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INTRODUCTION

The author once spent eight days on a machine woodworking course shaping a single

piece of wood to a very particular specification: accuracies of 0.5 mm were required,

and our work was assessed with Vernier callipers. At the end of the course we were

shown a machine we had not used before: a computer controlled cutting and shaping

robot. The instructor punched in the specification, inserted a piece of wood and

the machine spent four minutes producing an item equivalent to the one that took

us eight days to produce. If properly aligned, we were told, the machine could be

accurate to within 0.1 mm.

The example above illustrates that computers are capable achieving tasks that

humans cannot. Computers excel at tasks where qualities such as speed, accuracy,

repetition and uniformity of output are required. This is because computers excel at

following instructions.

However, computers do not excel at writing instructions. In order for a computer

to carry out a task, every single component of that task must be defined, and in-

structions that specify how to complete each component must be provided for the

computer in a machine-readable format, termed software.

Although there have been advances in areas such as Artificial Intelligence, machine

learning and computer generated software, for all practical purposes, computers are

dependant upon humans to develop the software they require to function.

Yet, humans are fallible and make mistakes, which result in software defects

(termed bugs). Software defects introduce uncertainties into computer systems: sys-

tems that encounter defects may not behave as expected. The field of Information
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Security is concerned with (among other things) protecting the confidentiality, in-

tegrity and availability of data. Software defects threaten these and other aspects of

data including system reliability and performance.

A subset of software defects render the affected system vulnerable to attacks from

malicious parties. Such vulnerabilities (weaknesses in controls), may be exploited by

criminals, vandals, disaffected employees, political or corporate actors and others to

leak confidential information, impair the integrity of information, and / or interfere

with its availability. Worse, such attacks may be automated and network-enabled

as is the case in internet ‘worms’: self-propagating software which may contain a

malicious payload.

As a result of threats to the security of digitally stored and processed information,

a wide range of controls and mitigations have been developed. Commonly applied

controls include: network controls (e.g. firewalls, Intrusion Detection Systems (IDS),

Intrusion Prevention Systems (IPS), encryption, integrity checking), host-based con-

trols (e.g. host-based IPS / IDS, file integrity checks, authentication, authorisation,

auditing) and application controls (e.g. input validation, authentication and autho-

risation). None of these controls address the root cause of the issue: the presence of

software defects. Software security testing aims to identify the presence of vulnera-

bilities, so that the defects that cause them can be addressed.

A range of software security testing methods exist, all of which have benefits and

disadvantages. One method of security testing is scalable, automatable and does not

require access to the source code: fuzz testing, or, fuzzing, a form of fault injection

stress testing, where a range of malformed input is fed to a software application while

monitoring it for failures.

Fuzzing can, and has been used to discover software defects. Since access to the

source code is not required, any application that is deployed may be fuzz tested by a

malicious party. Hence, fuzzing is a powerful method for attackers to identify software

vulnerabilities. With this in mind, it would be sensible for developers to fuzz test

applications internally, and to do so as often and as early in the development life

cycle as possible. It would also be sensible for software vendors to mandate that

any application satisfying certain risk-based criteria should be fuzz tested, (alongside

other quality gateways) before release into the live environment.

However, fuzzing cannot reveal all of the software vulnerabilities present in an

application; it can only reveal software defects that occur during the implementation
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stage of development. If every application was thoroughly fuzz tested before release,

software defects would still propagate through the development life cycle, and would

still occur in deployment, integration and operation of the application. Worse, fuzzing

cannot provide any quantitative assurance over whether testing has been complete or

exhaustive. Fuzzing is not a panacea for software defects.

This report explores the nature of fuzzing, its benefits and its limitations. We

begin by exploring why software vulnerabilities occur, why software security testing is

important, and why fuzz testing in particular is of value. We then focus upon software

security vulnerabilities and how they are exploited by attackers. Having covered

software vulnerabilities, we move on to examining the various software security testing

methods employed to detect them, and place fuzz testing within the wider field of

software security testing.

Having covered the background in Chapters 1 to 3, we can focus exclusively upon

fuzz testing. Chapter 4 begins with an examination of the origin of fuzzing and we

present a basic model of a fuzzer and an overview of the fuzzing process. Following

this, we examine the test data generation aspect of fuzzing (where malformed data

is created in order to be passed to the target software application), starting with

the most basic forms of fuzzing: random and brute force fuzzing. We will use these

basic fuzzing approaches to present some of the fundamental problems that have been

solved as fuzzing has developed. We then present a more advanced approach to fuzz

test data generation: ‘blind’ data mutation fuzzing, identifying the problems it can

and cannot solve. Next, we examine the issues around exception monitoring and the

analysis of the output of fuzz testing.

Having presented the basic theory behind fuzzing, we present a case study ex-

ploring the use of ‘blind’ data mutation fuzzing to discover software defects in a

component of the Windows XP operating system. In a second, related case study, we

document the exploitation of one of the previously discovered defects to determine

if it represents a security vulnerability, and to determine whether it is possible to

construct software exploits based on the output of fuzz testing.

We then explore the theory behind protocol analysis fuzzing, a form of ‘intelligent’

fuzzing where the structure of input is analysed in order to construct a protocol-

aware fuzzer. Protocol analysis fuzzing is then applied in a third case study, where a

protocol-aware fuzzer is found to be capable of detecting defects in a vulnerable web

server.



CHAPTER

ONE

THE CASE FOR FUZZING

1.1 The Need for Secure Software

The primary focus for software development is satisfying a functional specification.

Software functional testing (particularly User Acceptance Testing) is usually em-

ployed to evaluate whether requirements are satisfied and identify any that are not.

Yet, other factors such as performance (the ability to support a number of concurrent

active users) and reliability (the ability to satisfy requirements over a period of time

without interruption or failure) are important to users, particularly in mission-critical

applications such as those deployed within aerospace, military, medical and financial

sectors. To this end, functional testing may be complimented by other forms of soft-

ware testing including (but not limited to) unit, integration, regression, performance

and security testing, at a range of stages in the software development life cycle, all of

which are aimed at identifying software defects so that they may be addressed.

Yet, it is not difficult to find examples of dramatic, high-impact software failures

where software defects were not detected or addressed with disastrous results.

• AT&T, January 1990: A bug due to a misplaced break led to losses of 1.1

billion dollars, when long distance calls were prevented for 9 hours [10, 19].

• Sellafield UK, September 1991: Radiation doors were opened due to a software

bug [10].

9
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• Coventry Building Society UK January 2003: A software failure meant that

£850,000 was withdrawn from Automatic Teller Machines over 5 days without

being detected by the accounting system [10, 19].

• 1999: The NASA Mars Lander crashed into the surface of Mars due to a software

error relating to conversion between imperial and metric units of measure [20,

p. 11].

The prevalence of such incidents suggests that there are many hurdles to overcome

in order to produce software that is reliable, i.e. that it will perform as intended.

One such hurdle is the capacity of an application to respond in a robust manner

to input, regardless of whether that input conforms to defined parameters. George

Fuechsel, an early IBM programmer and instructor is said to have used the term

“garbage in, garbage out” to remind students of the inability of computers to cope

with unexpected input [41]. However, in order to achieve reliable performance, the

capacity to validate input by the application has become a requirement. Failure to

properly validate input can result in vulnerabilities that have a security implication

for users. As Information Technology (IT) increasingly processes data that impacts

on our daily lives, security vulnerabilities have greater potential to threaten our well-

being, and the impetus to ensure their absence is increased.

1.1.1 Software Vulnerabilities: The Source of the Problem

The software development process does not produce secure software applications by

default. Historically, this has been due to a number of factors, including:

• the increasing level of software complexity;

• the use of ‘unmanaged’ programming languages such as C and C++, which

offer flexibility and performance over security. [20, 9];

• a lack of secure coding expertise, due to a lack of training and development;

• users have no awareness of (let alone metrics for comparing) application secu-

rity1;

1While there are many proposed software metrics, Hogland and McGraw suggest that only one
appears to correlate well with the number of flaws: Lines of Code (LOC) [20, p. 14]. In other words,
the number of defects is proportional to the number of lines of code. To some, this may be the only
reasonable metric.
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• functionality and performance usually drive purchasing decisions: security is

rarely considered at the point of purchase;

• a ‘penetrate and patch’ approach to software security, where software vulner-

ability testing is performed after the software is released, and security is often

retro-fitted, rather than implemented at the design or inception, this is both

costly and unwieldy, often resulting in a poor level of security at high cost

[32, 28];

• software testing has focused upon assuring that functional requirements are

satisfied, and there has been little resource dedicated to testing whether security

requirements are satisfied.

In order to produce a suitably secure software application, a considerable amount

of investment in the form of time and money may be required, and security consid-

erations will have to feed into, and impact upon, every phase of the life cycle of a

software application. Hence, there must be a compelling argument for funding for

security over other competing requirements.

Fortunately, there is an economic argument for addressing software security de-

fects, and for doing so as early as possible in the development life cycle. The cost of

addressing defects rises exponentially as the development stages are completed as is

shown in Table 1.1 [30].

If the figures in the Table 1.1 seem less than compelling, it’s worth considering

that the total cost to all parties of a single Microsoft Security Bulletin likely runs

into millions of dollars, and the total cost of the more significant internet worms is

likely to have reached billions of dollars worldwide [16]. Hence, if the data processed

by an application has any value, it may be costly not to define and test security

requirements.
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Phase Relative Cost to Correct
Definition $1

High-Level Design $2

Low-Level Design $5

Code $10

Unit Test $15

Integration Test $22

System Test $50

Post-Delivery $100

Table 1.1: The exponential rise in cost in correcting defects
as software development advances through life cycle phases
[30].

1.1.2 The Defence in Depth Approach

The traditional approach to information security has been termed ‘defence in depth’.

This means applying a multi-layered approach to security, so that if a security system

failure occurs, i.e. an attacker is able to circumvent a control such as a network

firewall, other controls are implemented and will act to limit the impact of such a

failure; for example, an Intrusion Prevention System (IPS) might detect the malicious

activity of an attacker and limit their access, or alternatively, a host-based firewall

might prevent an attacker from accessing their target.

The author supports defence in depth; a layered approach is sensible when an

attacker only has to find one weakness in controls, while security management staff

have to ensure that every control is suitable and operating as expected. However,

defence in depth may have a side-effect of making vulnerable software more palatable

to customers.



13

1.1.3 Network Solutions for Software Problems

Information security practitioners have had to apply pragmatic solutions to protect

vulnerable software applications. This often meant applying a ‘walled garden’ network

security model, where restricted network access mitigated the risk of remote attacks.

However, such an approach provides little defence from insider attack and is restrictive

to business and personal usage.

Furthermore, the ‘walled garden’ model has become increasingly impractical for

business that feature large numbers of remote employees, customers, sub-contractors,

service providers and partner organisations, many of whom require feature-rich con-

nectivity, often to back-end, business critical systems. This ‘breaking down’ of net-

work boundaries has been termed de-perimeterization by the Jericho Forum thought

leadership group2, who have set out the Jericho Forum Commandments3, which aim

to advise organisations how to maintain IT security in the face of increasing network

de-perimeterization.

For many organisations, security, while not leaving the network, is being addi-

tionally applied at the end-point: server and desktop operating system builds are

being hardened; firewalls and host-based IDS/IPS are placed on end-points, and the

‘internal’ network is no longer trusted.

Implementing network security-based solutions to address software security prob-

lems (i.e. software vulnerabilities) may have contributed to a climate where software

is assumed to be insecure, and ultimately, that it is acceptable to produce insecure

software.

Software patch management or vulnerability mediation is aimed at managing the

risks relating to software vulnerabilities by ensuring that all applications are fully

patched where possible, or by configuring ‘work-arounds’ which mitigate risks. Patch

management is critical in that it controls and mitigates risk arising from known soft-

ware vulnerabilities. Patch management does not, however, do anything to stem

the tide of new vulnerabilities, nor does its influence extend beyond known, patched

vulnerabilities to address undisclosed or un-patched vulnerabilities.

2http://www.opengroup.org/jericho/
3http://www.opengroup.org/jericho/commandments_v1.2.pdf

http://www.opengroup.org/jericho/
http://www.opengroup.org/jericho/commandments_v1.2.pdf
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1.1.4 Software Vulnerabilities are a Root Cause of Informa-

tion Security Risk

By failing to identify and focus upon the root causes of risks such as software vul-

nerabilities there is a danger that the Information Security response becomes solely

reactive. This is typified by signature based IPS / IDS, and anti virus solutions: they

will always be ‘behind the curve’ in that they can only respond to existing threats,

and can never defend against emerging, previously unseen attacks.

If the objective of Information Security as a profession is to address the root

causes of information technology risk (one of which is security vulnerabilities arising

from insecure software) it will need to move beyond a purely reactive stance and

adopt a strategic approach. This will require more investment on the part of the

sponsor of such an activity, but offers the potential of a greater degree of assurance

and potentially reduced operational and capacity expenditure in the long run.

Due to the level of investment required, the development of secure coding initia-

tives has been largely left to governmental and charitable organizations such as the

Cyber Security Knowledge Transfer Network (KTN) Secure Software Development

Special Interest Group4 and the Open Web Application Security Project (OWASP).5

Vendors such as Microsoft have aimed to address the issue of software vulnera-

bilities internally through the Secure Windows Initiative (SWI)6, and have publicly

released the Security Development Lifecycle (SDL) methodology.7

The Open Source community have also recently benefited from a contract between

the U.S. Department of Homeland Security and Coverity8, a developer of commercial

source code analysis tools. Coverity has employed its automated code auditing tools

to reveal security vulnerabilities in 11 popular open source software projects.9

4http://www.ktn.qinetiq-tim.net/groups.php?page=gr_securesoft
5http://www.owasp.org/index.php/Main_Page
6http://www.microsoft.com/technet/archive/security/bestprac/secwinin.mspx
7http://msdn.microsoft.com/en-us/security/cc448177.aspx
8http://www.coverity.com/index.html
9http://www.coverity.com/html/press_story54_01_08_08.html

http://www.ktn.qinetiq-tim.net/groups.php?page=gr_securesoft
http://www.owasp.org/index.php/Main_Page
http://www.microsoft.com/technet/archive/security/bestprac/secwinin.mspx
http://msdn.microsoft.com/en-us/security/cc448177.aspx
http://www.coverity.com/index.html
http://www.coverity.com/html/press_story54_01_08_08.html
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1.1.5 The Influence of End-User Testing

In How Security Companies Sucker Us With Lemons [38], Schneier considers whether

an economic model proposed by George Akerlof in a paper titled The Market for

Lemons [5] can be applied to the information security technology market.

If users are not able to obtain reliable information about the quality of products,

information asymmetry occurs where sellers have more information than buyers and

the criteria for a ‘Lemons market’ are satisfied. Here, vendors producing high-quality

solutions will be out-priced by vendors producing poor quality solutions until the only

marketable solution will be substandard - i.e. a ‘lemon’ [5].

By the same token, an objective quality metric that can be used to compare

products can also influence a market such that products of higher quality command

a higher market value [38].

The quality of a product may be brought to the attention of users via standards

such as the Kite Mark10, for example. The Common Criteria is an internationally

recognised standard for the evaluation of security functionality of a product. Inter-

national acceptance of the Common Criteria has meant that:

“Products can be evaluated by competent and independent licensed labora-

tories so as to determine the fulfilment of particular security properties,

to a certain extent or assurance.” 11

However, a Common Criteria evaluation cannot guarantee that a system will be

free from security vulnerabilities, because it does not evaluate code quality, but the

performance of security-related features [21]. Howard and Lipner set out the limita-

tions of the Common Criteria with regard to software security as follows:

“What CC does provide is evidence that security-related features perform

as expected. For example, if a product provides an access control mecha-

nism to objects under its control, a CC evaluation would provide assurance

that the monitor satisfies the documented claims describing the protections

to the protected objects. The monitor might include some implementation

security bugs, however, that could lead to a compromised system. No goal

within CC ensures that the monitor is free of all implementation security

10http://www.bsi-global.com/en/ProductServices/About-Kitemark/
11http://www.commoncriteriaportal.org/

http://www.bsi-global.com/en/ProductServices/About-Kitemark/
http://www.commoncriteriaportal.org/
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bugs. And that’s a problem because code quality does matter when it comes

to the security of a system.” [21, p. 22]

Evaluation under the Common Criteria can help to ensure that higher quality

products can justify their higher cost and compete against lower quality products.

However, Common Criteria evaluations can be prohibitively expensive, and do not

usually extend to the detection of implementation defects.12

Fuzz testing is one method that can be used to reveal software programming

errors that lead to software security vulnerabilities. It is relatively cheap, requires

minimal expertise, can be largely automated, and can be performed without access

to the source code, or knowledge of the system under test. Fuzzing may represent

an excellent method for end-users and purchasers to determine if an application has

software implementation vulnerabilities.

1.2 Objectives for this Project

This project will explore fuzz testing: a specific form of fault injection testing aimed

at inducing software failures by the means of manipulating input. The author devised

this project as an opportunity to gain practical experience of fuzz testing and also

to develop his understanding of software security testing, software vulnerabilities and

exploitation techniques.

My objectives at the outset were to:

• examine the use of fuzzing tools for discovering vulnerabilities in applications;

• examine how the output of a fuzzing tool might be used to develop software

security exploits (case study);

• describe the nature, types and associated methodologies of the various different

classes of fuzzers;

12Implementation defects occur as a result of poor software programming practices and are a
primary cause of software vulnerabilities. Software vulnerabilities are discussed in detail in Chapter
2, Software Vulnerabilities.
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• briefly explain where fuzzers fit within the field of application security testing:

i.e. who might use them, why they are used, and what value they offer the

Information Security industry, software developers, end-users, and attackers;

• identify some of the limitations of, and problems with, fuzzing;

• compare some of the available fuzzing tools and approaches available possibly

using two or more types of fuzzer against a single target application with known

vulnerabilities;

• examine the evolution of fuzzing tools, comment on the state of the art and the

outlook for fuzzing;

• examine what metrics may be used to compare fuzzers;

• comment on the influence of fuzzing on the information security and software

development communities

• compare fuzzing with other forms of software security assurance - i.e. Common

Criteria evaluations



CHAPTER

TWO

SOFTWARE VULNERABILITIES

It is impossible to produce complex software applications that do not contain defects.

The number of defects per thousand lines of code (referred to as KLOC ) vary between

products, but even where development includes rigorous testing, software products

may contain as many as five defects per KLOC [20, p. 14]. Considering that the

Windows XP operating system comprises approximately 40 million lines of code, using

this very loose rule-of-thumb, it might potentially contain 40,000 software defects [20,

p. 15].

Some software defects result in inconsequential ‘glitches’ that have minimal im-

pact. Other defects have the potential to impact on the security of the application or

the data it processes. These security-related defects are termed vulnerabilities, since

they represent a weakness, a ‘chink in the armour’ of the application.

2.1 Software Vulnerability Classes

Vulnerabilities can be grouped in many different ways. Dowd et al. specify three core

vulnerability classes, based on software development phases [9, Chapter 1]:

• Design vulnerabilities

• Implementation vulnerabilities

• Operational vulnerabilities

18
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2.1.1 Design Vulnerabilities

The software design phase is where user requirements are gathered and translated

to a system specification which itself is translated into a high-level design. More

commonly termed flaws ; design vulnerabilities may occur when security requirements

are not properly gathered or translated into the specification, or when threats are not

properly identified [9]. Threat modelling is an accepted method for drawing out

security requirements and identifying and mitigating threats at during the design

phase [21, Chapter 9]. Perhaps the most significant source of vulnerabilities from the

design phase occur because: “Design specifications miss important security details

that occur only in code.” [21, p. 23]

Because a design has to be a high-level view of the final product details must be

abstracted out [14]. Yet, even the smallest of details can have great impact on the

security of a product.

2.1.2 Implementation Vulnerabilities

The software implementation phase is where the design is implemented in code. It is

important not to mistake implementation with deployment.1

Implementation errors usually arise due to differences between the perceived and

actual behaviour of a software language, or a failure to properly understand the details

of a language or programming environment. As Dowd, et al. put it:

“These problems can happen if the implementation deviates from the de-

sign to solve technical discrepancies. Mostly, however, exploitable situa-

tions are caused by technical artefacts and nuances of the platform and

language environment in which the software is constructed.” [9, Chapter

1]

2.1.3 Operational Vulnerabilities

Operational vulnerabilities are not caused by coding errors at the implementation

stage, but occur as a result of the deployment of software into a specific environment.

1Implementation is the software development phase; deployment is where the application is de-
ployed for use in the live, operational environment.
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Many factors can trigger operational vulnerabilities, including: configuration of the

software or software and hardware it interacts with, user training and awareness, the

physical operating environment and many others. Types of operational vulnerabilities

include social engineering, theft, weak passwords, unmanaged changes, and many

others.

Errors that occur at the design or operation phase are sometimes detectable using

fuzzing, but the vast majority of defects that are revealed by fuzzing are attributable

to the implementation phase, where concepts are implemented in software. From

a software developer’s perspective, fuzzing would be ideally performed during the

implementation phase.

Having identified the implementation phase as being the primary source of the

type of errors that are detectable via fuzzing, the rest of this chapter will focus on

implementation errors and the potential security vulnerabilities that they may cause.

2.2 Implementation Errors

The bulk of implementation errors will be detected during the implementation phase

by compiler errors or warnings2, and activities such as Unit and other testing. How-

ever, it is highly unlikely that all implementation errors will be detected, since there

is usually finite resource for testing, and most of the focus of software testing is on

testing that a product will satisfy functional requirements, not security requirements.

Incidentally, Attack Surface Analysis (ASA) and Attack Surface Reduction (ASR)

are aspects of the Secure Development Lifecycle that account for the inevitable pres-

ence of defects in production code by minimising risk where possible [21, p. 78]. The

approach here is to accept that defects will inevitably propagate through the devel-

opment, and to apply the principles espoused by Saltzer and Schroeder such as least

privilege and economy of mechanism by identifying any areas of exposure and min-

imising these where possible such that the impact of a vulnerability can be reduced

[21, p. 78].

Of the errors that propagate through the various phases of development, some

2However, most compilers are, by default, unable to test the logic of dynamic operations involving
variables at compile time, meaning that vulnerabilities are not detected [13, p. 204].
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will represent a significant risk to the application and the data it processes. Of these,

a subset will be accessible to, and potentially triggered by, input.

Implementation errors that satisfy all of following criteria may be considered im-

plementation vulnerabilities :

• They must allow an attacker to modify the functioning of the application in

such a way as to impact upon the confidentiality, availability or integrity of

the data it processes or undermine any security requirements that have been

specified.

• This modification must be achievable by passing input3 to the application, since

a vulnerability that is not reachable is not exploitable.

Sutton et. al provide the following example that demonstrates the importance of

reachability in determining ‘exploitability’ [46, p. 4].

#include<string.h>

int main (int argc, char **argv)

{

char buffer[10];

strcpy(buffer, "test");

}

Figure 2.1: A non-vulnerable routine that calls the strcpy function [46, p. 4].

Figure 2.1 shows a simple routine where a character array called buffer is declared

and the characters “test” are copied into is using the strcpy function. strcpy is, of

course, infamous for its insecurity: if the source data is larger than the destination

array, strcpy will write the source data beyond the destination array boundary and

3Note that the term input is used here in the widest possible sense, to extend to the entire
application attack surface.
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into adjacent memory locations: a well understood security vulnerability termed a

buffer overflow. However, the routine shown in figure 2.1 is not vulnerable because the

argument is passed to the vulnerable strcpy from within the routine, and nowhere

else: the vulnerable function is not reachable from input therefore it is not exploitable

[46, p. 5].

Consider the routine shown in figure 2.2. Here, the pointer argv collects data from

the command line passing it as an argument to strcpy. strcpy will copy whatever

data is passed to it from the command line into the buffer array. If the argument

passed from the command line is longer than 10 characters, it will exceed the memory

space allocated for the buffer array on the stack and overwrite adjacent data objects.

The routine is exploitable because the vulnerable function strcpy is reachable via

input [46, p. 5].

#include<string.h>

int main(int argc, char **argv)

{

char buffer[10];

strcpy(buffer, argv[1]);

}

Figure 2.2: A vulnerable routine that calls the strcpy function [46, p. 4].

Non-exploitable vulnerabilities are of considerably less concern than exploitable

vulnerabilities, hence reachability is a critical factor. Two key points that stem from

the importance of reachability are:

1. Fuzzing, unlike other methods for vulnerability discovery, will usually only trig-

ger reachable defects as it is based on supplying malformed input to a target

application.
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2. A software vulnerability that is not reachable via input is effectively not ex-

ploitable.4

Given that it is highly likely that implementation vulnerabilities will be present

in an application, the ability to block access to such vulnerabilities by differentiating

between valid and invalid input, termed input validation, has considerable influence

on the security of an application.

2.3 The Need for Input Validation

An Analogy

A restaurant. A customer orders a meal and passes the waiter a note for

the chef. The note contains malicious instructions. The waiter passes the

order and the note to the chef, who promptly sets fire to the kitchen.

The waiter learns from the experience and refuses to pass notes to the chef

any more. His approach is that no notes will be accepted. The next day,

a customer orders a club sandwich and passes the waiter a sealed letter

for the chef. The letter doesn’t have the same characteristics as a note,

so the waiter passes it to the chef. The chef sets fire to the kitchen again.

The waiter updates his approach: no notes, no letters. The next day a

customer says he has a telegram for the chef, and the waiter takes it to

the chef. The chef says, “I’m sick of this. From now on, customers can

only select items from the menu. If it’s not on the menu don’t bring it to

me.”

Here, the customer is the user; the waiter represents the application interface: the

component of an application that is responsible for receiving input from users, and

the chef represents the back-end processing part of the application.

Two key points that labour the above analogy are:

4This approach depends on the effectiveness of the mechanism that prevents access. Furthermore,
the absence of a risk is always preferable to a mitigated risk.
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1. The waiter is unable to differentiate data (i.e. “soup de jour”), from instructions

(“set fire to the kitchen”).

2. The chef trusts the waiter completely and will carry out whatever instructions

the waiter passes to him.

The above points are laboured because of differences between humans and com-

puters. Humans are able to differentiate between instructions and data, and humans

generally have more ‘fine grained’ and adaptable trust relationships than computers.

2.4 Differentiation Between Instructions and Data

Computers, by default, are unable to differentiate data from instructions. As a result,

a class of command or code injection vulnerabilities exist that permit an attacker

to pass instructions to an application that ‘expects’ to receive data, causing the

application to execute attacker-supplied instructions within the security context of

the application. These are both explored in detail later in this chapter.

2.5 Escalation of Privilege

If the application is running at a higher privilege than the attacker, then a successful

code or command injection attack results in an escalation of privilege, where the

attacker is able to run instructions of their choosing at a privilege level greater than

their own.5

2.6 Remote Code Execution

If an injection vulnerability is remotely exploitable (via a network connection), then

remote code execution may be possible, and the potential for an internet worm such

as the SQL ‘slammer’6, code red7 or nimda8 worms arises.

5Note that the attacker has effectively extended the functionality of the application beyond that
intended by the designers or specified by the users.

6http://www.cert.org/advisories/CA-2003-04.html
7http://www.cert.org/advisories/CA-2001-19.html
8http://www.cert.org/advisories/CA-2001-26.html

http://www.cert.org/advisories/CA-2003-04.html
http://www.cert.org/advisories/CA-2001-19.html
http://www.cert.org/advisories/CA-2001-26.html
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2.7 Trust Relationships

The second laboured point in our analogy arises from another difference between

humans and computers: humans (usually) have free will, while computers are bound

to execute instructions. Humans will usually reject instructions that might threaten

their well-being in all but the most extreme situations. In contrast, components of an

application often ‘trust’ each other absolutely. Input validation may be performed at

a trust boundary at the point of input to the application, but once past that check,

it may not necessarily be performed when data is passed between component parts

of an application.

Returning to the inability of computers to differentiate between instructions and

data, an attacker merely needs to satisfy grammar requirements of the execution

environment in order to submit instructions and control the flow of execution (dis-

counting for a moment the effect of input validation). Peter Winter-Smith and Chris

Anley made this point in a presentation given as part of a Security Seminar enti-

tled An overview of vulnerability research and exploitation for the Security Group at

Cambridge University.

“From a certain perspective, [buffer overruns, SQL injection, command

injection] are all the same bug. Data in grammar A is interpreted in

grammar B, e.g. a username becomes SQL, some string data becomes

stack or heap. [...] Much of what we do relies on our understanding of

these underlying grammars and subsequent ability to create valid phrases

in B that work in A.” [49]

In other words, a deep understanding of the underlying programming language

and its syntactical and lexical rules may be used to craft input that may modify the

functionality of an application in a manner that a developer or designer without the

same level of understanding of the underlying technology may not foresee. However,

such modification is only possible if the application permits users to pass input to it

that satisfies the grammar rules of the underlying technology [49].

Two common approaches to employing underlying grammar rules to inject in-

structions in the place of data are command and code injection.
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2.8 Command Injection

Command injection involves the use of special characters called command delimiters

to subvert software that generates requests based on user input. Hogland and Mc-

Graw provide an example of command injection, reproduced here in its entirety, where

a routine intended to display a log file executes a command string that is dynami-

cally generated at run time by inserting a user supplied value (represented by the

“FILENAME” place holder) into a string [20, p. 172]. The string is shown prior to

insertion of user data below:

exec( "cat data log FILENAME.dat");

If the user-supplied data comprises of a command delimiter followed by one or

more commands, such as9:

; rm -rf /; cat temp

then the dynamically created request becomes:

exec( "cat data log ; rm -rf /; cat temp.dat");

The request now consists of three commands, none of which were envisioned by the

system designer. The attacker has realised malicious functionality: the commands will

execute within the security context of the vulnerable process, attempting to display

a file called data log , deleting all of the files that the process is permitted to delete,

and attempting to display the contents of temp.dat.

In order to trigger software errors, a fuzzer may employ a library of ‘known bad’

strings. For each of the vulnerability types discussed in this chapter I will provide

a brief example of how a fuzzer heuristic might trigger that vulnerability. Detailed

examples of fuzzer heuristics can be found in Appendix 2, The Sulley Fuzzing Frame-

work Library of Fuzz Strings.

A fuzzer is able to trigger command injection defects by inserting commonly used

command delimiters such as ‘;’ and ‘\n’.

9It is unlikely that any commercial operating system would permit users to assign a name to a
file that includes delimiters such as ‘;’ and ‘/’. However, the target routine in this example is part of
a vulnerable Common Gateway Interface (CGI) program, not the operating system, and the request
is passed to it in the form of a modified URL.
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2.9 Code Injection

Code injection is similar to command injection, but works at a lower level: the object

or machine code level. Code injection is usually a two-stage process where instruc-

tions (in the form of byte code) are injected into the target process memory space,

and then execution flow is redirected to cause the injected instructions to be ex-

ecuted. Injected byte code (sometimes termed shell code, since it often comprises

the instructions required to launch an interactive command shell), must conform to

grammar requirements of the interface10, as well as satisfying the programming rules

of the target platform.11 This makes shell code development non-trivial since it must

satisfy many different constraints.

Redirection of execution is usually achieved via pointer tampering where a pointer

to a memory location holding the next instruction to be executed is overwritten by an

attacker supplied value. Overwriting the instruction pointer is, of course, not normally

permitted but can be achieved as the result of some form of memory corruption such

as buffer overruns, heap corruption, format string defects and integer overflows.

Fuzzing is able to trigger code injection vulnerabilities by causing illegal (or at

least, unforeseen) memory read and write operations (termed access violations) via

buffer overruns, heap corruption, format string defects and integer overflows.

2.10 Buffer Overflows

Regions of memory assigned to hold input data are often statically allocated on the

stack. If too much data is passed into one of these regions (termed buffers), then

adjacent regions may be overwritten. Attackers have made use of this to overwrite

memory values that are not normally accessible, such as the Instruction Pointer,

which points to the memory location holding the next instruction to be executed.

Overwriting the instruction pointer is one method for redirecting program execution

flow.

10For example, no null bytes can be included since these indicate the end of a character string
and cause the shell code to be prematurely terminated. As a result, where a register must be set
to zero (a common requirement), instructions to cause the register to be Exclusive Or-ed with itself
are used instead of using the standard approach of moving the value zero into the register.

11For example, injected instructions must executable on the processor running the target
application.
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Fuzzers employ many techniques to trigger buffer overflows, of which the most

obvious are long strings. However, there are other techniques which may also be

employed such as integer overflows, signedness issues, and string expansion.

2.11 Integer Overflows

Integers are data types assigned to represent numerical values. Integers are assigned

memory statically at the point of declaration. The amount of memory assigned to

hold an integer depends upon the host hardware architecture and Operating System.

32-bit systems are currently common, though we are moving towards widespread

adoption of 64-bit systems. If we assume a 32-bit system, we would expect to see

32-bit integers, which could hold a range of 232, or 4,294,967,296 values. Hexadecimal

numbering systems are often used to describe large binary values in order to reduce

their printable size. A hexadecimal value can be used to describe any value held in

four bits; eight hexadecimal values can describe a 32-bit value. When binary values

are represented using hexadecimal values, the convention is to use the prefix ‘0x’, in

order to differentiate hexadecimal from decimal or other values. For example, 0x22

must be differentiated from 22 to avoid confusion.

An integer can hold a bounded range of values. Once a numerical value reaches the

upper bound value of an integer, if it is incremented, the integer will ‘wrap around’

resetting the register value, a phenomenon termed integer overflow. This manifests as

a difference between normal numbers and integer-represented values: normal numbers

can increment infinitely, but integer-represented values will increment until they reach

the integer bound value and will then reset to the integer base value, usually zero.

Vulnerabilities may occur when integers are errantly trusted to determine memory

allocation values. Integers are also commonly used to perform bounds checking when

copying data from one buffer to another so as to prevent buffer overflows. When a

compare condition on two integers is used to determine whether a copy operation is

performed or not, the wrapping behaviour of integers may be abused. For example,

consider the following bounds checking routine pseudo code, based on a code sample

offered by Sutton et al. [45, p. 175]:

IF x+1 is greater than y, THEN don’t copy x into y

ELSE copy x into y

ENDIF
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Here, an attacker could set x to the value 0xffffffff. Since 0xffffffff + 1 will wrap

around to 0, the conditional check will allow x to be copied into y regardless of the

size of y in the specific case that x = 0xffffffff, leading to a potential buffer overflow

[45, p. 175].

Fuzzers often employ boundary values such as 0xffffffff in order to trigger integer

overflows. The Spike fuzzer creation kit employs the following integer values (amongst

others), probably because these have been found to be problematic in the past.

0x7f000000, 0x7effffff, 65535, 65534, 65536, 536870912 [3, Lines 2,079-2,084], and

also: 0xfffffff, f0xffffff, 268435455, 1, 0, -1, -268435455, 4294967295, -4294967295,

4294967294, -20, 536870912 [3, Lines 2,217-2,229].

2.12 Signedness Issues

Integers may be signed or unsigned. The former data type can hold positive and

negative numerical values, while the latter holds only positive values. Signed integers

use the ‘twos complement’ format to represent positive and negative values that can

be simply summed. One of the features of twos compliment values is that small

decimal values are represented by large binary values, for example decimal ‘-1’ is

represented by the signed integer ‘0xffffffff’ in a 32 bit integer environment.

In order to trigger signedness issues a fuzzer could employ ‘fencepost’ values such

as 0xffffffff, 0xffffffff/2, 0xffffffff/3, 0xffffffff/4 and so on. The divided values might be

multiplied to trigger an overflow. More importantly, perhaps, are near border cases

such as 0x1, 0x2, 0x3, and 0xffffffff-1, 0xffffffff-2, 0xffffffff-3, since these are likely

to trigger integer wrapping. Combining the two, we might include (0xffffffff/2)-1,

(0xffffffff/2)-2, (0xffffffff/2)-3, (0xffffffff/2)+1, (0xffffffff/2)+2, (0xffffffff/2)+3, and so

on, in order to trigger more integer signedness issues.

2.13 String Expansion

The term string is used to describe an array of char data types which are used to

hold characters. Strings are a very common input data type, and improper string

handling has led to many security vulnerabilities. The encoding and decoding or
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translation of characters within a string can be problematic when some characters

are treated differently to others. An example are the characters 0xfe and 0xff, which

are expanded to four characters under the UTF-16 encoding protocol [45, p. 85].12 If

anomalous behaviour such as this is not accounted for, string size calculations may

fall out of line with actual string sizes resulting in overflows.

Since delimiter characters may be treated differently to non-delimiters, fuzzers

may use long strings of known delimiter characters in addition to characters known

to be subject to expansion.

2.14 Format Strings

The printf family of functions are part of the standard C library and are able to

dynamically and flexibly create strings at runtime based on a format string which

consists of some text, a format specifier (such as %d, %u, %s, %x or %n) and one

or more arguments [13, p. 206]. In normal operation, the arguments are retrieved

(POPed) from the stack, the format specifier defines how the arguments are to be

formatted, and the formatted arguments are appended to the (optional) text, to

construct an output string which may be output to the screen, to a file, or some other

output.

Anyone who has coded in C will be familiar with the following:

printf ("Result = %d\n", answer);

Here, "Result = %d\n", is the format string (which consists of some text Result

= and a format specifier %d\n), and answer is the argument. The value of the answer

argument will have been pushed onto the stack within a stack frame prior to the

printf function being called. When called, printf would POP the binary value held

in the argument on the stack, format it as a decimal due to the %d format specifier,

construct a string containing the characters Result =, and then append the decimal

formatted value of the answer argument, say, 23, to the end of the string.

12According to RFC 2781, UTF-16 “is one of the standard ways of encoding Unicode character
data”. Put simply, UTF-16 can describe a large number of commonly used characters using two
octets, and a very large number of less common ‘special’ characters using four octets.
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Format string vulnerabilities occur when additional, spurious format specifiers are

allowed to pass from input to one of the printf family of functions and influence the

manner in which the affected function behaves.

printf is one of a number of C and C++ functions that does not have a fixed

number of arguments, but determines the number of format specifiers in the format

string and POPs enough arguments from the stack to satisfy each format specifier

[13, p. 203]. Via the insertion of additional format specifiers, a format string attack

can modify an existing format string to cause more arguments to be POPed from the

stack passed into the output string than were defined when the function was called

[13, p. 203]. The effect of this is akin to a buffer overflow in that it makes it possible

to access memory locations outside of the called function’s stack frame.

Where a vulnerable instance of the printf family of functions both receives input

and creates accessible output, an attacker may be able to circumvent memory access

controls using format string attacks to read from, and write to, the process stack and

memory arbitrarily.

By inserting %x format specifiers into a vulnerable instance of the printf family

of functions, an attacker can cause one or many values to be read from the stack and

output to, say, the screen, or worse, may be able to write to memory [13, p. 202].

The %s format specifier acts as a pointer to a character array or string. By insert-

ing a %s format specifier and providing no corresponding pointer address argument,

an attacker may be able to trigger a failure causing a denial of service. By inserting

a %s format specifier and providing a corresponding pointer address argument, an

attacker may be able to read the value of the memory location at the provided address

[13, p. 215].

Most concerning of all is the %n format specifier. This was created to determine

and output the length of a formatted output string, and write this value (in the form

of an integer) to an address location pointer provided in the form of an argument [13,

p. 218]. Foster and Liu describe the nature of the %n format specifier as follows:

“When the %n token is encountered during printf processing, the number

(as an integer data type) of characters that make up the formatted output

string up to this point is written to the address argument corresponding to

that format specifier.” [13, p. 218]
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The capability to write arbitrary values to arbitrary memory locations within a

process memory space by supplying malicious input represents a significant risk to

an application, since execution could be redirected by overwriting the Instruction

Pointer to attacker-supplied machine code, or to local library functions in order to

achieve arbitrary code execution [13, p. 207].

The best way to prevent format string attacks is to sanitize data input by employ-

ing an input validation routine that prevents any format specifiers from being passed

to the application for processing. Failing that, or preferably in addition, it is wise

to explicitly specify the expected data format, as shown in an example taken from

Foster and Liu [13, p. 212].

The below call to printf specifies that data received from the buf argument

should be formatted as a character string. This will cause any inserted format speci-

fiers to be harmlessly printed out as characters [13, p. 212].

printf ("%s" buf);

The below call to printf will process format specifiers included in the buf argu-

ment, allowing an attacker to modify the format string [13, p. 212].

printf (buf);

Fuzzer heuristics should certainly include repeated strings of some or all of the

possible format specifiers (%l, %d, %u, %x, %s, %p, %n). However, Sutton et al.

state that %n specifier is “the key to exploiting format string vulnerabilities” [46, p.

85], since it is most likely to trigger a detectable failure due to the fact it can cause

illegal memory write operations, while other format specifiers may trigger illegal read

operations.

2.15 Heap Corruption

Each process has its own heap, just as it has its own stack area of memory; both

are subject to buffer overflows. Unlike the stack, heap memory is persistent between

functions, and memory allocated must be explicitly freed when no longer needed.

Like stack buffer overflows, heap overflows can be used to overwrite adjacent memory
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locations; unfortunately, allocated regions of memory are usually located adjacently

to one another. However, a heap overflow may not be noticed until the overwritten

region is accessed by the application [13, p. 162].

The key difference between heap and stack memory storage is that stack memory

structures, once allocated, are static. In contrast, heap memory structures can be

dynamically resized, by manipulation of pointers which define the boundaries of heap

memory structures [13, p. 163]. As with the stack, if a vulnerable function is used

to copy data from a source buffer into a static heap-based buffer, and the length of

the source data is greater than the buffer bounds, the vulnerable string function will

overwrite the destination buffer and may overwrite an adjacent memory block [13, p.

164].

Wherever data within a process memory space is overwritable, one only has to

locate a pointer to executable code to take control of execution. Since the heap

contains many such pointers, [13, p. 167] and stack overflows are commonly prevented

now by methods such as non-executable stack compiler switches and stack overflow

detection, heap exploits may now be more common that stack overflows [13, p. 162].

Triggering heap overflows is not simply a matter of inserting special characters

into input. Heap overflows can be triggered by malformed input that causes heap

memory allocation errors, particularly in arithmetic operations used to determine

required buffer lengths. The following is a description of a heap-based vulnerability

(MS08-021) discovered by iDefence in the Microsoft Windows Graphics Rendering

Engine:

“The vulnerability occurs when parsing a header structure in an EMF file

that describes a bitmap contained in the file. Several values from this

header are used in an arithmetic operation that calculates the number of

bytes to allocate for a heap buffer. This calculation can overflow, which

results in an undersized heap buffer being allocated. This buffer is then

overflowed with data from the file.” 13

It appears that the above vulnerability is the product of an integer overflow which

leads to a heap overflow, so it might be triggerable by the use of random signed inte-

gers, random unsigned integers, and fencepost values. However, this blind approach

might have very low odds of succeeding. We will discuss how fuzzing can be used to

13http://labs.idefense.com/intelligence/vulnerabilities/display.php?id=681

http://labs.idefense.com/intelligence/vulnerabilities/display.php?id=681
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intelligently trigger such vulnerabilities by manipulation of common transfer syntaxes

in Chapter 10, Protocol Analysis Fuzzing.

2.16 Chapter Summary

We have seen how vulnerabilities may stem from software defects, and that they can

be grouped based on the different phases of the development/deployment life cycle,

and we have seen that fuzz testing is mainly concerned with defects occurring at the

implementation stage.

We have examined some of the causes of vulnerabilities, and explored each of

the main classes of vulnerability that may be discovered via fuzzing. In each case

we have briefly touched on the actual means that a fuzzer might use to trigger such

defects. In order to ensure that this chapter focussed on vulnerabilities rather than

fuzzer heuristics, more detailed examples of fuzzer heuristics, (specifically those aimed

at fuzzing string data types) have been moved to Appendix B, The Sulley fuzzing

framework library of fuzz strings for examples of fuzzer malicious string generation.

In the next chapter, we will examine the various types of security testing method-

ologies and place fuzzing in the wider context of security testing.



CHAPTER

THREE

SOFTWARE SECURITY TESTING

3.1 Software Testing

“The greatest of faults, I should say, is to be conscious of none.”

Thomas Carlyle, 1840

In the Certified Tester Foundation Level Syllabus, The International Software Test-

ing Qualifications Board have defined a number of general software testing principles,

all seven of which can be applied to software security testing. The first three principles

are of particular relevance.

“Principle 1: Testing shows presence of defects

Testing can show that defects are present, but cannot prove that there are

no defects. Testing reduces the probability of undiscovered defects remain-

ing in the software but, even if no defects are found, it is not a proof of

correctness.” [31, p. 14]

Security testing can never prove the absence of security vulnerabilities, it can

only reduce the number of undiscovered defects. There are many forms of security

testing: none can offer anything more than a ‘snapshot’; a security assessment of the

application at the time of testing, based on, and limited by, the tools and knowledge

available at the time.

35
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“Principle 2: Exhaustive testing is impossible

Testing everything (all combinations of inputs and preconditions) is not

feasible except for trivial cases. Instead of exhaustive testing, risk analysis

and priorities should be used to focus testing efforts.” [31, p. 14]

We will see that exhaustive fuzz testing is largely infeasible for all but the most

trivial of applications.

“Principle 3: Early testing

Testing activities should start as early as possible in the software or system

development life cycle, and should be focused on defined objectives.” [31,

p. 14]

There are strong economic and security arguments for testing for, and rectifying,

defects as early as possible in the development life cycle.

3.2 Software Security Testing

At the highest level, software functional testing involves determining whether an ap-

plication satisfies the requirements specified in the functional specification by testing

positive hypothesis such as “the product can export files in .pdf format”, or use cases

such as “the user is able to alter the booking date after a booking is made”.

In contrast, Software security testing is concerned with determining the total

functionality of an application, as shown in figure 3.1, which includes any functionality

that may be realised by a malicious attack, causing the application to function in a

manner not specified by the system designer.1

Since security requirements tend to be negative [24, p. 35], software security

testing generally involves testing negative hypothesis - i.e. “the product does not

allow unauthorised users to access the administration settings”. This has led security

testers to search for exceptions to security requirements. Such exceptions are, of

course, vulnerabilities, opportunities to realise malicious functionality.

The range of methodologies for identifying vulnerabilities can be separated into

one of two main classes: white box, also known as structural testing, or black box also

known as functional testing.

1An example is SQL injection, where meta characters are employed in order to modify a database
query dynamically generated partly based on input data.
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Figure 3.1: The total functionality of a software application may be greater than that
specified in requirements.

3.3 Structural, ‘White Box’ Testing

White box testing is performed when the tester obtains and employs knowledge of

the internals of the target application. Typically this means that the tester has access

to the source code2, and possibly also the design documentation and members of the

application development team.

White box testing can be divided into two approaches: (static) structural analysis

and (dynamic) structural testing.

3.3.1 Static Structural Analysis

Static analysis may be performed on the source code or the binary (object) code, and

involves searching for vulnerabilities via analysis of the code itself, not the executed

application. This is usually achieved by pattern matching against a library of ‘known

bad’ code sections.

2Structural methods can be applied to the object code of a component [7].
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It is invariably easier to analyse the source code than the object code, since higher-

level languages are closer to human languages than the object code they are compiled

and assembled into. Additionally, source code should feature comments that can

assist in understanding functionality. If the source code is available this will usually

be preferred for analysis. However, the absence of source code does not preclude

analysis; it merely makes it more difficult.

Source Code Analysis

Source code auditing has been an effective method of vulnerability discovery for many

years. As the complexity and scale of software products has increased, manual analysis

of source code has been replaced with automated tools.

The earliest source code analysis tools were little more than pattern matching

utilities combined with a library of ‘known bad’ strings, which tested for calls to

vulnerable functions such as strcpy and sprintf. These early tools generated many

false positives, since they were intended to identify any potential areas of concern, so

that these could be reviewed by a human auditor.

Access to the source code is an obvious requirement for source code analysis,

which precludes source code analysis for many parties including end users, corporate

clients, professional vulnerability researchers, developers who rely on the application

as middleware, and of course, hackers. Access to the source code may be limited to

those prepared to sign Non-Disclosure Agreements; this may deter security researchers

and hackers alike.

Static source code analysis often lacks the contextual information provided by

dynamic testing. For example, though static source code analysis may reveal that

a value is disclosed to users, without contextual information about what that value

actually is, it may be hard to determine if there is an associated security risk.

There may be differences between the source code that the tester is given and

the final shipped executable: the software development process may not necessarily

halt while testing is performed; last-minute changes may be made to the source code;

mass distribution processes may alter the codebase, and so on. This is a form of

‘TOCTOU’ (Time Of Check, Time Of Use) issue, where what is tested is not what

is used. This could lead to both false positives (i.e. a bug is found in the tested code
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that is fixed in the distributed code) and false negatives (i.e. no bugs are found in

the tested code, but there are bugs present in the distributed code).

Access to source code does not guarantee that vulnerabilities will be found. In

February 2004, significant sections of the source code of Windows NT 4.0 and Win-

dows 2000 operating systems were obtained by, and distributed between, a number

of private parties. At the time there were fears that numerous vulnerabilities would

result, yet only a handful have since been attributed to this leak [46, p. 5].

The level of complexity and sheer scale of software products mean that source code

analysis usually means a reliance on the automated tools: a human simply cannot

read through the source code of most applications. Modern source code auditing

tools, whilst undoubtedly powerful, require tuning to the environment in order to get

the most out of them [48].

After presenting a number of (pre-disclosed) vulnerabilities discovered using a

fuzzer, Thiel went on to state that:

“At least one of these vendors was actually using a commercial static

analysis tool. It missed all of the bugs found with Fuzzbox [a fuzzer created

by Thiel]” [47, Slide 32]

While the above indicates that fuzzing may discover defects not found via source

code auditing, I believe there are also many cases where source code auditing could

find defects which would not be discoverable via fuzzing. All forms of software analysis

are of value, each provides a different insight into an application. The best approach

might be to apply them all, where possible.

The output of source code auditing may mean that further effort is required to

develop proof of concept code to convince developers and vendors of the existence

of a security vulnerability. Vulnerabilities discovered via fuzzing generally consist

of a specific test case instance coupled with an associated crash report, a crude yet

convincing form of proof of concept code [48].

Binary Analysis

In binary analysis (also termed binary auditing, or, Reverse Code Engineering (RCE))

the binary executable file is not executed but is ‘disassembled’ for human interpreta-

tion or analysed by an automated scanning application.
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Disassembly describes the process where compiled object code is converted back

to assembly operation codes and displayed on a computer screen. This information

can be interpreted by a human auditor in order to understand the inner functionality

of an application and identify vulnerabilities by revealing programming flaws.

Since the source code is not required, anyone who has access to the binary exe-

cutable file can disassemble it for analysis, (the exception being cases where obfusca-

tion or anti-disassembly techniques have been applied; such techniques are common in

the areas of malware development and intellectual property protection applications).

However, disassembly analysis is considerably harder than source code analysis since

assembly is a lower-level programming language, increasing the level of complexity.

A number of automated scanning tools (some are stand-alone, some are plug-ins

for a commercial reverse code engineering tool called IDA Pro3) have been developed

to assist with the process of Reverse Code Engineering. These include: Logiscan4,

BugScam5, Inspector 6, SecurityReview 7 and BinAudit8.

Note that many of the above products are not publicly available. This may be

due to the risk that they represent in that they could be used by malicious parties

to identify software vulnerabilities, and it may also be due to the fact that some are

commercial products, or components of commercial products.

Binary auditing, whether automated or manual is an extremely powerful method

for identifying vulnerabilities, since it offers all of the benefits of source code analysis,

yet the source code is not required. However, it requires the highest level of expertise

of all software security testing methodologies.

Binary analysis may be illegal in some circumstances, and has been associated

with software ‘cracking’, where criminals circumvent software protection controls.

Many software product End User Licence Agreements expressly forbid any form of

disassembly.

3http://www.hex-rays.com/idapro/
4http://www.logiclibrary.com/about_us/
5http://sourceforge.net/projects/bugscam
6http://www.hbgary.com/
7http://www.veracode.com/solutions
8http://www.zynamics.com/products.html

http://www.hex-rays.com/idapro/
http://www.logiclibrary.com/about_us/
http://sourceforge.net/projects/bugscam
http://www.hbgary.com/
http://www.veracode.com/solutions
http://www.zynamics.com/products.html
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3.3.2 Dynamic Structural Testing

Dynamic structural testing involves ‘looking into the box’, i.e. analysis of the target

internals in order to, in the case of security testing, discover vulnerabilities.

An example of dynamic structural testing is API9 call hooking, where API calls

made by the application are intercepted and recorded. This could reveal whether an

application calls a vulnerable function such as strcpy.

Another example of dynamic structural testing (there are many), termed red point-

ing is described by Hogland and McGraw. Here, the source code is analysed and

obvious areas of vulnerability (again, usually vulnerable API calls such as strcpy) are

identified, and their location is recorded. The application is launched and manipu-

lated with the aim of reaching the vulnerable area. If the tester can reach the target

location (usually detected via attaching a debugger and setting a breakpoint on the

target location), via manual manipulation of input, and input data is processed by

the vulnerable function, then a vulnerability may have been identified [20, p. 243].

3.4 Functional, ‘Black Box’ Testing

Black box testing means not using any information about the inner workings of the

target application. This means that access to the source code, the design documents

and the development team are not required.

Conventional black box or functional testing focuses on testing whether the func-

tionality specified is present in the application, by executing the application, feeding it

the required input and determining if the output satisfies the functional specification

[24, 24].

Software security black box testing involves testing for the presence of security

vulnerabilities that might be used to realise malicious functionality, (see figure 3.1)

without any knowledge or understanding of the internals of the target application.

This may also be termed fault injection, since the objective is to induce fault states

in the target application or its host by injecting malformed input.

Fault injection testing, also known a negative testing, involves passing unexpected

input to the executed application and monitoring system and application health, such

9API stands for Application Programming Interface.
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that specific instances of input that cause application or system failure are identified.

Fault injection is closely related to performance testing: both are less interested in

pure functional specification testing, and relate more to the quality of the software

implementation.

Consider a sofa. A designer may check that the finished product satisfies her

original design (i.e. by testing against functional requirements), but the sofa cannot

be sold legally without safety testing (i.e. negative testing) to ensure it is, for example,

flame retardant.

One of the difficulties of conventional functional testing is that in order to test

whether required functionality is present, a test case must include a clear definition

of the expected output, based on the defined input. This means a tester can clearly

determine whether an application satisfies that particular test case. For fault injection

testing, the scope is limited to identifying input that causes the application to fail;

we do not need to define expected output, we merely need to monitor the application

(and host operating system) health [24, p. 35]. This approach greatly simplifies

testing, but also prevents the detection of defects that do not result in an application

failure state.

There are test tools that can detect potentially vulnerable states that do not

result in application failure. Application Verifier [21, p. 159] is an example of a

test tool that can detect a range of indicators of a vulnerable state. Such tools may

monitor CPU usage, memory allocation, thread processing and other aspects of an

application and it’s host operating system, and would be better placed in the field

of dynamic structural testing, where analysis of the internals of the system under

test are employed. There are no hard boundary points between test methodologies.

However, the further we look ‘into the box’, the further we move away from black

box testing.

Fuzzing is a particular form of injection testing where the emphasis is on automa-

tion. Other methods of injection testing include the construction of malicious clients,

facilitating manual parameter manipulation [4, p. 1], or manual malicious data entry

such as entering random or known bad characters into an application [46, p. 10].
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3.5 Chapter Summary

In this chapter, we started out with the basics of software testing, we then focussed

upon software security testing, examining the various software security methodologies.

It is important that these methodologies are seen as a ‘grab bag’ of non-exclusive

tools and approaches. A good software security tester will employ whatever methods

suit the task at hand, and some approaches (sometimes the best approaches) defy

methodology boundaries. As in the last chapter, we again placed fuzzing in context,

contrasting its characteristics against alternative approaches.

This concludes the ‘wider view’ section of the report, and from the next chapter

onward we will focus exclusively on fuzzing, beginning with an examination of its

origin and a brief overview of the subject.
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FOUR

FUZZING – ORIGINS AND OVERVIEW

4.1 The Origins of Fuzzing

The ‘discovery’ of fuzzing as a means to test software reliability is captured in a paper

produced in 1989 by Miller, Fredriksen and So [34].

It is unlikely that Miller et al were the first to employ random generation testing

in the field of software testing. However, Miller et al. appear to have produced the

first documented example of a working fuzzer in the form of a number of scripts and

two tools called and fuzz and ptyjig.

Fuzzing was ‘discovered’ almost accidentally, when one of the authors of the above

paper experienced electro-magnetic interference when using a computer terminal dur-

ing a heavy storm. This caused random characters to be inserted onto the command

line as the user typed, which caused a number of applications to crash. The failure

of many applications to robustly handle this randomly corrupted input led Miller, et

al to devise a formal testing regime, and they developed two tools fuzz and ptyjig,

specifically to test application robustness to random input.

The results of the testing were that of 88 different UNIX applications tested, 25 to

33% crashed when fed input from their fuzzing tools. Of the two tools produced by

Miller et al, fuzz is of greater significance, since ptyjig is merely used to interface the

output of fuzz with applications that required input to be in the form of a terminal

device.

44
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fuzz is, essentially, a random character string generator. It allows users to define

an upper limit to the amount of random characters to be generated. The output

of fuzz can be limited to printable characters only, or extended to include control

characters and printable characters. A seed can be specified for the random number

generator, allowing tests to be repeated. Finally, fuzz can write its output to a file

as well as to the target application, acting as a record of generated output.

Miller et al employed scripting to automate testing as much as possible. After an

application terminates, a check is performed to see if a core dump has been generated.

If so, the core dump and the input that caused it are saved.

By creating fuzz to satisfy their testing requirements, Miller et al also inadver-

tently defined a general model of a practical fuzzer: i.e. the elements it should com-

prise, the functionality it should offer, etc. While fuzzing has undoubtedly moved

forward in the last twenty years, the basic model of a fuzzer has remained the same.

4.2 A Basic Model of a Fuzzer

The term fuzzer may be used to describe a multitude of tools, scripts, applications,

and frameworks. From dedicated, one-off Perl scripts, to all-encompassing modular

frameworks, the range of fuzzers can be bewildering to the uninitiated.

However, all fuzzers share a similar set of features, namely:

• data generation (creating data to be passed to the target);

• data transmission (getting the data to the target);

• target monitoring and logging (observing and recording the reaction of the tar-

get), and;

• automation (reducing, as much as possible, the amount of direct user-interaction

required to carry out the testing regime).

In fact, the last two features could be considered optional or might be implemented

externally to the fuzzer; a stand-alone debugger application might be employed to

monitor the target.

By treating the above features as high-level requirements, we can outline a basic

model of a fuzzer in figure 4.1.
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Figure 4.1: A basic model of a fuzzer.

4.3 Fuzzing Stages

However, there is more to fuzzing than the fuzzer itself - our basic model of a fuzzer

fails to capture the fuzzing life cycle. Sutton has listed the stages of fuzzing as being

[46, p. 27]:

1. Identify target

2. Identify inputs

3. Generate fuzzed data

4. Execute fuzzed data

5. Monitor for exceptions

6. Determine exploitability

What follows is a brief description of each of the stages listed above.

4.3.1 Target Identification

This stage is optional since the target may have already been selected. Attackers

typically get to choose their targets while testers may not. Risk, impact and user

base are the primary factors that influences target selection for those who get to

choose, and resource deployment for those who don’t.

Targets that present significant risk are:
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1. Applications that receive input over a network - these have the potential to be

remotely compromised, facilitating remote code execution, which creates the

potential for an internet worm.

2. Applications that run at a higher privilege level than a user - these have the

potential to allow an attacker to execute code at a privilege level higher than

their own, known as privilege escalation.

3. Applications that process information of value - an attacker could circumvent

controls and violate integrity, confidentiality or availability of valuable data

4. Applications that process personal information - an attacker could circumvent

controls and violate integrity, confidentiality or availability of private data

Targets that combine two or more of the above are at particular risk. A service

that runs with Windows SYSTEM-level privileges and also receives input from a

network is a juicy target for an attacker. A large user base, i.e. a widely deployed

application, or a default component of a commercial operating system represents an

increased risk since the impact of a successful attack is increased by a large user

population.

The Microsoft Security Response Centre Security Bulletin Severity Rating System

defines four levels of threat that can be used to evaluate a vulnerability. The below

ratings and their definitions are taken from Microsoft’s website1.

Critical: A vulnerability whose exploitation could allow the propa-

gation of an Internet worm without user action.

Important: A vulnerability whose exploitation could result in com-

promise of the confidentiality, integrity, or availability of users’ data,

or of the integrity or availability of processing resources.

Moderate: Exploitability is mitigated to a significant degree by fac-

tors such as default configuration, auditing, or difficulty of exploita-

tion.

Low: A vulnerability whose exploitation is extremely difficult, or

whose impact is minimal.

1http://www.microsoft.com/technet/security/bulletin/rating.mspx

http://www.microsoft.com/technet/security/bulletin/rating.mspx
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4.3.2 Input Identification

Input identification involves enumerating the attack surface of the target. Howard

and Lipner define the attack surface of a software product as:

“the union of code, interfaces, services, and protocols available to all users,

especially what is accessible by unauthenticated or remote users.” [21, p.

78]

This stage is important since a failure to exhaustively enumerate the attack surface

will result in a failure to exhaustively test the attack surface, which in turn could result

in deployment of an application with exposed vulnerabilities.2

Application input may take many forms, some remote (network traffic), some local

(files, registry keys, environment variables, command line arguments, to name but a

few). A range of fuzzer classes have evolved to cater for the range of input types.

Sutton sets out input classes (and provides some example fuzzers) as follows [45, p.

9]:

1. Command line arguments

2. Environment variables (ShareFuzz)

3. Web applications (WebFuzz)

4. File formats (FileFuzz)

5. Network protocols (SPIKE)

6. Memory

7. COM objects (COMRaider)

8. Inter Process Communication

Network protocol, web application and COM object fuzzing are suited to the

discovery of remote code execution vulnerabilities, while the rest generally lead to

the discovery of local vulnerabilities3.

2However, it may not be practical to fuzz all of the identified forms of input. It may be that
there are no fuzzers already developed to fuzz that input type and the development of such a fuzzer
would not be worth the required investment. While it is acceptable not to fuzz a given input type
it is wise to identify any untested forms of input and ensure that alternative testing or mitigation
strategies are applied to input vectors that fall out of scope of fuzz testing.

3Web browser fuzzing is an exception: it is a particular form of file fuzzing that can reveal code
execution vulnerabilities in browsers [46, p. 41].
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Some application inputs are obvious (a web server will likely receive network input

in the form of HTTP via TCP over port 80), or are easily determined using tools

provided with the host Operating System such as ipconfig, netstat, task manager

in Windows systems. Others require specialist tools such as filemon4, which reports

every file access request made by an application.

4.3.3 Fuzz Test Data Generation

This is perhaps the most critical aspect of fuzz testing, and this area has developed

considerably since Miller et al produced their early fuzzing tools.

The purpose of a fuzzer is to test for the existence of vulnerabilities that are

accessible via input in software applications. Hence, a fuzzer must generate test data

which should, to some degree, enumerate the target input space which can then be

passed to the target application input.

Test data can either be generated in its entirety prior to testing5, or more com-

monly, iteratively generated on demand at the commencement of each of a series of

tests.

The entire range of test data generated for fuzzing a given target (referred to here-

after as the test data) comprises of multiple individual specific instances (referred to

hereafter as test case instances). The general approach to fuzz testing is to iteratively

supply test instances to the target and monitor the response.

Where, during testing, a test case is found to cause an application failure, the

combination of a particular test case and information about the nature of the failure

it caused represents a defect report. Defect reports may be thought of as the distilled

output of fuzz testing and could be passed to developers to facilitate the process of

addressing failures.

In order to determine how a fuzzer will generate test data, a set of rules is usually

defined by the user. This is shown in figure 4.2.

There are a multitude of different approaches for generating test data, all of which

fall into one of two categories: zero knowledge testing (comprising random, brute force

4http://technet.microsoft.com/en-us/sysinternals/bb896642.aspx
5This approach is often seen in file format fuzzing.

http://technet.microsoft.com/en-us/sysinternals/bb896642.aspx
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Figure 4.2: A basic model of a fuzzer including user-defined rules for data generation.

and ‘blind’ mutation fuzzing) or analysis-based testing (termed protocol or protocol

implementation testing).

Test data generation differs greatly across various fuzzers and its importance

means that it will be covered in detail over three chapters: Chapter 5, Random and

Brute Force Fuzzing, Chapter 6, Data Mutation Fuzzing, and Chapter 10, Protocol

Analysis Fuzzing.

4.3.4 Fuzzed Data Execution

This stage also differs between fuzzers but is largely a function of the particular

approach to automating the test process. This will not be covered any further than

two of the Case Studies: Chapter 8, Case Study 1 Blind Data Mutation File Fuzzing

and Chapter 11, Case Study 3 Protocol Fuzzing a Vulnerable Web Server.

4.3.5 Exception Monitoring

It is not sufficient to simply generate test data that triggers the manifestation of

software defects: in order to discover vulnerabilities via fuzzing, one must have a
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means for detecting them. This is achieved via an oracle, a generic term for a software

component that monitors the target and reports a failure or exception. An oracle may

take the form of a simple liveness check, which merely pings the target to ensure it is

responsive, or it may be a debugger running on the target that can monitor for, and

intercept, exceptions and collect detailed logging information.

This area will be explored in more detail in Chapter 7, Exception Monitoring.

4.3.6 Determining Exploitability

Once one or a number of software defects have been identified, there may be no further

work to do other than to submit a list of these defects to a development team, in

order that they can correct them. However, it may be that the tester is required to

determine the risk that such bugs represent, and this usually requires an examination

of whether defects are exploitable or not, and if so, what impact exploitation may

mean for users. This is discussed further in Chapter 7, Exception Monitoring, and

also in Chapter 9 Case Study 2 – Using Fuzzer Output to Exploit a Software Fault.

4.4 Who Might Use Fuzzing

Anyone who has access to an application can fuzz it. Access to the source code is

not required. Compared to other vulnerability discovery methodologies, very little

expertise is required (at least to identify basic defects). Additionally, implementation

is comparatively fast - an experienced user of fuzzers can, in some cases, initiate

fuzzing an application in a matter of minutes.

As a result of the comparatively low barrier to entry in terms of investment of

time, understanding of the application and software in general, and access to the

source code, a number of different parties may benefit from fuzzing.

Developers may employ fuzzing as part of a wider vulnerability discovery and

resolution program throughout the development life-cycle. Software vendors such as

Cisco, Microsoft, Juniper, AT&T, and Symantec all employ fuzzing as a matter of

course [11, Slide 8].
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End-users, Small to Medium sized Enterprises, and corporations might also employ

fuzzing as a form of software quality assurance. For these parties, the inability to

access source code and the efficient use of time and resources may be an attraction.

“One of the surprises of selling fuzzing products at Beyond Security, is

who actually wants them. Banks, Telcos, large corporations.” [11, Slide

16]

For these customers, Evron states one of the reasons for fuzzing an application

prior to purchasing licences is:

“Being able to better decide on the security and stability of products than

look at their vulnerability history.” [11, Slide 17]

This highlights the fact that many corporate customers lack reliable sources of

information regarding the security of a potential product. This suggests informa-

tion asymmetry exists as mentioned in Chapter 1, The Case for Fuzzing, and that

corporate customers are employing fuzzing to remedy this situation.

Attackers may also make use of fuzzing. Fuzzing offers many benefits to malicious

parties, particularly those who are skilled in exploit development and interested in

identifying injection vectors for malicious payloads. Such parties often do not have

access to the target application’s source code, and are interested in identifying vul-

nerabilities for the purpose of developing un-patched, undisclosed exploits. Note that

fuzzing itself does not produce exploits, but can be used to reveal software defects

which may be exploitable.

Exploit development consists of two primary activities: vulnerability discovery

and payload generation. Payload generation is widely researched and information is

generally shared openly on numerous websites, of which Milw0rm6 and Metasploit7

are two high-profile examples. Many payloads (such as shell code which will launch an

interactive command shell and bind it to a listening network port) are interchangeable,

and can be tweaked to suit the target application and the objectives of the attacker.

Specific information about implementation vulnerabilities is not generally shared,

since this information is precious and may be passed solely to the vendor in order to

6http://www.milw0rm.com
7http://www.metasploit.com

http://www.milw0rm.com
http://www.metasploit.com
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provide them with an opportunity to address the vulnerability, or may be sold on the

black market or to a reputable vulnerability intelligence group such as the iDefence

Vulnerability Contribution Program (VCP)8 [44].

4.5 The Legality of Fuzz Testing

In general, black box security testing is not illegal, since most anti-reverse engineering

law is based on forbidding unwarranted examination of intellectual property, usually

achieved via disassembly and reverse engineering of internal functioning. Since black

box testing is merely concerned with input/output analysis, it might be argued that

it does not break user licensing agreements, or intellectual property law since there

is no attempt to understand the business logic of the application.

That said, since the objective of black box testing is to discover application failure

states, some of which may be exploitable, it could also be argued that the legality

of such testing depends on the motivation of the tester and the actions taken after

vulnerabilities are discovered. In this interpretation, the action the tester takes after

discovery of a vulnerability is critical to determining their legal position. There is a

moral and legal imperative to act responsibly with information regarding vulnerabili-

ties, and anyone undertaking any form of software security testing should be prepared

to justify their actions or risk prosecution.

4.6 Chapter Summary

In this chapter we examined the origin of fuzzing, presented a basic model of a fuzzer

identified some of the parties likely to employ fuzzing, and covered the legality of

fuzz testing. The next chapter will focus upon the most basic forms of fuzz testing:

random and brute force fuzzing.

8labs.idefense.com/vcp/



CHAPTER

FIVE

RANDOM AND BRUTE FORCE FUZZING

There are a three different zero knowledge approaches for generating test data:

• Random data generation;

• Data generated in a ‘brute-force’1 manner;

• Data mutation, i.e. capturing ‘valid’ input data that is passed to application in

normal use, and mutating it, either in a random or ‘brute-force’ manner;

In order to understand and compare the various data generation methods, we will

employ a trivial example (inspired by [36, p. 2]) to compare test data generation

methods and illustrate the concept of application input space.

5.1 Application Input Space

The range of all of the possible permutations of input that an application can receive

may be termed its input space. Consider a trivially simple application that receives

input from four binary switches.

Figure 5.1 allows us to visualise the input space of our trivial application as a two

dimensional grid.

1The term brute-force refers to the sequential generation of all possible combinations of a number
of values.
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Figure 5.1: A visual representation of the input space of four binary switches [36, p.
2].

Imagine that we have been asked to test the trivial application’s robustness. Our

objective then, is to enumerate the input space with the aim of uncovering any test

instances that cause application failure. Due to a software error, the trivial application

will fail if the switches are set to the combined value of 1011, as shown in figure 5.2.

Figure 5.2: A visual representation of the input space of four binary switches with an
error state (1011) [36, p. 2].

Fuzzing aims to automatically generate and submit test data that will trigger

input-related software defects. The challenge for the data generation aspect of a fuzzer

is to generate test data that includes test instances that will trigger vulnerabilities

present in the target application; in this case, the combination 1011. An analogy

for this task is the game Battleships [36, p. 1], where two players first place ships
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in a grid, and then take turns in trying to ‘hit’ their opponents ships by guessing

co-ordinates that match the ships locations.

5.2 Random Data Generation

Fuzz testing with randomly generated data has been referred to as ‘blind fuzzing’ [4,

p. 2], since neither knowledge of the target nor the data it is designed to process

are required. This ‘zero-knowledge’ approach has two desirable attributes: minimal

effort is required to commence testing, and assumptions are not allowed to restrict

the scope of testing. The success of fuzz illustrates that random testing is a viable

means to induce fault states in applications.

There are, however, significant disadvantages to the random approach to gener-

ating test data. Consider our trivial testing scenario as outlined in figure 5.2: there

is no guarantee that random generation will ever produce the combination 1011 re-

quired to trigger the application to fail. There is, of course, a one-in-16 probability of

randomly generating the test instance required, but this is a trivial application. Real

life applications typically have a very large input space, and the chances of randomly

generating a test instance that will trigger a failure are considerably reduced.

5.2.1 Code Coverage and Fuzzer Tracking

A key question in fuzzing, in fact in any form of testing, is: when do you stop? Setting

criteria that will determine test completion is important in order to deploy resources

efficiently. Yet, setting and measuring such criteria when fuzzing is very difficult,

mainly due to a lack of measurable parameters that describe fuzz test completeness.

One possible metric for tracking fuzz test completion is code coverage, which Sutton

et al. define as ”the amount of process state a fuzzer induces a target’s process to

reach and execute” [46, p. 66].

A program may be thought of as a collection of branching conditional execution

paths. This is true at the source code level and at the binary (i.e. object code) level.

Data input to the program determine the path that execution takes via conditional

statements. Different paths result in different sections of the program being executed.

Imagine that a vulnerability exists in a specific section of a program. In order to

trigger that vulnerability we will need to achieve two goals:
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1. ensure that the vulnerable region of code is executed;

2. ensure that suitable input is passed to the vulnerable section, such that the

vulnerability is triggered.

Both of the above are achieved through input; therefore input comprises two basic

components:

1. data to navigate through conditional code paths, in order to establish a specific

application state;

2. data to be passed into the application for processing once a specific application

state has been reached.

Ideally, we should aim to execute all code regions in order to satisfy ourselves that

we have tested the whole application. However, DeMott makes the point that, from

a security perspective, we are only interested in coverage of the attack surface: code

that is reachable via input:

“Some code is internal and cannot be influenced by external data. This

code should be tested, but cannot be externally fuzzed and since it cannot

be influenced by external data it is of little interest when finding vulnera-

bilities. Thus, our interests lie in coverage of the attack surface.” [8, p.

8]

This means that effective coverage could mean a result of less than 100% in terms

of code paths executed.

Dynamic testing can be used to determine what control paths are executed during

fuzzing, via path tracing. Static analysis can be used to map all of the possible code

paths of a defined region of code or an entire application. As Sparks, et al. put it:

“A control flow graph for an executable program is a directed graph with

nodes corresponding to blocks of sequential instructions and edges corre-

sponding to non-sequential instructions that join basic blocks (i.e. condi-

tional branch instructions.)” [42, p. 2]

We have already mentioned structural testing (see Chapter Three, Software Secu-

rity Testing). A disassembler such as IDA Pro2 can be used to generate a control flow

2http://www.hex-rays.com/idapro/

http://www.hex-rays.com/idapro/
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graph from a binary executable file [42, p. 2]. This graph could then be used to as

a basis to determine which regions of an application are executed and which are not

during a test run. This would require runtime analysis of the target internals. The

term white box fuzzing is used to describe methods where internal, structural analysis

techniques are used to guide fuzzing [?, p. 1].

Code coverage is relevant to fuzz testing since it measures how much of the appli-

cation code has been tested. If you found no bugs but had covered only 10% of the

application state, you would not be likely to claim that the application was free of

software defects.

Code coverage may be used to track fuzzer progress during fuzzing and to deter-

mine if fuzzing is ‘complete’. However, while code coverage is a very useful metric,

and may be the only useful metric for measuring the performance of a fuzzer, it is

important to note that code coverage only tells you what percentage of (reachable)

code was executed. It does not tell you what range of input values were passed to the

application once each of the different application states were established [46, p. 467].

If you completed a fuzz test of an application, found no bugs, and determined

that the code path coverage was 100%, you could not argue that the application was

devoid of defects. This is because (as we shall see later in this chapter), for all but

the simplest applications, it is infeasible to pass every possible input value into the

application for every possible application state. Hence, code coverage is important

and desirable, but cannot guarantee that testing is complete or exhaustive.

Microsoft applies a pragmatic solution to the problem of measuring the range of

values passed to the application:

“[The Security Development Lifecycle] requires that you test 100,000 mal-

formed files for each file format your application supports. If you find a

bug, the count resets to zero, and you must run 100,000 more iterations

by using a different random seed so that you create different malformed

files.” [21, p. 134]

It might be possible to apply this approach at a finer degree by, for example,

specifying that a either specific range of intelligently selected values, or a specific

number of random values must be passed to each identified data element (such as a

byte or a string).
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Regardless of the limitations of code coverage as a metric for fuzzing, achieving

high code coverage is a significant problem for random testing. Patrice Godefroid

provides an example illustrating the issue.

“... the THEN branch of the conditional statement IF (x==10) has only

one in 232 chances of being exercised if x is a randomly chosen 32-bit input

value. This intuitively explains why random testing usually provides low

code coverage.” [16, p. 1]

That is not to say that the random data generation approach does not work, but

that the benefits offered by random generation should be qualified by its limitations.

Random testing should never be discounted, but should be always be used with an

awareness of the problems that it is not able to solve.

5.2.2 Static Values

Static values (also referred to as ‘magic numbers’) in binary data formats and network

protocols are problematic for random generation methods. The presence of these

values at specific locations is often tested in network protocols or binary file formats

in order to detect data corruption, or simply as a means to identify the data format

and differentiate it from other formats. The probability of randomly generating a

valid static value is a function of the size of the value, but to do so at a specific

position within a sequence of values is very small indeed.

Consider the static value used in Java class files. Unless the first four bytes of a

Java class file are set to the value ‘CAFEBABE’, the file will be rejected by the class

file loader [29, p. 141].

The probability of randomly generating the value ‘CAFEBABE’ is, once again, 232

(assuming 4-byte character representation). The probability of randomly generating

the value ‘CAFEBABE’ at a specific location in a test instance is a function of the

length of the sequence and is vanishingly small; hence a large ratio of test instances

that will yield no useful information3 will be generated. This may be termed low

efficiency of test data.

3Beyond the fact that the application is robustly rejecting test instances where the static value
is incorrect.
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5.2.3 Data Structures

In addition to magic numbers, application input is invariably subject to a high degree

of structure. Perhaps the most common structural features arise from the need for

input to compartmentalise and label separate regions in the form of headers.

Take, for example, the Portable Executable (PE) header, used to identify files

that conform to the Portable Executable structure. Among files that conform to the

PE structure are .exe files, .dll files and .cpl files. The PE header allows the Windows

operating system loader to (amongst other things) map PE files into memory. Since

the PE header is located at the beginning of all PE files, the first 15 bytes of a .cpl

file viewed using a binary editing application in figure 5.3 show the beginning of the

PE header.

Figure 5.3: The first 15 bytes of Access.cpl.

If the PE header is altered, the windows loader may reject the file, and the data

within the file may not be loaded into memory.

This real-world example raises an important consideration: that data often passes

through various levels of validation before being passed to the core of an application

for processing. Where networking is employed, validation may occur during transition

before the data has reached the application.

Encapsulation

Many common data protocols are themselves contained within other protocols. Net-

working protocols that encapsulate higher-layer protocols are an example of this. If

input does not conform to structures defined at the lowest of levels, it will be rejected

and not passed up to the level above.

The high degree of structure that is typically present in application input data

adds significant redundancy to the application input space. This has the effect of
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reducing the effective input space, but in a complex manner. Charting this effective

input space requires a detailed understanding of the application and/or the format

of the data it consumes. However, as we shall see in Chapter 6, Data mutation

fuzzing, by sampling an input instance (or better still a range of instances) when the

application is in use, one could obtain a valid ‘subordinate’ image of the effective

input space, with very little effort.

Let us amend our trivial scenario to reflect the fact that application input data

typically has structure. Let us say that the application checks all input and rejects

any where the fourth switch is set to zero, representing a trivial static value check.

Figure 5.4: A visual representation of the input space of four binary switches, an
error state and a static check.

Figure 5.4 illustrates the effect (via diagonal hatching) of rejecting input where

the fourth switch is set to zero: the effective input space is reduced (in this case

halved) as a result of a static value check, though the absolute input space remains

the same.

Since random generation fails to account for any structure in input data, a large

proportion of randomly generated test data will be rejected at every point where a

check occurs, and there may be many such checks. Again, the small scale of our

trivial example input space fails to indicate the significance of this problem. As the

scale of the input space increases, the ratio of rejected to accepted test instances will

increase significantly.

This raises another important consideration: that each iteration of a test instance
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takes a finite amount of time to process. The test instance must be passed to the

application, the application needs to process the data and the oracle4 needs time to

determine the health of the application/host. Hence, test data efficiency, (which we

shall define to be the ratio of test instances that yield valuable information to test

instances that do not5) is a valuable commodity.

5.3 Brute Force Generation

Brute force generation involves programmatically generating every possible permu-

tation of the input space. This approach requires no knowledge of the target, with

the exception that input space dimensions should be known so as to limit data gen-

eration. Since brute force generation requires that the input space dimensions are

bounded, there will be a finite amount of test data and a hence a clear indication of

the completion of the test is possible.

Brute force generation could potentially provide a high level of assurance by test-

ing the application’s response to all possible potential input values and traverse all

possible combinations of input.

However, like random generation, brute force generation is significantly impacted

by the large absolute input space presented by most applications and the high degree

of structure found in application input data, which means that the effective input

space is vastly smaller than the absolute input space.

Since brute force generation is a zero-knowledge approach, it cannot account for

the vastly reduced effective application input space, and must generate test data that

will enumerate the absolute input space. This results in extremely poor test data

efficiency.

For example, consider the Hypertext Transfer Protocol as defined in RFC 2616.

There are a limited number of methods such as GET, HEAD, TRACE, OPTIONS

and so on. Unless a Hyper Text Transfer Protocol (HTTP) request is prefixed by one

of the required methods, the request will be rejected. Though it would certainly be

4Defined in Chapter 4, Fuzzing – Origins and Overview.
5This is a rather murky definition in that every test instance yields some information. However, it

should be obvious that repeatedly proving that an application robustly rejects input with malformed
structure does not yield much value.
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possible to generate all of the required methods by brute force generation, the poor

efficiency of this approach would mean that many millions of useless test instances

would be generated.

It is important to emphasise how infeasible brute force data generation is. We

have already seen that a finite time is required to process each test instance. In order

to brute force fuzz all values of a 32 bit integer, a total of 4,294,967,295 test instances

would be required. Disregarding the time and space required to generate and store

this test data, it would take 500 days to process each of the required test instances

assuming it would take one hundredth of a second to process each one.6

Brute force data generation has been applied successfully in the field of cryptog-

raphy for enumerating a key space, but there are many differences between key space

enumeration and application input space enumeration. Even the largest of (feasi-

bly brute force-able) key spaces are considerably smaller than the smallest of input

spaces.7 Moreover, application input is usually highly structured with large amounts

of redundancy, compared with a key space which should be highly random with very

low levels of redundancy.

Ultimately brute force generation has never been applied as a fuzz test data gen-

eration method due to the very poor efficiency of the test data.

5.4 Chapter Summary

Random generation is a valid method for generating test data, and has been used to

identify security vulnerabilities in software applications, not only in the form of the

original fuzzing tool in 1989, but also in recent, enterprise level applications.8

The key benefits of random generation are that it requires little or no analysis of

the target application or the data it processes, and this means fuzzing can be rapidly

6This is a conservative estimation. In the authors (limited) experience, file fuzzing required
approx 200 mS per test instance on an Intel Pentium P4 processor, 2GB RAM, 800 MHz, Win XP
SP2, and network fuzzing required approx 1 second per test instance.

7It is generally agreed that brute forcing approx 70 bit symmetric keys is at the edge of feasibility,
compare this with the input space of a web server, browser or word-processing application

8Sutton et al. provide an example of a vulnerability that could easily be found using random
fuzzing in Computer Associates BrightStor ARCserve data backup application [46, p.367]. All that
is required to trigger the vulnerability is to send more than 3,168 bytes to a specific port number.
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initiated. Additionally, the fact that knowledge of the application is not required

means that testing is not influenced by assumptions that may arise from possession

of knowledge of the target.

The key disadvantages of random generation are:

• poor efficiency: the potential for a very large proportion of test instances to

yield no valuable information9

• the resultant poor code coverage and inability to penetrate into ‘deeper’ appli-

cation states.

• the lack of assurance that the input space will be completely enumerated;

• the infinite test data and hence no clear indication of when fuzzing is complete;

Brute force data generation is theoretically interesting, but is simply infeasible for

all but the simplest of applications, rendering it useless as a method for fuzz test data

generation.

The next chapter will examine ‘blind’ data mutation fuzzing, where sample data

is collected and mutated, solving some, but not all, of the problems encountered by

fuzzers.

9This is due to the fact that random testing cannot account for the difference between the actual
input space (the range of data that can be passed to the application) and the effective input space
(the range of data that will not be rejected by the application)



CHAPTER

SIX

DATA MUTATION FUZZING

In order to address the high degree of structure found in application input data, a

different approach to purely random or brute force test data generation is data muta-

tion. Data mutation involves capturing application input data while the application

is in use, then selectively mutating the captured data using random and brute force

techniques. By using captured data as the basis for generating test data, conformance

to the effective input space is considerably higher than that seen in purely random

or brute force test data generation approaches. A high level of conformance to the

effective application input space means that static numbers and structure such as

headers all remain intact, unless, of course, they are subject to mutation.

Data mutation fuzzing, like random and brute force fuzzing can be performed at

many different levels: it can be applied at the application layer, usually in the form

of mutated files, and it can be applied at the network layer, in the form of mutated

network protocols.

Because the data capture phase is generally simple and fast1, data mutation need

not require significantly greater effort or time to commence fuzzing in comparison to

zero-knowledge approaches such as purely random or brute force generation. Yet, due

to the similarity to valid input, the test data will have a much higher efficiency. Hence,

the benefits of random or brute force mutation (i.e. minimal effort or knowledge

required) can be achieved, while disadvantages (poor code coverage, poor efficiency)

are avoided.

1Typically, a file is copied or an exchange of network traffic is captured.
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6.1 Data Location and Data Value

An explanation of two key concepts is required: data location and data value. A

data location is a unique address that may be used to identify a single data item

(character, byte, bit, etc) in a sequential array of such items. A data value is simply

the value stored at a specific data location.

Figure 6.1: The first 15 bytes of Access.cpl with data location ‘6’ highlighted.

In figure 6.1 we see the same first 15 bytes of Access.cpl as seen in figure 5.3.

However, in figure 6.1, data location 6 has been highlighted in red. The value at this

data location is hexadecimal 00.

Mutating data (for the purposes of generating test data for fuzzing) may be defined

as: altering data values at specific data locations. Randomness and brute force

techniques may be applied to both the selection of locations and the manner in which

the values held at the selected locations are modified.

It is important to note that mutation involves selective alteration: only a subset

of locations should be selected for modification in any one instance. In this way much

of the structure of the source data is maintained.

6.2 Brute Force Data Mutation

Within data mutation, brute force techniques can be applied to either location selec-

tion or value modification, or both.

6.2.1 Brute Force Location Selection

This approach offers the opportunity to programmatically move through the source

data, determining the effect on the application of changing the value of each location

of the source data. Hence, a list of vulnerable locations of the source data can be



67

identified without any knowledge of the format or the content of the data. This

technique is successfully applied in Chapter 8, Case Study 1 Blind Data Mutation

File Fuzzing.

This approach is entirely valid, but there is a risk of a ‘combinatorial explosion’

if multiple value modifications are to be applied to every data location.2 As a result,

brute force techniques are of practical use to testers, but often only when combined

with limited scope in terms of:

• the range of modification values used

• the number of locations to be modified

The former means restricting the values overwritten to selected locations. In

Chapter 8, Case Study 1 Blind Data Mutation File Fuzzing, selected locations are

overwritten by only one value: zero. The latter approach involves selecting a fi-

nite region of locations within the source data, limiting the range of locations to be

enumerated.

What follows is an example of what the author terms a brute force compromise,

since the generated test data size was at the edge of acceptability, the author was

forced to compromise and reduce the scope of testing.

In Chapter 8, Case Study 1 Blind Data Mutation File Fuzzing, brute force location

selection is used to fuzz Rundll32.exe by mutating Access.cpl, a file that is passed

to Rundll32.exe as input. Access.cpl is 68 kB long, which means that 68,000 test

cases had to be generated in order to modify each byte (in file fuzzing it is common

to generate all of the test data at the start of the test). This was feasible, but was at

the edge of acceptability. This meant that options for value modification had to be

severely limited; in this case, modification was limited to setting the selected location

to zero. As a result, it took 2 hours to create all of the test cases, 4 gigabytes to store

them and about 4 hours to test them all.

Had the author wanted to modify each location through all 255 possible values

(each location represented a byte in this case), then the number of test cases would

have been multiplied by 255.

2where the combinations of mutations result in a prohibitively large number of test cases
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Brute force location selection fuzzing can be used to identify interesting regions of

the source data. Once identified, such regions can be manipulated manually, outside

of the test framework i.e. using a hex editor, or supplying a range of values via the

command line. Alternatively, the region could be manipulated within the testing

framework via brute force value modification.

6.2.2 Brute Force Value Modification

Another approach to brute forcing is to select a single data location (or range of

locations) and enumerate every possible value that that location could be. Of course,

the effort required by this approach will be determined by the nature of the data type

at the location in question, since the data type will determine the number of values

that will need to be enumerated - i.e. if the location data type is a byte, then 255

test instances will be required. If it is a 32 bit double word, then considerably more

test instances would be required.

6.3 Random Data Mutation

For many people, random mutation is the definitive mode for fuzzing: random mu-

tation is applied to well-formed source data to produce “semi-valid” test data with

a high degree of structure, coupled with specific regions of randomly generated data.

Random mutation can reproduce valid static values and input structure in order to

penetrate into the application, whilst also exercising specific regions of the target

application.

However, random mutation has many limitations: one only has to recall Gode-

froid’s conditional statement to realise that random mutation is severely limited in

terms of code coverage. Further, random mutation, like all other forms of zero knowl-

edge data generation, cannot produce valid self-referring checks such as checksums or

Cyclical Redundancy Checks (CRCs).

6.4 Data Mutation Limitations

Considering data mutation as a whole, two key limitations are:
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1. The source data is not a representation of the effective input space.

2. Self-referring checks are extremely unlikely to be satisfied.

Both limitations result in reduced code coverage.

6.4.1 Source Data Inadequacy

It is unlikely that a single example of a given protocol or file format will exercise all

possible functionality. Consider an application that handles .jpg image files: it will

probably be capable of processing all possible aspects of the .jpg standard in order

to be considered compatible with it. Now consider a single randomly chosen .jpg

image file: it is unlikely to make use of every aspect of the .jpg standard. Indeed, the

standard has aspects which may be mutually exclusive in particular instances (e.g. an

image can be in either portrait or landscape orientation, but not both simultaneously),

but both must be supported by applications processing such media.

The difference between requirements on source data (format data in such a way as

to describe something specific, such as a visual image) and application input process-

ing (parse and process data in a manner that satisfies one or a number of protocols or

standards) mean that the usage of source data as a means to enumerate the effective

input space is limited, unless the source data gathered exercises all possible aspects

of the protocols or standards that the application is compliant with.

Hence, data mutation is not guaranteed to enumerate the input space, since the

source data will be a subset of the input space. Of course, mutation will increase the

size of the source data space with respect to the effective input space, but mutation

without intelligence is unlikely to make up the difference between the two.

In order to increase the size of the source data relative to the effective input space,

it is possible, and desirable to use more than one source file for data mutation fuzzing.

As Howard and Lipner put it:

“You should gather as many valid files from as many trusted sources as

possible, and the files should represent a broad spectrum of content. Aim

for at least 100 files of each supported file type to get reasonable coverage.

For example, if you manufacture digital photography equipment, you need

representative files from every camera and scanner you build. Another
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way to look at this is to select a broad range of files likely to give you good

code coverage.” [21, 155]

6.4.2 Self-Referring Checks

We have seen that data mutation can overcome problems such as static values and

structure in data formats and protocols by leveraging source data to penetrate into the

target application. However, self-referential checks are a problem that data mutation

cannot overcome.

Self-referential checks measure an aspect of input data and store the result with

the data. The application independently measures the same aspect and compares the

result generated with the value stored in the data. For example, consider the use of

checksums and Cyclical Redundancy Checks (CRCs); unless a fuzzer is aware of, and

can account for such checks, a very high proportion of test data will be rejected by

active checks such as these, and this will have a considerable impact on efficiency.

Furthermore, these checks are commonly deployed, and may occur at multiple

levels. For example, there is a Content Length field in the HTTP protocol, but there

are also checksums at Internet Protocol level: the IP header value is ‘protected’ by a

checksum, which, if found to be invalid, will result in the IP packet being rejected.

If one is blindly mutating data, it is likely that the first point at which checks are

performed will reject the input and the test data will not penetrate up to the higher

layers of the protocol stack or the application itself.

In his seminal work The Advantages of Block-Based Protocol Analysis for Secu-

rity Testing, Dave Aitel describes a requirement when fuzz testing network protocols

to “flatten” the IP stack, removing the inter-relationships between higher and lower

layers [4, p. 2]. By creating a framework that can dynamically re-calculate proto-

col Meta data (such as data length values or CRCs), self-referential checks can be

maintained as selected values are altered.

“Any protocol can be decomposed into length fields and data fields, but as

the tester attempts to construct their test script, they find that knowing

the length of all higher layer protocols is necessary before constructing

the lower layer data packets. Failing to do so will result in lower layer

protocols rejecting the test attempt.” [4, p. 2]
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We shall explore this ‘intelligent’, analysis-based approach to fuzzing in Chapter

8, Protocol Analysis Fuzzing.

6.5 Chapter Summary

We have explored the range of zero knowledge test data approaches, encompassing

random, brute force and data mutation.

We have seen that data mutation can solve some of the problems faced by random

and brute force testing; namely maintaining magic numbers and basic input data

structure. We have also seen that data mutation cannot solve all the problems: it

cannot overcome self-referential checks, resulting in poor test data efficiency and low

code coverage as lower layer checks fail and test data is not passed further into the

application; and, the selection of source data to mutate can limit the potential to

generate test data that will enumerate the input space.

Data mutation has a higher chance of finding vulnerabilities than random testing,

and brute force testing is simply infeasible. Data mutation also requires minimal

effort to initialise testing, compared to zero effort required for random or brute force

testing. These factors together mean that the author would always err toward data

mutation when selecting between any of the zero knowledge approaches.

Table 6.1 shows a comparison of the various zero knowledge test data generation

approaches and protocol analysis-based generation, which will be covered in Chapter

10, Protocol Analysis Fuzzing.

This concludes our two-chapter examination of the theory of zero knowledge test

data generation for fuzz testing. The next chapter examines the role and importance

of exception monitoring in fuzz testing.



72

Data Gen-

eration

Method

Finite test

data

Requires

analysis of

application

Likely to

produce

valid static

numbers

Likely to

maintain

data

structure

Likely to

produce

valid

CRCs

Random

generation

N N N N N

Brute force

generation

Y N N N N

Data mu-

tation

(random)

N N Y Y N

Data mu-

tation

(brute

force)

Y N Y Y N

Analysis-

based data

generation

Y Y Y Y Y

Table 6.1: A comparison of various zero-knowledge test

data generation approaches.



CHAPTER

SEVEN

EXCEPTION MONITORING

What do you get when you blindly fire off 50,000 malformed IMAP au-

thentication requests, one of which causes the IMAP server to crash and

never check on the status of the IMAP server until the last case? You get

nothing. [...] A fuzzer with no sense of the health of its target borders on

being entirely useless. [46, p. 472]

In a presentation entitled How I learned to stop fuzzing and find more bugs given

at Defcon in August 2007 [48], Jacob West, the Head of Security Research at Fortify

software, described an experience he had that provides insight about the importance

of target monitoring when fuzzing. West had been fuzzing a target and had found

no defects. The target host operating system was restarted, whereupon it failed to

boot because a critical system file had been overwritten as a result of fuzz testing.

However, since the target application had not raised an exception, the oracle used

had not been triggered and the defect, though triggered, had not been detected. The

defect would never have been identified were it not for the fact that a file critical for

the boot process was overwritten [48].

This example demonstrates that simply monitoring for target application excep-

tions (the standard method of monitoring employed by most fuzzers) is flawed in that

many defects may not be detected. While most of the focus within fuzzer develop-

ment has been upon the generation of test data that will trigger the manifestation of

defects, target monitoring for detection of defects may have been neglected. However,

given the choice between devoting time to developing new ways of triggering signifi-

cant flaws, or developing better methods for detecting subtler flaws, the author would
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err toward the former. Significant flaws (i.e. defects that result in application failure)

often represent significant risk to users and until it is common for production code

to ship without significant flaws, this is where the focus of security testing should

remain.

7.1 Sources of Monitoring Information

Most modern operating systems provide, by default, a range of sources of relevant in-

formation including application and operating system logs, error messages and alerts.

There are also a wealth of tools which can be used to actively monitor and report on

the state of a target application and its host operating system.

An idealistic approach to target monitoring might be to capture a snapshot of the

entire system state before and after each test instance is passed to the application.

The two states could then be compared to produce a ‘difference map’ which would

describe the effect of each test instance not only upon the target, but on the host

system.

Unfortunately, this approach is simply infeasible. To take a complete snapshot

of a nominal system might require between 4 and 8 GB of storage1. Since it is not

unusual to run thousands individual tests within a test session, this could quickly

equate to a requirement for an infeasible amount of storage. Due to limitations in

storage space and processing capacity, compromises have to be made, just as they

have to be made in other aspects of fuzz testing such as employing intelligent integer

values rather than brute force enumeration.

As a result of compromises made during test data generation, it is reasonable to

state that of the total set of all vulnerabilities v, only a subset, w of v will be triggered

by the test data, since it is generally not feasible to enumerate the entire application

input space. Unfortunately, of the subset of triggered vulnerabilities u, only a further

subset x will be detected. This is illustrated in figure 7.1.

1Based on capturing the operating system, the application and system RAM.
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Figure 7.1: Illustrating the inter-relationships between limitations in test data gener-
ation and vulnerability detection.

7.2 Liveness Detection

At the opposite end of the spectrum from storing the entire system state for every test

case instance, let us consider the minimum requirements for error detection. It would

be useful to stop testing when the target stops responding. Feedback from a simple

‘liveness’ check on the target application could be used to halt automated testing.

This would prevent test data from being passed to a non-responsive application,

potentially resulting in false negatives where test data capable of causing a defect to

manifest are errantly classed as harmless.

By testing liveness at the commencement of each test instance, we can identify

input that induces application failure. However, we will only detect failures that

cause the application (or host operating system) to become unresponsive.



76

7.3 Remote Liveness Detection

One way to determine the liveness of a remote application is to send a ‘known good’

test case instance and monitor for a valid response. Using the ‘ping’ command is an

alternative, but this would only prove that the target application’s host operating

system was responsive to pings. A response from a valid test case instance would

prove that the application itself was active. The PROTOS testing suite supports this

approach [24, p. 94], which could be termed valid-case instrumentation [26].

The output of a fuzzer employing this form of target monitoring would usually be a

log of test case instances that triggered a fault. The tester could then submit offending

test case instances to the development team. Any form of fault analysis would need

to be conducted manually, probably by attaching a debugger to the target, manually

submitting problematic test case instances to it, and observing the outcome.

7.4 Target Recovery Methods

Once a fault state has been induced and detected, the target needs to be returned to

a functional state. This provides assurance that the target application is functional

when test input is passed to it, and facilitates unsupervised, automated testing where

the fuzzer is able to continue testing once a fault state has been induced in the target.

This can be achieved via one of two methods:

1. restart the target at the commencement of each test case instance; or,

2. monitor the target, detect fault states, and restart the target when a fault state

occurs.

The former approach is simpler but means that time is wasted unnecessarily

restarting the target. This is best suited to local file fuzzing, where the applica-

tion and the fuzzer reside on the same host operating system, since monitoring the

application for exceptions and restarting it can be performed relatively quickly. This

approach is only possible when the application can be simply launched with each

test case instance and there is no need to establish a specific target state prior to

submitting input.

FileFuzz is an example of a fuzzer that employs this method (see Chapter 8, Case

Study 1 – ‘Blind’ Data Mutation File Fuzzing). The application is launched and a
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test case instance is passed to it. The application is monitored for exceptions, and

after a set duration it is terminated, re-launched with the next test case instance, and

the cycle continues.

Problems with this approach are:

• in some cases, restarting the target is insufficient: preconditions have to be

satisfied in order to invoke a required target system state prior to testing,

• it may be time-consuming to restart the target for each test instance,

• concurrent errors which occur as a result of a sequence of test case instances

will not be detected as the target state is reset at the commencement of each

test,

• if set too small, the duration setting may be insufficient to detect some errors,

if set too long, it will extend the overall test duration unnecessarily,

• if the host operating system is affected by testing, restarting the application

will not restore the default operating system state.

The second approach involves either a simple liveness check, or a more elegant

solution, where a debugger is employed to monitor the target application so that

exceptions can be intercepted, at which point information about the exception is

gathered and recorded in the form of a ‘crash report’.

This approach, termed debugger-assisted monitoring is the approach taken by

Sulley fuzzing framework and the FileFuzz file fuzzer, and many others. Such fuzzers

can usually be left to complete a fuzz testing run without human intervention, and

their output will consist of a list of crash reports (assuming software defects were

detected) of varying detail. An example of a crash report generated by Sulley can be

found in figure 11.8, Chapter 11, Case Study 2 - Protocol Fuzzing a Vulnerable Web

Server, and an example crash report generated by the FileFuzz can be found in figure

8.4, Chapter 8, Case Study 1 - Data Mutation File Fuzzing.

Other examples of fuzzers that employ this method are the Breaking Point Systems

BPS-1000 and the Mu Security Mu-4000 hardware appliance fuzzers. Both appliances

are aimed at testing network appliances, and both are able to supply power to a target

device, so that the power supply can be interrupted in order to reset the device when

a fault state is detected.
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Problems with this approach mainly arise when fault states, also termed exceptions

are not detected.

7.5 Exception Detection and Crash Reporting

Software defects actually manifest at the hardware, object code, assembly level [46, p.

474], where object code running on the Central Processing Unit triggers an exception.

“Exceptions are classified as faults, traps, or aborts depending on the way

they are reported and whether restart of the instruction which caused the

exception is supported.” [23]

As a result, exceptions and crash reports refer to events occurring at the assembly

level. In order to interpret this information and get the most form it, a tester needs

to cultivate an understanding of the operation of processors at the hardware level.

Yet, as we have seen, the sources of exceptions are usually software defects: errors

made by programmers usually working at the source code level. For example, the use

of a vulnerable function such as strcpy might result in a vulnerability where long input

strings cause an Access Violation exception being raised due to a read access violation

on EIP. An analyst that wishes to do more than simply present defect reports that

list input value / exception types pairs, will need to have an understanding of both

the source code and assembly level programming. We will explore the interpretation

of fuzzer output later in this chapter.

7.6 Automatic Event Classification

Target monitoring should be shaped to inform and assist the fuzzer output analysis

phase as much as possible. Once fuzzing has been completed, the first task of the

tester is to triage the crash reports. As part of the triage process, it is useful to group

exceptions (and the test cases that caused them) into classes.

If performed, automatic collection of crash reports offers many benefits. One of

these is that events may be automatically grouped into classes, or ‘buckets’. This

can aid the process of fuzzer output analysis, particularly if a large number of defects
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are identified. Lambert describes how the automatic ‘bucketization’ of exceptions has

been implemented at Microsoft:

“This was accomplished by creating unique bucket ids calculated from the

stack trace using both symbols and offset when the information is available.

The bucket id was used to name a folder that was created in the file system

to refer to a unique application exception. When an exception occurred,

we calculated a hash (bucket id) of the stack trace and determined if we

had already seen this exception. If so, we logged the associated details in

a sub-directory under the bucket id folder to which the exception belonged.

The sub-directory name was created from the name of the fuzzed file that

caused the exception.” [27]

The technique of automatically identifying and grouping similar exceptions (in this

case by comparing stack trace symbols and offset values) means that the number of

exceptions that the tester has to examine is drastically reduced. This is particularly

useful if, as is not uncommon, large numbers of similar exceptions occur that are

attributable to a single ‘noisy’ defect.

7.7 Analysis of Fuzzer Output

There is a range of defect types which may be induced via malformed input. Some of

these are trivial to exploit, some are only exploitable in certain conditions and some

are very unlikely to be exploitable.

The safest approach to take to assessing the exploitability of defects is to treat

any form of application failure as exploitable. This is because determining whether a

defect could be exploited is usually non-trivial, and may require more effort than rec-

tifying the defect. An attacker may have more time, motivation, information, money,

support and skill than the person who must decide if a defect is exploitable. Further-

more, information security is a rapidly evolving field. New exploitation techniques

emerge changing the way certain defects are viewed. This means that a seemingly

harmless defect today can become a critical security vulnerability tomorrow.

It is unlikely that all of the currently possible exploitation techniques are in the

public realm. The highly valuable nature of undisclosed vulnerabilities means that
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there may be undisclosed exploitation techniques which could render a seemingly

innocuous defect a significant threat.

Unfortunately, where there are many defects to be managed, a pragmatic approach

must be adopted, where defects are ranked in terms of their potential severity in order

to determine where scarce resources can be deployed.

Howard and Lipner present a table which outlines the approach taken by Microsoft
specifically to ranking errors detected via fuzzing [21]. Analysis of fuzzer output is
conducted at the assembly level.

Category Errors

Must Fix
Write Access Violation
Read Access Violation on extended instruction
pointer (EIP) register

Must Investigate (Fix is prob-
ably needed.)

Large memory allocations
Integer Overflow
Custom Exceptions
Other system-level exceptions that could lead to an
exploitable crash
Read Access Violation using a REP (repeat string
operation) instruction where ECX is large (on Intel
CPUs)
Read Access Violation using a MOV (Move) where
ESI, EDI, and ECX registers are later used in a REP
instruction (on Intel CPUs)

Security issues unlikely (Inves-
tigate and resolve as a poten-
tial reliability issue according
to your own triage process.)

Other Read Access Violations not covered by other
code areas
Stack Overflow exception (This is stack-space exhaus-
tion, not a stack-based buffer overrun.)
Divide By Zero
Null dereference

Table 7.1: Ranking errors discovered using fuzz testing [21].

Table 7.1 shows the approach taken by Microsoft to rank errors discovered via

fuzzing. It is clear from this table that the bulk of faults that are discovered via

fuzzing are read or write access violations. Let us briefly examine the two most

significant errors.



81

7.8 Write Access Violations

Write access violations exceptions are raised when an application attempts to write

to a memory location that it is not permitted to (usually outside the process memory

space). If a defect can be exploited to raise a write access violation exception, and the

attacker exploits the defect to write to a memory location the target is permitted to

write to (usually inside the process memory space), no exception will be raised and

the attacker-controlled write operation will execute. Hence, write access violations

indicate the potential for attackers to modify data held in memory addresses that the

vulnerable application can access. Unless the destination pointer is null, it is trivial

to, for example, redirect execution flow and hence execute arbitrary code with the

security context of the application.

7.9 Read Access Violations on EIP

A read access violation on the EIP could be used to read attacker supplied data into

the Extended Instruction Pointer, redirecting execution to an attacker supplied mem-

ory location. Exploitation of this type of vulnerability is demonstrated in Chapter 9

Case Study 2 – Using Fuzzer Output to Exploit a Software Fault.

7.10 Chapter Summary

We have seen that target monitoring is critical for detecting faults triggered by test

data and also for ensuring test data is passed to a responsive target. Failures or

poor performance in either area can lead to false negatives. Target monitoring is a

critical aspect of fuzzing, yet there has not seen a great deal of development in this

area. Sutton et al. suggest that, in the future, technologies such as Dynamic Binary

Instrumentation (DBI) could be implemented to advance this area of fuzzing [46, p.

492]. We briefly explore DBI in the Outlook section of Chapter 12, Conclusions.

We have seen that ‘crash reports’ for fault reporting require understanding of

processor operation to be fully understood, and can be integrated into automatic

event classification schemes such as that applied by Microsoft. We have also shown

the approach taken by Microsoft to ranking errors discovered via fuzzing.
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The next chapter examines an advanced approach to fuzzing developed in the late

nineties, termed protocol analysis fuzzing, or, intelligent fuzzing.



CHAPTER

EIGHT

CASE STUDY 1 – ‘BLIND’ DATA MUTATION

FILE FUZZING

This chapter documents a practical ‘blind’ data mutation fuzzing exercise. The overall

objective was to test whether ‘blind’ data mutation fuzzing could be used to discover

failures in a software component without knowledge or analysis of the target or the

data it receives as input. Specifically, we tested how Rundll32.exe (a component of

the Windows XP Service Pack 2 operating system) responded to mutated forms of a

valid .cpl file. A total of 3321 different test case instances resulted in target applica-

tion failure. At least 28 of these test instances resulted in a Read Access violation on

the Extended Instruction Pointer register, which could allow an attacker to control

the flow of execution, creating the potential for local arbitrary code execution. The

nature of these high severity failures is explored in detail in Chapter 9, Case Study 2.

The target selected was Rundll32.exe, a component of the Windows XP operat-

ing system. Rundll32.exe is a command line utility program that “allows[s] you to

invoke a function exported from a DLL.” [33]. DLL is an abbreviation of the term

Dynamic Link Library. Software libraries contain code (instructions), data (values)

and/or resources (icons, cursors, fonts, e.t.c.), and are usually integrated with an

application (a process termed linking) after software compilation. DLLs are different

from standard software libraries in that they are linked dynamically at run-time.

Rather than provide stand-alone executable files, some components of the Win-

dows XP operating system are provided as DLLs. These special-case DLLs rely upon

Rundll32.exe to load and run them when they are invoked. The operating system

achieves this by associating certain file types with Rundll32.exe, such that when
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files of a certain type are invoked, it will launch Rundll32.exe and pass the file to

it as a command line argument. As a result these special-case DLLs must have a

different file extension from the normal DLL file extension (.dll).

An example of these special DLLs are .cpl files, and an example .cpl file is

Access.cpl, a component of the Windows XP operating system. Access.cpl is

launched when a user clicks on the Accessibility Options icon within Control

Panel. When invoked, via Rundll32.exe, Access.cpl presents the user with a

Graphical User Interface (GUI) for configuring input and output settings, as shown

in figure 8.1.

Figure 8.1: The Accessibility Options Graphical User Interface.

Access.cpl was used as the basis for data mutation for a number of reasons,

namely: at 68kB, it is a reasonably small file - we shall see later that there is a linear

relationship between file length and fuzz test time (and test data storage require-

ments) when brute force location fuzzing is performed, and; it was recommended as

an interesting target by the creators of FileFuzz, the fuzzer used for this exercise.
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The following equipment was used in this exercise: a personal Computer running

Windows XP Service Pack 2 Operating System Software, FileFuzz, a self-contained

‘dumb’ file mutation fuzzing application which was chosen as it is simple to use, is

automated, and contains a debugger that generates easy to understand output logs1,

and HxD, a hexadecimal file editor (hex editor), which was used to visually analyse

binary files.2

8.1 Methodology

In general, the process of data mutation file fuzzing involves taking a valid file and

altering that file in a variety of ways in order to produce a malformed file. The target

application is then used to open the malformed file and is monitored to determine if

opening the malformed file has had any effect on the target application.

Using the FileFuzz application is a two phased operation. First, the FileFuzz

Create module must be configured to generate the test data, after which it generates

and stores the test data. Once the test data creation phase is complete, the execution

phase involves first configuring and then launching the Execute module. Once this

has completed executing each of the test instances in turn, a report may be extracted

listing all of the instances where the target application failed generating an exception.

8.2 FileFuzz

FileFuzz was created in 2004 as a stand-alone application for data mutation file

fuzzing. It comprises two modules: Create, a module that creates multiple test files,

by programmatically mutating a single source file and Execute, a module which ex-

ecutes mutated files and logs any exceptions. FileFuzz has functionality for fuzzing

binary or plain text files. We will focus upon binary file fuzzing, and will make no

use of the capability to fuzz text files.

Note that FileFuzz is a deterministic fuzzer: there are no options to employ ran-

domness for fuzzing. FileFuzz is also a ‘dumb’ fuzzer in that no awareness of the

sample file format or the target host application is required.

1http://labs.idefense.com/software/fuzzing.php
2http://www.mh-nexus.de/hxd/

http://labs.idefense.com/software/fuzzing.php
http://www.mh-nexus.de/hxd/
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Figure 8.2: The FileFuzz Create module.
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Figure 8.3: The FileFuzz Execute module.



88

The FileFuzz Create Module

The inputs required by the FileFuzz Create module are:

• the path to a sample file which is to be modified;

• the path to a directory in which to save the modified files;

• the Scope and Target settings (Scope determines the location the modification

will take place.)

Ignoring FileFuzz’s text file fuzzing capabilities (which are activated by setting

the Match radio button), the Create module offers three exclusive options for binary

data fuzzing All Bytes, Range or Depth. If the All Bytes radio button is set, FileFuzz

will determine the total number of bytes in the sample file. It will then take the

settings from the Target section and apply these sequentially to every single byte in

the sample file, creating a test case file each time. This was the approach taken and

this is discussed in detail later on.

If the Range radio button is set, FileFuzz will apply the settings set in the Target

section to the range of locations set by the user, creating a test case file each time a

new value is generated. If the Depth radio button is set, FileFuzz will create 255 test

case files, where the value at the location set by the user is set to a value between

0x00 and 0xff. For example, the first test case file will have the specified location

value set to 0x00; the next will have the same location set to 0x01; the next 0x02 and

so on until the value reaches 0xff.

The FileFuzz Execute Module

The inputs required by the FileFuzz Execute module are:

• the path to a directory containing the test case files,

• the path to a target application which is to be launched with the test case files,

• any arguments which the application may be supplied with in order to launch

the test cases,
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• the Start File and Finish File values (these decide which will be the first and

last test case files to be launched and thus sets the range of test cases to be

launched),

• the Milliseconds setting sets the number of milliseconds that the target appli-

cation will be given to launch each test case before it is closed by FileFuzz.

Once launched, the Execute module will work sequentially through the specified

range of test case files, launching the target application with each file in turn, allowing

it to run for the duration set in the milliseconds field, before shutting that instance

down and launching another with the next test case.

FileFuzz includes an application called crash.exe which monitors for any excep-

tions and captures information about critical system registers whenever the target

application crashes. The output is a list of exceptions (assuming there are any) and

the values of a number of critical system registers at the time of the crash. Figure

8.4 shows an example of a crash report.

Figure 8.4: An example of a crash report

8.3 FileFuzz Configuration

8.3.1 FileFuzz Create Module Configuration

The path to a sample file which is to be modified was given as:

C:\fuzz\samples\access.cpl
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This was because the source file had been copied into a directory created to hold

source files for many audits. The path to a directory in which to save the modified

files was set to:

C:\fuzz\cpl\

A directory entitled ‘fuzz’ had already been created within the root directory of

the workstation. The subdirectory ‘cpl’ was created within the ‘fuzz’ directory, so

that other audits could also place their test data in other subdirectories in the ‘fuzz’

directory.

The Scope was set to All Bytes, since the intention was to work through every

single location of the source file, creating a new test instance each time. The Target

was set to 00 because I wanted to overwrite selected bytes with zeros. The multiplier

value ‘X’ was set to 8 because I wanted to set 8 bytes at a time to zero.

8.3.2 The Rationale for Overwriting Multiple Bytes at a

Time

The rationale for overwriting multiple bytes at a time stems from the form of fuzzing

that was undertaken: data mutation, where code is mutated at the object level,

where values are taken from the object code, passed into memory, and then passed

into registers on the target platform. In order to induce failure states, multiple values

were overwritten in order to affect multiple register locations as they were processed.

If we managed to affect a register by mutating the source file, the mutation would

have a greater effect on the register if it altered more than one byte. Ideally we would

like to alter all of the bytes of the register, since this would indicate that we have

been able to completely control that register.

By adopting this approach the data generated would fail to induce or detect other

potential bugs that would only be triggered when a single byte of a register is altered.

However, we would be more likely to detect faults using our chosen rationale, since

it would have a bigger impact on a vulnerable register and the faults detected would

be of greater significance since they represent instances where an entire register is

controllable.

The controllability of all four bytes of an entire register rather than, say, a single

byte is relevant to an attacker since controlling a single byte offers limited scope for
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exploitation. Consider that, as the result of a vulnerability, you are able to control a

register that reads data from memory. If you control only one byte of the register, you

may be able to read a small range of memory locations adjacent to the unmodified

location. If you control the entire register, you may read data from any location in

memory (dependant on any other memory access limitations).

For this reason, the multiplier value ‘X’ of the Target section of the create module

of FileFuzz defaults to a setting of four, since 32 bit registers comprise of 4 bytes. Note

that the author errantly set this value to eight in the mistaken belief that registers

on the I-86 platform comprised eight bytes. Fortunately, this mistake did not prevent

the test from identifying numerous bugs.

8.3.3 The Rationale for Overwriting Bytes with the Value

Zero

With hindsight, the author would suggest that this was a flawed decision, born of

a lack of experience. As discussed in Chapter 6, the scope of brute force testing

usually has to be limited in order to be feasible. The author decided to reduce the

scope of testing by employing brute force location selection and overwriting selected

locations to a single value. However, the default value of zero was used, which was a

poor choice: a better value would have been 0xffffffff. This is discussed further in the

Lessons Learned section at the end of this chapter.

8.3.4 FileFuzz Execute Module Configuration

The path to a directory containing the test case files was:

C:\fuzz\cpl\

The path to a target application which is to be launched with the test case files

was:

C:\fuzz\cpl\

In order to determine any arguments which the application must be supplied with

in order to launch the test cases, Windows Explorer was used as follows.
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1. By selecting Tools, then Folder options from the Windows Explorer menu,

the Folder Options window is launched.

2. Within this, by clicking on the File Types tab, a list of file extensions are

shown, mapped to file types.

3. By double-clicking on a specific extension (we were interested in the CPL ex-

tension) an Edit File Type window is launched.

4. Finally, clicking the Edit button opens an Editing action for type: window

is launched. This window shows (amongst other things) both the application

that is launched by default when a user double-clicks on the file type, and any

arguments that are passed to the application at launch.

The full name and path of the application to be executed was entered as:

C:\WINDOWS\System32\Rundll32.exe

The following arguments, taken from the Editing action for type: window,

were entered:

shell32.dll,Control RunDLL "{0}",%*

The Start File value was set to 0 and the Finish File value was set to 68608 in

order that all of the generated test instances would be tested.

The Milliseconds setting was set to 200, one tenth of the recommended value.

This was done in order to process the test cases in a reasonable time. Trial and error

with brief test runs had shown that errors were still detectable at this setting. Note

that there may have been any number of errors that were not detected.

8.4 FileFuzz Creation Phase

The above configuration was employed to systematically alter eight bytes of the sam-

ple file at every possible location. Since the file was 68 kB, this meant the creation

of 68,608 test case files. In figure 8.6, we see the first 15 bytes of the sample file

Access.cpl, when viewed using a hex editor. It is common for binary files to be rep-

resented in hexadecimal format for analysis since this permits visual interpretation



93

Figure 8.5: The XML configuration file used to configure FileFuzz to fuzz Access.cpl

of the data within the file. A binary file represented as hex values may be referred to

as a ‘hex dump’.

For brevity, we have only shown the first of many lines of hexadecimal values -

the file is 68 kB. Figure 8.6 shows a hex dump of the first file created by the fuzzer

(0.cpl). The first eight bytes (0 - 7) of the original file have been set to zero. Note

that the rest of 0.cpl (bytes 8 onwards) is an exact match of Access.cpl.

Figure 8.8 shows a hex dump of 1.cpl, the second file created by the fuzzer. Here,

bytes one to eight of the original file have been set to zero.

Finally, 8.9 shows a hex dump of 2.cpl, the third file created by the fuzzer. Here,

bytes two to nine of the original file have been set to zero.

Figure 8.6: The first 15 bytes of Access.cpl.
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Figure 8.7: The first 15 bytes of 0.cpl.

Figure 8.8: The first 15 bytes of 1.cpl.

We have shown how the first three test cases were created. FileFuzz produced

68,6068 test cases, each time advancing the 8 bytes that were overwritten to zero.

After approximately 3 hours, all of the test data had been generated.

8.5 FileFuzz Execution Phase

The settings were entered and the machine was left to complete the testing which

took approximately 4 hours.

The output of the FileFuzz Execute module was a log file listing all of the excep-

tions in the format shown in Figure 8.12.

8.6 Results Analysis

Testing was initially compromised since the fuzzing application was itself subject to

a bug described in Appendix 1.

There were a total of 3321 crash reports, all of which were of the type Access

Violation.
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Figure 8.9: The first 15 bytes of 2.cpl.

Figure 8.10: An example crash report from the log file.

Figure 8.11 shows locations where setting values to zero caused a crash, plotted

against crash report numbers (a linearly incrementing value). Crash report numbers

are represented along the x axis, and the location in Access.cpl that was modified,

causing a crash is represented along the y axis. This graph illustrates which loca-

tions of Access.cpl (when set to zero) caused Rundll32.exe to crash. Vertical plot

angles indicate regions of Access.cpl where mutation did not cause Rundll32.exe

to crash, while horizontal or inclined angles indicate regions where mutation caused

Rundll32.exe to crash.

There were a total of 28 crash reports where the value of the Extended Instruction

Pointer appeared to have been set to the value overwritten by the fuzzer, including

the one shown in figure 8.12.

These represent the most significant of the faults generated since user supplied

values (even if they take the form of the binary values of a loaded file) should never

be allowed to influence the value of EIP. This is because the EIP holds the value of

the next instruction to be executed. If this value can be controlled, then program

execution can be influenced.

The nature and exploitability of the bug is explored in detail in Chapter 9, Case

Study 2 – Using Fuzzer Output to Exploit a Software Fault.
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Figure 8.11: A graph based on crash reports from fuzz testing Rundll32.exe.

8.7 Lessons Learned

The bug discovered in the fuzzer (described in Appendix 1) raised the author’s aware-

ness of the need for independent confirmation of fuzzer output. There is always po-

tential for human error in configuring the fuzzer, just as there is always potential for

fuzzers themselves to be subject to software defects. Either way, the author would

strongly recommend analysis of fuzzer output via pre-test test runs to confirm the

fuzzer is functioning as it should.

Regarding the test configuration, the decision to set the value to overwrite bytes

to zero was a poor choice, which hampered fault detection during the results analysis

phase. Since this form of fuzzing focuses on the effect of the test data on the registers
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Figure 8.12: An example crash report from the FileFuzz log file

of the host platform, a very simplistic approach to analysis of the output data (which

takes the form of none or more crash reports) is to simply search for instances where

the value of the overwritten bytes in the mutated test instances are present in registers

at the point when the application crashes.

The reason for this focus is better understood when one sees an example crash

report.

From the crash report shown in figure 8.12 we can infer that the Extended In-

struction Pointer (EIP) register had been set to 0x00000000. We can say this because

the text ‘Exception caught at’ is followed by the address of the instruction that the

processor was attempting to execute at the time of the crash. Indeed, we may infer

that the action of attempting to execute an instruction located at memory address

0x00000000 caused the crash to occur, since:

1. It is highly unlikely that the processor would try to run an instruction located

at the address 0x00000000.

2. It is also unlikely that the process memory space would extend to memory

address 0x00000000. If a process attempts to access (i.e. to read from, or write

to) memory outside of the bounds of its virtual memory space, this will trigger

an access violation fault, causing the process to crash.

3. We also know that the mutated file contained eight bytes that had been over-

written to the value zero.

Hence, it is not unreasonable to propose that overwriting eight consecutive bytes to

zero at the location specific to this test instance, and then feeding the test instance to
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the target application caused the target application to attempt to execute instructions

located at memory address 0x00000000.

Setting the overwritten bytes to the value zero allowed the author to determine

that execution redirection was possible by searching for presence of the overwritten

value in the EIP register in the crash reports. This relied upon the fact that the EIP

very rarely has the value 0x00000000.

Setting an input to a conspicuous value and searching for that value as it propa-

gates through an application is known as tainting data.

However, it is common for other registers to have the value 0x00000000; in fact,

in the example crash report, the Extended Counter register (ECX) is set to zero.

Because this is not unusual, there is no (simple) way to determine whether this is

because the test instance has eight bytes written to zero, or if the ECX would be set

to zero anyway.

Hence, a better value to overwrite selected locations to would have been something

like 0xffffffff, since this is just as likely to cause a crash, whichever register it is passed

to, and is not particularly common in any of the registers, so would have allowed

detection of control over registers other than the EIP.



CHAPTER

NINE

CASE STUDY 2 – USING FUZZER OUTPUT

TO EXPLOIT A SOFTWARE FAULT

The overall objective of this exercise was to test the following hypothesis: by inject-

ing program instructions into a file, and then redirecting the flow of execution (by

employing a bug found via fuzzing), a process could be subverted to execute injected

code.

In order to test this hypothesis, proof-of-concept software was developed to exploit

a previously identified fault in a component of the Windows XP operating system by

redirecting program execution to run shell code injected into a file (Access.cpl)

loaded by the vulnerable component (Rundll32.exe).

The original shell code used performed a non-malicious function: the mother-

board ‘beeper’ was activated, and the non-malicious proof-of-concept code was found

to successfully exploit the vulnerability in a host running an un-patched Windows XP

Professional Service Pack 2 operating system. However, when the host operating sys-

tem was fully patched (as of February 2008) via Windows Update, the non-malicious

proof-of-concept code failed to work.

It was not clear if patching the host operating system had (a) caused the non-

malicious shell code to fail (i.e. by relocating the memory location of a function

relied upon by the non-malicious shell code), or (b) had addressed the vulnerability

by patching Rundll32.exe, for example. In order to determine whether the vulnera-

bility had been patched, a second version of the proof-of-concept code was produced,

where the non-malicious shell was replaced with an alternative shell code, which in-

cluded functionality to test the shell code in isolation and determine if the target

99
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was vulnerable (and also contained malicious functionality). Since the fully patched

Windows XP host was found to be vulnerable to the malicious shell code in isolation,

it could be used to determine if the vulnerability had been patched. The malicious

proof-of-concept code was able to exploit the vulnerability in fully patched (as of

February 2008) Windows XP Professional systems, indicating that the vulnerability

had not been patched.

Though the second proof-of-concept code contained a malicious payload (it binds

a command shell to a listening port, essentially opening the compromised host up to

remote attacks), the risk to users is low since the host process that is compromised

(Rundll32.exe) runs with the privileges of the entity that launches the modified file.

Furthermore, this is a wholly local attack, in that it requires that the modified

file is placed on the local machine. Mitigating circumstances (in this case the absence

of privilege escalation and an absence of network functionality) may mean that it is

reasonable for vendors to accept bugs rather than address them. This may seem like

a foolish or mercenary strategy to adopt, but it is important to consider that, in the

face of a multitude of security vulnerabilities the assignment of resources must be

based on the threat level of the vulnerability.

The author reported the bug to the Microsoft Security team1 and after a period

of review they agreed that the bug did not represent a threat to the user community.

See appendix 3 for the author’s communication with Microsoft.

In order to complete this case study a Personal Computer running Windows XP

Service Pack 2 operating system software and the following applications were used:

• HxD, a hexadecimal file editor (hex editor) was used to visually analyse binary

files.2

• OllyDbg 1.10: a free 32-bit assembler-level analysing debugger with a Graphical

User Interface3

• Shell code: specially crafted byte code written specifically for the Windows XP

Service Pack 2 Operating System with the function of activating the mother

board ‘beeper’. This was obtained from the milw0rm website.4

1https://www.microsoft.com/technet/security/bulletin/alertus.aspx
2http://www.mh-nexus.de/hxd/
3http://home.t-online.de/home/Ollydbg
4http://www.milw0rm.com/shellcode/1675

http://www.mh-nexus.de/hxd/
http://home.t-online.de/home/Ollydbg
http://www.milw0rm.com/shellcode/1675
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• Shell code: specially crafted byte code written specifically for the Windows

XP Service Pack 2 Operating System with the function of binding a command

shell to a listening port on the host machine. This was obtained from the

Metasploit website which features a modular payload development environment

that allows users to create customised shell codes based on requirements.5 The

payload development environment also includes a script that builds four versions

of a payload, including a Portable Executable file that will simply launch the

payload. This means that payloads can be tested in isolation from injection

vectors in order to establish that they will function on a target system.

9.1 Methodology

When a user launches Accessibility Services in the Control Panel, Rundll32.exe

receives Access.cpl as input and loads it into memory. If a specific location of

Access.cpl is modified, execution flow is redirected to the memory address of the

value held at the modified location. The approach taken to exploiting Rundll32.exe

was to insert shell code into the Access.cpl file, and redirect EIP to the shell code

using the location identified by fuzzing. This approach is illustrated in figure 9.1.

The component tasks were:

1. Obtain suitable shell code.

2. Identify a suitable location within Access.cpl where shell code could be placed

without causing the host application to crash, and without changing the length

of the file.

3. Insert the shell code into the identified area of the .cpl file by overwriting values

in the file.

4. Redirect the host application flow to the location where the shell code was to

be placed, using the location identified earlier.

5http://www.metasploit.com/shellcode/

http://www.metasploit.com/shellcode/


102

Figure 9.1: The approach taken to exploiting Rundll32.exe.

9.1.1 Obtaining the Shell Code

The first shell code was selected from a number of shell codes available at the milw0rm

website.6 Initially, a short (39 byte) non-malicious shell code written for the Windows

XP Professional Service Pack 2 operating system that caused the motherboard beeper

to sound was selected.

When this was found not to work on fully patched Windows XP Professional

Service Pack 2 operating system, a second shell code was obtained this is discussed

in more detail in the Results section below.

9.1.2 Identifying a Suitable Location for the Shell Code

After placing shell code into a what appeared to be suitable area (a large number

of zeros) located at (decimal) 40,000, or 9c40 (hexadecimal) in Access.cpl, the au-

thor naively attempted to redirect program flow to 00009C40. This was done by

6www.milw0rm.com
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overwriting four bytes commencing at memory location 1068 (decimal), or 0000042C

(hexadecimal) with the target address of 00009C40. (Note that the actual value that

was written was 40 9C 00 00 due to the ‘little-endian’ interpretation of values into

memory addresses common to Windows operating systems).

It had already been identified that an arbitrary value overwritten at locations

commencing 1068 (decimal) in Access.cpl would be copied into the EIP register

(see Chapter 8, Case Study 1 – ‘Blind’ Data Mutation File Fuzzing). Thus, the

hypothesis was that the program flow would be redirected to the address set by these

values, and that code placed at this address would be executed by the host.

This approach failed in that the motherboard beeper did not sound, indicating

that the inserted shell code had not been executed. The author was able to make use

of the debugger within FileFuzz to determine that program flow was being directed

to 00009C40. This led the author to consider whether and how the Access.cpl file

was being mapped into memory by the host application (Rundll32.exe).

A valid version of Access.cpl was launched and OllyDbg was then attached to

the process. The Memory Map window of OllyDbg was used to examine how the

data held in the .cpl file was mapped into memory when loaded by the Rundll32.exe

application as shown in figure 9.2, where Access.cpl (identified as access-t) is viewed

using the OllyDbg debugger mapped into memory into five sections: PE header, text,

data, resources and relocations segments.

Figure 9.2: OllyDbg reveals how Access.cpl is mapped into memory.
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Not only did this make it clear that Access.cpl had been mapped into five

separate sections (Portable Executable header, text, data, resources and relocations

sections), but the addresses range that Access.cpl gets mapped into is shown to

commence at 58AE0000. Further, by clicking upon any of the sections, the entire

section as mapped into memory was viewable (see figure 9.5).

The author chose to insert shell code within the code section on the basis that

this area appeared to contain the most op-codes, and it contained a large section at

the end of the segment that appeared to be unused, as is indicated by the series of

zero valued op-codes commencing at memory address 58AE6625 in figure 9.5.

The next objective was to identify where this area appeared (and if it appeared)

in the Access.cpl file. If this area could be identified in Access.cpl, then the shell

code could be inserted here, and would end up mapped into memory, where it could

be executed by redirecting EIP to it.

Mapping the relationship between object code address locations in the static

Access.cpl file and the regions of memory that the Access.cpl object code oc-

cupied was not trivial. This was not a simple linear offset relationship, since the

object code as contained in Access.cpl was mapped into five distinct regions as

shown in figure 9.2. Fortunately, there were some favourable conditions: memory

mapping appeared to be static - i.e. the Access.cpl object code was always mapped

into the same regions of memory. Additionally, the location mapping relationship

only had to be determined between the object code and the chosen code section (the

text section) as mapped into memory.

Determining the mapping relationship was achieved by opening Access.cpl in a

hex editor, and identifying any regions that appeared to contain a large number of

zeros, since one of these might be the region of zeros seen in the text section in figure

9.5.

A number of such regions were observed, and the author tainted each of these

individually by overwriting zero-ed regions with ASCII A’s and B’s in differing pat-

terns to aid their identification. In figure 9.4 Access.cpl is viewed using a hex editor,

showing a zero-ed region that has been over-written with a single ASCII ‘A’, followed

by a string of ASCII ‘B’s commencing at 00005A40.

The modified version of Access.cpl (hereafter referred to as access-tainted.cpl)

was then launched to see if overwriting the tainted values prevented the .cpl file
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Figure 9.3: The text section of Access.cpl is viewed using OllyDbg.
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Figure 9.4: A region of Access.cpl is ‘tainted’.

from launching properly. The tainted file launched, meaning that the tainted re-

gions of access-tainted.cpl did not (at least obviously) affect the host program

(Rundll32.exe) operation. OllyDbg was then launched and attached to the

access-tainted.cpl file, and the code section was observed to contain a single A

(hex 41) followed by a number of B’s (hex 42) (see figure 9.5) this meant that the

corresponding tainted region in access-tainted.cpl could be identified by searching

for the same pattern in the Access.cpl file and determining the memory location of

the fist ASCII ‘A’ value.

In figure 9.5 the text section of Access.cpl is again viewed using Ollydbg. The

tainted region of the Access.cpl file seen in figure 9.4 has now been mapped into

memory. Note the single op code of the value 41 (ASCII ‘A’), followed by a string

of op codes of the value 42 (ASCII ‘B’), commencing at memory address 58AE6642,

just as seen in figure 9.4.

By identifying the address to which a tainted region of access-tainted.cpl had

been mapped to memory, the author had identified an address to place the shell code

into Access.cpl: (hex) 00005A41, and that by redirecting EIP to the corresponding

memory-mapped address (58AE6642), the shell code could be executed.
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Figure 9.5: A tainted region of Access.cpl has been mapped into memory.
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9.1.3 Inserting Shell Code Into Access.cpl

Using a hex editor, the shell code was written over the identified region of a copy of

access-tainted.cpl, starting at (hex) address 00005A41.

Having pasted the shell code into access-tainted.cpl, the file (hereafter referred

to as access-shellcode.cpl) was launched to ensure that the shellcode insertion

did not disrupt the host program. Figure 9.6 illustrates that the shellcode could be

observed to be resident in memory commencing at the expected location: 58AE6642.

9.1.4 Redirecting Execution Flow to Execute the Shellcode

The final stage was to redirect the host application flow to the location where the

shellcode was to be placed, using the location identified earlier. By fuzzing the host

application, we learned that an arbitrary value could be placed into EIP by setting

four consecutive bytes at a specific location within Access.cpl namely (decimal)

1086.

By over-writing the values at (decimal) 1086 with the address of the first byte

of where the shellcode would be located when mapped into memory, it was intended

that the flow of execution would be diverted from the application to the shellcode.

If launching the application caused the shellcode to be run, this would prove that

the discovered vulnerability was exploitable.

Using a hex editor a copy of access-shellcode.cpl (hereafter known as access-

exploit.cpl) was modified such that starting at location 1086, four consecutive bytes

were set to 42, 66, AE, 58. The file was saved.

9.2 Results

The altered version of Access.cpl was launched. A beep sounded, (proving the

hypothesis that the injected shellcode could be run) and the program then crashed.

The author then set out to determine if a fully patched version of Windows XP

service pack 2 was similarly vulnerable.
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Figure 9.6: Shell code is inserted into the text section of Access.cpl.
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Using the Windows Update service (which can identify and apply all of the updates

required to fully patch the Windows Operating System) the workstation was fully

patched. Launching the access-shellcode.cpl an error was shown, but no beep

was audible, suggesting that some aspect of the exploit had been ‘broken’ by applying

the security patches.

There were at least two possible causes for the failure of the exploit to function:

the operation of the injection vector had been disrupted, or the operation of the

exploit payload had been disrupted. In order to establish whether the payload or the

injection vector had been addressed by the security patches, a number of alternative

shell codes were obtained from the Metasploit project website.

The shell codes obtained from the Metasploit website came in the form of a modu-

lar development kit, which meant that in addition to obtaining the byte code sequence

of a shell code, the user is also able to generate a Portable Executable file which will

launch the shellcode.

This meant that the shell codes could be tested in isolation to determine if

the fully patched operating system was susceptible to any of them. A shell code

was identified that the fully patched operating system was susceptible to, named

“win32 stage boot bind shell”. Since this shellcode was proven to work, if it was

injected via Access.cpl and successfully exploited the operating system, this would

prove that the injection vector was valid for fully patched Windows XP Operating

System. The new shellcode was inserted into Access.cpl, commencing at the same

point as the previous shellcode.

The method used to determine if the shellcode had exploited the vulnerability

was to use the netstat -an command which can reveal the status of network ports.

The literature that came with the shell code stated that it would bind an interactive

command shell to port number 8721.

Before running the modified version of Access.cpl, the netstat -an command

was used to determine the status of any ports. Figure 9.7 shows the output of the

netstat -an command prior to launching the modified version of Access.cpl: a

number of ports are in a listening state. The unusual colour scheme is due to the

author inverting the colours of the image to reduce printer ink usage.

The modified version of Access.cpl, was launched. There were no visible effects.

Like the first modified version of Access.cpl, the Accessibility GUI that should
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Figure 9.7: The netstat command is used to determine the status of network ports.

appear when a normal version of Access.cpl is launched did not appear. Unlike the

first modified version of Access.cpl, no error messages were generated. It was as

though the application had not been launched.

The netstat -an command was used again. Figure 9.8 shows the output: Port

8721 was now listening.

Task Manager was invoked to determine if Rundll32.exe was running. Figure9.9

shows the result: it was. Additionally, it could be seen that Rundll32.exe was

associated with the user name ‘tc’: the user account that was used to launch the

modified version of Access.cpl.

In order to confirm that the shellcode was running, the account was switched

from ‘tc’ (an administrator account), to ‘user99’: a restricted user account. Telnet

was launched from the command window as follows telnet 127.0.0.1 8721. The

result was a command prompt with the path of the folder from where the modified

version of Access.cpl was launched. The author was able to browse to the root

directory using the cd / command.

In order to test the privilege level of the command prompt, the author launched an

explorer window, browsed to the C:/Windows/repair directory and attempted to copy
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Figure 9.8: The netstat command is used to reveal a new service is listening on port
8721.

the security file. This operation was denied with an Access Denied message. The

author then browsed to the C:/Windows/repair directory using the command prompt

and was able to successfully copy the security file, proving the command prompt

presented by the shellcode inherited the privileges of the account that launched it.

9.3 Conclusions

The hypothesis, that the output of fuzz testing could be used as a means to develop an

exploit by combining an ‘off the shelf’ payload with a discovered injection vector (in

this case a Read Access Violation on the Extended Instruction Pointer) was confirmed.

Even though the injection vector used is of simplest type to exploit: one simply

places a payload and directs EIP to it, the author did not expect to be successful

in creating exploit code. The overall experience was disturbing: the author had no

experience in exploit development, yet the discovery of the injection vector was trivial,

and largely automated, and the ease of integration of the payload, and the potency

of the malicious payload was chilling.
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Figure 9.9: Task Manager is used to determine what processes are running.

The author has given some thought to whether this case study should be shared.

It might be argued that this information could be used to assist malicious parties

to generate malicious software. Regarding the fact that information is divulged;

specifically, the presence of injection vectors and the actual memory locations of these

vectors in Access.cpl, I would say the following: the free availability of malicious

shellcode payloads, particularly those that come with a development environment that

can generate a standalone Portable Executable file which will launch the shellcode

when double-clicked, offer as much threat as the proof of concept code created as a

part of this report. When launched this way, the security context of the shellcode is

inherited from the user that launches it, and the same is true of any file that exploits

Rundll32.exe.
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It might seem concerning that both I and Microsoft Security Response team would

play down the risks around this vulnerability, but, since resources are precious and

vulnerabilities are common, we must place risks in context. Against the backdrop of

a multitude of unpatched vulnerabilities that offer privilege escalation and/or remote

code execution, this vulnerability is minor to the point of irrelevance.



CHAPTER

TEN

PROTOCOL ANALYSIS FUZZING

“If I had eight hours to chop down a tree, I’d spend six sharpening my

axe.”

Abraham Lincoln

We have seen the benefits and limitations of zero-knowledge testing. In this chap-

ter we will examine protocol analysis fuzzing, an approach that solves many of the

problems faced by zero-knowledge testing, but requires more intelligence and effort

on the part of both the tester and the fuzzer. It also takes longer to initiate, but can

result in more efficient test data, which means test runs may be shorter and more

effective at discovering defects.

Protocol testing involves leveraging an understanding of the protocols and formats

that define data received by the target application in order to ‘intelligently’ inform test

data generation. In the authors opinion there are two key requirements for intelligent

fuzzing:

1. Protocol structure and stateful message sequencing: the ability to define a

grammar which describes legal message types and message sequencing rules.

2. Data element isolation, also termed tokenisation, the ability to decompose a

message into individual data elements and an associated capacity to mutate

and modify data elements in isolation and with reference to their type.

Together, these two features allow a fuzzer to generate test data based on the ef-

fective input space of the application. This chapter will cover these two requirements,

and how they are realised, in detail.

115
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Protocol analysis may still be thought of as ‘black box’ testing since no specific

knowledge of the inner functioning of the target is required. This approach to testing

has been termed protocol implementation testing, since the subject of such testing

is really the mechanism by which an application implements a protocol in order to

process received data: a combination of demarshaling (essentially unpacking the data

stream) and parsing (separating the received data into individual components).

Protocol testing can result in the production of efficient test data with the po-

tential to exercise a greater percentage of the target application code than that pro-

duced by zero knowledge methods. This is because it can be used to create test

data that maps to the effective input space and will penetrate deeper into application

states, past static numbers, self-referring checks, past structure requirements, and

even through many levels of protocol state via grammar based message sequencing.

However, there is a price to be paid for the benefits of protocol testing: protocol

analysis and the development of a protocol-aware fuzzer require considerably more

effort than any of the zero-knowledge approaches. In order to understand how this

works and why this approach is worth the additional effort required, we must ex-

plore the nature of protocols and how their implementation may impact on software

security.

Two key contributors to the development of intelligent fuzzing frameworks are

Dave Aitel, who developed the SPIKE fuzzing framework, and Rauli Kaksonen and

his colleagues at the University of Oulu, where the PROTOS suite of protocol imple-

mentation testing tools were developed. Both SPIKE and the PROTOS suite offer

intelligent, protocol aware fuzzer development environments which permit testers to

create fuzzers that leverage understanding of a protocol and also permit amortisation

of fuzzer development investment across multiple targets.

10.1 Protocols and Contextual Information

Protocols allow independent parties to agree on the format of information prior to its

exchange. This is important since formatting can be used to provide context, without

which, data is meaningless. Contextual information allows raw data to be interpreted

as information. The process of extracting meaning (i.e. information) from symbols

(i.e. data) is termed semantics, and a protocol may be defined by a collection of

semantic rules.
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The importance of protocols for application security testing is that the widespread

adoption of common protocols for processes such as serialization for data exchange

makes analysis of data formats possible, even when undocumented, proprietary for-

mats are used.

10.2 Formal Grammars

A formal grammar defines a finite set and sequence of symbols which are valid for a

given language, based on the symbols and their location alone. No meaning need be

inferred in order to determine whether a phrase is grammatically correct.

“For each grammar, there are generally an infinite number of linear repre-

sentations (sentences) that can be structured with it. That is, a finite-size

grammar can supply structure to an infinite number of sentences. This is

the main strength of the grammar paradigm and indeed the main source

of the importance of grammars: they summarize succinctly the structure

of an infinite number of objects of a certain class.” [18, p. 13]

The value of an awareness of a particular protocol grammar for testing is that it

may be employed to identify a grammatically correct base data construct, which can

then be mutated. This reduces the task of a fuzzer to the mutation of the (potentially

infinite) absolute input space to the mutation of the effective input space. A high level

of conformance of the test data to the target application input specification will lead

to high code coverage rates as less test data is rejected at the unmarshalling stage,

allowing it to reach and test the parser. Of course, complete conformance is not the

objective, since the test data must deviate from that ‘expected’ by the application.

Rather: a grammar capable of modelling valid data is used as the basis for mutation.

10.3 Protocol Structure and Stateful Message Se-

quencing

Kaksonen states: “For creation of effective test cases for effective fault injection the

semantics of individual messages and message exchanges should be preserved.” [25,

p. 3]. The semantics of message exchanges can be thought of as protocol state.



118

Protocols may be stateful or stateless. When testing stateless protocols, each test

case is simply injected into the process. In order to test stateful protocols, the fuzzer

must account for protocol state in order to reach ‘embedded’ states and exercise all of

the protocol functionality. An example would be Transport Control Protocol (TCP).

In order to properly test a server implementation of TCP, the fuzzer would need to

be capable of establishing the various TCP states.

Protocol state is best represented in a graphical form. Such a graph can be

“walked” by the fuzzer so that all states are enumerated. Furthermore, messages

can be fuzzed in isolation such that the validity of all other messages is maintained,

accessing ‘deep’ states in the target application and resulting in high code coverage.

In figure 10.1 we see the message sequencing format of the Trivial File Transfer

Protocol described using production rules of the Backus Nuar Form (BNF)1 context-

free grammar. The same message sequencing may also interpreted to produce a graph

(which Kaksonen terms a simulation tree) describing the TFTP protocol state. Figure

10.2 shows a simulation tree of the Trivial File Transfer Protocol (TFTP).

Kaksonen describes many different formal grammars for describing protocol state

including Backus Nuar Form, Specification and Description Language, Message Se-

quence Chart, and Tree and Tabular Combined Notation [24]. However, the method

used to define protocol message sequencing is not important, as long as it can be

done.

The Sulley fuzzing framework facilitates message sequence definition within test

sessions. An example below, taken from [46] shows the how message sequencing of

the Simple Mail Transfer Protocol (SMTP) can be defined within a test session, and

figure 10.3 provides a graphical representation of the result.

sess.connect(s get(”helo”))

sess.connect(s get(”ehlo”))

sess.connect(s get(”helo”), s get(”mail from”))

sess.connect(s get(”ehlo”), s get(”mail from”))

sess.connect(s get(”mail from”), s get(”rcpt to”))

sess.connect(s get(”rcpt to”), s get(”data”))

(The above is taken from [46].)

1“[BNF] is used to formally define the grammar of a language, so that there is no disagreement
or ambiguity as to what is allowed and what is not”[15]
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Figure 10.1: The message formats of the Trivial File Transfer Protocol using Backus
Nuar Form [24, p. 62].

We have seen how a fuzzer can be made ‘protocol-aware’ using formal grammars to

describe message sequencing. This means that a fuzzer can ‘walk’ an implementation

of a protocol through it’s various states. It also means that, once each state is reached,

the fuzzer can then apply a range of input values to that particular state. However,

we have not yet covered how we might define rules for what values to pass into the

application. This is the second key requirement for intelligent fuzzing: identification

and isolation of data elements, or tokenisation.



120

Figure 10.2: A PROTOS simulation tree for Trivial File Transfer Protocol without
error handling [24, p. 61].

10.4 Tokenisation

Up to this point we have examined protocols at the message level. Yet, messages

are composed of one or many data elements. Tokenisation, the process of breaking

down a protocol into specific data element types and identifying those types, allows

a protocol fuzzer to apply intelligent fuzz heuristics to individual data types: string

elements may be fuzzed with a string library, while byte elements may be fuzzed with

a different heuristics library. Furthermore, derived data types, once identified as such,

can be dynamically recalculated to match fuzzed raw data values, or fuzzed using an

appropriate fuzz heuristic library.

10.4.1 Meta Data and Derived Data Elements

The data that applications receive is often a combination of raw data, contextual or

Meta data and derived data.
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Figure 10.3: A graphical representation of the SMTP protocol message sequencing as
defined in a Sulley test session [46].

An Analogy

A man walks up to a stranger and says “22 A Stanmore Place Bridge

End QR7 62Y.” The stranger walks away, baffled. The man approaches

another stranger and says “Excuse me, could you give me directions to

get to Stanmore Place?” This time the stranger responds: “Certainly...”

and proceeds to provide directions.

The man actually provides less factual information in the second scenario than

in the first, yet achieves a far better result. This is due to the addition of Meta data

(in this case “could you give me directions to get to...”) which provides contextual

information for the receiving party, allowing them to attach meaning to raw data (in

this case “22 A Stanmore Place...”).
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Humans are very good at inferring context from very limited Meta data. In

human communication contextual information can take many forms such as facial

expression, body language and vocal tone. Each of these represents a separate channel

for information to be conveyed. In contrast, computers have significantly fewer sources

for inferring context, and often employ serial communications where raw data must

be multiplexed with contextual Meta data. In order for machines to communicate,

contextual information is usually pre-agreed in the form of standardised protocols.

Protocols are not only required for network data exchanges (network protocols), but

also for inter- and intra- process communication and data storage and retrieval (binary

protocols).

It’s worth noting that whenever data channels are combined, (i.e. control data is

sent with raw data) there is an associated risk of ‘channel issues’, [39, p. 8] where

an attacker can tamper with existing data in transit or creates malicious data that

abuses privileges assigned to control data. Hence, recipients of such data should

always sanitize or validate control data before acting on it.

If two parties agree on a protocol for data exchange, the Meta data that provides

the required contextual information can be pre-agreed and does not need to be sent

with the raw data. Alternatively, the protocol may specify some Meta data be sent

along with the raw data. In order to implement either approach, each instance of

raw data (which we will term an element), needs to be separated in some way from

other elements, so that elements can be gathered together, transmitted, and then

differentiated post-reception.

10.4.2 Separation of Data Elements

Separation of elements can be achieved by positional information (the serial position

of the data may be used to infer pre-agreed contextual information), or by the use of

positional markers, termed delimiters.

Positional separation of elements requires that fixed length fields are assigned to

store specific data elements, while delimiters may be used to separate variable length

fields. A positional, fixed field approach may result in data expansion unless data

elements are of uniform length, since variation of element length must be accommo-

dated in such systems by ‘padding out’ elements with null data to fit their specified

fields.
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Delimited, variable length methods mean that fields can precisely match element

sizes, but add complexity (and risk due to channelling issues) since delimiter charac-

ters must be exclusive to avoid inadvertent termination of a field.

An example of a fixed length protocol is the Internet Protocol Version 4 (IPv4) pro-

tocol, which has many fixed length fields. The Hypertext Transfer Protocol (HTTP),

on the other hand, contains many delimited, variable length fields.

There are many other factors that influence the nature of a protocol, for example:

it is very common for protocols to be aligned along 32 bit binary words in order to

optimise processing performance [46, p. 47].

Since many applications have a need to collect data (known as marshalling) and

serialize data in order to transfer it, standards for collection and transfer have been

widely adopted.

10.4.3 Serialization

The process of gathering, preparing and transmitting data objects over a serial in-

terface such as a network socket, or in preparation for storage is termed serializa-

tion. Data objects are collapsed or deflated into their component fields [1]. Data

marshalling is the process whereby objects that are to be transferred are collected,

deflated and serialized into a buffer in preparation to be transferred across the appli-

cation domain boundary and deserialized in another domain [1].

Due to the commonplace need for serialization, almost all development environ-

ments include resources to support it, such as formatter objects in C # 2005 which

convert objects for serialisation [1]. Furthermore, since many applications have a re-

quirement for serialisation, common approaches have been taken [4, p. 4]. Proprietary

implementations often employ a common transfer syntax such as Type, Length, Value

[22], in order to implement standards such as the Basic Encoding Rules (BER), and

Distinguished Encoding Rules (DER) which themselves fall under Abstract Syntax

Notation One (ASN.1).

For serialization to be interoperable across diverse operating system and processor

architectures, a degree of abstraction must be implemented. For example, different

processor architectures have different byte ordering systems. Hence, abstract trans-

fer syntaxes have been developed that can be used to describe data elements in a

platform-neutral manner [1].
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10.4.4 Parsing

“A parser breaks data into smaller elements, according to a set of rules

that describe its structure.” [2]

Parsers apply a grammatical rule set (termed production rules) to process input

data, in order to identify individual data element values and types and create specific

instances of data structures from general definitions, and populate those instances

with specific values.

“Parsing is the process of matching grammar symbols to elements in the

input data, according to the rules of the grammar. The resulting parse tree

is a mapping of grammar symbols to data elements. Each node in the tree

has a label, which is the name of a grammar symbol; and a value, which

is an element from the input data.” [2]

Parsers derive contextual information and add meaning to data, and also to some

extend validate data. Typically, information arriving at an application input bound-

ary point will be demarshalled, and then directed to a parser for analysis.

10.4.5 Demarshalling and Parsing in Context

Figure 10.4: High-level control flow of a typical networked application [46, p. 307].
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Figure 10.4 shows the high-level control flow of a typical networked application.

Sutton et al.’s description (below) and the above diagram help to place unmarshalling

and parsing in the context of a common application’s operation.

“A loop within the main thread of our example target application is await-

ing new client connections. On receiving a connection, a new thread is

spawned to process the client request, which is received through one or

more calls to recv(). The collected data is then passed through some

form of unmarshalling or processing routine. The unmarshal() routine

might be responsible for protocol decompression or decryption but does not

actually parse individual fields within the data stream. The processed data

is in turn passed to the main parsing routine parse(), which is built on

top of other routines and library calls. The parse() routine processes

the various individual fields within the data stream, taking the appropriate

requested actions before finally looping back to receive further instructions

from the client.” [46, p. 306]

Unmarshalling and parsing routines may be thought of as the point ‘where the

rubber meets the road’ in terms of application input processing. If these routines are

not designed or implemented correctly, they represent a significant risk to application

security. Both unmarshalling and parsing rely upon standardised transfer syntax

protocols such as Abstract Syntax Notation One.

10.4.6 Abstract Syntax Notation One

Abstract Syntax Notation One (ASN.1) may be defined as follows:

“[...] a formal notation used for describing data transmitted by telecom-

munications protocols, regardless of language implementation and physical

representation of these data, whatever the application, whether complex or

very simple.” 2

ASN.1 encompasses many different approaches to encoding data for transfer, one

of which is termed Basic Encoding Rules (BER).

2http://asn1.elibel.tm.fr/en/introduction/index.htm

http://asn1.elibel.tm.fr/en/introduction/index.htm


126

10.4.7 Basic Encoding Rules

As already stated, it is possible to include some Meta data with raw data. An example

of this is a very common binary format termed Type, Length, Value, which is part of

the Basic Encoding Rules. Here, two Meta data elements Type and Length precede

a raw data element: Value. The Meta data element Type is a numerical value which

corresponds to a lookup table of acceptable data types, while the Meta data element

Length is derived from the length of the raw data element, which is held in the Value

element. The Type Meta data element provides contextual data, while the Length

Meta data is derived from an attribute of the raw data element.

This example shows all three possible elements, a raw element, a contextual Meta

data element and a derived Meta data element:

02 – tag indicating INTEGER (contextual Meta data)

01 – length in octets (derived Meta data)

05 – value (raw data element)

10.4.8 Fuzzing Data Elements in Isolation

If a fuzzer is capable of data element identification and isolation, it can mutate el-

ements individually, in isolation, so ensuring a high degree of compliance with the

base protocol, and it can also apply type-awareness to fuzz elements based on their

type, using intelligently selected heuristics to reduce the test data range.

We have identified three different types of data element that an application might

expect to receive. Kaksonen defines an additional element termed an exception ele-

ment specifically for the purposes of fault injection. This term describes a malformed

element that is used to replace one of the three expected elements in order to induce

a failure state [25, p. 3]. This exception element could be a heuristic, a randomly

selected value, or a brute force range.

Let us consider the effect of mutating data elements individually, using Type

Length Value as an example:

1. Mutating Meta data type elements may cause the incorrect context to be applied

to data: e.g. a DWORD (typically a 32 bit data type) could be treated as a
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byte (an 8 bit data type), likely causing truncation. This could lead to under or

over runs, where too much or too little memory space is allocated to hold input

data. These types of potential errors indicate the need for data sanitization

checks such as buffer bounds checking.

2. Mutating raw value elements may have much the same effects as above: data

over/under runs occurring as a result of memory allocation based on incorrect

values.

3. Mutating derived length elements could lead to over or under runs. For example,

feeding problematic integer values into the Length values could cause memory

allocation arithmetic routines to corrupt due to integer overflow or signedness

issues.

All of these types of potential errors indicate the need for data sanitization checks

such as buffer bounds checking, and also the manner in which fuzzing affects parsers

more than any other element of an application. However, in order to reach the parser,

the data must ‘survive’ demarshalling processing to some degree, hence the need for

a high degree of test data compliance with the effective input space.

10.4.9 Meta Data and Memory Allocation Vulnerabilities

A good general approach to software exploitation is to identify and test the assump-

tions of designers and developers [20, p. 48]. Incidentally, this is why defining and

documenting implementation and security assumptions is a recommended activity for

designers and developers alike [21, Chapter 9].

Length values within Type Length Value encoding schemes are a prime target for

‘assumption testing’. The apparent complexity of analysis and intelligent modifica-

tion of transfer syntaxes such as Type Length Value could lead many designers and

developers to errantly trust such data.

It would be highly dangerous to perform memory allocation based on derived Meta

data elements: this is akin to trusting a client to validate data before sending it to a

server. However, developers might consider it unlikely that someone would go to the

trouble of malforming a raw element and recalculating a derived Meta data element,
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just as many have believed in the past that it is unlikely that a user might develop a

malicious client [20, 48].

For an experienced analyst, neither analysis nor modification of such protocols is

complex. Furthermore, by focussing testing on a limited region of application input

data, (in this case the relationship between Length Meta data and the raw data it is

supposed to be derived from), significantly reduces the testers workload. This is an

example of the power of intelligent fuzzing: it permits the tester to capitalize upon

an understanding of the underlying protocols and focus the test effort on applying

intelligent values on tightly defined regions.

Below is an excerpt from a vulnerability alert discovered and published by iDe-

fence, (which has already been quoted in Chapter 2, Software Vulnerabilities) which

provides a real world example of an instance where a parser errantly trusted values

from input for memory allocation.

“When parsing the TIFF directory entries for certain tags, the parser

uses untrusted values from the file to calculate the amount of memory to

allocate. By providing specially crafted values, an integer overflow occurs

in this calculation. This results in the allocation of a buffer of insufficient

size, which in turn leads to a heap overflow.” 3

Hence, intelligent fuzzing can be used to focus on a specific area of a protocol

implementation that the tester believes may be vulnerable, or it may be used to

enumerate an entire protocol specification, based on a complete definition of the

specification syntax and the tokenisation of each message.

10.4.10 Realising Fuzzer Tokenisation Via Block-Based Anal-

ysis

The SPIKE fuzzing framework, publicly released in 2002 by Dave Aitel, facilitates

tokenization via a block-based approach [4], where elements are assembled from blocks

into a ‘SPIKE’, as shown in figure 10.5.

In block-based analysis raw elements are specified using blocks. A range of blocks

cater for common data types such as bytes, words, strings, and so on. In the example

3http://labs.idefense.com/intelligence/vulnerabilities/display.php?id=593

http://labs.idefense.com/intelligence/vulnerabilities/display.php?id=593
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Figure 10.5: A basic SPIKE, taken from [4].

in figure 10.5, the size and data format (its a binary, big-endian word (16 bits)) is

defined in the first line, and the third line defines the type (s binary) and the value

held in it (in the octal values of each 4-bit nibble: 0x01, 0x02, 0x03, 0x04).

In terms of Type, Length, Value we have covered Value and Type. In SPIKE,

Derived elements are supported by block listeners to derive the required block size

value dynamically. In this way, the fuzzer could replace the default value of ‘0x01,

0x02, 0x03, 0x04’ with, for example, ‘0xFF’ the length could be recalculated.

A more detailed example of block-based analysis is provided in Chapter 9, Case

Study 2, Section 9.4.3 Analyse the Protocol, using the Sulley Fuzzing framework,

the authors of which acknowledge SPIKE’s block based analysis approach as being

superior to any other.

10.5 Chapter Summary

We have examined the nature of machine communication and the need for protocols to

provide contextual information allowing meaning to be derived from data to produce

information. We have seen that sending control and raw data along a single channel

can lead to security risks, for data recipients unless data sanitization is performed

before control data is processed.

We have identified two key requirements for intelligent fuzzing: stateful message

sequencing and tokenization. We have seen how stateful message sequencing can be

defined by a formal grammar used to ‘walk’ a protocol implementation through its

component states. We have seen how tokenisation can be used to fuzz data elements

in isolation, and based on their identified type.
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ELEVEN

CASE STUDY 3 – PROTOCOL FUZZING A

VULNERABLE WEB SERVER

This case study was devised to test whether the Sulley fuzzing framework could be

used to develop a simple HTTP fuzzer that, given a (data element-level) definition of

a small subset of the protocol (and the configuration of a suitable test environment),

would reveal defects in a web server application with known vulnerabilities. The

author chose to use a known vulnerable target as the objective of this exercise was not

to discover vulnerabilities, but to determine the effectiveness of ’intelligent’ fuzzing.

The vulnerable web server that was used is described by it’s developers as follows:

“Beyond Security’s Simple Web Server (SWS) is a web server application

created for internal testing of the beSTORM fuzzer, while working on the

HTTP 1.0 and HTTP 1.1 protocol modules. The server was built with

a large set of common security holes which allows testing of fuzzing tools

functionality and scenario coverage.” [40]

Figure 11.1 shows the Graphical User Interface (GUI) of the Simple Web Sever. A

total of 14 (known) vulnerabilities are present in the server. These can be ‘switched’

on or off, using tick-boxes in the GUI. The server also generates a log file of input

passed to it, and the most recent request/s can be viewed in real-time via the GUI.

The author reverse-engineered Simple Web Server allowing him to define which

boxes were ticked (and hence which vulnerabilities were present) by default. This was

done because the method used to ensure target recovery after a crash was to restart

the target application, and Simple Web Server launches with only eight of fourteen

130
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Figure 11.1: The Beyond Security Simple Web Server.

possible defects enabled. Note that the author could have used vmcontrol.py, (an

agent provided with Sulley for controlling VMWare) to restore the virtual machine

to a snapshot with Simple Web Server configured with all fourteen defects enabled.

However, the restore process was found to take something in the region of three to

four minutes compared to approximately ten seconds required for a restart.

In figure 11.2, the Simple Web Server binary file is shown when opened within

a hex editor. By arranging the width of the hex editor to a value of six, we have

aligned the data to 6 byte intervals. The data selected, commencing at 0x1A16 and

extending to 0x1A6F, contains 15 separate 6-byte lines, each of which correspond

to one of the 15 tick-boxes that set which defects are enabled. Observing the third

column, note that all of the lines have been set to the value 0x86, bar one (0x1A5E),

which has been set to 0x9E. By setting these values to either 0x86 or 0x9E, we can

cause tick boxes to be set or un-set, respectively, at launch. Figure 11.2 shows the

modified version of Simple Web Server, where all defects have been set to be enabled

at launch. The line where column three is set to 0x9E (0x1A5E) corresponds to the
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‘Require Authentication’ setting tick box.

Figure 11.2: Altering Simple Web Server to define which tick boxes are set by default.

The author set all of the tick-boxes save for the ‘Require Authentication’ box

since this adds an authentication layer, requiring that the user logs into the server.

As we shall see later, the fuzzer was only provided with sufficient information to fuzz

the method, the identifier and protocol version, which correspond to the Method,

Universal Resource Indicator (URI) and the Version overflow vulnerabilities in Simple

Web Server, respectively.

In order to complete this case study, a Personal Computer running Windows Vista

Operating System software and the following applications were used:
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1. VMware Server software1

2. Virtual machine running Windows XP Service Pack 2 Operating System soft-

ware

3. Sulley fuzzing framework2

4. Simple Web Server3

5. Wireshark network protocol analyser4

1, 2. The primary reason for using a virtual machine as a test platform was conve-

nience. Once a virtual machine has been configured, a snapshot can be taken which

captures the system state. The system can then be restored to the state captured by

the snapshot with a single mouse click.

3. The Sulley fuzzing framework was chosen for its advanced features, particularly

the support it provides to block-based protocol analysis.

4. Simple Web Server was developed by Beyond Security as a purposefully vul-

nerable web server specifically for fuzzer testing.

5. Wireshark is a network protocol analyser which was used to independently

monitor the output from the fuzzer before, during and after testing. It is important

to verify that fuzzer output takes the format that is expected, since a failure on the

part of the fuzzer or the tester can invalidate testing, which can result in misplaced

conclusions.

11.1 Methodology

The component tasks were:

1. Establish and configure the test environment

1http://www.vmware.com/products/server/
2http://www.fuzzing.org/2007/08/13/new-framework-release/
3http://blogs.securiteam.com/index.php/archives/995
4http://www.wireshark.org/

http://www.vmware.com/products/server/
http://www.fuzzing.org/2007/08/13/new-framework-release/
http://blogs.securiteam.com/index.php/archives/995
http://www.wireshark.org/


134

2. Analyse the target (determine the process name, and the commands required

to start and stop it)

3. Analyse the protocol (create the HTTP BASIC Sulley request)

4. Configure the fuzzer session (create the http Sulley session)

5. Configure the oracle (create netmon and procmon batch files)

6. Launch the session

7. Process the results

11.1.1 Establish and Configure the Test Environment

VMware was installed on the host operating system. Within VMware, a virtual

machine running Windows XP Service Pack 2 operating system was installed. This

was to be the test platform upon which the target application would be installed.

For clarity, the host operating system will hereafter be referred to as the host, the

virtual machine test operating system will be referred to as the guest, and the target

application will be referred to as the target.

The Sulley fuzzing framework was installed onto the host and guest systems. A

virtual network was established between the host and guest systems. The folder

on the host holding the Sulley fuzzing framework was mapped to the test system.

Sulley would be executed on the host, and the oracles procmon and netmon would be

executed via shortcuts to batch files located in the mapped folder. Batch files were

used for convenience because the arguments to netmon and procmon can be lengthy.

The Simple Web Server web server application was installed on the test system.

A browser was launched on the host and pointed at the web server on the guest to

confirm the server was running and was accessible from the host. The web server’s

default page was displayed.
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11.1.2 Analyse the Target

Analysing the target inputs was simple since the scope of testing was limited to remote

access inputs and it is trivial to determine that the server was listening to port 80.

When fuzzing an application, it is possible, likely even, that the application will

crash. In the event that the target does crash, Sulley is able to stop and start a

target process in order to resume testing without intervention. The procmon oracle

monitors the target process and issues the required commands. This requires that (a)

the target application process name is known and (b) commands to stop and start

the target are identified and tested by running them at the command line.

Task manager was used to confirm the process name was the name of the ex-

ecutable file: SimpleWebServerA.exe. From the command line, the Start command

followed by the full path and file name of the executable was found to start the target.

The taskkill command with the IM switch was found to cleanly close the application.

Although the executable did shut down cleanly from the command line without the

IM switch, it did not during testing. When the application crashed, an error dialogue

box was launched and this seemed to stall the shutdown/restart process managed by

procmon, hence the use of the IM switch.

Figure 11.3 shows an excerpt from the http session script. This excerpt shows

how the information gathered about the target was passed to procmon.

Figure 11.3: An excerpt from the http session script.

11.1.3 Analyse the Protocol

Consider a basic HTTP request for a resource that may be issued from a client to a

server, such as:
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GET /index.html HTTP/1.1

According to RFC 2616, “A request message from a client to a server includes,

within the first line of that message, the method to be applied to the resource, the

identifier of the resource, and the protocol version in use.” [12]

In our simple example, ‘GET’ is the method to be applied, ‘/index.html’ is the

identifier and ‘HTTP/1.1’ is the protocol. In order to define this protocol for the

fuzzer, it must be broken further down into data elements. Working from left to

right:

GET /index.html HTTP/1.1

1. ‘GET’ is declared as a string

2. A white space character is declared as a delimiter

3. ‘/’ is a delimiter

4. ‘index.html’ is a string

5. Another white space delimiter

6. ‘HTTP’ is a string

7. ‘/’ is a delimiter

8. ‘1’ is a string

9. ‘.’ is a delimiter

10. ‘1’ is a string

11. ‘\r\n\r\n’ is declared as type ‘static’, which instructs the fuzzer not to modify

this element. This is done as this element is required to satisfy the protocol

as defined in RFC2616, that is, if requests are not followed by ‘\r\n\r\n’ then

they will not be processed by the server.

Once a message has been separated into data elements (a process termed tokeni-

sation, since token is another term used to describe an individual data element), and

the type of each element is defined, the Sulley fuzzer framework is able to:
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1. treat each element separately, such that individual elements can be fuzzed in

isolation while the validity of the rest of the elements is maintained

2. individually fuzz elements using one of the following approaches as specified

by the tester: intelligently selected heuristics5, brute force all possible values,

randomly generated data, or maintain the specified value.

In Sulley, messages are described using blocks (Sulley’s creators credit Dave Aitel’s

block-based analysis approach to protocol dissection and definition). A block can be

assembled from multiple defined elements and could be used to describe an HTTP

GET request. Blocks can also be used to define a group of similar requests as is

shown in figure 11.4. This example, taken from [46], will programmatically generate

and fuzz GET, HEAD, POST and TRACE requests.

In figure 11.4 we see the HTTP request, which contains a single block called

HTTP BASIC, which in turn defines HTTP GET, HEAD, POST and TRACE mes-

sages. Note that the HTTP request has been separated into data elements, and each

element has been declared as a specific data type (in this case s delim, s static or

s string for delimiter, static, or string element types, respectively).

In Sulley, one or many messages are defined in blocks, of which one or many are

grouped into a request, and one or many requests are imported into a session: the

term used to describe a test run in Sulley.

11.1.4 Configure the Fuzzer Session

In Sulley a test run of multiple test instances is termed a session. Sulley is designed

such that once a session has been created and configured the entire test run can be

completed without user intervention.

Figure 11.6 shows a Sulley session titled ‘http’, which was created for this case

study. The second line from the top causes the http request to be imported, allowing

the later use of the HTTP BASIC block. The third line defines a path to a file

5The heuristics that are applied vary depending on the specified data type: strings are fuzzed
with a library of strings heuristics, delimiters are fuzzed with delimiter heuristics, and so on.



138

Figure 11.4: The completed http request, containing a single block called
HTTP BASIC, taken from [46]

(in green) where the session data can be held. By creating a file to hold session

information, a session can be paused and resumed at any time. This even allows the

test system to be de-powered (as long as the guest OS configuration is preserved upon

resumption - facilitated by restoring to a snapshot), which is useful for very long test

runs.

The next three lines define the IP address and port numbers of the target ap-

plication, and also the netmon and procmon oracles. Target IP address and port

information allows Sulley to determine what support for networking is required. In

this case, Sulley will be fuzzing HTTP, residing at the application layer. Sulley will

automatically generate the required lower layers such as establishing a Transport Con-

trol Protocol (TCP) ‘three way handshake’ at the beginning of each test instance. For

each modification of each of the HTTP elements, Sulley will invisibly generate valid
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Figure 11.5: The hierarchical relationship between sessions, requests, blocks, mes-
sages, and data elements in the Sulley fuzzing framework.

lower layer encapsulating protocols such as TCP segments, IP packets and Ethernet

frames.

Since the oracles run on the OS that is hosting the target (a virtual guest OS), not

the OS that is hosting Sulley, the fuzzer will need to communicate with the oracles

over a (in our case virtual) network. This is achieved by a proprietary protocol termed

‘pedrpc’ developed by one of the Sulley architects.

The next six lines are configuration information for the procmon oracle: these

have already been discussed. The final three lines actually trigger the fuzzing session.

The first and third lines are always present as shown. The middle line is where the

HTTP BASIC block is defined. One could call multiple blocks in the manner shown,

and Sulley would call and fuzz these as required.

11.1.5 Configure the Oracle

We have already mentioned the two oracles provided with Sulley: procmon and net-

mon. Procmon is used to monitor the target process, including:

1. detecting whether the target process is running

2. launching the target process if it’s not running
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Figure 11.6: The completed http session script, showing how a Sulley test run (termed
a session) may be configured.

3. cleanly shutting the target process down if it fails

4. capturing detailed crash reports when the application fails

Netmon is used to monitor network traffic between Sulley and the target, which

means capturing Sulley test instances in the form of packet capture (termed pcap)

files. These files capture the bi-directional network traffic exchange between Sulley

and the target, and can be viewed a network protocol analyser such as Wireshark.

In figure 11.7 Wireshark is used to view a packet capture of test case instance

number 137. Note that Sulley has replaced the resource element of the HTTP message

index.html with a long string of repeated octets that spell out DEADBEEF.

Since Sulley generates test data iteratively as required, pcap files are important

as they act as a ‘recording’ of each test case instance. A pcap file which captures

an instance where Sulley output causes the target to fail is one half of the output
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Figure 11.7: Packet capture of test case instance number 137.

of a Sulley test run. The other half is the accompanying detailed crash report as

generated by procmon.

Configuring the procmon oracle had been partially completed via the entries

placed in the http session script shown in figure 11.6. This was completed via the

creation of a batch file to run procmon with the command line options shown in figure

11.9.

The path and file name required to create a crashbin file are defined using the -c

switch. Crashbin files store the detailed crash reports which procmon generates when

the target fails a report is generated such as that seen in figure 11.8.

The log level is set to 9999 using the -l switch because the author wanted verbose

logging for troubleshooting purposes. The process name is supplied using the -p

switch. Configuring the netmon oracle meant setting the Network Interface Card

(using the -d switch) to ‘1’. The BPF filter string was set (using the -f switch) to “src

or dst port 80”, since the traffic to sniff was going to be web traffic aimed at port 80.

The batch file configuration arguments can be seen in figure 11.10



142

Figure 11.8: A detailed crash report generated by the procmon oracle for test case
137.
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Figure 11.9: The batch file created for the procmon oracle.

Figure 11.10: The batch file created for the netmon oracle.

11.1.6 Launch the Session

Launching the session simply consisted of switching to the guest operating system,

launching the Simple Web Server application on the target, running the procmon and

netmon batch file shortcuts, and finally switching back to the host operating system

and launching the session by double clicking on the http session file.

Once the session was launched, progress could be monitored by pointing a browser

to IP address 127.0.0.1:26000 on the host operating system, this is the localhost

address with port number 26000 selected, which is where Sulley’s web server is located.

11.2 Results

Based on the tokenised http request we provided for Sulley, it automatically gener-

ated 18,092 tests. Sulley completed the test run without any human intervention

taking approximately 3 hours to complete the tests. It should have taken approxi-

mately 5-10 hours as each test instance requires about 1-2 seconds to complete. The

difference appeared to be due to the fact that Sulley did not run every test case.

This might be because Sulley skips test cases when a long series of test cases result
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in a target failure. Restarting the target application consumes approximately 10 to

15 seconds, and it is not unusual for a single software defect (termed a noisy bug)

to be triggered by hundreds or thousands of sequential test cases. In this case, it

would make sense to skip test cases when such behaviour is observed. However, the

author can find no documentation to support this theory (some aspects of Sulley are

apparently undocumented and it is up to the user to discover and reverse engineer

certain nuances).

The results are presented in the form of a web page which is shown in figure 11.11.

The format of the crash synopsis logs are as follows. Each line represents a crash

- i.e. a terminal exception has been raised. Monitoring is not limited to the target

application, but extends to any linked libraries. From left to right:

• the test case number is the sequential number of the test case that triggered

the crash report,

• the crash synopsis comprises the process (or library) name that raised an excep-

tion, the memory address of the last executed current instruction at the time

of the crash,

• the specific nature of the exception,

• the number of the process thread that raised the exception,

• the general class of the exception.

• the size in bytes of the pcap file.

Sulley was able to identify 23 individual test cases that triggered a failure of the

target application, and one that caused the ntdll.dll dynamic link library to fail.

11.3 Analysis of One of the Defects

Twenty one of the discovered instances appear to be as a result of a single software

defect in the Simple Web Sever application, located at the process memory address

location 0x00403524. These defects were triggered when a rep movsd instruction

was processed. This is a string operation instruction that causes a single DWORD

(a double word: a 32 bit data unit on X86 processors) to be copied from one string

into another.
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String operations, like almost all assembler operations, generally require that spe-

cific values be passed to specific registers. Hence, rep movsd only tells us about the

general instruction: in order to understand the specifics, we will have to determine

the value of certain registers.

When performing string operations, the ESI register (the Extended Source Index)

is used to hold the value of the source offset: this is the first memory address to copy

from. The EDI register (the Extended Destination Index) is used to hold the value

of the destination offset: this is the first memory address to copy to.

Referring to figure 11.7, the pcap file from test case 137, we can see that Sulley

has fed a long string of octets that have the value DEADBEEF, making them very

recognisable when reading stack traces from crash reports.

If we then refer to figure 11.8, the crash report from test case 137, we can see that

an access violation occurred when the target attempted to write to memory address

0xbeade3e5. The context dump shows the state of the registers at the time of the

crash. Note that EDI holds the value 0xbeade3e5. We may surmise that the cause of

the crash was the presence of the value 0xbeade3e5 in the EDI register. But how did

this value get into EDI? The first four octets ‘bead’ look very similar to DEADBEEF.

Referring to the last two values in the context dump, ESP +10 and ESP + 14 are

0xbeadde2f and 0xbeaddeef. Working from left to right, if one takes the first and

the fifth octets and swaps them around, the result will be 0xdeadbeef. From this, we

may surmise that the inserted string of DEADBEEF values has overflowed a buffer,

overwriting the most significant word of the EDI register.

11.4 Conclusions

The hypothesis was proven in that the simple HTTP protocol fuzzer created using

Sulley was able to trigger and detect software defects in a known vulnerable applica-

tion based on a tokenised sample of the HTTP protocol.
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Figure 11.11: The results webpage generated by Sulley. Colours have been inverted.



CHAPTER

TWELVE

CONCLUSIONS

12.1 Key Findings

We have seen that fuzzing is a unique method for vulnerability discovery in that

it requires minimal effort, comparatively low technical ability, no access to source

code, minimal human intervention and minimal financial investment. It also produces

output that is “verifiable and provable at runtime” [48].

The low barriers to entry, in comparison to other security test methods, mean

that fuzzing should be applied within development teams internally as a matter of

course [11, Slide 21], and that it could be employed by a wider demographic such as

end users, corporations, and Small and Medium Enterprises to detect the presence

of implementation defects in software products. If such a widespread adoption of

fuzzing were to occur, it might drive the software development industry to produce

software products with fewer vulnerabilities.

However, we have also seen that it is generally infeasible to exhaustively enumerate

the application input space, and that as a result we must either try to enumerate the

effective input space rather than the absolute input space, (which, if we do this

‘blindly’ may mean we will not fully enumerate the effective input space, and if we do

this ‘intelligently’ we will have to devote effort to define a grammar to describe the

rules obeyed by input data) or be prepared to accept a high level of test inefficiency,

meaning many useless test cases are executed.

Furthermore, it is impossible to accurately measure the effectiveness of fuzzing,

147
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since the only practical metric, code coverage, only measures one ‘dimension’ of

fuzzing: the amount of (reachable) code executed; it does not measure the range

of input values fed to the target at each code region. We have also seen that target

monitoring is often less than ideal, resulting in wasted effort and false negatives as

errors are triggered by fuzzing, but are not detected [48].

The disadvantages of fuzzing mean that it may arguably offer a lower degree of

assurance than ‘white box’, source code-centric approaches such as code auditing and

dynamic structural analysis [48].

HD Moore, the man behind the Metasploit website and the month of browser

bugs1, where fuzzing was used to discover a large number of bugs has described

fuzzing as:

“[...] the process of predicting what types of programming errors may exist

in the product and the inputs that will trigger those errors. For this reason,

fuzzing is much more of an art than a science.” [46, p. xix]

This statement acknowledges the inability of zero knowledge fuzzing methods to

provide absolute input space enumeration, and hence measurably high levels of code

coverage. A better approach would be to limit the scope of testing by tuning the test

data to suit the application by predicting the error types and the input required to

trigger them. In so doing, we may accept the limitations of fuzzing and move away

from theoretical perfection (the ‘science’ of fuzzing) toward a pragmatic approach

(the ‘art’ of fuzzing) by employing an awareness of each of the relevant software and

hardware layers to identify intelligent heuristics or ‘educated guesses’.

Drawing on the benefits of fuzzing, we could employ grammars and automation to

chart the effective input space for us, or combine fuzzing with white box techniques

to apply brute force testing to small regions of code.

It might argued be that fuzzing is ideal for security researchers: it does not require

access to source code, it is not complex or demanding, it is largely automatable and

is ideal for uncovering vulnerabilities in code that has not been properly security

tested. These features combined mean that large numbers of complex applications

can be (albeit shallowly) reviewed for ‘low-’ and ‘medium-hanging fruit’ in terms

of software vulnerabilities. Fuzzing has two key advantages over all other security

1http://blog.metasploit.com/2006/07/month-of-browser-bugs.html

http://blog.metasploit.com/2006/07/month-of-browser-bugs.html
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testing approaches: the source code is not required and the volume, the scalability,

the transferability across applications is unrivalled [48], [27].

It might also be argued that fuzzing is ideal for attackers for all of the reasons

above. I would argue that fuzzing could be a force for good as long as this undoubtedly

dangerous and powerful tool is used by the right people (namely, internal development

teams, security researchers, vendors and end-users) to identify and fix software defects

so that they cannot be used for malicious purposes.

12.2 Outlook

Fuzzing has moved from being a home-grown, almost underground activity during

the 1980s to falling under the spotlight of academia (particularly, but not limited to,

the PROTOS test suite development at the University of Oulu, Finland) and hack-

ing conventions such as Black Hat, Defcon and the Chaos Communication Congress

during the mid-1990s, to moving into the commercial world during the last few years.

Sutton et. al list six different commercial offerings [46, p. 510], including Codenomi-

con2, a suite of commercial protocol testing tools based on PROTOS [46, p. 510],

and the Mu Security Mu-4000 3, a stand alone hardware appliance aimed at testing

network devices [46, p. 512].

A number of fuzzer development frameworks have now been freely released to

the public. Some examples are: SPIKE 4, Peach5, Antiparser 6, Autodafe7, Sulley8,

GPF 9, DFUZ 10. Anyone who wishes to explore fuzzing can do so using some of the

most advanced toolsets for free.

Sutton et al. suggest that the limitations of individual security testing approaches

mean that hybrid approaches (colloquially termed grey box testing) will see continued

2http://www.codenomicon.com
3http://www.musecurity.com/products/mu-4000.html
4http://www.immunitysec.com/resources-freesoftware.shtml
5http://peachfuzzer.com/
6http://antiparser.sourceforge.net/
7http://autodafe.sourceforge.net/
8http://www.fuzzing.org/2007/08/13/new-framework-release/
9http://www.vdalabs.com/tools/efs_gpf.html

10http://www.genexx.org/dfuz/

http://www.codenomicon.com
http://www.musecurity.com/products/mu-4000.html
http://www.immunitysec.com/resources-freesoftware.shtml
http://peachfuzzer.com/
http://antiparser.sourceforge.net/
http://autodafe.sourceforge.net/
http://www.fuzzing.org/2007/08/13/new-framework-release/
http://www.vdalabs.com/tools/efs_gpf.html
http://www.genexx.org/dfuz/
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development. An example is the use of fuzzing to test the output of static source

code analysis thus gaining high code coverage (a problem for fuzzing) and low false

positives (a problem for static analysis) [46, p. 515].

In a paper entitled Automated Whitebox Fuzz Testing [17], a hybrid approach

to fuzzing is presented that employs x86 instruction-level tracing and emulation to

analyse an application at run-time, trace control paths, and map the manner in which

input influences control path selection. This mapping between input and control path

flow is used to create input that will exercise different control paths. This can be used

to achieve very high code coverage.

Automatic protocol dissection offers the fuzz tester an automated means to per-

form the tokenization and message sequencing aspects of intelligent fuzzing. This

area is relatively immature and is the subject of research by a number of individuals

[46, p. 419]. If achievable, this technology would be particularly threatening to those

who employ ‘security through obscurity’ by employing closed, proprietary protocols

in the hope that the effort required to analyse them may dissuade testers and attack-

ers alike. This is also an area that, perhaps while not strictly required by determined,

experienced analysts, is particularly important for commercial products, where such

functionality would be a strong attractor for customers seeking a ‘turnkey’ solution.11

Sutton et al. provide two examples of research advances in areas adjacent to

security testing are feeding into automatic protocol dissection, namely bioinformatics

[46, p. 427] and genetic algorithms [46, p. 431]. The former is concerned with making

sense of naturally occurring sequences of data such as gene sequences, and theorems

from this field have been applied for network protocol analysis.

The PI (Protocol Informatics) framework12 written by Marshall Beddoe employs a

number of bioinformatic algorithms in order to automatically deduce field boundaries

within unknown protocols [46, p. 428].

Genetic algorithms (GA) can be applied to solving computational problems through

fitness and reproduction functions, mimicking natural selection. An example of the

use of GA in fuzzing is Sidewinder, a fuzzer that employs GA to craft input that will

cause targeted vulnerable code (such as a vulnerable function) to be executed [42].

11‘Turnkey’ solutions require no input from the user to perform their function, beyond simply
pressing a button or turning a key.

12http://packetstormsecurity.org/sniffers/PI.tgz

http://packetstormsecurity.org/sniffers/PI.tgz
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The problem is defined in the form of a requirement to traverse a call graph function

from an input node (e.g. recv()) to the target node (e.g. strcpy()) [43, Slide 11].

This appears to be a form of automated red pointing, as described in Chapter 3,

Section 3.3.2 Dynamic Structural Testing.

The area of fuzzer target monitoring is certainly ripe for development. Sutton

et al. describe Dynamic Binary Instrumentation (DBI) as being the “panacea of

error detection” [46, p. 492]. DBI appears to offer the potential to detect errors

before they cause the application to fail, speeding up the identification of the root

causes of failures. For example, DBI can be used to perform bounds checking at the

granularity of individual memory allocation instructions. This means that an overrun

can be detected and trapped at the moment the first byte is overwritten, rather than

when the application subsequently fails due to a read or write operation triggering

an access violation [46, p. 492].

I foresee the development of fuzzing spreading in two directions: leading edge

research will drive deeper application inspection through areas such as enhanced

code coverage via directed execution and the application of advanced algorithms. At

the same time, commercial fuzzer product vendors will drive development toward

increasingly automated, transparent ‘turnkey’ solutions.

12.3 Progress Against Stated Objectives

The influence of fuzzing on the information security community has been covered in

chapter 1. I would argue that fuzzing has not directly influenced the development

community at this time. Most information security professionals have at least heard

of fuzzing; most developers have not. Fuzzing has assisted attackers and security re-

searchers alike to identify security vulnerabilities in software products, and has likely

increased the number and frequency of vulnerability reports. This, in turn, may have

increased some software vendors’ awareness of the need for security testing through-

out the development lifecycle, which, in turn may impact upon software developers.

Until software security testing becomes as commonplace and accepted as, say unit

testing, developers, vendors and customers will continue to be exposed to software

vulnerabilities.

We have briefly covered the fact that there is little overlap between Common

Criteria-based software evaluations and fuzzing. We have placed fuzzing within the
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range of software security testing methods, and compared it against these alternative

approaches.

We have presented a general model of a fuzzer, and explored some of the differ-

ent approaches to fuzzing, examining ‘dumb’ and ‘intelligent’ fuzzers, and exploring

network-level fuzzing and file-level fuzzing. We have charted the evolution of fuzzing

and examined some of the problems that have had to be solved in order for the field

of fuzzing to advance.

In addition to presenting the theory behind fuzzing, we have documented practical

vulnerability discovery with two very different fuzzers We have provided a practical

example of how the output of fuzz testing could be used to develop ‘proof-of-concept’

code to assess and demonstrate the nature of a vulnerability, or to produce malicious

software designed to exploit a discovered vulnerability.

Although we have explored the use of two different types of fuzzer, we have

not compared two or more fuzzers in a side-by-side comparison. Charlie Miller

has conducted a like-for-like comparison of ‘dumb’ mutation-based and ‘intelligent’

generation-based fuzzing, and concluded that intelligent fuzzing found more defects

in less time, even though it took longer to initiate testing [35]. Jacob West has

conducted a similar study comparing fuzzing with source code analysis [48].

We have not been able to properly examine what metrics may be used to compare

fuzzers. This is mainly because fuzzing cannot currently be measured. We have iden-

tified and discussed code coverage and code path tracing as being the only currently

available fuzzer tracking metric, and we have highlighted its failings as a metric for

assessing the completeness of testing.

We have covered the evolution of fuzzing from its almost accidental ‘discovery’ in

the late ’80s through to the current period of transition from underground develop-

ment and academic research to commercial product.

Table 12.1 provides a summary of progress against objectives defined at the outset

of the project.
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Objective Comment
Comment on the influence of fuzzing on
the information security and software de-
velopment communities.

We have covered the positive influence of
testing in Chapter 1.

Compare fuzzing with other forms of soft-
ware security assurance - i.e. Common
Criteria evaluations.

We have compared fuzzing with Common
Criteria evaluation in Chapter 1, and with
other security testing approaches in Chap-
ter 3.

Briefly explain where fuzzers fit within the
field of application security testing: i.e.
who might use them, why they are used,
and what value they offer the Informa-
tion Security industry, software develop-
ers, end-users, and attackers.

We have placed fuzzing within the context
of various security testing approaches in
Chapter 3.

Describe the nature, types and associ-
ated methodologies of the various differ-
ent classes of fuzzers.

Identify some of the limitations of, and
problems with, fuzzing.

We have identified problems and limita-
tions with random, brute force and blind
data mutation in Chapters 5, 6 and 8, we
have discussed the limitations of exception
monitoring in Chapters 7, 8 and 11, and we
have covered problems with protocol fuzz
testing in Chapters 10 and 11.

Examine the use of fuzzing tools for dis-
covering vulnerabilities in applications.

We have examined the practical discovery
of vulnerabilities in Chapters 8 and 11.

Examine how the output of a fuzzing tool
might be used to develop software security
exploits (case study);

We have examined how fuzzer output
might be employed for exploit develop-
ment in Chapter 9.

Compare some of the available fuzzing
tools and approaches available possibly
using two or more types of fuzzer against a
single target application with known vul-
nerabilities.

We have not completed this objective,
though we have been able to explore ‘blind’
data mutation fuzzing and ‘intelligent’
protocol fuzzing in Case studies 1 and 3.

Examine what metrics may be used to
compare fuzzers.

We have not completed this objective,
though we have explored the primary met-
ric: code coverage in a number of chapters.

Examine the evolution of fuzzing tools,
comment on the state of the art and the
outlook for fuzzing.

We have examined the evolution of fuzzing
tools from the earliest examples (starting
in Chapter 4) through to the state of the
art (Chapters 10 and 11), and we have ex-
plored the outlook in this chapter.

Table 12.1: Summary of progress against objectives.
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APPENDIX 1 – A DESCRIPTION OF A FAULT

IN THE FILEFUZZ APPLICATION

A.1 Description of Bug

There were two areas where the bug manifested:

1. An error that went something along the lines of:

“Count 1: The output char buffer is too small to contain the decoded

characters, encoding ‘Unicode (UTF-8)’ fallback

‘System.Text.DecoderReplacementFallback”’

This error is described at a number of websites. 1, 2

2. Test files generated were all zeros after the point where the exception occurred,

usually less than 10 bytes into reading the target file.

A.2 Cause of the Bug

This was apparently due to a problem with a component of FileFuzz called Read.cs

which used a problematic function called peekchar. Peekchar appeared to be throw-

ing an exception on non-legal UTF8 values while checking for the End Of File and

1http://forums.microsoft.com/MSDN/ShowPost.aspx?PostID=127647&SiteID=1
2http://www.msdner.com/dev-archive/193/12-44-1939995.shtm
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this stalled the read-in of the target file. One theory is that the .Net framework

was updated post development of the application in such a way as to interfere with

peekchar’s operation.

A.3 Addressing the Bug

FileFuzz is open source, in the sense that the developer (Michael Sutton) provides all

of the source code and project files required to modify the application. This meant

that the author was able to fix the bug by editing Read.cs, replacing the code shown

in figure A.1 with that of figure A.2 and then, of course, rebuilding the application

using Microsoft Visual Studio. The following region of Read.cs appears to be the

source of the problem:

Figure A.1: The problematic region of Read.cs

Note that all that is changed is the line where peekchar is called.

Figure A.2: The modified region of Read.cs
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APPENDIX 2 – THE SULLEY FUZZING

FRAMEWORK LIBRARY OF FUZZ STRINGS

As Sutton, et al. put it: “A heuristic is nothing more than an a fancy way of

saying ‘educated guessing.’” [46, p. 81]. Yet, heuristics are a pragmatic solution

to the problem that exhaustive testing is not possible. If we can’t submit every

possible value to a vulnerable function, then let us select a handful of particularly

challenging values and submit those instead. However, a requirement for an educated

guess is some contextual information, and for our purposes this will consist of an

understanding of the reasons why some forms of input are particularly problematic.

What follows is an analysis of the library of heuristics employed to fuzz string ele-

ments provided with the Sulley fuzzing framework. Excerpts have been taken from the

source code for the sulley.primitives module, specifically the string (base primitive)

class. This library has been largely based upon the extensive library included in the

SPIKE Fuzzer Creation Kit Version 2.9 [3], and an examination of the SPIKE source

code, particularly comments within it, has been used to shed light on some of the

lines in the Sulley source code.

Sulley contains additional heuristics libraries dedicated to fuzzing other data el-

ement types (or primitives as they are termed in Sulley) such as bytes, dwords,

delimiters, and so on.
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Figure B.1: String omission and repetition [6].

B.1 Omission and Repetition

Figure B.1 is an excerpt from the string (base primitive) class of the sulley.primitives

module [6], as are all of the figures in this Appendix. In figure B.1, line 400 omits

the original string. Lines 401, 402 and 403 repeat the original string twice, 10 and

100 times. This is aimed at buffer overflows and also possibly string expansion (see

below) attacks.

B.2 String Repetition with \xfe Terminator

Figure B.2: The \xfe terminator is appended to repeated strings [6].

In figure B.2, strings are repeated as in lines 400 to 403 in figure B.1, but are

terminated with a \xfe. This is puzzling, since the comment suggests UTF-8 encoding,

yet the value 0xfe is never used in UTF-8. However, the author did find an internet

discussion posting 1 that indicated that 0xfe is the string terminator for Type Length

Value in some implementations.

1http://discussion.forum.nokia.com/forum/showthread.php?p=408889
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B.3 A Selection of Strings Taken from SPIKE

Figure B.3: A selection of different strings taken from SPIKE [6].

In figure B.3, lines 411 and 412 contain delimiter characters followed by long

strings of A’s (intended to overflow a buffer), followed in turn by two null bytes

(in order to terminate the string correctly). The origin of the “/.:/” string pattern

appears to be the Spike.c source code. This particular string is commented: “weird

dce-rpc for the locator service, from MS pages ...” [3, Line 2,113]. The “/.../” string

is also from the same region of the spike.c source code, but is not commented. Lines

413 and 416 appear to be repeated versions of the string patterns mentioned above.

Line 414 is intended to cause directory traversal fault where the target application

is denied access to a file. The path requested is the password file in the /etc folder of

the host: a resource that should not normally be accessible. If the application cannot

gracefully handle being denied access to a file, it might fail in a vulnerable manner.

In this case, the file requested would suggest a Unix based host.

Line 415 is similar to line 414 but is aimed at a Windows-based host. Note that

in both cases, the oracle would not detect that the file in question had been accessed.

Only if a failure occurred, likely due to an access violation exception being raised,

would the oracle be made aware.
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Lines 417 and 418 are uncommented in the Spike source code.

Lines 419 and 420 generate very long (5000 character) strings of delimiters possibly

aimed at triggering string expansion faults.

Lines 421, 422 and 423 may be related to shell escape attacks (also known as

command injection), based on comments in the Spike.c source code, where these line

originate from.

Lines 424 to 427 are all forms of null terminators: special characters that are used

to indicate the end of a character string. The standard null termination character is

“%00”, but there are many variations. Injecting null terminators could result in an

unexpectedly short or empty string, which might trigger a buffer underflow. Where

a received input value usually has a string appended to it, an injected null character

can prevent the appended value from being attached, which might aid a directory

traversal attack where a server tries to make input values ‘safe’ by appending strings

to them [37, p. 217]. An encoded newline character (“%0a”) can have a similar

‘truncation’ effect on dynamically assembled strings.

B.4 Format Specifiers

Figure B.4: Strings aimed at triggering format string vulnerabilities [6].

In figure B.4 we see a number of different methods of delivering %n and %s format

specifiers. These have been discussed in detail in Chapter 2, Software Vulnerabilities.
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B.5 Command Injection

Figure B.5: Strings aimed at triggering command injection/shell escape defects [6].

As per the inline comment, the code in figure B.5 attempts to inject commands

using the ‘|’ (Unix pipeline) and ‘;’ command delimiter characters, and also the ‘\n’

new line control characters. As before both Windows and UNIX based platforms are

catered for. Here, notepad.exe is the windows application that is intended to execute,

while touch is the UNIX application. As before, the oracle would not detect if any of

the commands were successfully detected, only if injection led to a crash.

A possible addition to the above might be a similar line with encoded new line

characters (“%0a”).

B.6 SQL Injection

Figure B.6: Strings intended to trigger SQL injection vulnerabilities [6].

Lines 445 through 448 in figure B.6 are intended to trigger SQL errors which might

indicate whether the target is susceptible to SQL injection attacks. All of these are

taken from Spike.c.
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B.7 Binary Value Strings

Figure B.7: Tainted binary value strings [6].

In figure B.7, the longer strings resulting from lines 451 to 455 are obviously

aimed at inducing buffer overflows. The letters used spell out the words DEAD

BEEF, which is an unusual, eye catching combination. This makes it an excellent

data tainting value that is a valid binary value and is easy to spot if it propagates

into output, onto the stack or a register, or into an error message.

Line 456 is a long string of nulls. The author’s theory is that this might be treated

as a string of 1000 nulls by one aspect of an application, and as a string of zero length

by another, resulting in a buffer overflow.

In Chapter 9, Case Study 2, an instance is described where one of the above

‘deadbeef’ strings causes a vulnerable application to crash and aids the analysis phase.

B.8 Miscellaneous Strings

Figure B.8: Strings intended for command truncation and string expansion [6].
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Line 459 in figure B.8 is intended to cause command truncation attacks like those

already seen employing null characters.

Line 460 is aimed at inducing string expansion. Angle brackets are common in

HTML and it is not unusual for them to be expanded as they are decoded [46]. String

expansion bugs are more likely to induce a fault when there a large number of the

characters that are subject to expansion are passed to the application. This is because

total string expansion is a function of the number of expanding characters.

B.9 A Number of Long Strings Composed of De-

limiter Characters

In lines 464 to 493 in figure B.9, a number of special characters (and two-character

combinations) are defined. Each of these will be used to generate a sequence of long

strings.

The hexadecimal values 0xFE and 0xFF expand to four characters under UTF16

[46, p. 85]. By replacing a string with a large number of these unusual characters2,

the aim is to trigger stack or heap overruns as a string is expanded in an unforeseen

manner. String expansion faults may only be triggered when large numbers of special

characters are passed to an application. Since such faults are only likely to be triggered

by actively malicious input, they are less likely to be trapped by standard (i.e. non

security-related) testing methodologies.

B.10 Long Strings with Mid-Point Inserted Nulls

The code shown in figure B.10 might be aimed at triggering buffer over or underflows

where buffer length arithmetic might be upset by the mid-point null bytes.
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Figure B.9: Strings composed of delimiter characters [6].

B.11 String Length Definition Routine

In figure B.11, lines 537 to 549 cause a sequence of long strings to be generated which

are comprised of the special characters defined in lines 464 to 493. Note the ‘fence

post’ values: 128, 256, 1024, 2048 and so on, and also note the ‘+1’ and ‘-1’ values:

e.g. 255 and 257.

A special class of buffer overflow termed an ‘off-by-one’ error occurs when bounds

2In fact, there are many such ‘unusual’ characters, in that delimiter characters may be treated
differently, (i.e. expand when decoded or translated) to alpha-numeric characters.
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Figure B.10: Strings of ‘B’s with inserted null bytes [6].

Figure B.11: Long strings of varying problematic lengths [6].

checking is applied to prevent buffer overflows, but the bounds checking fails to ac-

count for the fact that arrays start at zero, not one, or that strings have null termi-

nators. The result may be an exploitable buffer overflow vulnerability where only a

single byte of an adjacent logical object may be overwritten.

B.12 User Expansion Routine

Here, in figure B.12, a simple means to extend the string fuzzing library is provided:

the tester simply creates a file ‘.fuzz strings’ inside which user generated fuzz strings

can be placed.
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Figure B.12: User expansion of the Sulley string fuzz library [6].
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APPENDIX 3 – COMMUNICATION WITH

MICROSOFT SECURITY RESPONSE CENTRE

—–Original Message—–

From: Clarke TP

Sent: Sunday, March 02, 2008 3:02 AM

To: Microsoft Security Response Centre

Subject: Possible Bug Report

Hi,

Please find below a bug report relating to rundll32.exe and access.cpl. I believe

that this not a major bug, but I thought I’d report it since it seems like the correct

thing to do.

I am a believer in responsible disclosure and have not disclosed the details of this

bug to anyone, but I do plan to discuss this matter with my project supervisor - I am

writing a thesis around fuzzing and I would like to use this as case study material.

This is why I have submitted supporting information in the form of two (draft) case

studies - see Bug Report.pdf.

It is my hope that you will find this to be a non-bug or of little relevance. Please

advise me as to whether the details of this bug can be shared or discussed?
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If you require any further information, I will be happy to assist.

Regards,

Toby Clarke

Type of issue (buffer overflow, SQL injection, cross-site scripting, etc.)

By overwriting four bytes commencing at location (decimal) 1068 of access.cpl,

the value of the four overwritten bytes will be passed to EIP, meaning that an attacker

can redirect program flow. It is also possible to overwrite regions of access.cpl with

shellcode, and this shellcode is mapped into memory when access.cpl is launched by

rundll32.exe.

Combining the two factors above we have a local only arbitrary code execution

without privilege escalation.

Product and version that contains the bug

Windows XP Professional SP 2, fully patched as of February 08 More specifically

access.cpl and rundll32.exe

Service packs, security updates, or other updates for the product you have installed

- test machine was fully patched via windows update as of February 08

Any special configuration required to reproduce the issue

- None

Step-by-step instructions to reproduce the issue on a fresh install
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please see Bug Report.pdf. This contains two case studies. Case study 1 details

how the error was found using FileFuzz, and case study 2 (starting on page 11) covers

how it was exploited.

Proof-of-concept or exploit code

See two attached files:

access-test6.cpl causes the motherboard beeper to sound on unpatched XP Pro-

fessional SP2 machines. The shellcode was taken from the milw0rm website.

access-test-exp-6.cpl binds a shell to a listening port (8721) on a fully patched (as

of feb 08) XP Professional SP 2 install. The shellcode was taken from the Metasploit

website. The shellcode runs under the process name of the compromised host process

- rundll32.exe. If you kill the process, the listening port will close. I think that the

shellcode will survive a reboot. Just to re-iterate: its not my shellcode, I’m just using

it to prove the injection vector is functional.

Impact of the issue, including how an attacker could exploit the issue

This is a local only attack, and rundll32.exe runs with the same privileges as the

user that launches it, so this may not have any impact at all. However, I am not

qualified to properly determine the potential impact, nor have I fully explored this

area. One concern is that access.cpl writes to the registry - this could lead to the

possibility of a file that could be sent by email to a victim which when clicked on

could alter registry settings. I have not explored this.

—–Original Message—–

From: Microsoft Security Response Centre [mailto:securemicrosoft.com]

Sent: Sun 02/03/2008 23:43

To: Clarke TP

Cc: Microsoft Security Response Centre

Subject: RE: Possible Bug Report [MSRC 8041dm]
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Thanks very much for your report. I have opened case 8041 and the case man-

ager, Dave, will be in touch when there is more information. In the meantime, we ask

you continue to respect responsible disclosure guidelines and not report this publicly

until users have an opportunity to protect themselves. You can review our bulletin

acknowledgement policy at

http://www.microsoft.com/technet/security/bulletin/policy.mspx

and our general policies and practices at

http://www.microsoft.com/technet/security/bulletin/info/msrpracs.mspx

If at any time you have questions or more information, please respond to this

message.

Warren

—–Original Message—–

From: Clarke TP

Sent: Monday, March 03, 2008 6:05 AM

To: Microsoft Security Response Centre

Subject: RE: Possible Bug Report [MSRC 8041dm]

Hi

I note that my email service has blocked me from accessing my proof of concept

files from my Sent Items folder:

Access to the following potentially unsafe attachments has been blocked: access-

test6.cpl, access-test-exp-6.cpl

If you haven’t received these files and wish to access them, let me know and I’ll

rename the extensions to .txt and try resending them.
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Regards,

Toby

—–Original Message—–

From: Microsoft Security Response Centre [mailto:securemicrosoft.com]

Sent: Wed 3/5/2008 7:52 PM

To: Clarke TP

Cc: Microsoft Security Response Centre

Subject: RE: Possible Bug Report [MSRC 8041dm]

Hi Toby,

Thank you for submitting this report to us. We have concluded our investigation

and determined that an attack can only be leveraged locally and in the context of

the logged on user.

Issue Summary

A potential issue was reported in Windows XP. By overwriting four bytes com-

mencing at location (decimal) 1068 of access.cpl, the value of the four overwritten

bytes will be passed to EIP. This infers an attacker can redirect program flow. It is

also possible to overwrite regions of access.cpl with shell code, and this shell code is

mapped into memory when access.cpl is launched by rundll32.exe. However, it was

determine that this could not lead a user to be granted access they did not already

posses.

Root Cause:

Users can execute code at their current privilege level.

The file used (access.cpl) cannot be accessed without elevated rights.

A good explanation of this issue may also be found at:

http://blogs.msdn.com/oldnewthing/archive/2006/05/08/592350.aspx

At this time we are closing this case. But if you discover any additional vectors
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to amplify this attack please report back to us and I can easily reopen this case.

Thanks,

Dave

MSRC
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