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Abstract

We contrast a standard deterministic signaling game with one where the signal-genera-
ting mechanism is stochastic. With stochastic signals a unique equilibrium emerges
that involves separation and has intuitive comparative-static properties as the degree
of signaling depends on the prior type distribution. With deterministic signals both
pooling and separating configurations occur. Laboratory data support the theory: In
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1 Introduction

Since the seminal work by Spence (1973, 1974), signalling—that is, the costly undertaking

of actions in order to either convey or hide private information from others—has become

the focus of much research within and beyond economics. In addition to the original work

by Spence focusing on education, applications and variations have been seen in industrial

organization (e.g., entry deterrence through limit pricing (Milgrom and Roberts, 1982) or

signalling of product quality (Milgrom and Roberts, 1986; Bagwell and Riordan, 1991)),

monetary policy (Backus and Driffill, 1985) and the economics of litigation (Reinganum and

Wilde, 1984), to name just a few; and outside of economics insights from signalling have

found applications in biology (e.g., Zahavi, 1975) and anthropology (e.g., Sosis and Ruffle,

2003).

Although these models greatly differ in their approaches and applications, there is one

thing they have in common. In the vast majority of signalling games, the signal-generating

mechanism is deterministic. The sender is able to perfectly control the signal, and the

receiver precisely observes the signal that is sent. The receiver has no trouble interpreting

the signal and can therefore correctly infer its cost. that is, there are no inaccuracies in

sending or receiving the signal.

Even though standard, the assumption of deterministic signalling is not always plausi-

ble. For illustrative purposes, consider a Spence-type education-signaling game in which

students signal their (unobservable) ability to potential employers through their choice of an

(observable) level of education attained, and suppose that the signal that employers observe

is a student’s grade-point-average. Problems at the signal-generating stage may occur if, for

instance, a student has a “bad day” (or a “good day,” for that matter) during an exam. In

this case, the sender is only imperfectly able to control the signal. Problems at the receiving

end may occur if the employer cannot assess whether the classes taken by the student were

particularly easy or hard. Similarly, education will also be a noisy signal for the receiver in

a scenario where education is measured by the observable number of years of school atten-

dance but where the education choice is affected by an intrinsic (dis)utility for education.

As the receiver will be unaware of the utility of education, perfect inference of the cost of
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the signal is no longer possible. In these examples, the signal-generating process is, in effect,

stochastic.

Matthews and Mirman (1983) were the first to study such a setting. They consider a

variation of the limit-pricing game introduced by Milgrom and Roberts (1982). In particular,

they suppose that the incumbent monopolist chooses an unobservable output level before

stochastic demand for the product is realized. This results in an observable but stochastic

price which only imperfectly reveals the underlying output choice and hence the type of

the incumbent. Another study, Hertzendorf (1993), adds noise to the Milgrom and Roberts

(1986) advertising model. Hertzendorf argues that the recipients of advertising signals will

only rarely be informed about the exact advertising budget of a company. Instead, people

receive a noisy signal of the budget when observing adverts.

Technically, what happens in stochastic signaling games is that any signal realization

is consistent with any action taken by any type whenever the noise perturbing the signal

has full support. Thus, signals are no longer invertible and therefore do not allow complete

information about the underlying actions of the sender, even when agents of different types

undertake different actions in equilibrium (i.e., a separating equilibrium). The observable

signals only allow incomplete inferences about the sender’s true (unobservable) type. In

other words, Bayesian updating leads to incremental information dissemination when agents

undertake distinct actions, rather than immediate and complete learning.

A main result in noisy signaling games is that often a unique separating equilibrium

emerges (Matthews and Mirman, 1983), instead of the large number of possible equilibrium

configurations that emerge without noise and that differ quantitatively and qualitatively in

deterministic games. Carlsson and Dasgupta (1997) make use of the uniqueness result of

the stochastic game to suggest an equilibrium-selection criterion for deterministic signalling

games when noise vanishes—demonstrating the conditions for a unique noise-proof equilib-

rium to exist in deterministic games.

A second significant deviation of the equilibrium in noisy signalling games compared to

deterministic versions is that the former admit a much richer comparative-statics analysis.

In particular, in deterministic games actions are generally independent of the underlying

distribution of types within a class of equilibrium configurations so that there are no mean-
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ingful comparative statics with respect to prior beliefs. In contrast, in a noisy signalling

model the unique equilibrium is sensitive to variations in the underlying distributions, which

yields smooth comparative statics with respect to prior beliefs.

In the present paper, we consider a generic sender-receiver signaling game in which we

compare the deterministic and the stochastic signal-generating mechanism. In our setting,

a sender chooses from a continuum of actions while the receiver only has two actions. We

provide theoretical analyses and experimental data for this setup.

Our theoretical analysis shows that there are many perfect Bayesian equilibrium constel-

lations in the variant without noise. After the application of equilibrium refinements, we

obtain a unique perfect Bayesian equilibrium. Depending on the prior, this unique equi-

librium is either pooling or separating. For the stochastic case, even without resorting to

refinements, we obtain a unique equilibrium which is separating. Thus, a first hypothesis

(testable in the experiments) is that for certain priors pooling behavior should occur with-

out noise as opposed to separating behavior with noise. A second implication of the noisy

signalling framework is that players should always signal, that is, always choose actions that

differ from their myopically optimal actions. This is in contrast to the deterministic case in

which one type always chooses the myopic best action and does not engage in signaling.1

Often, the impact of noise on players’ decisions is ambiguous and depends on the prior be-

liefs and players’ types. This sometimes leads to intriguing comparative-statics predictions

that can be tested experimentally. For example, it is the less frequent type who chooses a

message that is more strongly distorted away from the sender’s myopic best action.

We complement the theoretical analysis with experimental data. Experimental research

on signalling games has proven useful is assessing the relevance of the theory. For early

contributions see for example Miller and Plott (1985), Brandts and Holt (1992), Potters

and van Winden (1996) and Cooper, Garvin and Kagel (1997a, 1997b). More recent studies

include Cooper and Kagel (2005) and Kübler et al. (2008). The case for studying a noisy

signalling game seems particularly strong given the various propositions that differ markedly

from the deterministic environment.

1In a in a separating equilibrium the “low” type chooses his myopic first-best action, and in a (refined)
pooling equilibrium it is the “high” type who chooses his myopic first-best action.
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In our experiments, we study treatments with two different priors (a “high” and “low”

prior belief for the sender’s type). For each of the two priors, we implement a determin-

istic and a noisy variant. We find that, as in previous experiments, our sessions do not

completely converge to equilibrium.2 Nevertheless, our experimental results provide some

clear confirmation of the theory. Regarding the key variables of our experiment, the theory

has predictive power. In addition, the hypotheses mentioned in the previous paragraph are

supported by the data. Thus, for the high prior, there is more pooling behavior in the deter-

ministic variant; we find indeed that there is significantly more signalling with noise. While

there is no support for the hypothesis that the less frequent type signals more, in relative

terms, this prediction is confirmed. Overall, the empirical data are closer to their equilibrium

counterparts in the stochastic variant compared to the deterministic setting. We attribute

this to the fact that noise in the model is similar to imperfect play by subjects leading to a

greater congruence between equilibrium observations and subject behavior.

Our study is among the first experiments to analyze a noisy signalling game. In indepen-

dent research, de Haan, Offerman and Sloof (2008) also construct a model with noisy signals

and run experiments. Their model differs from ours in that a pooling equilibrium may exist

with noise, because the two sender types have the same first-best preferred action and the

marginal cost of signaling is strictly positive. In addition to their altered model, their main

focus also differs from ours in that they look at varying levels of noise, whereas we examine

how prior beliefs affect play in noisy and deterministic games.

2 The Model

There are two players who act in sequence. The first player to move is referred to as the

sender (of male gender), and the second player is referred to as the receiver (of female gender).

Before play begins, nature draws the sender’s type. With probability ρ0 ∈ (0, 1) the sender

is the “high” type, denoted by t. With complementary probability of 1 − ρ0 the sender is

2See Cooper and Kagel (2005) on this issue. They convincingly argue that previous experimental sig-
nalling games do not immediately converge. Without repetitions or other mechanisms facilitating learning,
equilibrium play emerges only gradually, if at all. Cooper and Kagel (2005) show that teams play dramati-
cally more strategically than individuals.
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the “low” type denoted by t (< t).

The sender observes his type and then chooses a hidden/unobservable action a that

affects his payoffs both directly and indirectly. The indirect effect comes about because

the unobservable action a generates a (possibly noisy) signal s that triggers a payoff-relevant

reaction r by the other player, the receiver. Specifically, the sender’s (type-dependent) payoff

is given by

u(a, r) =





U − c
(
a− t

)2
+ W r(s), if t = t

U − c (a− t)2 + W r(s), if t = t,

(1)

where U is a normalization parameter, r ∈ {0, 1} is the receiver’s response (based on the

observed signal s), c > 0 is a scaling parameter, and W > 0 is a windfall that the sender

obtains when r = 1.

The agent’s most preferred (myopic best) action is thus a = t, and deviations from

this (i.e., a 6= t) entail signalling. Signalling may be undertaken in order to induce the

receiver to take a response of r = 1, rather than a response of r = 0, as r = 1 results in

the agent obtaining the added windfall payment of W . The sender’s type-dependent payoff

as a function of the action is depicted in Figure 1, where, in order to observe signaling

behavior in the equilibrium of the deterministic setting, we have restricted parameters such

that t− t < 2
√

W/c.

tt

W

u

a

t /W c /t W c

Figure 1: Sender’s Payoff (with W (top) and without W (bottom)—solid lines: high type;

dashed lines: low type)

The receiver does not know the type of the sender. Her prior beliefs are captured by

ρ0. These prior beliefs are updated to ρ1 upon observing the signal s on the basis of the
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relationship between the sender’s actions a and the resulting signal s, given beliefs about

how a sender’s type t determines his action.

The receiver’s payoffs are affected by her response r ∈ {0, 1} and are given by

v(r, t) =





V + B r, if t = t

V + B (1− r), if t = t,

(2)

where V is some base-utility and B > 0 is a bonus that increases the weight of the decision

variable r on the inference that the receiver has drawn about the agent’s type. Given

posterior belief ρ1(s), the receiver chooses r ∈ {0, 1} in order to maximize

Ev(r) = V + B [ρ1r + (1− ρ1)(1− r)] . (3)

Hence, the receiver responds with r = 0 whenever ρ1 ≤ 1/2, and chooses the response r = 1

otherwise.

We analyze the game by postulating a switching strategy. That is, the receiver’s response

is determined by a critical threshold value of the signal s̃ for which

r =





1 if s ≥ s̃

0 if s < s̃.

(4)

Using a switching point makes sense if the receiver thinks facing the higher type is more

likely as the signal increases. This indeed occurs in the unique equilibrium of the noisy

game, when noise has the monotone-likelihood-ratio property. For the deterministic game,

a switching strategy is a plausible assumption although the game can be studied without

switching strategies, which changes the results only marginally (as discussed below).

It is worth mentioning at this point that the receiver’s payoff is strictly increasing in

properly identifying the sender’s type. That is, the receiver obtains B whenever she correctly

identifies the sender’s type. This is in contrast to many signalling games in which one

response gives a constant payoff independent of the sender’s type (e.g., not hiring the worker

in Spence’s model leads to a reservation payoff that is independent of the true type of the

job applicant). Our setup corresponds to a scenario where a manager has to assign a worker

to specific tasks within the firm (one requiring higher skills and therefore yielding greater
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compensation), and where the worker’s subsequent performance correctly reveals his or her

type in either case and thus may serve as a basis for the payment of the manager.

In summary, the sequence of events is:

1. after nature chooses the sender’s hidden type t ∈ {t, t} with Pr
(
t = t

)
= ρ0, the sender

chooses an unobservable action, denoted by a for t, and a for t;

2. the unobservable action a generates the observable signal s, which the receiver uses to

update her beliefs about the sender’s type upon which she chooses a response r ∈ {0, 1};

3. both players’ payoffs are realized according to (1) and (2).

The relationship between the sender’s action a and the observed signal s depends on

whether the signal-generating technology is deterministic or noisy. We analyze the two

distinct environments in turn, concentrating on perfect Bayesian equilibrium solutions. In

the deterministic setting the set of solutions is further refined, whereas in the noisy setting

the PBE is unique and therefore does not require further refinement arguments.

2.1 Equilibrium with Deterministic Signals

In deterministic models the signal allows a perfect inference about the actions that were

taken (i.e., the signal-generating mechanism is invertible). Indeed, this is informationally

equivalent to a setting in which the action itself is observable. Thus, we consider them to

be identical,

s ≡ a. (5)

Restricting attention to pure-strategy equilibrium configurations, the action taken by the

sender is either type-dependent and distinct for the two types (a separating equilibrium), or

is independent of his type (a pooling equilibrium).

Separating Configurations. In a separating equilibrium the receiver infers the sender’s

type: the low type faces the unfavorable response of r = 0, whereas the high type achieves the

favorable response of r = 1. As t faces the unfavorable response he chooses his myopic first

best action, i.e., a∗ = t, since any other action yields a lower payoff when his type is revealed.
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(See Figure 1 for illustration.) Incentive compatibility for the low type requires that he does

not find it advantageous to trigger the favorable response of r = 1 by choosing the high type’s

equilibrium action. This implies that a∗ /∈
[
t−

√
W/c, t +

√
W/c

]
. Moreover, individual

rationality for the high type dictates that he does not prefer to accept the unfavorable

response r = 0 over taking the equilibrium action in order to obtain the favorable response of

r = 1. That is, a∗ ∈
[
t−

√
W/c, t +

√
W/c

]
. Taking these considerations together yields a

continuum of separating equilibrium constellations a∗ = t and a∗ ∈
[
t +

√
W/c, t +

√
W/c

]
,

with switching point s̃∗ = a∗.3

Using Cho and Kreps’ (1987) intuitive criterion, any separating equilibrium with s̃∗ >

t +
√

W/c can be upset. Specifically, suppose s̃∗ = a∗ > t +
√

W/c and consider an out-

of-equilibrium action a ∈
[
t +

√
W/c, s̃∗

)
. Such an action is dominated for t. Even if the

receiver responded with r = 1 to such an action, t would still be strictly better off choosing

a = t and getting the r = 0 response. Thus, the receiver should believe ρ1 = 1 after such

a deviation and then t can profitably deviate to a′ = t +
√

W/c. This leaves a unique

separating equilibrium, the least-cost separating equilibrium, with a∗ = t, a∗ = t +
√

W/c

and s̃∗ = a∗.

Pooling Configurations. Note first that when ρ0 < 1/2 there cannot be a pooling equilib-

rium. If types pool their actions with ρ0 < 1/2, the receiver chooses the unfavorable response

of r = 0. But then both types are no worse off by choosing their myopic best actions, which

precludes them taking the same action so that a pooling equilibrium does not exist. With

ρ0 ≥ 1/2 and pooling, the receiver chooses the favorable response of r = 1, that is, both

types get W in equilibrium. Because the receiver employs a switching point, there does

not exist a pooling equilibrium with s̃∗ = a∗ = a∗ < t as t could profitably deviate to the

myopically optimal a = t and still trigger r = 1. There is a continuum of equilibrium pooling

configurations with a∗ = a∗ ∈
[
t, t +

√
W/c

]
(having assumed that t− t < 2

√
W/c).4

3Note that, because we assume a switching point, all actions a > s̃∗ = a∗ trigger r = 1. Without
switching-point strategies, these signals may induce the response r = 0. However, neither type has an
incentive to choose a > s̃∗, because this reduces the sender’s payoff without affecting the receiver. Hence,
the set of separating equilibrium actions is the same with and without a switching-point strategy.

4Analyzing the game without switching strategies, the set of equilibrium pooling configurations is larger,
namely a∗ = a∗ ∈

[
t−

√
W/c, t +

√
W/c

]
, which includes actions below the low-type’s most preferred

action. However, these additional configurations do not pass the intuitive criterion. We also note already
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The equilibrium pooling configurations are strictly Pareto-rankable with lower actions

strictly preferred by both types of sender. For that reason, the intuitive criterion does not

refine the set of equilibrium configurations. (Whenever a∗ = a∗ > t, both types would be

better off choosing an out-of-equilibrium action of a∗ = t if this triggered r = 1, thus, the

out-of-equilibrium action is not equilibrium dominated and hence configurations with a∗ > t

survive.) One can select the efficient pooling equilibrium based on the Pareto criterion

only, and, even if one rejects the Pareto criterion as ad hoc, the application of Grossman and

Perry’s (1986) perfect sequential equilibrium or Mailath et al.’s (1993) undefeated equilibrium

still yields a unique pooling equilibrium in which a∗ = a∗ = t.5

Note finally that, when ρ ≥ 1/2, the efficient pooling equilibrium with a∗ = a∗ = t

also Pareto dominates the least-cost separating equilibrium from the sender’s point of view.

Specifically, in this pooling equilibrium, t has no incentive to separate himself by choosing

some action a > t since t already gets the maximum payoff in the pooling equilibrium.

Applying the same equilibrium selection arguments as in footnote 5 leaves the efficient pool-

ing equilibrium as the unique equilibrium if ρ0 ≥ 1/2. If p < 1/2, the least-cost separating

equilibrium does survive the application of these additional refinements.

We summarize the refined equilibrium constellation for the deterministic case in Propo-

sition 1 and Table 1.

Proposition 1 (Equilibrium in Deterministic Settings) If ρ0 < 1
2
, the unique perfect

Bayesian equilibrium surviving equilibrium refinements is the least-cost separating equilibrium

with a∗ = t and a∗ = t+
√

W/c. If ρ0 ≥ 1
2
, the unique perfect Bayesian equilibrium surviving

equilibrium refinements is the pooling equilibrium with a∗ = t.

at this point that subjects of either type in the experiment only rarely choose actions a ∈ (
t, t

)
in the

deterministic framework.
5Perfect sequential equilibrium (Grossman and Perry, 1986) requires that, for each out-of-equilibrium

message, the receiver hypothesizes that the message was sent by some set of types of the sender and revises her
beliefs conditional accordingly. If precisely the set of hypothesized players best responds by choosing the out-
of-equilibrium message, the original equilibrium is upset. A similar rationale underlies Mailath et al.’s (1993)
undefeated equilibrium except that the out-of-equilibrium message must be chosen with positive weight by
some sender type in another perfect Bayesian equilibrium. To see the application of these refinements to our
game, consider a pooling equilibrium with a∗ = a∗ > t (given ρ0 > 1/2). Now assume an out-of-equilibrium
action a ∈ [t, a∗). This is profitable for both t and t whenever the response is r = 1. While the equilibrium
requires ρ1 = 0 after the deviation, the refinements requires ρ1 = ρ0 > 1/2 since the deviation is profitable
for both types provided r = 1 and both types have an incentive to deviate.
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Prior Beliefs

ρ0 < 1/2 ρ0 ≥ 1/2

Pooling — a∗ = a∗ = t

Equilibrium Type
a∗ = t

Separating
a∗ = t +

√
W/c

—

Table 1: Refined Equilibrium Configurations with Deterministic Signals

The predictions in Proposition 1 are based on the application of equilibrium refinements.

The literature on the relevance of refinements in experiments (starting with Brandts and

Holt, 1992, 1993) has not been conclusive and has not always found support for refinements.

Thus, ex ante, it appears demanding to consider the above theoretical results as bench-

marks for an experiment. Note, however, that the implications of the refinements are rather

modest. They merely give preference to the least-cost separating equilibrium over Pareto

inferior separating equilibria, and they select the Pareto efficient pooling equilibrium. The

experimental results will show that there is support for Proposition 1.

2.2 Equilibrium with Noisy Signals

Consider now the case where the signal that the receiver observes is not invertible and

therefore does not reveal the agent’s action perfectly. As indicated in the introduction such

noise may result because the sender does not have perfect control over the signal, or it may

be that the receiver cannot clearly observe the action. In either case, the receiver must use

statistical inference in order to update her beliefs about the action taken, and thus learn

about the agent’s type.

After we formalize the signal-generating mechanism, we consider the receiver’s best re-

sponse conditioned on her conjectures about the actions taken by the two types of agent. In

anticipation of this response the optimal actions of the agent is derived. The equilibrium is

found by imposing beliefs of the receiver that are consistent with the actions taken by the

sender.
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The signal-generating mechanism is given by

s ≡ a + ε, (6)

where ε is an unobservable noise term that is distributed independently of a (i.e., homoskedas-

tically) according to a normal distribution with zero-mean and standard deviation of σ, i.e.,

ε ∼ N(0, σ2), ∀a. We assume that the noise term is realized only after the sender has taken

the action a. Thus, the sender is unable to adjust his actions in light of the realization of

noise and, hence,

s ∼ N(a, σ2).

We consider first the receiver’s inference problem and best response. Let ac and ac,

with ac 6= ac, denote the receiver’s conjectures about which (unobservable) type-dependent

actions are taken. As before ρ1 denotes updated (posterior) beliefs. That is, ρ1 is the

receiver’s subjective probability-assessment that the sender is a t-type sender, conditional

upon having observed the signal s, given the conjectures ac and ac.

Then, with f(s|a) = 1
σ
√

2π
exp

(
− (s−a)2

2σ2

)
denoting the normal density of the distribution

of s with mean a, Bayes’ Rule yields:

ρ1(s|ac, ac) =
ρ0f(s|a = ac)

ρ0f(s|a = ac) + (1− ρ0)f(s|a = ac)

=
LR0

LR0 + exp
(

(ac−ac)(ac+ac−2s)
2σ2

) , (7)

where LR0 denotes the likelihood ratio of prior beliefs, ρ0/(1− ρ0).

Combining (7) with (3) yields the receiver’s best response.

Lemma 1 (Best Response) Given the conjecture ac and ac, the receiver’s best response

is determined by a critical threshold value of s denoted by s̃c. That is, r∗ = 1 if and only if

s ≥ s̃c with

s̃c =
ac + ac

2
− ln(LR0)

σ2

ac − ac
.

Notice that s̃c has several intuitive properties. If ρ0 = 1/2, then the critical threshold

is simply the average of the actions of the two types of agent. As prior beliefs become

strongly biased in favor of one or the other type of sender (i.e., LR0 → 0,∞), only extreme
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signals will lead to updating sufficiently strong to revise prior beliefs to change a response.

Similarly, as the sender chooses a similar action regardless of type (i.e., we approach a

pooling equilibrium, so to speak, and a ≈ a), again only extreme signals trigger a response

by the receiver that differs from what prior beliefs indicate. Finally, the same holds true for

increases in the variance of the noise σ2 so that, for given beliefs about the senders’ actions,

a noisier environment leads to less updating.

Having characterized the receiver’s learning and response, consider now the sender’s

optimal actions. Recall that the receiver’s choice of r affects the sender’s payoff (see (1)).

Since the choice of r is governed by ρ1, which is a function of the sender’s action a (see (7)),

it is clear that the sender accounts for how a affects r. Since r is increasing in s, given ac

and ac, both types of sender have an incentive to increase s. That is, both types would like

to be identified as being a high type: the high type wants to set himself apart, and the low

type wants to deceive.

Thus, given ac and ac (the sender’s action affects only the signal s, but cannot affect the

receiver’s conjectures) and given Lemma 1, the sender’s objective is to choose a in order to

maximize

U − c(a− t)2 + W Pr (s ≥ s̃c|a) =

U − c(a− t)2 + W

∫ ∞

s̃c

1

σ
√

2π
exp

(
−(s− a)2

2σ2

)
ds, (8)

where s̃c is given in Lemma 1. The (type-dependent) first-order condition is given by

2c(a− t) +
W

σ
√

2π

∫ ∞

s̃c

s− a

σ2
exp

(
−(s− a)2

2σ2

)
ds = 0. (9)

Hence,

Lemma 2 (Best Action) Given the receiver’s response conditioned on her conjecture ac

and ac, the sender’s best action is implied by

2c(a− t) =
W

σ
√

2π
exp

(
−(s̃c − a)2

2σ2

)
,

where s̃c is as before, given in Lemma 1.
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Proof. Let g(s, a) = − (s−a)2

2σ2 . Then ga = −gs = s−a
σ

. Hence the term under the integral in

the FOC (9) is −gse
g(s,a) and therefore the integral itself is eg(s̃c,a), since lims→∞ eg(s,a) = 0.¤

Notice that Lemma 2 implies that both types of agent engage in signaling (i.e., a∗ > t

for both types), independent of the receiver’s conjectures about the actions taken, provided

ac 6= ac. This is a reflection of the fact that the marginal gain from signaling is positive,

and hence the sender is willing to trade-off deviations of a from t in order to obtain the

positive marginal signalling gains. Specifically, the marginal cost of signalling is zero at t,

whereas the marginal gains are strictly positive. Thus, in the noisy environment, players

always signal.

In equilibrium, the receiver is aware of the sender’s desire to manipulate the flow of

information. That is, she is aware that the high type will choose an action in the hopes of

distinguishing himself from the low type and, similarly, that the low type will attempt to

mimic the high type. As a consequence, she is aware of Lemma 2. This leads to consistent

beliefs in which ac = a∗ and ac = a∗. Thus,

Proposition 2 (Equilibrium in Stochastic Settings) The equilibrium actions, a∗ and

a∗, are implied by the equations

2c
(
a∗ − t

)
=

W

σ
√

2π
exp

(
− 1

2σ2

(
∆a∗

2
+ ln(LR0)

σ2

∆a∗

)2
)

, (10)

2c (a∗ − t) =
W

σ
√

2π
exp

(
− 1

2σ2

(
∆a∗

2
− ln(LR0)

σ2

∆a∗

)2
)

; (11)

where ∆a∗ := a∗ − a∗. The equilibrium response is given in Lemma 1, with the a∗ and a∗

replacing ac and ac.

Notice that, if ρ0 = 1/2, then both types will deviate from their myopic best actions

by exactly the same amount, otherwise the relatively less likely type deviates (i.e., signals)

more.

3 Experimental design and procedures

The experiments were framed as an interaction of a worker and a personnel manager. In

the instructions (see appendix), subjects were informed about the game as described above.
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The worker’s decision was framed as an effort in a “test” which preceded the employment

decision. We made it clear that no real effort had to be invested, and we explained how the

effort level chosen affected the worker’s profit. The payoff information regarding the effort

choice was given in a table.

As in the model, personnel managers then received the (deterministic or stochastic) signal

derived from workers’ effort levels in the test. Next, they had to decide whether or not to

employ the worker for some (not specified) task. The descriptions of the payoffs explained

that the manager is paid B if he or she employs a worker “suitable for the task” or if he or

she does not employ a worker who is not suitable for the task. The suitability of the workers

was randomly determined by the computer individually and in every period. Workers were

paid W only if they were employed, in addition to the payoff from the effort choices.

The parameters we used for the experiment were U = 100, V = 0, W = B = 100, c = 1/2,

t = 50 and t = 40. Effort levels had to be chosen from the interval [25, 65]. These parameters

yield the payoff table in the instructions (see appendix).

Our treatment variables are the prior belief and the noise parameter. Specifically, we

compare games without noise to those with noise. In the sessions with noise, the noise was

normally distributed with ε ∼ N(0, 52). Following Ashenfelter et al. (1992), subjects were not

given the specific formal details of the normal distribution. Instead, they were given 100 “past

realizations” of the noise term and were told that they should expect “similar distortions

today” (see appendix). As for the prior belief, we use priors of ρ0 = 1/3 and ρ0 = 2/3. We use

the labels NoNoise.33, NoNoise.67, Noise.33 and Noise.67 for the corresponding treatments.

Table 2 summarizes the treatment design.

At the end of each period, subjects were given the following feedback: They were informed

about the worker’s type and the actual effort decision. In sessions with noise, they were also

told the noisy signal that the personnel manager received. Further, they were reminded of

the personnel manager’s decision and were given the resulting payoffs of both players.

We decided to allow for many repetitions because learning is necessary in such complex

situations. Our experiments had a length of 40 periods.

Subjects were randomly rematched in every period in order to create an environment as

close as possible to a single-period interaction between subjects. In each session, 20 subjects
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Noise

σ = 0 σ = 5

ρ0 = 1/3 NoNoise.33 Noise.33

Prior

ρ0 = 2/3 NoNoise.67 Noise.67

Table 2: Treatments

participated. The matching scheme was such that subjects interacted within a group of ten

subjects. Thus each session consists of two entirely independent groups.

We applied role switching in this experiment. That is, participants acted both in the

role of the worker and in the role of the personnel manager. Roles were switched every five

periods, so all participants played either role four times for five periods. Role switching is

often believed to enhance learning. Although this has not been tested experimentally, it

seems intuitive that subjects better understand the decision problem of the other players

and therefore the overall game if they play in both roles. Role switching also emphasizes

the one-shot nature of the interaction and therefore strengthens the effects of the random-

matching scheme. Many signaling experiments employ role switching; see Brandts and Holt

(1992, 1993), Cooper et al. (1997a,b), Potters and van Winden (1996), and Kübler et al.

(2008).

Experiments were computerized. We used z-Tree, developed by Fischbacher (2007). Ses-

sions were conducted at BonnEconLab, the University of Bonn’s Experimental Economics

Laboratory. In total, 160 subjects participated in eight sessions. We have two sessions (40

participants) for each treatment.

Sessions lasted between 60 and 75 minutes, including the time for reading the instructions

and paying the subjects. Earnings were denoted in “points.” The exchange rate of one euro

for 500 points was commonly known. Subjects also received a show-up fee of four euros.

Average earnings were about 13 euros, including the show-up fee.
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4 Hypotheses

Given the experimental parameters (U = 100, V = 0, W = B = 100, c = 1/2, t = 50 and

t = 40), the equilibrium benchmarks against which we compare the experimental data are

given in Table 3. Recall that a and a refer to t’s and t’s effort choices, respectively, and

∆a := a − a is the effort difference. Employment rates are denoted by e and e, and the

average employment rate is e := ρ0e+ (1− ρ0)e. Finally, s̃ denotes the switching point, that

is, the signal above which employers choose r = 1. Equilibrium values are indicated by an

asterisk (∗) throughout.

NoNoise Noise

a∗ = 40.0, a∗ = 54.1, ∆a∗ = 14.1 a∗ = 42.5, a∗ = 55.0, ∆a∗ = 12.5

ρ0 = 1/3 e∗ = 0, e∗ = 1, e∗ = 0.33 e∗ ≈ 0.06, e∗ ≈ 0.83, e∗ ≈ 0.32

s̃∗ = 54.1 s̃∗ ≈ 50.2

a∗ = 50.0, a∗ = 50.0, ∆a∗ = 0.0 a∗ = 48.0, a∗ = 54.0, ∆a∗ = 6.0

ρ0 = 2/3 e∗ = 1, e∗ = 1, e∗ = 1 e∗ ≈ 0.49, e∗ ≈ 0.88, e∗ ≈ 0.75

s̃∗ = 50.0 s̃∗ ≈ 48.1

Table 3: Equilibrium Constellations Given the Experiment Parameters

Table 3 reveals that the predictions about the effects of our treatments are not always

unambiguous. Consider, for example, the impact of noise on a. In Noise.33, a should be

higher than in NoNoise.33, but it is exactly the other way round in Noise.67 and NoNoise.67.

For a, the impact of noise is different again. Instead of unambiguous hypotheses, the impact

of noise often depends on the prior (or vice versa) in theses cases. In what follows, we

accordingly present hypotheses in the form of ordinal rankings of the relevant variable across

all four treatments. We then use the non-parametric Jonckheere-Terpstra test,6 testing the

null hypothesis that all treatments come from the same distribution against the predicted

ranking of treatments.

6The Jonckheere-Terpstra test is a non-parametric test for more than two independent samples, like
the Kruskal-Wallis test. Unlike Kruskal-Wallis, Jonckheere-Terpstra tests for ordered differences between
treatments and thus requires an ordinal ranking of the test variable. See, e.g., Hollander and Wolfe (1999).
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We start with sender behavior. The first hypotheses are on the effort levels chosen by

the low type a, by the high type a, and on the effort difference ∆a = a− a. All of these can

be obtained from Table 3.

Hypothesis 1 (Sender’s Effort Choice) Concerning the senders’ type-dependent equilib-

rium effort choices, the following rankings hold:

(a) for the low-type’s action a∗: NoNoise.33 < Noise.33 < Noise.67 < NoNoise.67;

(b) for the high-type’s action a∗: NoNoise.67 < Noise.67 < NoNoise.33 < Noise.33;

(c) for the difference in actions ∆a∗: NoNoise.67 < Noise.67 < Noise.33 < NoNoise.33.

A general implication of noise is as follows.

Hypothesis 2 (Signalling with Noise) In the noisy treatments, senders should always

signal, that is, they should always choose a > t.

For the treatments with noisy signalling, we have an intriguing hypothesis which we

already noted following Proposition 2.

Hypothesis 3 (Signalling Distortions with Noise) The sender whose type is less likely

under the prior beliefs engages in more costly signalling efforts, i.e., a−t < a−t in Noise.33,

and a− t > a− t in Noise.67.

We now turn to the receiver’s behavior. Table 3 contains the data for the type-dependent

employment rates and also for the average employment rates per treatment.

Hypothesis 4 (Employment Rates) Concerning the senders’ type-dependent equilibrium

employment probabilities, the following rankings hold:

(a) for the low type’s employment rate e∗: NoNoise.33 < Noise.33 < Noise.67 < NoNoise.67;

(b) for the high type’s employment rate e∗: Noise.33 < Noise.67 < NoNoise.67 = NoNoise.33;

(c) for the average employment rate e∗: Noise.33 < NoNoise.33 < Noise.67 < NoNoise.67.
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We finally turn to the receiver’s behavior, in particular, the equilibrium choice of switch-

ing points.

Hypothesis 5 (Switching Points) Regarding the receiver’s switching points, s̃∗, the fol-

lowing ranking holds: Noise.67 < NoNoise.67 < Noise.33 < NoNoise.33.

5 Results of the Experiments

The results section is structured as follows. We begin with an analysis of the worker (sender)

behavior. Then we move on to the managers (receivers), before analyzing workers and

managers jointly to see how they respond to one another’s actual behavior.

We usually employ non-parametric tests where we (conservatively) count one group of

randomly matched participants as one observation. Whenever we depart from this, we

indicate how we deal with the possible non-independence of observations. With the help

of the non-parametric tests, we test directed hypotheses throughout and report one-sided

p-values, accordingly.

The results reported here are based on the analysis of periods 21 to 40, that is, the second

half of the experiment. This is to take learning effects into account. We will not report on

learning effects in detail. However, noticeable time trends do not occur after period 15 and

the variance of choices does not decrease much further in the second half of the experiment.

Hence, we restrict the data analysis to periods 21 to 40.

5.1 Worker (sender) behavior

Table 4 and Figure 2 summarize the effort choices across the four treatments. Table 4

reports average effort choices and their standard deviation. It also states the equilibrium

benchmarks. Figure 2 displays the CDFs of choices by types and treatment.

As in many previous signaling games, choices do not perfectly settle on the equilibrium

benchmarks, as can be seen in Table 4. Figure 2 also indicates that there is no complete

separating or pooling behavior in any treatment. Frequently, workers choose their myopic

best action. While this is consistent with equilibrium behavior for one type in the NoNoise
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Prior NoNoise Noise

t t t t

40.00 54.14 42.50 55.00

1/3 44.34 51.57 45.19 52.77

(5.40) (2.61) (4.59) (3.67)

50.00 50.00 48.00 54.00

2/3 46.93 50.96 45.67 51.50

(5.13) (1.79) (4.61) (2.71)

Table 4: Effort Levels (equilibrium values in italics, standard deviation in parenthesis.)

treatments, the frequency is nowhere near 100% for any type in any treatment. Another

general observation is that the average signalling distortions (that is, the a − t margins)

of the t types are larger than those of the t types in all treatments.7 Whereas t generally

provide too little effort compared to the equilibrium benchmark (except in NoNoise.67 ), t

provide too much effort with the low prior and too little effort with the high prior.

However, there are a number of observations that are consistent with the equilibrium

benchmarks. Table 4 shows that the ranking of effort averages across the four treatments

is consistent with the theory. For t, recall from Hypothesis 1(a) that the lowest effort

benchmark (namely 40.0) should occur in NoNoise.33, next comes Noise.33 with a level of

42.5, followed by Noise.67 (48.0) and the highest effort levels for t (50.0) should occur in

NoNoise.67. The actual averages are ranked precisely in this way. A Jonckheere-Terpstra

test rejects the null hypothesis (that effort averages of the t type workers are drawn from the

same distribution) at p=0.016. This supports Hypothesis 1(a). Conducting the Jonckheere-

Terpstra test for the ranking of effort choices by the t types yields a similar result (p=0.031),

rejecting the null in favor of Hypothesis 1(b).

7Indeed, this is true right from the beginning. In period one (where all effort choices are still completely
independent), 30 of 44 high types choose a = t = 50 but only 14 of 36 low types a = t = 40. A chi-square test
indicates that the difference in proportions is significant (d.f. = 2, p=0.009). Similarly, the 95% confidence
interval of period-one actions for the high type, [49.01, 50.94], includes the myopic best action, 50, whereas
the confidence interval for t, [41.54, 44.85], does not include 40.
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Figure 2: Cumulative Distribution Functions (CDFs) of Effort Choices

Now consider the effort differential, ∆a = a− a. The effort differential is the amount of

separation between the types and therefore tells us something about the important pooling

vs. separating issue. The impact of noise on this variable is ambiguous in theory. There is

less separation with noise for the low prior but more separation with noise for the high prior.

From Hypothesis 1(c), the theoretical benchmark for ∆a∗ (ranked in ascending order) is

∆a∗ = 0.0 in NoNoise.67 (the pooling case), 6.0 in Noise.67, 12.5 in Noise.33 and finally 14.1

in NoNoise.33. Figure 3 shows the average amount of separation between types for each group

and the theoretical benchmark. The picture shows that the theory works well in organizing

the data. The ranking of the group averages by treatment is the one predicted except

that Noise.33 has a marginally higher average than NoNoise.33. Applying the Jonckheere-

Terpstra test on the average effort differentials yields a highly significant rejection of the null

hypothesis (p=0.006), therefore providing support for Hypothesis 1(c).

Part of Hypothesis 1(c) is the proposition that, with ρ0 = 2/3, pooling (∆a∗ = 0.0) should

occur without noise but separating (∆a∗ = 6.0) with noise. This is an intriguing hypothesis

which can be tested directly in a pairwise comparison of these treatments. A ranksum test

confirms that the effort differential is smaller in NoNoise.67 than in Noise.67 (p=0.042).
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Figure 3: Effort Differentials ∆a = a− a (equilibrium: squares; group averages: bullets).

The CDFs in Figure 2 also provide evidence in this direction. For NoNoise.67, Figure 2

reveals that the pooling equilibrium effort level of 50 is the mode (60.25%). This is true

for both types as t workers choose a = 50 in 51.5% and t types in 64.8% of the cases.

The frequency of a = 50 effort choices is significantly smaller in Noise.67 and indeed in

all of the other three treatments where a∗ = 50 should not occur in equilibrium (pairwise

comparisons with rank-sum tests, all p=0.021 or smaller). This is support for the pooling vs.

separating hypothesis with ρ0 = 2/3. By contrast, if ρ0 = 1/3 there should be separation both

with and without noise and the prediction regarding the effort differential is 12.5 and 14.1

for Noise.33 and NoNoise.33, respectively. As there is separation either way and since the

predicted effort differentials do not differ much, unsurprisingly, Noise.33 and NoNoise.33 do

not differ significantly.8

Hypothesis 2 suggests that workers should always signal (that is, choose a > t) in treat-

ments with noise. Specifically, t should choose a > 40, and t should choose a > 50 with

noise. Whereas the CDFs show that in many cases workers do actually choose their myopic

best actions, they also show that a = 40 and a = 50, respectively, are selected less frequently

in the stochastic-signal treatments. Statistical support for this can be obtained by collecting

the share of effort choices strictly larger than the (type-specific) myopic best action for each

8For the sake of completeness, the third pairwise comparison, NoNoise.67 vs. NoNoise.33, confirms the
theory (p=0.042).
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group. In the eight groups of the noisy treatments, 62.8% of the workers’ actions have a > t

but this is only the case in 47.8% of the deterministic treatments. A ranksum test reveals

that this difference is significant (p=0.023). Note that we obtain this significant result even

though one type is predicted to choose a > t also in the NoNoise treatments.

We can also check Hypothesis 2 for t only. In the Noise treatments, t’s equilibrium

actions lie strictly between 40 (= t) and 50 (= t). By contrast, in the NoNoise treatments,

the equilibrium actions for t are 40 and 50, and moreover the worker is (at least theoretically)

revealed as being t when choosing a ∈ (40, 50). With noise, effort choices between 40 and

50 generate signals that only imperfectly reveal the worker as t. These considerations are

confirmed in the data. The CDFs show that 39.04% of the t observations are in the a ∈
(40, 50) interval with noise but, without noise, only 5.58% are. This difference is significant

(rank-sum test, p < 0.001). As an aside, the result shows that subjects clearly understood

the noisy signal-generating mechanism.

Finally, for the noise treatments, Hypothesis 3 states that signalling distortions (a − t)

are larger for the less frequent type. At face value, this hypothesis is clearly rejected. As

mentioned above (and as in other signalling experiments), the t types distort more in all

treatments and we find a − t > a − t in all groups of all treatments. However, in relative

terms, the prediction is supported. From Table 4, note that the t types distort more with

the high prior whereas the t types distort more for the low prior. Testing this formally, the

ratio (a − t)/(a − t) is significantly smaller in Noise.33 than in Noise.67 (ranksum test,

p=0.042). Interpreting the predictions in relative rather than absolute terms (which seems

warranted as the t types signal too much anyway, right from the first period on), we find

support Hypothesis 3.

5.2 Manager (receiver) behavior

Table 5 shows how frequently managers employ the workers. Compared to the equilib-

rium benchmark, t is employed too rarely, and t is employed to often. This finding is not

particularly surprising given the above result that high types usually signal too little and

low types sometimes too much. Regarding the ranking of e (the employment rates of t),
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we cannot reject the null hypothsis that all treatments are drawn from the same distribu-

tion (Jonckheere-Terpstra, p=0.245), that is, we find no support for Hypothesis 4(a). The

hypothesis regarding t, Hypothesis 4(b), turns out to be supported by the data though

(Jonckheere-Terpstra, p=0.003). That is, even though quantitatively the predictions fail,

the theory still yields a useful qualitative prediction regarding e.

Prior NoNoise Noise

t t t t

0.000 1.000 0.060 0.833

1/3 0.232 0.609 0.272 0.609

(0.42) (0.50) (0.45) (0.49)

1.000 1.000 0.490 0.880

2/3 0.470 0.864 0.565 0.834

(0.50) (0.34) (0.50) (0.37)

Table 5: Employment Rates (equilibrium values in italics, standard deviation in parenthesis).

Figure 4 shows that average employment rates across the two types, e, meet the equi-

librium benchmarks rather accurately in three of the four treatments. That is, regarding

average employment rates per treatment, the theory works well even in a quantitative sense.

(The exception is Noise.67.) A Jonckheere-Terpstra test on the average employments rates

confirms that the ranking we observe rejects the null hypothesis (p=0.004). This significant

test result is in favor of Hypothesis 4(c).

Employment decisions obviously depend on workers’ effort levels. Figure 5 shows the

likelihood of getting employed as a function of the effort signals. The probabilities are

obtained from simple probit regressions where the response decision r ∈ {0, 1} is a function

of s, the signal received. For each treatment there is a separate regression. The probits are

based on data from periods 21 to 40 and are clustered at the group level (Woolridge, 2003).

As expected, the probability of an r = 1 choice increases with the received signal s. Indeed,

in all treatments, most of the increase occurs between s = 40 and s = 55. In all four cases,

both the constant and the marginal effects of the effort signal are significant at p < 0.001.
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All regressions are highly significant with the pseudo R2 varying between 0.190 (Noise.67 )

and 0.413 (NoNoise.33 ).

0%

25%

50%

75%

100%

30 40 50 60 70

 prior = 0.67

 prior = 0.33

NoNoise

Noise

Figure 5: Probability of Employment as a Function of the Signal

There are two further intuitive observations from Figure 5. First, the employment likeli-

hood is higher with ρ0 = 2/3. Both with and without noise, r = 1 responses are more likely

with the high prior. As can be seen in Figure 5, the ρ0 = 2/3 treatments first-order stochas-

tically dominate those with ρ0 = 1/3. Second, the figure shows that the curves in the noise

treatments are flatter than their NoNoise counterparts for the middle range of effort choices.
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For the ρ0 = 1/3 prior, Pr(r = 1) is larger in the noise treatment for s ≤ 49 and smaller

otherwise. Similarly, for the ρ0 = 2/3 prior, Pr(r = 1) is larger with noise as long as s ≤ 55

and smaller otherwise. This is intuitive. A signal of, say, 45 is rather unlikely to have been

sent by t without noise. With noise, there is some chance t’s choice was distorted negatively

to the level of 45. The reverse is true for choices larger than 50 and 55, respectively. Such

high choices are almost surely sent by t when there is no noise. With noise, there is still the

chance that noise caused the high signal and thus managers are less likely to choose r = 1

compared to NoNoise, given the same effort choice.

The probit regressions in Table 6 reveal that these two effects are significant. The re-

gressors used are as follows. Effort Signal is the signal the manager receives. Noise is a

dummy equal to one if and only if there is noise in a treatment. Similarly, Prior67 is equal

to one if and only if ρ0 = 2/3. Regression (1) shows that Prior67 has a significant impact

on the likelihood of getting employed whereas Noise per se does not. Once we include the

interaction terms (see regression (2)), the Noise dummy is positive and significant and the

Noise×Effort interaction is negative and significant. The Prior67×Effort interaction is in-

significant but Prior67 remains significant even when we include the interactions. That is,

the likelihood of getting employed is higher with ρ0 = 2/3, but the slope does not change.

We also use the probit regressions to test Hypothesis 5 which is on the switching strate-

gies. Specifically, we run the probits above separately for each group and calculate the

median accepted effort choice for each group, that is, the effort choice under which there

is a 50% probability of being employed. We compared these median threshold effort levels

(one for each group, four for each treatment) to the ranking of switching points given in Hy-

pothesis 5. (If 100% of our subjects behaved consistently with the theory, they would reject

every signal below the switching point and employ for every signal above that point, and

thus the median signal that results in employment would be qual to the predicted switching

point.) A Jonckheere-Terpstra rejects the null hypothesis at p=0.001, supporting the ordinal

ranking in Hypothesis 5. Figure 6 shows the empirical median switching points per group

in conjunction with the equilibrium switching points.
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(1) (2)

Effort Signal
0.192 0.228

(0.013)∗∗ (0.019)∗∗

Noise
0.071 2.557

(0.168) (1.122)∗

Prior67
0.949 0.772

(0.175)∗∗ (0.237)∗∗

Noise×Effort
-0.061

(0.018)∗∗

Prior67×Effort
0.000

(0.000)

Constant
-9.73 -11.43

(0.659)∗∗ (0.916)∗∗

LR χ2 218.6 511.41

p value 0.000 0.000

Pseudo R2 0.418 0.424

Table 6: Probit Regressions of Accept Decisions (clustered at the group level, standard errors

in parenthesis, *(**) indicates significance at the 5% (1%) level.)

5.3 How do players respond to others’ empirical behavior?

Above, we saw that behavior does not seem to converge fully to equilibrium benchmarks.

On the other hand, the support for some implications of the theory indicates that play is

far from erratic. This raises the question of how subjects respond to the actual empirical

behavior of the other subjects.

We first analyze how workers’ actions correspond to the employment decisions. To do

this, we determine the optimal effort level given managers’ actual employment decisions in

periods 21 to 40, separately for each treatment and type. Specifically, we use the acceptance
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probabilities from the probit regressions underlying Figure 5 and calculate workers’ expected

payoffs from this. For some effort level a,

100− 1/2 (a− t)2 + Pr(r = 1|a)× 100

is t’s expected payoff.

The main insight from this exercise is that average effort choices often do not differ much

from the value that maximizes expected payoffs and, whenever they do differ, this can be

explained by “flat” expected payoff maxima. Table 7 shows the results.

Prior NoNoise Noise

t t t t

40.8 54.9 42.0 55.2
1/3

+3.5 −3.3 +3.2 −2.4

48.0 53.2 46.6 52.6
2/3 −1.1 −2.2 −0.9 −1.1

Table 7: Optimal Effort Choices Given Employment Decisions (and difference between actual

average effort and optimal choices.)

There are eight cases, one for each treatment and each type. For example, the first
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entry (top left) indicates that, given the empirical receiver behavior in the second half of

the experiment, t’s optimal choice in NoNoise.33 was 40.8, yet the actual average choice

was 3.5 higher (44.3) than the optimal choice of that type in that treatment (where the

actual averages are obtained from Table 4). The (absolute) minor differences suggest a

certain coincidence of optimal and actual average effort choices. Moreover, note that larger

differences (say, three effort units) are subject to the disclaimer that differences in expected

payoffs are truly minor. In Noise.33, the payoff loss from not playing optimally is merely

1.35% and 1.75% in NoNoise.33. The biggest loss in expected payoff (5.6%) occurs for t

in Noise.33. The fact that deviating from optimal behavior causes only minor losses of

expected payoffs suggests that the discrepancy of optimal and actual average effort choices,

if they occur at all, should be interpreted with caution (Harrison, 1989). The minor losses

in expected payoffs also explain why play does not converge to equilibrium more quickly.

Table 7 reveals another result. The optimal effort choices given empirical behavior are

surprisingly close to the equilibrium benchmarks (see Table 4). In NoNoise.33 and Noise.33,

they almost exactly coincide for both types. In Noise.67, the gap between optimal effort

choices and the equilibrium benchmark is 1.4 for both types which does not seem to be too

far off the mark. Only the pooling prediction in NoNoise.67 differs from the optimal effort

choices.

Next, we analyze how managers’ decisions correspond to actual worker behavior. To

this end, we calculate at which signal the probability that it was sent by t is 1/2—this is

the empirically optimal switching point for risk neutral receivers. This is done with probit

regressions (t = t as a function of the observed s), separately for each treatment and based

on the signals in periods 21 to 40. The actual switching point for each treatment is the

lowest signal s that, based on the probits, leads to employment with probability of at least

1/2. These actual switching points can be taken from Figure 5. Table 8 shows the results of

this analysis. It reveals that, although the empirically optimal switching points are larger

than the actual switching points throughout, they do correspond closely to one another. In

NoNoise.67 and Noise.33, they differ by only 0.5 and 0.6 units of effort, respectively, and

in NoNoise.33 they differ by 1.2 only. In NoNoise.67 they differ by three units of effort.

Again, the small differences between optimal and actual behavior are remarkable.
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Prior NoNoise Noise

50.7 47.7
1/3 −0.6 −1.2

53.8 45.0
2/3 −3.0 −0.5

Table 8: Optimal Switching Points Given Effort Decisions (and difference between actual

median and optimal switching points.)

5.4 Discussion

The above results by-and-large confirm the theory in a qualitative sense. Sometimes, the

theory also has predictive power in a quantitative sense. A final issue that we discuss here

is that, quantitatively, the theory appears to be more closely in line with behavior in the

treatment with noise compared to the deterministic setting.

To make this statement precise, consider the absolute difference between equilibrium

values given in Table 3 and the treatment averages. As for the effort levels chosen (Table 4),

the Noise treatment averages are closer to the equilibrium in three of four cases. In Table

5 (employment rates), the comparison reveals that the averages with noise are closer to the

equilibrium in all four cases. Similarly, when we look at optimal decisions given empirical

behavior of the other players, the noisy variants have a smaller gap between optimal choice

and average choices in all four cases of Table 7 and in one of two cases in Table 8.

What could be driving this result? One possibility is that because there are multiple

equilibrium configurations in the deterministic case but a unique equilibrium in the stochastic

version of our game, coordination on equilibrium might be easier in the noisy case. However,

there is only limited evidence that subjects play any of the non-refined equilibria, as seen

above. We believe that was may be driving the results is the fact that the stochastic variant

captures aspects of decision making that the deterministic variant fails to address. Consider,

for example, employment rates. In the deterministic game, in equilibrium, there are no errors

in hiring, that is, in a separating equilibrium 100% of high types are employed and 0% of
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low types; whereas in a pooling equilibrium 100% of workers (i.e., both types) are employed.

However, in the data both Type-I errors and Type-II errors occur. That is, high types

are sometimes erroneously not hired and low types are erroneously employed. In contrast,

with noise, Type-I and Type-II errors are an equilibrium phenomenon, because of the noise.

Consequently employment rates are never extreme. Empirically, Type-I and Type-II errors

are rather frequent—an aspect of the data that is well accounted for by the stochastic version

of the model.9 As a result, the theory performs better when noise is explicitly modeled.

6 Conclusion

We consider a sender-receiver signalling game in an environment in which the signal-gene-

rating mechanism is subject to homoskedastic noise. This noisy setup differs markedly from

the standard deterministic case. With deterministic signals, a unique perfect Bayesian equi-

librium can only be obtained after the application of equilibrium refinements and, depending

on the prior belief, there is either a separating equilibrium or a pooling equilibrium. With

noise, the unique equilibrium is separating and the equilibrium actions vary according to the

level of the noise and the prior belief.

We further contrast the differences between deterministic and noisy environments by

reporting on subject behavior in experiments that we ran. Specifically, we study a frame

where workers can choose effort levels as a signal and personnel managers decide whether or

not to employ the workers. We compare games without noise to those with noise, and games

with a “high” and “low” prior. Many predictions are confirmed in the data in qualitative

terms and some are even relatively close in quantitative terms. In particular, the theory has

predictive power regarding the main variables of interest, viz. effort levels, employment rates,

and employment cut-offs (i.e., switching points). As predicted, given a high prior there is

more pooling behavior without noise compared to noisy environments. Also consistent with

theory is that subjects choose their myopic best action less frequently in the noisy treatments.

9Of course, the noisy variant does not include errors in decision making (as, for example, a quantal
response equilibrium does), but Type-I and Type-II errors occur both because of noise and because of
decision errors. Our point is, hence, that the stochastic model correctly predicts Type-I and Type-II errors
even if, partly, they occur for the wrong reason.
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Absent ample learning opportunities, signalling experiments usually do not converge fully

and often myopic choices and naive mimicking rather than sophisticated play is observed

(Cooper and Kagel, 2005). However, even though we also do not see complete convergence

in our data, we do find remarkable support of the theory, and where we find deviations

these regularly result in near-negligible differences in payoffs compared to optimal play.

In particular, subject behavior is distinct across treatments and in line with equilibrium

differences of the two model specifications.

Furthermore, while the stochastic model may analytically be more challenging than the

deterministic model, subject behavior seems more in line with the equilibrium in the stochas-

tic treatment and model in contrast to a comparison of the empirical data of the deterministic

treatment and the deterministic equilibrium. We conjecture that this is due to the fact that

stochastic (noisy) settings may be similar to stochastic (non-uniform) play by subjects, lead-

ing to greater congruence between the equilibrium of the stochastic game and the empirical

data.
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Appendix: Instructions for Noise.33 

 

Welcome to our experiment. Please read the following instructions carefully. Please do not talk to your 

neighbors during the experiment. Should you have any questions, please ask us. We will then come to your 

booth and answer the question privately. 

 

In this experiment you can earn some real money. How much you will earn depends on your decisions and the 

decisions of the other participants. Your earnings will be denoted in “points”. You payment at the end is equal 

to the sum of your earnings in each period plus a one-time payment of 4 Euros. For every 500 points, you will 

receive 1 Euro.   

 

In total, there will be 40 periods. 

 

In today’s experiment, a worker and a personnel manager meet in every period. The worker can either be 

suitable for some task or not. Whether the worker is suitable is randomly decided by the computer in each 

period, and chances are 1/3 (or 33.33%) that the worker is suitable.  

 

You will be worker or personnel manager, respectively, for five periods each time. Then roles are switched and 

you have the other role for five periods. 

 

Workers and personnel managers will be randomly matched by the computer in every period. That is, you 

cannot tell whom you are matched with in each period. 

 

Only the worker is informed whether or not he or she is suitable. The personnel manager has to decide whether 

or not to employ the worker without knowing if the worker is actually suitable. We will explain the details of 

your payoffs in detail below but, in principle, the worker gets 100 points if he is employed. The personnel 

manager gets 100 points if he employs a suitable worker; he also gets 100 points if he does not employ a non-

suitable worker. 

  

Before the personnel manager decides, the workers have to do a “test”. For the purpose of this experiment, 

workers have to decide how much “effort” they want to invest when doing the test. We will simply ask for the 

amount of effort workers want to invest, but we will not do a real test with you. The personnel manager will be 

informed about the effort the worker invests in the test. 

 

The effort in the test will affect the worker’s payment. Have a look at the table below. The left column 

indicates the effort chosen; the middle column indicates the payoff from the test if the worker is suitable; and 

the middle column indicates the payoff from the test if the worker is not suitable.  
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  Worker’s Payoff in the Test    
        
        
        
   Payoff in Points    
  Effort Suitable Non-Suitable    
    Worker Worker    
  25 -212.50 -12.50    
  26 -188.00 2.00    
  27 -164.50 15.50    
  28 -142.00 28.00    
  29 -120.50 39.50    
  30 -100.00 50.00    
  31 -80.50 59.50    
  32 -62.00 68.00    
  33 -44.50 75.50    
  34 -28.00 82.00    
  35 -12.50 87.50    
  36 2.00 92.00    
  37 15.50 95.50    
  38 28.00 98.00    
  39 39.50 99.50    
  40 50.00 100.00    
  41 59.50 99.50    
  42 68.00 98.00    
  43 75.50 95.50    
  44 82.00 92.00    
  45 87.50 87.50    
  46 92.00 82.00    
  47 95.50 75.50    
  48 98.00 68.00    
  49 99.50 59.50    
  50 100.00 50.00    
  51 99.50 39.50    
  52 98.00 28.00    
  53 95.50 15.50    
  54 92.00 2.00    
  55 87.50 -12.50    
  56 82.00 -28.00    
  57 75.50 -44.50    
  58 68.00 -62.00    
  59 59.50 -80.50    
  60 50.00 -100.00    
  61 39.50 -120.50    
  62 28.00 -142.00    
  63 15.50 -164.50    
  64 2.00 -188.00    
  65 -12.50 -212.50    
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For example, an effort of 42 gives 68 points to the suitable worker and 98 points to the non-suitable worker; an 

effort of 56 yields 82 points to the suitable worker and a loss of 28 points to the non-suitable worker. The 

worker’s payoffs in the table will be realized regardless of the personnel manager’s decision. 

 

The personnel manager will be informed worker’s effort in the test, but not the payoff the effort level chosen 

yields for the worker. Note that the personnel manager will not be told the effort level chosen with perfect 

accuracy (more on this below). The personnel manager’s payoff does not depend on the effort chosen by the 

worker. 

 

After the personnel manager gets the information about the worker’s effort in the test, he has to decide whether 

or not to employ the worker. The personnel manager gets paid for this as follows. He gets  

• 100 points if he (a) employs a suitable worker or if he (b) does not employ a non-suitable worker, 

• 0 points if he (c) does not employ a suitable worker, or if he (d) employs a non-suitable worker. 

 

The worker gets 

• the payoff (positive or negative) from the test in the table in every period,  

• plus 100 points if he gets employed by the personnel manager and  

• plus 0 points if not,  

no matter if he is suitable or not.  

 

As mentioned, the worker’s effort in the test will not be told the personnel manager with perfect accuracy. How 

the effort choice of the worker will be communicated to the personnel manager is subject to some random 

disturbances.  

 

Consider an example. Suppose the worker’s effort actual choice is 20. On top of this choice, the 

computer now adds, or subtracts, a random number. For example, the computer may subtract 4, in 

which case the personnel manager is told that the effort choice is 16 (rather than being told the actual 

choice, 20). Or the computer might add 2 on top of the chosen 20. In that case, an effort level 22 is 

communicated to the personnel manager.  

 

Note that the actual effort level chosen in the test determines for the worker’s payoff, not the 

disturbed effort level which the personnel manager learns. 

 

As a general rule, smaller distortions are more likely than larger ones, and disturbances are possible in 

either direction (adding to or subtracting from the effort level chosen).  
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For your information, the figure below shows the deviations from the actual choices in 100 cases in the 

past. You should expect similar distortions in today’s experiment.  

 

Note that the magnitude of the deviation does not depend on the effort level chosen. Indeed the level 

chosen has no impact whatsoever on the distortions the computer adds or subtracts. 

 

 
 

 

The figure shows the deviation from the true effort choice on the horizontal line and the frequency of these 

deviations (out of the 100 cases) with the help of the vertical bars. 

 

In the figure you can see that, for example,  

− in 4 of these 100 past cases, the computer added 4 to the chosen effort level  

− in 1 of these 100 past cases, the computer added 9 to the chosen effort level  

− in 3 of these 100 past cases, the computer subtracted 7 to the chosen effort level  

− in 11 of these 100 past cases, the computer did not change the effort at all (the “0” column) so 

that the personnel manager learned the actual effort choice. 

− deviations larger than +11 or smaller than -12 did not occur in 11 of these 100 past cases; such 

deviations are possible but unlikely. 

 



 38

The personnel manager will be informed about the randomly disturbed effort value before making the 

employment decision. The personnel manager will find out about the actual effort level chosen only at 

the end of a period. 

 

Workers get their payments for the test according to their actual effort choice, not the disturbed message 

the personnel manager gets. 

 

 

Let us summarize the experiment 

 

1. The computer decides randomly whether or not the worker is suitable for the job. The chances for 

suitability are 1/3 (33.33%) for workers in each period. The worker (but not the personnel manager) is 

informed about the suitability of the worker. 

2. The worker has to choose an effort level in the test (see the table), and the computer informs the personnel 

manager about the test effort. The effort level is subject to random disturbances.   

3. The personnel manager decides whether or not to employ the worker 

4. Payoffs are: 

• If you are a worker: the payment from the effort choice in the test plus 100 points if you are employed  

• If you are an personnel manager: 100 points if you employ a suitable worker, or if you do not employ a 

non-suitable worker 

 

 


