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Abstract

T he applicability of simple adaptive algorithms for the 
active control of random noise in ventilation ducts.

The term Active Noise Control (ANC) describes the 
suppression of an unwanted sound field by the superposition 
of an antiphase field.

In general, an active control system consists of a sensing 
mechanism to detect the unwanted noise, a processing 
element to analyse the sound and produce the antiphase 
signal and a system of secondary sources to radiate the 
required antisound.

The ideal ANC system would have the ability to modify its 
own response to accommodate any changes in the environment 
in which it is placed- Such as system is known as an 
adaptive one.

This thesis is concerned with assessing the suitability of 
several different recursive algorithms for adapting digital 
controllers to control random noise within ventilation 
ducts. Algorithms for adapting both Finite Impulse Response 
(FIR) and Infinite Impulse Response (ÎIR) digital filters 
are studied.

Computer simulations are presented which directly compare 
the performance of the algorithms when used in system 
identification and when used to control adaptive systems in 
ducts. Experiments were made in ducts of varying length and 
ranging from anechoic to highly reverberant in nature.

Conclusions drawn from the simulations indicate some very 
significant savings in terms of economy of filter length 
when implementing adaptive systems within the duct.
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Chapter 1 - Introduction to Active control in ducts

1.1 Introduction to Active Noise Control

The term Active Noise Control (ANC) describes the 

suppression of an unwanted sound field by the superposition 

of an antiphase field- The idea is by no means new; the 

earliest published work in this field was conducted by an 

American called Paul Lueg ill, who proposed, developed and 

patented a system 55 years ago.

In general, an active control system consists of a sensing 

mechanism to detect the unwanted noise, a processing 

element to analyse the sound and produce the antiphase 

signal and a system of secondary sources to radiate the 

required anti sound. Over the years, many implementations of 

this idea have been explored and several review texts [2,3] 

exist which describe the state of the art up to about 1982. 

This thesis does not attempt to review general early work 

in this field in any detail but is specifically concerned 

with up to date work in active control in ventilation 

ducts, an area that has received a lot of practical 

attention in the last ten years [4,5,6,7,8,9,103.

In the case of the ventilation duct, the unwanted noise may 

be caused by machinery such as a noisy fan and will 

propagate down the duct until it reaches a termination 

where it may cause great annoyance.

The work described in this thesis is concerned with the 

simple 1 -dimensional case [6,8,113 in which the highest 

frequency propagating down the duct is below the cut-off 

frequency of the first cross mode within the duct. The 

absence of cross modes within the duct means that the 

propagating sound waves are plane waves and it therefore
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Chapter 1 - Introduction to Active control in ducts

follows that only one detector and secondary source are

required to actively control sound at the termination. It 

should be noted however that any discussion given here is 

in principle also applicable to multi channel systems which 

have an array of sensors and secondary sources; only the 1 -

dimensional situation is considered in this thesis.

Several comparatively simple systems have been developed

[4,5,63 that in previous years have been the only

practicable solution. It has been the advent of fast

digital processors such as the TMS320 series [123 and

others [13,143 that has meant that the implementation of 

far more sophisticated control systems has become a 

practicality, no longer is progress held back by the

inability to process information both fast and cheaply

enough. In the last five years there have been several

attempts to produce working ANC systems using high speed 

digital devices: Poole et. al. [83 and more recently

Eriksson [93 have produced commercially available systems 

to combat noise in duct systems.
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Chapter 1 - Introduction to Active control in ducts

1.2 The need for active control

It is important to understand the necessity for active 

control as opposed to traditional passive damping: The use 

of passive damping such as acoustic tiles and absorbent 

foam has been shown to be very effective at high 

frequencies [8 ]. However^ for efficient passive damping, the 

physical dimensions of the absorbent need to be of the 

order of the wavelength of the sound to be absorbed. It 

should be clear that at low frequencies (below 500 Hz) we 

would need large and costly passive silencers and so are 

prompted to search for a better solution. Conversely, 

active control of high frequency noise is a far less 

practicable solution since the speed with which information 

must be processed is very great.

To complement the cost saving, the use of active control as 

a solution in the ventilation duct has the practical 

advantage that it need not impede the flow of air down the 

duct as much as a passive silencer with the same 

performance - there would not be much call for a 

ventilation system that was guaranteed absolutely silent 

but did not supply any air.
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Chapter 1 - Introduction to Active control in ducts

1.3 The duct problem

It is important to appreciate fully the requirements of a 

control system for the duct and to this end the physical 

situation will be described briefly. Without loss of 

generality we can represent the primary noise source within 

the duct as an electroacoustic transducer such as a 

loudspeaker and use the electrical input to this transducer 

in our calculations. FigureCi.i) shows this conceptual 

model of the duct with the primary source, control system 

and transducers in place.

termination duct wall termination

PS

\\
LO

► Control system
Input noise

I
Monitored output

Figure 1.1 - Conceptual model of the 1 -dimensional duct

system

Page 21



Chapter 1 - Introduction to Active control in ducts

An active control system is required to detect the sound at 

the detector microphone (D) and produce a controlling 

signal from the secondary source (SS) such that (ideally) 

zero residual sound field is observed at the monitor

position M .

Let us consider the propagation of acoustic energy down 

such a duct. The duct itself may be such that the 

propagation of energy down it will be relatively loss free. 

Conversely, there could be quite significant propagation 

loss. The consequences of the differing amount of 

propagation loss in the duct will be dealt with in detail 

later in this thesis. The duct may be anecho i c or 

reverberant in that it may have terminations at its ends

that will give rise to reflections inside the duct. Again, 

the consequences of this are looked at in more detail

1 ater.

1.4 Requi rements of a controller

FigureCi.2} shows a generalized picture of the modelling 

requirements of an ANC system. The original input signal to 

the primary source passes through the transfer function % 

(between the input to primary source and the output of the 

monitor microphone) and also through Hei (between the input 

to the primary source and the output of the detector). The 

overall transfer function of the controller He on is 

specified by the requirement that it must be such as to 

cause the cancellation of any acoustic disturbance at the 

monitoring position by radiating a controlling signal 

through Hz 3 (between the input to the secondary source and
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Chapter 1 - Introduction to Active control in ducts

the output of the monitor microphone).

It is clear that in order to obtain an identicaliy zero 

residual sound field at the monitor position that the 

controller He□n should have the transfer function :

He  H^g __
(H*i)(H^3) Eq.(1.1)

We can now move on to extend this simple idea to an ANC 

system within the duct.

Input noise 
to Primary 
source PS

'Error' signal 
monitored at

H23HOI

H03

Hcon

Figure 1.2 - Modelling requirements for a general ANC

sys tern
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Chapter 1 - Introduction to Active control in ducts

1.4.1 Acoustic feedback

When the ANC system in the duct is in operation, the 

controlling signal from the secondary source will propagate 

down the duct towards the monitor where it will

destructively interfere with the primary noise as intended. 

It is inevitable however that at least part of this

controlling signal will also propagate in the reverse 

direction and will be incident on the detector microphone. 

Thus, the system incorporates feedback in the form of the 

transfer function H- i (between the input to the secondary

source and the output of the detector microphone)-

Figurell.3) shows the more complete modelling requirements 

for the ANC system.
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Chapter i introduction to Active control in ducts

It has been shown [15] thab, in the presence of

feedback, the ideal control 1er has the transfer function 

given by :

 Eq.d.2)

Input noise 
to Primary 
source PS

Acoustic feedback 
path H21

H23HOI

H03

H21

'Error' signal 
monitored at 
M

Controller transfer 
function He

Figure 1.3 - Modelling requirements taking into account the 

acoustic feedback between secondary source (SS) and

detector (D ).
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Chapter 1 Introduction to Active control in ducts

1.4.2 Adaptivitv

Environmental changes in parameters such as temperature and 

air flow rate will inevitably cause changes in the transfer 

functions 3 » i and 3 , This in turn means that the

performance of the ANC system will be adversely affected 

unless the controller is adjusted to suit the new duct. It 

is at this point that we can begin to introduce the concept 

of adaptivity of such a system. The ideal ANC system has 

the ability to compensate for such changes in the duct 

characteristics by continually adjusting the transfer 

function He an to optimise performance. A system with this 

ability to learn is known as an adaptive system. Further, 

the ideal system would, in theory at least, be able to 

converge to the optimum controller starting from complete 

ignorance of the environment in which it is placed, thus 

being able to cope with a wide range of circumstances. 

There have been several attempts at implementing adaptive 

ANC systems such as those detailed in [15,16] and more 

recently those described by Poole et. al. £8 ] and Eriksson 

C9 ], the latter two being discussed in more detail in 

chapter 3. In the following chapter we will see how the 

various forms of controller can be implemented as digital 

filters and will discuss the algorithms by which these 

control 1 ers can be made adaptive.
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Chapter 2  - Adaptive digital filtering

2.1 Introduction to digital filters

In recent years digital filters have been used to implement 

controllers in ANC systems [7,8,9,10,15,17,18,19]. Adaptive 

digital filtering has been a subject of research since the 

early seventies [2 0 ] and has advanced tremendously with the 

new processor technology, it is a widely publicized subject 

and many tutorial texts exist [21,22]. Unlike their 

analogue counterparts, digital filters are based on the 

simple operations of addition and multiplication and as 

such have several distinct advantages over conventional 

analogue filters :

(i) they can be implemented with software running on a 

general purpose computer and thus are relatively easy 

to build and test;

(ii) they do not suffer from drift as do analogue filters;

(iii) they are easier to modify than analogue filters;

(iv) they are far easier to understand than analogue 

f i 1 ters;

Analogue and digital filters differ in the nature of the 

input and output signals. An analogue filter operates on 

analogue signals whereas a digital filter processes and 

generates digital data. The important difference between 

these two forms of data is that an analogue signal has a 

continuous independent variable and a digital signal has a 

discrete independent variable. In the analogue world we may 

describe a signal  ̂s' as being 'a function of time* in 

which case we would usually refer to it symbolically as 

s(t). In the digital case we would refer to the signal as
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Chapter 2 - Adaptive digital filtering

s(k) where the symbol k is the discrete time independent 

variable and has integer values 0,1,2....etc. A general 

discussion of digital filtering is given by, for example, 

Williams C23].
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Chapter 2 - Adaptive digital filtering

2.2 Non recursive digital filters

Working in the time domain, the output generated by a non 

recursive digital transversal filter is simply the discrete 

time convolution of the input signal and the digital

impulse response of the filter. Thus if we denote the

discrete time filter input as

x(k) = X ( 0 ) , X ( 1 ) , X (2)........ etc

and the digital filter impulse response as;

â  = a® , a I , a^....... â  _ i

for an (N tap) filter. This impulse response is referred to 

as the Tap weights of the filter.

The filter output is then denoted;

y<k) = y ( 0 ) , y ( 1 ) , y ( 2)........ etc

The filter output at discrete time interval n is expressed 

as foilows :
N - t

y(n) = z aix(n-i) .... Eq.(2.1)

Thus the output is the weighted sum of the current input

and the N-1 previous inputs.

Such a filter has a Finite duration Impulse Response and is 

referred to as an FIR filter.

Using the standard nomenclature of the symbol z"^

representing a one sample delay, we can express the

equation for the z-transform of an FIR filter as the 

following polynomial in z :
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Chapter 2 - Adaptive digital filtering

H ( z - i )  = ac, + aiZ-i + a^z- - - 1 z C N - I Eq(2.2)

for an N-tap filter.

The equation H(z~^ )=0 has roots (of z ) for which the 

transfer function is identically zero. Thus FIR filters are 

said to have only zeroes in their transfer functions and 

are often referred to as el! zero filters- Figure{2.1> 

shows a diagrammatic representation of an all zero filter.

_ 1
z - l

1 1
z ' z ^ z 1

a N-1)

Output 
^ y(n)

x(n) A ■*» y(n)

Figure 2.1 - A time domain all zero digital filter

2-3 Recursive digital filters

The output of an N-by-M recursive digital filter is the 

weighted sum of the current and the N-1 previous inputs
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Chapter 2 - Adaptive digital filtering

added to the weighted sum of the previous M-1 outputs.

Thus in the same notation as before we can express the 

output of such a filter as :

N - t M - I
y(n) = E aiX(n-i) + z biy(n-j) .

A filter of this form has an Infinite duration Impulse 

Response and is referred as an IIR filter. Taking the z- 

transform of this equation and denoting.

V i l M =
and rearranging leads to :

uz.,-1'1 _ + aiZ-i + azZ-: + . . a , N - i , z - ' " - ' '  o ^H { Z  ‘ J -  7 ----------- --------------- ;--------------------- ;------------ ---------------------- --- . . . . t q ( z . 4 J1 - biZ-i - bx z-- -..b,M-i,z-'"-i'

Equating the denominator of Equation 2.4 to zero and 

f inding the roots gives values of z that yield infinite 

values of H(z"‘), while doing the same for the numerator 

gives values of z for which H(z"‘) is identically zero. 

Thus an IIR filter is said to have poles as well as zeroes 

in its transfer function and is often called a pole/zero 

filter. Figure{2.2> shows a representation of a filter of 

this form.
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In p u t
x(n)

;i(N-l)

b(M-l)

Output 
y (n ) .

x(n) y(n)

Figure 2.2 - A time domain pole/zero digital filter 

2-4 Filter economy

FIR filters are inherently stable and perform very well in 

many signal processing applications [20,213. However, there 

are instances where filter length required makes using an 

FIR filter an expensive and uneconomical method. IIR 

filters can be more economical in that by having just a few 

recursive taps we can obtain an overall impulse response 

which is much longer than the length of the filter itself.
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Thus, to synthesize an IIR impulse response can be far more 

economical in terms of hardware and computation time. It 

will be shown later in this thesis that, although it may be 

possible to base a duct ANC system on a single FIR filter, 

it would be far more economical to use IIR filters for the 

job.

Both FIR and IIR filters can be realised in either the 

frequency domain or the time domain. It has been shown [24] 

that to implement in the time domain requires less 

computation and often suffices for many applications [25] 

where the more advanced features of a frequency domain 

filter [24] are not needed. This thesis is concerned with 

use of digital filters operating in the time domain only, 

although any theory used or discussed is in principle 

equally applicable to frequency domain implementations.
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2.5 Adaptive digital filters

The design of a digital filter to perform a particular task 

requires a priori information about the data to be 

processed. The filter is optimum only when the statistical 

characteristics of the input data match the a priori 

information on which the design of the filter is based. An 

adaptive filter is one that is self designing in that it 

relies for its operation on a recursive algorithm [203, 

which makes it possible for the filter to perform 

satisfactorily in an environment where a complete knowledge 

of the signal characteristics is not available. Such a

filter begins with a set of initial conditions and is able 

to converge towards the optimum solution in some 

statistical sense. Further, in a non-stationary environment 

such a filter offers tracking capabilities, whereby it can 

track time variations in the statistics of the input and 

(as we will see later) the output, provided that these

variations are sufficiently slow. A wide variety of 

adaptive algorithms for both FIR and IIR filters have been 

developed in the last fifteen years [20,24,26,27,28,29],

although the latter (the IIR adaptive filter) is far less

well understood. The experimental work in this thesis

compares the applicability of various algorithms

[20,27,28,30] to adaptive ANC systems in ducts.

2.5.1 Adaptive filters in system identification

Let us suppose we have an unknown dynamic system and that 

we have a set of discrete time measurements, corresponding
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to the output of the system for a given (known) input. We 

assume at this point that the unknown system is linear and 

does not vary with time. It is possible to identify the 

parameters of the unknown system by analysing the input and

output data. Using very standard techniques such as least

squares polynomial fitting [73, a model of the unknown 

system can be created. The task of an adaptive filter in

such a situation, is to identify the unknown system's
ofparameters by producing a model in the forn^a filter as 

discussed in sections 2.2 and 2.3. The model filter must 

have adjustable parameters, these being progressively 

altered to converge the filter towards the ideal solution. 

This modelling situation is depicted in Figure{2.3} which 

shows an unknown system (H) being modelled by an adaptive 

filter. An error signal e(n) provides information 

concerning the discrepancy between the current transfer 

function of the adaptive filter and that of the unknown 

system, enabling the chosen algorithm to converge the 

adaptive filter by applying corrections to the individual 

filter taps. This error signal is derived from the 

difference between the filter output and the desired filter 

output d(n) (i.e the output from HU).

£(n) = d(n)-y(n)  Eq.(2.5)

It is the minimization of the mean square value of this

error signal that is often used to define the optimum 

filter. A filter defined in such a way is termed a Uiener 

[20] filter in digital signal processing terminology. Once
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the adaptive filter has converged to the Wiener solution,

an important property is observed, namely that the cross

correlation coefficient between the signals x(n) and s(n)

is zero.

This then is the basic idea for using an adaptive filter in

system identification and we will now go on to look at

various algorithms by which the adaptive filter taps can be

adjusted to produce the desired effect. So far the

discussion of adaptive algorithms has been kept very 

general, in the next section we will consider the the two 

types of filter introduced earlier i.e. FIR and IIR.

Unknown system

Input
signal
x(n)

d(n)

Error
Signal

y(n) e (n)

Adaptive
algorithm

£ (n) = d(n) - y(n)

Figure 2.3 - An adaptive filter in system identification
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2.6 FIR adaptive filters

It has been shown [20] that for an FIR filter, the Mean

Square Error (MSE) is a quadratic function of the tap

weight vector and thus has a unique minimum associated with 

it. For an a d a p t ! f i l t e r ,  a plot of the Mean Square Error 

versus tap weights is known as the error surface or

performance surface for the filter/algorithm. Clearly this 

can only be directly visualized in three dimensions for a 

two tap (coefficients â  & ai) filter, Figure{2-4} shows 

the performance surface for such an FIR filter depicting 

the characteristic bowl shape.

Lu 6.0 —

4.0 -

-4 .0

Figure 2.4 - The error surface for a two tap FIR LMS filter
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Based on a simplified version of the method of steepest 

descent for solving equations [20], Widrow proposed his 

Least Mean Squares (LMS) algorithm for use in an adaptive 

FIR filter (see Figure 2.5). Such algorithms estimate the 

gradient of the performance surface and search for a 

turning point, thus finding the point of Minimum Mean 

Square Error (MMSE).

d(n)

Error signalUnknown
system

y(n)

Adaptive filter

Convergence p. 
parameter

LMS Algorithm

Figure 2.5 - The Widrow LMS adaptive FIR filter
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The algorithm is very well understood and used in many 

adaptive filtering situations. With reference to 

Figure{2-3>, the tap update equation is shown below :

ai (n+i) = ai(n) + ue(n)x(n-i) ..... Eq.(2.6)

Where i=0 to N-1 for an N-tap filter, 

and :

ao (n),ai (n),a2 (n)....etc

is the tap weight vector on completion of the nth iteration 

of the filtering/update cycle 

a.) (n+l),ai (n+l),az (n+l)....etc

is the tap weight vector after iteration n+1

and £(n) f=d(n)-y(n)} is the error signal described in

section 2.5.1

U is the convergence parameter used to scale the size of 

the individual updates to adjust the convergence rate. 

Because of its simplicity, the Widrow LMS algorithm is very 

frequently used to implement FIR adaptive filters in real 

practical situations [8,31].

The rate of convergence of the LMS algorithm is dictated by 

the choice of the convergence parameter y and for any given 

filtering problem this parameter will be given a value that 

will yield the most rapid convergence possible without 

leading to instability during adaptation or excessive 

random wandering {mi sadjustment^ around the final value 

after convergence.

Page 39



Chapter 2 - Adaptive digital filtering

Griffiths C323 proposed a normalizing algorithm that 

adjusts the size of y inversely proportional to the power 

in the input signal x(n).

y = K / Nx‘ (h) ,,...Eq,(2.7)

where :

K is a constant

N is the number of filter taps

x" Thj is the power in the input signal x(n)

Normalization of some form or another would normally be 

used in any practical implementation of the LMS algorithm 

to ensure stability whilst maintaining an optimum 

convergence rate.

Computer simulations showing the performance of the LMS 

algorithm will be seen later in this thesis; evidence is

presented that indicates that such a filter can be used to

successfully form an ANC system for use in duct noise 

prob1ems.
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2.7 IIR adaptive filters

In section 2.4 some discussion was presented indicating the 

desirability of using IIR filters in certain situations. 

Clearly, it would be a further advantage to use an adaptive 

IIR filter in many such circumstances. However adaptive IIR 

filters exhibit some inconvenient characteristics not 

encountered in the FIR case : An IIR filter is unstable if 

it has a pole outside the unit circle on the complex z- 

plane. Thus, an adaptive IIR filter can become 

uncontrollably unstable if the movement of the poles during 

adaptation is not sufficiently governed. Further, the

performance surface of an IIR filter is generally not 

quadratic and may have local minima C333. Both these 

characteristics are serious disadvantages and consequently 

the use of adaptive IIR filters is very limited. Later,

however, we will see some very convincing experimental

evidence that in practice such adaptive filters can

usefully be used for ANC in a duct.

Figure{2.6} shows the arrangement of an IIR adaptive filter 

(with direct element A and recursive element B) in an 

adaptive filtering environment, the filter is being used to 

match the output of an unknown (pole/zero) transfer 

function Hp^ . No attempt has been made here to indicate 

exactly how the error signal e(n) is manipulated in order

to update the adaptive filter as this will be discussed 

with reference to specific algorithms in the next section. 

The reader should be aware of the fact that very little 

work has been published which directly compares the

performance of IIR adaptive algorithms and it is hoped that
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the experimental results shown in this thesis will lead to 

a greater appreciation of the similarities and differences 

between some of the simpler algorithms.

d(n)

y(n)

Input to 
adaptive 
filter

Adaptive
algorithm

Figure 2.6 - An adaptive IIR filter in system 

identi f ication

2.7.1 Simple IIR adaptive algorithms

We are concerned here with simple adaptive algorithms since 

only these can be realistically implemented in real time in 

the duct. We will begin by looking at the basic theory of 

an adaptive algorithm for U R  filters (a recursive LMS 

algorithm) as originally proposed by White C343. Recall the
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equation for the output of an IIR filter with N direct taps 

and M recursive taps (Equation 2.3);

N - 1  M - I
y(n) = z aix(n-i) + z biy(n-j) ..... Eq,(2.3)i ̂ “ I

White showed in his original publication [34] that, using 

the LMS approach, the update equations for the direct and 

recursive tap weight vectors are as follows :

at (n+1) = ai(n) + %e(n)ai(n) i=0,N-l ......Eq,(2.8)

bj (n+1) = b, (n) + %E(n)âj(n) j = l , M - l    .Eq.(2.9)

Where

N - 1
ai(n) = x(n-i) + zbi(n) cfi(n-l) i=0,N-l . . . , . Eq, (2, 10 )

8 j(n) = y(n-j) + Ebi(n) âj(n-l) j = l,M-l  Eq. (2, 11)I - 1

Figure{2.7> shows the filter arrangement for the recursive 

LMS algorithm in operation. With reference to Figure{2.7> 

it should be clear that to implement this form of the 

algorithm requires one N-point convolution and (N+M) M- 

point convolutions per iteration of the algorithm, which 

may well not be practical in many situations.
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d(n)

y(n)

x(n)

*■ a  1 (n)

P 1 (n)

P 2 (n)

Figure 2.7 - The Recursive Least Mean Square IIR adaptive

algorithm for adapting an IIR filter

2.7.1.1 Stearns* algorithm

A simplification of White's algorithm originally proposed 

by Stearns [30] is to make the assumption that :

ÛÉ1 ( n ) = z“ ‘

and

&j(n) = 5iZ-j
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for slow convergence of the algorithm.

That is to say Stearns suggested that a delayed version of 

will suffice for the vector and that a delayed

version of 3 , will suffice for the vector Si. This leads to 

a greatly simplified filter configuration as shown in 

FigureC2.8} . Figure{2.8> shows the filter arrangement when 

Stearns' algorithm is being used to adapt an IIR filter 

that is modelling an unknown (pole/zero) transfer function

Hp , .
The tap update equations are now as follows :

ai(n + l) = ai (n) + ( n ) aC n-i ) i=0,N-l , . . . . Eq- <2. 12)

bi (n+1) = b, (n) + y£(n)s(n-j) j = l,M-l .. . . .Eq. (2.13)

Where :

N - 1
s(n) = x(n) + E bi (n) a(n-j) ...........Eq. (2.14)

M - 1
S(n) = y(n) + z bj (n) S(n-j) .........  .Eq.(2.15)j - 1

The input term used to both elements (direct and recursive) 

is post filtered through the recursive filter (1/1-B) prior 

to being used in the update equations. It has been 

demonstrated [28] that in many cases, this simplified 

algorithm behaves in an almost identical manner to that of 

White. In a more recent paper [33], Stearns provides 

evidence to show that if the adaptive IIR filter has at 

least as many poles and zeroes as does the plant that it is 

trying to model (i.e. it is a sufficient filter), that in

mum

and is thus termed unimodal. Stearns' algorithm is directly

many cases, the performance surface has only one mini
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applicable to the duct ANC problem, all the necessary 

signals being available to the controller. Hsia C35i showed 

a further practical simplification to Stearns' algorithm 

that effectively eliminated the recursive convolution used 

when post filtering the input signal x(n).

d(n)

y(n)

x(n)

a  (n)

p (n-1)

a  (n-1)

Figure 2.8 - Filter configuration for the use of Stearns’

algorithm for adapting an IIR filter 
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2.7.1.2 Fan’s AFM algorithm

Stearns produced results that indicate that,when using an 

insufficient length filter, his simplified algorithm could 

not, in general, locate the global minimum on a multi-modal 

surface. In 1986 Fan [28] proposed his AFM (Adaptive 

Filtering Mode) IIR algorithm that he claims exhibits 

^global convergence irrespective of local minima^ for cases 

where an insufficient^ filter is used. In short Fan’s new 

idea was to use the output of the plant, as opposed to the 

output of the filter (Stearns), within the update equations 

of the recursive taps. This is the only difference between 

Fan’s algorithm and Stearns’ original, thus the equations 

for the AFM Algorithm look very similar to Equations 2.12 

2. 15.

ai(n+l) = ai(n) + ue(n)a(n-i) i=0,N-l .,...Eq.(3.16) 

bj (n+1) = bj (n) + ue(n)p(n-j) j=l,M-l ,..,.Eq.(2,17)

Where :

N - 1
a(n) = x(n) + Z bj(n) a(n-j) ..........Eq.(2.18)

J - 0

M - 1
g(n) = d(n) + Z bj (n) &(n-j) ..........Eq.(2.19)j - t

Where d(n) is the output from the plant as before. The only 

difference between these and Equations 2.12 2.15 is in

the expression for for 3(n) (Equation 2.19). Fan goes on to 

rigorously prove his claim for the case where his new idea 

is applied to Whites original algorithm.
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Fan's algorithm cannot be implemented directly in the duct 

ANC system since the output of the plant is not directly 

accessible. This signal must ̂ extracted from the error 

signal by subtracting away the filter output. Thus we have 

the si gnaIs E(n) and y(n) which are both directly

measurable and we would - like to obtain the signal d(n)

given that £(n)=d(n)-y(n ) as before.

The filter configuration for the use of this algorithm when

modelling an unknown (pole/zero) transfer function H,. is 

shown in Figure{2.9}.

x(n)

d(n)

y(n)

■►a (n)

P (n-1)

a  (n-1)

Figure 2-9 - Filter configuration for the use of Fan’s AFM 

algorithm in used to adapt an IIR filter.
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2.7.1.3 Feintuch's RLMS algorithm

The simplest of all IIR adaptive algorithms is the RLMS 

algorithm proposed by Feintuch [27] in 1976. Feintuch 

suggested that in practice there is no need for post 

filtering the signals x(n) and y(n) (or d(n)) and that to 

use the two signals y(n) and x(n) within the update 

equations will suffice. Thus he was suggesting that 

Equations 2.14 and 2.15 be replaced by :

a(n) = x(n) 

and

e(n) = y(n)

Feintuch’s adaptive IIR filter was then updated according 

to the equations :

at (n+1) = ai (n) + ys(n)x(n-i) for i=0 to N-1 ..... Eq.(2.20)

bj (n+1) = bj (n) + u£(n)y(n-j) for j=l to M-1 ..... Eq.(2.21)

Feintuch rece i ved heavy cr iticism at the time of his 

original publication from Widrow and McCooI for his 

analysis [36] and by Johnson and Larimore for his claim 

that the simplified algorithm can in general minimize the 

mean square error [37]. In fact, Johnson and Larimore 

demonstrated that the algorithm fails to produce global 

convergence for a case where an insufficiont. length filter 

was used, i.e. a case in which Feintuch never originally 

claimed success. Feintuch subsequently published

experimental results [38] demonstrating the successful
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performance of the algorithm for both sufficient and over 

sufficient filters.

Until Eriksson C91 in 1987, very few authors published any 

work involving the use of Feintuch's simple algorithm.

However y computer simulations presented in this thesis do 

seem to show that the algorithm can not only be used

usefully in IIR systems identification but can form the 

basis of an adaptive system for use in ANC in the duct. The

use of Feintuch’s simple algorithm when modelling an

unknown (pole/zero) transfer function H,. is shown in 

F i gure{2.10}.

x(n)

d(n)

y(n)

?-►  e (n)

Figure 2.10 - Filter configuration for the use of 

Feintuch's RLMS algorithm for adapting an IIR filter
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A development of Feintuch’s simple algorithm is that known 

as the SHARF C26] algorithm in which the error signal e(n) 

is smoothed before being used to update the IIR filter 

according to Equations 2.20 and 2.21. Howeve^ appropriate 

choice of smoothing coefficients for different applications 

is impossible without a priori knowledge of the system 

being modelled so this type of algorithm is difficult to 

apply to a general ANC problem. One further recent piece of 

research by MursiJi and Rao [39] investigates the effects of 

modifying the gradient estimation of the adaptive filter 

but once again this approach is not applicable to ANC in 

the duct where we have no advanced knowledge of the plant 

transfer function and so cannot decide as to just how to 

modify the algorithm for optimum performance.

2.8 Algorithms’ performance in system identification - 

computer simulations 1

The computer simulations presented here were performed on a 

VAX 8200 in ANSI standard FORTRAN 77 using single precision 

real arithmetic. In all the simulations, the input white 

noise signal is obtained using a random number generator 

providing a signal with a flat probability distribution 

between the levels 1.0 and -1.0. The Mean Square Error 

signal at iteration n was estimated by averaging the 

squared error signal over the previous P iterations i.e.

1 P - 1
MSE(n) =  Z e"" (n-j)

P J - Ô

Where P is typically 100. A plot of the Mean Square Error
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(MSE) versus iteration number is referred to as the 

learning curve as it demonstrates the degree to which the 

adaptive filter has learned as a function of discrete time. 

A detailed description of the simulation programs used can 

be found in Appendices I & II of this thesis.

The following simulations directly compare the performance 

of the LMS algorithm for adapting an FIR filter and 

Stearns’,Fan’s and Feintuch’s algorithms for adapting IIR 

f i1 ters.

The (system identification) performance of each of these 

algorithms was studied when adapting a filter to an IIR 

plant consisting of 2 direct taps and 2 recursive taps. The 

transfer function of the plant used in the simulations was 

that used by Johnson and Larimore [37] in their critiscism 

of Feintuch’s algorithm in 1976.

This example plant was chosen in order that the results 

presented here can be compared with the previously 

published material [27,36,37,38].

The z-transform (H(z“  ̂)) of the filter to be modelled was ;

The plant has 1 purely real zero located at at 8.0 and 2 

purely real poles located at 0.83030629 and 0.30109370 on 

the complex z—plane. The impulse response of this plant is 

shown in Figuref2.ll} which shows the filter arrangement 

used to model the plant impulse response and the typical
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decaying nature of such a overdamped Infinite Impulse

Response.

In each experiment the adaptive filter began with a zeroed 

tap weight vector and is updated using a direct and 

recursive (where applicable) convergence coefficient of 

0.01. Learning curves are given showing the Mean Square

Error as a function of iteration number throughout each

adaptation. The learning curves are plotted on a Decibel

scale and the zero dB level corresponds to Mean Square

Error level before adaptation is begun. The system is

allowed to ’run’ for 1000 iterations before adaptation is 

begun to allow time for transient effects to disappear and

for the MSE to settle at its 0 dB level. In the case of the 

LMS algorithm, a plot of the impulse response of the 

adaptive filter after adaptation is also given with each

learning curve in order that the truncation when using in­

sufficient length filters can be seen.

Feintuch's example plant n.

White
input

0.05 - 0.4z‘

1.13142-L 0.25z '̂

A

( ? ) — ► 8 (n) 
▲

y(n)

B
HR filter

Figure 2.11 - Filter arrangement used to model the impulse

response of the example IIR plant used by Johnson & 

Larimore in their criticism of Feintuch’s RLMS algorithm.
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2.8.1 FIR adaptation - performance of the LMS algorithm

Figure (2.121 shows the learning curves and associated 

final adapted impulse responses for the LMS algorithm when 

used to adapt a 4,8,16,32,64 and 128 tap FIR filter (A only 

finite) to the above plant.

It can be seen from (2.12 (i)} that when an adaptive

filter with 4 taps (i.e. the same total number of taps as 

the plant) is used to identify the plant, that the 

algorithm is unable to produce any significant attenuation 

in the MSE since the impulse response is truncated after 4 

samp 1 es.

As the length of the filter is increased, the algorithm is 

able to lower the Minimum Mean Square Error as a greater 

duration of the required impulse response can be modelled. 

The comparison of the learning curves for the algorithm for 

the various length filters is summarized in Figure(2.12 > 

which clearly shows the effects of impulse response 

truncation. The truncation of the model impulse response 

when using a 16 tap filter can clearly be seen by looking 

at Figure 2.12(Cl)-

For the case of the 128 tap filter, the algorithm is able 

to reduce the Mean Square Error (by iteration 6000) by 

around 120 dB, the learning curve levelling off at around 

this value. It should be noted that the algorithm is unable 

to converge the adaptive filter any further than this since 

at this point the rounding error level of the machine > 

^ machine on which the simulations were done has been 

reached.
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14000. 16000. 18000. 20000.

■-20

-40

5  -501 -50

- 100' -100

(iv)
-120

4000 6000 8000 10000 12000 
ICeraCion number

14000 16000 18000' 20000'

5.80E-1

(a)

-7.9@E-2-

T 5.00E-1

(b)

4.80E1 1 ■
-7.00E-2-

Figure 2.12 - Learning curves for the adaptation of a (i) 

4, (ii) 8, (iii) 16, (iv) 32, (iv) 64 and (v ) 128 tap FIR

filters in system identification of Johnson and Larimores 

example plant using the Widrow LMS algorithm
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Table I below shows a summary of the performance of the 

different length FIR filters when using the LMS algorithm 

over 12000 iterations with a convergence parameter u of 

0. 01.

Nf F is the number of taps within the filter

Nf F At t hi ( dB )

4 0
8 10

16 25
32 45
64 100
128 120

Table I - MSE attenuation (dB) versus number of filter taps 

for the LMS adaptation of an FIR filter

The results presented here demonstrate clearly the 

performance of the LMS algorithm when used in the 

particular system identification problem looked at by 

Johnson, Larimore [37] and Feintuch [38]. As such they 

provide little new information but serve to demonstrate the 

restrictions imposed by using short FIR filters when 

modelling a pole/zero plant. Further, the results provide a 

familiar introduction to the new work in which a comparison 

of the behaviour of the three IIR adaptive filter 

algorithms discussed in section 2.7.1. is made.
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2.8.2 IIR filter adaptation

The following simulations compare the performance of the 

three IIR adaptive algorithms already discussed when

adapting an IIR filter with 2 direct taps and 2 recursive 

taps (an exactly sufficient filter in this example).

Results are also presented which compare the performance of 

the the algorithms when used to adapt an over sufficient 

IIR filter with direct and recursive elements that are more 

theAeight times the required length.

Each adaptation was carried out for 100,000 iterations with 

a direct and recursive convergence parameter of 0.01. The 

filter tap weight vector is initially zeroed as with the 

LMS simulations. In the field of ANC the most important 

criterion for deciding whether or not a given algorithm is 

suitable is only that it converges the Mean Square Error. 

Thus, in the following experiments, the learning curves for 

the different algorithms are used to compare the 

performance of each. In order to compare the adaptation

behaviour of the algorithms the trajectories of the 

coordinates (on the complex z-plane) of the zero and the

poles of the adaptive filter are also given later.
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2.8.2.1 Stearns’ algorithm in system identification

Figure{2-131 shows the learning curve for the adaptation of 

a sufficient length IIR filter using Stearns* algorithm as 

discussed in section 2.7.1.1. The algorithm reduces the 

Mean Square Error by ~ 120 dB by iteration 40,000 and to 

130 dB by iteration 100,000 with the convergence parameters 

of 0,01 chosen.

5000, 10000 . I500Q 20000, 25000. 30000, 35000. 40000 45000. 50000

-20' ■-20

■-40-40'

c
■-SO-SO'

<11
3-

-803

■-100- 100'

■-120- 120'

50000 -140-140' 35000 40000 4500025000 
ReraCion number

300002000015000100005000

Figure 2.13 - Learning curve for the adaptation of an 

exactly sufficient length IIR filter using Stearns* 

adaptive algorithm, (system identification of Johnson & 

Larimore*s example plant)
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It is worth noting that since Stearns' algorithm uses the 

filter output to update the recursive element (Equations 

2.13 & 2.15), the updates will initially be unreliable as

the information used to update the filter is dominated by 

the output of the non-recursive element A. Consequently, 

the MSE may actually increase during the early stages of 

adaptation. Figure{2.14> shows the learning curve

expanded during the first 10000 iterations of the 

algorithm, demonstrating that such an increase does indeed 

occur and' that convergence only really began at about 

iteration 1800. The positions of the poles and the zero of 

this filter remain purely real throughout the adaptation 

and the final values (at iteration 100,000) are correct to 

within 6 decimal places as can be seen in^summary table in 

sect i on 2.8.3.
2000. 3000, 4000 5000 6000 7000 9000 lOOOQ

-10- 10'

c

ès -15-15'

r-20

-25

-30‘ -30

■-35-35'

10000 -40-an 5000 6000
iteration number

70003000 4000 8000 90002000

Figure 2.14 - Expanded view of the first 10000 iterations 

of the learning curve for a system identification example

using Stearns' algorithm.
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Stearns' algorithm using an over-sufficient filter

Figure {2.15a} demonstrates the increased MSE convergence 

rate obtained when using an over-sufficient filter (with

the convergence parameter unchanged) to model the example 

plant and FigureC2.15b> shows the overall cancelling of the 

excess poles and zeroes on the complex z-plane after 

convergence- The increase in the convergence rate is to be 

expected since the algorithm has been given increased

degrees of freedom with which to find a solution. The

filter used here had 16 extra poles and 16 extra zeroes all 

of which are seen to cancel out exactly by forming

pole/zero pairs when convergence to a minimum is achieved.

The final overall transfer function is thus that of the 2-

by-3 filter arrived at when using the exactly sufficient 

filter.

Note the 'dual slope' nature of the learning curve. The

results presented here suggest that this shape is

characteristc of the adaptation of over-sufficient IIR

filters

If the number of extra poles is not equal to the number of

extra zeros, it has been seen that the algorithm still

successfully arranges the excesses so that overall they

cancel out.
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Figure 2.15 - Learning curve and pole/zero plot for a 

system identification example. Adaptation of an over- 

sufficient IIR filter with 16 extra poles and 16 extra 

zeroes, using Stearns algorithm.
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2.3.2.2 Fan's algorithm in system identification

Fan's algorithm exhibits very similar behaviour to that of 

Stearns' with the exception that since Fan's algorithm uses 

the plant output to update the recursive element (Equations 

2.17 & 2.19), it does not suffer from the initial lack of

useful information' to update the filter during the early 

part of the adaptation. Thus Fan's algorithm does not cause 

the MSE to overshoot its initial value (this is illustrated 

later in section 2.8.3) . Figure (2.IS) shows the learning

curve for the algorithm. The poles and zero remained purely 

real again and the eventual values are again correct to 

within 6 decimal places.

5000 10000. 15000 20000 25000. 20000. 35000 40000 45000 50000.

-20' ■-20

■-40-40'

b -60' '-60

■-30-901

'-100- 100'

- 120'

50000 -HO-140' 4500020000 25000
IleraCion

30000 
IleraCion numoer

35000 400005000 10000 15000

Figure 2.16 - Learning curve for the adaptation of an 

exactly sufficient length I IR filter in the system 

identification of Johnson & Larimore's example plant using

Fan's AFM algorithm.
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Fan's algorithm using an over-sufficient filter

As with Stearns' algorithm when given an over-sufficient 

model. Fan's AFM algorithm is able to increase the 

convergence rate and then arrange any excess poles and 

zeroes so that their combined effects cancel out. 

Figure{2-17} shows the increased convergence rate obtained 

(a) and (b) the overall cancelling (after convergence) of 

the excess poles and zeroes on the complex z-plane.

( a ) I'lean bquare trror in db
50000.30000. 35000. 40000. 45000.5000, 10000 20000, 25000,

■-20- 20'

■-40-40'
0.50'

0.25'c
■-SO-GO'b

uj -1.00 -0.75 -0.50 -0.25
Re(z)

:
-80

-0.25'

-0.501

-0.75'
-  Zeroes
- Poles

-1.00 ■-ICO- 100'

'-120

35000' 40000 45000 50000 "^^0

- 120'

-140' 30000 
Iteration number

20000 25000150005000 10000
Iteration

Figure 2.17 - Learning curve and pole/zero plot for the 

system identification adaptation of an over-sufficient IIR 

filter with 16 extra poles and 16 extra zeroes, using Fan’s

AFM algorithm.
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2.8.2.3 Feintuch’s RLMS algorithm in system identification

Figures (2.18a & 2.18b) show the learning curve for the

case where Feintuch’s RLMS algorithm is used to update the 

IIR filter using Equations 2.20 & 2.21. Comparing Figures 

2.13, 2.16 and 2.18(a) it can be seen that Feintuch’s 

algorithm is unable to converge the MSE to quite the same 

level as do the previous two algorithms. However, the 

algorithm produces ^ 110 dB MSE reduction and therefore

performs perfectly well (the 20 dB difference is 

insignificant since the MSE has already been reduced by 

some 11 orders of magnitude). The MSE is seen to overshoot 

its initial value during the first 1,800 iterations as with 

Stearns’ algorithm (see Figure 2.14(b)) and that again 

convergence only really began at about iteration 1,800.
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Figure 2.18 - Adaptation of an exactly sufficient length 

IIR filter in the system identification of Johnson & 

Larimores example plant using Feintuch's RLMS algorithm.
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Feintuch's RLMS algorithm using an over-sufficient filter.

Figure(2.19} shows the convergence of the RLMS algorithm 

when used , to adapt an exactly sufficient filter and one 

with 16 extra poles and zeroes. It is clear that again, the 

RLMS algorithm is able to utilise the extra degrees of 

freedom in order to speed up convergence, but will 

thereafter arrange the poles and zeros so as to cancel out 

the excesses. Note the dual slope nature of the curve 

again.

40000, 45000, 5000020000, 25000. 30000, 35000,5000 10000, 15000,

Im(z)
1.00]

-20- 20"

■-40-40'
0.50'

c 0.25
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-1.00 -0.75 -0.50 -0.25Cl Rg (z )
-0.25' ■-80
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■-120- 120'
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Figure 2.19 - Learning curve and pole/zero plot for the 

system identification adaptation of an over-sufficient IIR 

filter with 16 extra poles and 16 extra zeroes, using 

Feintuch's RLMS algorithm.
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2.8.3 Summary of results for IIR system identification

Table II below shows a summary of the MSE attenuation and 

location of the final poles and zero values obtained after

100,000 iterations of each algorithm with both direct and 

recursive convergence coefficients of 0.01 with a 

sufficient length filter.

Attn ÎS the MSE Attenuation in dB

2 is the real part of the position of the final zero

Pi & P2 are the real parts of the positions of the final

po 1 es

ALGORITHM A r T N ( d B ) Z Pi Pz

Stearns’ 130 8.00000 0.83030633 0.3010934
Fan ’ s 130 8.00000 0.83030632 0.3010934
Fe i ntuch’s 110 8.00000 0.83030749 0.3010901

P 1 ant 8.00000 0.83030629 0.3010937

Table II - Final zero and poles of IIR adaptive filter 

after 100,000 iterations using Stearns’, Fan’s and 

Feintuch’s algorithms.

The final poles and zero arrived at by the three algorithms 

can be compared with the correct plant values above.

The results show that Stearns’ and Fan’s algorithms are 

capable of about 1 order of magnitude higher accuracy than 

is Feintuch’s simplified method. This difference may often 

be insignificant.

The conclusion drawn is that the further expense (in terms 

of complexity) of using Stearns’ or Fan’s methods is only 

justified in this particular example if very high accuracy
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is demanded. Feintuch’s algorithm has performed very well, 

in contrast to previous authors’ published comments and 

results [36,37].

The three algorithms understandably behave differently 

during the early stages of adaptation as can be seen in 

Figure{2-20} in which the three learning curves for the 

first 10000 iterations are superimposed: (a) Feintuch’s

RLMS algorithm, (b) Stearns’ algorithm and (c) Fan’s AFM 

algorithm.

Figure[2.21b) shows the trajectories of the real part of 

the poles showing convergence to 0.3010 and 0.8303 and 

showing very clearly the difference in convergence rate of 

the three algorithms. The zero trajectories are not shown 

since they conatain no useful new information.

Results have shown that all three algorithms are able to 

make good use of any over-sufficiency in the model filter 

in speeding up convergence. All three algorithms are 

equally successful at cancelling out any excess poles and 

zeroes.
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Figure 2.20 - First 10000 iterations of the learning curves 

for the three simple IIR adaptive algorithms in a system 

identification example superimposed to highlight the 

differences in convergence behaviour, (a) Feintuch’s RLMS 

(b) Stearns’ algorithm <c) Fan’s AFM algorithm
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Figure 2.21 - Pole trajectories for the three simple IIR 

adaptive algorithms in system identification superimposed 

to highlight the differences in convergence behaviour, (a) 

Feintuch’s RLMS and (b) Stearns’ and Fan’s algorithms

indistinguishab1e
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2.9 Error compensation

In many situations it may not be possible to sample signals 

directly at the summer (see Figure {2.22}). Instead the 

residual error signal may have to be monitored after it has 

passed through a further error plant. The eventual error 

signal £’(n) used by the algorithm will be incorrect unless 

modified to account for the presence of the error plant. 

This can be remedied by the use of a widely used technique 

known as error compensation [8,9]. Figure{2.22> shows a 

situation where the adaptive filter is faced with having to 

use an error signal that has passed through a transfer 

function (error plant) Basically the error plant can be

compensated for in one of two ways :

i) inverse modelling

ii) direct modelling

Both of these techniques are well understood and are 

covered fully in tutorial texts on the subject C20]. In 

this thesis the new simulations demonstrate some surprising 

results concerning the use of error compensation that 

have not been published before.
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Input
signal
x(n)

Unknown system

d(n) Error plant

E ( n )

y(n)

Signal

Adaptive filter E (n)

Figure 2-22 - System identification with an unavoidable

'error plant'

2.9.1 Inverse modelling

This involves placing a further filter in cascade with the 

error plant that is the best fit to the inverse of the 

error plant (H~‘ ^). The inverse model wi11 have poles at 

the locations of the zeroes of the error plant and zeroes 

at the locations of the poles of the error plant. Thus the 

transfer function of the error plant in cascade with the
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inverse model will be unity. It has been shown however^ [20]

that if the error plant is non-minimum phase (i.e. it has

zeroes outside the unit circle on the complex z-plane) the 

inverse model will need to have poles outside the unit 

circle. If the filter is causal it will be unstable : Hence 

it must be non-causal to maintain overall stability of the 

cascaded pair. It is therefore unrealisable. However, 

Widrow demonstrates that an adequate stable causal inverse 

may be obtained by making the whole error system 

approximate a pure delay.

The delayed inverse approach has been shown to perform well 

in practical situations C83. When using an LMS approach to 

adapt a filter using this delayed error signal £’’(n) is 

obtained by Equation 2.23 (for a Q-tap error plant model)

where the Ci are the taps of the delayed inverse model. The

input to the original adaptive filter is then 

correspondingly delayed and is then used to update the tap 

weights according to Equation 2.6 the use of this method of 

compensation has been demonstrated by Poole et. al. [8] .

Figure{2.231 shows the filter arrangement for this type of 

compensât i on.

Q  - 1
€'*(n) = E Cl e’(n-i-k)  Equ.(2.23)

Where k is the number of samples delay in the delayed 

inverse mode 1.
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Unknown system

cl(n) Error plane
Input
signal
x(n) e(n )

y(n)

Signal 

e (n)Adaptive filter

Delay

Delay

Inverse o f  error plant

Figure 2.23 - Error plant compensation using the inverse

modelling technique.

2.9.2 Direct modelling

This involves another filter whose transfer function is the 

best estimate (H’^) of the error plant H*. The input signal 

x(n) is post filtered through the model of the error plant 

to produce the signal x’Cn) (as in Equation 2.25) that is 

used to update the filter taps using Equation 2.24).
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ai(n+1) = at (n) + us'(n)x'(n-i)  Eq.(2.24)

Where :

N -  1

x'(n) = z CiX(n-i) ..... Eq.(2.25)

The vector ĉ  = Ct , C2 , . etc

is a copy of the tap weight vector of the error plant. The 

output of this further filter is then used as the input to 

any adaptive algorithm being used as shown for the LMS 

algorithm in figure{2.24}. Direct modelling is used to 

compensate for the error plant in all the simulation work 

presented in this thesis. In the following computer 

simulations of the use of direct error compensation, a both 

new and surprising result is demonstrated; under certain 

circumstances it is shown that it is advantageous to 

deliberately use an inadequate model of the error plant.

Page 75



Chapter 2 - Adaptive digital filtering

Unknown system

Input
signal
x(n)

d(n) Error plant

He
e (n)

y(n)

Adaptive filter

Estimate o f the 
error plant

Figure 2.24 - Error plant compensation using the direct

modelling technique.
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2.10 The effects of direct error compensation - computer 

simulations 2

Results presented in this section demonstrate that when 

using the direct error compensation technique, using an

inadequate model of the error plant can actually improve 

the performance of an adaptive filter.

Any adaptive ANC system used in a duct will need to use

some form of error compensation to take account of the 

error plant 3 - It is therfore necessary to investigate

the effects of such an error plant on the operation of the 

simple adaptive algorithms discussed in sections 2 . 6  and 

2.7.

The following computer simulations demonstrate the 

performance of the LMS approach when adapting a filter 

using direct error compensation as described in 2.9.2. 

Simulations are presented using the same example plant as 

given in 2 . 8  with the addition of an error plant in the 

form of both an FIR filter and and I IR filter. The

behaviour of the FIR LMS algorithm when used to adapt an

FIR filter, and the three IIR adaptive algorithms already 

discussed when used to adapt IIR filters, are studied.
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2.10.1 FIR adaptation using direct compensation for an FIR 

error plant

Using the filter arrangement shown in Figure{2.24> with a

128 tap FIR filter (A), the performance of the LMS

algorithm combined with direct error compensation was

investi gated.

In this particular example, the error plant was chosen to

have the form of a pure delay of 0,96 and 192 samples.

Figure{2.25> shows the three learning curves for the LMS 

algorithm (i) no error plant, (ii) 96 samples delay and

(iii) 192 samples The results indicate clearly that when

using the direct error compensation method, for the error

plant in question consisting of pure delay, that the LMS

algorithm performs well, producing again « 120 dB MSE

attenuation in all three cases. It is worth noticing the

effect of the longer error plant on the convergence rate of 

the algorithm.

The above results demonstrate the effectiveness of direct

error compensation as will be seen later in the simulations 

made for a duct ANC system.
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Figure 2.25 - Learning curves for the LMS algorithm 

adapting a 128 point FIR filter with an error plant 

consisting of (i) 0, (ii) 96, (iii) 192 step delays and 

using direct error compensation.
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2.10.2 FIR adaptation using direct compensation for an IIR 

error plant

Figure 2.26 shows the filter arrangement used to simulate 

the behaviour of the LMS algorithm in adapting a 128 tap 

FIR filter with the error plant having the form of an IIR 

filter. The error plant itself was chosen to have an IIR 

impulse response such that :

Where po is zero, pi is unity, qi is zero and qz is varied 

to alter the effective duration of the impulse response of 

the error plant.

Error plant 

He
d(n)

y(n)FIR filter

xfn) e (n)

Estimate of 

He

Figure 2.26 - Filter arrangement to examine the behaviour 

of the FIR LMS algorithm when use with direct compensation

for an IIR error plant.
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2.10.3 Inadequate compensation - improved performance 

The compensation filter Ht and would ideally be an exact 

copy of the error plant model Hs (according to text book 

theory). However, if the recursive element of Ĥ  is 

omitted, i.e. there is inadequate compensation, the LMS 

algorithm actually performs better in that, for a given 

convergence parameter, the rate of convergence is

i ncreased.

The learning curves in Figure 2.27 demonstrate the combined 

effects of increasing the length of the error plant itself 

and using both complete and inadequate compensation. 

Figure{2.27(i)> shows the learning curves for the algorithm 

when the error plant is comparatively short (with qs=0.4), 

it is easy to see that when using the inadequate 

compensation technique (b), that the algorithm converges

some 5,000 iterations earlier than when the full 

compensation is used (a). The improvement can only 

reasonably be explained in terms of reducing the amplitude 

of oscillation of the mean square of the signal x’(n) used 

to adapt the filter and thus similar effects would be 

expected if the convergence parameter were reduced a small 

amount. The important point to note is that rather than

simply reducing the convergence parameter to remedy any 

instability, it would be a far more desirable practical 

solution to remove completely the recursive part of the 

error compensation thus significantly reducing the work 

load on the digital controller used.
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It is worth noting that the initial convergence is in fact 

slower when using inadequate compensation since the two 

learning curves cross over at about iteration 4,000-

The improvement in performance when using the inadequate 

compensation technique is very marked in Figure{2.27 (ii)} 

where the actual error plant is made longer (q2=0.7). In 

this case the filter converges 10,000 iterations earlier 

when using the new inadequate technique (b). Again, the 

learning curves cross and the additional effect of

increased mi sadjustment when using the inadequate 

compensât ion can be seen. An increase in mi sad jus tment is 

of course to be expected since the algorithm has less 

detailed information with which to adapt the filter - the 

actual increase in mi sadjustment is in fact insignificant 

since it is of the order of ± 1 dB at around -120 dB.

This finding is a very important one since it means that 

the computation necessary to compensate for a long error 

plant (as in the highly reverberant duct) may well in fact 

be the same as that necessary for the anechoic duct!
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Figure 2-27 - Comparison of convergence of an FIR filter 

using the LMS algorithm (for 'full' and 'inadequate' error 

compensation) with (i) a short error plant and 

(ii) a long error plant
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2.10.4 IIR adaptation using direct error compensation

The effects (on the FIR LMS algorithm) of the direct error 

compensation method have been shown in sections 2.10.1 and 

2-10.2. In the light of the unexpected results obtained 

when using an inadequate error path model, it is certainly 

worth investigating the use of the LMS approach in an llR 

adaptation algorithm to the same depth.

Figure 2.28 shows the filter arrangement used to 

investigate the effects of direct error compensation on the 

adaptation of an IIR filter. The arrangement shown is 

specific to Feintuch's RLMS algorithm.

Again, the compensation filters Ht and Hu would ideally be 

exact copies of the error plant model Hs. However, it is 

shown in Figure 2.29 that, (when compensating for an IIR 

error plant) if the recursive elements of both Ht and of Hu 

are omitted i.e. there is inadequate compensation, that the 

RLMS algorithm also performs better in that, for a given 

convergence parameter, the rate of convergence is 

increased.
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Error plant 

He
d(n)

y(n)

E (n)

Estimate o f  

H e
HuEstimate o f 

He

Figure 2.28 - Filter arrangement used to investigate the 

effects of direct error plant compensation on the Feintuch 

RLMS algorithm for adapting an IIR filter.

2.10.4.1 RLMS algorithm (FIR error plant)

Figure{2.29> shows learning curves for the case where 

Feintuch’s RLMS algorithm is used to adapt an IIR filter 

with 2 direct taps and 3 recursive taps and with an error 

plant consisting of (a) 48 and (b) 57 sample delays. The 

results show that for the case of the 57 sample delay
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(b), the learning curve is very ’spikey’ due to increased 

mi sadjustment and it was that increasing the delay

further resulted in the algorithm eventually causing the 

MSE to blow up. For the case of the 48 sample delay (a), 

the algorithm produces convergence but again there is a 

marked increase in mi sad justment and thus the convergence 

is slower than when no error plant is present. It has been 

shown [20] that a long error plant causes larger

misadjustment within the LMS approach and the effects seen 

here are to prevent convergence for the case where the 

error plant consisted of more than 57 sample delays.

Further increase in the duration of the impulse response of 

the error plant results in the failure of the LMS algorithm 

to converge the filter.
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Figure 2.29 - Comparison of convergence of an IIR filter 

using Feintuch’s RLMS algorithm using : (a) a 48 step

delay, (b) a 57 step delay
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2.10.5 IIR adaptation using direct compensation (IIR error 

p 1 ant)

2.10.5.1 The RLMS algorithm

Using the filter arrangement show in Figure 2.28, the

behaviour of the RLMS algorithm when used to adapt a 2-by-3 

IIR filter was investigated for the case where the error 

plant consisted of an IIR filter of the form shown

previously in Equation 2.25.

The performance was tested for both full and inadequate 

error compensation as before. Figure 2.30 shows the

learning curves for three different length error plants 

((a) qi2 =0 .7 , (b) q2 =0 . 7 5  and (c) q2 =0 .8 ), each graph

showing the learning curves for both full and inadequate 

compensation. It can be seen that as the length of the 

error plant is increased, the improvement when using

inadequate compensation becomes more marked. For the longer 

of the three error plants (q2 =0 .8 ), it was seen that using 

full compensation resulted in no MSE convergence within

1 0 0 , 0 0 0  iterations whereas using the inadequate technique 

provided 100 dB MSE attenuation. The improvement when using 

the new inadequate compensation technique is again 

explained in terms of reducing the amplitude of 

oscillations of the signals x’(n) and y ’(n) by omitting the 

post filtering. Again similar improvements can be obtained 

by simply reducing the convergence parameters but as 

explained previously, this is a far less desirable solution 

than simply removing the recursive parts of the 

compensation filters Ht and Hu-
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Figure 2-30 - Comparison of convergence of an IIR filter
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2.10.5.2 Stearns' algorithm

Figure{2.31> shows the learning curves for the adaptation 

using Stearns' algorithm of the 2-by-3 IIR filter to the 

same plant as before with an IIR error plant of varying 

length. As with the RLMS algorithm, as the duration of the 

impulse response in the error plant is increased, the

learning curve exhibits more spikes and eventually (with a 

long error plant duration) the algorithm fails to produce

any convergence of the Mean Square Error.

Figure{2.31> shows two learning curves for the cases where

a relatively long error plant (q2=0.4) is used; the first

(a) shows the convergence of the MSE using full

compensation with a convergence parameter of 4x10"", the

second (b) shows (with the same convergence parameter of

4x10"3) the use of inadequate compensation to restore

normal convergence behaviour without introducing

significant mi sadjustment
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Figure 2.31 - Comparison of convergence of an IIR filter

using Stearns' algorithm using (a) full and (b)

'inadequate' error compensation with IIR error plants
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2.10.5.3 Fan's AFT1 algorithm

As with Feintuch’s RLMS and Stearns’ algorithms. Fan’s AFM 

algorithm performs well for short error plants and requires 

slower convergence (by either reducing the convergence 

parameter or by using the inadequate compensation

technique) when the error plant becomes long. Figure 2.32 

shows the learning curves for ; (a) a long error plant and

full compensation, (b) a long error plant with inadequate 

compensation.

Û-1E5 Q.2E5, 0-3E5 Q.4E5, Q-5E5, 0.6E5, 0.8E5,

■-20-20

-40

(a)o -60

OJ

■-30-80'

■-100- 100'

(b)

■-120-120

-140' 0.1E5 0.2E5 0.3E5 0.4E5 0.9E50.5E5 
Iteration number

0.6E5 0.7E5 0.8E5

Figure 2.32 - Comparison of convergence of an IIR filter

(b ) using Fans’ AFM algorithm using (a) full and

’inadequate’ error compensation with IIR error plants
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2.10.6 Conclusions concerning the use of direct error 

compensât i on.

The conclusions drawn here are as follows :

(i) In general, the direct error compensation method

performs well when using the simple LMS type algorithms, 

demonstrating increased misadjustment as the length of the 

actual error plant is increased.

(ii) It would seem that the recursive LMS algorithm is more 

sensitive to the effects of error compensation than is the 

non-recursive version and requires smaller convergence

parameters u. and in order to perform as required.

(iii) The new result has been obtained that when

compensating for an IIR error plant, it is can actually be 

advantageous to provide an inadéquate error plant model for 

use within both FIR LMS and IIR LMS (RLMS) adaptive

algorithms. The use of inadequate compensation provides 

very significant improvement to the system’s performance 

when used in the adaptation of an IIR filter. The effects 

of this inadequate modelling technique are investigated for 

an adaptive system within the duct in chapter 4. Finally, 

it has been seen that there is clearly a maximum duration 

of error plant that these LMS based algorithms can deal 

wi th.
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3.1 Introduction

The following chapter is concerned with the various 

arrangements of adaptive digital controllers currently used 

in duct ANC systems and their applicability in different 

situations. A detailed discussion of the use of different 

filter arrangements is given followed by an up to date 

summary of the practical systems in existance [8,9,40].

3.2 Forms of the digital controller

The controller in Figure(l-3} (section 1.4.1) may have one 

of several possible forms :

3.2.1 All zero controller.

The simplest form of the controller would be a single 

transversal filter. In general, the impulse response of 

this filter will need to be many times the pure delay 

between the detector and the secondary source in duration. 

Figure(3.1} shows the use of a single FIR filter (A) in the 

duct ANC problem.

The transfer function A is thus given by :

 Eq.o.n

The single FIR filter has a finite length impulse response, 

thus, this method will always be an approximate one as the 

impulse response required (see equation 3.1) is infinite in 

duration. It will be seen that, in practice, this single 

FIR filter form of the controller is only applicable to the
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case where there is very significant loss within the duct; 

i.e. when the effects of the acoustic feedback path H- i are 

small such that the impulse response of the filter A need 

not be very long. Simulations within a duct have been 

performed using the FIR LMS approach, which show the effect 

of truncating the impulse response of the filter A when 

used in ducts of varying loss.

Input noise 
to Primary 
source PS

'Error' signal 
monitored at

Acoustic feedback 
path H21

H23HOI

H03

H21

Figure 3.1 - A single FIR controller used as a duct ANC

controlier
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3.2.2 Pole/zero controllers

The pole/zero form of the controller consists of two all 

zero elements (A and B) so arranged to produce a single

pole/zero (IIR) filter. There are three possible

arrangements of the FIR elements A and B, these being

referred to in this thesis as the Parallel (1), RLMS (II)

and Reversed RLMS (III). Filter arrangements for these

three forms can be seen in Figure(3.2> (a),(b) and (c) 

respectively. It is important to compare these three

alternative forms when used in both a fixed filtering and 

an adaptive environment.

This IIR form of the controller is capable of modelling an 

infinite duration impulse response and as such is

applicable to all cases including those where the

propagation loss in the duct is negligible. Computer

simulations show that, despite the apparent lack of

interest in using adaptive IIR filters in many other

practical systems, within the duct, a controller of this

form can be used very effectively in a scheme using the

simple algorithms discussed in section 2.7.1

Equations 3.2 and 3.3 define the equalities for perfect 

cancellation for the three cases in Figure{3.2) :

Eq.(3.2)A Ho 3
1 - AB HoiHzz - Ha 3 Hz 1 *

for CASE I

Ï - H  =  - .......

for CASES II & III
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I’riiiiary noise j.|03

HOI

H21

(a)
Model o f H21

H03
Model o f ------------

H01H23

CASE I

Error signal

H23

fAcoustic
system

Digital
system

H03 Error signal

HOI H23

H2I

Acoustic
system(b)
Digital
system

H03 Error signal

HOI H23

H21

Acoustic
system

C )

Digital
system

CASE I I CASE I I I

Figure 3.2 - The three forms of pole/zero controller for a

duct ANC system.
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Any of the three arrangements could equally well be used in 

the fixed filter controller provided of course that the 

filters A and B have the required responses. It is also 

observed that since in CASE I, the denominator contains the 

product AB, a shorter filter B is required as compared with 

CASES II and III; it would seem therefore in the fixed 

filtering case at least, that the parallel forms (CASE I) 

is the most economical in terms of filter length required. 

Let us consider each case in turn:

3.2.2.1 The Parallel arrangement (Case I)

The question of just what exactly are the impulse responses 

of the individual FIR elements A and B in the different 

forms requires a more detailed look at the various possible 

filter arrangments :

One approach [7,8,11] is to use the two all zero elements

arranged in parallel as follows ; one to model explicitly

the acoustic feedback path i (the feedback filter) and

the other to model the direct acoustic path 3 /Ha i - (the

feedforward filter). The arrangement is shown in

Figure(3.2} (case I). The overall transfer function of the 

controller is A/l-AB as in equation 3-2.

In this case we can explicitly write :

A = -
M a  1 M 2  3

and  Eq. (3.4)

B = H2 1
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This form is probably the simplest to understand since it 

is easy to identify the individual modelling requirements 

of both the FIR elements A and B from equations 3.4.

However, in the adaptive environment, this scheme has a 

possible serious disadvantage in that both elements A and B 

cannot be adapted at the same time [8,9]. It is understood 

that in reality, once the elements A and B have been

initialised using off-line system identifict1 on techniques 

such as described in detail by Gurrie [7], It may suffice

to make only the direct element (element A) adaptive and

that doing so will automatically counteract any effects of 

small incorrectness in the feedback element B. Since the 

system cannot be made truly adaptive, it will always be 

necessary to perform the off-line system identification in 

order to initialise the filters A and B. A detailed 

description of a method for this off-line initialisation is 

given by Gurrie in his PhD thesis on the subject.

3.2.2.2 The RLMS and reversed RLMS schemes (cases II & III)

Another approach is to use the familiar IIR filter 

arrangement shown in Figure{2.2i. It has been shown [41] 

that, of the three possible pole/zero configurations, the 

RLMS (Case II) filter arrangement is best suited to an 

adaptive IIR scheme since it is an observable form. In 

short, the filter arrangement is said to be observable if 

any instability withir^ arrangement is evident at the final 

output of the system and can therefore be corrected for by 

an adaptive process.

The reversed RLMS approach is not an observable form [41]
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and is therefore given no further consideration as a 

possibility. Computer simulations in the duct demonstrate 

the effectiveness of an adaptive controller based on the 

RLMS configuration using only the simple IIR adaptive 

algorithms discussed previously.
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3.3 Practical adaptive systems to date

3.3.1 Poole and Warnaka's scheme

In 1984, Poole and Warnaka [8] published their adaptive 

system involving the use of three independant LMS filters. 

Their system was based on the parallel (Case 1) scheme 

described in section 3.2.2.1, the third filter being used 

to model the inverse of the error path as described in 

section 2.9.2. Figure(3.3} below (taken from their paper 

C8]) shows the adaptive scheme.

A coustic Acoustic A coustic
R adiating

S o u rce

Radiation Radiation
Transfer T ransfer
Function Function

CONTROLLER 
A coustic  C ancella tion  

Filter
M odifier LMS Adaptive 

Filter

Acoustic S um m ation 
at

Error Point

M icrophone
T ransfer
Function Error 

M icrophone 
T ransfer 
Function

A coustic Coupl
UNCOUPLING 

LMS 
A daptive Filter

ng Transfer
Function

Cancelling
S o u rce  to

Signal S en so r
Acoustic
Radiation
Transfer
FunctionError Input L o u d sp eak er

T ransfer
Function

LMS
Adaptive

Filter

Error Input

COM PENSATION 
LMS A daptive Filter

F i gure 3.3 Poole & Warnaka’s scheme for duct ANC 
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In their publication C83 Poole and Warnaka describe the 

system as using a modified Uidrow-Hoff LMS algorithm^ to

adapt the digital filters therein. In reality the

modification made is simply that of delaying the input to 

the feedforward filter (A) within the update equation to 

take account of the unavoidable delay in the compensated 

error signal as described briefly in section 2.9.1 and 

shown in Equation 3.5. The system is in fact not fully 

adaptive as suggested in the publication, but relies on off* 

line initialisation of the feedback filter (B) as described 

fully by Gurrie C7]. Once initialised, the feedforward 

filter (A) is allowed to adapt continuously using the 

compensated (delayed) error signal £’’(n) to update the tap 

weight vector using equation (3-5) below :

aj(n+l) = aj(n) + u£’’(n)x(n-j-k)..... Eq.(3.5)

where the symbols have their usual meanings and k is the 

number of samples delay in the delayed inverse model of the 

error plant.

The error compensation filter C is adapted on an off-line 

basis by injecting a noise signal into the secondary source 

and detecting it at the monitor microphone. The delayed 

inverse model is then converged to using the LMS algorithm 

in the system identification arrangenment described in

2.9.1 and the model is then fixed at this initial estimate. 

As mentioned in section 3.2.2.1, if adapting the 

feedforward filter A can compensate for small incorrectness 

in feedback filter B then the system may perform as a
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truly adaptive one provided the model of the error plant 

remains an adequate one. The error plant however not only 

involves the acoustic path between secondary source and 

monitor microphone but also the responses of both the 

monitor microphone and the secondary source themselves. As 

such the error plant will be continually changing whilst 

the adaptive feedforward filter A is unable to compensate 

for such changes using only the compensated error signal 

£*’(n). Further, in order for the adapting feedforward 

filter A to compensate for incorrectness in B, it will need 

to have sufficient duration to be able to model the whole 

of the transfer function H.> 3 / ( i H2 - H4 3 H2 1 ) and thus 

could equally well be used by Itself as in the single all 

zero controller discussd in 3.2.1.

Poole and Warnaka’s adaptive scheme is therfore not a 

particularly attractive candidate in the search for

complete adaptivity and seems to have been shelved as a 

commercially available unit.

3.3.2 Eriksson’s adaptive system.

In April 1987, Eriksson et. al. published a paper

describing  ̂The selection and application of IIR adaptive 

filters for use in active attenuation^. Eriksson described 

an adaptive scheme using the IIR filter arrangement

discussed in 3.2.2.2 with the addition that Eriksson’s

system provided on-line modelling of the error plant thus 

producing complete overall adaptivity. The on-line error 

plant modelling is achieved by injecting a low amplitude 

white noise signal [42] into the secondary source and using
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this signal to adapt a compensation filter C as shown in 

Figure£3.4> (taken from one of Eriksson's originals [42]). 

The adapted tap weight vector of this filter is then used 

to post filter the signals x(n) and y(n) prior to being 

used in the Feintuch RLMS update algorithm described in 

2.7.1.3. Published results showing the performance of the 

system/algorithm have been few and there has been no 

simulation work demonstrating the appropria^ness of the 

RLMS algorithm to the duct case. Eriksson himself has 

reported that ' a 7 7 simu 1 atîons are on simplified systems’.

O

y(n) yx(n)

H21

H03

HOI H23

RANDOM
NOISE

GENERATOR

Figure 3.4 - Eriksson’s fully adaptive scheme
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3.3.3 Billoud and Gal land

In April 1988 Billoud and Gal land [40] presented 

experimental work demonstrating the use of IIR filters for 

active control in a duct. The filters used were adapted to 

the required responses in an off-line manner using 

Feintuch's RLMS algorithm and were combined to form a fixed 

filter system. Analysis was also made of the performance of 

such a scheme in a water system where the required ^speed of /  

processing is obviousl^^due to the increase in the speed of 

sound in the medium.
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4.1 Simulating the duct.

This chapter is concerned with the performance of adaptive 

controllers within a simulated ventilation duct. Models of 

the duct were created by synthesizing the required duct 

impulse responses and inserting these into digital filters. 

Using the duct simulation programs, it is possible to 

specify the characteristics of a duct i.e. its length, 

transducer spacing, loss and the amount of reverberation

and then simulate the action of^digital adaptive controller 

within that duct.

For simplicity in this chapter, all references to physical 

lengths and/or transducer spacings within the duct are 

specified in terms of their equivalent time delay of sound 

and are given as multiples of the sample period of the

digital controller.

Figure £4.1} shows a diagrammatic representation of the 

system used to simulate the duct characteristics and 

implement a controller using a chosen algorithm. The 

component transfer functions i ,H2 i ,Ho 3 and H- 3 , were

implemented as time domain IIR filters. The recursive part 

of each IIR filter is equal to the 'round trip' transfer

function Hr t within the duct and thus all are identical for 

a given duct. The controller can have the form of either an 

FIR filter or an IIR filter.

In the simulations reported, the primary random noise was

white and was obtained using the same random number 

generator as described in section 2 .8 .
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I np u t
w h i t e
n o i s e

R T

R T

R T

R T

Acoustic
system

Digital
system

x(n)

R T B update

R T A update

Figure 4.1 - The complete adaptive simulation system used 

to simulate the duct ANC system
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4.1.1 FORTRAN simulation programs

As with previous experiments, the simulations presented 

here were performed using real arithmetic in FORTRAN 77 on 

a VAX 8200- The following programs were used; these are 

detailed in appendices I & I I :

DUCT - this program is used to produce the digital impulse 

responses corresponding to the various transfer functions 

within the duct. Different lengths, losses and

reverberation as specified by the user.

NEWS IM - this program can simulate the performance of an 

adaptive digital control system (FIR or IIR) using any of 

the algorithms discussed in chapter 2.

The program uses data produced by the DUCT program. 

Numerical data is output concerning the history of the 

coefficients of the adaptive filter/s and Mean Square Error 

throughout a particular experiment.

The history of the minimum, maximum, mean and mean square 

of various signals throughout an experiment may also be

recorded. At run time, variables such as filter length and 

convergence coefficients are given values by the user as

detailed in Appendix III. Some or all of the filters shown

in Figure{4.i> are used depending on which algorithm is 

chosen to adapt the controller.

POLY - this program is used to solve for the poles and 

zeroes of the controller at any interval during an

experiment, the program uses data produced by NEWSIM and

uses NAG routines for solving the polynomials
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PLOT - this program plots the learning curve for an 

experiment and also plots the poles and zeroes of the model 

on the complex z-plane. The program uses SIMPLEPLOT 

routines and produces files for the LN03+ laser printer.

4.1.2 Overall transfer function of the duct.

It is understood and has been demonstrated by simulation 

[10] that the overall transfer function of the reverberant 

duct is the same as that of the anechoic duct. For a duct 

exhibiting pure delay of n sample periods between detector 

and secondary source the required controller transfer 

function is given by equation 4.1 below :

Where 1-a is the loss per sample period within the duct. 

Expanding Equation 4.1, it it easy to show that for a duct 

with no loss (ae=l), the corresponding impulse response does 

not decay with time. Conversely, if there is finite loss 

then the impulse response will decay with time and for 

large loss, the overall impulse response may actually be 

relatively short and thus may be modelled well by an FIR 

f i1 ter.

Figure {4.2} shows the shapes of the overall impulse 

response for: (a) a lossless anechoic duct with 20% loss

per sample period (a=0.8) and (b) for an anechoic duct with 

10% loss per sample (#=0.9).
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1.20E-1 1.28E2

-9.84E-1-

TRP WEIGHT NUMBER

1.20E-1 1.28E2

Cb)

TAP WEIGHT NUMBER

Figure 4.2 - The overall impulse response of (a) an 

anechoic duct with 2 0 % loss and (b) an anechoic duct with 

1 0 % loss per sample period

Error plant

In the duct simulation, the error plant that must be 

compensated for has the transfer function H? 3 by post 

filtering the signals x(n) and y(n) as explained in section 

2.9.2. The post filtering is achieved using the filters Ht 

and Hu - In a real system Ht and Hu can only be estimates of
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the error plant. To track changes in the system parameters 

Ht and H„ would themselves also have to be adaptive as in 

Eriksson's system described in section 3.2. However^the 

purpose here was to examine behaviours of different 

algorithms in an otherwise fixed system. Therefore^the 

compensation filters were fixed at the ideal values unless 

otherwise stated.

4.2 Performance of an FIR controller

According to equation 4.1, the impulse response of an ideal 

controller in a lossless duct does not decay with time. 

Thus, using an FIR controller within the lossless duct 

would not be expected to produce significant cancellation 

at the monitor position. In the presence of any loss (and 

of course in any real system some loss is to be expected), 

then increasing either the loss or the length of the 

controller would be expected to result in improved 

performance. Figure{4.3} shows the learning curves and 

associated impulse responses for a 128 tap FIR filter when 

used as a controller in a duct exhibiting different losses: 

(a) 1%, (b) 10% and (c) 20% loss per sample period.

Page 111



Chapter 4 - Simulation of an adapt ive system in the due t

35000, 40000. 45000. 50000,5000, 10000. 15000. 20000 25000 30000,

(a)

-20-20
(b)

■-40-40

■-SOb -SO

QJb
-30| ■-30

(a)
■-10G-100'

■-120-120'

50000 -1404500030000 35000 400005000 10000 15000 20000 25000 
ICeraCion number

Figure 4.3 - LMS adaptation of a 128 tap FIR filter to an 

anechoic duct with dimensions of L,, =Li =L^ =L.-=La =1 sample 

period, (a) 1%, (b) 10% and (c) 20% loss per sample

per iod

It is understood that the figures 10% and 20% loss per 

sample period may not be realistic in practice but are 

intended only to illustrate the effect of adding more loss 

to a given duct.

The particular duct used to obtain these results had no
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reflection at the ends and thus was anechoic. Results 

showing very similiar behaviour were obtained when using a 

duct with significant reverberation (these are not shown so 

as to avoid unecessary duplication). The final adapted 

model impulse responses are also shown in Figure 4.3 

It might be thought that the very simple set of dimensions 

were so artificial, as to be a rather special case. To test 

this hypothesis, results were also calculated for two 

longer ducts with less simple ratios for the various 

spacings. These are shown in Figure {4.4}. Similarity of 

the final attenuation figures demonstrated that the small 

duct is not a special case. This being so, it was decided 

to use the simple set of dimensions for many of the 

simulations that follow, in order to keep the computing 

time to a minimum. Figure{4.4} shows the learning curves 

for two longer ducts.
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50000.5000 30000 35000, 40000 4500010000, 15000, 20000, 25000,
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Figure 4.4 - Learning curves for the LMS adaptation of a 

128 tap FIR to longer ducts : (a) Lv» =1, Lt =2, L^ =3, Lj =2, L^ =1

Sf Cb) L*—2?Li=3, L-2 — 8, Lj — 3, L̂  —2 

Cboth with 20% loss per sample period)

Cone I us ions

The results show, as expected, that an FIR controller can 

only produce a significant level of sound attenuation if 

the loss in the duct is such that the magnitude of the 

impulse response falls to an insignificant level within the 

duration of the FIR controller.
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Private communication with Gurrie revealed that for a 

particular wooden-walled duct, using a 256 point FIR 

filter, he could achieve some 30dB attenuation.

In at least some real situations an FIR controller could be 

expected to be adequate; this expectation is further 

supported by the verbal comments of one or two participants 

at the Acoustics ’88 conference in Cambridge in April 1988 

that, in their experience, ^FIR controllers seem to work'. 

This can only be the case provided the controller length 

and duct losses are appropriately matched to each other.
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4.3 Performance of an IIR filter

N.B In all the following simulations, the desired poles of 

the controller are purely real [101. For each experiment, 

the real parts of the poles are plotted for a given 

iteration if, and only if, the actual poles of the model 

are real at that particular iteration.

A discussion of the effects on an adaptive IIR filter of a 

long error path when using direct error compensation was 

given in sections 2.10.3 and 2.10.4. It is important that 

the reader understands the results and the conclusions 

drawn as these are used to explain the observations made 

within the duct system when dealing with high 

reverberati on.

4.3.1 A controller using Feintuch's RLMS algorithm

4.3.1.1 Lossless duct with low reverberation

Learning curves (a), (b) and (c) on Figure 14.5} show

convergence in the Mean Square Error the controller's

^trajectories for the adaptation of an exactly 

sufficient IIR filter (with 2 direct taps and 3 recursive 

taps). The duct dimensions were the same as those given in 

the caption to Figure 4.3. Various different reflection 

coefficients r̂  and r? (corresponding to different amounts 

of reverberation) were used ranging from 0 (anechoic) to 

0.5.
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Figure 4.5 - Learning curves for the adaptation of an 

exactly sufficient IIR controller using Feintuch's RLMS 

algorithm in a lassies duct : (a) ri=r:=0, (b) ri=r:=0.2.

<c) rI =T7 =0.5
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The poles of the ideal control 1er are purely real and are 

located at ± lf-j0  for the lossless duct C10J.

Figure{4.6> shows results for a much longer duct with 

reflection coefficients of 0.5, demonstrating that again, 

the small duct used in these simulations was not a special 

case -

0-9E5,0-SE5.Q-3E5. 0-5E5,0- IE5,

-20

-40

■-SOb -GO' b
OJ

■-100-100

'-120-120

-140' 0.3E50.8E50.6E5 0.7E50.5E5 
Itération number

0.3E5 0.4E50.1E5 0.2E5

Figure 4.6 - Feintuch's RLMS algorithm used to adapt an 

exactly sufficient IIR controller to a long duct :

L.. =2^ Li =3, Lo =3-, Lî =3, L4 =2 sample periods
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4.3.1.2 Higher reverberation

The amount of reverberation does not change the 

characteristics required of the controller as these are 

specified by Equation 4.1 [10]. However, some important

observations were made of the effects on adaptation of 

increasing the amount of reverberation in the duct (by 

increasing the size of the reflection coefficients at each 

end of the duct). This was not unexpected as the amount of 

reverberation alters the characteristics of the signals 

available to the adaptive algorithm.

As mentioned earlier, the transfer function H? 3 is the 

error plant for the adaptive modelling, represented here as 

the IIR filter H ‘ 2 -/l-H^, c- Since altering the size of the 

reflection coefficients r, and r: will increase the

magnitude of Hr=, it is clear that the effective error 

plant duration will be correspondingly increased, in short, 

this means thaty^ increased reverberation will result in 

increased duration error plant and eventual possible 

failure of the chosen algorithm to converge the model as 

previously demonstrated in section 2 .8 .

Figure (4.7} shows the effect of varying the reflection 

coefficients in the range 0.7 0.79. With ri=r2 =0 .7 , the

algorithm converges and the MSE is reduced by about 130 dB 

(see Figure{4.7(a )}). It should howeve^ be noted that the

misadjustment is larger than with the shorter error plant 

and that the poles slightly overshoot the target values 

before converging. With a reflection coefficient of 0.785 

(see Figure{4 .7Cb)}), there is a significant de I ay in
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adaptation over the first 3000 iterations and large spikes 

begin to appear in the learning curve suggesting that 

reduced convergence parameters are needed*

The poles 'U/BhC. seen initially to overshoot further the

target values of 1.0* When the reflection coefficients are 

increased to 0.79 (see F i gure{4.7(c )>) in value, the 

algorithm fails to produce any significant attenuation at 

all, even though the poles are within about 15% of their

desired values. This is not nearly close enough.

30000.25000,20000.15000.10000,5000.

-20-20

■-40-40'

c

t

■-80

(b)(a)
■-100-100

'-120-120

30000 -140-140 2500010000 15000 
ICeraCion number

200005000

Figure 4.7 - Feintuch*s algorithm, the effects on 

convergence of further increase in the reverberation; (a) 

ri=rz=0.7, (b) r. =r2 =0.785, Cc) ri=r:=0.79
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4.3.1.3 The effect of lossy propagation

Results obtained after the introduction of 1% loss per 

sample period when modelling the high reverberation duct

(rl-r2=0.79) are shown in Figure (4.8}. With the addition 

of this loss, normal convergence is restored to about 110dB 

as can be seen in F igure(4.8(a )}. Further increase in the 

amount of reverberation again results in the algorithm

being unable to control the movements of the poles

sufficiently i to give any worthwhile attenuation.

Again, the delay in adaptation is observed, this is

highlighted in Figure (4.8(b)) in which the reflection 

coefficients are equal to 0.833. For values above 0.833 the 

algorithm is unable to produce any convergence as can be 

seen from F igure{4.8(c )).
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Figure 4.8 - Learning curves and pole trajectories for 

Adaptation using Feintuch's algorithm to a duct exhibiting 

i% loss per sample period and higher reverberations 

(a) r. =r:=0.79, (b) rc=r2 =0.833, (c) ri=r. =0.834
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4.3.1.4 Inadequate error compensation modelling

The new idea of using inadequate error compensation has 

been shown in section 2.10 to improve performance when 

dealing with a long error plant- In the light of the 

previous results and the significant savings in filtering 

requirements involved, it seemed sensible to try the 

technique out in the duct.

Figure £4.9} shows the effect of using inadequate error 

compensation in the case of the duct having 1% loss per 

sample period and reflection coefficients of ri^r?=0.834. 

Using full compensation (F igure£4.9(a )}), Feintuch's RLMS 

algorithm was previously unable to converge the model, but 

using inadequate compensation (Figure£4.9(b )}), the spikes 

are removed from the learning curve and algorithm is able 

to restore convergence producing = 120 dB MSE attenuation 

at the monitoring position.
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Figure 4.9 - The effect of using inadequate compensation 

Feintuch's RLMS algorithm in a reverberant duct 

(rI=ri=0-834) exhibiting 1% loss;

(a) 'full' compensation, (b) inadequate compensation
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A further increase in the reverberation (with inadequate 

compensation) causes the delay in convergence which can be 

seen in Figure£4*10> as the ’fiat’ region on the learning 

beginning to reappear. In this case, the algorithm is able 

to converge the model but that there is the initial delay 

in convergence during which there does not seem to be 

information of the required detail for the algorithm to 

make fine adjustments to the model.

150Q0, 2000Q 25000. 3000Ü5000.10000

(a)-20 -20

-40-40
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Figure 4.10 - Effects of increasing the reverberation and 

using inadequate error compensation. ri=r-=0-85: (a)

learning curve, (b) Pole trajectories
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With reference to Figure£4.10}, it is clear that something 

happens at about , 000 iterations that enables the

algorithm to make the required fine adjustments to the 

model, but as yet the author is unable to explain this 

action except to make the obvious comment that the required 

detailed information is delayed more as the duration of the 

error plant increases.

4.3.1.5 Using an over-sufficient filter

It has been shown in section 2.8 that, when using an 

adaptive IIR filter that is known to be over sufficient In 

length, the excess poles and zeroes were arranged in such a 

way as to cancel out. Similar results for a simplified duct 

system have been investigated by the author £10]. Recent 

results obtained with the current simulation have shown 

that when using the inadequate compensation technique in 

conjunction with an model with 4 excess poles and 4 excess 

zeroes, convergence is restored for a high reverberation 

case of ri=r2=0-85. The learning curve for this experiment 

is shown in Figure£ 4.11(a)) and the final poles and zeroes 

magnitudes agree to within 4 decimal places as output by 

the simulation program. The poles and zeroes are plotted on 

the complex z-plane in Figure£4.11(b)}.
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Figure 4.11 - Adapting an over-sufficient IIR filter with 4
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algorithm and 'inadequate' error plant compensation (a) 

learning curve (b) Complex z-plane
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4.3.1.6 Summary and conclusions

It has been demonstrated that Feintuch's RLMS algorithm is 

suitable for use in an adaptive active noise control system 

within the duct.

It has been shown that the new inadequate compensation 

technique offers significant savings in terms of filter 

length needed while not adversely affecting the performance 

of the algorithm. Indeed, in a duct exhibiting high 

reverberation. it has been demonstrated that using the 

'inadequate' compensation filters improves the behaviour.

Results have shown that the use of an over-sufficient 

length controller in conjunction with the inadequate 

compensation technique can enable convergence to be 

achieved in more highly reverberant situations than when 

using an exactly sufficient controller and full

compensât i on.

In order to try and improve on the behaviour of the 

controller when faced with a highly reverberant (long error 

plant) duct, the algorithms of Stearns and Fan were both

tested to see if they would perform better. The results of

these tests are discussed in the next section.
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4.3.2 Using Stearns' algorithm in the duct

Using the same arrangement as in Figure{4.11, (with the 

addition of post filtering x’(n) and y'(n)), Stearns' 

algorithm was simulated in the duct. As in section 4.3.1, 

the filter used was exactly sufficient in dimensions.

4.3.2.1 The lossless duct

F igure{4.12(a )} shows the learning curve for an experiment 

i dent i ca1 to that done in section 4.3.1 for the lossless 

anechoic duct. The result demonstrates, as would be 

expected, the need for a smaller convergence parameters 

when using Stearns' algorithm. The smaller convergence

parameter is needed since, when using Stearns' algorithm, 

the signals x'Cn) and y'(n) are post filtered through the 

filter 1/1-B. Figure£4.12(b )} shows the effect of halving 

the convergence coefficients producing better convergence 

behav i our.

4.3.2.2 Introducing loss

Figure£4.13} shows the learning curve for an anechoic duct 

with 1% loss per sample period. This was very much smoother 

than for the lossless anechoic case above and so it would

seem that Stearns' algorithm is affected far more by the

signal characteristics in the case of a duct with no loss 

than is Feintuch's algorithm.

Since it is somewhat unrealistic for a duct to be 

completely lossless, no further such simulations are 

reported.
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Figure 4.12 - Stearns' algorithm in the anechoic duct; (a) 

same convergence parameter as RLMS (10“=) , (b) convergence

parameter reduced to (5x10" ' )
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Figure 4.13 - Learning curve (a) and Pole trajectories (b) 

for Stearns’ algorithm when used in the anechoic duct 

exhibiting i% loss per sample period.

4.3.2.2 Inadequate compensation

Figure{4-14> shows the use of inadequate error compensation 

with an increase the amount of reverberation when using 

Stearns’ algorithm. It was seen that when using the 

inadequate compensation technique, the algorithm

demonstrates similar improved behaviour to Feintuch’s
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algorithm. The 'flat' delayed region on the learning curve 

is however not present. Again, the i nt roduct ion of 

inadequate compensation is successful in restoring 

convergence at hi gher reverberations. The effects of this 

are far less obvious in the case of Stearns' algorithm 

because of the post filtering of the signals x'Cn) and 

y'Cn) through 1/1-B, the transfer function of which has the 

same form as that of H3 3 . As the reverberation is increased 

further, the spikes in Figure {4.14(b)} become larger and 

the algorithm eventually fails.
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Figure 4.14 - Increasing the reverberation when using 

Stearns* algorithm; (a) r.=r-=0.6, (b ) r;=r-=0-T85
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4.3.2.3 Conclusions

The results in this section suggest that the use of this 

more complicated algorithm is not justified in this

particular duct model since there is no marked improvement 

over the simpler Feintuch RLMS algorithm detailed in the 

previous section.

4.3.3 Fan's algorithm used within the duct

The surprising result was obtained, that when using Fan's

AFM algorithm, the system was unable to converge and in

fact became unstable in all the experiments tried except 

those for ducts exhibiting very substantial losses (over 

20% per sample period). If the convergence parameters were 

reduced by a factor of 10=, The algorithm was able to keep 

the system stable but produced negligible MSE attenuation. 

Figure£4.15(a)} shows the learning curve and pole/zero

trajectories for the case where Fan's algorithm was used to

adapt the exactly sufficient (2 by 3) controller to the

duct with 20% loss.

Figure£4.15(b )} shows the learning curve and pole/zero

trajectories for an anechoic duct with 1% loss per sample 

period but using a convergence parameter of 10~^.

It was discovered that when using Fan's algorithm, the

poles of the model initially become complex as can be seen 

from the trajectories in Figure£4.15}.
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Figure 4.15 - results using Fan's AFM algorithm as a 

controller within the duct: (a) an anechoic, 20% loss per

sample period, (b) 1% loss per sample period and Reduced

convergence parameter (u=0.0001)

4.3.3.1 Conclusions

Far from being an answer to the apparent problems at high 

reverberation. Fan's algorithm has been shown to be 

unsui tab 1e for use in an ANC system in the duct.
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4.3.3.3 Eriksson's__suggested variation on Feintuch's

a 1gorithm

In his thesis on the subject [41], Eriksson suggests that 

'an obvious extonsion is to use the plant output to

calculate the updates for the recursive part of the model^. 

In section 2.7.1, it was seen that Feintuch's RLMS

algorithm is a further simplification of Stearns' 

approximation to the recursive LMS algorithm proposed by

White. It is recognized that Eriksson's suggestion is in 

fact the same simplification applied to Fan's algorithm. 

For completeness, Eriksson's idea (referred to as the RLMS2 

algorithm here) was briefly investigated using the duct 

simulation programs.

FigureC4.16> shows the learning curve and pole/zero

trajectories for the algorithm when used to adapt a

sufficient filter to the anechoic duct with 1% loss per

samp 1e .

It is clear that the performance of this algorithm is 

markedly inferior to that of Feintuch's original, producing 

only about 20dB MSE attenuation after the same number of

iterations in the identical experiment. It was also seen 

that one of the poles widely overshoots its target value 

before converging.

Because of its inferior performance in the simple lossless 

anechoic duct, the RLMS2 algorithm is given no further 

consideration in this thesis.
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The performance of several simple adaptive algorithms have 

been directly compared in both system identification and 

when used to adapt a controller within the ventilation 

duct.

5.1 FIR System Identification

The effects of the error path on the adaptation of an FIR 

filter when using direct compensation have been 

demonstrated. Simulations show how increasing the duration 

of the error plant results in reduced convergence rate and 

increased misadjustment.

5.2 FIR controllers in the duct

It has been shown that the FIR controller is only suitable 

for use in a duct exhibitting large amounts of loss, where 

the impulse response of the duct will be heavily damped and 

thus can be modelled by a finite length filter.

5.3 IIR system identification

In section 2.8.2, it has been demonstrated that in system 

identification, the simplest and most economical of the IIR 

adaptation algorithms, the Feintuch RLMS algorithm [27], 

performs surprisingly well and that the improvement offered 

by the more complicated algorithms of Stearns C30] and Fan 

[28] is marginal and insignificant for most applications. 

Further, for all the algorithms investigated it was found 

that to use ’inadequate’ error compensation by modelling 

only the zero part of an IIR the error plant, gave improved 

convergence when using direct error compensation.
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5.4 IIR controllers in the duct

As the basis for a duct ANC system, the Feintuch RLMS 

algorithm is again shown to perform remarkably well and the 

results show that in fact, the more complicated algorithm 

of Stearns actually provides inferior performance. 

Further, it has been shown that Fan’s AFM algorithm is 

unsuitable for use in the duct.

When used in the duct, the inadequate compensation 

technique has again been shown to improve performance.

It is hoped that the results presented in this thesis 

provide answers to some of the questions about how the 

simple adaptive algorithms can be expected to perform 

within the field of duct ANC.
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Appendix I - The DUCT program

The following program produces the digital impulse respsonses 
H01,H03,H21,H23 and Hr t and puts the numbers into files of the 
same names (unless told otherwise) in 1PE14.6 format.

To give the default names H01...etc for the files you must enter 
<SPACE> name when asked for each filename.

PARAMETER (MAX=1000)
REAL H0i(MAX),H03(MAX),H23(MAX),H2i(MAX),HRT(MAX),R1,R2 
REAL LOSS,PERCENTPSAM
INTEGER L0,L1,L2,L3,L4.H01MAX,H03MAX,H23MAX,H21MAX,HRTMAX 
CHARACTER'S N01,N03,N23.N21,NRT 
CHARACTER&20 STRING

1 FORMAT(/,IX,’L0 ?’)
2 FORMAT(/,IX,’Li ?’)
3 FORMAT(/,IX,’L2 ?’)
4 FORMAT(/,IX,'L3 ?’)
5 FORMAT(/,IX,’L4 ?’)
6 F0RMAT(i3)
7 FORMAT(A)
8 FORMATC/, IX, ’H01 F ILMAME (H01Z) ?')
9 FORMAT(/,IX,’H03 FILNAME (H03Z) ?’)
10 F0RMAT(/,1X,'H23 FILNAME (H23Z) ?’)
11 FORMAT'/,IX,'H21 FILNAME (H21Z) ?’)
12 F0RMAT(/,1X,'HRT FILNAME (HRTZ) ?’)
13 F0RMAT(/,1X,’R1 ?’)
14 F0RMAT(/,1X,'R2 ?’)
15 format(el4.6)
16 F0RMAT(1PE14.6)
17 FORMAT(IX,’Percent loss per sample period ?’)

C ********** READ IN DUCT DIMENSIONS L0,L1,L2,L3 & L4 **********

WRITE(5,1)
READ(5,6) L0 
WRITE(5,2)
READ(5,6) LI 
WRITE(5,3)
READ(5,6) L2 
WRITE(5,4)
READ(5,6) L3 
WRITE(5,5)
READ(5,6) L4 
WRI T E (5, 17)

C *******************************************************
C READ IN PERCENTAGE LOSS PER SAMPLE PERIOD AND CALCULATE
C • LOSS COEFFICIENT
C *******************************************************

READ(5,15) PERCENTPSAM 
LOSS=(100.0-PERCENTPSAM)/100.
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********** READ IN REFLECTION COEFFICIENTS R1 R2 **********

WRITE(5,13)
READ(5,15) R1 
WRITE(5.14)
READ(5.15) R2

********** READ IN FILNAMES OF IMPULSE REPONSES **********

WRITE(5,8)
READ(5,7) N01

IF(N01.EQ.' ’) N01=’H01Z’
WRITE(5,9)
READ'S,7) N03 
IF (N03.EQ.' ') N03=’H03Z’
WRITE'S,10)
READ'S,7) N23 
IF(N23.EQ.' ’) N23=’H23Z’
WRITE'S,11)
READ'S,7) N21 
IF(N21.EQ.' ’) N21='H21Z'
WRITE'S.12)
READ'S,7) NRT 
IF'NRT.EQ.' ’) NRT='HRT'

********** FIND LENGTH OF EACH FIR ELEMENT **********

H01MAX=1+L1+'2*L0)K2*L2)+(2*L3)+(2*L4) 
H03MAX=1*L1+L2+L3+'2*L0)+'2*L4)
H23MAX=1+L3*(2*L0)+(2*L1)+(2*L2)+(2*L4)
H21MAX=i+L2+(2*L0)+(2*L1)+(2*L3)+(2*L4) 
HRTMAX=1+2*(L0+L1+L2+L3+L4)

100 FORMAT'IX,’H01Z Dimension = ’
101 FORMAT'lx,'H03Z Dimension = ’
102 FORMAT'IX,'H23Z Dimension = ’
103 FORMAT'IX,'H21Z Dimension = ’
104 FORMAT'IX,'HRT Dimension = '

T20, i3)
T20, i3)
T20, i3)
T20, i3)
T20, i3)

WRITE'S,100) H01MAX 
WRITE'S,101) H03MAX 
WRITE'S,102) H23MAX 
WRITE'S,103) H21MAX 
WRITE'S,104) HRTMAX

********** OPEN OUTPUT FILES **********

OPEN'1,FILE=N01//’ 
OPEN'2,FILE=N03//’ 
OPEN'3,FILE=N23//’ 
OPEN'4,FILE=N21//’

DAT',STATUS^'NEW') 
DAT’,STATUS^’NEW’) 
DAT’,STATUS=’NEW’) 
DAT’,STATUS^’NEW’) 

0PEN(6,FILE=NRT//’.DAT’,STATUS=’NEW’) 
0PEN'7,FILE=’DUCTDATA.DAT’,STATUS=’NEW’)
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********** ZERO ALL IMPULSE RESPONSES **********

CALL ZERO(H01.H01MAX)
CALL ZERO(H03,H03MAX)
CALL ZER0(H23,H23MAX)
CALL ZER0(H21,H21MAX)
CALL ZERO(HRT,HRTMAX)

********** FILL ARRAYS WITH REQUIRED COEFFS **********

H01(1fLl)=H01(1fLl)+(L0SS**L1)
H01 (1+L1+2*L0)=H01 (1+-L1 <-2*L0) *-Rl * (LOSS** (L1+2*L0) )

TINT=L1f(2*L2)»(2*L3)+(2*L4)
H01(i+TINT)=H01(TINT)+R2*(LOSS**TI NT)

TINT=L1+(2*L0)+ (2*L2)+(2*L3)f(2*L4)
H01 (H-TINT) =H01 ( 1+TINT) »-R 1 *R2* ( LOSS * *T I NT )

TINT=L1+L2+L3
H03(1+TINT)=H03(1+TINT)+(LOSS**TI NT)
TINT=L1+L2+L3+(2*L0)
H03(1+TINT)=H03(1+TINT)+R1*(L0SS**TINT)
TINT=L1+L2+L3+(2*L4)
H03(1+TINT)^H03(1tTINT)+R2*(LOSS**TI NT)
TINT=Ll+L2+L3r(2*L0)+(2*L4)
H03C1+TINT)=H03(1+TINT)+R1*R2*(LOSS**TI NT)

H23(1+L3)=H23(1+L3)f(L0SS**L3)
H23(1+L3+(2*L4))=H23(1+L3+(2*L4))+R2*(LOSS**(L3+(2*L4))) 
TINT=L3+(2*L0)+(2*L1)+(2*L2)
H23(1+TINT)=H23(1+TINT)+R1*(L0SS**TINT)
TINT=L3+(2*L0)+(2*L1)+(2*L2)+(2*L4)
H23(1+TINT)=H23(1+TINT)+R1*R2*(L0SS**TI NT)

H21(1+L2)=H21(1+L2)+(L0SS**L2)
TINT=L2+(2*L0)+C2*L1)
H21(1+TINT)=H21(1+TINT)+R1*(LOSS**TINT)
TINT=L2+(2*L3)+ (2*L4)
H21(1+TINT)=H21(1+TINT)+R2»(L0SS**TINT)
TINT=L2+C2*L0)+(2*L1)+C2*L3)+(2*L4)
H21(1+TINT)=H21(1+TINT)+Ri*R2*(L0SS**TINT)

HRT(1+2*CL0+L1+L2+L3+L4))=R1*R2*(LOSS**(2*(L0+L1+L2+L3+L4)))

********* WRITE IR’s TO FILES **********

1, IS) (H01(I),1=1,H01MAX)
2, 16) (H03CI),I=1,H03MAX)
3, 16) (H23(I),I=1,H23MAX)
4, 16) (H21(I),I=1,H21MAX)
6, 16) (HRT(I),1=1,HRTMAX)
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105
106
107
108
109
110 
111 
112
113
114
115

for duct with
FORMAT'///,IX,A,/)
FORMAT'/,IX,'Impulse Responses 
FORMAT'/,IX,'L0 is ',i3)
FORMAT'/,IX,'Li is ',i3)
FORMAT'/,IX,'L2 is ',13)
FORMAT'/,IX,'L3 is ',i3)
FORMAT'/,IX,'L4 is ',i3)
FORMAT'/,IX,'Rl is ',IPE11.3)
FORMAT'/,IX,'R2 is ',1PE11.3)
FORMAT'/,IX,'Filename is ’,T20,A) 
FORMAT'/,IX,'% LOSS per sample period is ',1PE11.3)

WRITE'7 
WRITE'7 
WRITE'7 
WRITE'7 
WRITE(7 
WRITE(7 
WRITE'7 
WRITE'7 
WRITE'7

STRING=
WRITE'7
WRITE'7
WRITE'7
WRITE'7

STRING=
WRITE'7
WRITE'7
WRITE'7
WRITE'7

STRING=
WRITE'7
WRITE'7
WRITE'7
WRITE'7

STRING=
WRITE'7
WRITE'7
WRITE'7
WRITE'7

STRING=
WRITE'7
WRITE'7
WRITE'7
WRITE'7

106)
115) PERCENTPSAM
107) L0
108) LI
109) L2
110) L3
111) L4
112) Rl
113) R2

H01Z
105) STRING
16) (H01'I),I=1,H01HAX)
114) N01
100) H01MAX

H03Z :’
105) STRING 
16) 'H03(D,
114) N03
101) H03HAX

H23Z :'
105) STRING 
16) 'H23'I),
114) N23
102) H23MAX

H21Z :'
105) STRING 
16) 'H21'I),
114) N21
103) H21MAX

Hround trip 
105) STRING 
IS) 'HRT(I):
114) NRT
104) HRTMAX

I=1,H03MAX)

1=1,H23MAX)

I=1,H21MAX)

1=1,HRTMAX)
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********* CLOSE FILES **********

CLOSE'1)
CLGSE'2)
CLOSE'3)
CLOSE'4)
CLOSE'S)
CLOSE'7)

END

* * * * * * * * * * * * * * * * * * * * * * * * *  
FUNCTIONS AND SUBROUTINES 
* * * * * * * * * * * * * * * * * * * * * * * * *

100

SUBROUTINE ZERO'A,N) 
REAL A'N)
DO 100 J=1,N 
A(J)=0- ,
RETURN
END
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The following FORTRAN program was used to simulate the 
performance of several different adaptive algorithms when used 
in system identification and to adapt a controller within a one 
dimensional ventilation duct.

The program is a stand alone module producing files containing 
numerical data. The source program is available on disk in DOS
format or Acorn BBC format.

At the begining of a run, the user is asked for the name of an
input file. The format of this input file is shown below. The
program prompt, variable name and the format that the variable 
is required to in within the input file are shown.

INPUT PROMPT VARIABLE FORMAT

Which Algorithm (enter 1,2,3,4 or 5)') ALG 17

Feintuch RLMS............ 1
RLMS2......................2
Stearns’ Algorithm...... 3
FAN A 1gorithm. .......... 4
FIR LMS Algorithm........5

How many iterations
Convergence parameter for direct filter A 
Convergence parameter for recursive filter B 
DO YOU WANT COEFFICIENTS OUTPUT 
DO YOU WANT THE SIGNAL FILE OUTPUT 
How many coefficients in H01Z 
Input data filename 
How many coefficients in H01P 
Input data filename 
How many coefficients in H03Z 
Input data filename : - 
How many coefficients in H03P 
Input data filename 
How many coefficients in H23Z 
Input data filename 
How many coefficients in H23P 
Input data filename : - 
How many coefficients in H21Z 
Input data filename 
How many coefficients in H21P 
Input data filename : - 
How many coefficients in HTZ 
Input data filename : - 
How many coefficients in HTP 
Input data filename : - 
How many coefficients in HUZ 
Input data filename 
How many coefficients in HUP 
Input data filename : - 
How many coefficients in HESZ 
Input data filename 
How many coefficients in HESP 
Input data filename 
How many coefficients in direct f i1 ter

NO IT
MUEA
MUEB
YN
YN
D01Z
AFILE
D01P
AFILE
D03Z
AFILE
D03P
AFILE
D23Z
AFILE
D23P
AFILE
D21Z
AFILE
D21P
AFILE
DTZ
AFILE
DTP
AFILE
DUZ
AFILE
DUP
AFILE
DESZ
AFILE
DESP
AFILE
FF

I 7
E13
E13
A
A
17
A
17
A
17
A
17
A
17
A
17
A
17
A
17
A
17
A
17
A
17
A
17
A
17
A
17
A
17
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INPUT PROMPT

How many coefficients in recursive filter "B" 
Mean square error taken over how many samples 
At what interval should information be output 
Start outputting data at iteration number 
Start filtering at what iteration number 
Start adapting filter at what iteration 
Output file name
Type in remarks (Single line only)')

VARIABLE FORMAT

FB 17
MEM 17
STEP 17
STARTPOI NT 17
SWON 17
ADSTART 17
OF I LE A
REMARK A
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* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  
The actual FORTRAN 77 program is shown below 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * *  
INITIALIZE VARIABLES 
* * * * * * * * * * * * * * * * * * * *

IMPLICIT NONE

CHARACTER*2 YN 
CHARACTER*4 OUTFILE,INFILE 
CHARACTER*70 REMARK 
CHARACTER*10 ALGORITHM

INTEGER I,J ,K,D01Z,D01P,D03Z,D03P,D23Z.D23P,D21Z,D21P 
INTEGER DTZ,DTP,DUZ,DUP,MEM,MAX,FF,FB,SWON,FFOUT,ADSTART 
INTEGER ITERATIONS,STEP,FLAG,DEN,LAST,STARTPOI NT,NUMP 
INTEGER DESZ,DESP,CFLAG,TFLAG,a I g

PARAMETER (MAX=1024)
REAL A(MAX),B(MAX)
REAL AIN,ADIRECT,BRECURSIVE,F ILTERGUT 
REAL H01Z(MAX),H01PCMAX)
REAL H01IN,H0iDIRECT,H01RECURSIVE,H0iOUT 
REAL H03Z(MAX),H03P(HAX)
REAL H03IN,H03DIRECT,H03RECURSIVE,H03OUT 
REAL H21ZCMAX).H21P(MAX)
REAL H21IN,H21DIRECT,H21RECURSIVE,H210UT 
REAL H23ZCMAX),H23P(HAX)
REAL H23IN,H23DIRECT,H23RECURSIVE,H230UT 
REAL HXPFDIRECT,HXPFRECURSIVE,HXPFQUT

REAL HYPFDIRECT,HYPFRECURSIVE,HYPFOUT 
REAL HXPFFB(MAX),HYPFFB(MAX)
REAL HTZ(MAX),HTP(MAX)
REAL HT IN,HTDIRECT,HTRECURSIVE,HTOUT 
REAL HUZ(MAX),HUP(MAX)^
REAL HU IN,HUD IRECT,HURECURSIVE,HUOUT 
REAL AFF(MAX),BFB(MAX)
REAL HESIN,HESDIRECT,HESRECURSIVE,HESQUT 
REAL HESZ(MAX),HESP(MAX)
REAL HESFF(MAX),HESFB(MAX)
REAL H0iFF(MAX),H01FB(MAX)
REAL H03FF(MAX),H03FB(MAX)
REAL H21FF(MAX),H21FB(MAX)
REAL H23FF(MAX),H23FB(MAX)
REAL HTFF(MAX),HTFB(MAX)
REAL HUFF(MAX),HUFB(MAX)
REAL ERROR(MAX),MSE(1000000)
REAL XDASHED(MAX),YDASHED(MAX)
REAL XDOUBLEDASHED(MAX),YDOUBLEDASHED(MAX)
REAL RANDOM,NOISE,MUEA,MUEB

K=12357
CFLAG=0
TFLAG=0
FLAG=0
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NUMP=0 
H01OUT=0.0 
H03OUT=0.0 
H21OUT=0.0 
H23OUT=0.0 
HXPFOUT=0.0 
HYPFGUT=0.0 
DEN = 0 
FF0UT=1

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  
READ INFO TO BE USED IN ADAPTION 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

2001 FORMATCA)
2002 FORMATC/, IX, M n put file name ?’)

WRITE(5,2002)
READ(5,2001) INFILE
OPEN(9,F ILE=INFI LE//’.IN' ,STATUS='OLD ' )

2003 FORMATCIX,’Which Algorithm (enter 1,2,3,4 or 5)')
2004 FORMATC IX, ' Feintuch RLMS...........1' )
2005 FORMATC IX, ’ RLMS2....................2')
2006 FORMATC IX, ’ STEARNS Algorithm......3')
2007 FORMATC IX, ' FAN Algorithm...........4')
2010 formatClx, 'FIR LMS Algorithm...... 5',/)

writeCS,2004) 
wr i te(5,2005) 
wr i te C 5,2006) 
wri te C 5,2007) 
wr i te(5,2010) 
wr i te C 5,2003) 
readC9,2008) a I g

2008 formatCi7)

ifCalg.eq.1) 
ifCalg.eq.2) 
ifCaIg.eq.3) 
ifCalg.eq.4) 
ifCaIg.eq.5)

algorithm^'RLMSl' 
a 1gor i thm='RLMS2' 
a 1gor i thm= * STEARNS’ 
a Igor i thm='FAN’ 
a 1gor i thm='LMS'

2000 FORMATC/,IX,’How many iterations') 
1999 FORMATC/,IX,'Convergence parameter 
1998 FORMATC/,IX,’Convergence parameter 
1997 F0RMATCE13.5)

WRITECS,2000)
READ(9,999) ITERATIONS 
WRITECS,1999)
READ(9,1997) MUEA 
MUEA=-MUEA 
WRITECS,1998)
READ(9,1997) MUEB 
MUEB=-MUEB

for direct filter A?') 
for recursive filter B?
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1996 FORMATCIX,'DO YOU WANT COEFFICIENTS OUTPUT ? M  
WRITECS,1996)
READ(9,1994) YN
IF(YN.EQ.'Y'.OR.YN.EQ.'y') CFLAG=1 

199S FORMATCIX,'DO YOU WANT THE SIGNAL FILE OUTPUT ?') 
WRITECS,199S)
READC9,1994) YN
IFCYN.EQ.'Y'.OR.YN.EQ.'y') TFLAG=1

1994 FORMATCA)
999 FORMATC17)
998 FORMAT(/,IX,'How many coefficients in H01Z ?')

WRITECS,998)
READC9,999) D01Z
IFCD01Z.NE.0) THEN
CALL ARRAYFILLCH01Z,1,D01Z)

997 FORMATC/,IX,'How many coefficients in H01P ?')
WRITECS,997)
READC9,999) D01P
IFCD01P.NE.0) THEN
CALL ARRAYFILLCH01P,1,D01P)
ELSE
D01P=2
H01PC2)=0. 0
END IF
ELSE
D01Z=1
H01ZC1)=1.0
D01P=2
H01PC2)=0.0
END IF

996 FORMATC/,IX,'How many coefficients in H03Z ?')
WRITECS,996)
READC9,999) D03Z
IF CD03Z.NE.0) THEN
CALL ARRAYFILLCH03Z,1,D03Z)

99S FORMATC/,IX,'How many coefficients in H03P ?')
WRITECS,995)
READC9,999) D03P
IFCD03P.NE.0) THEN
CALL ARRAYFILLCH03P,1,D03P)
ELSE
D03P=2
H03PC2)=0.0
END IF
ELSE
D03Z=1
H03ZC1)=1.0
D03P=2
H03PC2)=0.0
END IF
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994 FORMATC/,IX,'How many coefficients in H23Z ?')
WRI TEC5,994)
READC9,999) D23Z
IF CD23Z.NE.0) THEN
CALL ARRAYFILLCH23Z,i,D23Z)

993 FORMAT(/,IX,'How many coefficients in H23F ?')
WRITECS,993)
READC9,999) D23P
IFCD23P.NE.0) THEN
CALL ARRAYFILLCH23P,i,D23P)
ELSE 
D23P=2 
H23PC2)=0.0 
END IF

ELSE 
D23Z=i 
H23Z(1)=1.0 
D23P=2 
H23PC2)=0.0 
END IF

992 FORMATC/,IX,'How many coefficients in H21Z ?')
WRITECS.992)
READC9.999) D21Z
IF CD21Z.NE.0) THEN
CALL ARRAYFILLCH21Z,i,D21Z)

991 FORMATC/,IX,'How many coefficients in H21P ?')
WRITECS,991)
READC9,999) D21P
IFCD21P.NE.0) THEN
CALL ARRAYFILLCH21P,1,D21P)
ELSE
D21P=2
H21PC2)=0.0
END IF
ELSE
D21Z=2
H21ZC2)=1.0
D21P=2
H21PC2)=0.0
END IF
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990 FORMAT(/,IX,'How many coefficients in HTZ ?')
WRIT E (5,990)
READ(9,999) DTZ
IF (DTZ.NE.0) THEN
CALL ARRAYFILLCHTZ,1,DTZ)

989 FORMAT(/,IX,'How many coefficients in HTP ?’)
WRITECS,989)
READ(9,999) DTP
IFCDTP.NE.0) THEN
CALL ARRAYFILLCHTP,1,DTP)
ELSE 
DTP = 2
HTP(2)=0.0 
END IF 
ELSE 
DTZ=i
HTZCl) = 1 - 0 
DTP = 2
HTP(2)=0.0 
END IF

988 FORMATC/,IX,'How many coefficients in HUZ ?’)
WRITECS,988)
READ(9,999) DUZ
IF CDUZ.NE.0) THEN
CALL ARRAYFILLCHUZ,i,DUZ)

987 FORMATC/,IX,'How many coefficients in HUP ?')
WRITECS,987)
READC9,999) DUP
IFCDUP.NE.0) THEN
CALL ARRAYFILLCHUP,1,DUP)
ELSE 
DUP = 2
HUPC2)=0.0 
END IF 
ELSE 
DUZ=1
HUZC1)=1.0 
DUP = 2
HUPC2)=0.0 
END IF
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888 FORMATC/,IX,'How many coefficients in HESZ ?')
WRITECS,888)
READC9,999) DESZ
IF CDESZ.NE-0) THEN
CALL ARRAYFILLCHESZ,i,DESZ)

887 FORMATC/,IX,'How many coefficients in HUES ?')
WRITECS,887)
READC9,999) DESP
IFCDESP-NE.0) THEN
CALL ARRAYFILLCHESP,i,DE5P)
ELSE 
DESP=2 
HESPC2)=0.0 
END IF 
ELSE 
DESZ=1 
HESZC1)=1.0 
DESP=2 
HESPC2) =0.^0 
END IF

986 FORMATC/,IX,'How many coefficients in direct filter "A” ? ’)
98S FORMATC/,IX,'How many coefficients in recursive filter "B" ? ')

WRITECS,986)
READ(9,999) FF 
IF CFF.NE.0) THEN 
CALL ARRAYFILLCA.1,FF)
WRITECS,98S)
READC9,999) FB 
IFCFB.NE.0) THEN 
CALL ARRAYFILLCB,i,FB)
ELSE
FB=2
BC2)=0.0 
END IF 
ELSE 
FF=i
A(i)=1.0
FB=2
BC2)=0.0 
END IF

984 FORMATC/,IX,'Mean square error taken over how many samples ? ’) 
WRITECS,984)
READC9,999) MEM

983 FORMATC/,IX,'At what interval should information be output ?') 
WRITECS,983)
READC9,999) STEP

982 FORMATC/,IX,'Start outputting data at iteration number ?')
981 WRITECS,982)

READC9,999) STARTPOINT 
IF CSTARTPOINT.LT.1) GO TO 981
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111 FORMATC/,IX,'Start filtering at what iteration number ?')
110 writeCS,111)

READC9,999) swon 
if (swon.It.1) go to 110

109 FORMAT(/,IX,'Start adapting filter at what iteration ?') 
writeCS,109)

108 READC9,999) adstart
if Cadstart.1t.1) go to 108

* * * * * * * * * * * * * * * * * * * * * * *  
ZERO ALL WORKING ARRAYS 
* * * * * * * * * * * * * * * * * * * * * * *

CALL ZERO CAFF,FF)
CALL ZEROCBFB,FB)
CALL ZEROCH03FF,D03Z)
CALL ZEROCH03FB,D03P)
CALL ZEROCH01FF,D01Z)
CALL ZEROCH01FB,D01P)
CALL ZER0CH23FF,D23Z)
CALL ZER0CH23FB,D23P)
CALL ZEROCH21FF,D21Z)
CALL ZER0(H21FB,D21P)
CALL ZEROCHXPFFB,FB)
CALL ZERO(HYPFFB,FB)
CALL ZEROCHTFF,DTZ)
CALL ZEROCHTFB,DTP)
CALL ZERO(HUFF,DUZ)
CALL ZEROCHUFB,DUP)
CALL ZEROCMSE,ITERATIONS) 
CALL ZERO(ERROR,MEM)
CALL ZEROCXDASHED,FF)
CALL ZEROCYDASHED,FB)
CALL ZEROCXDOUBLEDASHED,FF) 
CALL ZEROCYDOUBLEDASHED,FB) 
CALL ZEROCHESFF,DESZ)
CALL ZEROCHESFB,DESP)

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  
OPEN FILES FOR INFORMATION OUTPUT DURING EXPERIMENT 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

980 FORMATC/,IX,'Output file name 
WRITECS,980)
READC9,978) OUTFILE

?' )

0PEN(1,FILE=0UTFILE//’.DAT',STATUS=’NEW') 
0PENC2,FILE=OUTFILE//’.MSE',STATUS^'NEW') 
0PENC3,FILE=OUTFILE//'.INFO',STATUS=’NEW') 
0PEN(4,FILE=0UTFILE//’.SCOEFFS',STATUS='NEW’) 
OPENCa,FILE=OUTFILE//’.TST’,STATUS='NEW')
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9/9 FORMAT(/,I X T y p e  in remarks (Single line only)’)
WRITE(5,979)

978 FORMATCA)
READ(9,978) REMARK

CL0SEC9)

333 formatClx,'Simulation using FEINTUCH RLMS algorithm')
334 FORMATCIX,'Simulation using the RLMS2 algorithm')
335 FORMATCIX,'Simulation using the FAN algorithm')
336 FORMATCIX,'Simulation using the STEARNS algorithm')
337 formatClx,'Simulation using the LMS algorithm')

I F C ALGOR ITHM.EQ.'RLMS1' ) WRITECl,333)
IF(ALGORITHM.EQ.'RLMS2') WRITECl,334)
IFCALGORITHM.EQ.'FAN') WRITECl,335)
IF (ALGOR ITHM.EQ.'STEARNS' ) WRITECl,336)

IFCALGORITHM.EQ.'LMS’) THEN

WRITECl,337)
MUEB=0.0

END IF

977 FORMATCIX,'Remarks : ’,T15,A)
WRITE(1,977) REMARK

976 FORMATCIX,'Output file set is called ',T40,A)

WRITECl,976) OUTFILE

975 FORMATCIX,'Number of iterations is ',T40,I7)
WRITECl,975) ITERATIONS

974 FORMATCIX,'Output step is ',T40,I7)
WRITE(1,974) STEP

456 FORMATCIX,'Filtering started at iteration ',17)
WRITECl,456) SWON

123 FORMATCIX,'Adaptation started at iteration ',17)
WRITECl,123) ADSTART

664 FORMATCIX,'Mean Square Error averaged over',T40, I 4,’
* Iterat i ons')

WRITE Cl,664) MEM

973 FORMATC/,IX,'Direct convergence coefficient is ',T40,IPEl1.3) 
972 FORMATCIX,'Recursive convergence coefficient is ',T40,IPEl1.3) 
971 FORMATC/,IX,'Number of direct taps is',T40,I7)
970 FORMATCIX,'Number if recursive taps is',T40,I7)

WRITECl,973) MUEA 
WRITECl,972) MUEB 
WRITECl,971) FF 
WRITE Cl,970) FB
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969 FORMATC/,IX,'***** ACOUSTIC VECTOR H03Z & H03P *****',/)
968 FORMATC/,IX,'***** ACOUSTIC VECTOR H21Z & H21P *****',/)
967 FORMATC/)

966 FORMATC1P4E14.6)
WRITE Cl,969)
WRITECl,966) CH03Z(I),I=1,D03Z)
WRITECl,967)
WRITE(1,966) CH03PCI),1=1,D03P)
WRITEC1,968)
WRITECl,966) CH21ZCI),I=1,D21Z)
WRITEC1,967)
WRITECl,966) CH21PCI),I=1,D21P)

965 FORMATC/,IX,'***** ACOUSTIC VECTOR H01Z & H01P *****',/)
964 FORMATC/,IX,****** ACOUSTIC VECTOR H23Z & H23P *****',/)

WRITE Cl,965)
WRITECl,966) CH01ZCI),I=1,D01Z)
WRITEC1,967)
WRITEC1,966) CH01PCI),I=1,D01P)
WRITEC1,964)
WRITEC1,966) CH23ZCI),I=1,D23Z)
WRITECl,967)
WRITEC1,966) CH23PCI),I=1,D23P)

666 FORMATC/,IX,****** FILTER HTz/Cl-HTp) *****',/)
665 FORMATC/,IX,****** FILTER HUz/(l-HUp) *****',/)

WRITEC1,666)
WRITEC1,966) CHTZCI),I=1,DTZ)
WRITEC1,967)
WRITEC1,966) CHTPCI),I=1,DTP)
WRITECl,665)
WRITEC1,966) (HUZCI),1=1,DUZ)

WRITE(1,967)
WRITEC1,966) CHUP(I),I=1,DUP)

555 FORMATC/,IX,****** ERROR SMOOTHING HESz/C1-HESp) *****',/) 
WRITEC1,555)
WRITEC1,966) CHESZ(I),I=1,DESZ)
WRITECl,967)
WRITEC1,966) (HESP(I),I=1,DESP)

963 FORMATC/,IX,****** MODEL FEEDFORWARD VECTOR A *****',/)
962 FORMATC/,IX,****** MODEL FEEDBACK VECTOR B *****',/)

WRITECl,963)
WRITEC1,966) (AC I), 1=1,FF)
WRITECl,962)
WRITEC1,966) (BCI),I=1,FB)

961 ' FORMATC/,IX,* ITERATIONS* ,22X,'MEAN SQUARE ERROR',/) 
WRITECl,961)

Page 157



Appendix il - The main simulation program NEWSIM

C **********************************************************
C OUTPUT THE FOLLOWING INFO TO .SCOEFFS FILE :
C i) Comment
C ii) Number of iterations intended for experiment 
C iii) Iteration number at which output to files should start 
C iv) Output Step.
C v) Number of direct coefficients in the adaptive filter.
C Vi) Number of recursive coefficients in the adaptive 
C filter.

C **********************************************************

960
959

958

FORMATCA)
FORMATC17)
WRiteC4,960) REMARK
WRite(4,959) ITERATIONS
WRiteC4,959) STARTPOINT
WRiteC4,959) STEP
WRiteC4,959) FF
WRiteC4,959) FB-1

F0RMATCE13.5 )

J=0
WRiteC4,959) J
WRiteC4,958) (AC I), 1=1,FF)
WRiteC4,958) (BCD, 1=2,FB)

FORMAT(T5,'ITER',T11,'H03OUT
,t47,'FILIN' ,T59'FIL0UT'

957

*,T71,'ADIRECT',T83,'BRECUR',T95,'ERROR',T107,'X"',T119,'Y"') 
WRITECS,957)
WRITECS,967)

C ********************
C BEGIN ITERATIVE LOOP
C ********************

DO 100 J=l,ITERATIONS
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* * * * * * * * * * * * * * * * * * * * *  
SHIFT ALL DATA ARRAYS 
* * * * * * * * * * * * * * * * * * * * *

CALL SH
CALL SH
CALL SH
CALL SH
CALL SH
CALL SH
CALL SH
CALL SH
CALL SH
CALL SH
CALL SH
CALL SH
CALL SH
CALL SH
CALL SH
CALL SH
CALL SH
CALL SH
CALL SH
CALL SH
CALL SH
CALL SH
CALL SH

(AFF,FF)
(BFB,FB)
(H01FF,D01Z) 
(H01FB,D01P) 
(H03FF,D03Z) 
(H03FB,D03P) 
(H21FF,D21Z) 
(H21FB,D21P) 
(H23FF,D23Z) 
(H23FB.D23P) 
(HXPFFB,FB) 
(HYPFFB,FB)
(HTFF,DTZ)
(HTFB,DTP)
(HUFF,DUZ)
(HUFB,DUP)
(ERROR,MEM) 
(XDASHED,FF) 
(YDASHED,FB) 
(XDOUBLEDASHED,FF) 
(YDOUBLEDASHED,FB) 
CHESFF,DESZ) 
CHESFB,DESP)

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  
GET NEW RANDOM SAMPLE AND CONVOLVE WITH ACOUSTICAL FEEDFORWARD 
PATH H03Z/C1-H03P) 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

NOISE=RANDOMCK)

H03IN=NOISE 
H03FFC1)=H03IN
CALL MULTIPLYARRAYCH03Z,1,D03Z,H03FF,H03DIRECT)
CALL MULT IPLYARRAY C H03P,2,D03P,H03FB,H03RECURSIVE)
H03OUT=H03DIRECT+H03RECURSIVE 
H03FBC1)=H03OUT

C ****************************************************************
C CONVOLVE PREVIOUS DIGITAL FILTER OUTPUT WITH ACOUSTICAL FEEDBACK
C PATH H21Z/(1-H21P)
C ****************************************************************

CALL MULTIPLYARRAYCH21Z,2,D21Z,H21FF,H21DIRECT)
CALL MULT IPLYARRAYCH21P,2,D21P,H21FB,H21RECURSIVE)
H210UT=H21DIRECT+H21RECURSIVE 
H21FBC1)=H210UT

C *****************************************************
C CONVOLVE NEW RANDOM SAMPLE WITH H01Z/C1-H01P) TO GIVE
C H01OUT.
C *****************************************************
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H0iIN=NOISE 

H01FFC1)=H01IN
CALL MULT IPLYARRAY(H01Z,1,D01Z,H01FF,H01DIRECT)
CALL MULT IPLYARRAYCH01P,2,D0iP,H01FB,H01RECURSIVE)
H01OUT=H01DIRECT+H01RECURSIVE
H01FB(1)=H0iOUT

IF(J-GE.SWON) THEN

C ************************************************************
C ADD ACOUSTIC FEEDBACK SIGNAL (H210UT) TO H01OUT AND CONVOLVE
C WITH DIGITAL FILTER A/(l-B) TO PRODUCE NEW FILTER OUTPUT.
C ************************************************************

AIN=H01OUT+H21OUT
AFF(1)=AIN
CALL MULTIPLYARRAY(A,1,FF,AFF,AD IRECT)
CALL MULTIPLYARRAYCB,2,FB,BFB,BRECURSIVE)
F ILTEROUT = AD IRECT + BRECURSIVE 
H21FF(1)=FILTEROUT 
BFB(1)=FILTER0UT

C ************************************************************
C CONVOLVE FILTER OUTPUT WITH H23Z/(1-H23P) TO GIVE NEW H230UT
C ************************************************************

H23IN=FILTER0UT 
H23FF(1)=H23IN
CALL MULTIPLYARRAY(H23Z,1,D23Z,H23FF,H23DIRECT)
CALL MULTIPLYARRAY < H23P,2,D23P,H23FB,H23RECURSIVE)

H230UT=H23DIRECT+H23RECURSIVE 
H23FB(1)=H230UT

IFCALGORITHM-EQ.’FAN'.OR.ALGORITHM.EQ.'STEARNS’) THEN

C ************************************************
C IF USING FAN’S OR STEARNS' ALGORITHM THEN :
C FILTER SIGNALS X & Y THROUGH HXPF & HYPF TO GIVE
C SIGNALS XDASHED CX') & YDASHED CY’) RESPECTIVLEY
C ************************************************

HXPFDIRECT=AIN
CALL MULTIPLYARRAY C B ,2,FB,HXPFFB,HXPFRECURSIVE) 
HXPFOUT=HXPFDIRECT+HXPFRECURSIVE 
HXPFFB(1)=HXPFOUT 
XDASHED C1)=HXPFOUT

IF (ALGOR ITHM.EQ.'FAN' ) THEN

HYPFDIRECT=-H03OUT

ELSE

HYPFDIRECT=FILTEROUT
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END IF

CALL MULTIPLYARRAY(B,2,FB,HYPFFB,HYPFRECURSIVE)
HYPFQUT=HYPFDIRECT+HYPFRECURSIVE
HYPFFB(1)=HYPFQUT
YDASHED(1)=HYPFOUT
ELSE
HXPFOUT=AIN

IFCALGORITHM.EQ.'RLMSl') THEN
HYPFOUT=FILTEROUT
ELSE
HYPFOUT=-H03OUT 
END IF

END IF

C ************************************************
C FILTER SIGNALS X ’ & Y' THROUGH T & U TO GIVE
C SIGNALS X'' & Y'' RESPECT IVLEY
C ************************************************

HTIN=HXPFOUT
HTFFC1)=HTIN
CALL MULT IPLYARRAYCHTZ,1,DTZ,HTFF,HTDIRECT)
CALL MULTIPLYARRAYCHTP,2,DTP,HTFB,HTRECURSIVE) 
HTOUT=HTDIRECT+HTRECURSIVE 
HTFB C1)=HTOUT 
XDOUBLEDASHED C1)=HTOUT

HUIN=HYPFOUT
HUFFC1)=HUIN
CALL MULT IPLYARRAYCHUZ,1,DUZ,HUFF,HUDIRECT)
CALL MULT IPLYARRAYCHUP,2,DUP,HUFB,HURECURSIVE)
HUOUT=HUDIRECT+HURECURSIVE
HUFBC1)=HUOUT
YDOUBLEDASHED C1)=HUOUT
END IF

C **************************
C CALCULATE NEW ERROR SIGNAL
C **************************

ERRORC1)=H03OUT+H23OUT

C ********************************************
C POST FILTER ERROR THROUGH Hes TO GIVE HesOUT
C ********************************************

HESIN=ERRORCi)
HESFFC1)=HESIN
CALL MULTIPLYARRAYCHESZ,1,DESZ,HESFF,HESDIRECT) 
CALL MULTIPLYARRAY C HESP,2,DESP,HESFB,HESRECURSIVE) 
HESOUT=HESDIRECT+HESRECURSIVE 
HESFBC1)=HES0UT
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IF(J-GE.ADSTART) THEN

C ********************************************************
C UPDATE DIGITAL FILTER USING XDASHED & YDASHED AND HesOUT
C ********************************************************

CALL LMSUPDATE(A,1,FF,XDOUBLEDASHED,HESOUT,MUEA)
CALL LMSUPDATE(B,2,FB,YDOUBLEDASHED,HESOUT,MUEB)

END IF

IFCERRORd) .NE.0.0) THEN

C ******************************************************
C CALCULATE MEAN SQUARE ERROR AND OUTPUT INFORMATION.
C (ERROR IS SQUARED AND AVERAGED OVER 'MEM' ITERATIONS)-
C ******************************************************

IF (J.LT.MEM+FFOUT) THEN
DEN=DEN+1
ELSE
DEN=MEM
END IF

CALL MEANSQUARE(ERROR,DEN,MSE(J ))

ELSE

MSE(J)=0.0
FF0UT=FF0UT+1

END IF

C ******************************************************
C IF ITERATION COUNT IS A MULTIPLE OF 'STEP' THEN OUTPUT
C THE FOLLOWING INFORMATION TO THE .SCOEFFS FILE:
C i) Iteration number
C ii) Direct coefficients 1..FF
C iii) Recursive coefficients 2....FB
C ******************************************************

IF (J.GE.STARTPOINT) THEN 
FLAG=FLAG+1
IF ((FLAG.EQ.STEP).or.(J.e q . STARTPOINT)) THEN 

IF (TFLAG.EQ.1) THEN
WRIT E (8,956) J ,H03OUT,H21OUT,H230UT,AIN,FILTEROUT,AD IRECT, 

*BRECURSIVE,ERROR(1),XDASHED(i),YDASHED(1)
END IF

956 FORMATCIX,17,10(1PE11.3))
955 FORMATCIX,17,IPEll.3)
954 FORMATC17)
953 F0RMATCE23.15)
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WRITE(2,955) J,MSE(J)

IF (CFLAG.EQ.l) THEN 
write(4,954) J 
WRite(4,953) (A(I),1=1,FF)
WRite(4,953) (BCD, 1=2,FB) 
END IF

FLAG=0 
NUMP=NUMP+1 
END IF 
END IF

C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 4
C CHECK TO SEE IF MSE HAS GONE OVER A REASONABLE VALU!
C ***************************************************

952 FORMATC//,IX,'ADAPTATION ABORTED AT ITERATION ’,17,
*MSE= ',IPEll.3)
IF CMSECJ).GT.lE+03) THEN 
WRITECl,952) J,MSECJ)
WRITECS,952) J,MSE(J)
LAST=J 
GO TO 201 
END IF

100 CONTINUE

C ******************************************************
C OUTPUT FOLLOWING INFORMATION TO .INFO FILE :
C i) NUMber of entries Plus 1 (NUMP).
C ii) Start Point CSTARTPOINT).
C iii) Last Iteration output CLAST).
C iv) Number of direct coefficients in model (FF).
C V ) Number of recursive coefficients in model (FB).
C Vi) Pz dimension.
C vii) Pp dimension.
C viii) Qz dimension.
C i X ) Qp dimension.
C X ) Modulus of direct mu value.
C X i) Modulus of recursive mu value.
C *****************************************************

200
201

LAST=ITERATIONS
WRITECS,954) NUMP
WRIT E (3,954) STARTPOINT
WRIT E (3,954) LAST
WRIT E (3,954) STEP
WRITEC3,950) FF
WRITEC3,950) FB
WRIT E (3,950) D03Z
WRIT E (3,950) D03P
WRITE(3,950) D21Z
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WRITE(3,950) D21P 
WRITE(3,95i) -MUEA 
WRITE(3,951) -MUEB

951 FORMATC1PE10.3)
950 FORMATC13)

C ***************************************************
C OUTPUT TABLE OF MSE VERSUS ITERATION NUMBER FOR THE
C FIRST K (WHERE K IS UP TO 200) ITERATIONS.
C ***************************************************

IF (ITERATIONS
K=ITERATIONS/2
ELSE
K=200
END IF

LT.200) THEN

949

300
948

400

FORMATCIX,17,1P6E11.3)
DO 300,J=STARTPOINT,STARTPOINT + K, 6 
WRITEC1,949) J ,CMSE(J+ I),I=0,5) 
FORMATC/)
WRITECl,948)
DO 400 J=LAST-K,LAST,6 
WRITECl,949) J,(MSECJ+I),1=0,5)

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  
OUTPUT THE ADAPTED ELEMENTS A AND B 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

947 FORMATC/,IX,'MODEL FEEDFORWARD VECTOR',/)
946 FORMATC/,IX,'MODEL FEEDBACK VECTOR',/)
945 F0RMATC3CE23.15))

WRITEC1,947)
WRITEC1,945) (AC I), 1=1,FF)
WRITECl,946)
WRITEC1,945) (BC I ), I = 1,F B )

OPEN(11,FTLE = OUTFI LE//'A .DAT',STATUS='NEW') 
0PEN(12,FILE=0UTFILE//'B.DAT’,STATUS='NEW') 
0PENC13,FILE=0UTFILE//’AL.DAT',STATUS='NEW') 
OPEN(14,FILE=0UTFILE//'EL.DAT’,STATUS=’NEW')

944 formatei7,E15.7)
WRITE(13,944) 
WRITEC14,944) 
WRIT E Cl1,943) 
WRITEC12,943)

(I,ACI),1=1,FF) 
(I,BCI),I=1,FB) 
(AC I), 1 = 1,FF) 
(BCD, 1=1,FB)

943 FORMATC1PE14.6)

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  
CLOSE THE CURRENT OUTPUT FILES 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

CLOSECl)
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CL0SEC2)
CL0SEC3)
CL0SEC4)
CL0SE(8)
CLOSE(ll)
CLOSEC12)
CLOSEC13)
CLOSEC14)

END

C *************************
C FUNCTIONS AND SUBROUTINES
C *************************

SUBROUTINE MEANSQUARECA,N ,MSQ)
REAL ACN),MSQ 
SUM=0.
DO 100 J=1,N 

100 SUM=SUM+A(J)*»2 
MSQ=SUM/N

RETURN
END

REAL FUNCTION RANDOMCI)
I=2045*It1
1=1-C1/1048576)*1048576
RAND0M=1.-2.*(FLOATC1+1)/1048577.0)
RETURN
END

SUBROUTINE ZERO(A,N)
REAL ACN)
DO 100 J=1,N 

100 A(J)=0.
RETURN
END

SUBROUTINE MULTIPLYARRAY(H,n,M,C,Y ) 
REAL HCM),Y,C(M)
Y=0.
DO 100 K=n,M 

100 Y=Y+C(K)*H(K)
RETURN
END

SUBROUTINE LMSUPDATECH,n,M,X,E,K) 
REAL H(M),XCM),E,K 
DO 100 J=n,M 

100 H(J)=H(J)+K*E*X(J)
RETURN

END

SUBROUTINE ARRAYFILLCA,m,N)
REAL ACN)
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CHARACTER*!® AFILE 
WRITECS,3)
READ(9,4) AFILE
OPEN (2,FILE=AFILE,STATUS=’OLD')
DO 1 I=m,N

1 READ(2,2) AC I)
CL0SEC2)

2 FORMATClpel4.6)
3 FORMATCIX,'Input data filename ;-')
4 FORMATCA)

RETURN
END

SUBROUTINE SHIFTCA,N)
REAL ACN)
DO 100 J=N-1,1,-1 

100 A(J+1)=ACJ)
RETURN
END
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