
Defeating Network Node Subversion on SCADA
Systems Using Probabilistic Packet Observation

Thomas Richard McEvoy2 and Stephen D. Wolthusen1,2

1 Norwegian Information Security Laboratory,
Department of Computer Science,

Gjøvik University College, Norway
2 Information Security Group,
Department of Mathematics,

Royal Holloway, University of London, UK
T.R.McEvoy@rhul.ac.uk stephen.wolthusen@rhul.ac.uk∗

Abstract Supervisory control and data acquisition (SCADA) systems form
a vital part of the critical infrastructure. Such systems have been subject
to sophisticated and persistent attacks which are executed by processes
under adversary supervision. Such attacks may be detected using incon-
sistencies in sensor readings or estimated behavior of the plant. However,
to locate and eliminate malicious “agents” in networks, novel protocols
are required to observe messaging behavior. In this paper, we propose
a novel network protocol for SCADA systems which, for low computa-
tional cost, permits discovery and elimination of subverted nodes utiliz-
ing techniques related to probabilistic packet marking. We discuss its ad-
vantages over earlier work in this area, calculate message complexity re-
quirements for detection and outline its resilience to various attack strate-
gies .

1 Introduction

Supervisory control and data acquistion (SCADA) systems are ubiquitous to
critical infrastructures. Such systems have been publicly targeted with rela-
tively sophisticated and persistent attacks [1] where intrusion aims are not con-
fined to creating short-lived, albeit disastorous, effects, but are based on medium
to long term strategies. These so-called advanced, persistent threats(APT) make
use of increasingly sophisticated concealment techniques which require ad-
vances in detection methods to uncover them.

The concept of utilising network protocols to aid intrusion detection on
SCADA systems was first proposed in [2]. It is assumed an operator has a
model of a control system and can detect inconsistencies in plant signals [3].
This method indicates a process is under attack, but is insufficient to detect
which network nodes, or process control units have been subverted. By com-
bining packet tracing methods [4,5] with this knowledge of control system re-
sponses, an operator can reason over which network nodes, or control units,
are free of adversary control and initiate appropriate recovery strategies.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Royal Holloway Research Online

https://core.ac.uk/display/78866046?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

In this paper, we propose a simpler, but more robust approach. Setting aside
the consideration of whether control units are subverted, we concentrate on ob-
serving (probabilistically) packet behavior along network routes. This enables
us to detect efficiently the node at which packet contents are manipulated. If no
such manipulation takes place and the control signal is still anomalous, we can
assume that the control unit is subject to adversary subversion.

In response to anomalous conditions, network nodes probabilistically create
copies of packets and send these to the operator. The operator can check these
copies against other copies of the same packet, including the original, to deter-
mine not only the routes followed by packets through the network (which may
also be subject to adversary manipulation), but also whether packet contents
have been altered along a given route. We assume that any subverted nodes on
the network can perfectly forge any message with regard to any shared secrets
(and are hence immune to protocol based detection) and that any node may be
subverted (with the exception of operator nodes). Hence we require a protocol
which is relient to adversary interference and resists such forgery. We prove our
protocol using both graph-theoretic and algebraic proofs [6] and demonstrate
its efficiency in terms of node detection and network recovery.

In section 2, we provide related reading. In sections 3 and 4, we outline
our problem and approach. We provide details of our probabilistic observation
protocol in section 5, including proofs and a discussion of message complexity.
We conclude with a discussion and an outline of future work in section 6.

2 Related Work

SCADA systems have been subject (publicly) to attacks which are not just in-
tended to achieve a short-lived goal, but have a “stay resident” capability which
incorporates the use of concealment techniques at both network and operating
system level with the capability to manipulate process signals on control units
[1]. Such attacks have been discussed at length in the literature [7,8]. Detective
strategies based on protocol or signal analysis by themselves have been shown
to have weaknesses in uncovering such attacks [9], particularly in the face of an
overwriting adversary with the ability to subvert network nodes in the system
[3]. Hence conjoint reasoning over both communication and control function-
ality is necessary [2], taking into account system context (such as related states
in other control units, which may not have been subverted) [10]. This can be
split into the analysis of the integrity of network nodes on the one hand and
the analysis of the integrity of process control units on the other. Techniques
related to IP traceback [11,12] have been proposed to help solve this kind of
problem. In the original paper, this required demonstrating the existence of in-
dependent routes and then considering their consistency in terms of the model
to determine their integrity. However, this approach relies on the knowledge of
routes and system outputs in a fixed topology. The behavior of packets en route
is not considered, nor is adversary ability to re-route messages, and it is not

clear that input signals are consistently delivered (except by means of complex
inductive reasoning).

We argue that we need to simplify the reasoning process involved by ob-
serving packets behavior during communication. We also avoid the implicit as-
sumption that the subverted nodes which manipulate output data are the same
as those manipulating input data. If we can observe inconsistent data packets
and the route they follow, the use of state estimation techniques [13], can be
confined (except for initial detection) to consideration of the integrity of control
systems.

We base our approach on IP Traceback methods which were originally de-
vised to deal with denial of service attacks, with single and multiple origin
points and we note immediately that , although the study of traceback mech-
anisms was motivated by denial-of-service attacks, it was recognised early on
that the use of real -time traceback mechanisms could be used for other appli-
cations as well – for example, the analysis of legitimate traffic in a network,
congestion control, robust routing algorithms, or dynamic network reconfigu-
ration [14].

During DOS attacks, it was assumed that the following system characteris-
tics held [5] –

1. Packets may be lost or reordered,
2. Attackers send numerous packets,
3. The route between attacker and victim is fairly stable,
4. Network nodes are both CPU and memory limited, and
5. Network nodes are not widely compromised.
6. An attacker may generate any packet,
7. Multiple attackers may conspire,
8. Attackers may be aware they are being traced,
9. A compromised router can overwrite any upstream information

Clearly, assumption 2 is not relevant with regard to packet manipulation in
a SCADA environment, but other assumptions continue to hold and are aug-
mented in the model we use – see section 3 and [3].

Various approaches to IP tracing were proposed with differing payoffs in
the context of denial of service attacks. Examples included link testing (trac-
ing the source of the attack recursively through the network) which could be
slow under DOS conditions, router logging which clearly creates storage and
processing overheads, behavioral monitoring looking for patterns suggest at-
tack behavior (which requires stateful monitoring) , or packet-based traceback
(marking packets with information about intermediate routers) or by creating
information packets separate from data packets. The last two methods clearly
creating additional overheads, e.g., due to variable length headers or having ad-
ditional messages to process. Probabilistic packet marking was proposed both
to minimise message overheads and router logging requirements, but at the ex-
pense of introducing uncertainly due to the probabilistic sampling of the flow
path and the ability of the attacker to inject false packets [12]. Other hybrid

methods were also introduced to cut on message and storage overheads fur-
ther, without solving the injection problem [4]. Our approach is based on the
strategy proposed for the iTrace protocol and other techniques discussed in [4],
a paper which also demonstrates relevant practical implementation techniques
and which, in particular, allows us to solve the injection problem by utilising a
dynamic hashing and key release system for both packet identity and contents.

Our algebraic specification is derived from the approach proposed in [2]
as well as work by [6]. This offers a means of designing and testing protocol
behavior abstracted from the details of construction, which, in SCADA envi-
ronments in particular, may differ depending on the technology currently em-
ployed - see section 5. It is also an economical means of presenting certain
types of graph-theoretic proofs relating to dynamic multigraphs which we use
to model the SCADA network.

3 Problem

We retain the assumptions, with the single exception, noted in Section 2. In
particular, we assume an adversary can subvert any network node, but not ex-
ercise wide control over the system, and that subverted nodes (or agents) are
under adversary command and control meaning that their functionality can
be arbitrarily rewritten by the adversary. Agents may therefore cooperate in
deception under adversary control. Agents may also conditionally drop, de-
lay or re-order any messages (in addition to such behavior being intrinsic to
network operations) or communicate message information to the adversary. In
addition, such agents are assumed to be able to forge any message which relies
on shared secrets. Without adversary intervention, agents may selectively alter
inputs (command parameters) to the system and outputs (process signals) for
a limited range of control system behavior [3]. However, agents are not fully
autonomous, adversary intervention is required to make changes to their func-
tionality.

Agents, therefore, can either undermine network communications – in par-
ticular, they can manipulate process units by sending false instructions which
mimicking “business as usual” to system operators, or else they can mimick
negative conditions which cause operators to enter inappropriate commands.
In this paper, we limit ourselves to considering an attack on network commu-
nications and excluding attacks on process units. Our problem is to detect and
locate potential agents which are network nodes that interfere with commu-
nications and to bypass them in a way which allows the SCADA system to
continue functioning, preferably without disrupting production.

4 Approach

We assume an initial detection event will initiate the use of the proposed prob-
abilistic packet observation protocol. On detection, network nodes participating
in the packet observation protocol will probabilistically take a copy of certain

packets and hash them using a time released keys (to avoid adversary forgery).
The resulting packet is sent to the operator and may be compared with the
original packet and any subsequent copies. The protocol applies to both input
and output messages. This enables the discovery of agent nodes along com-
munication routes (assuming the control function itself is not subverted and
participates in the protocol). Subsequently, dynamic routing techniques using
redundant routes (whose existence we assume) may enable the operator to by-
pass the subverted nodes. We leave the problem of determining which control
units are subverted to another paper.

5 Probabilistic Observation Protocol

We describe a SCADA network which we model as a directed multigraph. This
enables us to uniquely identify routes which are non-cyclical paths between the
operator and the network’s control units. Subsequently, we define operations
over this multigraph using an algebraic representation based on the π-calculus.
We give a simple example of the nature of an adversary attack using this ap-
proach. We formally define the observation protocol and, assuming an initial
detection event, show how an operator may discover a subverted node and
also recover from attack using dynamic routing techniques making use of re-
dundant channels. The complexity requirements are modelled and the hashing
and key release system used to protect the protocol from subverstion is out-
lined.

5.1 SCADA Systems

A SCADA (supervisory control and data acquisition) system consists of an op-
erations center, manned by one or more operators who use an HMI (human-
machine interface) to view the state of the system which is determined by sig-
nals from a set of control units and associated sensors, which may be redun-
dant. The operators in response to changes in the system state or as the re-
sult of management decisions on system output send signals to control units
which alter the operational parameters of those units. In fact, large parts of this
process may be automated or under the control of expert systems. Such con-
trol is “supervisory” because the control units take responsibility for enacting
changes and subsequent real-time local adjustments to actuators (which oper-
ate the physical system under control). All signals are communicated by net-
work or other (e.g., satellite, point to point, PSTN, broadband, wireless) com-
munications routes. The history of the system is recorded in a database (“the
historian”) and may also be communicated to management information sys-
tems on corporate networks in near real-time.

5.2 Initial Network Model of a SCADA System

We define the initial network model of a SCADA system and outline some basic
concepts which we subsequently use.

Definition 1. Initial Network Model Let G be a SCADA network. We represent
G by a directed multigraph

−→
G . Let

−→
G = V (

−→
E) be a digraph such that each v ∈ V

represents a network node which we also label a process and each −→e ∈
−→
E is a directed

edge which represents potential communication means between network nodes (i.e.,
processes) u, v ∈ V which we also label a channel. We call

−→
G the initial network

model of G. We assume that the topology of
−→
G is fixed w.r.t channels and processes.

We note, at this point, that we have not yet defined operations
−→
G . For ex-

ample, while all channels are potential means of communication, we have not
specified which ones are used, or in what order, or under what conditions. We
define potential routes and show that routes are uniquely identiable.

Definition 2. Potential Route Let
−→
G be an initial network model as before. Let R be

a non-empty, non-cyclical directed path, consisting of directed edges which are channels
between two vertices which are processes, say U and W , not necessarily adjacent (i.e.,
there may be intervening vertices V1, V2, . . . , Vn between U and W which are joined
by the edges in R), then we call R a potential route between U and V .

Lemma 1. Let
−→
G be an initial network model. Let R be a potential route in

−→
G , then R

is uniquely identifiable.

Proof. Let R be a route between U and W . The route R is not an empty path
since, by definition, it consists of, at least, one directed edge or channel. If we
label the channels of R uniquely, then L(R) the set of labels formed from R
is unique. We can see this immediately because if we select another route S
between U and W and consider whether the edges have been labelled, then if
they are already labelled, they are the labels belonging to R and S = R, else if
edge is not labelled, the S 6= R.

Let RU,W be the set of all routes between U and W . Where R = ∅ we say
that U and W are disjoint and no direct communication potential communica-
tion exists between them. Where |R| > 1 we say that potential communication
between U and W is redundant. Where two routes, say S and R, share nodes
or edges such that L(S) ∩ L(R) 6= ∅, we say that the routes S and R are depen-
dent. Where L(S) ∩ L(R) = ∅, we say that the routes S and R are independent.
When we include the vertices ofR together with its edges, we see that it forms
a subgraph

−→
G i ⊆

−→
G which consists of all potential communication channels

(hence routes) between U and W . We note that distinct subgraphs, say
−→
G i and

−→
G j , are not necessarily independent. But we also note that distinct dependent
partitions of a subgraphRmay be independent of each other.

We assume the existence of a network operator 1 which we represent by a
vertex U and one or more control units which we represent by vertices Wi be-
longing to a set W . We assume, during normal operations, that U sends and

1 We simplify the notion of an operational center by referring to a single operator rather
than multiple operators working as a group to control the system

receives message packets from each Wi and that all other vertices V act as
forwarding links for these messages, hence only U and each Wi ∈ W have
bi-directional channels with their adjacent vertices. We assume that the set W
contains redundant sensors or control units which the operator can use for in-
trusion detection purposes by modelling contexts[3]. More importantly, we as-
sume that potential communication between U and W is redundant for each
Wi ∈ W [15] and that redundant channels are not necessarily used during nor-
mal network operations, hence they are available for other purposes such as
contingent actions by the operator.

Defining Operations over the Initial Network Model We subsequently model
operations, i.e., the network system, over the initial network model using an al-
gebraic representation based on the π-calculus [6]. For example, let U, V be a
process and C be a control system, we define C by –

V := ν z y(u〈c̄〉).f(u)→ x̄z〈c̄〉 ⊕ λ
U := ν z[TRUE]ȳa〈c̄〉 + x(z〈c̄〉)

C :=!U |!V (1)

where each phrase is called a capability. Period . indicates an ordered se-
quence, + an arbitrary sequence, ⊕ represents a choice, f() → νz, z, x̄z is a
function which creates/updates a name and may send it, x̄z indicates send the
name z by channel x, x(z) means receive the name z by channel x and (purely
for convenience) the tuple 〈c̄〉 is a set of characteristics associated with a name
(which are defined on use). [TRUE] represents some condition which must be
fulfilled before a capability is exercised. Processes may replicate !P on exhaust-
ing their functional capabilities. We freely use

∐
and

∑
to deal with multiple

concurrent processes P |Q|R| . . . and sums of capabilities x̄1a+ x̄2a+ Labels
(e.g. λ) are used to indicate some inaction, which may or may not be observ-
able (e.g., decision making, message loss). See [2] for a fuller explanation of this
approach.

5.3 Attack Model

An attack is carried out by an adversary node, which does not form part of the
initial network model, but is assumed to be able to address the network during
operations using network nodes which are open to external network communi-
cations. The adversary sends a malicious message to a network node which, if
it succeeds, results in the capabilities of the node being arbitrarily overwritten
by the adversary and the node acting as an agent of adversary [3]. Overwriting
the model introduces functions or alters the conditions under which a process
works. For example, the processes in equation 2 might be re-written -

V := ν z y(u〈c̄〉).f(u)→ x̄z〈c̄〉 ⊕ λ
U := ν z([z < 3]ȳa〈c̄〉 ⊕ λ) + x(z〈c̄〉)

S :=!U |!V (2)

Re-writing could also include introducing fucntions making use of normally
redundant channels to re-route messages and conditional message delay, drop
or manipulation as well as communicating information to the adversary.

5.4 Algebraic Protocol Definition

We define a probabilistic packet observation protocol which enables us to locate
and, using dynamic network re-routing, elide an agent node from the SCADA
system, pending investigation and recovery.

Let V be any network node which is not an operator. We can define the
action of V algebraically by –

V :=ν ak̃t
∑

xi(u〈r,f,d〉).Observe(f, u)→ (x̄w〈r,0,d,a〉.0⊕ λ)

.NewKey(t, kk̃)→ (x̄kt−δ〈r〉.0⊕ λ)

+
∑

x̄j(u〈r,f〉)|!V (3)

– where a is the node address, f is the packet flag, d is the packet identity,
r is the address to which the packet is routed, k is a key from the vector of
keys k̃. xi and xj are sets of channels over which we sum the send and receive
capabilities.

Initially, for all packets, we set a flag f = 0 and observation is a null event.
As the result of a potential detection event, the operator initiates the protocol
by setting f = 1. On receiving flagged packets, whether inputs or outputs,
routers determine based on some probability q to “observe” identified pack-
ets. The Observe() function copies the packet and hashes its data contents, the
packet identity and its own IP address which it stores as a characteristic. Then
it sends the copied packet to the operator. We note the potential for packets to
be dropped by λ.

Finally, after a set period of time t, routers publish the current key to the
operator and generate a new key in such a way that subsequent (and previous,
unrevealed) keys cannot be predicted – see section 5.6. This action is controlled
by the function NewK() and it should be noted that the names used by this
function for keys and time are restricted to the scope of the function (i.e., they
are local variables).

On receiving packets whose identities match, the operator can compare the
data contents of copied packets with each other and the original, noting its ori-
gin and potential routing (based on the initial network model

−→
G). Hence where

packet contents differ due to adversary manipulation, it can be determined
from several packets which routes may have been subverted by the adversary,
simply by observing the hashed address of observed packets and whether or
not they have been manipulated. A process of elimination over each route leads
to a determination of which nodes have been subverted on which routes.

Once sufficient subverted routes are identified (i.e., such that they can ef-
fectively be bypassed using redundant channels), the operator can (other than
for further detective purposes) re-direct traffic away from affected routes us-
ing a dynamic re-routing protocol 2. Here the existence of redundant channels
which we have assumed enables the operator to economically restore control
of communication channels without disrupting production on the SCADA sys-
tem. Full investigation and recovery procedures can follow. One of the impli-
cations of this research is that SCADA systems should incorporate such redun-
dancy as a matter of policy.

5.5 Complexity Requirements

We consider a subgraph R ⊆
−→
G of routes between an operator node U and a

control unitWi. Assuming that we can observe mismatched packets originating
fromWi viaR, how many observation packets on average need to be generated
for the protocol to enable the detection of the complete set of subverted nodes?

We initially consider the case of a single route Ri for detecting the manip-
ulation of signals originating from the control unit3. We designate the nodes
directly adjacent to the operator S and the node which is the control unit T and
we assume that T 6= S (that there is, at least, one node V between U and W).
Let < be the relation “follows” and ≤ the relation “follows, or is equal to” in
order of communication, then, for outputs, S < T and we call the set of nodes
from S to T the observation range of Ri. Let the number of nodes in the initial
observation range (inclusive of S and T) be n. We assume the probability p of
observing a packet k as it traverses each node from T to S is uniform.

Since the node S will produce a manipulated packet (because there is a mis-
match), we overload the node label S to designate the set of nodes which com-
municate invalid packets, likewise T 4 is used to designate the set of nodes
producing valid packets. We require to find out how many nodes are in S and
how many are in T since the agent node is the first node S in order of communi-
cation. To do this, we have to gather packet information for all nodes along Ri.
This problem is related to the card collector’s problem which is encountered in
IP traceback for detecting DOS attacks [12], but with strong efficiencies in that,
if we observe a node Vi < T and Vi is a member t ∈ T of valid nodes then all
nodes Vi < Vi−1 < Vi−2 < . . . < T are likewise valid; similarly, if Vi = s ∈ S

2 This is achieved using another protocol which we do not define here. But, for example,
TCP/IP and similar protocols have fields for setting required routes.

3 Applying the equivalent argument to input signals originating with the operator is
left as an exercise for the reader.

4 We initially assume that the control unit will produce valid packets.

all subsequent nodes are assumed to be in S. Hence we can designate the node
Vi to be the new endpoint for the search either as S′ or T ′. This means that the
next valid observation operation will take place along the nodes inside the new
observation range.

Let Xi be a random variable which indicates the number of packets which
need to be sent to obtain a valid observation (inside the observation range)
where i = 1, 2, 3, . . . then –

∑
i

E(Xi) =
n

n− d0
+

n

n− (d0 + d1)
+

n

n− (d0 + d1 + d2)
+ . . .+

n

n− (
∑
j dj)

(4)
– since each E(Xi) is a geometrically distributed random variable which

represents the average number of packets required to make a successful ob-
servation in the observation range which shrinks randomly (by a distance of
di hops for which a determination has been made) on each observation and∑
j dj = n − 1 and d0 = 2 (since we already know that the nearest node S

produces malicious packets and the furthest node T produces a valid packet).
The sum 2 +

∑
j dj = n − 1 where is j > 1 implies that we have positive

integer solutions d1 + d2 + . . .+ dr = n− 3 for each r ∈ {1..n− 3}. Hence there
are

∑n−3
r=1 (n−4

r−1) possible sums each of which is equally likely to occur.
Let Y be a random variable which indicates the average total number of

packets required to take complete observation of the set of nodes R, then we
have –

E(Y) =

∑n−3
r=1 (n−4

r−1)∑
k=1

1∑n−3
r=1 (n−4

r−1)

[∑
i

E(Xi)

]
k

(5)

But, it should be noted – considering detection along all routes belonging
to a subgraph R – that further efficiencies are gained , where the route Ri has
several other routes Rj , Rk, . . . with which it shares nodes (i.e., the routes are
dependent) since the validity or otherwise of a single node may determine node
validity (or otherwise) along several routes. It follows that for a subgraph R ⊆
−→
G withm routes, the largest average number of packets

[
m∑
l=1

E(Y)l

]
max

needed

for observation occur when each route is independent.
These findings have interesting implications for the design of SCADA sys-

tems since route independence allows the operator to bypass subverted routes,
but route dependence enables quicker discovery of subverted nodes. This sug-
gests a strategy of subdividing each subgraph R into dependent subpartitions
R1, R2, . . . which are independent of each other, balancing efficiency of discov-
ery against independence of potentially redundant channels. This strategy may
also make it more difficult for the adversary to efficiently subvert sufficient
nodes in each subpartition. The analysis of suitable topologies based on aid-
ing intrusion detection and response using network protocols widens this area
as a new field of study.

5.6 Time-Sequenced Key Value Release

A network node V generates an initial sequence of keys k̃ and subsequently
generates a fresh key based on some nonce using a randomly selected key from
its key chain, using a suitable one-way function. The fresh key becomes part of
its key chain, randomly replacing another key, and is used for packet marking
from that point. Depending on some time period, or set of discrete events (e.g.,
observing n packets), the network node generates another fresh key by hashing
a randomly selected key from its key chain with the current key and replacing
one of the keys, again at random. It subsequently publishes the previously used
key to the operator. Subsequent keys are released in the order in which they
are used. This scheme is similar to the one proposed in [4]. This approach is
resilient to adversary attack because insufficient time exists to guess keys and
both the packet identity and its contents are hidden from the attacker, hence
packets cannot be directly manipulated and only arbitrarily delayed, dropped,
re-routed or vandalized. However, these forms of attack only delay rather than
disrupt discovery. In some cases, they may accelerate it by providing further
packet-based anomalies.

6 Conclusion and Future Work

Advanced, persistent threats constitute a “clear and present danger” to critical
infrastructure systems. In this paper, we propose a novel protocol for use on
SCADA systems which enables the operator to observe packet behavior with
regard to data and routing which will allow us to locate and counter such sub-
verted nodes. The protocol is based on previous work in IP Traceback, orginally
used for detection and prevention of DOS attacks.

The protocol represents a low cost computational solution to determining
the integrity of channels on SCADA systems. If combined with the ability to
route packets dynamically, this approach represents a cost effective approach
to defeating node based attacks from an engineering point of view by making
use of system redundancy.

Future work will consist of determining, for various SCADA protocols, prac-
tical implementations of this approach and testing them under simulation with
regards to performance.Further work remains to be done on other related pro-
tocols or variants and extending the work to other kinds of network. Further-
more, the study of network topology in relation to resilience and intrusion de-
tection itself represents a potentially fruitful topic for research. Finally, this pa-
per does not consider the problem of determining, based on reliable or, at least,
partially reliable channels, where control units on the system may have been
directly attack either by sabotage, or remotely. This work, based on develop-
ing state estimation techniques, for contextual intrusion detection remains to
be explored.

References

1. Chen, T.M., Abu-Nimeh, S.: Lessons from Stuxnet. Computer 44(4) (April 2011) 91
–93

2. McEvoy, T.R., Wolthusen, S.: A Plant-Wide Industrial Process Control Security
Problem. In Butts, J., Shenoi, S., eds.: Critical Infrastructure Protection: Proceed-
ings of the First Annual IFIP Working Group 11.10 International Conference on
Critical Infrastructure Protection. International Federation for Information Process-
ing Advances in Information and Communication Technology, Hanover, NH, USA,
Springer-Verlag (March 2011) (in press).

3. McEvoy, T.R., Wolthusen, S.: A Formal Adversary Capability Model for SCADA En-
vironments. Proceedings of the 5th International Workshop on Critical Information
Infrastructures Security, CRITIS 2010 () (Sep. 2010) ()

4. Song, D.X., Perrig, A.: Advanced and Authenticated Marking Schemes for IP Trace-
back. In: INFOCOM 2001: Proceedings of the Twentieth Annual Joint Conference of
the IEEE Computer and Communications Societies. Volume 2. (2001) 878 –886

5. Savage, S., Wetherall, D., Karlin, A., Anderson, T.: Network Support for IP Trace-
back. IEEE/ACM Transactions on Networking 9(3) (June 2001) 226 –237

6. Sangiorgi, D., Walker, D.: pi-Calculus: A Theory of Mobile Processes. Cambridge
University Press, New York, NY, USA (2001)

7. Verba, J.; Milvich, M.: Idaho National Laboratory Supervisory Control and Data Ac-
quisition Intrusion Detection System (SCADA IDS). In: Technologies for Homeland
Security, IEEE Conference on. (2008) 469 – 473

8. Gamez, D., Nadjm-tehrani, S., Bigham, J., Balducelli, C., Burbeck, K., Chyssler,
T.: Safeguarding Critical Infrastructures. In: Dependable Computing Systems:
Paradigms, Performance Issues, and Applications],, Wiley[Imprint], Inc. (2000)

9. Svendsen, N., Wolthusen, S.: Using Physical Models for Anomaly Detection in Con-
trol Systems. In Palmer, C., Shenoi, S., eds.: Critical Infrastructure Protection III. Vol-
ume 311 of IFIP Advances in Information and Communication Technology. Springer
Boston (2009) 139–149

10. Sheng, S., Chan, W., Li, K., Xianzhong, D., Xiangjun, Z.: Context Information-based
Cyber Security Defense of Protection System. IEEE Transactions on Power Delivery
22(3) (Jul 2007) 1477 –1481

11. Al-Duwairi, B., Govindarasu, M.: Novel Hybrid Schemes Employing Packet Mark-
ing and Logging for IP Traceback. IEEE Transactions on Parallel and Distributed
Systems 17(5) (May 2006) 403 – 418

12. Park, K., Lee, H.: On the Effectiveness of Probabilistic Packet Marking for IP Trace-
back Under Denial of Service Attack. In: INFOCOM 2001: Proceedings of the Twen-
tieth Annual Joint Conference of the IEEE Computer and Communications Societies.
Volume 1. (2001) 338 –347

13. Simon, D.: Optimal State Estimation: Kalman, H Infinity, and Nonlinear Ap-
proaches. 1. auflage edn. Wiley & Sons (August 2006)

14. Dean, D., Franklin, M., Stubblefield, A.: An Algebraic Approach to IP Traceback.
ACM Transactions on Information System Security 5 (May 2002) 119–137

15. Cardenas, A.A., Roosta, T., Sastry, S.: Rethinking Security Properties, Threat Models,
and the Design Space in Sensor Networks: A Case Study in SCADA Systems. Ad
Hoc Networks 7(8) (2009) 1434 – 1447 Privacy and Security in Wireless Sensor and
Ad Hoc Networks.

