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Abstract

We consider the effects of risk preferences in mixed-strategy equilibria of 2×2 games,

provided such equilibria exist. We identify sufficient conditions under which the expected

payoff in the mixed equilibrium increases or decreases with the degree of risk aversion.

We find that (at least moderate degrees of) risk aversion will frequently be beneficial in

mixed equilibria.
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1 Introduction

General economic intuition is that risk aversion as well as risk loving hampers expected

payoffs, yet both risk averse and risk loving preferences are observed in different contexts.

Robson (1992, 1996a, and 1996b) and To (1999) provide evolutionary explanations for the

prevalence of specific risk preferences. Dekel and Scotchmer (1999) study conditions for

the selection of risk loving in winner-take-all games. Strobel (2001) shows that for chicken

games a payoff monotone dynamic would lead to ever increasing risk loving.

Huck, Müller and Strobel (1999) have simulated an evolutionary process selecting be-

tween agents with different risk preferences based on the equilibrium payoffs in randomly

generated 2 × 2 games. These simulations indicated an advantage for risk averse players.

The strength of the effect depended on the equilibrium selection criterion applied to games

with multiple equilibria. However, the effect of higher long term propagation of risk averse

players was particularly pronounced if attention was restricted to the class of 2 × 2 games

with no pure equilibrium. These results yield the intuition that risk averse players receive

higher equilibrium payoffs in this class, which has been confirmed for the special case of

uniformly distributed payoffs in Engelmann (2003).

In the study at hand we investigate conditions under which a player’s expected payoff

in a mixed-strategy equilibrium of a 2 × 2 game increases or decreases with his degree of

risk aversion. Compared to Engelmann (2003) we consider also 2× 2 games with two pure

equilibria and one mixed but we always restrict players to play the mixed equilibrium.1

We make substantially less restrictive assumptions about the distribution of payoffs than in

Engelmann (2003).

Consider a game G with payoffs as in Table 1 and player 1 choosing rows and player 2

choosing columns. Note that the payoffs are understood as “material” payoffs, i.e. they are

not utility levels and hence if we introduce risk aversion or risk loving, this will not change

this payoff matrix. The players maximize expected utility, not the material payoffs. We are

looking for conditions under which the equilibrium material payoff increases or decreases

1The effects of risk preferences on the payoffs via the effect of equilibrium selection if pure strategy

equilibria are played is the case analyzed by Strobel (2001).
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with a unilateral change of risk preferences.2

[Table 1 about here]

The model follows the logic of the indirect evolutionary approach (Güth and Yaari,

1992), which considers the evolution of preferences and assumes that behavior is driven by

utility maximization, while evolution is driven by underlying material payoffs. The main

argument of the indirect evolutionary approach — that players may benefit from divergence

between the actual material payoffs and preferences — has appeared already in Schelling

(1960). Koçkesen, Ok and Sethi (2000a,b) generalized the idea of indirect evolution to a

larger class of games. Dekel, Ely and Yilankaya (forthcoming) examine the sensitivity of the

theory to the (in)observability of preferences. Heifetz, Shannon and Spiegel (forthcoming)

examine indirect evolution under very broad classes of distortions. See Samuelson (2001)

for a critical introduction to the indirect evolutionary approach.

Without loss of generality we make the following assumptions on the payoff parameters:

|a− b| > |c− d| and a− b > 0. We assume that G has a mixed-strategy equilibrium, which

holds if and only if sign(a − c) = sign(d − b) and sign(e − f) = sign(h − g).3 Let q and

p denote the equilibrium probabilities of player 1 to choose T and of player 2 to choose L,

respectively.

In the analysis presented in the next section, we will proceed in three steps. First, we

identify a class of games where risk aversion unambiguously increases player 1’s expected

payoff (and indeed the more risk aversion the better) for any distribution of payoffs of player

2. Second, we state a general condition on both players’ payoffs that determines whether risk

aversion or risk loving increases player 1’s expected payoff. We will see in a straightforward

2We only study the effect of risk preferences on the expected material payoffs, we cannot say anything

about the utility. Henceforth, with expected payoff we will always refer to the expected material payoffs.

3More precisely, G has only a mixed-strategy equilibrium if and only if sign(a − c) = sign(d − b) =

−sign(e − f) = −sign(h − g) = 1 and G has two pure-strategy equilibria (T, L) and (B, R) as well as a

mixed-strategy equilibrium if and only if sign(a − c) = sign(d − b) = sign(e − f) = sign(h − g) = 1. We

ignore any cases where one of the relevant differences equals zero, as these would happen only with measure

zero under general assumptions on the distribution of payoffs and would lead to degenerate mixed-strategy

equilibria.
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way that the first class is a special case where the condition for risk aversion to be beneficial

is satisfied for any combination of payoffs of player 2. Third, we will consider the special

case that the distribution of the payoffs of player 2 conditional on the payoffs of player 1 is

symmetric across rows. We show that under this assumption player 1’s ex-ante (i.e. before

payoffs are drawn) expected payoff increases with risk aversion.

The basic intuition why a change in risk preferences of player 1 changes his expected

payoff is that player 2 changes his strategy in order to keep player 1 indifferent. For example,

the attractiveness of T for player 1 can decrease relative to the attractiveness of B. In such

a case, player 2 has to increase p, by which he increases the attractiveness of T , and thus

reestablishes player 1’s indifference. The increase of the probability of player 2 choosing L

in turn increases or decreases the expected payoff of player 1, according to the conditions

described below.

The result that risk aversion can be beneficial is in contrast to the effects of risk aversion

in bargaining games. As outlined e.g. by Binmore, Rubinstein, and Wolinsky (1986), a

concave transformation of a player’s utility function, i.e. if he becomes more risk averse,

changes the Nash bargaining solution in favor of the other player. Increasing a player’s

risk aversion weakens his bargaining position because the risk of not reaching an agreement

becomes more threatening to him.

2 Analysis

In the set of games we analyze, i.e. |a − b| > |c − d|, a − b > 0, sign(a − c) = sign(d − b)

and sign(e− f) = sign(h− g), we can distinguish three classes that, as we shall see, differ

with respect to the effects of risk preferences.

1. a > c > d > b

2. a > d > c > b

3. a > d > b > c or d > a > c > b

The first crucial result is
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Lemma 1. (i) In classes 1 and 2, the equilibrium probability p that player 2 chooses L

increases in the degree of risk aversion of player 1.

(ii) In class 3, suppose that player 1 has a constant absolute risk aversion utility function

u(x) = −1
re−rx. The equilibrium probability p that player 2 chooses L increases in r, in a

neighborhood of 0.

Note that the statements in Lemma 1 depend only on the payoffs of player 1, but not

on those of player 2.

Proof. (i) Consider the mixed equilibrium for a risk-neutral player 1. Lottery LT associated

with strategy T is a mean-preserving spread of LB because LT has to have the same expected

payoff as LB to keep the player 1 indifferent and LT is a spread of LB. Hence, if player 1

were risk averse, his risk premium for LT would be larger than the risk premium for LB.

This requires that in equilibrium p is larger for a risk-averse player 1 than for a risk-neutral

one. To see this, note that if a − b > c − d > 0, then an increase of p has a larger impact

on the expected payoff for T than on that for B, while if a− b > 0 > c− d, an increase of p

will increase the expected payoff for T and decrease that for B.

The above argument generalizes to the consideration of increases in risk aversion, i.e.

considering utility functions u(·) and v(·), where the latter is more risk averse than the

former, so v(·) = T (u(·)) with T (·) concave. This is equivalent to comparing a risk-neutral

player with a risk-averse player with utility function T (·) who both face a monetary payoff

matrix with u(a), u(b), u(c), u(d). The same argument as above yields that p is higher for

v(·) than for u(·). Note that the classification into the three classes is preserved under

the transformation u(·) because u(·) is increasing. The latter argument obviously applies

equally for risk loving preferences, completing the proof.

(ii) The proof consists of an explicit computation of the sign of limr→0
dp
dr (r). Player

1 is indifferent between the two strategies in a mixed equilibrium which implies p(r) =
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u(d)−u(b)
u(a)−u(b)+u(d)−u(c) . The sign of the derivative dp

dr is therefore the same as the sign of

(
ur(d)−ur(b)

)(
u(a)−u(b)+u(d)−u(c)

)
−

(
u(d)−u(b)

)(
ur(a)−ur(b)+ur(d)−ur(c)

)
. (1)

The derivative of the utility function is ur(x) = 1
r2 e−rx + x

r e−rx = −1
ru(x) − xu(x). By

substituting the derivative ur(x) into (1) we get that the sign of dp
dr (r) is equal to the sign of

−[du(d)− bu(b)][u(a)−u(b)+u(d)−u(c)]+ [u(d)−u(b)][au(a)− bu(b)+du(d)− cu(c)]. (2)

We find the sign of (2) for small r with the help of the Taylor expansion of e−rx with

respect to r around r = 0:

u(x; r) = −1
r
e−rx = −1

r
(1− rx +

1
2
r2x2 + o(r3)).

Using this expansion we can rewrite (2) as

= 0
1
r2

+ 0
1
r

+ (a− c)(d− b)(a− b− (d− c)) + o(r). (3)

The terms o( 1
r2 ) and o(1

r ) have cancelled out and the constant term is positive by the

assumption that sign(a − c) = sign(d − b) and (a − b) > |d − c|. Hence (3) is positive for

sufficiently small r, and therefore the sign of the derivative dp
dr (r) is positive as well in a

neighborhood of 0.

The reason for the weaker result in class 3 compared to classes 1 and 2 is that LT is not

a spread of LB in class 3. In contrast to classes 1 and 2, the interval [c, d] is not contained

in [a, b], so the impact of a change in risk preferences may be larger for the lottery LB

associated with the smaller interval. Yet, as r → 0, this problem disappears.

Now for a > c > d > b it is obvious that independent of his own equilibrium strategy

and hence independent of player 2’s payoffs, player 1 always prefers that player 2 chooses L

and hence his expected payoff increases in p. We conclude

Proposition 1. In any mixed-strategy equilibrium of a 2× 2 game, if a > c > d > b (class

1) then the expected payoff of player 1 increases in his degree of risk aversion.

7



Note that Proposition 1 is independent of the payoffs of player 2 as long as they satisfy

the necessary condition for the existence of a mixed-strategy equilibrium. This result has

an interesting implication. Whenever player 1 has a strict preference about the choice of

player 2, i.e. independent of his own choice, he prefers player 2 to choose the same strategy,

he will always benefit from being risk averse. The logic is that in order to keep player 1

indifferent, player 2 has to “sweeten” the action of player 1 with higher risk by increasing

the probability for the strategy that player 1 wants him to choose.

We now turn to the case when player 1 does not have a strict preference over player

2’s choice, i.e. a − b > 0 > c − d. According to Lemma 1, the probability of player 2 to

choose L increases in the degree of risk aversion of player 1, at least in a neighborhood of

risk neutrality, which increases player 1’s expected payoff if he chooses T , but lowers it if

he chooses B. Hence the overall effect depends on his equilibrium (mixed) strategy which

in turn depends on the payoffs of player 2. We find

Lemma 2. The expected payoff of player 1 in the mixed equilibrium increases in the prob-

ability p that player 2 chooses L if and only if 4

a− b >
e− f

h− g
(d− c). (4)

Proof. The proof is straightforward. Let q be the equilibrium probability of player 1 to

choose T. Player 2 is indifferent between L and R in the mixed equilibrium, hence qe +

(1 − q)g = qf + (1 − q)h or equivalently 1−q
q = e−f

h−g . The expected payoff of player 1 in

equilibrium is

q(pa + (1− p)b) + (1− q)(pc + (1− p)d)

= pq(a− b) + p(1− q)(c− d) + qb + (1− q)d.

This is increasing in p if and only if q(a − b) + (1 − q)(c − d) > 0 or equivalently (a − b) >

1−q
q (d− c) = e−f

h−g (d− c).

4We assume here that player 2 is risk neutral. In case player 2 is risk averse or risk loving, we have to

replace his material payoffs e, f, g, h with his utility payoffs u2(e), u2(f), u2(g), u2(h) in condition (4).
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Combining Lemmas 1 and 2 immediately yields

Proposition 2. (a) (i) In class 2, the expected payoff of player 1 in the mixed equilibrium

increases in his degree of risk aversion if and only if (4) holds.

(ii) In particular, in class 2, the expected payoff of player 1 increases if he becomes more

risk loving if and only if the inverse of (4) holds.

(b) (i) In class 3, for constant absolute risk aversion, the expected payoff of player 1 in

the mixed equilibrium increases in his degree of risk aversion r in a neighborhood of 0, if

and only if (4) holds.

(ii) In particular, in class 3, for constant absolute risk aversion, player 1 benefits from

at least small degrees of risk loving if and only if the inverse of (4) holds.

Obviously, Proposition 1 is a corollary of Proposition 2 since under the assumptions of

Proposition 1 the left-hand side of (4) is positive and the right-hand side is negative. Thus

(4) is always satisfied in class 1. For classes 2 and 3, d − c > 0, so we can rewrite (4) as
a−b
d−c > e−f

h−g . Considering a−b and d−c the risk of decisions T and B for player 1, we can call
a−b
d−c the relative risk of player 1’s strategies. Similarly, e− f and h− g are the incentives for

player 2 to choose L instead of R, conditional on player 1 choosing T and B, respectively.

Hence we can call e−f
h−g the relative incentive for player 2. Thus in addition to class 1 where

player 1 has a strict preference for player 2’s choice, he benefits from risk aversion if his

relative risk is larger than the relative incentives of player 2. Put differently, if for choice

T relative to B the decision of player 2 matters more to player 1 than to player 2 himself,

then the expected payoff of player 1 is increasing in his degree of risk aversion, at least in a

neighborhood of 0.

Condition (4) holds for quite a large range of games. For example, if we assume that the

payoffs {a, b, c, d, e, f, g, h} are ex-ante all independently drawn from the same distribution

(and then restrict attention to the games that satisfy our assumptions), then for some of

the games d− c < 0, so (4) holds trivially. Of the other games, for half of them e−f
h−g < 1 and
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hence (4) holds by assumption on the payoffs of player 1.5 Finally, among the remaining

games, (4) would still hold for half of the games.6 Hence in the case of payoffs independently

drawn from the same distribution, in more than 3 out of 4 games, the expected payoff of

player 1 increases in his degree of risk aversion (in some of these only in a neighborhood of 0,

but in many globally), whereas only in the remaining games it decreases. As an illustrative

example, we formulate a simple condition on the payoff distribution that assures that an

increase in the degree of risk aversion increases the expected payoff over the whole class of

games:

Result 1. Suppose that the distribution of player 2’s payoff conditional on player 1’s payoff

is symmetric across rows, i.e. games G =

L R

T a, e b, f

B c, g d, h

and G′ =

L R

T a, g b, h

B c, e d, f

have the same density. Then across the class of all games with a mixed strategy equilibrium

(or across any subclass of games consisting of such pairs of games), the ex-ante (i.e. before

the game is drawn) expected payoff of player 1 increases in his degree of risk aversion in a

neighborhood of 0.7,8

Proof. Consider again that in the mixed equilibrium of G, player 1 will choose T with

probability q such that qe+(1−q)g = qf +(1−q)h. Since G′ is derived from G by switching

player 2’s payoffs across rows, in the equilibrium of G′ player 1 will choose T with probability

1 − q. Games G and G′ have the same density and the probability p of player 2 choosing

5Recall that e−f and h−g have the same sign by the assumption of the existence of the mixed equilibrium.

The probability that the numerator is greater than the denominator is 1
2

because they are i.i.d.

6 a−b
d−c

and e−f
h−g

now have the same condition imposed, they are both > 1. Thus their conditional distrib-

utions are the same, hence the probability that one fraction is greater than the other is 1
2
.

7In classes 1 and 2 the payoff will again increase in the degree of risk aversion throughout.

8Note that if G only has a mixed-strategy equilibrium, then G′ has two pure-strategy equilibria as well as

a mixed strategy equilibrium and vice versa. Remember that we assume that the mixed strategy equilibrium

will be played whenever it exists.
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L is the same in both games as it depends on the payoffs of player 1. Hence the expected

payoff for player 1 across both games is

q(pa + (1− p)b) + (1− q)(pc + (1− p)d) + (1− q)(pa + (1− p)b) + q(pc + (1− p)d)

= pa + (1− p)b + pc + (1− p)d

= b + d + p[(a− b)− (d− c)].

This increases in p because by assumption a − b > |d − c|. By Lemma 1, hence player 1’s

overall expected payoff for G and G′ together increases in his degree of risk aversion (in class

3 at least in a neighborhood of 0). Since the class of all games that have a mixed-strategy

equilibrium falls into such pairs of games, the same holds for the ex-ante expected payoff

across this whole class (or any subclass consisting of such pairs of games) if the assumption

on the distribution of payoffs holds.

3 Concluding Remarks

Consider player 1 facing a constant environment that is captured by a game of class 1 or

a game of class 2 where (4) holds. Then the population of players 1 would evolve towards

ever increasing risk aversion, while if the interaction is described by a game of class 2 where

the inverse of (4) holds, the population would evolve towards ever increasing risk loving. In

interactions captured by a game of class 3, evolution would drive the result at least towards

some degree of risk aversion or risk loving (depending on whether (4) or its inverse holds.)

In our analysis, a change in risk preferences can be beneficial because it triggers a

beneficial change in the behavior of the opponent. A similar logic is underlying the indirect

evolutionary analysis of other types of preferences. For example, Fershtman and Weiss

(1998a) consider a case where it is beneficial to have an intrinsic motivation to increase an

action when there are strategic complementarities and when the opponent’s high action is

beneficial. Because of the strategic complementarities, the opponent increases his action

in response to the player’s anticipated increase of his action. The analogical logic holds if

there are strategic substitutes and a player benefits from a low action of the opponent. The
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analysis (see Fershtman and Weiss (1998b), for a more general treatment) can be divided into

two steps. First, an increase in the intrinsic motivation may lead to an increase or decrease

of his opponent’s action (depending on whether the game exhibits strategic complements

or strategic substitutes). Second, an increase of his opponent’s action can be beneficial or

detrimental to a player’s payoff. The overall effect of an increase of the intrinsic motivation

results from the combination of both steps.

Our analysis has the same structure. For comparison, we adopt (somewhat arbitrarily)

a terminology that T and L are high and B and R low actions. A shift of probability from

the low to the high action is denoted as an increase of a player’s action. Lemma 1 then

specifies the conditions under which player 2 increases his action, and Lemma 2 specifies

whether this increase is beneficial. The second step, examining whether a player profits

from a high action of his opponent, is entirely identical in the Fershtman and Weiss (1998b)

analysis and ours. Thus our Lemma 2 is identical to their condition (and the one identified

by Heifetz, Shannon and Spiegel, forthcoming). Our results differ from theirs in the first

step. The notable difference stems from the fact that we deal with mixed equilibria. Under

the conditions of Lemma 1, an increase of his risk aversion would induce player 1 to decrease

his action if player 2 left his strategy unchanged. In Fershtman and Weiss player 2 changes

his action because he anticipates this change in the behavior of player 1. By contrast, in

our model player 2 increases his action in order to keep the player 1’s behavior unchanged,

which is necessary in a mixed equilibrium. Consequently, his own payoffs are irrelevant in

determining player 2’s reaction in our model, while they matter in Fershtman, Weiss (1998a,

1998b).
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L R

T a, e b, f

B c, g d, h

Table 1: Monetary payoffs.
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