
Extending Secure Execution Environments Beyond the TPM 

(An Architecture for TPM & SmartCard Co-operative Model) 

 

Talha Tariq 

 

 

 

 

 

Technical Report 

RHUL-MA-2009-09 

16th February 2009 

 

 

 

 

 

 

 

Department of Mathematics 

Royal Holloway, University of London 

Egham, Surrey TW20 0EX, England 

http://www.rhul.ac.uk/mathematics/techreports 

 



 ii 

TABLE OF CONTENTS 

ACKNOWLEDGEMENTS .......................................................................................................... VI 

1.0 EXECUTIVE SUMMARY ............................................................................................ 1 

2.0 TRUSTED COMPUTING ............................................................................................. 3 

2.1 Trusted Computing Group ..................................................................................... 3 

2.2 Motivation for Hardware Based Security Device .................................................. 3 

2.3 Minimum Trusted Platform Requirements ............................................................ 4 

2.4 The Trusted Platform ............................................................................................. 4 

2.4.1 Root of Trust for Measurement ......................................................................... 4 

2.4.2 Root of Trust for Storage ................................................................................... 5 

2.4.3 Root of Trust for Reporting ............................................................................... 5 

2.5 The Trusted Platform Module ............................................................................... 5 

2.5.1 Input / Output: ................................................................................................... 5 

2.5.2 Key Generation .................................................................................................. 5 

2.5.3 Cryptographic Engine / Co-processor ............................................................... 5 

2.5.4 HMAC Engine ................................................................................................... 5 

2.5.5 SHA-1 Engine.................................................................................................... 6 

2.5.6 Power Detection ................................................................................................ 6 

2.5.7 RNG ................................................................................................................... 6 

2.5.8 NV Memory ....................................................................................................... 6 

2.5.9 Volatile Memory................................................................................................ 6 

2.5.10 Opt-In................................................................................................................. 6 

2.5.11 Key Storage: ...................................................................................................... 6 

2.5.12 PCRs .................................................................................................................. 6 

2.5.13 Execution Engine ............................................................................................... 6 

2.5.14 Authentication and Authorization ..................................................................... 7 

2.5.14.1 Physical Presence .................................................................................. 7 

2.5.14.2 Authorization Data ................................................................................ 8 

2.5.14.3 Authorization Protocols ........................................................................ 8 

2.5.15 TPM Services .................................................................................................... 9 

2.5.15.1 Integrity Measurement, Recording and Reporting ................................ 9 

2.5.15.2 Protected Storage .................................................................................. 9 

2.5.15.3 Monotonic Counters ............................................................................ 10 

2.6 Summary .............................................................................................................. 10 

3.0 OVERVIEW OF SMART CARDS ............................................................................. 12 

3.1.1 Introduction ..................................................................................................... 12 

3.2 Smart Card Industries .......................................................................................... 12 

3.3 Smart Card Charecteristics .................................................................................. 13 

3.3.1 Portable Platform ............................................................................................. 13 

3.3.2 Processing Power:............................................................................................ 13 

3.3.3 Computation and Performance limitations ...................................................... 13 

3.3.4 Storage and memory ........................................................................................ 14 



 iii 

3.3.5 Special Purpose Crypto-Processors: ................................................................ 14 

3.3.6 Tamper Resistance ........................................................................................... 14 

3.3.7 Protected Storage ............................................................................................. 15 

3.3.8 Secure Execution ............................................................................................. 15 

3.4 Multi-Application programmable SmartCards .................................................... 15 

3.4.1 Smart Card Software ....................................................................................... 15 

3.4.1.1 Operating System .................................................................................. 15 

3.4.1.2 Applications .......................................................................................... 16 

3.4.1.3 Runtime Environment ........................................................................... 16 

3.4.1.4 Loader ................................................................................................... 17 

3.4.2 The .NET Smart Card ...................................................................................... 17 

3.4.2.1 The Application Lifecycle .................................................................... 18 

3.4.2.2 The Common Language Runtime and its benefits ................................ 20 

3.5 Summary .............................................................................................................. 21 

4.0 TPM & SMARTCARD COUPLING FOR ENHANCED SECURITY SERVICES .. 22 

4.1 Introduction: ........................................................................................................ 22 

4.2 A TPM Architecture for Secure Execution ......................................................... 24 

4.2.1 A hypothetical architecture of the TPM-Internal Execution Environment ..... 24 

4.3 Smart Card Capability Requirements .................................................................. 26 

4.3.1 Platform Differences between TPM and the Smart Card ................................ 26 

4.3.2 Coupling Challenges........................................................................................ 26 

4.4 Experimental Platform ......................................................................................... 27 

4.5 Secure TPM and Smartcard Binding ................................................................... 27 

4.5.1 Extended Crypto Remoting for End-to-End Encryption ................................. 28 

4.5.1.1 .NET Remoting Overview .................................................................... 28 

4.5.2 Securing Remoting communication between the TPM and the SmartCard .... 32 

4.5.2.1 Custom Sinks (Extending .NET Remoting to support encryption) ...... 34 

4.5.3 Data Marshalling (Data Transformation between the TPM and the SC) ........ 41 

4.5.4 Securing Remoting Components in a Distributed Environment ..................... 41 

4.5.4.1 Authentication and Encryption with IIS ............................................... 42 

4.6 Summary .............................................................................................................. 43 

5.0 EXTENDED TPM SERVICES PROVIDED BY THE SMART CARD .................... 45 

5.1 Introduction .......................................................................................................... 45 

5.2 Flexible Authorization ......................................................................................... 45 

5.2.1 Introduction: .................................................................................................... 45 

5.2.2 Smart Card participation in Authorization Protocols ...................................... 48 

5.2.2.1 Simple Storage of Authorization Data .................................................. 48 

5.2.2.2 Computation of Shared Secret .............................................................. 49 

5.2.2.3 Secure Generation and Insertion of Authorization Data. ...................... 51 

5.2.3 Benefits of Enhanced Authorization. ............................................................... 52 

5.3 Validating TPM Generated QUote (Attestation) ................................................. 53 

5.3.1 Introduction: .................................................................................................... 53 

5.3.2 Function Details for SC_ValidateTPMQuote.................................................. 54 

5.3.3 The Process: ..................................................................................................... 54 

5.4 Enhanced Sealing and Binding ............................................................................ 55 

5.4.1 SmartCard Un-Bind ......................................................................................... 56 



 iv 

5.4.1.1 Function Details for SC_Unbind........................................................... 56 

5.4.2 SmartCard Bind / Seal ..................................................................................... 58 

5.4.2.1 Function Details for SC_Bind ............................................................... 59 

5.5 Enhanced Virtual Monotonic Counters ............................................................... 60 

5.5.1 Issues with the TPM Monotonic Counters: ..................................................... 60 

5.5.2 Smart Card Enhanced Counters: ...................................................................... 61 

5.5.2.2 Implementation Details and Function Calls: ......................................... 62 

5.5.2.3 Helper Functions: .................................................................................. 63 

5.5.2.4 Implementing .NET Transactions in the Smart Card ............................ 64 

5.6 Summary .............................................................................................................. 66 

6.0 SAMPLE APPLICATIONS FOR THE TPM & SC CO-OPERATIVE MODEL ...... 67 

6.1 Enhanced Digital Signature ................................................................................. 67 

6.2 Roaming DRM..................................................................................................... 70 

6.3 Some Further Applications .................................................................................. 73 

6.3.1 E-cash Tokens that only work with authorized platforms ............................... 73 

6.3.2 Ease of data migration between trusted platforms ........................................... 73 

6.3.3 Crypto schemes not supported by the TPM ..................................................... 73 

6.3.4 Flexible Authorization Applications ............................................................... 74 

6.3.5 Strengthen Remote Attestation ........................................................................ 74 

6.3.6 Smart Card SIM Bound with Mobile TPM ..................................................... 74 

7.0 SUMMARY AND CONCLUSION ............................................................................. 75 

7.1 The Trusted Platform Module ............................................................................. 75 

7.2 The SmartCards ................................................................................................... 75 

7.3 The SmartCard and TPM Coupling ..................................................................... 76 

7.4 Enhanced TPM and SMART CARD Services .................................................... 77 

7.5 Some Applications Developed with the coupled services ................................... 78 

7.6 Similar Work ....................................................................................................... 79 

APPENDIX A – USING TPM SERVICES IN WINDOWS ................................................... 81 

APPENDIX B - .NET CARD SPECIFICATIONS [8] ............................................................ 86 

APPENDIX C – DIFFERENCES BETWEEN MICROSOFT .NET AND GEMALTO .NET 

FRAMEWORK [33] ................................................................................................................... 91 

REFERENCES ............................................................................................................................. 93 



 v 

LIST OF FIGURES 

 

Figure 2-1 The Trusted Platform Module Components .................................................................. 7 

Figure 3-1 Gemalto. NET Card V2............................................................................................... 17 

Figure 3-2. The Gemalto Smart Enterprise Guardian ................................................................... 18 

Figure 3-3 Smart Card .NET Architecture .................................................................................... 18 

Figure 4-1 A Smart Card TPM Cooperative Model ..................................................................... 23 

Figure 4-2 A TPM Architecture for Trusted Execution................................................................ 25 

Figure 4-3 Simplified .NET Remoting Architecture. ................................................................... 30 

Figure 4-4 Session based symmetric key exchange. ..................................................................... 34 

Figure 4-5 .NET Remoting with pluggable custom sinks. ............................................................ 38 

Figure 4-6 A Distributed TPM / Smart Card co-operative model ................................................ 42 

Figure 5-1. Password based TPM Administration in Windows Vista .......................................... 47 

Figure 5-2 Authorization Data Stored & Presented by SmartCard in Authorization Protocols ... 49 

Figure 5-3 SmartCard Calculating the shared secret in Authorization protocols ......................... 51 

Figure 5-4 Smart Card participating in ADIP ............................................................................... 52 

Figure 5-5 TPM Attestation Validation by the Smart Card .......................................................... 55 

Figure 5-6 TPM Bound Data decrypted by a SmartCard by SC_UnBind. ................................... 58 

Figure 5-7 Sample scenario for SmartCard  Seal / Bind data for a particular TPM ..................... 59 

Figure 5-8 Smart Card Enhanced Seal / Bind ............................................................................... 60 

Figure 5-9 Smart Card Enhanced Monotonic Counter Creation and Usage ................................. 62 

Figure 6-1 Enhanced Digital Signature by TPM and SC .............................................................. 68 

Figure 6-2 Smart Card Enhanced Flexible Sealing....................................................................... 72 

Figure 7-1 The Trusted Base Services Library  ............................................................................ 85 

Figure 7-2 Block Diagram of the SLE88CFX2000P hardware [32] ............................................ 88 

Figure 7-3 Microsoft Crypto Architecture for Smart Cards [8] .................................................... 89 

Figure 7-4 Crypto Architecture in .NET Card [8] ........................................................................ 90 



 vi 

 ACKNOWLEDGEMENTS 

 

First of all I would like to thank Paul England from Microsoft for his constant inspiration, 

guidance and advice over the whole duration of the project.  

 

I would also like to thank my supervisor Chris Mitchell for his invaluable guidance and support 

throughout my studies at Royal Holloway. Without his feedback, comments and guidance this 

thesis would have never been completed. 

 

Special thanks to the David Robinson and the System Incubation Team at Microsoft Research for 

all their valuable comments and suggestions and for making the whole summer at Microsoft 

really enjoyable. 

 

I would like to thank my parents for their continuous love, support and motivation over the years 

that I have been away from home. 

 

And finally I would like to thank Microsoft Corporation for sponsoring this project and giving 

me the opportunity to work at Microsoft Research in Redmond.  

 

 

 



 1 

1.0  EXECUTIVE SUMMARY 

This project discusses some of the shortcomings and limitations of secure execution with 

the current state of the Trusted Computing Group (TCG) specifications. Though we feel that the 

various industry initiatives taken by the TCG and CPU manufacturers for hardware based 

platform security are a step in the right direction, the problem of secure isolated code execution 

and TCB minimization still remains unsolved. This project proposes and implements an 

alternative architecture for secure code execution. Rather than proposing recommendations for 

hardware changes or building isolated execution environments inside a Trusted Platform Module 

(TPM), we use a platform that provides related, yet different services for secure / trusted code 

execution; couple its functionality and bind it to a TPM using cryptographic primitives. For the 

purpose of this study we used multi-application programmable SmartCards but similar work can 

also be implemented on other platforms as long as they meet some pre-requisites described in 

Section 4.3.  

 

Though newer hardware platforms such as IntelTXT [1] (Trusted Execution Technology; 

formerly known as LaGrande) or AMD-V add support for native virtualization and secure 

interfacing with the TPM, the solution implemented in this project assumes a highly un-trusted 

environment and works on general purpose commodity hardware. Implementing a solution like 

this allows application developers to focus exclusively on the functionality and security of just 

their own code. Hence enabling them to execute their applications in isolation from numerous 

shortcomings and vulnerabilities that exist both in the form of hardware and software attacks. 

Furthermore we provide an interface to extend the existing functionality of the TPM by 

implementing special purpose code modules inside a smart card which can be used for all the 

functionalities missing in the TPM (for example replace-able cryptographic algorithms) yet 

required by high assurance and security sensitive applications. Furthermore by making small 

application closures running inside the secure execution environment of smart cards, we can 

minimize the TCB that a user needs to trust. 

 

We first discuss the challenges we face in the coupling process and the platform 

differences between the TPM and a Smart Card. We also discuss what solutions are possible and 

impossible in this scenario. Then we describe our implementation of a secure TPM / Smart Card 

cryptographic binding that gives us assurances of strong authentication with confidentiality and 

integrity services for the applications built with the coupled architecture. We move forward to 

describe our implementations of some of the enhanced TPM / Smart Card coupled services that 

were not possible with either a TPM or Smart Card alone and we discuss how these enhanced 

services add value to the current applications. With these enhanced TPM services we implement 

some applications that change the way conventional TPM or Smart Card applications are 

perceived. Finally we shed some light on potential future applications and future work. 

 

This report is divided into 7 chapters and 3 appendices:  

 

• Chapter 1 gives an overview of the project and contents of this thesis.  
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• Chapter 2 gives a brief overview of Trusted Computing, TPM, its components, its 

services and some of the limitations.  

• Chapter 3 gives an overview of the Smart Cards, their characteristics. We discuss the 

platform differences with the TPM, application development environments and the 

lifecycle. We also describe the .NET Card and what were the special features that 

motivated us to choose a smart card for the coupling platform. 

• Chapter 4 describes the limitations and differences of both SmartCards and the TPMs. It 

discusses a hypothetical ideal secure platform processor with a trusted execution 

environment built into it. But since such a platform is not available we discuss how we 

can extend and couple TPMs functionality with some other platform i.e. the SmartCards. 

We discuss the capability requirements of SmartCards and describe a secure TPM/ 

SmartCard binding architecture. 

• Chapter 5 describes the actual coupling implementation. Detailed design, analysis and 

implementation details are given with code snippets for the reader’s interest of the 

implementation of extending the secure execution environments of the TPM. Enhanced 

Services exposed by the smart card are also described in detail. Background motivation, 

challenges and special requirements are also discussed in detail. 

• Chapter 6 continues the theory and practice from Chapter 4 and 5 and we describe some 
sample applications that were developed using the building blocks from Chapter 4. 2 

Detailed applications are discussed from end to end and the implementations of some 

other few are described briefly. 

• Chapter 7 summarizes the whole project with directions of further work and similar 

research areas. 

 

• Appendix A gives a brief overview with screenshots of how to use the TPM services in 

Windows Vista. It explains the TPM ownership process and how to enable disable TPM 

calls from the Microsoft Management Console. 

• Appendix B lists the technical details and capabilities of the .NET smart card. This would 

give the reader a general idea of the platform used, its capabilities and limitations.  

• Appendix C describes some of the major differences between the SmartCard .NET 

Compact framework and the standard .NET framework. We recommend any reader who 

wishes to start development on a .NET Smart Card to analyze these differences before 

making any efforts on application development as these differences will help a developer 

to have an idea of the limitations and differences beforehand. 
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2.0  TRUSTED COMPUTING 

This Chapter gives a brief overview of Trusted Computing (TC), The Trusted Computing 

Group (TCG), the Trusted Platform Module (TPM) and its services. We briefly describe the 

industry trend that led to the development of the Trusted Computing Group and hence trusted 

computing. We discuss to the extent Trusted Computing solves some of these problems and 

discuss a few of its problems and limitations. We also briefly describe the components of a TPM 

and some of its major services including protected storage and attestation capabilities. 

2.1 TRUSTED COMPUTING GROUP 

The Trusted Computing group (TCG) is a joint consortium of some of the major 

hardware and software manufacturers. The TCG is a successor to the Trusted Computing 

Platform Alliance (TCPA), which was an initiative started by AMD, Hewlett-Packard, IBM, 

Infineon, Intel, Microsoft, and Sun Microsystems. At the time of this writing it contains 6 

fundamental organization components and 13 working groups.
1
 

 

A trusted platform provides a secure mechanism for verifying the integrity of a platform 

remotely. This is done by examining a chain of trust which goes through the examination of 

hardware bios or boot block, master boot record, operating system and finally the application 

state. A challenger (remote server or any authority interested in verifying the integrity of the 

system) checks the appropriateness of the integrity measurement process and compares the 

supplied values with the expected values and hence makes a decision on the next action. 

2.2 MOTIVATION FOR HARDWARE BASED SECURITY DEVICE 

All modern systems of software are becoming increasingly complex. As the computation 

and storage capacities of general purpose hardware are increasing, so is the complexity and size 

of the software running on them. A typical operating system is millions of lines of code and as 

more and more applications are added, the size becomes exponential. Several studies have shown 

and most of the ever emerging vulnerabilities in software prove that typical software products 

have at least a few critical security vulnerabilities per thousand lines of source code. Thus, a 

typical system has potentially thousands of security bugs and it only takes a matter of time for 

the security industry to find them. Most of the earlier systems (both hardware and software) were 

never designed with security in mind, hence building security on top of existing insecure 

software is not a termed a good idea as the amount of effort to replace billions of lines of code is 

not practical, neither in terms of cost of time and money, and nor does it gives us assurance of a 

minimum trusted base. Furthermore without hardware based platform security it is almost 

impossible to detect the presence of any malicious code as the program execution on a 

conventional computing platform can be easily attacked. Even with a little bit of hardware 

                                                 
1
 https://www.trustedcomputinggroup.org/home 
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support, it is quite easy to implement a better and more secure solution by adding another layer 

of security which if trusted can easily detect and report compromise.  

2.3 MINIMUM TRUSTED PLATFORM REQUIREMENTS 

The minimum requirements as put forward by a number of studies for trusted platforms 

are broadly divided into 4 categories: 

 

  1. Protected capabilities and shielded locations.  

  2. Integrity metric reporting secure key management. The platform can only be trusted if this 

fundamental root is trusted. 

  3. Platform attestation mechanisms. Attestations in generic terms mean the process by which 

the assurance of some information is guaranteed. That information is usually the integrity metric 

reporting of the platform software and state. 

  4. Integrity metric storage and measurement functionality that records, stores and reports the 

evidence of platforms claimed identity. 

 

Some more similar studies add more connected requirements for a minimal trusted platform. For 

example Microsoft Next Generation Secure Computing Base [2]  also adds the following 

requirements beyond the ones described earlier; 

 

 5. Process isolation with assurances of separation process execution with the help of a secure 

isolation kernel. 

 6. Trusted path which is a secure input and output to and from the user. 

2.4 THE TRUSTED PLATFORM  

A trusted platform module is essentially a secure crypto-processor that is bound to a 

platform to provide trusted security services. These services include providing secure storage of 

keys, integrity measurement functionality that records, stores and reports the evidence of 

platform state. It also includes providing attestation mechanisms and protected shielded locations 

for data storage. 

 

In order for a platform to be trusted, there has to be a minimum embedded root of trust 

implemented in the platform which can provide these services and can be trusted itself. At the 

minimum the 3 rudimentary roots of trust [2] are defined as follows: 

2.4.1 Root of Trust for Measurement 

The Root of Trust for Measurement (RTM) is a computing engine capable of making 

reliable integrity measurements. On a normal PC the Core RTM is implemented in the BIOS. 
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2.4.2 Root of Trust for Storage 

The measurements taken by the RTM have to be securely stored for them to be trusted. 

Root of Trust for Storage is a computing engine capable of maintaining an accurate summary of 

integrity measurements that were made by the RTM. 

2.4.3 Root of Trust for Reporting 

            Root of Trust for Reporting (RTR) is the computing engine capable of reporting data 

stored by the RTS. 

 

The Root of Trust for Storage and the Root of Trust for Reporting together form the minimum 

functionality that should be offered by the TPM. Ideally the Core Root of Trust for Measurement 

must also be part of the TPM. 

2.5 THE TRUSTED PLATFORM MODULE 

A TPM contains a number of fundamental building blocks in order to implement the 

functionality of RTS and RTR. Every TPM has a set of keys associated with it. The most 

important is called the Endorsement Key which is a unique key pair per TPM. All other keys are 

protected under a key hierarchy under a master key which is called the Storage Root Key. This 

key is also stored securely inside the card and all other keys can be encrypted under SRK and 

stored separately. 

 

The other major components of a typical TPM are: 

2.5.1 Input / Output:  

Manages information flow with encoding / decoding of communications. 

2.5.2 Key Generation 

Secure Asymmetric and Symmetric Key Generation. Also creates random nonces for use 

in Authorization protocols. 

2.5.3 Cryptographic Engine / Co-processor 

Used for encryption / decryption; digital signature generation / validation etc 

2.5.4 HMAC Engine 

HMACs are used for authorization proofs and command integrity verification if it has 

been modified during transit. 
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2.5.5 SHA-1 Engine 

SHA-1 engine is also used extensively in lots of applications including authorization 

protocols, attestation and sealing calls. 

2.5.6 Power Detection 

Manages the TPM and platform power states 

2.5.7 RNG 

True Random Number generation for use in cryptographic protocols. 

2.5.8 NV Memory 

Holds identity information for e.g. the Endorsement Key and Storage Root Key. Also 

used for holding persistent state. 

2.5.9 Volatile Memory 

Used for storing active keys in use by the TPM (during encryption / decryption or 

signature functions). 

2.5.10 Opt-In 

This component is used when physical presence at the TPM must be demonstrated for 

e.g. during the ownership or clearing the TPM. 

2.5.11 Key Storage:  

Unique EK, SRK key hierarchy stored permanently  

2.5.12 PCRs 

16, 20 byte registers used to hold integrity metrics. 

2.5.13 Execution Engine 

Runs program code for executing TPM commands. 
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Figure 2-1 The Trusted Platform Module Components 

2.5.14 Authentication and Authorization 

Authentication to the TPM is required for most authorized operations. There are two main 

methods 

 

1. Physical Presence (that requires some physical interaction with the platform) 

2. Authorization Data (A secret value shared between the platform and the object owner) 

2.5.14.1 Physical Presence 

 

The TCG specifies Physical Presence for some sensitive operations. At the time of this 

writing
2
, the TPMs that are being shipped are disabled by default. To enable them from the 

BIOS, or even clear them physical presence is required. 

                                                 
2
 February 09 
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2.5.14.2 Authorization Data 

 

Possession or knowledge of an authorization data in the TPM context proves a complete 

ownership of a resource. The TCG defines it to be a shared secret between the object / resource 

and the owner. 

 

Authorization Data are used in Authorization protocols which are used to: 

 

• Handle the confidential creation of Authorization Data 

• Provide proof of knowledge of authorization data 

• Allow its secure update. 

 

A typical authorization data is 20 bytes. This is equal to the output of a SHA-1 

Cryptographic Hash which is shared between the object owner and the TPM. 

 

There are 3 types of authorization data: 

 

1. The Owner Authorization (for user authentication) 

2. Migration Auth (for objects declared to be migratable, to be used when migrating the 

objects). 

3. Auth data not associated with any particular object. These are created with every object 

and are required to allow use of the object in subsequent operations requested from the 

TPM. 

 

In the main part of the project we will describe how we use a SmartCard to hold, store, generate 

and provide on demand the authorization data for different objects and making the authorization 

protocols more strong with multi-factor authentication and secure generation of AuthData. 

 

2.5.14.3 Authorization Protocols 

 

There are a total of 6 authorization protocols. Three of them are used for securely pass 

the authorization data to the TPM, the other three are related to authorization data creation and 

update.  For details of these please see [2]. These protocols are also described in Section 5.2 

where smart card is used to enhance the security of these protocols with stronger TPM / SC 

binding. 

 

A. Protocols used for authorization data usage: 

i. Object Independent Authorization Protocol (OIAP) 

ii. Object Specific Authorization Protocol (OSAP) 

iii. Delegate Specific Authorization Protocol (DSAP) 

 

B. Protocols used for authorization data creation and update: 

iv. Authorization Data Insertion Protocol (ADIP) 

v. Authorization Data Change Protocol (ADCP) 

vi. Asymmetric Authorization Change Protocol (AACP) 
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2.5.15 TPM Services 

This section describes some of the most widely used services. Some of these important 

services (or their counterparts) would be implemented in the smart card in the TPM / SmartCard 

co-operative model to provide enhanced TPM services so this section is just to give a general 

idea to the user of the standard TPM services that are defined in the TCG model. For more 

details on these please see [2], [3], [4].  

 

The main goals of a TPM are to protect the most sensitive information for example 

cryptographic keys for leaks, theft and attacks by malicious code. The purpose of storing keys 

(or at the minimum the parent and root keys) inside the TPM is to ensure that the private and 

symmetric keys never leave the TPM and hence can survive attacks outside the trusted boundary. 

The TPM has a very limited storage for keys; hence a lot of keys are encrypted and stored 

externally.  

 

2.5.15.1 Integrity Measurement, Recording and Reporting 

i. Integrity Measurements and SML 

 

Measuring a Trusted platforms integrity means generation of measurement events which 

contain either measurement values or measurement digests which are the hash values 

representing the measurements. The measurement values are usually stored in a Stored 

Measurement Log (SML) outside the TPM [2]. The digests / hashes are stored in the platform 

configuration registers using the RTM, RTR and RTS capabilities. The measurements are carried 

out through different methods for e.g. an authenticated boot process is created with the CRTM 

initializing, measuring itself and carrying over the chain of trust measurements for the BIOS, 

boot loader, MBR, OS etc. The measurement values stored in PCRs are provided to a remote 

challenger through attestation. 

ii. Attestation 

 

Attestation is the reliable reporting of the platform state to a remote challenger. The integrity 

metrics are measured and stored in Platform Configuration Registers (PCRs) and a signature is 

created with an Attestation Identity Key (AIK). This TPM_Quote is provided to the remote 

challenger who makes a decision on the platform state by examining the PCR values containing 

the platform and software state. 

 

2.5.15.2 Protected Storage 

 

i. Key Hierarchy 

As defined earlier, each TPM is equipped with a unique Endorsement Key which is 

stored in the TPM. All the keys used by the TPM are kept under a protected key hierarchy whose 

parent key is the Storage Root Key (SRK) which is also stored in the TPM. 

ii. Sealing 
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Sealed messages are bound to a future platform state that must exist before the decryption 

is allowed. It associates the encrypted message with a set of PCR register values and a non-

migratable asymmetric key. The encrypted message is essentially the symmetric key to encrypt 

the message. A sealed blob is created by selecting a range of PCR register values which hold the 

measurement data for the platform state and asymmetrically encrypting the PCR values plus the 

symmetric key used to encrypt the message.  The TPM with the asymmetric decryption key may 

only decrypt the symmetric key when the platform configuration matches the PCR register 

values specified by the sender. Sealing is a powerful feature of the TPM. It provides assurance 

that the protected messages are only recoverable when the platform is functioning in a very 

specific known configuration. 

 

iii. Binding 

Binding is not a TPM function, but a TPM Bound object can only be decrypted by that 

particular platform. In this case an external data is encrypted under a TPM parent bound key. 

iv. Wrapping 

Wrapping allows an externally generated key to be encrypted under a parent root key. It 

can be used for a number of purposes; for e.g. creating a non migratable blob by wrapping a key 

under a non-migratable key or vice versa. 

 

2.5.15.3 Monotonic Counters 

 

A Monotonic Counter is a trusted atomic tamper resistant counter, whose value once 

incremented cannot be reverted back. This property is used for protection against replay attacks 

and freshness checks. The current TPM specifications [3] as of this writing limit the total number 

of base monotonic counters in a TPM to be 4 (which are called the base counters). Also, out of 

these 4; only 1 counter can be incremented per boot session, the others can only be read. To use 

another base counter the system has to be rebooted. The motivation for such a design was to have 

a monotonic counter per trusted operating system (max 4), so each operating system has its own 

counter which cannot be updated after its boot sequence [4].  

 

Some of the problems and limitations of these Monotonic Counters are discussed in 5.5.1. 

An implementation of extended TPM counters with Smart Cards bound with a TPM is discussed 

in detail in 5.5.2. 

2.6 SUMMARY 

This chapter describes a brief overview of Trusted Computing Technology with special 

reference to what were the motivations for a trusted platform. We describe the need of a 

hardware based platform security device that provides integrity and trust assurances. With 

special purpose crypto-processors niche security services can be provided. We described the 

structure and functionalities of a TPM device as of TCG version 1.2 specifications, its 

components and some of its limitations. 
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Based on the background of these services and the limitations discussed, we study how 

we could enhance these services with emphasis on providing secure execution environments for 

a TPM by coupling it with a SmartCard. 
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3.0  OVERVIEW OF SMART CARDS 

This Chapter gives a brief overview of SmartCards, how they differ from conventional 

computing platforms, their different types of standards and architectures. We describe how they 

are being used in the industry and what special characteristics of them became the motivation for 

choosing them as an extended platform for the SmartCard and TPM coupling process. The 

chapter also discusses some of the application frameworks with special emphasis on the .NET 

platform available for SmartCards. How we would use the SmartCard for coupling and the 

services implemented for our applications are detailed in chapter 4.0  and 5.0 . For further 

reading on SmartCards the reader is encouraged to see [5] and [6]. 

3.1.1 Introduction 

A smart card (also sometimes known as an Integrated Circuit Card ICC) is a portable, 

tamper-resistant computer / platform used in many different industries worldwide. They come in 

different sizes such as SIM cards, Credit Cards etc. Most of the conventional identity and 

Payment smart cards are the same of a credit card, and it is embedded with a silicon integrated 

circuit (IC) chip. The chip provides numerous functions from memory to store data, a 

microprocessor to manipulate that data, persistent secure storage and sometimes a cryptographic 

coprocessor to perform complex instructions and modular arithmetic.  

 

Smart cards that contain a microcontroller chip are sometimes called chip cards to 

distinguish them from cards that offer either memory storage only, or memory storage and non-

programmable logic as they look quite similar from physical characteristics. These memory 

cards store data efficiently, but cannot manipulate that data because they do not contain a 

computing chip. Memory cards depend on host-side applications to perform whatever processing 

is required on the data that they store.  

 

Chip cards are either fixed command set cards, which are programmed and soft masked 

in read-only memory (ROM) during manufacturing to interact with security infrastructure 

systems as portable, secure tokens; or post-issuance programmable cards, which can be used for 

multiple purposes simultaneously (for example, a card might be used as both as a security token 

and a rechargeable stored-value card), and which can be upgraded or repurposed while in the 

field, long after their initial manufacture-time programming and soft masking.  

3.2 SMART CARD INDUSTRIES 

Smart Cards are one of the most under-estimated technologies present in the world today, 

yet they are ubiquitously used in a number of different industries for providing tamper resistant 

security and applications such as 

 

• Telecom Industry (SIM Cards) 

• Banking (EMV) 
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• Transport (e.g. Oyster) 

• Identity Cards (Microsoft Key-badges) 

• Passports (ICAO) 

• Health Care 

• Access Control 

• Satellite TV 

• RFID Tagging products etc. 

3.3 SMART CARD CHARECTERISTICS 

3.3.1 Portable Platform 

Smart cards come in different shapes and unlike some of the other hardware based 

security modules such as HSM or TPM; they are meant to be portable. The physical 

characteristics are defined in an ISO standard 7816-1[7], Identification Cards - Integrated 

Circuits(s) Cards with Contacts - Physical Characteristics. The reader is encouraged to refer to 

them for all the details. 

3.3.2 Processing Power: 

Just like any other hardware, SmartCards come in various different processing capabilities and 

variants from 8-bit microcontroller to greater than 32bit architectures. The choice of the 

processing capabilities entirely depends on the application and the target audience. The card we 

used in this study (The Gemalto .NET Smart Card [8] has a 32bit microcontroller and 47kb of 

ROM. 

3.3.3 Computation and Performance limitations  

A smart card is very different from a conventional general purpose computing platform 

and is highly focused for specialized security applications. Hence it has a number of limitations 

comparing to other computing devices like PC etc. Only a few limitations are pointed out for the 

reference to give an idea of the challenges that are faced in using such a platform. The 

SmartCard relies on clock and power from an external source (reader) hence it is helpless alone 

and the applications can only run when the card is inserted in the reader. The chip is extremely 

restricted on power consumption, hence effecting clock speed and directly putting a limitation on 

processing capabilities. Also, the SmartCard has no “User Interface” for management or 

administration. Furthermore All I/O is done through the contacts on the chip. The transport 

protocol is called Application Protocol Data Unit (something similar to layer 7 protocol in 

TCP/IP) which has a packet size of around 250 bytes. Furthermore most of the conventional 

smart card platforms and readers offer a synchronous I/O, limiting the speed 
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3.3.4 Storage and memory 

As with processing power the storage capacities of SmartCards also vary. Though newer 

chip fabrication technologies have taken the storage space up to a gigabyte, a mass majority of 

smartcards in the industry as of this writing contain a few hundred kilobytes of persistent 

memory. The memory structure of a SmartCard is usually divided into 3 different types 

 

RAM – Random Access Memory which is volatile and mutable. Contents in RAM are not 

preserved when power to the card is removed. 

 

ROM – Read Only Memory is persistent and non-mutable. ROM is mostly used to load with the 

program code which would never be modified (for e.g. the Card Operating System) .This loading 

is done during the manufacturing of the card. ROM contains the cards operating system routines, 

permanent data, and permanent user applications. Contents in ROM are preserved when power to 

the card is removed. 

 

EEROM - Electrical Erasable Programmable Read-only Memory is a persistent and mutable 

memory used for data storage on the card. Content in EEPROM is preserved when power to the 

card is removed. It is usually meant to load programmable code and updates later in the smart 

card lifecycle after post issuance. 

3.3.5 Special Purpose Crypto-Processors: 

Many of the recent smartcards are equipped with a built-in crypto processor for making 

the crypto arithmetic operations faster. These special purpose crypto-processors are specially 

optimized for modular arithmetic of RSA and round operations of symmetric cryptography. 

Special hardware and software techniques are also implemented for protection against side 

channel or hardware attacks on these processors against attacks on cryptographic keys [6]. 

3.3.6 Tamper Resistance 

Unlike other general purpose computing platforms, SmartCard industry puts a lot of 

effort, technology and investment in both hardware and software protection techniques for 

tamper resistance. A smart card plays an important integral role in providing authentication, 

confidentiality, integrity and non repudiation services in many widely used applications in the 

industry including telecom, banking, identity management etc. Hence since the smartcard is 

roaming, it is attacked more often so there is an important need of assurance for the integrity and 

security of the smartcard platform itself. Most of the smart cards today provide adequate 

protection both against physical and logical attacks. Listed below are just some of the general 

security and protection features to give the general reader an idea of the security features 

implemented by the SmartCard industry for protection against a number of hardware and 

software attacks. For detailed analysis please see [6] and [5]. 
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Chip Design: Memory scrambling and added dummy structures to prevent circuit analysis, 

active current carrying layer for layered protection, memory encryption to prevent bus reading 

etc. 

Physical Protection: Voltage analysis, monitoring of passivation layers, frequency monitoring 

for timing attacks, temperature monitoring, light sensors etc. 

Logical Protection: Encryption of storage, implementation of noise free and constant 

cryptographic algorithms to defeat side channel analysis. Application frameworks for Operating 

System Security and applet firewalls for encapsulating applications. Secure data transmission 

techniques, True Random Number Generation and Error recovery functions etc. 

3.3.7 Protected Storage 

The smart card provides protected storage for secure storage of keys, applications and 

other sensitive data. For example the card we use for our sample implementations includes 

Token and Role based security for file system storing the sensitive data. Further protection 

mechanisms can be implemented for e.g. PIN authentication and onCard encryption. 

3.3.8 Secure Execution 

One of the most important features and the reason of success of smart cards is their 

capability of providing isolated, secure execution of applications. The security of the software is 

managed at all layers from a minimal operating system to provide isolated environments for 

application deployment and execution. The details of the software isolation that a .NET Card 

provides for such functionality are listed in the next section. Some related functionality is also 

implemented in the hardware to help provide a secure execution environment and protect the 

program execution from external threats, analysis and side channel attacks. Some of the 

categories of these attacks are listed in 3.3.6. For more details please see [6]. 

3.4 MULTI-APPLICATION PROGRAMMABLE SMARTCARDS 

There are a number of different industry initiatives since the last decade that have been 

providing these technologies for general and special purpose programming environments for the 

SmartCard industry. Some of the major frameworks available are JavaCard [9], Multos [10] and 

.NET Card [8]. For the purpose of this study, the focus is only on .NET Cards as they are more 

integrated and suited for our requirements and provide all the fundamental building blocks that 

meet the TPM coupling requirements. Furthermore they are natively supported in Windows and 

since they provide a .NET environment for programming they are highly well suited over other 

platforms. 

3.4.1 Smart Card Software 

The SmartCard software platform typically consists of the following. 

3.4.1.1 Operating System 
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The Operating system in a SmartCard is very similar to operating systems provided for 

mass market general purpose PCs in terms of the basic responsibilities. The only difference is 

that the OS of a smartcard is very small and compact. It is the first layer of abstraction on the raw 

hardware and provides services for managing communication and memory operations for the 

smart card applications. It is also responsible for all I/O related activities and providing 

interfaces to the cryptographic processor if any for cryptographic algorithms. There are 

fundamental differences between an Operating System, application platforms and runtimes. 

Multos for instance is an OS, GlobalPlatform
3
 is a platform and .NET / Java are runtime 

environments. 

3.4.1.2 Applications 

 

Application development for SmartCards has come a long way in the recent few years.  

Smart Card based applications are used in a number of industries as mentioned earlier in 3.2. 

Before the JavaCard and .NET Cards became popular, the smartcard based applications were 

developed for a specific focused industry, chip / IC and written in native code by specialized 

community of smart card developers. These applications were loaded immutably in the 

smartcard and could not be changed once loaded. Hence application management was a 

nightmare and an update usually required a re-issue of card with re-deployment of the 

application. This was costly both in terms of time and money and the entire smart card lifecycle 

needed to be known in advance for the application to be built. 

 

These problems motivated the industry and newer application platforms like JavaCard, 

.NET Card and Multos soon emerged. Writing applications on these platforms shielded the 

complexity of the native hardware; instruction set and opened the doors for general developers to 

write their applications on the smart card.  

 

The applications on these platforms are loaded in EEPRROM and can be erased and 

loaded indefinitely. The post issuance update capability made a huge cost and management 

difference to the telecom, banking and transportation industries. For instance the telecom 

industry moved to Over-The-Air updates [5] (OTA) for application updates which can update the 

SIM applications in the hands of the consumers directly.  

 

The Gemalto .NET Card contains an Intermediate Language interpreter that allows users 

to develop applications for the smart card using the ECMA .NET standard. Applications can be 

developed in any .NET compliant language that can be compiled to IL. 

3.4.1.3 Runtime Environment 

 

A typical runtime environment consists of: 

 

• An Interpreter; which executes the applications loaded on the smartcard. 

• Add on Libraries; that in our case are the subset of .NET framework base class libraries 

provided by the card. JavaCard provides similar class library that includes a strict subset of 

Java API. 

                                                 
3
 http://www.globalplatform.org/ 
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3.4.1.4 Loader 

 

A loader is responsible for safe loading and unloading of applications after post issuance. 

Following are the basic responsibilities of a typical loader. 

 

• To verify that the code being loaded to the card is safe to run.  

• To verify that the assembly being loaded to the card is digitally signed.  

• To ensure that all types (classes / objects etc) used by the assembly are already present on 

the card (either provided by the framework or programmed separately in another 

application). 

• And finally it is also responsible for clean unloading of the applications. 

3.4.2 The .NET Smart Card 

The Gemalto .NET Card is a post-issuance programmable smart card. It is based on 

technology that is a subset of ECMA standards
4
 (language, CLR, framework) for .NET. The 

differences between standard .NET Compact framework and the .NET framework provided by 

the smart card are documented in 0. 

 

 
 

Figure 3-1 Gemalto. NET Card V2 

 

As part of .NET solutions Gemalto also provides the Smart Enterprise Guardian which is a smart 

card based secure storage device. For some of the application scenarios it is more convenient to 

have a USB based security token as most common PCs/ laptops are equipped with a USB port 

already but for normal smart cards a separate reader is required.  

                                                 
4
 Standard ECMA-335 Common Language Infrastructure (CLI) 4th edition (June 2006) 

http://www.ecma-international.org/publications/standards/Ecma-335.htm 
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Figure 3-2. The Gemalto Smart Enterprise Guardian 

 

Diagrammed below is an architecture component description of the .NET SmartCard. The Smart 

card runs an operating system on top of the smart card hardware chip (details of the chip and 

card specifications can be found in Appendix B). On top of the OS, the card provides both a 

.NET environment libraries and native execution environments for application usage. 

 

 
Figure 3-3 Smart Card .NET Architecture 

3.4.2.1 The Application Lifecycle 

 

A .NET Card application is managed by the common language runtime (CLR) 

throughout its lifecycle, beginning when it is converted to a binary format that can be loaded 
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onto the card. This section briefly describes the application lifecycle in a .NET Card 

environment. 

v. Loading 

 

A .NET Card application can be created using any supported .NET programming 

language (for example, C# VisualBasic.NET, C++.NET etc). After the development of the code, 

that code is compiled (using the .NET Compact Framework provided by the Card). The compiled 

code in .NET environment is called Microsoft Intermediary Language (MSIL) code. The 

compiler produces a binary which is called an assembly. This assembly is not native code and 

hence is portable across any platform that provides an implementation of standard .NET 

framework. Hence the application only needs to be compiled once and can run anywhere. 

 

After being compiled the application needs to be loaded in the SmartCard. The loader 

microcode coverts this binary from MSIL to card resident binary format which is a much smaller 

code (almost 1/4th) comparing to the normal .NET assembly size on the file system. Before 

loading, it also needs to be strong-named signed otherwise the loader throws an exception. 

vi. Installation  

 

The main entry point for all .NET based card applications is the Main function with a 

declaration like public static int Main. This method is executed for application-specific 

installation after the assembly is loaded on the card. The application also registers the remote 

types within the .NET Framework in the card to allow remote clients to call methods on the 

installed application through .NET Remoting. The application is exposed to the outside world in 

the form of a URI. 

vii. Execution 

The card based applications follow a client / server model. The application in the card 

acts as a server and the host application talking to the card acts as a client. The lifecycle of a 

server application in the card is infinite as the applications do not terminate when the card is 

powered off or removed from the terminal / reader. The application state does not change from 

its previous state in either in case of loss of power or even card reset. Hence transactions are 

implemented to secure persistently all critical data and this need to be taken care of during the 

development of the application. 

viii. Termination 

The card application only stops running when a service uri is unregistered. When a 

service is unregistered the running instance is deleted, the memory is garbage collected and 

further application cleanup is done as required.  

ix. Unloading  

After a service has been terminated, the binary containing that service can be removed 

from the card.  A loaded assembly that is still exposing a service cannot be unloaded.  The 

service must be terminated first. 
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3.4.2.2 The Common Language Runtime and its benefits 

 

.NET Card applications run as managed code within the .NET Smart Card Framework 

common language runtime (CLR). The common language runtime executes using a CPU-neutral 

instruction format. A .NET application running under a managed CLR has a number of benefits 

that provide ease of implementation, separation of security functionality and application isolation 

capabilities along with numerous security offerings of the .NET framework that can be utilized 

directly within the applications. This helps us greatly in providing a secure execution 

environment for applications that are coupled with the TPM to provide enhanced services. 

i. Application lifecycle management  

Manages execution of the code throughout its lifecycle. 

ii. Application domain management  

Supports multiple applications running simultaneously with safety and integrity 

assurances on a single .NET Card. The security of the application domains ensures that data in 

one application domain cannot directly reference data in another domain.  

iii. Garbage collection  

Eliminates the burden from the programmers to explicitly free memory when an 

application no longer needs an object. This ensures there are no memory leaks in an application. 

iv. Remoting management  

Provides an integrated foundation for secure communications between applications using 

a subset of the .NET remoting architecture. 

v. Exception handling  

Provides standard exception handling with a subset of exception handling classes 

implemented in the .NET Compact Framework. 

vi. Evidence-based security 

Ensures the integrity and authenticity of .NET Card assemblies during load to the card 

and during execution of the loaded applications. 

vii. Transaction management  

Ensures the integrity of data and applications in the Card, despite frequent and sometimes 

unpredictable physical removal of the card from the system or terminal with which it is 

communicating.  

viii. Code access security  

Very similar to data security; that is, a public key token is required for an assembly to 

access a dependent library. To enable a library to be shared with another assembly, the 

corresponding public key token must be added as an attribute. Security policy is determined by 

the Access Manager.  
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3.5 SUMMARY 

In this chapter we described an overview of SmartCards, how they differ from 

conventional computing platforms, their different types of standards and architectures, how they 

are being used in the industry and what special characteristics of them became the motivation for 

choosing them as an extended platform for the SmartCard and TPM coupling process. These 

included their portability, processing and storage capabilities, extensive cryptographic support, 

tamper resistant hardware and protected storage and finally and most importantly secure program 

execution capabilities.  

 

We discussed some of the application frameworks with special emphasis on the .NET 

platform available for SmartCards. The different layers of software were described with the 

responsibilities of each. These included the Operating System, Applications, Runtime 

environment, loader and unloader microcode provided by the card. 

 

Later in the chapter we described the .NET SmartCard architecture with its application 

lifecycle, how a typical application management takes place from start to end which includes the 

loading, installation, execution, termination and unloading phases. We discussed the post 

issuance update and re-programming capabilities and how different industries utilize them for 

card based application management. 

 

Finally a few points were mentioned over the benefits of using a .NET based application 

that would be executed by a Common Language Runtime environment. A .NET application 

running under a managed CLR has a number of benefits that provide ease of implementation, 

separation of security functionality and application isolation capabilities along with numerous 

security offerings of the .NET framework that can be utilized directly within the applications. 

This helps us greatly in providing a secure execution environment for applications that are 

coupled with the TPM to provide enhanced services. 

 

The smart card capabilities hence provide us with an attractive platform which has a 

number of similar capabilities like a TPM, and some different characteristics and capabilities that 

makes it different from conventional computing platforms. The secure execution, storage and 

process isolation capabilities provided by a general programming platform like .NET makes it an 

ideal choice for using it to provide or extend secure execution environments. In the next chapter 

we will discuss how we utilize a SmartCard for extending secure execution environments of a 

platform based security device, i.e. the Trusted Platform Module. 
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4.0  TPM & SMARTCARD COUPLING FOR ENHANCED SECURITY SERVICES 

4.1 INTRODUCTION: 

Trusted Platform Modules (TPMs) are secure cryptographic processors built into trusted 

platforms. Combined with the Core and Dynamic Root of Trust (CRTM & DRTM), they provide 

a rich and powerful secure environment for platform security. The CRTM and DRTM are 

responsible for reliably informing the TPM of the platform state and software that is running by 

taking cryptographic measurements.  Hence the TPM (acting as a Root of Trust for Reporting 

RTR and Root of Trust for Storage RTS) can provide security services that depend on the 

identity and state of the reported software and make decisions based on the platform state. Some 

of the most common TPM services that are used in this process include:   

 

Attestation: Reliable reporting of the platform state to a remote challenger. The integrity metrics 

are measured and stored in Platform Configuration Registers (PCRs) and a signature is created 

with an Attestation Identity Key (AIK). 

 

Sealing: Protected Storage/ Encryption of data that ensures release / decryption only to 

authorized software when it is in a particular configuration and state. 

 

Thus the TPM bootstraps a rich and powerful execution environment running on the main 

CPU from the small set of functions that it provides. However even though the TPM provides a 

lot of cryptographic capabilities and tamper resistance, it is not meant to perform general purpose 

program execution. The current mass market Operating Systems, Hypervisors and general 

purpose applications only use the TPM services for platform integrity measurements, code 

measurements and data protection. The applications still run on the mainstream processor 

executing all code and the secrets held in primary or secondary storage of memory. For many 

security sensitive applications this normal code execution environment (main-CPU, memory etc) 

is much less secure (to both hardware and software attacks) than that offered by the TPM, so in 

gaining flexibility much security is lost. This problem is evident from some of the recent attacks 

[11] on applications utilizing TPMs such as Bitlocker. 

 

One way to avoid this tradeoff is to build a secure execution environment inside the TPM 

or propose new hardware and instruction set models for general purpose secure execution for e.g. 

[12]. But platforms like these do not exist, would take a lot of time to be built and be available 

for general usage and most importantly are not envisaged in the near future. There are also some 

other studies and implementations of providing high assurance secure environments. AEGIS [13] 

describes a single-chip architecture for a secure processor which can be used to build computing 

systems secure against both physical and software attacks. Terra [14] uses a trusted virtual 

machine monitor (TVMM) that partitions a tamper-resistant hardware platform into multiple, 

isolated virtual machines. Thin Clean Client [15] by IBM Research proposes a modified 

minimum Linux distribution with trusted computing technology for a secure environment. 

Trusted Execution Module [16] puts forward a high level specification for a chip that can execute 

user supplied procedures in a trusted environment. Flickr [17] uses the new general purpose 
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hardware extension for secure OS loading, late launch and attestation. It provides an 

infrastructure for executing security sensitive code in complete isolation while trusting as few as 

250 lines of additional code but requiring special hardware. 

 

In this project we propose and implement a different architecture. Instead of making 

expensive changes to the hardware and adding complex functionality to the TPM specifications 

which would not only break the existing applications, would also increase the effort and cost of 

writing new ones.  We evaluate the extent to which other platforms provide similar degree of 

hardware tamper resistance and secure execution and couple them with a TPM to provide 

extended TPM services not possible with the current specifications either of TPM or smart card 

alone. For this study we use multi-application programmable .NET Cards that provide adequate 

tamper resistance, a programmable environment with application isolation and crypto blocks for 

building confidentiality and integrity services. This enables greater levels of protection for 

information stored, processed and exchanged across different systems. 

 

 
Figure 4-1 A Smart Card TPM Cooperative Model 

 

Figure 4-1 A Smart Card TPM Cooperative Model shows an example schematic of the 

smartcard-enhanced TPM design that is implemented in this project. The hypervisor is shown for 

definiteness, but similar design has been developed and tested when no hypervisor is present.  

An authenticated cryptographic tunnel is established between the smartcard and the TCB.  

Enhanced smartcard services are exposed through this tunnel.  The smartcard proxy exposes a 

number of enhanced TPM/SC coupled services to the outside world along with the standard TPM 

Services. 

 

We first discuss the challenges we face in the coupling process and the platform 

differences between the TPM and a Smart Card. Then we describe our implementation of a 
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secure TPM / Smart Card cryptographic binding. We move forward to describe our 

implementations of some of the enhanced TPM / Smart Card coupled services that were not 

possible with a TPM or Smart Card alone. With these enhanced TPM services we implement 

some applications that change the way conventional TPM or Smart Card applications are 

perceived. Finally we shed some light on potential future applications and future work. 

4.2 A TPM ARCHITECTURE FOR SECURE EXECUTION 

A TPM provides many services for platform attestation, security and data protection. A 

typical TPMs architecture is described in 2.4 but as described earlier it does not provide any 

secure execution environment on its own which leads to tons of vulnerabilities and attacks on the 

operating system and applications. Some of the noted attacks on the solutions and services 

utilizing the conventional TPM are [11] and [18]. To counter these attacks, the secrets, 

encryption keys and sensitive pieces of code has to be isolated within trusted boundaries 

providing confidentiality and integrity services.  

 

We first discuss and propose how an ideal prototype of an extended TPM that provides 

code execution isolation and guarantees of confidentiality would look like. This model would 

have a trusted execution architecture integrated within the TPM. An architecture like this though 

does minimize the total Trusted Computing Base (TCB), but also introduces its own challenges 

including but not limited to building code execution blocks specifications, performance, and 

support for different platforms. Similar work has been proposed and developed in [16]. But 

platforms like these do not exist, would take a lot of time to be built and be available for general 

usage and most importantly are not envisaged in the near future.  

4.2.1 A hypothetical architecture of the TPM-Internal Execution Environment 

Assume an execution environment for applets or code modules inside the TPM. The TPM 

provides a Measured Trusted Virtual Machine for providing isolated trusted environments for 

code execution. Loader microcode in the modified TPM loads a reserved PCR register with the 

hash of the class / program/ AppDomain being executed.  The assembly is also granted a special 

“locality.”  The extension program can then authenticate itself (quote), store private data (seal), 

and any other TPM operation.  The extension program can also provide additional services to 

external callers. 

 

This model provides a nice open extensibility model because the extension program is 

granted few additional privileges beyond those granted to platform macrocode (the extension 

program is treated in large measure as an external program – just with a different locality and 

reserved PCR).  On the other hand, because the extension programs cannot access genuine TPM 

private data like the SRK or EK private keys, there are limits to the functionality of the extension 

programs.  We will explore whether additional privileges are necessary and can be granted. 
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Figure 4-2 A TPM Architecture for Trusted Execution 

 

From the next section we discuss the implementation of our smartcard and TPM co-

operative model which uses general purpose commodity hardware. 

 

In Chapters 2 and 3 we explored the differences of Trusted Platforms and smart cards in 

detail, the different computing and servicing categories they fit in, the different TPM-OR-

SmartCard applications they provide and how the businesses are utilizing them with their current 

state of technology. This Chapter is to explore an alternative architecture: To utilize the best of 

both worlds in smart cards and TPMs, and explore some of the new services and applications 

that can be offered by a TPM-And-SmartCard cooperative model. 
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4.3 SMART CARD CAPABILITY REQUIREMENTS 

To participate fully in a TPM and Smart Card co-operative model, a smart card at the minimum 

should provide at least the following  

 

i. Random Number Generation 

ii. Symmetric Cryptography (AES / Rijndael) 

iii. Asymmetric Cryptography (RSA up to 2048-bit) 

iv. Hash algorithms (SHA-1 and HMAC) 

v. Implementations of XOR over a piece of data 

 

Most of the programmable (Java and .NET Card)s available as of this writing, have most 

of these capabilities and provide native true random number generation, basic RSA and 

Symmetric algorithms including DES, 3DES and AES. There are differences and limitations 

however on the different padding schemes supported for RSA (PKCS/ OAEP) and native HMAC 

capabilities. The choice on what the smart card is capable of doing entirely depends on what 

applications and services would the smart card be providing. The building blocks not provided 

by the card natively can be programmed and loaded as serviceable objects, JavaCard applets or 

onCard assemblies in .NET Cards. 

4.3.1 Platform Differences between TPM and the Smart Card 

There are some fundamental differences between the services that a TPM provides and 

the solutions that a smart card addresses. First a TPM is bound to a platform but a smart card is 

“roaming”, hence a smart card is more vulnerable to attack. Second it does not share some of the 

interesting properties of the TPM. A TPM is reset when the platform is reset, but the application 

lifecycle for a .NET application is infinite. Furthermore the TPM acts as the Root of Trust for 

Measurement for a particular platform but smart card has no such capabilities. Also the 

ownership administration of the TPM lies with the platform owner but for most of the smart 

cards (for e.g. SIM Cards, Identity cards etc) it lies with the issuing authority. 

 

Our major interest areas for SmartCards differences are its functionality for providing the 

execution environments for code modules and cryptographic primitives. The specifications of a 

TPM for all operations (e.g. Sealing / Binding / Wrapping / Certifying) keys have strict 

requirements of how the data is formatted, serialized, how the keys are presented what 

cryptographic algorithms are used, what key types are used, what encryption / decryption 

methods are used, what signature schemes are supported and how is the message encoded. So a 

Smart Card needs to participate with the required crypto primitives of the TCG Model else the 

supporting operations need to be taken care of manually either inside the card as a separate code 

module or outside the card in a proxy application. 

4.3.2 Coupling Challenges 

These fundamental differences and assumptions of un-trusted hardware, software and 

channels introduce some interesting challenges of how to bind the two architectures together. 
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Hence we need to build strict authentication, confidentiality and integrity services if we want to 

offer coupled services. We use cryptographic primitives provided by the smart card and the TPM 

to achieve this process which is described later. For a smart card to verify the platform state we 

implement a service that uses the hosts TPM_Quote primitive, hence verifying the platform state 

by generating an attestation, and the TPM identifies a card by loading its identity key under its 

key hierarchy. 

 

4.4 EXPERIMENTAL PLATFORM 

Our experimental platform consisted of: 

 

i. Gemalto .NET Cards (v2.1.161) implementing version 2 of .NET Compact 

Framework. It supports SHA1, HMAC, RSA up to 2048bits, DES, 3DES and 

Rijndael for cryptographic services and a subset of .NET Compact Framework v2.  

ii. The TPM is Infineon 1.2 built into Dell Optiplex 755.  

iii. We use the Windows Vista TPM Base Services Library (TBS)
5
 for all 

communications to the TPM. 

4.5 SECURE TPM AND SMARTCARD BINDING 

The first problem that we need to solve is how the TPM and the Smart Card identify or 

recognize each other. This problem goes beyond just simple identification as we need to secure 

end-to-end our smart card and TPM communication for confidentiality and integrity services. To 

strengthen binding between the smart cards and the TPM, we create session based symmetric 

keys which are securely transferred by using Asymmetric keys of the smart cards and the TPM. 

There are 2 parts of the application: the OnCard Service and the OffCard Client Proxy that acts 

as an interface with the TPM and the SmartCard communication. The process for secure binding 

goes as follows: 

 

• A TPM generates an Attestation Identity Key (AIK) which we also use as the Hosts Identity 

Key. 

• The Card Generates an RSA Key Pair which we use for its identity. 

• The public key of AIK generated in step 1 are exported and loaded securely
6
 in the card. 

• The public key of Cards Identity key generated in step 2 is exported and loaded in the TPM 

as a Loadable Key. 

• We use these Asymmetric keys to create a secure tunnel between the Host and the Card 

through extending the .NET remoting architecture (described in the next section) to 

communicate to the card.  

• One time session keys are generated and transferred securely across the host and the card.  

 

This is an out of bound marrying step for TPM and smart card coupling but once married 

both platforms can authenticate, identify and co-operate with each other to provide enhanced 

coupled services not possible with each platform alone. In an enterprise this out of bound 

marrying step can be performed by the IT administrators while issuing Identity smart cards or 

                                                 
5
 http://msdn.microsoft.com/en-us/library/aa446796(VS.85).aspx 

6
 The Gemalto card offers token and role based security for files stored in the persistent storage. 
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network operators during production of SIM cards to hold public keys of the TPM(s) they are 

bound to. 

4.5.1 Extended Crypto Remoting for End-to-End Encryption 

The .NET Card uses an extended .NET Remoting architecture to allow a program 

executing on the Host (PC) to communicate with a process running in the smart card and also 

allows a program running in one application domain to access code or data in a process running 

in another appDomain within the card. The conventional way of talking to a smart card is 

through the APDUs (Application Protocol Data Units). However as the industry around the smart 

card hardware and software is maturing, the smart card manufacturers are adopting the new 

language and framework constructs to shield the programming complexity and utilize the newer 

frameworks offerings more to write optimized, secure applications faster and make them more 

manageable. To solve the problem of distributed communication and remote object access there 

are a number of technologies that have been constantly updated with richer, newer, more stable 

technologies. Java for instance solves this problem through RMI [19] (Remote Method 

Invocation). .NET introduced an architecture called Remoting (described in detail in 4.5.1.1) 

which is superseded by Windows Communication Foundation (WCF) in .NET 3.0. 

 

4.5.1.1 .NET Remoting Overview 

 

Remoting [20] is the Microsoft’s approach for Inter Process Communication (IPC) in the .NET 

Framework. The real strength of the remoting framework, resides in its ability to enable 

communication between objects in different application domains or processes using different 

transportation protocols, serialization formats, object lifetime schemes etc. Contrary to some 

other technologies for e.g. Web Services, remoting enables us to work with stateful objects. 

Remoting is superseded by a technology called Windows Communication Foundation (WCF) in 

.NET 3.0. Our implementation restricts us to use .NET 2.0 as the .NET Card we are using at the 

time of this writing only supports .NET 2. We use the remoting services provided by the .NET 

Smart card framework for cross channel and platform communication.NET remoting can be 

compared to similar technologies such as Java Remote Method Invocation (RMI), CORBA etc.  

 

The .NET Smart Card Framework extends standard .NET remoting and allows a program 

executing on a PC to communicate with a process running on a Gemalto .NET Card, and also 

allows a program running in one application domain to access code or data in a process running 

in another application domain within the Gemalto .NET Card.  

Basic Remoting in the .NET Smart Card Framework: 

 

The .NET Remoting Architecture consists of 5 core object types. 

 

i. Proxies: These objects impersonate as remote objects and forward calls. 

ii. Messages: contain the necessary information to execute a remote method. 

iii. Message sinks: These allow custom processing of messages during a remote invocation. 
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iv. Formatters: These work like message sinks as well but are also capable of serializing a 

message to a transfer format like for e.g. SOAP. 

v. Transport channels: These also work like message sinks, but they also transfer the 

serialized message to a remote process, for example, via HTTP or TCP Channels. 

 

Remoting works by having a server application (in our case the On Card application works as 

a server) expose an object to the external world by registering the object as a service either 

through the RemotingConfiguration.RegisterWellKnownServiceType() method or through the 

RemotingServices.Marshal() method. In order for an object to be registered as a service in .NET, 

that object must inherit from one of the base marshalling classes. Although the .NET framework 

supports marshalling either by reference or by value
7
, the .NET Smart Card Framework supports 

only marshalling by reference (i.e. a class extending System.MarshalByRefObject). For detailed 

references to .NET remoting please see [20]. After the server has registered the object, the object 

becomes available to clients that connect to the server. When the client connects to the server, it 

creates a local proxy of the server object. When the client wants to call a method on the remote 

object, the proxy object passes the method call to the system remoting mechanism, which is 

responsible for marshalling (described in the next section) the parameters and return value of the 

method. The current implementation of the .NET Smart Card Framework8 does not support the 

marshalling of classes. However, it does support the marshalling of all value types (including 

structs) and supports both out and ref parameters. Types that can be marshalled include the basic 

value types (byte, short, char, int, long, string, etc), structs, arrays of basic types, and 

MemoryStreams
9
. 

 

                                                 
7
 Marshalling objects by value means to serialize their state including all objects referenced to some persistent form 

from which they can be deserialized in a different context. 
8
 Gemalto .NET SDK v.2.1.161.8583 

9
 MemoryStream class creates streams that have memory as a backing store instead of a disk or a network 

connection. 
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Figure 4-3 Simplified .NET Remoting Architecture. 

 

The mechanism by which a client connects to the server is completely isolated from the 

marshalled object. Conventional .NET remoting applications generally use either TCP or HTTP 

as the transport protocol for applications. The .NET Smart Card Framework uses ISO 7816-4 as 

a transportation protocol for communication. However, because the transportation protocol is 

isolated from the service object, we don’t have to worry about the actual protocol of ISO 7816-4 

communication. 

 

All communication between the client and server takes place through a channel. A 

channel is just simply a series of sinks through which the remoting call is made. That could 

include custom formatters, serializers etc.  The .NET Smart Card Framework defines a new type 

of channel known as an APDUChannel. This is referenced on the server (card) side through the 

APDUServerChannel class and on the client (PC) side through the APDUClientChannel class. The 

APDUChannel is responsible for encoding method calls to a binary format and transporting them 

from the client to the server using the ISO 7816-4 protocol. 

Channels and Ports 

When a remote-able class is created in the .NET framework, it needs to have a definition 

of a channel which has to be registered with a port number to make an associative pair. (This is 



 31 

something similar to TCP/IP where a server listens on a specific port). This channel/port 

combination registered in the .NET infrastructure listens on that port for messages intended for 

that particular channel. When a message arrives, the framework routes it to the correct server 

object. See Figure 4-3 Simplified .NET Remoting Architecture. 

 

Server Code 

 
using System.Runtime.Remoting; 

using System.Runtime.Remoting.Channels; 

using SmartCard.Runtime.Remoting.Channels.APDU; 

 

namespace SCInterfaceManagerServer 

{ 
    /// <summary> 

 /// Server class to register the service and Secure Session Establishement Channel. 

 /// </summary> 

 public class OnCardServer 

 { 

  /// <summary> 

        /// Registers the on Card service 

        /// </summary> 

        /// <returns></returns> 

        public static int Main() 

        { 

            IServerChannelSinkProvider newProvider = new SessionEstablisherSinkProvider(null, null); 
            newProvider.Next = new APDUServerFormatterSinkProvider(); 

 

            APDUServerChannel channel =  

new APDUServerChannel (newProvider , Constants.serviceConnectionPortNormal );            

             

            // Register the channel the server will be listening to. 

            ChannelServices.RegisterChannel(channel);                         

 

            // Register this application as a server                        

            RemotingConfiguration.RegisterWellKnownServiceType( typeof( 

SecureSessionEstablishmentService), Constants.ServiceName,  

WellKnownObjectMode.Singleton);                      
 

            return 0; 

        } 

    } 

} 

 
 

In the .NET Framework, the client code (in our case the host proxy application) also 

creates a channel associated with a specific port, and then uses the Activator.GetObject method to 

obtain a reference to the remote object. A remote object is identified with the (Uniform Resource 

Locator) URL of the computer on which it is located, the name of the remote class, and a 

(Uniform Resource Identifier) URI that was assign. 

 

The APDUChannel supports URL's of the format: 

 

"apdu://<name of the smart card reader>:<the port on which the service is registered>/<the name 

of the service>" 

 

For example: "apdu://Gemalto Reflex USB v2:2222/CardService" 
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In addition to explicitly naming the reader to connect to, you can also use the reserved names 

"promptDialog" and "selfDiscover". The promptDialog mechanism will display a dialog box and 

allow the user to select which reader to use. The selfDiscover mechanism attempts to find the 

requested service by attempting to connect to any .NET smart cards attached to the machine. 

 

Client Code 

 
APDUClientChannel channel = new APDUClientChannel("clientChannel", null); 

ChannelServices.RegisterChannel(channel); 

 

// Connect to the service on the clear channel.  

ChannelCardInsertionStateChangedEventHandler eventHandler = OnCardInsertionRemoval; 

channel.RegisterCardInsertionStateChangedEventHandler(eventHandler); 
 

 

// Connect to the service on the clear channel.  

string SmartCard_OnCardService = "apdu://" + readername + ":" + Constants.serviceConnectionPortNormal + 

"/" + Constants.ServiceName; 

 

SecureSessionEstablishmentService sessionEstablishmentService = (SecureSessionEstablishmentService) 

Activator.GetObject(typeof (SecureSessionEstablishmentService), SmartCard_OnCardService, "clientChannel"); 

4.5.2 Securing Remoting communication between the TPM and the SmartCard 

Conventional .NET remoting applications either use TCP or HTTP as the transport 

protocol for applications. The .NET Smart Card Framework uses ISO 7816-4 as a transportation 

protocol for communication. But since the transportation protocol is isolated from the service 

object, we don’t have to worry about the actual protocol of ISO 7816-4 communication. .NET 

remoting does not offer any security services on its own. Some of the fundamental problems are 

lack of confidentiality (the remoting traffic is sniff able until encrypted and the methods exposed 

to the outside world through the proxy can be called by anyone). However, remoting does offer 

an open interface architecture so any of these services can be implemented by extending the 

remoting architecture through custom sinks and sink providers. This not only enables the use of 

encryption over custom sinks, it also gives the ability to use different transport methods. Other 

reasons for using custom sinks are to use compression or custom formatting methods. For details 

on extending the remoting architecture see [20]. 

 

We use the session based symmetric keys to encrypt and decrypt all communication 

between the TPM and the Smart Card. The encryption and decryption of exchanges between 

service and client are delegated to the pluggable custom sinks instead of handling it within the 

application itself. This makes code in service smaller, portable and independent of cryptographic 

algorithm used. The Remoting components can also be hosted in IIS to utilize windows 

authentication protocols, SSL/TLS for transport level encryption easing in deployments in large 

enterprises using active directory services. See 4.5.4. 

 

We start the process of securing the path between the smart card and the TPM by 

generating an Asymmetric key pair for each entity. For the TPM, we generate an Attestation 

Identity Key (AIK), and we do an Asymmetric RSA Key generation inside the card. The public 
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key certificate of the card is exported and stored securely
10

. The public part of the AIK is also 

exported and stored securely inside the card
11

. For all practical purposes and large scale 

distributed environment an enhanced key distribution mechanism and protocols (for e.g. Diffie 

Hellman / Internet Key exchange etc) should be used. The choice of the mechanism would 

depend and vary from different security requirements. It is generally accepted a good practice to 

generate and store keys within a protective hardware[21] 

 

Once the TPM and the smart card(s) are loaded with a trusted copy of each other’s public 

key we can create a secure session between them. We achieve this by generating a random 

symmetric key that would only be used per session
12

. The symmetric key can be generated either 

by the client or the smartcard depending upon the application scenario and usage, since both the 

TPM and the Smart Card are able to generate True random numbers that could be used to 

generate initialization vectors and key streams to be used for symmetric encryption. This 

symmetric key is called the session key.  

 

The simplified protocol goes as follows: 

                                                 
10

 There are a number of methods that can be used including encrypting it under the SRK. Storing the key inside 

the TPM or just sign it with the generated AIK so that a trusted copy can be fetched later. 
11

 Data files in the Gemalto .NET card are protected using a public key token system that is very similar to that 

used by applications. For details see 3.3.6 
12

 Session in the smart card terminology means the communication between two resets. 
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Figure 4-4 Session based symmetric key exchange. 

 

We omit the details of content of messages to show a simplified version of authenticated key 

exchange. The platform user can authenticate to the card by authentication mechanism 

implemented in the card. In our case we use the default Access Manager implemented in the 

.NET Card that offers role based security and Pin Authentication. Similarly the platform needs to 

be authenticated as well. In our case we generate a platform attestation based on the TPM_Quote 

primitive on a nonce generated by the card to verify that we are talking to the correct TPM.  The 

message flow in Figure 4-4 can be noted to be quite similar to that used in SSL and gives mutual 

authentication. 

4.5.2.1 Custom Sinks (Extending .NET Remoting to support encryption) 

 

When implementing custom sinks, we have to take care that a particular sink behaves properly as 

part of chin of sinks. Depending upon the application there can be a client and server, or client or 

server sink. For encryption, naturally there has to be a sink pair. The server and client sinks differ 

slightly in implementation as described in detail below. 

 

The Session Sink on the client side implements the IClientChannelSink 
 

public class SessionSink: BaseChannelSinkWithProperties,IClientChannelSink 
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keeps an attribute of next sink in chain and the session key 
 

/// <summary> 

        /// Next Sink in Chain 

        /// </summary> 

        private IClientChannelSink nextSink; 

        /// <summary> 

        /// The session key to encrypt the communication 

        /// </summary> 

        private byte[] sessionKey; 

         
        public SessionSink(IClientChannelSink next,byte[] sessionKey)  

        { 

            nextSink = next; 

            this.sessionKey = sessionKey;             

        } 

 

The key method of the implementation is the ProcessMessage method where the outbound 

processing is performed before passing the message to the next sink in the chain. When the 

message returns from the next sink, we perform inbound processing 

 
/// <summary> 

/// Requests message processing from the current sink. 

/// </summary> 
/// <param name="msg">The message to process.</param> 

/// <param name="requestHeaders">The headers to add to the outgoing message heading to the server.</param> 

/// <param name="requestStream">The stream headed to the transport sink.</param> 

// <param name="responseHeaders">When this method returns, contains a <see 

cref="T:System.Runtime.Remoting.Channels.ITransportHeaders"/> interface that holds the headers that the 

server returned. This parameter is passed uninitialized.</param> 

/// <param name="responseStream">When this method returns, contains a <see cref="T:System.IO.Stream"/> 

coming back from the transport sink. This parameter is passed uninitialized.</param> 

/// <exception cref="T:System.Security.SecurityException">The immediate caller does not have 

infrastructure permission. </exception> 

[SecurityPermission(SecurityAction.LinkDemand, Infrastructure=true)] 

public void ProcessMessage(IMessage msg, ITransportHeaders requestHeaders, Stream requestStream,  

out ITransportHeaders responseHeaders, out Stream responseStream)  
{    

    requestStream = SymmetricCrypto.ProcessOutboundStream(requestStream,"Rijndael",sessionKey); 

    // forward the call to the next sink 

    nextSink.ProcessMessage(msg, requestHeaders, requestStream, out responseHeaders, out responseStream);             

    responseStream = SymmetricCrypto.ProcessInboundStream(responseStream,"Rijndael",sessionKey);  

             

} 
 

Note that we pass a hardcoded string “Rijndael”. The argument to a SymmetricAlgorithm could 

be any depending upon the requirements and availability at both ends of the sink. 

 

We also have to implement System.Runtime.Remoting.Channels.IClientChannelSinkProvider
13

 

which is responsible for creating the sink object and for calling other providers to create other 

sinks in the chain.  
     

 public class SessionSinkProvider : IClientChannelSinkProvider 

 

 

The class holds the attribute for the next provider in sink chain and the symmetric key 

 
/// <summary> 

                                                 
13

 http://msdn.microsoft.com/en-

us/library/system.runtime.remoting.channels.iclientchannelsinkprovider(VS.80).aspx 
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        /// Next Sink in Chain 

        /// </summary> 

private IClientChannelSinkProvider nextProvider; 

        /// <summary> 

        /// The symmetric key to encrypt the sink 

        /// </summary> 

        private byte[] sessionKey; 

 
[SecurityPermission(SecurityAction.LinkDemand, Infrastructure = true)] 

        public IClientChannelSink CreateSink(IChannelSender channel, string url, object remoteChannelData) 

        { 
            // create other sinks in the chain 

            IClientChannelSink next = nextProvider.CreateSink(channel, url, remoteChannelData); 

 

            // put our sink on top of the chain and return it     

            return new SessionSink(next, sessionKey); 

        } 
 

The session Sink on the Server Side implements the IServerChannelSink 

 
    public class SessionSink : IServerChannelSink 
 

which has the same attributes as the Client, i.e. the next message in chain and the symmetric key 

 
/// <summary> 

        /// Next Sink in Chain 

        /// </summary> 

private IServerChannelSink nextSink; 

        /// <summary> 

        /// The symmetric key to encrypt the sink 

        /// </summary> 

        private byte[] sessionKey; 
 

The key method of the implementation is the ProcessMessage method, which is responsible for 

implementing whatever transformations the sink is responsible for. A server sink may perform 

either inbound transformations, outbound transformations, or both. It is critical that the server 

sink also call the next sink in the sink chain between processing its inbound and outbound data. 

 
public ServerProcessing ProcessMessage(IServerChannelSinkStack sinkStack, IMessage requestMsg, 

     ITransportHeaders requestHeaders, Stream requestStream, out IMessage responseMsg,  

out ITransportHeaders responseHeaders,  out Stream responseStream) 

{ 

   Logger.Log(Logger.LogLevel.Info, "Process Message Entry"); 

   // decrypt the inbound messsage 

   requestStream = SymmetricCrypto.ProcessInboundStream(requestStream, "Rijndael", sessionKey); 

 

   // mark that we are on coming from sessionestalishersink 

   SecureSessionEstablishmentService.onChannelEstablishment = false; 

 

   ServerProcessing srvProc = nextSink.ProcessMessage(sinkStack,requestMsg, requestHeaders, requestStream, 
                                                out responseMsg, out responseHeaders, out responseStream); 

 

   // encrypt the outbound message 

   responseStream = SymmetricCrypto.ProcessOutboundStream(responseStream, "Rijndael", sessionKey); 

 

   Logger.Log(Logger.LogLevel.Info, "Process Message Exit"); 

   // returning status information 

   return srvProc; 

} 
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We also have to implement System.Runtime.Remoting.Channels.IServerChannelSinkProvider
14

 

which is responsible for creating the sink object and for calling other providers to create other 

sinks in the chain. 
    public class SessionSinkProvider : IServerChannelSinkProvider 
 

The SessionSinkProvider contains an attribute for the next provider in chain 
    private IServerChannelSinkProvider nextProvider; 

 

/// <summary> 

/// Creates a sink chain. 

/// </summary> 

/// <param name="channel">The channel for which to create the channel sink chain. </param> 
/// <returns>The first sink of the newly formed channel sink chain, or a null reference, indicating that 

this provider will not or cannot provide a connection for this endpoint.</returns> 

    public IServerChannelSink CreateSink(IChannelReceiver channel) 

        { 

            // create other sinks in the chain 

            IServerChannelSink next = nextProvider.CreateSink(channel); 

 

            // put our sink on top of the chain and return it     

            return new SessionSink(next, sessionKey); 

        } 
 

The limitations 

 

This Gemalto.NET card supports only the use of MemoryStreams and FileStreams within a 

custom sink. We cannot use either a CryptoStream or a CustomStream as the basis for sink 

manipulation. Attempting to use an unsupported stream results in a NotSupportedException. 

 

i. Usage of Custom Sinks 

 

The encryption and decryption of exchanges between service and client are delegated to the 

custom sink instead of handling it within the application itself. This makes code in service 

smaller, portable and independent of cryptographic algorithm used.  

                                                 
14

http://msdn.microsoft.com/en-

us/library/system.runtime.remoting.channels.iserverchannelsinkprovider(VS.80).aspx 
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Figure 4-5 .NET Remoting with pluggable custom sinks. 

 

To Use the custom sink we just built, we have to insert it into the sink chain both on the server 

and on the client. 

 

On the client side, the sink provider is created and placed after the 

APDUClientFormatterSinkProvider. Then, when we register a channel, we register the 

APDUClientFormatterSinkProvider as the parameter to the channel we will be using. 

 
// Set up a Sink Provider with a SessionSink attached to it using the sessionKey as a parameter for 

creating the SessionSink. 

Hashtable properties = new Hashtable();              

properties["key"] = sessionKey; 

 

IClientChannelSinkProvider provider = new APDUClientFormatterSinkProvider(); 
provider.Next = new SessionSinkProvider(properties); 

    

// Create and register a new channel using the sink provider that we've just created. 

string channelName = "SecureChannel_" + DateTime.Now.Ticks; 

APDUClientChannel apduClientChannel = new APDUClientChannel(channelName, provider);                         

ChannelServices.RegisterChannel(apduClientChannel); 
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On the server side, the sink provider is created and placed after the 

APDUServerFormatterSinkProvider. Then, we register a channel, we register the 

APDUServerFormatterSinkProvider as the parameter to the channel we will be using. 

 

The class is inherited from MarshalByRefObject for reason defined in 4.5.1.1 and contains an 

array of the channels that it has already created. 
 

 public class SecureSessionEstablishmentService : MarshalByRefObject 

internal static ArrayList channels = new ArrayList(); 
 

 

   // Set up the encryption sink properties. 
            Hashtable properties    = new Hashtable();             

            properties["key"]       = sessionKey; 

 

            IServerChannelSinkProvider newProvider = new SessionSinkProvider(properties, null); 

            newProvider.Next = new APDUServerFormatterSinkProvider(); 

             

            APDUServerChannel channel = new APDUServerChannel(newProvider,port);            

 

            // Register the channel the server will be listening to. 

            ChannelServices.RegisterChannel(channel);             

 

            channels.Add(channel); 
 

 

To achieve the secure communication, the service should have an APDUServerChannel 

listening at a pre-determined port and should provide methods which should not be invoked over 

channels using the SecureSessionSink. The problem with .NET remoting architecture is that 

there is no explicit link between the transport channel and service. The system will not prevent 

the invocation of any service method on any channel in a given AppDomain. Hence 

ExecuteOverSecureChannel() can be invoked on the predetermined port which does not have any 

security or custom encryption sink. To solve this problem, APDUServerChannel should also 

include a custom sink whose sole purpose is to mark the fact that the remote method is invoked 

at channel listening at the pre-determined port. This is done by setting a static boolean variable 

accessible by the service. If a method such as ExecuteOverSecureChannel() is invoked over the 

pre-determined port (and without being authenticated), the boolean variable is set to true and 

implementation of ExecuteOverSecureChannel() method expects this flag to be false. 

ii. Summary of Steps 

Here are mentioned the steps for establishing and communicating over a secure channel 

 

i. The Client Host Proxy creates & registers an APDUClientChannel without any custom sink. 

ii. Client Invokes the GetPublicKey() method of the Smart Card service at 

APDUServerChannel listening on a predetermined port in the card. The remote method 

returns the public modulus and exponent which is imported as a public key into an 

RSACryptoServiceProvider
15

.  

iii. Client generates a random session key of 128 bits (16bytes). (This can be delegated to card 

as well) 

                                                 
15

 http://msdn.microsoft.com/en-

us/library/system.security.cryptography.rsacryptoserviceprovider(VS.80).aspx 
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iv. Client encrypts the session key and the PIN of the OnCard service using the 

RSACryptoServiceProvider. 

v. Client invokes EstablishSecureChannel() method of service at APDUServerChannel 

listening on the pre-determined port. The arguments passed to this method are the port 

number (any random) at which new created channel should listen, the encrypted pin and the 

encrypted session key.  

vi. EstablishSecureChannel() method in card decrypts the PIN and session key using the private 

key. It validates if the PIN passed is correct. If the PIN was correct, a new 

APDUServerChannel listening at the port number passed in the method call is created and 

registered with the custom sink called SessionSink.  

vii. Client now creates and registers an APDUClientChannel with SessionSink using the session 

key. 

viii. Client invokes ExecuteOverSecureChannel() method of service at APDUServerChannel 

listening at the new negotiated port. The data sent passes through the SecureSessionSink of 

APDUClientChannel that was registered in vii and is encrypted with the session key. 

ix. SessionSink of APDUServerChannellistening at the new port receives the data and decrypts 

it with the session key. 

x. ExecuteOverSecureChannel () method is invoked. The method checks if invocation is done 

on secure channel by checking the boolean flag.  

 

xi. This method does all the processing of messages sent by the TPM via Client Proxy through 

the SessionSink of APDUServerChannel listening at the random port that was negotiated. 

All communication is encrypted with the session key.  

xii. SessionSink of APDUClientChannel receives the returned responses from the card and 

decrypts it with the session key. 

 

Same steps will be repeated for any client that wants to communicate with the service. The 

APDUServerChannels with SessionSink are unregistered and destroyed on a reset (end of 

smartcard session). 

 

In a distributed environment a number of client applications might be communicating with the 

OnCard Server application, hence the card application needs to have a different communication 

channel for each client. We achieve this by negotiating a unique port number for the channel to 

be created between the client and the server. The channel are created and registered dynamically 

before the secure session and unregistered at the end of each session to free up resources. 

 

Secure Session Establishment Code 
 

   // Generate a 128 bit session key (can be generated from the card as well using the same service). 

   byte[] sessionKey = RNG.GenerateRandomBytes(16); 

 

   // Get the public key from the card (Which is the RSA Modulus and the Exponent) 

   byte[] cardPKmod = sessionEstablishmentService.GetPublicKey(); 
   byte[] cardPKexp = sessionEstablishmentService.GetExponent(); 

 

   // Put the public key from the card into an RSACryptoServiceProvider 

   RSACryptoServiceProvider rsaProvider = new RSACryptoServiceProvider(); 

    

   RSAParameters rsaParam = new RSAParameters(); 

   rsaParam.Modulus = cardPKmod; 

   rsaParam.Exponent = cardPKexp; 
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   rsaProvider.ImportParameters(rsaParam); 

 

   // This is the pin that we share with the card 

   byte[] pin = Encoding.ASCII.GetBytes(Constants.CardPin); 

 

   // Encrypt the pin and session key using the public key of the card 

   byte[] encryptedPin = rsaProvider.Encrypt(pin, false); 

   byte[] encryptedSessionKey = rsaProvider.Encrypt(sessionKey, false); 

 

   // Now call the EstablishSecureChannel method of the card using the encrypted PIN and session key.  The 

card will set up an encrypted channel using the provided session key. 
 

   try 

     { 

       sessionEstablishmentService.EstablishSecureChannel(Constants.ServiceConnectionPortSecure, 

 encryptedPin, encryptedSessionKey); 

     } 

   catch (Exception ex) 

     { 

                Console.WriteLine(ex.Message); 

                throw new AuthenticationException("PIN incorrect"); 

     }   

     //All communication from here onwards are on the encrypted channel 

      ExecuteOverSecureChannel(readername, sessionKey); 

4.5.3 Data Marshalling (Data Transformation between the TPM and the SC) 

Marshalling is the process where the memory representation on an object is transformed 

into a format which is suitable for storage and transmission. The reverse process is called Un-

marshalling. Marshalling and Un-marshalling are extensively used in Remote Procedure calls 

and Inter Process Communication, hence data transferred in .NET remoting has to be marshalled 

before sending and unmarshalled on receiving. Another term serialization is sometimes used 

synonymously with Marshalling however .NET clearly differentiates between the two. Since the 

Smart Card is providing a lot of cryptographic services, the methods exposed need to transfer 

objects on the remoting layer that include cryptographic keys, TPM primitive structures etc. 

Hence for e.g. if we need to transfer an RSA key from the Card to the server, the 

RSACryptoServiceProvider object would need to be marshalled into a sequence of bytes (byte 

array), transferred over a remoting channel and then the byte stream unmarshalled into the 

RSACryptoServiceProvider object on the client end again. As described in 4.5.1.1 the current 

implementation of the .NET Smart Card Framework does not support the marshalling of classes. 

It only support the marshalling of basic primitive value types that include (byte, short, char, int, 

long, string, etc), structs, arrays of basic types, and MemoryStreams. 

 

There are special challenges in marshalling / unmarshalling objects inside the smart card 

as the .NET Framework of the card does not support Reflection16, hence the code has to be 

written separately to marshall / unmarshall each new type of object.  

4.5.4 Securing Remoting Components in a Distributed Environment 

The method to strengthen security of remoting described in the earlier section is just one 

step towards secure building blocks of a TPM-SmartCard cooperative environment. The solution 

                                                 
16

 http://msdn.microsoft.com/en-us/library/f7ykdhsy(VS.80).aspx 
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proposed does provide confidentiality and to some extent semi-mutual authentication and 

authorization but is still susceptible to many vulnerabilities, threats and risks. Furthermore in a 

distributed environment, where clients may not necessarily be within the same domain, there are 

a lot of challenges in authenticated key distribution, cryptographic binding or end to end 

tunneling. In this section we explore a more scalable solution for security of our remoting 

architecture for a distributed environment. In large distributed environments, it would make 

sense to utilize the authentication and access control mechanisms already set in place in the 

enterprise. Hence we would explore the different security services provided by the Windows and 

how to best use them for our needs. 

4.5.4.1 Authentication and Encryption with IIS
17

 

 

The IIS is strongly integrated within the Microsoft Windows Environment and provides 

many services that are of interest to us. In the following section we discuss some of the security 

services provided by IIS and how they fit in our objective of securing remoting applications in a 

distributed environment.  The easiest way for securing .NET Remoting components is hosting 

them in IIS. IIS provides us with authentication against Windows accounts as well as transport-

level security through SSL. It can also provide a rudimentary form of access control by 

restricting calling IP addresses. To utilize the IIS Security, we can host the .NET Remoting 

components (in our case, the host proxy application) within the ASP.NET runtime infrastructure. 

IIS gives a number of authentication methods tightly integrated within Windows that includes 

Anonymous, Basic, Digest and Windows Authentication (that includes NTLM and Kerberos). 

For details of these protocols please see [20] 

 

Furthermore SSL/TLS can be enabled for transport level security. 
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Figure 4-6 A Distributed TPM / Smart Card co-operative model 

                                                 
17

 Internet Information Services (formerly Internet Information Server) is a set of Internet-based services for servers 

using Microsoft Windows that includes web, ftp, news and mail server. 
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4.6 SUMMARY 

This chapter includes a detailed explanation of the enhanced TPM and Smart Card 

coupled services that were implemented in some of the major functional areas of the TCG 

specifications. We discussed the fundamental differences in both TPM and the SmartCard 

platforms. We also discussed in detail some of the major challenges that arise during the 

coupling process and our solutions for addressing the major security issues in coupling these 

architectures together. We discussed the requirements and limitations of coupling with 

smartcards and put forward some recommendations regarding the non supported scenarios.  

  

We started the chapter by discussing what would be an ideal architecture and components 

of a TPM with internal secure execution environment which can provide VM based code 

isolation and security guarantees. We discussed some of the similar projects, their propositions 

and their solutions for extending hardware and software to provide similar offerings for secure 

code execution. However, most of these projects do not focus exclusively on either providing a 

secure / trusted execution environment within the TPMs tamper resistant hardware boundary or 

put forward a solution that can be implemented without changing the current state of hardware 

and software based platform security. Furthermore most of them require hardware extensions 

which are time consuming, require changes in the software which is complex and costly process 

both in terms of time and money. 

 

Hence we put forward an alternative architecture that uses the services of a TPM and 

couple them with a platform that does provide secure execution environments. In this way we 

utilize the already established strengths of both the platforms without requiring any additional or 

special hardware extensions. We discuss in detail how we achieve this target with multi-

application post issuance programmable smart cards with a detailed implementation of the 

coupling process. We described our motivation for choosing SmartCards as the coupling 

platform and its characteristics that made it a natural choice for this process in Chapter 3.0 . The 

SmartCard capability requirements for different coupling levels and scenarios are clearly stated 

with a description and references of our chosen .NET SmartCard platform. Furthermore we also 

discuss the core platform differences between the SmartCard and the TPM that build up a 

number of challenges in the process. 

 

For the actual implementation we start off by discussing how to cryptographically bind a 

TPM and a SmartCard in order for them to identify each other and provide other coupled 

confidentiality and integrity services. We utilize the TPMs attestation keys and SmartCard 

generated Identity keys for TPM and SmartCard binding and follow a model similar to SSL for 

generating / using session based symmetric keys for all calls to and from the TPM / SmartCard. 

We also extend the .NET Remoting architecture to add encryption to the channels and sinks for 

making an end-to-end encrypted tunnel of communication between the SmartCard and the TPM. 

This is important as .NET remoting does not offer any security services on its own. We also shed 

some light in securing the remoting component / proxy application in a large enterprise 

distributed environment by utilizing the established security infrastructure provided by Windows 
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for e.g. utilizing different windows authentication methods, access control mechanisms and 

encryption / security features offered by the Internet Information Services Server.  

 

The next Chapter would discuss the services that are built and programmed into the 

SmartCard for providing enhanced TPM coupled security services and secure execution 

functionality for the applications. 
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5.0  EXTENDED TPM SERVICES PROVIDED BY THE SMART CARD 

5.1 INTRODUCTION 

Trusted platforms (like the TPM) are integrated onto a system to provide hardware based 

platform security. They provide niche security services such as attestation (reliable reporting of 

platform state), sealing (encrypting some piece of data so it can be only decrypted by authorized 

software), integrity protection, shielded locations, protected storage and secure management of 

keys. They act as the Root of Trust (for integrity measurement reporting and storage). For a 

platform (state) to be trusted, the integrated TPM should be trusted. 

 

SmartCards on the other hand are removable tokens and are usually carried along with 

the user (for example Identity cards). They are used for multi-factor authentication and different 

services than that of a TPM. Programmable smartcards also provide an environment and 

platform where general (or special) purpose applications can be built and loaded before the 

SmartCard is handed out to the customer. Examples include EMV applications for the Payment 

Card Industry, SIM applications for telecom etc. Much of the security of the system lies on the 

tamper resistance of the SmartCard.  

 

As such, the SmartCard is not capable of making integrity measurements of a platform 

nor does it enjoy the other characteristics of the TPM. Similarly the TPM lacks some features 

such as providing a secure / trusted environment for general purpose code execution and is not 

roaming like a SmartCard. Hence we proposed an architecture where we couple both the 

platforms to provide extended services and combine the best capabilities of both the platforms. 

 

This Chapter discusses some of the enhanced services that can be offered when the TPM 

and SmartCard are coupled together. A simple TPM and SmartCard binding process is described 

in Chapter 4.0 TPM & SmartCard Coupling for Enhanced Security Services and these services 

are based on extending the same binding process further to design and implement extended 

security services in the SmartCard which utilizes the capabilities of both the SmartCard and the 

TPM. Code snippets and function implementation details are provided where necessary. These 

services include from simple TPM/SC Authorization Model to complex flexible sealing, binding 

and attestation services and hence open new possibilities and ways for providing strong security 

services for security sensitive applications. 

5.2 FLEXIBLE AUTHORIZATION 

5.2.1 Introduction: 

This section describes the authentication and authorization methods and protocols in the 

current TCG specifications. It then describes some of the shortcomings and finally a description 

and implementations of a stronger Smart Card and TPM  Authorization Model. The combined 

authorization model describes simple authentication schemes like authorization storage to 
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complex smartcard participation in calculating parts of the protocols for stronger binding. We 

discuss 3 different implementations for different authorization protocols in increasing 

complexity order. 

 

The TCG specifies different protocols and mechanisms for authentication and access 

control over the TPM protected objects. These objects and other authorized functions are 

performed through different authorization protocols defined earlier 2.5.14. These authorization 

protocols prove to the TPM that the user holds the permission to access those protected objects 

or perform the authorization functions. The proof comes from the knowledge of a shared secret 

between the user and the TPM.  

 

The current TPM specifications do not clearly identify the concept of a “user”. The only 

entities described are the owner and the operator. Hence most of the authentication for resources 

and objects are defined as “ownership authentication” [22]. The TCG doesn’t address any 

security from the user point of view, as the specifications only deal with the security of the 

platform. The proof of ownership of Owner Authentication data implies complete control over 

TPM resources including the ability to clear the TPM.  

 

As with all systems and solutions relying totally on password based schemes, the biggest 

problem is secure storage of the authorization data. Humans are long known for their poor 

capabilities in remembering passwords, hence most of the TPM administration products 

available today including Windows Vista TPM Management Console implements a simple 

password based scheme for TPM control. The password could be arbitrary length (sometimes 

enforced by a password policy) and the Authentication Data (AuthData) is computed by taking 

the SHA-1 hash of the password. 

 

OwnerAuthorizationData = SHA-1(password) 
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Figure 5-1. Password based TPM Administration in Windows Vista  

 

 

There are a number of problems with the authorization scheme for TPM ownership as described 

earlier in 2.5.14.21 are highlighted below: 

 

• One factor only authentication 

• Subject to brute force and dictionary attacks 

• Snoop able 

• Guessable 

• Easy to lose and forget 

• Shareable 

 

These problems are so common even in the current TPM context that the TPM manufactures 

had to implement lockout and response degradation mechanisms to protect from repeated 

password entry failures and automated brute force attacks. Some of the solutions addressing this 

problem include storing passwords and keys in a secure e-wallet such as PGP or some other 

container (generally persistent secondary storage). However this solution again depends upon 

knowledge of a master password that protects all the secrets within and is subject to other 

statistical and algebraic key finding attacks such as mentioned in [23]. The response degradation 

is also implemented in the TPM_IncrementCounter to limit the monotonic counters increment 
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and save them from being exhausted within a small time frame. This is described in detail in 

5.5.1 

5.2.2 Smart Card participation in Authorization Protocols 

There can be a number of solutions possible depending upon the smart cards capabilities 

and the security level required. These are listed in increasingly secure order 

 

1. Simple storage of Authorization Data 

2. Computation of shared secret in Object access protocols (e.g. OSAP) 

3. Computation of the authentication values generation and verification. 

4. Encryption of the newly generated Authorization Data (ADIP). 

 

5.2.2.1 Simple Storage of Authorization Data 
 

The simplest (and hence the least secure) method for smart card to participate in the 

authorization protocols is to store that 20-bytes of authentication data in the smart card itself. 

This authorization data (or a number of authorization data sets) can be stored securely and 

provided by the user during the Authorization protocols such as OIAP or OSAP. The user can be 

authenticated to the smart card by some other means for example PIN. Secure binding between 

the smart card and the host platform with secure PIN transfer is described in detail in the earlier 

section 4.5.2.  

i. The Process: 

 

i. The user wishes to execute an authorized command and sends it to the platform. 

ii. The platform (host) recognizes this as an authorized command and sends a request to the 

user to enter his PIN. 

iii. The user inserts his smart card and enters his PIN to get access to the requested object. 

iv. The smart card validates the PIN and sends a response to the platform 

v. The platform requests Authorization Data from the Smart Card 

vi. The smart card checks whether the authorization data is the same the user requested for. 

If yes the smart card reads the corresponding authorization data from the card and sends 

it over to the platform. 

vii. The platform receives the authorization data, combines this in the authorization command 

the user requested in the first step and sends it to the TPM through an authorization 

protocol. 

viii. The TPM receives the command and continues the authorization protocol and allows the 

user application to access the TPM protected object. 

 

The scenario is illustrated diagrammatically below: 
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Figure 5-2 Authorization Data Stored & Presented by SmartCard in Authorization Protocols 

 

This method even though not 100% secure, still gives us the following advantages: 

 

• We have two (or even more) factors of authentication. The user needs to be in possession 

of a smart card that holds the authorization data and knowledge of its PIN to access it. 

Furthermore it is now at user’s discretion whether he wishes to participate in the 

authorization session or not by presenting or holding the smart card. 

• The authorization data that is now protected by the smart card can be assigned to 

different users who are authenticated and authorized. Furthermore only the smart card 

that holds the specific authorization data can access the TPM protected object. 

• By securing it inside a smart card we ensure that it is now very hard (though not 

impossible) for the attacker to get hold of the authorization data since the smart card is 

not easy to duplicate 

• Since the smart card provides true random number generation. We can generate and use 

truly random values for authorization which need not be derived from a password or 

seeded from some existing value 

• Since all the smart card is doing is storage (and protection). This method can be 

implemented by even most of the cheapest smart cards available today. 

 

5.2.2.2 Computation of Shared Secret 

 

The previous method though providing some benefits is not so convincingly secure. If the 

path between the smart card and the platform is not protected the authorization data can be 
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sniffed, snooped or attacked in other similar ways. We further strengthen this model by building 

a scheme where the authentication data never leaves the card and the smart card computes parts 

of the protocol requiring the authentication data. 

 

During the smart card participation in the authorization protocol, the smart card performs 

the value of inAuth and returns to the platform. The platform takes this inAuth value and 

calculates the remaining part of the authorization data. In addition the smart card is also used to 

verify the resAuth value. This scheme offers a much higher security then the previous section 

since the authorization data never leaves the card. The binding for the card is more secure and 

this method is even less vulnerable to reply attacks since each time the random nonces are 

transferred from the smart card and the platform and vice versa. 

i. The Two way OSAP participation: 

 

As described earlier in OSAP is used to provide proof to the TPM, the ownership of the 

authorization data for a single specific object. It can be used by allowing multiple commands 

within the same authorization session but only for that specific object. 

 

i. The TPM generates a handle to the object to track authorization sessions. 

ii. The TPM generates an OSAP nonce (nonceEvenOSap) and a TPM replay nonce 

(nonceEven). 

iii. The TPM generates a shared secret by taking the HMAC of the callers nonce (nonceOdd) 

and the TPMs OSAP nonce 

 

SharedSecret = HMAC(ObjectAuthData, nonceEvenOSAP, nonceOdd) 

 

iv. The HMAC key (K) is the authorization data needed for the use of the key. 

v. The AuthHandle, nonceEvenOSAP and nonceEven are sent to the SmartCard. 

vi. The SmartCard also computes the shared secret since he knows the authorization data K. 

It HMACs the same way as TPM in step iii and returns to the host. 

vii. The host now calls a TPM_Command for e.g TPM_LoadKey for key (K) which is an 

authorized command hence requiring to the host to prove knowledge of authorization 

data for key K that is required to access the protected object. 

viii. The Smart Card calculates the inAuth parameter which is consisted of 

a. First take the SHA1 Hash of (TPM Command + Input Arguments + nonceEven + 

a flag to continue session). We call this value the inputParams 

b. Then take an HMAC with the Key K over the inputParams, the Shared Secret 

calculated earlier and the parameters for the setup. 

 

inAuth = HMAC(SharedSecret ,SHA1(inputParam), inAuthSetupParam) 

 

ix. The Smart Card hence sends to the TPM the KeyHandle, the inAuth, and the plaintext on 

which HMAC was generated. 

x. The Command is executed by the TPM and a new nonce is generated to replace the last 

nonce for preventing replay. 

xi. The message returned to the SmartCard includes: 
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a. A SHA1 Hash of the return code by the TPM for the command executed + The 

TPM Command Code Ordinal + Authorization Session Handle + nonce generated 

by the TPM (nonceEven) + nonce associated with the shared secret 

(nonceEvenOSAP) + whether to keep the session open). We call this the 

outputParams. 

b. Then take an HMAC with the Key K over the output Params, the shared secret 

and the plaintext elements of outputParams. 

 

responseAuth = HMAC(SharedSecret, SHA1(outputParmams), outputParamsSetup 

 

xii. The Smart card now verifies the response Auth and checks the return code whether the 

command was successfully executed or not. 

xiii. The session can be end or continued here as was setup earlier. 

 
 

 

Figure 5-3 SmartCard Calculating the shared secret in Authorization protocols 

 

5.2.2.3 Secure Generation and Insertion of Authorization Data. 

 

In the previous example of two directional OSAP implementation, we let the inAuth value 

computed by the platform and only allow the smart card to calculate the shared secret. In most 

cases the shared secret is used per session only so even if it is sniff able or intercepted in between 

it is not a huge problem, however for cases like ADIP and ADCP protocols it becomes a bigger 

problem. The ADIP protocol for example uses the shared secret calculated as part of the secure 
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session creation to further encrypt the new authorization data as they are loaded in the TPM. 

Hence we need a way to strengthen the smart cards participation more for this scenario. To 

strengthen the ADIP scheme with smart cards we take the following steps 

 

i. The Smart Card holds the parent key authorization data (which in our example case is the 

Storage Root Key) 

ii. The smart card creates the temporary shared secret for ADIP usage in the same way as 

described earlier for OSAP 

iii. The Smart card securely generates (with true randomness) new authorization data & encrypts 

it. 

iv. In the same way as described for OSAP, the smart card computes the inAuth values. 

 

 
 

Figure 5-4 Smart Card participating in ADIP 

5.2.3 Benefits of Enhanced Authorization. 

i. Separation of Privileges: Privilege separation partitions a program into two 

parts, a privileged program which is the monitor and the unprivileged program 

called the slave [24]. The monitor is responsible for all control, trust and 

privileges which result in a more secure trusted base. In this case the Smart Card 

acts as a trusted monitor for authorization data and the host proxy as the slave for 

calling TPM authorization commands. 
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ii. Two factor authentication: The authentication is now based on knowledge of a 

secret (password) i.e. something you know, and the possession of a smartcard i.e. 

something you have. Furthermore the smartcard s authentication itself is protected 

by a PIN and can be replaced by custom authentication. 

 

iii. User credential portability: In day to day activities users interact more and more 

with different computing environments. Platform credentials remain attached to 

their host computer however user credential usage goes beyond those boundaries. 

Just one of the advantages of using a smart card based user credential is that if a 

users credential or authentication data is locked in a TPM, they would be 

unavailable to the user if the TPM machine is offline or under maintenance. 

 

iv. Administration simplification: Think of a scenario where a TPM is used for 

authenticating users to a platform operation for example machine logon. As of 

current TPM specifications, there are serious concerns on the TPMs storage 

space, which raises questions on TPM to be used in a large multi user 

environment for such a scenario. 

 

v. A layer of privacy: Smart Card protected credentials always remain under user 

control. Users can explicitly decide to use or not to use their credentials on some 

operation by inserting or not inserting the card and check what elements of their 

identity is to be revealed if they chose to do so. Credentials stored, managed and 

being used in a TPM raises a lot of concerns and suspicions to the end users how 

their credentials are being used. 

 

vi. Tamper resistant storage: The SmartCard provides tamper resistance for any 

data stored in it. Even the most basic smartcards require atleast a modest amount 

of effort in order to clone them. Furthermore, most of the mass market produced 

cards are Common Criteria evaluated. The .NET Smart card also provides other 

security services including role based security. The security services of the card 

are described in detail in 3.4.1. 

5.3 VALIDATING TPM GENERATED QUOTE (ATTESTATION) 

5.3.1 Introduction: 

The following section describes the Smart Card implementation of ValidateTPMQuote. 

The smart card uses this service to validate a TPM generated attestation just like any remote 

challenger. This service can be used in a number of different methods and combined with other 

protocols depending upon the application. We describe one such application using 

ValidateTPMQuote in Section 6.1 Enhanced Digital Signature. 

 

A TPM_Quote[3] is essentially a Digital signature on the platform state. The platform state is 

detailed in a log of software events which are also called integrity metrics and are stored in the 
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Platform Configuration Registers (PCRs). For normal applications scenario a remote server 

typically sends a request to a particular platform to quote its platform state (also called 

generating attestation). The server based on this attestation makes a decision on how to move 

forward depending upon the application. The attestation includes the integrity metrics of both the 

platform and the software state. The server is assumed to know the public key of the TPM it 

requested the quote from which is used to verify the digital signature.  

 

As we described in the secure TPM / SmartCard Binding process we generate an Attestation 

Key from the TPM and securely store the public key in the smart card to which it is bound. 

Hence we can extend the same attestation idea for the SmartCard which can request the platform 

to generate a TPM_Quote over its state and the SmartCard would verify it like any remote 

challenger. We therefore implement a service in the smart card of SC_ValidateTPMQuote which 

can be used in a variety of products and protocols for validating a platforms identity and state. 

An example application detailing its usage is described in the next chapter in section 6.1. 

5.3.2 Function Details for SC_ValidateTPMQuote 

Pre-Req: SmartCard holding TPMs AIK publicKey aikpub 

Input: TPM_Quote t , Data_Quoted d 

Output: A Boolean value b stating the signature verification was true or false. 

Description: return aikpub.Verify(t,d) 

Code: 
 

/// <summary> 

        /// Validates the quote RSA enc OAEPP. 

        /// </summary> 

        /// <param name="tpmQuote">The TPM quote.</param> 

        /// <param name="dataQuoted">The data quoted.</param> 

        /// <param name="publicKey">The public key.</param> 
        /// <returns></returns> 

        public bool ValidateQuoteRSAEncOAEPP(byte[] tpmQuote, byte[] dataQuoted, byte[] publicKey) 

        { 

            RSAParameters rsaParams = new RSAParameters(); 

     //Convert TPM key to RSA key 

 

            RSACryptoServiceProvider rsaKey = new RSACryptoServiceProvider(); 

            rsaKey.ImportParameters(rsaParams); 

            Debug.WriteLine("Parameters imported"); 

           

            Debug.WriteLine("Going to verify"); 

            return rsaKey.VerifyData(dataQuoted, SHA1.Create(),tpmQuote); 
         

        } 

 

An important note and difference in the TPM and .NET encryption and signature schemes are the 

different padding and signature schemes supported. In this scenario we omit the details and the 

code but we have to add / remove the OAEP padding [25] from the data that is signed to match 

the signature byte arrays and verify them. 

5.3.3 The Process: 
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Figure 5-5 TPM Attestation Validation by the Smart Card 

5.4 ENHANCED SEALING AND BINDING 

Sealing binds (encrypts) some data to a particular platform specifying a trusted future 

platform state so it can only be decrypted by the platform when it is in the expected 

configuration. The concept of sealing is one of the most powerful and widely used features of the 

TPM as it provides strong confidentiality and integrity services. However it comes with certain 

restrictions and the specifications are very strict over specifying the current and future platform 

state. The existing TCGs proposed model for sealed data is very simple: data is bound to a 

specific platform by specifying the future platform state stored in digestAtRelease which is a 

SHA1 over a specific PCR combination holding integrity metrics. However the digestAtCreation 

and digestAtRelease need to be specified before the TPM_Seal is called and hence much 

flexibility is lost if the data has to be sealed over a number of different platforms and 

configurations. 

 

     We extend the simple TCG sealing and binding model so that more flexible disclosure 

options are possible for example: 

 

• Sealing to multiple TPMs and multiple configurations 

• Sealing to a complex logic expression based on PCRs  

• Sealing to any configuration authorized by a signature with a known public key 

 

 We present an enhanced sealing application in 6.2 which is coupled with some other services 

provided by the smart card. 
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5.4.1 SmartCard Un-Bind      

The Binding flexibility goes further than sealing. Since keys used for TPM_Data_Bind can 

be migratable we can generate and load the entire RSA key securely in the card. This way either 

the smart card or the TPM can bind and/or unbind the data depending on the application. The 

SmartCard can hold multiple keys from multiple platforms and Bind / Seal Data to any or all of 

those based on any policy, signature or configuration required. We present an enhanced sealing 

application in the next section which is coupled with some other services provided by the smart 

card. If the smart card is loaded with the private key of a migratable bind key, the smart card can 

Unbind (decrypt) TPMBoundData generated by the particular TPM as well 

 

5.4.1.1 Function Details for SC_Unbind  

 

Pre-Reqs: Migratable TPM Private Key to decrypt pvtKey (pre-loaded / securely generated 

in the card). 

Input: Data to Unbind d, Policy p or a digital signature ds 

Output: Decrypted data blob data 

Description: The function assumes a private TPM key (for e.g. a migratable BindKey) 

already loaded in the card. This key can also be transferred securely depending upon the 

application. It checks the pre-requisite items before performing SC_Unbind (that may include 

checking for a policy, validating a TPM generated attestation, or validating a digital signature 

over some data), checks for authorization values and if everything is successful performs the 

SC_Unbind and returns the decrypted data 

 

i. Enhanced Bind Code: 

 
public bool TestSmartCardBind(SecureSessionEstablishmentService smartCardService) 

        { 

            TpmRawCommands tpmCmd = TpmDevice.RawCommand; 

            OsapSession osapSession = tpmCmd.Osap(TpmEntityType.KeyHandle, (int)ReservedKeyHandle.Srk,  

         srkAuth, false); 

            osapSession.ContinueAuthSession = false; 

 

            OiapSession srkSession = tpmCmd.Oiap(srkAuth, false); 

            OiapSession session = tpmCmd.Oiap(ownerAuth, true); 

 

            //Get from Card 
            AuthorizationData useAuth = new AuthorizationData(smartCardService.GetUsageAuth()); 

            AuthorizationData migrationAuth = new  

  AuthorizationData(Encoding.Default.GetBytes(smartCardService.GetMigrationAuth())); 

             

            //Generate a random key .. we can do this in the card as well .. it just takes longer  

            TpmKey randomGenKey = CreateBindingKeyPrototype(); 

            //Wrap it with SRK 

            TpmKey randGenBindKey = tpmCmd.CreateWrappedKey(TpmKeyHandle.SrkHandle, useAuth,  

       migrationAuth, randomGenKey, osapSession); 

            //Now load it in the TPM for use 

            TpmKeyHandle bindingKeyHandle = tpmCmd.LoadKey(TpmKeyHandle.SrkHandle, randGenBindKey,  

          srkSession); 

             
            byte[] dataToBind = Encoding.Default.GetBytes("Sample Data To Bind  ... "); 

 

         

            byte[] boundDataWithSmartCard =  
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   smartCardService.CreateTPMBoundData(randGenBindKey.StorePubKey.key, dataToBind); 

            PrintArray(boundDataWithSmartCard, " SC Bound"); 

             

            byte[] scUnboundData = tpmCmd.Unbind(bindingKeyHandle, boundDataWithSmartCard, session); 

            PrintArray(scUnboundData, " SC UnBound"); 

 

            // and see if the answer is correct 

            if (!ArraysAreEqual(dataToBind, scUnboundData)) 

            { 

               throw new Exception("Unbind Error"); 

            } 
            tpmCmd.FlushSpecific(bindingKeyHandle); 

            return true; 

        } 

 

ii. Create TPM Bound Data 

 
/// <summary> 

        /// Creates a TPM bound data. 

        /// </summary> 
        /// <param name="bindingKey">The binding key.</param> 

        /// <param name="dataToBind">The data to bind.</param> 

        /// <returns></returns> 

        public byte[] CreateTPMBoundData(byte[] bindingKey, byte[] dataToBind) 

        { 

            RSAParameters rsaParams = new RSAParameters(); 

            rsaParams.Modulus = bindingKey; 

            rsaParams.Exponent = new byte[] { 1, 0, 1 }; //This one just works both in and outside the 

card 

 

            //rsaParams.Exponent = Encoding.ASCII.GetBytes("65537"); 

            RSACryptoServiceProvider rsaKey = new RSACryptoServiceProvider(); 
            rsaKey.ImportParameters(rsaParams); 

 

            byte[] tpmSerializeForBound = new byte[] { 1, 1, 0, 0, 2 }; 

            byte[] serializedBoundData = new byte[tpmSerializeForBound.Length + dataToBind.Length]; 

            Array.Copy(tpmSerializeForBound, serializedBoundData, tpmSerializeForBound.Length); 

 

            for (int i = 0; i < dataToBind.Length; i++) 

            { 

                serializedBoundData[i + tpmSerializeForBound.Length] = dataToBind[i]; 

            } 

 

           // byte[] cipherText2 = RsaEngine.RsaTpmEncodeAndEncrypt(rsaP.Modulus, serializedBoundData); 

 
            //byte[] parms = new byte[] { (byte)'T', (byte)'C', (byte)'P', (byte)'A' }; 

            byte[] tcpaParams = Encoding.ASCII.GetBytes("TCPA"); 

            byte[] EncodedMessage = RSAesOAEP.Encode(serializedBoundData, tcpaParams, 255); 

 

            //byte[] pHash = Sha1Engine.ComputeHash(parms); 

 

            byte[] boundData = rsaKey.EncryptValue(EncodedMessage); 

 

            return boundData; 

        } 

 

This scenario is detailed in the diagram below: 
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Figure 5-6 TPM Bound Data decrypted by a SmartCard by SC_UnBind. 

5.4.2 SmartCard Bind / Seal 

The reverse operation (where a smartcard can seal / bound data to a particular platform / 

set of platforms) is relatively simpler. All we need is to have the public Key loaded in the card to 

perform SC_Bind. The implementation of SC_Seal is a little more complex as the program logic 

to create future trusted state (i.e. creating digestAtRelease values for the platform) for the data to 

be decrypted will depend on how the sealing is implemented. Diagrammed below is a simple 

implementation of SmartCard binding data to a particular platform and the platform holding the 

correct key decrypting it on the system. 
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Figure 5-7 Sample scenario for SmartCard  Seal / Bind data for a particular TPM 

 

5.4.2.1 Function Details for SC_Bind 

 

Pre-Reqs: Public Key to encrypt pubKey (pre-loaded sealPubKey, securely generalted 

migratable BindKey) 

Input: Data to Bind d, Future state specification hash 

Output: A Smart Card generated TPM Bound Data encblob 

Description: The function takes a public TPM key and encrypts some data. It creates a 

TPM_BoundData and specifies the future state of the platform for the data to be 

decrypted just like TPM_Seal. The future state is essentially a SHA1 hash which is taken 

over the platform state that would be expected for the data to be unsealed. 
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Figure 5-8 Smart Card Enhanced Seal / Bind 

5.5 ENHANCED VIRTUAL MONOTONIC COUNTERS 

A Monotonic Counter is a trusted atomic tamper resistant counter, whose value once 

incremented cannot be reverted back. This special property (that also allows for protection 

against replay attacks) allows for many different interesting applications that include but not 

limited to DRM technologies, e-cash tokens, count limited objects etc. 

5.5.1 Issues with the TPM Monotonic Counters: 

The current TPM specifications [3] as of this writing limit the total number of base 

monotonic counters in a TPM to be 4 (which are called the base counters). Also, out of these 4; 

only 1 counter can be incremented per boot session, the others can only be read. To use another 

base counter the system has to be rebooted. The motivation for such a design was to have a 

monotonic counter per trusted operating system (max 4), so each operating system has its own 

counter which cannot be updated after its boot sequence [4].  

 

Different TPM Manufacturers limit the speed of incrementing a monotonic counter to 

counter against denial of service attacks and prevent a counter rollover as a single monotonic 

counter is a 32bit value whose maximum value can be exhausted within 2
32

 -1 values. The 
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TPM_IncrementCounter[3] call has a throttling limit of 5 seconds that would ensure that even if 

continuously updated the update cycle for a complete counter overflow is atleast 7 years.[4] 

 

Furthermore the monotonic counters are not integrated directly with any of the other 

services that the TPM provides. Hence their use (and implementation of any extended counters 

pointing to the base) has been left on the implementation of the OS. 

 

These specification of the TCG for monotonic counters naturally limit the ability of the 

user mode applications to utilize directly, the full potential of monotonic counters provided by 

the TPM, hence there have been a number of efforts to enhance the use of these counters for 

example [26].  

5.5.2 Smart Card Enhanced Counters: 

To provide an easy, usable framework and shielding the complexity of the Monotonic 

counters provided by the TPM, we implement some user and programmer friendly functions for 

implementing an extended counter system within the smart cards which have the following 

benefits. 

 

1. We can use arbitrary length counters using Big Integer based classes. For 

demonstration purpose we implement the services using a both 32bit and 64bit 

counters (having a max value of 18446744073709551615), which can be extended as 

required. 

2. The extended counters can be bounded to (and hence taken a count of) any object 

(that includes but not limited to Authorization Data, Cryptographic keys etc, hence 

giving an effective implementation of Count Limited Objects or Clobs[26]. 
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Figure 5-9 Smart Card Enhanced Monotonic Counter Creation and Usage 

 

5.5.2.2 Implementation Details and Function Calls: 

 

1. SC_CreateCounter 

Input: A CounterName n, AuthrozationData auth, Object to Bind clob (optional) 

Output: A Monotonic Counter mc 

Description: Creates a Monotonic Counter and optionally binds it with an object. 

Authorization data is provided for authorized operations including increment and release. 

 

2. SC_IncrementCounter 

Input: The CounterName n, AuthrozationData auth, Object to Bind clob (optional) 

Output: Incremented Counter Value mc+1 

Description: Increments a particular monotonic counter. Increment Authorization is 

required as this is an authorized operation 

Usage: 
 

    /// <summary> 

        /// Increments the counter. 

        /// </summary> 

        /// <param name="counterName">Name of the counter.</param> 
        /// <returns></returns> 

        public int IncrementCounter(string counterName, AuthorizationData authData) 

        { 

  if CheckAuth(counterName, authData){ 

 

 

            if (MonoCounters.ContainsKey(counterName)) 



 63 

            { 

                int originalValue = (int)MonoCounters[counterName]; 

                originalValue++; 

                MonoCounters[counterName] = originalValue; 

                SaveCounterInPersistentMem(counterName); 

                return (int)MonoCounters[counterName]; 

            } 

            else 

            { 

                return -1; 

            } 
 

      } 

  } 
 

3. SC_GetCounterValue 

Input: The CounterName n 

Output: The Counter Value v 

Description: Gets the Int64 value of a monotonic Counter 

Usage: 
/// <summary> 

        /// Gets the counter value. 

        /// </summary> 

        /// <param name="counterName">Name of the counter.</param> 

        /// <returns></returns> 
        public int GetCounterValue(string counterName) 

        { 

            if (MonoCounters.ContainsKey(counterName)) 

            { 

                return (int)MonoCounters[counterName]; 

            } 

            else 

            { 

                return -1; 

        } 

    } 

 

 

4. SC_ReleaseCounter 

Input: The CounterName n , AuthrozationData auth 

Output: Boolean value indicating release success. 

Description: Releases a counter, deletes the memory and persistent storage acquired by 

the counter. Release Authorization is required. 

Usage: 
 

5.5.2.3 Helper Functions: 

 
/// <summary> 

        /// Saves the counters in persistent mem. 

        /// </summary> 

        /// <returns></returns> 

        [Transaction] 

        private bool SaveCountersInPersistentMem() 

        { 

            FileStream persistentCounterStorage = new FileStream(@"D:\Pub\Counters.dat",  

     FileMode.OpenOrCreate, FileAccess.ReadWrite); 

            BinaryFormatter bf = new BinaryFormatter(); 

            bf.Serialize(persistentCounterStorage, MonoCounters); 

            persistentCounterStorage.Close(); 
            return true; 
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        } 
 

5.5.2.4 Implementing .NET Transactions in the Smart Card 

 

The .NET Smart Card Framework supports a persistent transaction model that ensures the 

integrity of data on the Gemalto .NET Card, despite frequent and sometimes unpredictable 

physical removal of the card from the system or terminal with which it is communicating.  

 

As we mentioned before, unlike the TPM which is bound to a particular platform, a smart 

card is roaming. It has more chances of being stolen, lost or get into malicious hands. 

Furthermore, the smart card takes the power from the reader it is inserted in to perform all the 

calculations. A smart card can be removed from a reader at unpredictable times (maliciously or 

otherwise is not the primary concern), What we need are atomic operations on creation, updates 

and deletes etc. When the removal occurs, the card will lose power immediately. This is a serious 

problem if you were in the middle of updating a sequence of object fields. For example, we 

might be updating some balance in e-cash tokens in an object. If are not able to update a 

monotonic counter correctly, (say we return the authorization data in the count limited object) 

but the card is removed before we update the “UsageCount” field, we would end up our Count 

Limited Objects being defeated. In a transaction based model, we want to be sure either we do all 

the operations in entirety or none. A number of power attacks are known including Static and 

Differential Power Analysis (SPA / DPA) that have been very successful in the past to recover 

secret keys from the card [5] . 

 

Card removals aren't the only interruption that can cause a problem. We are also 

concerned with a code or data failure which could cause an exception to be thrown in the middle 

of an update operation. This could leave the card in an inconsistent state (or at times even corrupt 

the memory and persistent storage). In this case, you need a mechanism for rolling back any field 

updates to the original state.  

 

i. How transactions work 

 

Transactions work by ensuring that changes are not committed until the end of a 

transaction. When you create a transaction, the card preserves the state of the object before the 

transaction began, and will revert to this state at power up if the transaction was unable to 

complete. Any method (including the method initially called by the client) can be marked as a 

sub-transaction by the addition of a special transaction attribute, Transaction.  Also, any method 

that is called by a method that is under transaction is also considered to be under transaction. If 

the transaction method returns an uncaught exception, the transaction is not committed, and 

objects and static data fields are returned to their previous state.  

 

Example 

In the example, the Increment method is marked as a transaction using the Transaction attribute. 

 
[Transaction] 

/// <summary> 

        /// Increments the counter. 

        /// </summary> 
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        /// <param name="counterName">Name of the counter.</param> 

        /// <returns></returns> 

        public int IncrementCounter(string counterName) 

        { 

            if (MonoCounters.ContainsKey(counterName)) 

            { 

                int originalValue = (int)MonoCounters[counterName]; 

                originalValue++; 

                MonoCounters[counterName] = originalValue; 

                SaveCounterInPersistentMem(counterName); 

                return (int)MonoCounters[counterName]; 
            } 

            else 

            { 

                return -1; 

            } 

} 

 

If the method is partially executed (say the card is pulled out and loses power) or there is 

an uncaught exception, the changes to the variables are never committed or are rolled back 

because of the Transaction attribute. 

ii. Out-of-Transaction objects 

 

Although in general you would like to roll back any modifications made to your card if 

the operation is interrupted, there may be cases where you might want the method to be under 

transaction, but for a particular field of an object to be "out of transaction". One motivation for 

this is the PIN class. You can imagine that the logic for a PIN class might be for the caller to 

send PIN data to a method, and the method would then pass the data to the PIN object. If the data 

does not match the PIN, the number of remaining tries on the PIN is decreased, and the method 

returns. What we would want to avoid is for an attacker to be able to try a PIN, cut power to the 

card if it fails, and have the number of remaining tries reset by a transaction. 

 

To avoid this type of attack, the .NET framework provides an OutOfTransaction 

Attribute that can be applied to the fields of an object. Fields annotated by this attribute are 

always considered to be "out of transaction". That means that even if it is used inside a method 

that is under transaction, the field will not be rolled back to its previous state if the transaction is 

interrupted. The PIN class of the card is built using an OutOfTransaction attribute. 

iii. Storage 

 

The Gemalto .NET Card contains both persistent memory and volatile memory that are used for 

data storage. The persistent memory acts as persistent storage for the card - data persists in it 

even after the card is removed from a smart card reader. Volatile memory is reset when the card 

loses power and cannot be used for persistent storage. 

 

iv. Data stored in persistent memory 

 

The persistent memory of the card is used for objects that are created by your application. Any 

object created with a new keyword (whether this is done by the developer or by an underlying 

software package) is created in persistent memory, and will remain on the card until it is no 
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longer referenced and has been garbage collected. In addition, any fields of an object will be 

stored in persistent memory. Data stored in the file system is always stored in persistent memory. 

5.6 SUMMARY  

In this chapter we discuss some of the enhanced services that are possible with the TPM-

and-SmartCard collaborative model and discussed our detailed implementations of them. These 

services are broadly categorized into 4 categories: 

 

Flexible Authorization: Smart Card participates in the TCG authorization protocols with 

different methods depending upon the security level required and smartcard capability 

requirements. Those include from simple AuthorizationData storage in the card to complex 

HMAC based shared secret calculations for OSAP and ADIP protocols. 

 

Validating TPMs Generated Quote: The smart card uses this service to validate a TPM generated 

attestation just like any remote challenger. This service can be used in a number of different 

methods and combined with other protocols depending upon the application. We use this service 

exposed by the SmartCard to check the authenticity and genuineness of the TPMs generated 

attestations. We can use this service in a number of ways, some of the applications using this 

service are described in Chapter 6.0 . 

 

Flexible Sealing and Binding: We extend the simple TCG sealing and binding model so that 

more flexible disclosure options are possible for example Sealing to multiple TPMs and multiple 

configurations, Sealing to a complex logic expression based on PCRs or Sealing to any 

configuration authorized by a signature with a known public key etc. A SmartCard can Bind / 

encrypt data to any platform (or set of platforms) for which it is bound to. This also helps us 

build some interesting DRM applications, a couple of them are described in Chapter 6.0 . 

 

Enhanced Monotonic Counters: The Smart Card also provides an easy, usable framework and 

shielding the complexity of the Monotonic counters provided by the TPM. We implement some 

user and programmer friendly functions for implementing an extended counter system within the 

smart cards using arbitrary length or 64bit counters. We bound those counters with different 

objects (such as keys) to provide an implementation of Count Limited Objects, hence controlling 

the use of keys and objects. All counter implementation functionality including the number of 

counters, their maximum values, the objects they are bound to etc can be controlled by the user. 

 

Based on these enhanced services, that are implemented in the SmartCard, we have built 

the basic building blocks that are needed for smart card and TPM coupling. Hence any general 

purpose application can now be developed targeting the .NET framework and executed securely 

inside the smartcard. Moreover since the SmartCard is coupled with a TPM using cryptographic 

services described earlier we can build any application that utilizes the TPM protocols and 

primitives as well. Hence in the next chapter we discuss some of the applications utilizing this 

extended TPM and Smart Card model and describe how these applications change the way 

conventional TPM and Smartcard applications were perceived. We also shed some light on 

similar applications and further work. 



 67 

6.0  SAMPLE APPLICATIONS FOR THE TPM & SC CO-OPERATIVE MODEL 

This chapter details some of the sample applications developed from the building blocks 

described in Chapter 5.0 Extended TPM Services Provided by the Smart Card. For 

demonstration we provide a complete implementation of 2 major applications which utilize a 

number of small applications and building blocks themselves. Brief descriptions of some other 

application ideas are also provided for the reader’s interest. 

6.1 ENHANCED DIGITAL SIGNATURE 

The first sample application that is developed in the smart card and TPM co-operative 

model is The Enhanced Digital Signature application. We call it enhanced because it enhances 

the conventional digital signature process by combining the best capabilities of smart cards, 

trusted computing and digital signatures together and solves a number of problems and issues 

with the digital signature systems present today. It uses the SC_ValidateTPMQuote primitive 

provided by the smartcard and TPM co-operative model and uses the Digital Signature Services 

provided by the SmartCard. 

 

We start the applications design motivation by describing a normal digital signature process used 

in the enterprises.  

 

i. A user wishes to sign a document. For an example scenario let’s say that the user is a 

company’s representative signing the document of a business proposal on his laptop. 

ii. The user initiates the request to his system to sign the document with his smart card. 

iii. The system treats this as an authenticated operation for a smart card and requests the user 

to enter his PIN before the smartcard can sign the document with its private key. 

iv. The smart card authenticates the user with his PIN 

v. The smart card creates a digital signature on the document which is passed to it by the 

host application and returns it. 

vi. The user submits the signed document to the other party for records. 

 

There are a number of problems with this scenario that includes both practical and security 

issues that have been discussed over the past. We further strengthen this scheme with our 

enhanced digital signature scheme and the step of operations now goes as follows: 

 

i. A user wishes to sign a document. We take the same earlier scenario where the user is a 

company’s representative signing the document of a business proposal on his laptop. 

ii. The user initiates the request to his system to sign the document with his smart card. 

iii. The system treats this as an authenticated operation for a smart card and requests the user 

to enter his PIN before the smartcard can sign the document with its private key. 

iv. The smart card authenticates the user with his PIN 

v. The smart card now instead of creating a digital signature on the data requests the 

platform to generate an attestation of its state. 
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vi. The TPM generates a TPM_Quote on its platform state, the current PCR values which 

may include the software running on the system, some nonce provided by the card which 

the card can later verify. 

vii. The host application sends this attestation to the card and the card validates it since it 

holds the public key of the key used to create an attestation. 

viii. If the TPM_Quote is verified by the card, the smart card now creates a digital signature 

on the TPM_Quote and the Document that needs to be signed 

ix. The user submits the signed data to the other party for records. 

 

 

As we can see, this scheme holds a number of interesting characteristics which were not 

possible in the normal Digital Signature methods. This method also further strengthens the trust 

relations and eliminates the attack schemes on digital signatures as described in [27]. 

 

First, now the signature created on the data not only proves that a particular smart card 

signed the data, it also proves that the document was signed on a particular machine of which the 

attestation was generated. Second, using a stronger smartcard and TPM coupling and trusted I/O 

this method can be further strengthened eliminating the problems where a person later disputes 

the digital signature on a note that he didn’t ‘see’ the document he was signing.  

 

The enhanced digital signature scheme is described diagrammatically below: 

 

 

 
 

Figure 6-1 Enhanced Digital Signature by TPM and SC 

 
<summary> 

/// Generates the quote. 

/// </summary> 

/// <param name="service">The service.</param> 

/// <returns></returns> 

public static TPMQuoteInfo GenerateQuote(SecureSessionEstablishmentService service) 
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{ 

   // GenerateQuote(); 

    TPMQuoteInfo tpmGeneratedQuote = new TPMQuoteInfo(); 

    TpmContext TpmDevice = new TpmContext(); 

    TpmRawCommands tpmCmd = TpmDevice.RawCommand; 

 

    //We will limit the use of this key by a monotonic Counter inside the card 

    TpmKey idKey = (TpmKey)TpmStructureBase.XmlDeserializeFromFile("IdentityKey.xml", typeof(TpmKey)); 

    //idKey.AlgorithmParms.SignatureScheme = TpmSignatureScheme.; 

     

    int numTimesUsed; 
    AuthorizationData quoteUsageAuth = new AuthorizationData(); 

     

    quoteUsageAuth.authData = service.GetQuoteUsageAuth(idKey.StorePubKey.key, out numTimesUsed); 

     

    if (quoteUsageAuth.authData != null) 

    { 

         

        string counterName = Convert.ToBase64String(SHA1Engine.ComputeHash(idKey.StorePubKey.key)); 

        //Debug.WriteLine(numTimesUsed); 

        Debug.WriteLine("Testing Counter Value by Name "+ service.GetCounterValue(counterName)); 

 

         

        if (numTimesUsed >= 0) 
        { 

            OiapSession signingKeySession = tpmCmd.Oiap(quoteUsageAuth, true); 

            TpmKeyHandle signingKeyHandle = tpmCmd.LoadKey(TpmKeyHandle.SrkHandle, idKey, 

 signingKeySession); 

 

            TpmHash nonce = new TpmHash(); // 20 byte anything 

            //nonce.hash = SHA1Engine.ComputeHash(randomNonceGen); 

            nonce.hash = service.GetRandomNonce(); 

 

            PcrSelection pcrsToQuote = new PcrSelection(new int[] { 0, 1, 2, 3, 4 }); //export ? 

            PcrComposite pcrSignedData; 

 
            tpmGeneratedQuote.TPMQuote = tpmCmd.Quote(signingKeyHandle, nonce, pcrsToQuote, 

 signingKeySession, out pcrSignedData); 

 

            TpmQuoteInfo quotInfo = new TpmQuoteInfo(); 

            Array.Copy(Encoding.ASCII.GetBytes("QUOT"), quotInfo.Fixed, 4); 

            quotInfo.ExternalData = nonce; 

            byte[] tpmRep = pcrSignedData.GetTpmRepresentation(); 

 

            quotInfo.CompositeHashDigestValue = new TpmHash(Sha1Engine.ComputeHash(tpmRep)); 

 

            tpmGeneratedQuote.DataQuoted = quotInfo.GetTpmRepresentation(); 

 
            TpmPubKey signingPubKey = tpmCmd.GetPubKey(signingKeyHandle, signingKeySession); 

            tpmGeneratedQuote.VerificationKey = signingPubKey.PubKey.key; 

            return tpmGeneratedQuote;     

        } 

        else 

        { 

            throw new Exception("Counter Error"); 

        } 

         

    } 

    else 

    { 
        throw new Exception("Generate a new Quote Key."); 

    } 

    

} 
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6.2 ROAMING DRM 

This sample application implements a number of enhanced smart card coupled TPM services 

developed earlier including: 

 

• Enhanced Monotonic Counters. 

• Count Limited Objects. 

• Flexible Sealing. 

 

TCG defines four classes of protected message exchange; Binding, Signing, Sealed-Binding 

(Sealing) and Sealed-Signing. As described earlier for the Seal and Bind operation 2.5.15.2 a 

data can be bounded to a particular TPM and the data would only be decrypted if the platform is 

in the particular expected state. These are powerful functionalities not offered by conventional 

platforms and we extend them further to provide more secure and flexible services. We use these 

services to provide flexible seal or bind operations with count limited objects to provide a 

roaming digital rights management platform. 

 

The Smart Card application exposes the functionality of Monotonic Counters, SC_Seal or 

SC_Bind and creates a CLOB (Count Limited Object), which bounds the use of a binding or 

unbinding key with a monotonic counter. Hence we can control the authorization data of a 

particular key to be used n number of times.  

 

The sample application encrypts a file (which was an MS Word file as an example) but any 

media can be encrypted and stored the same way depending upon the need. 

 

The Smart card can either be used to encrypt (Bind) data to a particular / or a set of TPMs by 

encrypting data for each public key, or can be used to decrypt (unbind) data encrypted by the 

smart card. This is only true for binding keys as they can be made migratable within the TCG. 

For Sealing operations, the Smart card can only seal data for a particular TPM and the TPM 

would be able to decrypt it.  

 

Description: 

 

i. The user requests through the platform to the smart card to create a Count Limited Object 

(Clob) 

ii. The Smart Card requests for authentication (PIN) 

iii. On successful authorization the Card checks what kind of Clob is requested, for example we 

create a Binding Key that would be used 10 number of times which is specified as part of the 

request. 

iv. The usage specifications can be based on some part of policy (for example each Quote 

Generation key could be used a max of 10 times). This policy can be pre-loaded in the card 

as an XML file. 

v. The Card creates a Binding Key prototype (RSA Key pair), Generates a random 

Authorization Data to be used to request an authorized command related to the key.  

vi. The card also creates a Monotonic Counter through the SC_CreateCounter primitive and inks 

the Monotonic Counter with the Binding Key Authorization data. 
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vii. The Card returns to the platform, the public part of the Binding Key, the authorization data 

and the counter value, which by default starts from 0. 

viii. The platform generates an AIK prototype and loads the key returned from the card in the 

TPM for future use. 

ix. When needed, the key binding key just loaded in the TPM would be used to Bind Some piece 

of data. The authorization for key usage is fetched from the card, however we don’t 

increment the counter since the AuthData is only being used to encrypt the data. 

x. Whenever the platform wants to unbind (decrypt) the data for processing, it sends the request 

to the TPM to UnBind it. The platform sends the AuthData and an UnBind request to the 

Card. 

xi. The SmartCard holding the private key of the RSA pair which is to be used for decrypting 

the data, it checks the AuthData sent from the platform, check’s whether the counter created 

with the key has crossed its usage limit or not. 

xii. If the counter is still valid for use and below the required threshold, the card increments the 

counter and decrypts the data. 

xiii. The decrypted (UnBound) data is sent to the platform along with the updated counter value. 

xiv. The update of the counter and the decryption process has to be atomic; otherwise the 

application can be targeted for different kinds of attacks. 

xv. We implement the atomicity of the IncrementCounter through the transaction services 

provided by the card and are described in detail in 5.5.2. 

 

The application flow is described diagrammatically below. 
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Figure 6-2 Smart Card Enhanced Flexible Sealing 

 
/// <summary> 

        /// Tests the unbind from smart card. 

        /// </summary> 
        /// <param name="smartCardService">The Smart Card Service.</param> 

public bool TestSmartCardBind(SecureSessionEstablishmentService smartCardService) 

        { 

            TpmRawCommands tpmCmd = TpmDevice.RawCommand; 

            OsapSession osapSession = tpmCmd.Osap(TpmEntityType.KeyHandle, (int)ReservedKeyHandle.Srk, 

 srkAuth, false); 

            osapSession.ContinueAuthSession = false; 

 

            OiapSession srkSession = tpmCmd.Oiap(srkAuth, false); 

            OiapSession session = tpmCmd.Oiap(ownerAuth, true); 

 

            //Get from Card 
            AuthorizationData useAuth = new AuthorizationData(smartCardService.GetUsageAuth()); 

            AuthorizationData migrationAuth = new  

  AuthorizationData(Encoding.Default.GetBytes(smartCardService.GetMigrationAuth())); 

             

            //Generate a random key .. we can do this in the card as well .. it just takes longer  

            TpmKey randomGenKey = CreateBindingKeyPrototype(); 

            //Wrap it with SRK 

            TpmKey randGenBindKey = tpmCmd.CreateWrappedKey(TpmKeyHandle.SrkHandle, useAuth, 

 migrationAuth, randomGenKey, osapSession); 

            //Now load it in the TPM for use 

            TpmKeyHandle bindingKeyHandle = tpmCmd.LoadKey(TpmKeyHandle.SrkHandle, randGenBindKey,  

          srkSession); 
             

            byte[] dataToBind = Encoding.Default.GetBytes("DataToBind"); 

  

            byte[] boundDataWithSmartCard =  

   smartCardService.CreateTPMBoundData(randGenBindKey.StorePubKey.key, dataToBind); 

                         

            byte[] scUnboundData = tpmCmd.Unbind(bindingKeyHandle, boundDataWithSmartCard, session); 

            if (!ArraysAreEqual(dataToBind, scUnboundData)) 

            { 

               throw new Exception("Unbind Error"); 

            } 

            tpmCmd.FlushSpecific(bindingKeyHandle); 

            return true; 
        } 
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6.3 SOME FURTHER APPLICATIONS 

The applications described above are just to give a general idea how our proposed 

architecture can be used to provide extended TPM services with assurance of secure execution. 

Some similar and connected applications that are very intuitive to our design are described 

below. 

6.3.1 E-cash Tokens that only work with authorized platforms 

One of the major problems with payment tokens is that there is no trust relationship 

between the card and the reader. The Roaming DRM application can be simplified to make a 

SmartCard / Token only work with an authorized platform. This includes payment tokens, EMV 

based applications, transportation cards, identity cards etc. This is very simple as we can restrict 

applications inside the smart card to talk to only authorized platforms for whose key or key 

hierarchy is already loaded in the smartcard and the smartcard can refuse to disclose secrets or 

even its identity if it cannot verify or build a trust relationship with the smartcard. 

6.3.2 Ease of data migration between trusted platforms 

We already implemented a subset of this scenario in the Roaming DRM application. As 

the SmartCard is able to seal / bind data to the platforms it is bound to, and unbind data with 

migratable keys, we can bind data when exporting from trusted platform A and unbind it using a 

SmartCard on another trusted platform B. This model can be extended to ‘n’ platforms and 

unlimited number of files which can be sealed from one platform to be unsealed on another 

trusted one. 

6.3.3 Crypto schemes not supported by the TPM 

One of the criticisms on the current specifications of the TPM is the strict limitations on 

the cryptographic algorithms and primitives supported. NIST already started advising the 

industry not to use SHA1 anymore because of different cryptanalysis and collision attacks on 

SHA-1, but the newer hashing algorithms like SHA256, SHA512 etc are not available which 

puts a severe limitation on security sensitive applications which have to comply with certain 

minimum requirements and comply with standards. With our solution, as the smart card can 

provide general purpose secure execution, any cryptographic primitive not supported natively by 

the TPM and the SmartCard can be built as an applet / onCard application and be used as a 

replaceable algorithm. The calls to and from the applet can be encrypted using the custom 

remoting and encryption sinks as described in the secure binding section 4.5. Any data can be 

sealed by the smart card to be exported only to the trusted platform it is bound to. Hence a TPM / 

platform could also encrypt any calls and data to be sent to the SmartCard specifying the crypto 

operation it wants the SmartCard to perform and the extended crypto algorithm operations can be 

carried out by the smartcard. 
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6.3.4 Flexible Authorization Applications 

The flexible authorization described in 5.2 can be extended beyond any two factor 

authentication where both the presence of a token and involvement of a platform needs to be 

assured for a process. The applications can include IPSec / VPN authentication where user 

password is provided by the authorization of a smartcard and keys for encryption can be released 

from a TPM by a TPM/SC collaborative model hence giving a remote authentication of both a 

platform and the user. 

6.3.5 Strengthen Remote Attestation 

A number of studies have worked on more flexible remote attestation such as [28]. This 

smartcard and TPM co-operative model can help in strengthening trust in a distributed 

environment by implementing the Secure Binding between the SmartCards / TPM  and using the 

SmartCards for authentication and validating TPM generated attestations given a flexible 

distributed attestation environment. 

6.3.6 Smart Card SIM Bound with Mobile TPM 

 

The telecom industry faces numerous challenges for protecting the state of their hardware 

and software applications. With increasing competitive and diverse market it is becoming very 

common (and with automated tools, much easy) to tamper the state and protection of any 

handset. It is quite common to see a partnership between an equipment manufacturer and the 

network operator to provide exclusive services with a new model release for e.g. [29]. However 

as soon as a new phone is hacked it is a severe damage both in terms of finance and credibility of 

both the network operator and the handset manufacturer plus the stakeholders. 

 

Now consider a mobile phone equipped with a TPM. The network operator and the 

equipment manufacturer can create a TPM/ SIM binding for stronger DRM and enhanced 

services. So even if the phone is cracked and a SIM replaced with some other network operator, 

the enhanced operator services will not be available. This can be extended to even disable the 

phone completely depending upon the choice of application, regulations and other dynamics. The 

TPM can offer an authenticated boot operation which would fail to disclose secrets since the 

expected SIM and keys are not in place for authenticated binding 
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7.0  SUMMARY AND CONCLUSION 

In this project we discussed some of the shortcomings and limitations of secure execution 

with the current state of the TCG (Trusted Computing Group) specifications. Though we feel 

that the various industry initiatives taken by the TCG and CPU manufacturers for hardware 

based platform security are a step in the right direction, the problem of secure isolated code 

execution and TCB minimization still remains unsolved. In this project we propose and 

implement an alternative architecture for secure code execution. Rather than proposing 

recommendations for hardware changes or building isolated execution environments inside a 

TPM (Trusted Platform Module), we use a platform that provides related, yet different services 

for secure / trusted code execution, couple its functionality and bind it to a TPM using 

cryptographic primitives. For the purpose of this study we used multi-application programmable 

SmartCards but similar work can also be implemented on other platforms as long as they meet 

some pre-requisites described in. 

7.1 THE TRUSTED PLATFORM MODULE 

We started with a description of the Trusted Platform Module, The Trusted Computing 

Group, their working models, and working groups. We discussed the motivation and history of 

trusted computing and how the industry players are moving together to work for making all 

computing platforms safer, trusted and trustworthy. We described the different components and 

services provided by a TPM for platform security. We discussed the ownership, activation, 

initialization and clearing process. Next we discussed some of the authorization protocols for 

accessing TPM protected resources. And finally we discussed the services provided by the TPM 

including attestation, sealing, quoting, counters, and other cryptographic primitives that are 

important for our discussion. We discussed the limitations of the execution engine provided by 

the TPM and discussed in general what problems the industry faces without a TCB minimized 

secure execution environment. 

7.2 THE SMARTCARDS 

In Chapter 3 we described an overview of SmartCards, how they differ from conventional 

computing platforms, their different types of standards and architectures, how they are being 

used in the industry and what special characteristics of them became the motivation for choosing 

them as an extended platform for the SmartCard and TPM coupling process. These included their 

portability, processing and storage capabilities, extensive cryptographic support, tamper resistant 

hardware and protected storage and finally and most importantly secure program execution 

capabilities. We discussed some of the application frameworks with special emphasis on the 

.NET platform available for SmartCards. The different layers of software were described with 

the responsibilities of each. These included the Operating System, Applications, Runtime 

environment, loader and unloader microcode provided by the card. 
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Later in the chapter we described the .NET SmartCard architecture with its application 

lifecycle, how a typical application management takes place from start to end which includes the 

loading, installation, execution, termination and unloading phases. We discussed the post 

issuance update and re-programming capabilities and how different industries utilize them for 

card based application management. Finally a few points were mentioned over the benefits of 

using a .NET based application that would be executed by a Common Language Runtime 

environment. A .NET application running under a managed CLR has a number of benefits that 

provide ease of implementation, separation of security functionality and application isolation 

capabilities along with numerous security offerings of the .NET framework that can be utilized 

directly within the applications. This helps us greatly in providing a secure execution 

environment for applications that are coupled with the TPM to provide enhanced services. 

 

These smart card capabilities hence provided us with an attractive platform which has a 

number of similar capabilities like a TPM, and some different characteristics and capabilities that 

makes it different from conventional computing platforms. The secure execution, storage and 

process isolation capabilities provided by a general programming platform like .NET made it an 

ideal choice for using it to provide or extend secure execution environments. Hence we chose a 

roaming platform like SmartCard for extending secure execution environments of a platform-

bounded security device, i.e. the Trusted Platform Module. 

7.3 THE SMARTCARD AND TPM COUPLING 

Next we discussed the details, architecture and design of enhanced TPM and Smart Card 

coupled services that were implemented in some of the major functional areas of the TCG 

specifications. We also discussed the differences in both TPM and the SmartCard platforms and 

detailed some of the major challenges that arise during the coupling process and our solutions for 

addressing the major security issues in coupling these architectures together. We discussed the 

requirements and limitations of coupling with smartcards and put forward some 

recommendations regarding the non supported scenarios.  

 

In chapter 4 and 5 we described a detailed explanation of the enhanced TPM and Smart 

Card coupled services that were implemented in some of the major functional areas of the TCG 

specifications. We discussed the fundamental differences in both TPM and the SmartCard 

platforms. We also discussed in detail some of the major challenges that arise during the 

coupling process and our solutions for addressing the major security issues in coupling these 

architectures together. We also discussed the requirements and limitations of coupling with 

smartcards and put forward some recommendations regarding the non supported scenarios.  

  

We briefly described what would be an ideal architecture and components of a TPM if an 

internal secure execution environment is built into the TPM itself which can provide VM based 

code isolation and security guarantees for applications. We discussed some of the similar 

projects, their propositions and their solutions for extending hardware and software to provide 

similar offerings for secure code execution. However we concluded that most of these projects 

do not focus exclusively on either providing a secure / trusted execution environment within the 

TPMs tamper resistant hardware boundary or put forward a solution that can be implemented 

without changing the current state of hardware and software based platform security. 
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Furthermore most of them require hardware extensions which are time consuming, require 

changes in the software which are complex and costly both in terms of time and money. 

 

Hence we put forward an alternative architecture that uses the services of a TPM and 

couple them with a platform that does provide secure execution environments i.e. the 

SmartCards. In this way we utilize the already established strengths of both the platforms 

without requiring any additional or special hardware extensions. We discuss in detail how we 

achieve this target with multi-application post issuance programmable smart cards with a 

detailed implementation of the coupling process. We already described our motivation for 

choosing SmartCards as the coupling platform and its characteristics that made it a natural choice 

for this process earlier. The SmartCard capability requirements for different coupling levels and 

scenarios are clearly stated with a description and references of our chosen .NET SmartCard 

platform. Furthermore we also discuss the core platform differences between the SmartCard and 

the TPM that build up a number of challenges in the process. 

 

For the actual implementation we start off by discussing how to cryptographically bind a 

TPM and a SmartCard in order for them to identify each other and provide other coupled 

confidentiality and integrity services. We utilize the TPMs attestation keys and SmartCard 

generated Identity keys for TPM and SmartCard binding and follow a model similar to SSL for 

generating / using session based symmetric keys for all calls to and from the TPM / SmartCard. 

We also extend the .NET Remoting architecture to add encryption to the channels and sinks for 

making an end-to-end encrypted tunnel of communication between the SmartCard and the TPM. 

This is important as .NET remoting does not offer any security services on its own. We also shed 

some light in securing the remoting component / proxy application in a large enterprise 

distributed environment by utilizing the established security infrastructure provided by Windows 

for e.g. utilizing different windows authentication methods, access control mechanisms and 

encryption / security features offered by the Internet Information Services Server.  

7.4 ENHANCED TPM AND SMART CARD SERVICES 

Next we discuss some of the enhanced services that are possible with the TPM-and-

SmartCard collaborative model and discussed our detailed implementations of them. These 

services are broadly categorized into 4 major categories: 

 

Flexible Authorization: Smart Card participates in the TCG authorization protocols with 

different methods depending upon the security level required and smartcard capability 

requirements. Those include from simple AuthorizationData storage in the card to complex 

HMAC based shared secret calculations for OSAP and ADIP protocols. 

 

Validating TPMs Generated Quote: The smart card uses this service to validate a TPM generated 

attestation just like any remote challenger. This service can be used in a number of different 

methods and combined with other protocols depending upon the application. We use this service 

exposed by the SmartCard to check the authenticity and genuineness of the TPMs generated 

attestations. We can use this service in a number of ways, some of the applications using this 

service are described in Chapter 6.0 . 
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Flexible Sealing and Binding: We extend the simple TCG sealing and binding model so that 

more flexible disclosure options are possible for example Sealing to multiple TPMs and multiple 

configurations, Sealing to a complex logic expression based on PCRs or Sealing to any 

configuration authorized by a signature with a known public key etc. A SmartCard can Bind / 

encrypt data to any platform (or set of platforms) for which it is bound to. This also helps us 

build some interesting DRM applications, a couple of them are described in Chapter 6.0 . 

 

Enhanced Monotonic Counters: The Smart Card also provides an easy, usable framework and 

shielding the complexity of the Monotonic counters provided by the TPM. We implement some 

user and programmer friendly functions for implementing an extended counter system within the 

smart cards using arbitrary length or 64bit counters. We bound those counters with different 

objects (such as keys) to provide an implementation of Count Limited Objects, hence controlling 

the use of keys and objects. All counter implementation functionality including the number of 

counters, their maximum values, the objects they are bound to etc can be controlled by the user. 

 

Based on these enhanced services that are implemented in the SmartCard, we have built 

the basic building blocks that are needed for smart card and TPM coupling. Hence any general 

purpose application can now be developed targeting the .NET framework and executed securely 

inside the smartcard. Moreover since the SmartCard is coupled with a TPM using cryptographic 

services described earlier we can build any application that utilizes the TPM protocols and 

primitives as well. This model hence utilizes the security features of both the SmartCards and the 

TPMs to offer secure execution and other enhanced TPM services for security sensitive 

applications. 

7.5 SOME APPLICATIONS DEVELOPED WITH THE COUPLED SERVICES 

Based on the building blocks described in Chapter 4 and 5, we discuss some of the 

applications utilizing this extended TPM and Smart Card model and describe how these 

applications change the way conventional TPM and Smartcard applications were perceived.  

 

The first major application is the Enhanced Digital Signature application. The Smart Card 

forces the platform to generate an attestation of the platform state before signing any document. 

The signing keys can also be bound to particular platforms used for signing. The SmartCard 

verifies the TPM Generated Attestation and signs the Document and the attestation. This 

signature hence proves that not only a the smartcard was used in signing, but also which 

particular platform was used in the signing process and what platform state it was in at the time 

of signing. 

 

The second application that is described in detail was the Roaming DRM application. We 

call it roaming because the DRM data / protection keys can be carried to different platforms and 

places because the smart card is roaming. This application uses the flexible sealing, flexible 

authorization, enhanced monotonic counters and the count limited objects services provided by 

the SmartCard. Depending upon the usage the SmartCard can be used to either Seal or Bind data 

to chosen platforms. In case of bind, a key can be made migratable and a smartcard can also be 

used to Unbind data encrypted by a particular TPM (with the assumption that the decryption key 

of the migratable key is already pre-loaded in the card during the TPM / SC coupling process).  
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Some further application descriptions include crypto-schemes not supported by the TPM 

to be built as programmable onCard applications for SmartCards. Electronic Cash and payment 

tokens that can be used only with authorized platforms. Ease of data migration facilities provided 

by the smartcard / TPM collaboration and stronger DRM applications for mobile protection by a 

SIM and TPM binding for cell phones. 

7.6 SIMILAR WORK 

We describe in this section some similar solutions and studies that focus on solving 

similar problems. There are a number of interesting solutions around extending the secure 

environments by either extending or working around the current TCG specifications.   

 

AEGIS [13] describes a single-chip architecture for a secure processor which can be used 

to build computing systems secure against both physical and software attacks. The AEGIS 

processor is the only trusted component. The trusted computing base (TCB) consists of the 

processor chip and optionally a part of an operating system. The trusted core part of the 

operating system is called the security kernel which operates at a higher protection level than 

other parts of the operating system in order to prevent attacks from untrusted parts of the 

operating system such as device drivers. 

 

Terra [14] uses a trusted virtual machine monitor (TVMM) that partitions a tamper-

resistant hardware platform into multiple, isolated virtual machines. The software stack in each 

VM can be tailored from the hardware interface up to meet the security requirements of its 

application. The hardware and TVMM can act as a trusted party to allow closed-box VMs to 

cryptographically identify the software they run. Terra allows applications to run in an “open 

box” VM with the semantics of a modern open platform, or in a “closed box” VM with those of 

dedicated, tamper-resistant hardware. The key primitive that Terra builds on is a trusted virtual 

machine monitor (TVMM). The TVMM mechanisms allow Terra to partition the platform into 

multiple, isolated VMs. Each VM can tailor its software stack to its security and compatibility 

requirements. 

 

Thin Clean Client [15] by IBM Research proposes a modified minimum Linux 

distribution with trusted computing technology for a secure environment. It allows users to use a 

single PC for two or more purposes: an ordinary PC for everyday use, and a part-time secure 

environment for highly sensitive tasks, e.g. dealing with personal information. TCC is built on 

top of Linux which is modified to support Trusted Computing technology such as the integrity 

measurement and reporting by the Trusted Platform Module. 

 

Trusted Execution Module [30] puts forward a high level specification for a chip that can 

execute user supplied procedures in a trusted environment. It introduces the concept of partially 

encrypted closures which express arbitrary computation logic. Anyone who knows the public 

key of the chip can generate these code closures. The trusted execution module specifications 

described in the paper differ from both the smart card and the TPM. It introduces a new different 

style of programming. Hence a smart card need not be pre-programmed with a limited set of 

domain or application specific commands.  
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Flickr [17] uses the new general purpose hardware extension for secure OS loading, late 

launch and attestation. It provides an infrastructure for executing security sensitive code in 

complete isolation while trusting as few as 250 lines of additional code but requiring special 

hardware. Flicker leverages new processors and hardware extensions from AMD and Intel but 

does not require a new Operating System or Virtual Machine Monitor. It uses the Late Launch[1] 

and its Secure Virtual Machine Extensions [31] to provide such an environment. The exact code 

executed (and its inputs and outputs) are attested to an external party. For example, a piece of 

server code handling a user's password executes in complete isolation from all other software on 

the server, and the server can convince the client that the secrecy of the password was preserved.  

 

However our solution differs from all of the above, as we do not require any changes in 

the current general purpose available hardware or software. And we combine the best services 

from already available general purpose SmartCards and Trusted platforms offering niche 

functionality and security features by coupling them together for all general purpose computing 

and security sensitive applications. 
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Appendix A – Using TPM Services in Windows 

This appendix mentions some related functionality and administration environment for 

TPMs in Windows Vista. Relevant screenshots are included where suited and special instructions 

are mentioned which would help eliminate common caveats and problems faced for common 

troubleshooting. 

 

The TPM administration in Windows Vista and Windows Server 2008 is included in the 

Management Console and can be accessed from typing in the command tpm.msc on the Run 

Dialog or running mmc (Microsoft Management Console) and adding the TPM snap-in. 

 

 
 

The TPM can be initialized/ cleared/ or turned on/off from this management console. It also 

allows for password backup. 
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A User can take ownership of a TPM by clearing it and initializing it with a password. 
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The panel on the left includes the administration of the TPM Commands. Individual TPM 

Commands can be enabled and disabled from the snap-in as shown in the screenshot below. 

 

 

 
Some of the commands are blocked by default and the calling those commands from the TBS 

API causes a blocked command exception. Before the commands are allowed from the snap-in 

they also need to be enabled from the local or domain group policy 
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For programming the TPM and utilizing it in user applications we use the TPM Base Services 

library
18

 provided by Microsoft as part of Windows Vista and Windows Server 2008. 

                                                 
18

 http://msdn.microsoft.com/en-us/library/aa446796(VS.85).aspx 
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 Figure 7-1 The Trusted Base Services Library 

19
 

 

                                                 
19

 http://msdn.microsoft.com/en-us/library/aa446792(VS.85).aspx 
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Appendix B - .NET Card Specifications [8] 

This appendix lists the technical details and capabilities of the .NET smart card. This would give 

the reader a general idea of the platform used, its capabilities and limitations. Later in the 

appendix are included some screenshots of the .NET Card Crypto Service Providers and 

Microsoft Windows built-in driver proxy, mini drivers and PS/SC capabilities built into 

Windows Vista. 

 

 

Technical details I 

 

Silicon features 

 

• Infineon Chip SLE88CFX4000P (400 KB Flashmask) 

• 32-bit micro-controller  

• Cryptographic co-processor (faster RSA and 3-DES) 

• True random number generator 

 

Cryptographic capabilities 

 

• RSA signature and verification up to 2048-bit keys 

• DES, 3-DES (CBC, EBC), AES, HMAC, SHA1,SHA2 and MD5 

• Customizable authentication framework and secure channel capabilities 

 

Standards 

 

• ISO 7816-1-2-3-4 (partial) 

• ECMA 335 / ISO/IEC 23271 – Common Language Interface 

 

File system 

 

• Secure data storage 

• Role-based access control 

• Enables assembly and data separation 

• Enables Assembly update with data preservation 

 

Application development 

 

• .NET compatible and programming language independent (CLI) 

• 75KB expandable to 90KB memory available for applications 

• Legacy compatible application development 

• On-card XML parser 

• Support for int-64 
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Security 

 

• Off-card application verification integrated in tool chain 

• On-card verifier to check type structural integrity and type safety of applications 

• Only strong-name signed assembles can be loaded ensuring integrity and authenticity 

 

Communications 

 

• Standard I/O transfer speed up to 223 Kbps 

• Negotiable PPS 

• T=0 protocol 

• SConnect 

• .NET Remoting 

 

The diagram below shows the hardware components of the SmartCard chip. We can see 

the separate crypt-processor and the mainstream CPU for general purpose execution engine all 

within the tamper resistant boundaries of the SmartCard. 
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Figure 7-2 Block Diagram of the SLE88CFX2000P hardware [32] 

 

The Diagram below shows the Microsoft Crypto Architecture for SmartCards and its built-in 

layered support in its Operating System and other identity products.  
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 Figure 7-3 Microsoft Crypto Architecture for Smart Cards [8] 
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Figure 7-4 Crypto Architecture in .NET Card [8] 
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 Appendix C – Differences between Microsoft .NET and Gemalto .NET framework [33] 

This appendix lists some of the major differences between the standard .NET Compact 

Framework 2.0 and the framework that is implemented in the Gemalto .NET Smart Card. Since 

the smart card is a constrained environment, the platform framework has to be tailored to run 

with the processing and memory limitations in mind, yet maintaining compatibility and 

providing adequate security for the applications 

 

We recommend any reader who wishes to start development on a .NET Smart Card to analyze 

these differences before making any efforts on developing the applications as these differences 

will help a developer to have an idea of the limitations and differences beforehand.  

 

• A common language runtime (CLR) that contains the elements needed to manage 

applications loaded onto a Gemalto .NET Card (see .NET Smart Card Framework, 

Common Language Runtime (CLR) for details).  

• A special upload file format optimized for Smartcard profile devices. This is an 

alternative that produces a much smaller (by a factor of 4) binary file than a full .NET 

assembly, better suited to the constraints of a smart card.  

• The .NET Smart Card Framework has been adapted to accommodate the smart card 

memory model, in which an application is stored in persistent memory and activated 

when an external application talks to it.  

• Floating point based types are not supported.  

• Non-vector arrays (arrays with more than one dimension or with lower bounds other than 

zero) are not supported in .NET Smart Card Framework.  

• Reflection is not supported in .NET Smart Card Framework.  

• .NET Smart Card Framework supports server-side remoting only.  

• The var args feature set (supports variable length argument lists and runtime typed 

pointers) is not supported in .NET Smart Card Framework. However, .NET Smart Card 

Framework supports runtime typed pointers.  

• Assembly scope names are ignored in .NET Smart Card Framework, and types are 

identified by their name alone. Two types with the same name in different assemblies are 

considered to be identical. Only the method signature default calling convention is 

supported.  

• There are no implicit types in the .NET Smart Card Framework CLR. All types are 

explicitly defined in the metadata loaded into the CLR. In the presence of multiple loaded 

assemblies, it is possible to have multiple definitions for types which might normally be 

implicit. However, the CLR treats these multiple definitions as if there was a single one; 

there is no way to distinguish if there is one definition or several.  

• Asynchronous calls are not supported in .NET Smart Card Framework.  

• Only BeforeFieldInit type-initializers are supported .NET Smart Card Framework; all 

other initializers are considered to be errors.  

• Finalizers are not supported in .NET Smart Card Framework.  
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• New slot member overriding is not supported in .NET Smart Card Framework. The 

existing slot for of member overriding is supported.  

• (Class Layout) Only auto layout of classes is supported in .NET Smart Card Framework. 

(The loader is free to lay out the class in any way it sees fit.)  

• The zero init flag is not supported in .NET Smart Card Framework; local and memory 

pools are never initialized to zero.  

• Locks and threads are not supported in .NET Smart Card Framework; therefore, any 

types associated with these constructs are not supported.  

• The security descriptor method state is not supported in .NET Smart Card Framework. 

 

Differences between Gemalto .NET App Domains & standard .NET Application Domains 

 

• The ExecuteAssembly method of an AppDomain can only be executed from off the card, 

either through the Card Explorer or through the SmartCard.CardAccessor.CardAccessor 

API  

• An instance of AppDomain cannot be created by an application on the card.  

• If an application domain does not create a service, the application domain will be garbage 

collected. What this means is that if application alpha.exe does not create a service, the 

.exe file will remain on the card after execution, but there will be no running application 

domain. If alpha.exe DOES create a service, the alpha.exe application domain continues 

to run (even after the Main method exits) until the service is deleted.  

• One application domain can communicate with another application domain indirectly by 

using Activator.GetObject to obtain a reference to a remoted object in the other 

application domain.  

• An application domain can delete itself by using the static AppDomain.Unload method. 

An application might be interested in unloading itself if it were an application that were 

time or usage based (such as a coupon application), or if the application were to reach an 

unrecoverable situation due to a security breach. 
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