

customer’s behalf, may verify that the merchant is in a state that satisfactorily

addresses privacy and confidentially concerns (for example, conformance with the

PCI-DSS or Visa’s PABP) via Trusted Computing’s attestation procedures.

Step 2 represents the typical EMV ICC and terminal interaction, except that the

communication channel between the customer and the merchant is now exclusively

Internet-based.

Step 2a represents the creation of an AC. As part of this step the customer’s

platform generates a signature over its AC (using the certified non-migratable TPM-

controlled secret established during the account activation phase) as well as the

Platform Configuration Register (PCR) values that provide evidence as to the plat-

form’s current state at the time of transaction authorisation. These data items are

communicated over a secure and authenticated channel to the merchant server.

Steps 3 to 7 are executed if the optional decision to go “on-line” has been

exercised. As a result of either terminal or card risk management procedures, the

AC (possibly in conjunction with the information adducing the current platform

state) is forwarded to the customer’s card issuer (Steps 3a–4). After examining the

received data, the card issuer returns an AC of its own (Steps 5–7). This AC informs

both the card and the merchant as to whether the request is to be approved or

declined, in which case the card application will either proceed with the transaction

or reject it. It is important to note that all e-EMV messages exchanged in Steps 2–7

are standard EMV message flows.

Where additional Trusted Computing platform state information has been added

to EMV’s AC messages in our architecture, it is optional for a card issuer to exam-

ine this state information as part of its decision making process. The Tag Length

Value (TLV) encoding mechanism used in EMV makes it easy for a card issuer to
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ignore any extraneous information from a transaction referral request. Significantly,

if the card issuer does decide to take a customer’s platform state into considera-

tion, the customer’s card issuer would not need any Trusted Computing hardware

to examine these characteristics. It would only need to be capable of hashing some

supplied records, comparing them against known good metrics for a particular card

application and verifying a signature (as we shall see in Section 5.4). Indeed, such

functionality could be provided by a third party facility or performed by the mer-

chant plug-in.

5.4 Installing and Instantiating an e-EMV card

This section explains in greater detail the process involved in establishing an e-EMV

card within a Trusted Platform.

5.4.1 Account Activation

In order for a customer’s e-EMV account to be activated, the customer’s Trusted

Platform must become a member of a card issuer controlled group. This process

is mirrored for the merchant server account activation procedure with respect to a

merchant’s acquirer. In both cases, account activation is achieved by successfully

obtaining/generating a credential issued for an AIK public key. This credential could

be in the form of X.509 certificate [70] issued by a Privacy CA or a credential issued

by a DAA Issuer [154].

In either case, the choice of a Privacy CA or DAA Issuer will end with a similar

result: the customer will have their account activated, later allowing them to demon-

strate physical/logical possession of an active card within the system. Through the
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establishment of a customer-centric credential embedded within a platform, the cus-

tomer will be able to attest to the existence of a key capable of replicating EMV’s

SDA/DDA/CDA functionality.

In obtaining this credential, the credential issuer needs to ensure that a request

is coming from a particular customer. This can be achieved, for example, through a

customer demonstrating knowledge of a shared secret created in the pre-enrolment

stage over a secure channel. However, the actual mechanism used is orthogonal to

our discussion.

5.4.1.1 Privacy CA Approach

Here the process involves a customer’s TPM generating an attestation key pair

(SAIK and PAIK for the private/public portions respectively) and having PAIK

incorporated into an ICC Public Key Certificate (in our context an AIK credential).

When creating this key, the customer specifies authorisation data in the form of a

password which will be required every time SAIK is loaded for use. The process

involved in the generation of a new attestation key within a platform maps to the

generation of an AIK key within a TPM, that is, as a result of performing the

TPM MakeIdentity command [154]. The PAIK portion of this AIK, along with

various platform credentials and customer authentication data, are encrypted with

the Privacy CA’s public key and sent to the card-issuer-controlled Privacy CA.

After authenticating the particular customer and satisfying itself that the request

is coming from a genuine TPM, the Privacy CA will issue an AIK certificate (ICC

Public Key Certificate) to the customer’s TPM-enabled platform. This credential

can then be used to provide evidence of card activation within the system. The AIK

certificate could be further enhanced through X.509v3 extensions. For example, it

is possible to add key and policy information to the credential, such as setting a
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private key usage period during which the AIK signing key will be valid.

5.4.1.2 DAA Approach

The DAA enrolment procedure occurs exactly as laid out in [27]. However, here

the role of the DAA Issuer is provided by the card-issuer-controlled issuing host.

After successful completion of the DAA Join command [154], the customer will

instruct his TPM to create a new AIK pair (SAIK and PAIK for the private/public

portions respectively). As part of this key generation process, the customer specifies

a password for SAIK , entry of which will be required every time the key is loaded for

use. The customer then instructs his TPM to sign the PAIK component using his

newly enrolled DAA key to create the ICC Public Key Certificate. This will later

allow the customer to be able to demonstrate that his account has been activated

with respect to a particular card issuer.

Subsequent to a successful completion of either the DAA join procedure or upon

receipt of an AIK certificate from a Privacy CA, the card issuer activates the cus-

tomer’s account within its systems. This enables the soon-to-be-downloaded e-EMV

application to be used in ensuing financial transactions.

5.4.2 Secure Application Delivery

The delivery of the e-EMV application to a customer’s platform involves an inter-

active process between a customer and his card issuer. The delivery of the software

itself necessitates a number of checks to ensure the binding between a customer and

his platform. The software set-up utility requires the inclusion of a unique EMV

ICC AC Master Key per card issuance, and this key cannot be generated by the

platform itself as it is derived from a card issuer Master Key. Instead the ICC AC
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Master Key needs to be injected into the platform as part of the application delivery

process. In addition to the secure delivery of the application, there is an underlying

customer-driven requirement to ensure the authenticity and the “behaviour” of the

application once delivered. The dual concerns of authenticity and behaviour can

typically be addressed using what is termed a validation credential in the Trusted

Computing literature [151]. In this way, load-time metrics can be compared against

known good values to assure customers (and merchants) that their applications will

perform as intended.

The issue of secure delivery of an application using Trusted Computing has

previously been examined in the context of conditional access in mobile systems

[55]. Much like the approach adopted in [55] in which a third party specifies the

state to which a broadcast application must be bound, we require the card issuer

to be able to specify the state on the customer’s platform to which the e-EMV

application will be “sealed”.

Sealed messages in the context of Trusted Computing are messages that are

bound to a set of platform metrics (specified by one or more PCR values) and

that can only be opened when the platform is in a certain state. This is normally

achieved with the TPM Seal [154] or the TPM Sealx command [154]. However, the

TPM Seal and TPM Sealx commands only allow messages to be sealed locally to a

customer’s platform. To overcome this problem, a card issuer can specify a state to

which a private key must be sealed on the customer’s platform. The corresponding

public key can be sent to the card issuer, which can satisfy itself that the private

component of this key is indeed sealed to a specified platform state (by examining

the TPM PCR Info structure associated with the signed public key). The card

issuer can then encrypt the e-EMV application with this public key and send it to

the customer.
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In our proposal, the delivery of an application to a customer’s platform, as well

as the corresponding requirement of securely storing the application upon receipt,

is handled in three stages. In the first stage, the customer generates an asymmetric

key pair, specifying security constraints for the private key. In the second stage, the

customer sends the public key of this key pair to the card issuer. The card issuer will

then encrypt the customer’s e-EMV application with the customer’s public key. In

the third stage, the customer decrypts his e-EMV application (provided the security

constraints specified for the private key are satisfied by the platform). The details

of these stages are as follows.

Stage 1: In the first stage, the customer’s TPM generates either a CMK or a

non-migratable key pair. The set-up phase of this is illustrated in Algorithm 5.1.

Algorithm 5.1 e-EMV Application Download Set-up Phase
1: Issuer → Cust: Sealed State ‖ IssuerCert1 ‖ Guide ‖ SignIssuer(Sealed State ‖ Guide)
2: IC Key := TPM CreateWrapKey(TPM Auth Priv Use Only, digestAtCreation, diges-

tAtRelease)
3: TPM Certify Info := TPM CertifyKey(IC Key)

Notation: Here Issuer is the card issuer and Cust is the customer. SignX(Y) de-

notes a signature with the private key of entity X over data item Y and Xcert1 is the

public key certificate for entity X for which the corresponding private key is used

for signing only. Finally, Guide is a small software applet that guides the customer

through the creation of the necessary TPM keys for secure application delivery.

In step 1, the customer’s card issuer specifies a state to which it would like the

customer to “seal” a private key. This state will typically be a representation of the

MVMM and the minimal VM software components necessary for e-EMV application

virtualisation. In this step the customer also receives the card issuer public key

certificate (from the EMV PKI [47]) and a small signed application that will guide
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the user through the creation of the requisite TPM keys.

In step 2, after having verified the signatures received in step 1, the guide ap-

plication, acting on the customer’s behalf, creates a new asymmetric key pair,

IC Key. The application calls the TPM CreateWrapKey command to generate a

new asymmetric key pair, and asks the customer to enter a password (usageAuth)

which will be required every time the private component of this key pair is loaded

(TPM Auth Priv Use Only). The application captures the current platform state

at the time the key pair is created (digestAtCreation) as well as the future plat-

form state required for private key usage (digestAtRelease). Here digestAtRelease

is specified to be the SealedState provided by the card issuer.

In step 3, the newly generated IC Key is certified by SAIK using the TPM CertifyKey

command [154]. Here the customer’s TPM is effectively producing a signature over

the public component of IC Key using a signature key that the card issuer knows

to be bound to a particular customer’s TPM. The ability to demonstrate use of

the private component of IC Key can provide the same level of assurance as results

from the TPM Seal command. This is because the “digestAtRelease” parameter

is specified during the generation of the private component of the IC Key. In this

case, specifying digestAtRelease is semantically equivalent to sealing. The output

of the TPM CertifyKey command produces a signed TPM Certify Info structure

which includes a TPM PCR INFO structure describing the state to which the pri-

vate component of the IC Key key pair is sealed.

Stage 2: Once the set-up stage is complete, the download of a customer’s e-EMV

card application can proceed as illustrated in Algorithm 5.2:
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Algorithm 5.2 Downloading the e-EMV Application
1: Issuer → Cust: RIssuer ‖ Issuercert2 ‖ [Optional Platform Attestation]
2: Cust → Issuer: EIssuer(TPM Certify Info ‖ PIC Key ‖ Platform Attestation ‖ RIssuer

‖ RCust ‖ SignSIC Key
(Cust ‖ Issuer ‖ RCust ‖ RIssuer))

3: Issuer → Cust: RCust ‖ EPIC Key
(e-EMV application)

Notation: Here Rx is a random number, PIC Key is the public key of the IC key

key pair generated in the set-up stage and SIC Key is the private key of the IC key

key pair generated in the set-up stage. SignSIC Key
(Y) denotes a signature with the

IC Key private key of data item Y, EX(Z) denotes encryption with the public key

of entity X over data item Z, and Xcert2 is a public key certificate issued by entity

X, for which the corresponding private key is used for decryption only.

In step 1, the card issuer sends a challenge, its public key certificate and, optionally,

its own platform state.

In step 2, the customer verifies this platform state (if present) as well as his card

issuer’s public key certificate. The customer returns the TPM Certify Info structure

(generated in the set-up phase) which contains a hash of the public component of

IC Key and a description of the security constraints (of the private component) of

IC Key. In addition to this, it sends the public component of IC Key and signed

platform metrics, responds to the challenge of the card issuer, and sends a challenge

of its own, all encrypted with the public key of the Issuer.

In step 3, the card issuer examines the received data. Provided the storage seman-

tics for the private key (IC Key) match the card issuer’s security policy and the

customer correctly responded to the earlier challenge, then the card issuer sends a

reply to the customer’s challenge and the customer’s e-EMV application encrypted

with the public key of the customer’s IC Key pair.

Stage 3: The final stage of the protocol for secure application delivery is applica-
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Figure 5.3: e-EMV Customer-Merchant Interface

tion retrieval and launch. Providing that the current platform state matches the

requirements for the sealed data (as specified by the card issuer) and the incoming

authorisation data matches the authorisation data set for the private key during

the set-up phase, then the application is unsealed by the TPM. If one or both of

these two conditions is not met then the application will remain sealed until both

conditions can be fulfilled. Following successful delivery of the e-EMV application,

the customer is now able to utilise their card on their TPM-enabled platform.

5.5 e-EMV in Operation

Once our e-EMV application (card) is launched into its own isolated VM by the

platform’s MVMM, transaction processing proceeds as follows.

5.5.1 Customer to Merchant Interaction

Customer-to-merchant interaction in our e-EMV system uses the same transaction

processing used for EMV at PoS terminals. EMV transaction flows can be mapped

directly to e-EMV transactions flows as follows (see Figure 5.3):

Application Selection: Typically, application selection occurs in response to

a terminal-initiated command to select the appropriate EMV application from a
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multi-application card. In this case we assume a single application instance in which

customer/merchant application matching is dependent on finding a suitable set of

validation credentials supported by the platform, or a reported set of one or more

PCR values in the form of a platform attestation, representing a valid application

execution.

Initiate Application Processing: The customer’s application next commences

application processing. In the physical world this would yield a response in which the

card returns its application interchange profile and its application file locator. How-

ever, in the e-EMV setting as the cards are virtualised and free from the constraints

of typical ICC cards, all e-EMV cards would have CDA capabilities. Additionally,

as part of this step the merchant terminal plug-in provides to the e-EMV applica-

tion any terminal-related information pertaining to the business environment at the

point of sale. An example of such information would be terminal capabilities or the

country in which the terminal is operating.

Read Application Data: The steps involved in issuing one or more READ

RECORD commands [48] in our setting is redundant as we assume the application

is executing solely in main memory on a customer’s platform.

Processing Restrictions: This mandatory step is performed by the merchant

and does not require any direct interaction with the customer’s execution environ-

ment. This step is primarily concerned with judging the compatibility of the e-EMV

application with that of the terminal application. This process can be handled in an

e-EMV environment through a process of reconciliation between terminal-supported

applications and customer-supplied validation credentials/platform attestation.

Off-line Data Authentication: The three options for off-line data authentica-

tion available in EMV-compliant cards are SDA, DDA and CDA. These all involve

a PoS terminal issuance of an INTERNAL AUTHENTICATE command [48]. We
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achieve this functionality in our e-EMV application through the platform’s attesta-

tion mechanism. We now discuss how this is achieved for each of the three options.

In doing so, we do not suggest that either SDA or DDA mechanisms be implemented.

However, as CDA builds upon the functionality of SDA and DDA, we present them

independently for ease of exposition.

SDA: SDA is relatively simple process whereby a validation credential (gener-

ated by a card issuer) providing metrics for a correctly functioning e-EMV card

application is compared against load-time PCR metrics reported in an attestation

challenge to a merchant. An outline of this process is as follows (here M is the

merchant and Req is a request for one or more PCR registers):

1: M → Cust : MCert ‖ Req ‖ SM (Req) ‖ Platform Attestation

2: Cust → M : EM (CustCert ‖ PAIK ‖ Platform Attestation)

In step 1, the merchant server requests one or more PCR values corresponding

to the PCRs to which the e-EMV application is bound. In addition to this request

the merchant attests to its own platform metrics for examination by the customer’s

platform. The customer’s platform then examines the attested merchant metrics

and determines whether the merchant adheres to certain desirable policies, such as

the PCI-DSS standards for card processing or Visa’s PABP. If satisfied, a customer’s

platform agent culls its SML for the events responsible for generating the requested

PCR values. The TPM then loads the AIK signing key using customer-provided

authorisation data. The e-EMV application, using the now loaded AIK key, calls

the TPM Quote command [154] to sign the requested PCR registers. This will either

be the AIK for which a certificate was obtained during the e-EMV account activation

stage (as per the Privacy CA model) or an AIK over which a DAA signature has been

generated (as per the DAA model). This information is returned to the merchant

server for verification, as the platform attestation part of message 2. The merchant
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then examines the AIK credential, checks signatures and compares a hash of the

SML entries to the attested PCR values. If they match, then the merchant can be

sure as to the current state of the VM in which the e-EMV application is executing.

In effect, this procedure achieves the same function as SDA does in standard

EMV.

DDA: DDA requires a slight modification to the SDA mechanism as outlined

above. During the operation of SDA’s TPM Quote, in which the PCR registers are

signed, the customer incorporates a merchant-supplied 160-bit random challenge in

the attestation. This challenge takes the place of the operand externalData which

is of type TPM NONCE [150] in the PCR attestation process.

CDA: In the EMV PoS environment, CDA involves computing an ICC private

key signature over the dynamic application data of which an AC (specifically a TC

or an ARQC) and a random challenge (as per DDA) are integral parts. Replicating

this in the e-EMV environment is not substantially more complicated than either

the SDA or DDA approaches. The e-EMV application carries out the AC genera-

tion process. The AC, along with its data output (TC/ARQC) can be integrated

into a PCR register. The actual examinable output, that is the TC or ARCQ, is

then correspondingly appended to the SML and a signature is generated over the

representative PCR values using SAIK . In this way the merchant, upon receipt of

the attestation bundle, can examine the SML for the inclusion of an AC and verify

its correctness through a signature verification.

Cardholder Verification: In the typical PoS EMV operation, this step al-

lows the terminal to verify the authenticity of a cardholder. This authentication

is based on the card and terminal both supporting a particular Card-holder Veri-

fication Method (CVM). In addition to the CVM being used to verify a customer,

some CVMs, particularly PIN authentications, are used as a means of authorising
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transactions. In this instance, the PIN may be either verified “off-line” by sending

the PIN from the PIN entry device to the card for local verification or by encrypting

the PIN and sending it to the card issuer for “on-line” verification.

Through the use of Trusted Computing functionality we can make PIN authenti-

cation and authorisation intrinsic to transactions. This is achieved through the TPM

key authorisation mechanism, whereby certain keys require 20-bytes of authorisation

data to be supplied prior to being loaded. Use of an AIK requires authorisation data

to be securely communicated to a TPM. In our architecture, this authentication data

is communicated over a secure Object-Independent Authorisation Protocol (OIAP)

session [153]. The use of an OIAP session allows authorisation information to be

sent to a TPM without revealing the data on the channel over which it is sent. The

necessary authorisation data is itself specified during the account activation process.

The ability to actually use a key as part of a transaction demonstrates to a mer-

chant that a CVM has occurred successfully. By verifying the state of the platform,

a merchant can be assured that only a valid customer would be capable of using the

AIK private key generated in the account activation stage.

To prevent malware from launching a dictionary attack against key authorisa-

tion data, it is important that the TPM provides some form of resiliency to such

an attack. The current iteration of the TPM specifications [153] details an exam-

ple mechanism where a count of failed authorisation attempts is recorded. If this

count exceeds a threshold, the TPM is locked and remains non-responsive to further

requests for a predetermined time-out period. However, at present, the implementa-

tion of a dictionary attack resistant authorisation mechanism is vendor-specific and

is not always implemented securely [119].
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Terminal Risk Management and Action Analysis: The purpose of termi-

nal risk management and terminal action analysis is to protect the issuer, acquirer

and payment system from fraud. The existing variety of measures used by EMV in

terminal risk management, such as floor limits, random transaction selection and ve-

locity checking can all be replicated in the merchant terminal plug-in in our e-EMV

architecture.

Card Risk Management and Action Analysis: Details of card risk man-

agement are proprietary to card issuers and are outside the scope of the EMV

specification and as such would remain proprietary to individual card issuers within

our e-EMV system.

On-line Authorisation: During EMV transaction processing the merchant

terminal may decide to proceed with an on-line check; this again can be replicated

in our e-EMV environment via standard EMV message exchanges.

Issuer Script Processing: To allow updates to EMV cards in the field, the card

issuer can return scripts via the terminal to the ICC for processing. These scripts

are not necessarily relevant to the current transaction and may be used to update

applications during the utilisation phase of the ICC’s lifecycle, or to transition the

card into a blocked or unblocked state. Updates to e-EMV cards can be performed

in a similar manner. An issuer can send update scripts via the merchant plug-in to

the customer’s e-EMV card. The issuer can then distribute new state measurements

for updated e-EMV cards to merchants via new validation credentials. Merchants

should only allow e-EMV cards whose attestation matches the values contained

in the latest validation credential to perform e-EMV transactions. Card blocking

scripts are a more difficult EMV feature to replicate in an e-EMV setting. It may

be illegal in certain jurisdictions for a card issuer to force an update on a customer’s

platform without gaining customer consent.
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5.5.2 Payment

As we saw in Section 3.5, in EMV, an ICC uses session keys derived from the

ICC Master Key to protect the transaction messages. In our e-EMV architecture,

in conjunction with the information typically sent in the AC message, the e-EMV

application sends the current platform state as signed by its issuer-validated signing

key (SAIK). After examining the AC message as well as the supplied state, the

verifier (a merchant or a card issuer) can make a decision as to whether or not to

proceed with a transaction. In the instance where an AC is an ARQC, as mentioned

in Section 5.3.2, the TLV encoding scheme used in EMV allows the issuer to ignore

extraneous information if they so choose. The card issuer can then respond with an

ARPC indicating whether the transaction should be approved or declined, in which

case a TC or an AAC will be generated by the customer’s platform. The transition to

Internet-based communications in e-EMV requires that ACs be protected in transit

between the customer and merchant. Such protection can be achieved by establishing

a TPM-centric SSL tunnel between customer and merchant, as per Chapter 6 or

[58]. We note, however, that as these messages are already integrity protected using

a shared session key, in certain environments additional confidentiality protection

may not strictly be necessary.

5.5.3 Migration

Enabling the migration of an e-EMV card from one Trusted Platform to another

may be desirable in our architecture. We can achieve such a feature by using the

TPM’s certifiable migration functionality. If the customer creates a CMK during

the application delivery process (see Section 5.4.2), a customer may later migrate

his application bundle to another TPM-enabled platform. However, as neither DAA

secrets nor AIK private keys obtained in the enrolment phase are migratable from a
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TPM, the customer would need to rerun the account activation phase (see Section

5.4.1) in order for their card to be usable on the new platform. In this instance, the

cost of providing additional infrastructural elements to support a trusted migration

service [144] may be somewhat prohibitive for issuers, and it may just be simpler in

practice for the customer to enrol his new platform with his card issuer from scratch.

5.6 Security Analysis

The semantics of trust enforced by Trusted Computing functionality enables both

parties, the merchant and the customer, to obtain certain guarantees that were

hitherto unrealisable in past proposals [133, 12]. Both merchant and server can

be sure as to the integrity of their communicating peer’s platform, i.e. that each

peer will behave in the expected manner (in this case, adhere to, and faithfully

adduce, state characteristics corresponding to legitimate transaction states). It is

important to point out that we do not expect the customer to be able to recognise

or validate software states within our system. This function can be fulfilled by the

application software itself and should be reported to the customer in a way that is

understandable.

We now analyze the effectiveness of our e-EMV architecture as a means of se-

curing electronic payments. This is achieved by examining how well it satisfies the

security requirements of Herreweghen and Wille [66], described in Section 5.2.

Mutual authentication of customer and merchant: In our architecture both

customers and merchants are authenticated via their card issuer/acquirer supplied

credentials, providing a much stronger form of authentication than that currently

employed for CNP payments. As we have seen in Chapter 4, these credentials can

be used to authenticate the establishment of SSL/TLS sessions, thus providing an
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additional layer of protection for the transport of e-EMV transaction messages over

the Internet, if required.

An added benefit of our approach is that it allows the customer to examine a

merchant’s platform state prior to transaction authorisation. This enables the cus-

tomer to satisfy himself that the merchant will behave in a manner that will protect

his sensitive card data. Such a feature is lacking with current PoS transactions, a

fact which is now allegedly being exploited by criminal gangs [156].

Transaction authorisation & payment guarantee for merchant: In our ar-

chitecture, the use of the private transaction authorising key is contingent on a

particular platform state being present on the customer’s platform. Much like PIN

entry at a PoS, the completion of a transaction is conditioned on the input of cor-

rect authorisation data, ensuring the logical presence of the cardholder in the re-

mote transaction. Additionally, as part of the transaction authorisation process,

a customer’s platform must attest to the VM in which the e-EMV application is

executing. Any divergence from intended operating state (due to unwanted memory

resident applications) will be picked up in the attestation, allowing merchant risk

management routines to terminate the transaction.

Assuming a transaction goes ahead, payment guarantee for the merchant is pro-

vided by CDA. CDA provides a signature over an e-EMV card’s Transaction Certifi-

cate, providing the merchant with non-repudiable evidence of payment. Cardholder

non-repudiation is dependent on the degree to which the cardholder’s private signing

key is securely generated and stored in the cardholder’s Trusted Platform.

Customer privacy and anonymity: Customer privacy is somewhat problematic

in any CNP transaction as the customer will typically provide significant amounts

of personally identifiable information, such as name and billing address. Protection

of customer privacy is not provided by EMV, and therefore not provided by our

125



e-EMV: Emulating EMV using Trusted Computing Technologies

e-EMV application.

5.7 Conclusions

The use of the Internet as an avenue for electronic commerce, in the form of CNP

transactions, has grown rapidly in recent years. However, CNP transactions are

currently far from secure. This chapter proposed a new security architecture for

securing CNP transactions. By creating software-based EMV cards running on

Trusted Platforms, our e-EMV proposal replicates many of the features of standard

EMV-compliant cards for use in CNP transactions. Through our account activation

and secure application delivery procedures, we established how cards can be remotely

provisioned within our system. We showed how card ownership can be demonstrated

by the customer through the use of an OIAP session enabling secure PIN entry. We

also showed how EMV transaction messages can be mapped to e-EMV transaction

messages. We demonstrated how EMV keys can be generated and bound to a

particular TPM-enabled platform. Through these various measures, we can achieve

a significant improvement in the level of security afforded to CNP transactions.

Our work raises a number of areas for further research. In this chapter, we have

focused on describing architectural and technical aspects of our e-EMV proposal.

Our future work will examine security and system management issues. A prototyp-

ing activity based on the OpenTC framework1 with SVM [4], L4 µ-Kernel2 and Xen

[24] support is also likely to be useful in terms of revealing unforeseen practical is-

sues, operational problems, and the like. Additionally, as part of future work we also

look to examine the role of physical presence in providing enhanced transaction au-

thorisation (see Chapter 4) within our e-EMV framework. At present, our approach

is reliant on MVMMs and Trusted Computing augmented processors being present
1http://www.opentc.net/
2http://os.inf.tu-dresden.de/L4/
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in commodity platforms. Unfortunately, such support is not widely available today.

A more immediate avenue for adoption would be Trusted Computing enhanced mo-

bile phones [155] which do not require MVMM support. However, at present only

preliminary details of the TCG’s trusted mobile architecture are available [155]. We

believe that Trusted Computing can provide an enhanced level of security compared

to EMV’s deployment at PoS terminals. However, given the perpetual increase in

attacks (both in terms of number and sophistication) targeting end-user systems,

we see an increased role for both terminal and card risk management routines to

control transaction risk in our e-EMV architecture.

Whilst outside of the immediate scope of this chapter, in developing our archi-

tecture we note two weaknesses in the current attestation mechanisms adopted by

the TCG. Firstly, as noted in [65], the current TCG attestation is static, inexpres-

sive and has poor handling of patches and upgrades to system software. Secondly,

the TCG attestation mechanism only concerns itself with load-time measurements of

applications. Recent approaches that attempt to address these issues have been pro-

posed in [65, 120, 134] and [83, 132, 134] respectively. Investigating these proposals

in the context of e-EMV will be of interest. In the absence of more expressive attes-

tations we must rely on the properties of the MVMM to ensure that our executing

e-EMV application cannot be interfered with by outside applications.

We further note the possibility of extending our system by exploiting additional

features of the DAA protocols to support pseudonymous payment cards. In such an

extension, we envisage the information identifying individuals being removed from

the merchants’ view of transactions, with acquirers still being able to obtain the

necessary payment guarantees.
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In this chapter we study the application of Trusted Computing to securing Peer-

to-Peer (P2P) networks. We identify a central challenge in providing many of the

security services within these networks, namely the absence of stable, verifiable peer

identities. We employ the functionalities provided by Trusted Computing technology

to establish a pseudonymous authentication scheme for peers and extend this scheme

to build secure channels between peers for future communications.

6.1 Introduction

The concept of Peer-to-Peer (P2P) networking covers a diverse set of network types,

supporting a wide variety of applications. The common feature shared by almost all

P2P networks is the lack of any centralised control. In this respect, P2P networks

are the antithesis of the traditional client-server model. P2P networks have most

famously become popular in the form of P2P file-sharing, providing a means of

distributing (often copyrighted) material such as music and video. Commercially-

oriented P2P networks are now coming to the fore. Useful introductions to P2P

networking can be found in [87, 95].

Aside from availability, security issues for P2P networks have not yet been

widely addressed. A major conflict arises from the perceived requirement to pro-

vide anonymity for users of P2P networks and an increasing need to provide robust

access control, data integrity, confidentiality and accountability services. These ser-

vices are increasingly important as industry moves towards using P2P technology,

as applications such as Skype1, and P2P e-commerce, emerge [37]. The security

situation for P2P networks is made worse because, by definition, they lack any cen-
1http://www.skype.com/
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tralised authority which can vouch for identities or security parameters. Without

the foundation of stable, verifiable identities, it is difficult to build any of the desired

security services. In particular, pseudospoofing attacks, in which malicious parties

claim multiple identities and disrupt the operation of P2P networks, are difficult to

prevent.

In this chapter, we demonstrate how features of the TPM specification (as de-

scribed in Chapter 2) can be employed to enhance the security of P2P networks.

In particular, we show how the TPM protocols for Direct Anonymous Attestation

(DAA) can be used to enforce the use of stable, platform-dependent pseudonyms

and reduce pseudospoofing in P2P networks. Further, our use of DAA provides

a means of building entity authentication and simple access control mechanisms.

Taking this a step further, we show how runs of the DAA protocol, providing au-

thentication of pseudonyms, can be securely linked to the establishment of secure

channels with known endpoints. Such channels allow the protection of data in tran-

sit in P2P networks. We show how the cryptographic mechanisms we provide can

be integrated with standard SSL and IPSec protocols. An important feature of our

work emerges here: while earlier authors [57, 79, 124] have posited the application

of Trusted Computing in P2P networks, we do not halt at that point. Rather, we

actually describe the specific Trusted Computing mechanisms and commands which

enable us to establish security in P2P networks.

After establishing how the basic security features can be provided by using

Trusted Computing mechanisms, we go on to discuss two distinct approaches to

using these mechanisms to enhance the security of P2P networks. The distinction

arises from the nature of the “root of trust” for DAA in the two versions.

In the first version, the root of trust for DAA is assumed to be provided by a cre-

dential issued in a controlled manner at the time of platform manufacture, by one of
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a small number of platform manufacturers. This model is matched to the widespread

deployment of Trusted Computing technology on end-user platforms and is most in-

teresting when it is exploited to secure traditional P2P networks. In this context,

our research has a quite unusual implication. Trusted Computing is often portrayed

as a technology which has the potential to provide mechanisms to control the spread

of digital content. But in our architecture, it becomes a mechanism that can be used

to enhance the security of, for example, a P2P file-sharing network distributing con-

tent, some of which may be proprietary. The security provided does not prevent a

content owner from purchasing a TPM-enabled platform and joining the network,

but it does prevent casual eavesdropping on network communications, and gives a

degree of anonymity (strictly, pseudonymity) for the users. While it is still possible

for content owners or their agents to flood the network with poor quality or bogus

material through pseudospoofing, the cost of doing so quickly becomes prohibitive

as this would require the use of multiple TCG-compliant platforms in order to claim

multiple identities. As we shall report in Section 6.2, such attacks have been well

documented as a mechanism by which the value of P2P file-sharing networks can

be reduced. In addition, the originators of such material can be pseudonymously

identified and barred from the network, using, for example, a reputation mechanism

founded on the stable pseudonyms assured by the use of TCG mechanisms. Going

further, our DAA-based access control mechanism can be used to add strict controls

on who can access the network. In the limit, completely private P2P networks can

be constructed, with peers restricting access to a closed group of pseudonyms.

The second version of our security architecture is more commercially-oriented.

Here, the root of trust for DAA is a company offering content or information services

to customers who are willing to pay for the service. Now DAA can be used to

register customers, authenticate registered customers, and prevent customers sharing

registrations. The accesses made by a particular customer (or rather platform) to

different service providers are unlinkable because of the properties of DAA. This kind
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of usage of DAA has already been anticipated in [28]. Our work can thus be seen as

filling out the details of this approach by specifying which TPM commands need to

be issued in order to register and authenticate customers. In addition, we present a

P2P twist on this fairly routine application of Trusted Computing. We propose that

registered customers can act as nodes in a P2P network for distributing the content

owned by the service provider. Because of the trust properties of a TPM-enabled

platform, the service provider can allow this to happen without fear of losing control

of its content. At the same time, the service provider can reduce its requirements

for storage and bandwidth, instead relying on peers to do this work. One potential

incentive for peers to become content distributors could be a reduction in access fees;

further possible incentives are discussed in Section 6.5.2. We also discuss mechanisms

by which the service provider can continue to collect revenue from customers who

obtain their content from network nodes rather than the service provider itself.

Note, in discussing the use of a DAA in this chapter, we are not suggesting that

our approaches should actually benefit from the privacy-enhancing features available

from DAA. Rather, we see DAA as providing a convenient mechanism for achieving

client-side identification within the limitations of the TPM specifications.

This chapter is structured as follows. In Section 6.2, we provide a short overview

of P2P networks and discuss a number of security concerns that arise in these net-

works. In Section 6.3, we discuss how DAA can be used to provide stable pseudony-

mous identities in P2P networks. We build upon this work in Section 6.4 and

describe how these identities can be used in the establishment of secure channels

between peers. In Section 6.5, we discuss two approaches to DAA credential is-

suance and examine the impact that these may have on P2P networks. We close

this chapter with Section 6.6, in which we discuss of some of the issues and open

problems raised by our work. We also point to areas which are opened up by our

work and which seem ripe for further exploration.
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6.2 Overview of Security Issues for P2P Networks

There is a multitude of definitions for the concept of P2P networks in the literature.

The one we adopt for the purposes of this chapter is taken from [87]:

A peer-to-peer network is a class of systems and applications that employ

distributed resources to perform a critical function (usually in a decen-

tralised manner).

Resources here could be computational power, data, or network bandwidth, while

critical functions could include data or information sharing, distributed computing,

communications or collaborative working. Within this broad definition of P2P net-

works, one can include systems such as Napster, Gnutella, BitTorrent, Distributed

Hash Table (DHT) based systems, as well as systems less traditionally thought of as

being P2P, such as social networking sites or eBay. While eBay itself is very much

a centralised architecture, the reputation system within eBay exhibits P2P aspects,

with peers contributing to the reputation of other peers.

Despite the initial and still main use for content sharing, P2P networks have

come a long way in a short time and are gradually being adopted in commercial and

corporate applications such as network storage [81], content distribution [109] and

web caching [71]. P2P networks represent something of a paradigm shift from the

traditional client-server model for service provision. The P2P approach can bring

many benefits: scalability, efficiency, fault resilience and, of course, reduced reliance

on central servers. It is through the entities in these networks, called peers, that

resources are replicated and shared.
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6.2.1 Security Issues

Whilst many aspects of P2P networks have been thoroughly researched, security

within these networks still remains a challenge. It is not our intention to exhaustively

review security issues for P2P networks here. Indeed, good overviews of this topic

can be found in [35] and [164]. Rather, we focus on identifying some key security

issues in P2P networks and pointing towards some of the approaches to solving them

that have been identified in the literature.

The security architecture [69] associated with the ISO/ITU Open Systems Inter-

connection (OSI) reference model serves as a useful framework for assessing security

issues in networks. According to [69], a secure system is governed by the set of secu-

rity services it provides, and the mechanisms put in place to cater for these services.

The set of potential security services in [69] is divided into five main classes:

• Confidentiality,

• Integrity,

• Authentication (both data origin and entity authentication),

• Access Control, and

• Non-repudiation.

Additional services not explicitly included in [69] could be added to this list. Ac-

countability is an important service in networks where users are to be charged for

their use of resources. Anonymity in various forms is often cited as being desirable,

especially in the context of P2P networks. Anonymity can refer to obscuring all

identifying information of an individual, or it can refer to making the actions of

a particular individual unlinkable. Availability is sometimes considered separately

from security. Since many malicious attacks on networks are directed at reducing
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availability for legitimate users, we explicitly include it here as a security service.

Any particular network may require a combination of all, some, or even none of

these services.

In traditional client-server systems, users are typically identified with a user ac-

count, and platform or system-specific controls can be applied to these accounts to

provide security mechanisms. Security services such as access control and account-

ability can be implemented in this manner, with the accounts providing a form of

stable identity. Other services such as authentication and non-repudiation clearly

also rely on the establishment and preservation of stable identities. Moreover, if

we want to establish cryptographic keys for confidentiality and integrity of data in

transit, then entity authentication of one or more of the communicating endpoints is

usually necessary for security. Often, entity authentication is enabled using Trusted

Third Parties (TTPs). For example, one might rely on a Public Key Infrastructure

(PKI) and the certificates issued by a Certification Authority, or one might use the

services of a dedicated TTP, as in Kerberos [91]. Thus most (though not all) the

generic security services we might wish to provide are reliant on the provision of

stable identities.

In a P2P environment, there are by definition no centrally-administered accounts

or trusted third parties who can provide assurances as to the identities of entities

in the network. Instead, each peer is typically identified based on a handle or

pseudonym that is selected by the peer for itself. In most P2P networks, there exist

no standard registration procedures for these pseudonyms, and indeed entities can

claim multiple pseudonyms, including those of other entities in the network. The

use of pseudonyms provides a degree of anonymity for peers and eases discovery and

routing of resource queries in P2P networks, but is clearly in conflict with the stable

identities that are needed, as noted above, to provide many other security services.

This problem of providing entity authentication in the face of untrusted networks
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of peers seems to be a central challenge in providing wider security services for P2P

networks. Having identified this challenge, we now go on to make a more detailed

examination of the security issues in P2P networks, and their relationship to the

identity/authentication issue.

6.2.1.1 Authentication and Pseudospoofing

Pseudospoofing, a term coined by Detweiler [40], refers to a peer creating and han-

dling more than one pseudonym at once. Potentially, an attacker might manipulate

tens or even hundreds of pseudonyms to his advantage. An attacker might also make

use of the pseudonym of an existing peer, preferably one with a good reputation.

This type of attack has been named ID stealth in the literature [33], but we prefer

the term pseudotheft. An attacker who engages in pseudospoofing or pseudotheft

in a P2P network may do so in order to manipulate a reputation mechanism in

place in that network. A peer, having gained a bad reputation, can discard the

corresponding pseudonym and re-join the network with a fresh pseudonym. In on-

line auction systems, a peer can use a pseudonym to generate false bids, an attack

known as shilling. In general, a peer can create a number of pseudonyms, build up

the reputation of one or all of the pseudonyms using the others, and then make use

of the now reputable pseudonyms to persuade other peers to trust him. Clearly any

P2P network attempting to rely on a reputation system for building trust in peers

would need to address the problems of pseudospoofing and pseudotheft. It is evident

that pseudotheft can also lead to loss of confidentiality. It has been argued that in

any P2P system without a centralised point of trust, such attacks on identity are

endemic and can never be effectively combatted [43].

Lest these attacks seem theoretical, we note that there are many concrete cases

citing the issue of pseudospoofing as a potential problem. We briefly discuss two
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examples. In the first case, we note the reputation system used in eBay, essentially a

P2P system, has constantly been under pseudospoofing attack. A particularly well-

documented case is that of the philatelic frauds perpetrated by the Saratoga gang

on eBay.2 In the second case, the Recording Industry Association of America (and

their agents) have been accused of setting up bogus identities in order to spread poor

quality music files in certain P2P file sharing networks, notably Kazaa and networks

based on Gnutella and Bittorrent, with the alleged aim of disrupting these networks

to prevent sharing of protected materials.3 These activities amount to attacks on

the authenticity of resources on the networks.

The key aspect to note in the above examples is the relative ease with which

peers can create, use, and abuse identities. In the absence of strong registration

and entity authentication procedures, it becomes hard, if not impossible, to enforce

stable identities or pseudonyms. While the problem is widely recognised, research

directed towards preventing pseudospoofing has been sparse, perhaps reflecting the

truly decentralised nature of P2P networks. For example, the problem is discussed

in [33], but it is simply assumed there that identifiers are tamper-resistant. A statis-

tical, quorum-based approach to building a PKI suitable for supporting P2P security

services, including entity authentication, was proposed in [37]. Another important

contribution to this area is the proposed use of Cryptographically Generated Ad-

dresses (CGA) for IP routing [13]. CGA is a method for binding a public key to an

IPv6 address. Here the public key belonging to some entity is hashed, the output

of which forms the interface identifier for their IPv6 addresses [38]. In this way an

entity can assert ownership of an address by signing messages sent from this address.

Additional work examinging this problem is given by Advogato4 where trust rela-

tionships are modelled as a directed flow graph. Trust between peers is modelled as
2An interesting account of this case, “The Saratoga Fakes”, has been compiled by the Stamp Col-

lectors Against Dodgy Sellers (SCADS) institute, http://www.scads.org/alterations/Saratoga.
htm.

3Content posted on (http://www.mediadefender.com/) specifically refers to this kind of disrup-
tive activity.

4http://www.advogato.org/trust-metric.html
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the presence/absence of an edge in the graph and the amount of weight assigned to

this edge determines how much one peer trusts another. How trustworthy a peer is

in relation to the graph as a whole is calculated as the maximum flow that can be

pushed from a source (trusted) peer to another peer. When a peer joins the graph

it is isolated from other peers and so there is little reason to trust it.

6.2.1.2 Accountability and Reputation Mechanisms

In the P2P context, accountability means the ability to hold peers responsible for

their actions and the resources that they share/consume. This aids in achieving

efficient utilisation of resources, discourages peers from consuming resources whilst

only providing nominal resources in return (a practice known as free-riding), and

gives peers protection against fraud.

Despite these known benefits, it is hard to ensure accountability due to the in-

herently autonomous and transient nature of peers in P2P networks. A peer can

join and leave the network at any time. Network topologies are dynamic and it is

uncommon to have a known history of all peers, nor are there any contractual obli-

gations between peers. Most obviously, anonymity and accountability requirements

are in clear opposition. Moreover, these problems are exacerbated by the lack of

stable identities in P2P networks.

There are various schemes in the literature aimed at addressing the issue of ac-

countability in P2P networks. A common approach is to use some kind of reputation

mechanism to build trust in P2P entities and the resources they hold. The rationale

for this approach is that knowledge that peers will consider each other’s past inter-

actions while pursuing present and future transactions constrains peer behaviour in

the present, thus imposing accountability in the form of non-abuse of resources [114].
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A classic example of such a reputation mechanism is the web-of-trust approach

adopted in PGP [170]. Here, a user can calculate a trust level associated with another

user’s public key, where the calculation depends on a number of factors, including

which other users are prepared to trust that key, and how well they themselves

are known to the relying party. The scalability and applicability of this kind of

approach for large and widely distributed P2P networks has been questioned in [37],

where an alternative approach based on distributed PKI was suggested. Another

interesting approach, based on micropayments, was proposed in [89]: users are made

accountable for their use of resources via micropayments. The micropayment tokens

are generated through work performed by the users. The P2P network Mojo Nation5

uses its own currency called “mojo” to handle micropayments between peers. On

the other hand, Free Haven [89] requires participants to provide storage space for

other peers to use, a form of payment-in-kind for accessing the network.

However, as we have already seen, these reputation mechanisms are open to

manipulation through pseudospoofing and other attacks.

6.2.1.3 Anonymity

Anonymity in a P2P context, in its strongest sense, means that there should be no

mechanisms that link peer identities, aliases, actions or responses within a network.

Anonymity greatly appeals to the P2P user-base because it not only offers them

privacy protection, enabling facilities such as censorship resistance and freedom of

speech, but also the ability to break copyright laws or publish libellous material

without fear of litigation.

Anonymity for P2P networks has been classified into four distinct categories

[89] — author anonymity (which user created which resource), server anonymity
5http://sourceforge.net/projects/mojonation
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(which peers store a particular resource), reader anonymity (which peers access

which resources) and document anonymity (which resources or documents are stored

at a given peer node). As we have already noted, the provision of these forms of

anonymity conflicts with other security goals and hampers the design of strong rep-

utation mechanisms. Moreover, providing complete anonymity usually impacts on

network performance and routing [31, 82]. As examples, the P2P networks Freenet6

and Publius7 have made efforts to provide anonymity. Freenet, in particular, en-

crypts data between its nodes and routes messages through other nodes. In the

process, it is made difficult to determine which node is requesting data and what

the data contents are. Also, peers have to contribute a portion of their disk space to

the network, but peers do not know what is stored in their local data stores. These

techniques are, in general, adapted from existing anonymity techniques such as MIX

networks [30, 113], crowds [112] and onion routing [143].

An absence of anonymity implies a loss of privacy. Therefore present systems

typically employ a middle ground whereby each peer within the network is recognised

by a pseudonym. Here, the actions associated with a particular pseudonym can be

linked, but there is not a strong binding between the pseudonym and an underlying

identity.

6.2.1.4 Access Control

Another security problem faced by peers within a P2P network is access control.

Within a P2P environment, this would mean restricting access to authorised peers,

for example, peers who have paid for the queried resources. This would certainly

be desired by companies managing intellectual property and digital rights, but may

also be of interest in more traditional P2P networks. The (deliberate) absence
6http://freenet.sourceforge.org
7http://cs1.cs.nyu.edu/~waldman/publius/
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of such controls has led to widespread abuse of copyright laws and a consequent

fusillade of litigation against companies making P2P-based software and individuals

operating on P2P file-sharing networks. However, it is certainly not the case that

access control is needed in every P2P network. A careful analysis would be required

to evaluate what impact an access control mechanism would have on peer reputa-

tions. For example, a peer restricting access to queried resources may get a bad

reputation with other peers. Moreover, building robust access control mechanisms

once again depends on authentication: without stable identities, traditional access

controls cannot be implemented.

6.2.1.5 Confidentiality and Integrity

Confidentiality and integrity can be classified broadly as applying to storage (data at

rest) or communications (data in transit). In the context of P2P networks, the former

refers mainly to resources stored at peers, while the latter refers to transactions

that occur between peers, for example, resource queries and replies, distribution of

reputation information, and so on. Attacks on confidentiality and integrity can be

achieved by a variety of means. For example, it may be possible to manipulate the

routing protocols used in a P2P network so that data of interest to an attacking

peer is routed via that peer.

A common method for ensuring integrity of resources in transit and at rest in

P2P networks is to calculate and append Message Authentication Code (MAC)

values or digital signatures to the resources. While an integrity service guarantees

that a resource has not been altered (either in transit or while at rest), it may say

little about the original source of that data. Questions of that nature can be settled

using a data origin authentication service in combination with, for example, a time

stamping service. This is referred to as file authenticity in [35], but we prefer the

142



6.2 Overview of Security Issues for P2P Networks

terminology of [69].

Confidentiality and integrity are not often discussed in the context of P2P secu-

rity. Some research and implementation has already taken place in certain networks,

like Microsoft’s Groove8, but these services are optional there. If one regards PGP

as providing a secure P2P messaging system, then it provides a good example of the

careful implementation of confidentiality and integrity services in a P2P context.

Confidentiality and integrity are clearly fundamental to security, and we believe

they are set to become more important with the emergence of commercial P2P

networks. The requirement to protect valuable resources at rest and in transit is

likely to outweigh the processing and management overheads associated with these

services, and will be a key enabler for P2P e-commerce.

Once again, a barrier to the development and deployment of these security ser-

vices for data in transit in P2P networks is the lack of stable identities. The problem

is not that one cannot implement the services using well established encryption and

MAC mechanisms, but that there is little point in doing so if peers do not know

with whom they are establishing communications. Otherwise a peer may fall victim

to man-in-the-middle attacks or send sensitive data to unintended recipients. Once

again, authentication of peers is a vital precursor to providing security services in

P2P networks.

6.2.2 Summary of Security Issues

Research on P2P security has covered a variety of problems and is summarised above

and elsewhere [35, 164]. We have identified what we believe to be a fundamental issue

which must be addressed if better than trivial security is to be added to P2P net-

works: the lack of stable identities and the inability to provide strong authentication
8http://www.groove.net/home/
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services, which in turn underpin the security of reputation systems, accountability,

access control, confidentiality and integrity services in P2P networks. We have also

seen that full anonymity in P2P networks clashes with other security services. A

reasonable compromise is to work with pseudonyms, shielding the binding between

on-line and “real-world” identities, but to find methods to prevent pseudospoofing

and pseudotheft attacks.

6.3 P2P Pseudonymous Authentication Using Trusted Com-

puting

In this section, we consider how the use of stable pseudonyms can be enforced in

any P2P network in which each peer is TPM-enabled and has acceptable DAA

credentials. In subsequent sections, we will examine how this basic property can be

leveraged to provide security services in P2P networks.

The mechanism for enforcing stable pseudonyms is simple. We assume only that

the P2P network has a particular name, that is, a unique identifier. The pseudonyms

used in our network are strings of the form NP = ζfP , where ζ is derived from the

network name by applying a hash function, and fP is the secret associated with the

TPM located on the peer P claiming the pseudonym.

Whenever a peer claims a particular pseudonym, the peer verifying that claim

can challenge the claimant to supply a DAA signature on, say, a random message

M . Later, we will see how to enable other security services by selecting M to include

additional values. The verifying peer can check, using the DAA-Verify algorithm,

that the claimant has a valid credential supplied by a particular issuer and can

be convinced that the value fP used in forming the claimed pseudonym NP is the

same as the one claimed at the time of credential issuance. The use of a random
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message M prevents replay attacks in which a rogue peer captures and replays

credentials. Through these checks, the pseudonym NP that can be claimed by peer

P is fixed, and is determined as a function of the network name and the particular

fP certified during the joining phase. In summary, we have built an pseudonymous

authentication mechanism from the DAA algorithms. Through this mechanism,

peers can be authenticated by other peers, but platform identities are not revealed

in the process.

To make this a workable method for enforcing stable pseudonyms, we need to

ensure that a particular platform will only ever obtain one credential from one of

a set of authorised issuers that are recognised by the verifying peer. Otherwise,

it may be difficult to prevent a peer obtaining multiple credentials for different f

values, from one or more issuers, and using these to produce multiple pseudonyms.

One mechanism for ensuring that a platform can only ever obtain a single creden-

tial is to assume that an initial credential is issued to the platform in a controlled

fashion at the time of manufacture. The set of authorised issuers is then the set of

platform manufacturers, and the peer software can be configured to insist on seeing

a credential issued by one of these manufacturers. Here, then, the manufacturers

become the root of trust for DAA. This is a likely scenario in the deployment of

Trusted Computing. We explore this situation further in Section 6.5.1. We relax

the assumption about issuance of single credentials in our second model for the use

of DAA in P2P networks, described in Section 6.5.2.

We now examine the extent to which our approach prevents pseudospoofing and

pseudotheft attacks. We note that, if our condition on credential issuance is met,

then a peer cannot claim multiple pseudonyms. Nor can a peer claim the pseudonym

of another peer. Thus these attacks, so destructive in P2P networks, are prevented.

The usual blacklisting mechanisms can be used by peers to detect the use of a rogue

TPM, provided the relevant information can be distributed and kept up-to-date.
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Of course, nothing in our approach prevents an attacker from purchasing multiple

TCG-compliant platforms and using these to create multiple pseudonyms. However,

this kind of attack has an economic cost for the attacker.

It is clear that, by enforcing the use of pseudonyms, a given peer’s actions on the

network become linkable, so our approach does not offer a full level of anonymity.

We have already established that this is necessary if other security services are

required. Moreover, the use of DAA never reveals the platform identity (in the form

of the endorsement key) to verifying parties, so the peer’s actions cannot be linked

to a particular TPM. Notice too that the pseudonym used during the join phase is

different from that revealed during DAA-Signing (because ζI 6= ζ in general). Thus

the pseudonyms do shield the actions of a peer effectively. We also note that the

pseudonyms we propose for use do not relate to particular individuals; rather they

are linked to particular platforms (more precisely, TPMs).

A given peer may wish to operate in more than one P2P network. Because of the

use of the network name in determining the value of ζ used to form pseudonyms,

we obtain the nice feature that a peer’s actions in different networks will remain

unlinkable.

Finally, we note that an alternative authentication mechanism can be built using

the Privacy CA approach. The idea is to extend PCRs using nonces exchanged

between peers as measured data. The PCRs can be signed using AIKs, which

are in turn signed by the Privacy CA. The signed nonces can be exchanged by

interleaving two runs of the TCG attestation protocol (see Section 2.4.5). We omit

the details since they are closely related to the techniques introduced in the next

section. Obviously, this approach would depend upon the emergence of an entity

sufficiently qualified to provide Privacy CA facilities to a P2P network.
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6.4 Securing P2P Networks Using Trusted Computing

In this section we will demonstrate how a range of security services can be built

from our DAA-enabled authentication mechanism and the stable pseudonyms which

it enforces.

6.4.1 Access Control and Accountability

As outlined in Section 6.2.1.2, access control is particularly problematic in large

unrestricted P2P networks. Given the authentication mechanism outlined in Section

6.3, it would be trivial to implement a simple access control mechanism based on

access control lists. In this case, an access decision could be made based on the peer

pseudonym presented to (and verified by) the peer granting access to resources.

Clearly a more sophisticated and application-dependent access control system could

be implemented on top of the stable pseudonyms.

As we have reported in Section 6.2.1.2, accountability and robust reputation

models are hard to build in the presence of pseudospoofing and pseudotheft. Now

that we have the ability to enforce stable pseudonyms in a P2P network, it becomes

possible to build robust reputation systems that will not be undermined by pseu-

dospoofing and pseudotheft attacks. Such a reputation system provides a means

to hold each peer accountable for its actions. We note that the deployment of

reputation systems seems to be a necessary precursor for the development of P2P

e-commerce as envisioned in [37]. The description of specific reputation systems is

beyond the scope of this chapter. For the interested reader, a survey of reputation

systems can be found in [76].
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6.4.2 Authenticated Key Establishment and Secure Channels

Whilst authentication (even at the level of pseudonyms) is a very useful service to

provide in a P2P network, its usefulness is limited if it cannot be extended to provide

protection for an entire communication session between peers. We address this next,

showing how our authentication mechanism can be extended to an authenticated key

establishment protocol. From there, it is a short step to integrating our DAA-based

mechanisms with SSL and IPSec, these being two widely used existing methods for

providing secure channels for communicating entities.

6.4.2.1 Two Generic Approaches

Suppose we have two peers P and Q, with pseudonyms NP and NQ, in a partic-

ular P2P network. We assume these peers wish to authenticate one another9 and

establish keying material for protecting further communications.

In the simplest form of our approach, the peers first exchange random nonces

RP , RQ, ephemeral Diffie-Hellman values gxP , gxQ (where g is a generator of a

suitable group negotiated in advance or by peer software configuration), and then

exchange signatures on the 160-bit hash10 of the messages

MP = NP ‖NQ‖RP ‖RQ‖gxP ‖gxQ and MQ = NQ‖NP ‖RQ‖RP ‖gxQ‖gxP

The signatures are obtained by each peer using their TPM and platform to exe-

cute the DAA-Signing algorithm on the hash of MP (or MQ). Using the DAA-Verify

algorithm, each peer can check that the other has a valid credential supplied by a
9The authentication need not be mutual, and the alterations to our methods needed in this case

are straightforward.
10The TCG specification limits externally generated messages that are to be DAA signed to be

at most 160 bits in length.
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particular issuer and can be convinced that the values fP , fQ used in forming the

claimed pseudonyms NP , NQ are the same as those claimed at the time of credential

issuance. Here, we are essentially re-using the pseudonymous authentication mecha-

nism from Section 6.3, but with M made up of a longer string including pseudonyms,

nonces and Diffie-Hellman values. If both signatures are confirmed by DAA-Verify,

then the parties can confidently compute common secret keying material K = gxP xQ ,

and then derive keys for MAC and symmetric encryption algorithms from K.

Here, we have used the facility that a platform can ask the TPM for the DAA

signature on any message M . However the TPM may be configured to only execute

DAA-Signing on AIKs. If this is the case, we can use an alternative (but slightly less

efficient) approach involving PCRs and AIKs. Each peer can use the string M =

NP ‖NQ‖RP ‖RQ‖gxP ‖gxQ as measured data to extend a PCR, using the process

outlined in Chapter 2, Section 2.4.5. Then each peer can request its TPM to produce

an attestation to the PCR value, which takes the form of a signature on the PCR

value produced using the private component of the peer’s AIK. Next, at each peer,

the DAA-Signing algorithm can be used to sign the peer’s AIK. Finally, the peers

can exchange the DAA signatures on their AIKs and the AIK signatures on the

string M . Checking these signatures provides the necessary authentication for the

Diffie-Hellman key exchange. This approach can be realised in practice by first

extending the PCRs and then interleaving two runs of the TCG attestation protocol

outlined in Chapter 2, Section 2.4.5.

We now go on to investigate a third approach, better suited to integration with

existing secure protocol suites, in Section 6.4.2.2. After that, we examine which

TCG commands are needed to implement our ideas.
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6.4.2.2 Integration with SSL/TLS and IPsec

We have outlined two mechanisms by which DAA can be bootstrapped to build

secure communications between pseudonymously authenticated endpoints. Our mo-

tivation here is to build on existing protocols to achieve the same aim, still using

DAA and attestation of PCRs as a basis for authentication, but re-using protocol

components where possible. We focus on SSL/TLS and IPsec as starting points.

As we saw in Section 3.4.1, either one or both parties in SSL/TLS will have a key

pair that is used in the Handshake Protocol. Validity of these public keys is ensured

through the verification of X.509 certificate chains back to a trusted root. We show

how to replace this process with pseudonymous authentication in a TCG-enabled

P2P architecture. The main idea, once again, is to extend a PCR, this time using

the public key(s) as measured data. By signing the extended PCR using an AIK,

and then signing the AIK using the DAA-Signing algorithm, a chain of signatures

extending from the SSL/TLS public key(s) to the DAA issuer’s public key can be

constructed. Thus, in this approach, the role of the SSL/TLS root CA would be

filled by the issuer of DAA credentials.

One complexity here is that at least one of the signatures in this chain is not

of the type traditionally seen in SSL/TLS. Namely, at least one of the signatures

is a Camenisch-Lysyanskaya signature representing the issuer credential. Another

complexity is that the chain of signatures is not arranged as an X.509 certificate

chain. For this reason, it may be simpler to just use self-signed X.509 certificates in

the SSL/TLS Handshake Protocol and follow this protocol run with a second phase

comprising an exchange of DAA credentials and PCR attestations using two runs of

the TCG attestation protocol. Ciphersuite negotiation in SSL/TLS would determine

which keys needed to be incorporated into PCRs in the TCG attestation protocol.

Nonces exchanged in the SSL/TLS Handshake Protocol should be included as part
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of the measured data in the PCR extension step to bind the SSL/TLS key exchange

and pseudonymous authentication steps.

This approach is sufficiently flexible to support any of the SSL/TLS standard key

exchange methods. As options, the issuer names in the self-signed certificates could

be the peer pseudonyms NP , NQ and the subject name field could be a meaningful

handle that the peer (user) wished to be known as on the network. This last option

would help to address the issue of associating a meaningful name with a platform’s

pseudonym, an issue we will return to in Section 6.6.1.3. All of this could be made

transparent to the users in the same way that SSL/TLS hides the intricacies of its

protocol in web browsers today.

Using similar ideas, we can also build on the Internet Key Exchange Protocol

(IKE) protocols within IPSec, as specified in [105, 125], to establish secure channels

between peers. Further traffic between peers can then be protected using IPSec’s

AH and ESP protocols in appropriate combinations. In the simplest version, we can

use either of the generic key exchange mechanisms from Section 6.4.2.1 to establish

a shared key, then use the shared key version of IKE Phase 1 to establish a secure

Internet Security Association and Key Management Protocol (ISAKMP) channel

over which further Security Associations can be exchanged. Alternatively, any of

the IKE Phase 1 versions using public key techniques can also be supported. We

can use the technique of extending PCRs, with measured data being replaced by the

relevant public keys, followed by TPM attestations, to establish authenticated public

keys at the communicating endpoints. This can then be followed by the appropriate

version of IKE Phase 1, again using self-signed certificates to simplify certificate

processing, and using DAA pseudonyms NP and NQ as initiator and responder

identities. After this, IKE Phase 2 can be used to establish multiple further SAs

containing keys for use in AH and ESP protocols between the peers.
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Some care needs to be taken with these approaches to ensure that the either

TLS or IKE, and TPM attestation protocol runs are bound in an appropriate cryp-

tographic manner. We also have not sought to optimise the protocols to any great

degree. Recent work in examining Trusted Computing and TLS has highlighted

many of the issues faced in successfully binding security protocols with TPM func-

tionality [58, 11]; much scope remains for developing these ideas further.

6.4.2.3 Implementation

In order to make our proposals for TPM-based authentication, access control and

secure channel establishment mechanisms as concrete as possible, we give here an

indication of the specific TPM commands that are needed to implement our ideas.

In order to understand the mechanisms for extending a PCR register we need

to examine the event logging mechanism for Trusted Computing in greater detail.

We will base our discussions on the assumption that our P2P application is running

on a TCG-conformant platform. The general principles and commands discussed

here are transferable to any TPM-enabled device. As we discussed in Section 2.4.5,

the SML is not really a log. It is better to envisage it as an array of events in

which each entry is in the form of a TSS PCR EVENT structure [149]. In a TPM-

enabled device it is a TSS PCR EVENT that provides information regarding individual

PCR extension events. The rgbEvent parameter in a TSS PCR EVENT is the one we

are interested in, as it is a pointer to event information data, in our case a string

formed from cryptographic parameters. The TCG Core Services (TCS) Event Log

services are responsible for maintaining the SML. These services are responsible for

allowing PCR extension events to be logged and allowing challengers interested in

these events access to them.

To incorporate an event into a PCR two things must happen. A call to the
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TPM Extend command [154] is needed. This is the command that is responsible for

extending a PCR. Then an additional call to a function such as Tcsi LogPcrEvent

is needed. This function is responsible for adding the new event to the end of the

array associated with a named PCR [149]. When a challenger wishes to verify a

system by examining one or more PCRs, the platform must perform a number of

operations to satisfy this request. A call to Tcsi GetPcrEventsByPcr returns an

event log of all events in the SML that are bound to a single PCR [149]; this can be

called multiple times depending on the number of requested PCR values. The event

log is returned as an ordered sequence of TSS PCR EVENT structures. Attestation

of the chosen PCR values occurs after a call to TPM Quote [154]. This operation is

responsible for providing cryptographic reporting of PCR values, using an AIK key

to sign the current value of a chosen PCR.

The TPM DAA JOIN command [153] obtains the issuer’s Camenisch-Lysyanskaya

signature on the DAA secret f , while the TPM DAA SIGN command [153] is responsible

for running the DAA-Signing algorithm and, through this, proving that the TPM

in question does indeed possess valid credentials. By performing the TPM DAA SIGN

command upon the AIK key used in the TPM Quote command, a TPM can prove

to the verifier that it is in possession of the private component of the AIK key that

was used to sign a requested PCR value.

6.5 Two Approaches to Securing P2P Networks Using Trusted

Computing

In this section, we investigate further the application of TPM functionality (par-

ticularly DAA) to securing P2P networks. We consider two distinct approaches

here. In the first, we consider augmenting the security of today’s “unmanaged” P2P

networks by exploiting the presence of manufacturer-issued DAA credentials. The
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second is more tuned to existing commercial services for distributing content, but we

sketch how secure P2P features can be added to these networks, giving potentially

significant benefits to service providers.

6.5.1 Securing Unmanaged P2P Networks

As we have seen in the previous sections, DAA can form the basis for a number of

security services in P2P networks in which peers are equipped with TCG-compliant

platforms. Foremost amongst these services is pseudonymous authentication, from

which other useful services (access control, reputation mechanisms, secure commu-

nications) can be built.

To achieve this, we have made the single, but vital, assumption that, in any

given P2P network, the TPMs embedded in peers are guaranteed to only possess

a DAA credential from one of a set of issuers that will be recognised and accepted

by other peers. We stress that there can be many issuers of DAA credentials for

the platforms in our P2P network, but we need to be sure that each platform only

has one credential from one of the issuers from a specified subset of all possible

issuers, and not multiple credentials from a single issuer or single credentials from

each of multiple issuers. Otherwise, misbehaving peers will be able to create and

prove possession of multiple pseudonyms.

As discussed above, one way of ensuring this assumption holds is to assume that

manufacturers will provide DAA issuer functionality for the platforms that they

produce. This seems to be an attractive supposition, since, in reality, customers

would gain a privacy advantage if they were to obtain their credentials from their

original equipment manufacturer. Either the DAA credential could be embedded

into the platform at the time it is shipped to the customer, or it could be obtained

at a later stage through a run of the DAA join protocol. A manufacturer can keep
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track of which EKs it has injected into the TPMs that it has produced and to which

EKs it has already issued credentials. Since during the join protocol a TPM is

authenticated with respect to its endorsement key EK, the issuer can be sure that

it is dealing with a given TPM that it has manufactured and not previously issued

a credential to.

If this situation holds, then we can configure our P2P software with a list of

manufacturers’ public keys used for issuing credentials (much in the same way that

SSL is usually configured with a list of root public keys). Alternatively, manufac-

turers may choose to obtain certificates for their public keys from other certification

authorities, in which case some form of PKI would be involved. Here we are assum-

ing that the number of manufacturers of TPM-enabled platforms would be a small

and relatively static group. This would allow an owner of a platform created by

one manufacturer to transparently verify a DAA signature from a platform assem-

bled by a different manufacturer while maintaining a high level of confidence in the

authenticity of the end platform.

The obvious question is what does this mean for P2P networking? The tradi-

tional view of P2P networking is that it is an all-you-can-eat buffet of file sharing,

where content flows as fast as connection bandwidth permits. At the same time,

some believe that Trusted Computing represents a threat to this free-for-all as a tool

for enabling Digital Rights Management (DRM) [5]. However, our analysis shows

that the opposite may be the case. If TPM-compliant platforms become prevalent

on end user systems, then the techniques developed here would make it expensive

for copyright holders or their agents to engage in pseudospoofing and the flooding

of networks with poor-quality content. With the development of suitable reputation

mechanisms, the reputations of the offending peers would rapidly decline and they

could be barred altogether. Our techniques would also enable users of P2P networks

to maintain secure end-to-end communications, immune from monitoring by Internet
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Service Providers or other entities. This could significantly hamper the prosecution

of individuals operating in undesirable ways on P2P networks. Using simple access

control lists based on pseudonyms, small groups could set up completely private,

access-controlled subgroups within a given P2P network. Users could form their

own groups based on content of choice or personal preferences, and so an existing

P2P network could be utilised to bootstrap multiple private P2P networks. There

is naturally the danger of such a feature being abused by certain groups. It would

be difficult to prevent the formation of such groups, given that any platform can act

as an issuer (and not just manufacturers).

6.5.2 Securing Commercial P2P Networks

There is an alternative model to the one presented above which is more commercially-

orientated in application. In this model we reposition the root of trust for the

issuance of TCG credentials from the platform manufacturer to a service/content

provider.

We will begin by sketching a relatively simple example using a fictional appli-

cation herein referred to as TrustedPeer. In this example we also make use of a

fictional TTP named ContentCorp. In our scenario ContentCorp provides both the

TrustedPeer application as well as acting as an issuer of DAA credentials.

Peers download the application from a ContentCorp server and install it on their

TCG-enabled devices. In order for a peer to become a member of the network, it

must register with ContentCorp. DAA can be used for the registration. A suc-

cessful run of the DAA join protocol provides a peer with a credential in the form

of a Camenisch-Lysyanskaya signature on its secret value f (see Section 2.4.5.2).

This credential can later be used by the peer to authenticate itself to the service

provider and to other peers through the DAA-Signing protocol. Thus this credential
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effectively becomes a proof of registration.

During this registration procedure the platform must reveal a pseudonym NI =

ζf
I . Here the quantity ζI is set by ContentCorp and allows them to associate a

handle with a peer as well as to check for rogue platforms. The handle may be used

later by ContentCorp, for example at the stage of collecting payment for access (in

which case, it may be necessary to collect additional payment details at the time of

registration). Once this stage is complete a peer can gain access to the TrustedPeer

network.

So far, the approach we have described is broadly similar to a Trusted Computing

application scenario described in [28]: we have a centralised infrastructure making

content available to subscribing peers. The benefits this approach offers are twofold.

The benefit to service providers is that only platforms that have a credential issued

by the service provider, i.e. that are registered, will be permitted access to the

network and its content. It benefits registered participants insofar as other platforms

will not be able to impersonate them and gain access to content that the registered

participants have paid for.

This type of content distribution application could start to evolve into a more

decentralised P2P architecture by allowing peers to obtain content from other peers

as the content spreads out from ContentCorp to subscribing peers. In this scenario

a peer looking for specific content sends out a query onto the network, receives a

list of matching hits, examines them for relevance and then decides which peer to

use to download the required content. In order that peers can distinguish genuine

ContentCorp content from rogue content, ContentCorp could digitally sign its con-

tent and embed their public key in the TrustedPeer application. As more and more

content becomes distributed, query results for content could start to be returned by

other peers on the network, thus reducing the load at ContentCorp servers.
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The TrustedPeer application could be configured to demand that the requesting

peer provide a proof (in the form of a Camenisch-Lysyanskaya signature) that it

is a peer registered with ContentCorp before supplying the requested content. It

could be further configured to supply the requesting peer with the content in an

encrypted form, with the session key used for encryption further encrypted under

ContentCorp’s public key, perhaps along with the responding peer’s pseudonym

and some metadata describing the content. It would then be incumbent on the

requesting peer to contact the ContentCorp server to obtain the session key, at which

point ContentCorp could collect payment for the content. Here, the communication

with ContentCorp would involve only short messages and low bandwidth rather

than the high bandwidth required for content distribution. Further, ContentCorp

would have visibility of which peers were supplying content, and those peers could

be rewarded appropriately (perhaps with reduced fees for subsequent downloads).

Thus ContentCorp could generate revenue from its content without being directly

involved in its distribution. Such models of distribution predate this work and are

becoming increasingly popular with content providers. In particular, this model of

distribution underlies the open mobile alliance digital rights management model of

content distribution [93].

ContentCorp’s content distribution could be further enhanced by adding a rep-

utation system, enabling peers to search out peers with fast connections or rich

content. Building on the stable pseudonyms that are enforced by the DAA pro-

tocols, such a mechanism would naturally resist pseudospoofing and pseudotheft

attacks. ContentCorp could also keep state regarding which EKs have already been

registered in order to prevent multi-credentialised platforms joining the network.

The security measures that we present here are not intended to provide a solution

to all the possible problems that may be potentially encountered in a real world

setting, but they do address some of these issues, such as discouraging bad behaviour
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by peers.

One important issue that remains to be addressed is the prevention of “leak-

age” of content from the ContentCorp network. There is nothing in our system as

described so far that prevents a peer registering, obtaining content, and then re-

distributing it on traditional, anarchic P2P networks. There is a form of economic

incentive to prevent this activity: a peer, having paid for the content, may be less

likely to distribute it freely to others. Moreover, a peer who knows that Content-

Corp will give him credit of some kind if other peers download content from him,

is more likely to conform and use the encrypted session key mechanism that we

have described above. In turn, this forces peers wishing to obtain content to pay

ContentCorp for it.

A technical measure that could further discourage unrestricted re-distribution of

content would be to use watermarking, marking content with the requesting user’s

DAA pseudonym before distribution. In the event that a peer offers content from

the TrustedPeer network on another network, then the peer could be identified via

the watermark and potentially permanently banned from the TrustedPeer network.

A far stronger mechanism would be to rely on the ability of a TPM-enabled

platform to lock availability of content to particular software configurations: with

this in place, ContentCorp could be assured that the correctly behaving TrustedPeer

application is in operation before content is available at a peer. This would limit

a rogue peer’s ability to re-distribute content. However, this kind of mechanism

would depend on the extension of the domain of control of TPM from the OS level

to applications themselves. This is certainly something we expect to see in the years

ahead.
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6.6 Issues and Open Problems

We briefly summarise some issues with our approach to securing P2P networks using

Trusted Computing. We also highlight some open problems and areas suitable for

further development.

6.6.1 Issues

6.6.1.1 Credential Replacement

Replacement of credentials is a non-trivial task in DAA. If it is necessary to issue

replacement credentials, then the previous DAA history of the platform gets erased,

at least as far as the DAA credentials from that issuer are concerned. This potentially

allows a rogue platform to rejoin a system from which it has previously been barred.

However decisions on credential replacement are a matter of policy for a given issuer.

For example, an issuer can consult a black list before issuing a credential to a

platform.

6.6.1.2 Credential Migration

Migration of credentials is not possible within our architecture. Should a platform

owner decide to sell their platform there is no obvious way for them to migrate DAA

credentials from one platform to another.

160



6.6 Issues and Open Problems

6.6.1.3 Data Representation

Another issue in our approach to securing P2P networks is that of data representa-

tion. There is something of a semantic gap between dealing with a DAA pseudonym

(a sequence of ones and zeros) and working with the more traditional “handles” to

which users of P2P networks are accustomed. One possible solution to this problem

is to link a local name space with a network name. If a peer on a particular net-

work maintains a list of pairs (ζ, ζf ) then with each of these pairs it can associate

a particular name or handle. In this scenario ζ represents the network and ζf a

particular pseudonym on that network. This mapping would be akin to that used

in SPKI/SDSI11, in which every principal maintains a name space where names are

bound to public keys, possibly in other principal’s name spaces. This kind of mech-

anism is suitable for use in a P2P network as it is not necessary for peers to know

every other peer on a network. Instead, they need only know those peers with whom

they have previously interacted or are intending to interact. In our application, we

simply replace the public keys seen in SPKI/SDSI with pairs (ζ, ζf ).

6.6.2 Open Problems

6.6.2.1 Reputation

One area of our work where further development is possible is that of reputation

systems for TPM-enabled P2P networks. For example, it may be possible to set up

a recommendation system whereby peers pass on their experiences to other peers

by sending a subset of their named handles to other peers following a SDSI naming

convention. In this case peers could provide DAA-signed reference subsets based

on successful interactions with other peers. It would be interesting to see various
11See for example http://www.ietf.org/html.charters/spki-charter.html
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established rating schemes examined in the context of TCG-based P2P networks: it

would seem that they could be far more robust than is currently the case in standard

P2P networks. Given the network based unlinkability property established in Section

6.3, developing the ability to securely transfer a peer’s pre-existing reputation in one

network to another seems like an interesting challenge.

6.6.2.2 Confidentiality and Integrity of stored data

We have mainly concentrated on confidentiality and integrity of data in transit in

P2P networks. A TCG-enabled platform provides sealing mechanisms which, in

combination with attestation, can provide confidentiality and integrity for stored

data. Such secure storage mechanisms could be exploited to further enhance the

security of P2P networks. In [122], Zhang et al. consider the use of a TPM with

processor and OS support to build a Trusted Reference Monitor (TRM) that could

mediate access to data in P2P networks. By monitoring and verifying integrity

properties of executing (P2P) applications, the TRM could enforce access policies

on behalf of object owners.

6.6.2.3 Anonymity

Anonymity challenges other security goals within P2P networks such as account-

ability and reputation. DAA provides a certain degree of anonymity in the form

of unlinkability of transactions arising from a user, but by fixing the name base

(ζ) in our approach we have restricted the provision of such anonymity. However,

anonymity within multiple networks is still present as long as different name bases

are used in the different networks. Providing complete anonymity would bring with

it problems relating to routing and discovery of resources, but it would be worthwhile

continuing research in this area.
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6.6.2.4 Authenticity

Another issue within anarchic P2P networks is the question of how to guarantee the

authenticity of resources. Considerable work has been done within the research com-

munity to establish certain measures of authenticity. In the P2P context, Daswani

et al. [36] have proposed evaluating authenticity based on expert opinion, polls or

first-serve basis. In our work, we have not identified authenticity as an important

security issue in P2P networks, though we briefly touched on it in Section 6.2.1.1.

Our work in Section 6.5.2 does provide an explicit authenticity mechanism, in the

form of digital signatures on resources by the content provider. By preventing pseu-

dospoofing attacks in anarchic P2P networks, our methods also go some way towards

ensuring resource authenticity in such an environment. It would be interesting to

explore further how resource authenticity could be enhanced using TCG in such

networks.

6.6.2.5 Complexity

On average, a TPM takes between one and three seconds to perform a signature

with a TPM-controlled key [119, 138]. Therefore, an excessive number of signa-

ture operations may result in a performance bottleneck at the TPM and cause the

host platform to drop peer requests [138]. In our proposal for establishing secure

channels, the DAA sign and verify operations are performed once by each peer in

establishing a connection. After this initial handshake, peers migrate to use of a

shared Diffie-Hellman key for further communications. The relative slowness of the

initial sign/verify operations may have a negative impact upon some time-sensitive

applications; however, in certain P2P networks, for example P2P instant message

networks, peers typically restrict their interaction to a specified subset of the entire

P2P community. This would allow the potential cost associated with participating
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in the network to be amortized over time.

6.7 Conclusion

In this chapter we have outlined the security issues faced in P2P networks and

discussed the extent to which features of the TPM specifications can be used to

enhance security. All but one of our proposals for enhancing security use only

those TPM features which are in place and available on platforms today. We have

applied our ideas to two distinct types of P2P network: one matched to today’s file

sharing networks, and the other more commercially-oriented. One perhaps counter-

intuitive implication of our work is that TPM-enabled P2P networks can make P2P

networks harder to effectively police. Our work also points the way forward to using

Trusted Computing to enable secure P2P-commerce through the development of

secured commercial P2P networks and of P2P networks free from pseudospoofing

and pseudotheft.
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In this chapter we discuss the possible benefits (and limitations) of incorporating

Trusted Computing technology into the mobile agent paradigm. In particular, we

discuss how Trusted Computing technology can be used to enhance the security of

mobile agent migration. We describe a number of options for securely migrating

mobile agents between Trusted Computing platforms and compare and contrast the

merits (and deficiencies) of each approach.

7.1 Introduction

Before we begin to define the security concerns pertaining to mobile agent migration

and the role Trusted Computing can play in ameliorating them, it is important that

we first define what we mean by a “mobile agent”. Unfortunately, an examination

of the literature yields no universally adopted definition. Instead an “agent” can be

defined as a software construct that satisfies a number of properties. That is, an

agent should be autonomous, persistent, adaptive, responsive, pro-active and social

[117]. These properties imply a monocratic goal-driven entity that is capable of

interacting with its environment (and other agents) in order to achieve its objectives.

Consequently, the term “mobile agent” represents a superset of these autonomous

software entities that possess one additional property, the capability to suspend

its execution mid-process and transport itself (and its current data and state) to

another platform where it can resume execution.

Given the broad set of properties a mobile agent may possess, the mobile agent

paradigm offers numerous deployment scenarios that may exploit one or more of

these properties. As a result, mobile agent systems have been proposed for use in

areas as diverse as information management [62], contract negotiation [61], service
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brokering [44] and e-commerce applications [75]. However, precisely because of the

flexibility that the mobile agent paradigm affords, both mobile agents, and the hosts

upon which they execute, may be placed at greater risk of attack than traditional

client-server architectures [74]. For example, from the host’s perspective, the exe-

cution of a mobile agent may potentially lead to information leakage or denial of

service attacks. Conversely, from the mobile agent’s perspective, its very mobility

places it at increased risk from attack by malicious hosts. As a host controls the en-

vironment in which an agent executes, it can engender a number of security sensitive

violations including eavesdropping on a mobile agent’s communications, altering a

mobile agent’s state, or preventing a mobile agent from performing its task.

In this chapter we examine the extent to which Trusted Computing can be used

to enhance the security of mobile agents as they migrate between platforms. In do-

ing so, we describe an agent framework that makes use of the full array of Trusted

Computing technologies. In particular, we assume each host has the following func-

tionality: measurement, storage and reporting capabilities as provided by a Trusted

Platform Module (TPM) (see Section 2.4), strong process isolation as provided by

processor/chipset extensions such as Intel’s LaGrande or AMD’s AMD-V and Op-

erating System support for Trusted Computing as provided by Microsoft’s NGSCB

or EMSCB derivatives [121] (see Section 2.7). In the remainder of this chapter, we

refer to such a host as Trusted Mobile Agent Platform (TMAP).

The remainder of this chapter is organised as follows. In Section 7.2, we briefly

outline a number of threats to both mobile agent hosts and mobile agents. We also

review previous work in the area of mobile agent and mobile host security as well in

the application of Trusted Computing to agent systems. In Section 7.3, we discuss

a number of options for securely migrating agents between TMAPs and discuss the

relative merits and deficiencies of each approach. Finally, we conclude with Section

7.4.
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7.2 Mobile Agent Security

The threats typically attributed to mobile agent systems tend to be context-driven

but can broadly be categorised into threats to the host and threats to the agent [74,

26]. In this section, we outline a number of threats posed both by mobile agents and

to mobile agents as well as outlining a number techniques proposed in the literature

to mitigate one of more of these threats. These threats and countermeasures are

compiled from lists obtained from [74, 26].

7.2.1 Threats To The Host

• Unauthorised Access: A mobile agent may attempt to exploit a vulnerabil-

ity in a host system to gain access to resources that it is not permitted access

to.

• Denial of Service: A mobile agent may attempt to appropriate the (lim-

ited) assets of a platform by unfairly consuming excessive system resources.

Alternatively, a mobile agent may cause a host to crash by altering a system’s

configuration files or exploiting some vulnerability in the host platform.

• Masquerade: A mobile agent may pretend to be another (possibly more

privileged) mobile agent to gain access to additional system resources or to

shift the blame for malicious actions it has perpetrated to another mobile

agent.

• Eavesdropping: A mobile agent may attempt to eavesdrop on the commu-

nications of other agents executing on a host platform.

• Alteration: A malicious (or incorrectly configured) mobile agent may alter a

host’s system or configuration files. The outcome of this alteration may lead

to a denial of service or platform subversion.
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7.2.2 Threats To The Mobile Agent

• Unauthorised Access: A malicious host may attempt to modify an agent’s

code, data or state. Modifications to an agent’s code may affect how that code

behaves on subsequent platforms that an agent visits, whilst modifications to

an agent’s data or state may affect the results obtained during execution on

subsequently visited hosts.

• Denial of Service: A malicious host may deny resources to an agent, intro-

duce unacceptable delays in processing, refuse to execute an agent or prema-

turely terminate an agent’s execution.

• Masquerade: A malicious host may pretend to be another (possibly more

trustworthy) host to gain access to an agent’s sensitive data or state. Addi-

tionally, a host may alter its execution environment so that it appears more

trustworthy to an agent.

• Eavesdropping: Since the host controls the environment in which the agent

operates, the host may eavesdrop on all operations performed by an agent.

• Alteration: A malicious host may modify the code, data or state of a mobile

agent. This may have a knock on effect for subsequent platforms on an agent’s

itinerary as a subverted mobile agent may attempt to subvert other platforms

or agents. Maliciously modified agent code could result in the realisation of

any of the threats described in Section 7.2.1.

7.2.3 Safeguards for Protecting the Host

The problem of a host assigning correct access permissions to a mobile agent is

a non-trivial matter, especially given difficulties in establishing agent provenance.

This is compounded by the fact that an agent could start out as trustworthy only
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to be compromised by a malicious platform prior to arriving at its destination.

From a hosting environment’s perspective, a mobile agent represents an arbitrary

and potentially malicious piece of code that may compromise it. In order to limit

the threats discussed in Sections 7.2.1, a number of mitigating proposals have been

described in the literature. A sample of these are included below:

• Code signing: This is a mechanism that aims to provide evidence of code origin.

A code producer digitally signs a piece of code using a private key for which the

corresponding public component has been certified by a trusted third party.

Under the assumption that the private key has not been compromised, and that

the verifier has an authentic copy of the code producer’s public key certificate,

the verifier can authenticate a piece of code as coming from a particular code

producer. Unfortunately, this approach says nothing as to how the code will

behave once executed. Examples of code signing include signed Jars [140] in

Java and Microsoft’s Authenticode for ActiveX controls [63].

• Proof Carrying Code [90]: This mechanism necessitates the generation of a

proof by the code author that formally demonstrates that agent code con-

forms to some defined security policy. The executing host can then check the

correctness of the proof prior to allowing the agent to execute, avoiding ex-

pensive runtime checks. The main difficulty of this approach is that there is

currently no efficient and automated way of generating proofs for arbitrary

pieces of code [74].

• Path Histories [136]: The idea of this approach is to maintain a protected

log of the hosts an agent has previously visited. The current host platform,

after examining an agent’s log, determines if an agent has previously executed

on one or more hosts that the examiner deems untrustworthy. Based on this

evaluation, the hosting platform decides an agent’s execution privileges.

• State Appraisal [50]: This mechanism requires an a priori generation of a
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signed state appraisal function that becomes part of an agent’s code. The goal

here is to detect subversion of an agent through modifications to its state infor-

mation. The executing host uses the signed function to determine if an agent

is in a correctly functioning state and to assign access privileges accordingly.

• Software-Based Fault Isolation [163]: This class of protection mechanisms

refers to partitioning applications into software-enforced isolation domains

with a reference monitor controlling access to system resources. Perhaps the

best known example of such a fault isolation scheme is the Java sandbox for

safe code interpretation [59]; other schemes exist for script-based languages

such as Safe TCL [96] for the TCL language.

Many of the individual mechanisms presented here can be bolstered by Trusted

Computing. In particular, path histories can be enhanced by Trusted Computing’s

attestation procedure. As we will see in Section 7.3, attestation and sealing can be

used to provide a means of testing the “trustworthiness” of both the current plat-

form in which the mobile agent is executing as well as the target platform to which

the agent wishes to migrate. Additionally, software-based fault isolation techniques

can be significantly improved by the inclusion of hardware-enforced isolation envi-

ronments (see Section 2.7). A malicious agent attempting to attack a host platform

can be constrained to an individual isolated compartment.

7.2.4 Safeguards for Protecting the Agent

Intuitively, the probability of a mobile agent being compromised by a malicious host

increases in proportion with the length of an agent’s itinerary. The more hosts an

agent visits, the greater the likelihood that one of those hosts will attempt to subvert

the agent. In order to prevent (or at least limit) an attack against a mobile agent,

a number of proposals have been put forward in the literature that address one of
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more of the threats identified in Section 7.2.2:

• Code signing [140]: This mechanism allows a code producer to generate a

signature over the non-mutable elements of his mobile agent’s code, data and

state. A verifier, in turn, can detect if a mobile agent’s signed non-mutable

code, data or state elements have been tampered with after the mobile agent

has been signed.

• Partial Result Encapsulation [167]: This approach attempts to detect mod-

ifications to an agent by recording the results of an agent’s actions at each

visited platform. Unfortunately, as the agent is executing in an environment

controlled by the host, the host can control what the agent records.

• Cooperating Agents and Mutual Itinerary Recording [116]: In this approach

a function can be divided amongst a number of agents that visit a disjoint set

of hosts. In moving between platforms, an agent communicates its itinerary

over an authenticated channel to a cooperating peer. The peer agent, in main-

taining a record of its friend’s itinerary, can take appropriate action when in-

consistencies are noticed. A limitation of this approach is the inability of the

peer to determine whether it is the current platform that an agent is visiting

or the next one on its itinerary that is responsible if the agent is “killed”.

• Execution Tracing [158]: This proposal attempts to detect unauthorised mod-

ifications of an agent’s state. When an agent executes in a host environment, a

record is kept of the actions that the agent performs. This record is appended

to the agent’s past actions for every subsequent host that an agent visits. Un-

fortunately, this approach is also vulnerable to the type of attack presented

for Partial Result Encapsulation.

• Code Obfuscation [34]: This technique modifies source code to obscure the

agent’s true function and prevent reverse engineering. However, obfuscated
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code often depends on the particular characteristics of the host platform or

compiler, making it a difficult technique to manage if either change. Further-

more, general impossibility results have been reported for obfuscation as a

protection technique [23].

• Environmental Key Generation (EKG) [115]: In this approach, keying mate-

rial is generated from certain types of environmental data. An agent carries

secret code or information that can only be revealed to a host if certain pre-

defined environmental conditions are met. Only once environmental triggers

are satisfied will an agent be capable of running its secret function.

For the interested reader, additional information on both agent and host defence

mechanisms can be found in [25, 74].

7.2.5 Trusted Computing and Mobile Agents

The proposed use of trusted hardware as a means of protecting mobile agents can

be traced back to Wilhelm et al.’s work on adding trusted third parties (in the

form of isolated hardware environments) to host systems [166]. As part of their

proposal, Wilhelm et al. define a Trusted Processing Environment (TPE) to consist

of a CPU, RAM, ROM and non-volatile storage, all of which are accessible via

a secure virtual machine interface. It is within this TPE that mobile agents will

execute, free from interference and observation by external processes. In addition

to hardware requirements, Wilhelm et al. also stipulate that each TPE should

have a manufacturer-certified public key, indicating that the hardware environment

is trustworthy, with the corresponding private key being non-migratable from the

TPE environment.

As part of their work, Wilhelm et al. define a protocol for secure mobile agent
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migration. Their protocol operates in two phases. In the first phase, each TPE

registers a copy of its certified public key and a description of the policy that it

is currently enforcing with a resource broker. In the second phase, the owner of

a mobile agent queries a resource broker for a list of available TPEs. In response

to this query, the broker returns to the owner a list of all TPEs including their

associated public keys and security policies. The mobile agent owner examines

this list and picks the TPE with the policy most closely aligned with his security

requirements. Once selected, a mobile agent owner encrypts his mobile agent with

the selected TPE’s public key and migrates his mobile agent to that platform where

it can execute unhindered.

Unfortunately, this approach to secure agent migration suffers from two prob-

lems. Firstly, it assumes that the broker is completely trusted to return correct

information to the mobile agent owner. Secondly, there is no way to validate the

veracity of the claims made by a TPE about its enforcement of a given policy. In-

stead all claims made by a TPE must be taken at face value. Without the ability

to test a platform for adherence to a claimed policy prior to migration, any security

claims made by a TPE are merely anecdotal.

The use of Trusted Computing in agent systems has been put forward in [32, 98,

101, 107]. In [98], a method of using trusted agents running on TPM-enabled plat-

forms is described where the agent controls access to a user’s profile data through

the use of a TPM’s sealing mechanism. That is, access to personal information

should only be granted if the platform is in a specified state. In [32], a similar

architecture to [98] is proposed to constrain access to sensitive resources on host

platforms. In [101], a number of proposals are made to enhance user privacy protec-

tion mechanisms using Trusted Computing in ubiquitous computing environments.

Each proposal stresses the need for sealed storage functionality and the benefits

that accrue from the ability to recognise when a platform will behave as expected.
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However, these approaches do not address issues of agent migration.

Recently, a Trusted Computing enhanced mobile agent platform called SMASH

was proposed [107]. In SMASH, an agent arriving at a remote host goes through a

process of mutual attestation with its hosting environment. If the agent’s attestation

passes the host’s security policy, and the host’s attestation passes the agent’s secu-

rity policy, then the mobile agent can be granted access to limited system resources.

Further to this, if both the mobile agent and host platform are capable of mutually

authenticating each other then further access can be granted to protected resources.

Unfortunately, this approach suffers from a major problem. In the SMASH frame-

work, a mobile agent only requests the host platform to attest to its environment

after it has arrived at the platform. At this point it may be too late to request

a report of a host’s environment as the host has complete execution control of the

agent, which may result in the realisation of any or all of the threats discussed in

Section 7.2.2.

7.3 Protecting Mobile Agent Migration with Trusted Com-

puting

In this section we look at how Trusted Computing functionality can be used to

protect sensitive agent information (be it code, data or state) as it migrates between

TMAPs. In doing so, we present four alternatives for migrating mobile agents and

discus their relative merits and drawbacks.
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7.3.1 Assumptions

Before we outline the various alternatives, we first discuss the assumptions that

we make about the environment in which a mobile agent will operate and provide

justification for these assumptions.

1. TMAP Functionality: Each hosting platform will provide mechanisms to

measure and report current platform state, seal data to a particular instance

of a platform state, and provide hardware enforced isolation between environ-

ments in which agents execute.

2. Authenticated Boot: Upon platform start-up, reset or the launch of a new

secure compartment via the Dynamic Root of Trust for Measurement (DRTM),

the software state of the platform is measured, and these measurements are

accurately stored in the TPM’s PCRs.

3. AIK Credentials: Every TMAP platform has enrolled at least one AIK with

a Privacy-CA known to every other TMAP platform.

4. PCR Usage: The use of PCR registers to store measurements representative

of a platform’s software state are consistent across all platforms.

5. Agent Owner Signing Key: Each mobile agent owner has a non-migratable,

TPM-controlled asymmetric key pair, where we write KAOpub
and KAOpriv

for the public/private portions respectively. The public key of this key pair,

KAOpub
, has been certified by an SKAE CA (see Section 2.4.5.4).

6. Itinerary Planning: Prior to deployment, the owner of a mobile agent pop-

ulates his agent with a list of platforms he would like his mobile agent to visit.

Additionally, a mobile agent may optionally take recommendations from hosts

or other agents during its travels and visit additional platforms not on its

itinerary prior to returning to its owner.
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7. Trustworthy States: A mobile agent owner has access to integrity metrics

representing platform states which guarantee faithful execution and forwarding

of his mobile agent. These integrity metrics will typically be provided in

the form of validation credentials representing trustworthy TMAP states (see

Section 2.4.6).

Assumptions 1 and 2 are general requirements if a platform is to be considered a

Trusted Platform. These assumptions are realised through the inclusion of a TPM,

processor, chipset and operating system support for Trusted Computing. Assump-

tion 3 is necessary for establishing trust in the attestation claims made by a third

party Trusted Platform (see Section 2.4.5). Assumption 4 is implicit in all Trusted

Computing work. Certain PCR registers must only be used for a specific purpose

so that there is commonality amongst all attestations reported by a disparate group

of Trusted Platforms. For instance, PCR 0 is set aside for CRTM, BIOS, and Host

Platform Extensions in the TCG’s PC client specifications [148]. Assumption 5 is

necessary so that an agent owner may sign his mobile agent. Like the code signing

approach outlined in Sections 7.2.3 and 7.2.4, we stress that signing mobile agent

code does not guarantee correct execution. Instead code signing provides a means

of appropriating blame should the mobile agent prove malicious. Assumption 6 is

a standard assumption in the mobile agent literature. As the agent originator is

assumed off-line for all purposes but agent deployment, the agent owner needs to

specify the platforms he would like his agent to visit. Assumption 7 is a new, but nec-

essary, assumption for Trusted Computing augmented mobile agent environments.

It is impractical to assume that the agent owner would have sufficient domain exper-

tise to evaluate the trustworthiness of platform states. Instead, we require that the

metrics representative of trustworthy platform states are independently evaluated

by a trusted third party, and that the outcome of such evaluations be published in

the form of validation credentials.
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Figure 7.1: Mutual Attestation for Mobile Agent Migration

With these assumptions in place, we now discuss four alternatives for secure

agent migration.

7.3.2 Mutual Attestation

Our first option for secure agent migration (see Figure 7.1) occurs in two stages.

Pre-Deployment: Prior to deployment, a mobile agent owner populates his agent

with a list of software states that he deems acceptable for his mobile agent to exe-

cute within. For each item in this list, the mobile agent owner extracts trustworthy

states from his validation credentials which he uses to specify one or more (PCR in-

dex, acceptable value) pairs for his mobile agent. The mobile agent’s code, the set

of acceptable software states, the mobile agent’s itinerary and any static data ele-

ments of the mobile agent are signed by the mobile agent owner using his private

key KAOpriv . Finally, the mobile agent owner attaches his newly generated signature

and his public key certificate for KAOpub
to his mobile agent (see Figure 7.1).

Deployment: The mobile agent’s originating host and the destination host mutu-

ally attest to their current operational environments (see Figure 7.1). During this
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process, both platforms call their TPM GetRandom command to generate a ran-

dom number. This random number and a list of the indices of the PCRs to be

reported are then exchanged. Both TMAPs attest to the current configuration of

their respective platforms (more specifically, the values of the specified PCR indices)

by calling the TPM Quote command which outputs an AIK signed data structure

consisting of the following elements: the indices of the PCRs being reported, the

values of each of the specified PCRs, and the random challenge received from the

other platform. These signed data structures, along with the respective TMAP’s

AIK credentials, are then exchanged.

If the originating host deems the destination host’s state trustworthy (by com-

paring it to the signed list of trustworthy software states obtained from the mobile

agent, verifying the destination’s AIK signature and checking for the inclusion of its

random number), then the mobile agent is migrated to the destination host. Upon

receipt of the mobile agent, the destination host validates the public key certificate

attached to the mobile agent, extracts the public key and verifies the mobile agent

owner’s signature. Additionally, the destination host queries the agent for a list of

trustworthy software states and compares this list to the attested state returned

by the originating platform. If a match occurs, then the destination host executes

the agent in its own (attested) isolated compartment. If no match can be found,

the destination host reports back to the mobile agent owner that something went

awry on the originating host, providing the reported attestation as evidence. Once

the mobile agent finishes executing, the above process is re-run with the current

host acting as the originating host and next host on the agent’s itinerary as the

destination host.

Analysis: We will now examine how well this proposal prevents the threats identi-

fied in Sections 7.2.1 and 7.2.2.
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• Unauthorised Access: From the host’s perspective, the use of hardware-

enforced compartmentalised memory limits the opportunity for a malicious

agent to access resources outside of this compartment. Any additional privi-

leges requested by the mobile agent will be subject to approval by an external

Measured Virtual Machine Monitor (MVMM).

From a mobile agent’s perspective, allowing the originating host to examine

the state of the destination host prior to migration ensures that, at the time

of migration, the destination host is in a trustworthy platform state. Unfor-

tunately, in isolation, this attestation only enables the state of the destination

host to be verified at a particular point in time. There are no guarantees that

the destination host will remain in its attested state after it has been verified

but prior to the mobile agent arriving. This problem is commonly referred to

as the Time-Of-Check-To-Time-Of-Use (TOCTOU) problem.

Our use of mutual attestation mitigates this TOCTOU threat provided that

destination host N + 1 compares the attestation of destination host N to that

of the signed trustworthy states obtained from the mobile agent. If destination

host N ’s state matches a trustworthy state (obtained from the mobile agent)

then host N +1 can be assured that host N ’s state remained stable whilst the

mobile agent executed. However, this approach only works if host N engages in

a mutual attestation process with destination host N +1 on the mobile agent’s

itinerary. Should a host N be compromised after passing the originating host’s

attestation challenge and receiving the mobile agent, the newly compromised

host N may attempt to attack the mobile agent to gain access to its sensitive

code, data or state and refuse to propagate the mobile agent further. We note,

however, that if the trustworthy states obtained from the validation authority

prior to the initial migration are sufficiently robust then the likelihood of this

occurring should be negligible. For example, if the hosting compartment has

been evaluated to a sufficiently high common criteria evaluation assurance
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level then the attack surface of the compartment should be limited enough to

prevent post-attestation compromises.

• Denial of Service : From the host’s perspective, a malicious mobile agent

may attempt to modify the configuration files for its compartment resulting in

that compartment failing future attestation challenges. This issue is mitigated

somewhat by allowing a host to “take down” a corrupted compartment and

replace it with a clean one. However, in doing so the host may lose useful con-

figuration data obtained during the life-time of the now corrupt compartment.

From a mobile agent’s perspective, denial of service remains a problem. A

host may simply suspend execution, degrade the quality of service available to

a mobile agent or refuse to migrate the mobile agent to the next host should

the compartment become corrupted. However, for the reasons outlined in our

analysis of unauthorised access, the likelihood of this happening should be low.

• Eavesdropping: From the host’s perspective, the use of compartmentalised

memory limits an agent’s opportunity to eavesdrop upon the host, because the

mobile agent will be constrained to an individual execution environment. From

the mobile agent’s perspective, the host will always be capable of eavesdropping

upon the agent. However, agents executing in other compartments will not be

able to eavesdrop on other mobile agent’s communications unless expressly

permitted to do so by the MVMM.

• Alteration: From the host’s perspective, a mobile agent may alter the com-

partment in which it executes. However, such modifications will be exclusively

limited to this compartment and will be detected in subsequent attestation

challenges. From the mobile agent’s perspective, the host is capable of alter-

ing the mutable portions of the mobile agent’s code, data or state that are

not part of the mobile agent signature. Any attempt to modify the immutable

portions of the agent’s code data or state will result in subsequent mobile

agent signature verification procedures failing. However, the likelihood of a
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host modifying mutable portions of the mobile agent should be low for the

reason cited in our analysis of unauthorised access.

• Masquerade: From the host’s perspective, the mobile agent can be unam-

biguously identified by verifying the mobile agent’s signature using the public

key obtained from the mobile agent’s public key certificate. From the mobile

agent’s perspective, the use of mutual attestation may be vulnerable to proxy

relay attacks (also know as man-in-the-middle attacks) allowing one host to

masquerade as another host. For example, a destination host may attempt

to forward the attestation challenge from the originating host to a TMAP

which the destination host knows to be in a good state. The outcome of this

redirected attestation challenge is then passed back to the originating host

via the destination host. An originating host seeing this attestation concludes

that the destination is indeed in a trustworthy state and migrates the mobile

agent. We note, however, that this attack can be easily addressed using the

attestation mechanism presented in [139], which build directly upon our earlier

work presented in Chapter 6 in establishing secure channels with known end-

points in P2P networks. That is, in addition to exchanging random numbers,

the originating and destination hosts also exchange ephemeral Diffie-Hellman

values gxO , gxD (where g is a generator of a suitable group negotiated in ad-

vance). Each host then computes a key K = gxOxD , concatenates this with the

exchanged TPM GetRandom value, and hashes the result. The output of this

hash is then fed into their respective TPM Quote commands as the random

challenge. Upon receipt of their respective attestations, both platforms check

for the inclusion of their random challenges by hashing K with their random

number. If this challenge is present in the received attestion, the originating

platform derives a symmetric encryption key from K and encrypts the mobile

agent with this key prior to migration. Thus, only the authenticated, attested

destination platform will be able to decrypt the agent.
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7.3.3 Sealing

Our second option is based upon the key exchange protocol defined in [54, 88]. In

this option, as per the pre-deployment phase presented in Section 7.3.2, a mobile

agent’s static code, data, state, its itinerary and a list of trustworthy software states

are all signed by the agent owner using his private key KAOpriv prior to deployment.

This signature and the agent owner’s public key certificate are attached to his mobile

agent.

Prior to migrating a mobile agent, the originating host sends a list of candidate

platform states (as extracted from the mobile agent’s list of trustworthy states) to

the destination host. If the destination host is capable of configuring itself to match

any of the received candidate platform states, the destination host generates a non-

migratable asymmetric key pair, where the private component of this key is sealed

to one of the selected platform states (see Section 2.4.4.2).

To generate this key pair the destination host calls its TPM CreateWrapKey

command to create a non-migratable key with specified state constraints for pri-

vate key usage as input. The destination host next calls TPM CertifyKey using his

private AIK key (for which the corresponding public part has been certified) to gen-

erate a signed data structure containing the public key from the newly generated key

pair and a description of the state to which the corresponding private key is bound.

This data structure, along with a random number (as per our mutual attestation

approach) is returned to the originating host on which the mobile agent resides.

Once this response has been received, the AIK credential of the destination host is

validated, the signature of the destination host on the returned data structure is

verified, and the state reflected in the PCRs to which the key is bound is compared

to the values stored within the mobile agent. If a match is found, the originating

host attests to its current state (with the random number returned from the destina-
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tion host as input), encrypts the mobile agent with the destination hosts’s certified

public key and sends both the host attestation and the encrypted mobile agent. As

per our mutual attestation based approach, upon receipt of the mobile agent, the

destination host validates the public key certificate attached to the mobile agent,

extracts the public key and verifies the mobile agent owner’s signature. Addition-

ally, the destination host queries the agent for a list of trustworthy software states

and compares this list to the attested state returned by the originating platform. If

a match occurs, then the destination host decrypts the mobile agent and executes

it in its own (attested) isolated compartment. If any of the above checks fail, the

originating host selects the next host in the mobile agent’s itinerary and reruns the

above process. This process continues on all subsequent platforms until the agent

achieves its goal or the agent reaches the end of its itinerary.

Analysis: We will now examine how well this proposal prevents the threats identi-

fied in Sections 7.2.1 and 7.2.2.

• Unauthorised Access: From the host’s perspective, this approach provides

similar guarantees to our mutual attestation approach. However instead of

the explicit destination host attestation provided in our mutual attestation

approach, we replace the destination host’s attestation with an implicit at-

testation in the form of sealing the mobile agent. From the mobile agent’s

perspective, the use of sealing in this context prevents the mobile agent from

being decrypted and executed on the destination host if the destination host is

not in a specified trustworthy state. This approach thus limits the TOCTOU

problem discussed in our mutual attestation approach.

• Denial of Service : The threat of either host or mobile agent denial of service

is identical to that in our mutual attestation based approach.

• Eavesdropping: The threat of either host or mobile agent eavesdropping is
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identical to that in our mutual attestation based approach.

• Alteration: The threat of either host or mobile agent alteration is identical

to that in our mutual attestation based approach.

• Masquerade: The threat of either host or mobile agent masquerade is similar

to that in our mutual attestation based approach. However, instead of intro-

ducing an additional Diffie-Hellman channel to prevent proxy relay attacks,

our use of sealing directly addresses this issue. The use of a non-migratable

key allows only the identified destination platform to decrypt the mobile agent

post-migration.

7.3.4 Environmental Key Generation

A sealed object in Trusted Computing is uniquely bound to a single TPM instance.

It is not possible for a sealed object to be opened on a platform that did not orig-

inally seal that object. In our sealing-based proposal in Section 7.3.3, we outlined

an approach that would allow a host to seal an object to a destination platform.

However, such a sealing mechanism merely represents a one-hop extension to the

TCG’s native sealing approach. For every host an agent visits, our sealing approach

would require the current host to encrypt an agent with a public key (for which the

private key is bound to an agreed state) obtained from the next host in a mobile

agent’s itinerary. In certain environments it may be preferable to have a generic

sealing mechanism that allows an object to be sealed to a class of platforms, rather

than being sealed to an individual platform.

The solution we present here extends the concept of Environmental Key Gen-

eration (EKG), as discussed in Section 7.2.4, to incorporate Trusted Computing

functionality. EKG is founded upon the notion of constructing keying material from

classes of environmental data. A Trusted Computing augmented version of this ap-
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proach uses a current platform’s state, as indicated by one or more PCR register

values, as the environmental data from which a key is created. This key can then

be used to “seal” an agent’s sensitive code, data, itinerary and state information.

Prior to deployment, the mobile agent owner makes use of Algorithm 7.1 to produce

an agent in which its sensitive code, data or state can only be accessed if certain

environmental properties are met:

Algorithm 7.1 Pre-Deployment Environmental Key Generation
1: N := TPM GetRandom
2: PCRs:= Indices of PCRs
3: KEKG:= H(“concatenated values of PCRs indicative of a trusted platform state”)
4: MA:= Mobile Agent ‖ EKEKG(“sensitive portion of code/data/state informa-

tion to be protected - specific to the mobile agent”)
5: T := H(N ⊕ “concatenated values of PCR registers indicative of a trusted platform

state”)
6: Signature := SignKAOpriv

(MA ‖ N ‖ PCRs ‖ T )
7: MA := MA ‖ N ‖ PCRs ‖ T ‖ Signature

Notation: N is a random number generated by the TPM. PCRs is a list of PCR

indices. KEKG is an environmentally generated key generated by the mobile agent’s

owner. H is a hash function. EKEKG
denotes an encryption operation using key

KEKG. MA is the mobile agent, the sensitive portions of which are encrypted with

KEKG. T is the test case that will be used to determine if a TMAP is in the desired

state (see Algorithm 7.3.4). Signature is a signature generated over MA ‖ N ‖
PCRs ‖ T using the mobile agent owner’s KAOpriv private key.

Upon arrival at a destination TMAP, the TMAP verifies the mobile agent’s

signature and, if verified, executes the mobile agent. The non-EKG protected portion

of the mobile agent executes Algorithm 7.2.

The mobile agent requests the host TMAP to perform a TPM Quote command.

As input to this command, the mobile agent specifies the PCR indices it would

like reported, PCRs, as well as a nonce, H(N ‖ TPM GetRandom) as a freshness

check. Using its private AIK, the TMAP outputs a signed data structure, attest.
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Algorithm 7.2 Decrypting an EKG Protected Agent
Require: attest := TPM QuoteAIK(PCRs, H(N ‖ TPM GetRandom))
Require: V erify(attest) == valid
Require: TPM PCR Composite := Extract(attest)
1: while TPM PCR Composite has more elements do
2: state := state ‖ TPM PCR Composite.pcrvalue
3: end while
4: if H(N ⊕ state) == T then
5: DH(state)(M)
6: else
7: Migrate to next host
8: end if

The mobile agent next verifies the AIK signature of the TMAP on the attest data

structure and checks for the inclusion of his nonce, N . If these checks pass, the

mobile agent extracts the TPM PCR Composite data structure (which contains the

indices of attested PCRs and their values) from attest.

In steps 1–3 of Algorithm 7.2 the mobile agent constructs a representation of the

current TMAP’s platform state by concatenating the values of all the returned PCR

registers together into a single string, state. In step 4, if N ⊕ state matches the

owner’s test case T , then the TMAP decrypts (DH(state)(M)) the sensitive portion

of the mobile agent, else the mobile agent migrates to the next host on the mobile

agent’s itinerary. This process continues until either the mobile agent reaches the

end of its itinerary or the mobile agent achieves its goal.

Analysis: We will now examine how well this proposal prevents the threats identi-

fied in Sections 7.2.1 and 7.2.2.

• Unauthorised Access: From the host’s perspective, the threat of unau-

thorised access is identical to that in our mutual attestation based approach.

From the mobile agent’s perspective, the inability of a host to gain unautho-

rised access is predicated upon the inability of a host platform to “guess” the

required platform configuration state necessary for decryption of the mobile

187



Protecting Mobile Agent Migration with Trusted Computing

agent’s protected elements. If a host is capable of doing this, then the host

can extract the agent’s sensitive code data or state.

• Denial of Service: From the host’s perspective, the threat of unauthorised

access is identical to that in our mutual attestation based approach. From

the mobile agent’s perspective, the threat of denial of service is much greater

than that in either our mutual attestation-based or sealing-based approaches.

As there is no (implicit or explicit) attestation of either party, the host upon

which the mobile agent is currently executing is free to constrain the mobile

agent as it sees fit.

• Eavesdropping: From the host’s perspective, the threat of unauthorised ac-

cess is identical to that in our mutual attestation based approach. From the

mobile agent’s perspective, the risk of eavesdropping is much greater than

that in either our mutual attestation-based approach or our sealing-based ap-

proaches due to the absence of any attestation checks which would allow the

mobile agent to know how trustworthy a destination host is prior to migration.

• Alteration: From the host’s perspective, the threat of alteration is identical

to that in our mutual attestation-based approach. From the mobile agent’s

perspective, the risk of alteration (of unsigned data, code or state information)

is much greater than either our mutual attestation based approach or our

sealing based approach due to the absence of any attestation checks.

• Masquerade: From the host’s perspective, the potential of a mobile agent

masquerading as another agent is identical to that in our mutual attestation

based approach. From the mobile agent’s perspective, the risk of a host mas-

querading as another host is much greater than that in either our mutual

attestation based approach or our sealing based approach due to the absence

of any attestation checks.
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On the surface this approach may seem to suffer from insurmountable deficien-

cies when compared to either our mutual attestation based approach or our sealing

based approach. For reasons that will be outlined in Section 7.3.6, our EKG-based

approach has benefits in certain environments where time-sensitive epidemic up-

dates may be required. For instance, one could imagine a vehicular ad hoc network

in which a car manufacturer wishes to rapidly upgrade the firmware of select car

models whilst ensuring that the correct update is applied only to a specific subset

of cars. In this environment, interactions with either the originating host’s TPM or

the destination host’s TPM may cause protracted delays resulting in cars driving

past each other and out of each other’s communication rage. In this setting, an

EKG-based approach may be highly desirable to allow the rapid exchange of mobile

agents without having to incur processing delays resulting from interacting with the

car’s TPM.

7.3.5 Certified Migration

As we saw in Section 2.4.4.1, a Certified Migratable Key (CMK) is a key that are

migrated from one TPM-compliant platform to another provided certain conditions

can be satisfied. In particular, prior to a CMK being migrated, the approval of a

Migration Authority (MA) or Migration Selection Authority (MSA) must be sought.

Additionally, post-migration any attribute designation, key type, authorisation or

state requirements specified at the time of CMK generation will be enforced by the

TPM of the platform to which the key is migrated.

In our final option, prior to deployment, the mobile agent owner signs any im-

mutable portions of the mobile agent using his private key KAOpriv and attaches

his public key certificate for KAOpub
to his mobile agent. The mobile agent owner

next generates a new CMK key pair using the TPM CMK CreateKey command. As
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part of this key generation process, the mobile agent owner specifies both a state

constraint for private key usage and the identity of the MA/MSA that must provide

approval prior to allowing a key to migrate further.

After the private key is generated, the mobile agent owner requests migration of

his newly generated CMK private key to all the hosts on his mobile agent’s itinerary.

The MA/MSA, upon receiving this request, determines whether each platform on

the list is considered trustworthy enough to obtain the mobile agent owner’s CMK

private key. Based on this determination, the MA/MSA signs a TPM CMK AUTH

or TPM RESTRICTEDKEYAUTH (depending on whether the approval authority

is an MA or an MSA) and returns an array of these structures to the mobile agent

owner. Once approval has been received, the mobile agent owner migrates his CMK

private key to each approved TMAP on the agent itinerary. The agent owner next

encrypts his mobile agent using his CMK public key in the knowledge that his mobile

agent can only be decrypted by a destination TMAP to which the CMK private key

has been migrated and only when those platforms are in a particular software state.

This approach provides similar mitigation to both host and mobile agent based

unauthorised access, denial of service, eavesdropping, alteration and masquerade

threats as our sealing-based approach. However, achieving Certified Migration

within a mobile agent framework necessitates the inclusion of an additional infras-

tructural element. We require the presence of either an MSA or an MA within the

network and for each agent owner to enrol one or more CMKs with this MA/MSA.

Additionally, this approach prevents variability in the mobile agent’s itinerary as the

agent owner must ahead of time migrate keys to each platform he wishes his agent

to visit prior to initially migrating the agent. This may not always be practical in

all deployments and may limit the scalability of such a solution.
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7.3.6 Performance

One issue not discussed in our analysis of the preceding schemes is the issue of denial

of service resulting from delays arising from interactions with a host’s TPM. The

potential for multiple attestation requests or, in particular, requests involving the

generation or use of asymmetric key pairs arriving in quick succession from remote

hosts may result in a denial of service attack against a host. On average, a TPM

takes between one and three seconds to perform a signature with a TPM-controlled

key and even longer to generate an asymmetric key pair [119, 138]. Therefore, an

excessive number of attestation or key generation requests may result in a perfor-

mance bottleneck at the TPM and causes the host platform to drop requests [138].

Our mutual attestation and sealing approaches would appear to suffer most given

these constraints. However, our certified migration approach and our environmental

key generation approach fare considerably better. In particular, with both our EKG

and CMK approaches, the destination host can schedule the execution of agents

based on a fair scheduling algorithm for timed access to the host’s TPM.

7.4 Conclusions

Anecdotal evidence suggests that the mere presence of Trusted Computing technol-

ogy in a mobile agent setting would solve a multitude of security issues currently

present in mobile agent systems [51]. Unfortunately, this is not always the case. In

this chapter we outlined the security issues faced by both mobile agents and mobile

agent hosts, and discussed various ways in which Trusted Computing can be used to

enhance the security of mobile agent migration. We examined various ways in which

Trusted Computing primitives can be deployed in order that an agent originator can

gain assurance that each host platform visited by his agent will behave in an ex-

pected manner prior to sensitive agent information being accessed. We highlighted

191



Protecting Mobile Agent Migration with Trusted Computing

a number of ways in which we can achieve this functionality and noted the pros and

cons of each approach.

Whilst outside the scope of this chapter, the introduction of light-weight attes-

tation techniques as proposed in [56], [134] and [138] may go a long way to reducing

the performance burden for our attestation and sealing approaches. However, much

work still remains in the design of light-weight protocols for Trusted Computing.

We believe this to be a fruitful area for future investigation.
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Chapter 8

Summary and Conclusions

8.1 Summary

In this thesis we have examined how Trusted Computing technologies, as applied to

selected application domains, can be used to impede the distribution, infection and

execution of malicious applications. Specifically, we have looked at how fundamental

concepts of Trusted Computing (namely, integrity measurement, storage and attes-

tation; protected storage; authenticated boot; and hardware-enforced isolation) can

be used to restrict the impact of malicious applications (malware) and reduce the

attack surface of a platform.

In isolation, integrity measurement and storage functionality do not provide a

means of defending against malware. They do, however, provide the foundation for

a number of other services useful in combating the effects of malware. The accurate

recording and storage of events within a platform enables a Trusted Platform to later

reliably report (attest) information about its current state to interested parties. On

request from a challenger, a Trusted Platform can, using a private attestation key,

sign integrity metrics reflecting (all or part of) the platform’s software environment.

The challenger may use this information to determine whether it is safe to trust the

platform from which the statement has originated and (all or part of) the software

environment running on the platform. For instance, a platform, upon requesting
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access to a company’s intranet, may be required to demonstrate through attestation

that it has up-to-date anti-virus software with the latest signature definitions, that

its spam filters are operating correctly and that it has installed the latest OS security

patches. Failure to report, or reporting unacceptable results, may prevent a platform

from accessing a company’s intranet thus (potentially) reducing the likelyhood of

the requesting platform acting as a vector of infection.

Protected storage functionality, as provided by a Trusted Platform, can effec-

tively act as a barrier to the revelation of sensitive data on an infected platform.

Using sealed storage, an end-user can protect their private data (e.g., credit card

details) by making revelation of that data contingent on a platform being in a par-

ticular state. A user can seal their banking data to a state that requires a particular

banking application to be running on their platform, and nothing more. This fea-

ture would therefore ensure that malicious software, such as a keystroke logger or

trojan horse, could not gain access to security sensitive data, as the presence of such

malware would change the platform state.

Finally, hardware-enforced software isolation enables the segregation of security-

critical software and data so that they cannot be observed and/or modified in an

unauthorised manner by software executing in parallel execution environments. The

presence of isolated execution environments can ensure that any infection is con-

tained within the execution environment which the malware has infected. Addition-

ally, complementary hardware extensions, developed as part of, and in conjunction

with, Intel’s LaGrande and AMD’s AMD-V initiatives, support the establishment

of trusted channels between input and output devices and programs running within

isolated execution environments. In this way, user I/O data can be secured in transit

to protect it from malware which may have infiltrated the platform [60].

In this thesis we have shown how these various functions, both in isolation and

when working in concert, can be used to protect sensitive user data. In Part I of this
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thesis, we examined the issue of protecting Internet-based Card Not Present (CNP)

transactions with Trusted Computing technology. In doing so, we examined what is

currently possible versus what will be possible in the medium-to-long term.

In Chapter 4 we examined what can be achieved with current deployments of

Trusted Computing for protecting CNP transaction data. To address the problem

of a user unknowingly revealing sensitive data to a phishing site we examined the

use of the TPM’s protected storage capabilities coupled with the use of physical

presence signals. We proposed the use of SSL client-side authentication to establish

a mutually authenticated SSL tunnel over which credit card data can be communi-

cated. In our approach, an SSL private key (for which the public key has received

certification) is non-migratable/certifiable migratable from the customer’s TPM.

Consequently, when a user visits a phishing site and is tricked into revealing credit-

card data, a phisher will not be able to impersonate the user as the phisher will not

have access to the private key used to complete client-side SSL authentication. Un-

fortunately, such an approach does not prevent malware resident on the TPM-host

platform from capturing customer data and using the TPM-protected private key to

establish illegitimate sessions and fraudulently impersonate a customer. To combat

this threat, we employed Trusted Computing’s physical presence functionality. The

use of physical presence effectively prevents malware from generating multiple spu-

rious transactions without direct user involvement. When combined with client-side

certification, our approach offers the potential to significantly reduce the levels of

fraud currently seen in on-line CNP payments. Indeed our approach can be ex-

tended to any application where demonstration of sole control of a cryptographic

key is important.

In Chapter 5, we described a system that makes use of the full spectrum of

Trusted Computing technologies to securely emulate point-of-sale Integrated Cir-

cuit Cards compliant with the Europay Mastercard and Visa (EMV) specifications.

Emulation of EMV-compliant cards confers “tamper resistant” properties that are
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normally associated with physical EMV card use at point-of-sale terminals, making

it possible to demonstrate card ownership and authentication in a virtual environ-

ment.

Our e-EMV architecture incorporates both PKI enrolment processes for cus-

tomers and merchants, and the secure download of an e-EMV card and a merchant

terminal application to their respective platforms. Together, the interoperation of

these applications replicate the functionality of a standard EMV payment card trans-

action. Prior to transaction initiation, a customer launches his newly downloaded

e-EMV application in an isolated execution environment, and attests to this fact to

the merchant. This provides a guarantee that, at a particular point in time, the

customer’s e-EMV application is operating as intended and that the customer is a

valid cardholder. Likewise, a customer may obtain a similar guarantee from a mer-

chant. The customer may request attestion of a merchant terminal application to

ensure that (i) the merchant has been properly enrolled and (ii) that the merchant’s

terminal application will behave as expected and will not divulge his sensitive card

data. With both attestations, any divergence from intended operating state (due to

unwanted memory resident applications) will be detected on verification of an at-

testation, allowing customer and merchant risk management routines to terminate

a transaction.

In addition, during transaction initiation, EMV PIN authentication and autho-

risation is made intrinsic to transaction processing in our system, just as with EMV

in PoS transactions. A trusted path between the keyboard and TPM, enabled by

chipset extensions, can be used to securely transfer authorisation data in the form

of a PIN or a passphrase from the customer’s keyboard to the TPM. A correctly

entered PIN/passphrase then assures the TPM of the physical presence of the card-

holder and “unlocks” a TPM private key. The assurance of physical presence can

be transferred to the merchant through the TPM’s subsequent use of this key. This

combined functionality provides a much stronger form of authentication and au-
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thorisation than is currently employed for CNP payments. Our work in this area

builds upon the pre-existing EMV infrastructure to provide a secure and extensible

architecture for CNP payments.

In Part II of this thesis, we examined Trusted Computing technology in the con-

text of Peer-to-Peer systems and mobile agents. In Chapter 6, we demonstrated the

application of Trusted Computing to securing Peer-to-Peer networks. In doing so,

we noted that many security services within networks depend on the establishment

of stable identities of network users. We showed how the TPM protocols for Direct

Anonymous Attestation can be used to enforce the use of stable, platform-dependent

pseudonyms and thus reduce pseudospoofing in P2P networks. Taking this a step

further, we showed how runs of DAA protocol can be used to build entity authen-

tication at the level of pseudonyms and can be securely linked to the establishment

of secure channels with known endpoints. Our work here reflects a possible way

forward in using Trusted Computing to enable secure P2P e-commerce, through the

development of secured commercial P2P networks and of P2P networks free from

pseudospoofing and pseudotheft.

In Chapter 7, we examined the long-term role Trusted Computing can play in

mobile agent security. Mobile agents are autonomous programs that are capable

of migrating from one host to another in order to perform some specific task or

function. This mobility aspect engenders a number of threats to both mobile agents

and the hosting systems on which they execute. The more hosts an agent visits,

the greater the risk of agent compromise by a malicious host. This in turn leads to

a corresponding increase in risk of compromise to subsequent host systems that an

agent visits. To address these problems a wide range of proposals have been devel-

oped that tackle both host and agent security. We examined a number of alternative

mechanisms for sealing mobile agents to pre-determined platform states to protect

sensitive agent information, and discussed the relative merits and deficiencies of each

approach.
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8.2 Directions for Future Work

At the end of each chapter, we provide several avenues for future research. However,

in addition to these individual pieces of work, a number of key challenges need to

be addressed in order to accelerate the widespread adoption of Trusted Computing.

Many of the challenges are not purely technical in nature, but rather involve a

mixture of technical, policy and management aspects.

Perhaps the four most difficult problems presented in this thesis will be the de-

sign of a semantically meaningful form of attestation that is capable of dealing with

the complexities of modern systems, the design of robust business models that take

advantage of Trusted Computing functionality, the creation of a global PKI infras-

tructure and the design of Trusted Computing products such that the technology

will be usable for mass-market consumption. Thus far, with the exception of on-

going research into the design of new attestation protocols, all of these concerns have

largely been ignored in the literature. We believe these to be serious problems that

must be overcome if Trusted Computing is to fulfil its maximum potential.

8.2.1 Attestation

Given current software development practices, frequent patching to OS components

and applications can be expected to be the norm for the foreseeable future. The

current method for performing integrity measurements on Trusted Computing plat-

forms means that the order in which patches are applied can result in a combinatorial

explosion of distinct configurations for a single application, with each configuration

requiring a distinct reference value for attestation purposes. This makes the job of

the entity evaluating an application exceedingly difficult, as they will need to be

able to verify all possible combinations of patches to an application. Indeed, per-

haps more problematic is the fact that the application of one or more patches to an

198



8.2 Directions for Future Work

application may render any security guarantees associated with the original appli-

cation void, unless the evaluation process is rerun for every combination of patch.

Semantic remote attestation and property based attestation take the first steps in

addressing some of these concerns but much work still remains.

8.2.2 Business Models and Risk

We are beginning to see the emergence of Trusted Computing augmented applica-

tions in enterprise-level security infrastructures, with the pharmaceutical, military

and commercial sectors taking advantage of one or more aspects of TPM functional-

ity [77]. However, at present, consumer deployments of Trusted Computing remain

relatively untested. A through investigation of the business risks associated with

deploying a consumer-based Trusted Computing infrastructures would be necessary

to fully realise the applications discussed in Chapters 4 – 7. Integrating Trusted

Computing with the strategic objects of a consumer-facing industry would necessi-

tate a through cost-benefit quantification, specific to each environment into which

Trusted Computing functionality would be deployed. We believe this will be an

interesting area for future research.

8.2.3 Public Key Infrastructure and Trusted Computing

Trusted Computing relies on an as yet largely unavailable and unspecified PKI in

which multiple CAs (possibly existing in different organisational, procedural and/or

jurisdictional domains) are expected to inter-operate. The challenges and pitfalls of

PKI deployment are well-documented [64, 106], and high-profile system and protocol

failures that have been blamed on inappropriate deployment of PKI abound, with

SET [133] providing one of the most prominent recent examples. Consequently, the

development of a Trusted Computing PKI and the supporting key life-cycle policies

and practice statements pose many legal and policy-design challenges. We believe
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this will be a fruitful area for future research.

8.2.4 Usability

Currently, the use of a TPM requires a detailed understanding of how the underlying

technology works. For example, the very act of taking ownership of a TPM prior to

its use is a non-trivial task requiring a user to understand and edit BIOS settings.

Similarly, problems may arise with respect to password use and management, where

a user may be expected to remember large numbers of passwords associated with

protected data or keys in a TPM. While the deployment of numerous passwords

may be viewed as a sound security decision, management of such passwords so that

access is not jeopardised may prove problematic.

Usability issues such as these are currently a reflection of the general immatu-

rity of Trusted Computing technology and the associated marketplace. Whilst a

huge effort has been put into the design and specification of technical aspects of

Trusted Computing by the TCG, so far less work seems to have been done to ad-

dress user-centric issues. The design of sufficiently simple, yet semantically powerful,

user-interfaces that are capable of communicating rich security information to users

remains an open research problem.

8.3 Conclusions

Malware is beginning to combine characteristics of viruses, worms and trojan horses

with server and Internet vulnerabilities, fusing numerous methods for compromising

end-user systems with multiple means of propagation to other networked machines

[142]. Consequently, malware technology represents a serious and viable threat to

both consumer and corporate data.
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As a consequence of the perpetual increases in the volume, complexity and scope

of malware attacks, the natural question arises, how can users trust the software en-

vironments with which they interact? Trusted Computing technology partially ad-

dresses this question by providing a means for end-users (and third-parties) to derive

increased confidence in the platforms with which they interface, as well as providing

standardised mechanisms to protect user data and information from software attack.

Trusted Computing is undoubtedly a powerful technology, with a huge range of

possible applications. Some of these have been developed in this thesis. Nevertheless,

there remain a number of significant obstacles to its widespread use, as we have

discussed above. Addressing these challenges is therefore a high priority for future

research. Many challenges to the successful large-scale use of Trusted Computing

remain. Providing the full benefits of Trusted Computing to the widest possible

audience represents a major challenge for future research.
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