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ABSTRACT

This thesis explores the use of State-Space models in 
Time Series Analysis and Forecasting, with particular 
reference to the Dynamic Linear Model (DLM) introduced by 
Harrison and Stevens. Concepts from Control Theory are 
employed, especially those of observability, controllability 
and filtering, together with Bayesian inference and 
classical forecasting methodology.

First, properties of state-space models which depart 
from the usual Gaussian assumptions are examined, and the 
predictive consequences of such models are developed. These 
models can lead to new phenomena, for example it is shown 
that for a wide class of models which have a suitably 
defined steady evolution the usual properties of classical 
steady models (such as exponentially weighted moving 
averages) do not apply.

Secondly, by considering the forecast functions, 
equivalence theorems are proved for DLMs in the steady 
state and stationary Box-Jenkins models. These theorems 
are then extended to include both time-varying and non- 
stationary models thus establishing a very general predictor 
equivalence. However it is shown that intuitively appealing 
DLMs which have diagonal covariance matrices are restricted 
by only covering part of the equivalent stability / 
invertibility region, and examples are given to illustrate 
these points.

Thirdly, some problems of inference involving state- 
space models are looked at, and new approaches outlined.
A class of collapsing procedures based upon a distance 
measure between posterior components is introduced. This 
allows the use of non-normal errors or Harrison-Stevens 
Class II models by condensing the normal-mixture posterior 
distribution to prevent an explosion of information with 
time, and avoids some of the problems of the Harrison- 
Stevens solution.

Finally, some examples are given to illustrate the 
way in which some of these models and collapsing procedures 
might be used in practice.
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CHAPTER 1

INTRODUCTION

Time plays an important rôle in many situations which 
involve data, for example much economic data consists of 
quantities or statistics which vary with time. In the 
context of experimentation although strictly speaking each 
observation is made at a unique time, in some instances 
time is a necessary ingredient of the analysis. This means 
that the ordering of the data matters, and it is this 
dependence between data items that complicates the analysis.

Throughout this thesis we shall be concerned with 
situations such as these, where we have a set of observations 
or data indexed by t, {y^} say. We shall only look at the 
case where time is discrete, with observations made at 
equally spaced intervals, that is a Time Series. Unless 
otherwise stated we shall further assume that the observations 
y^ are univariate, and let the indexing parameter t range 
over a subset of the integers.

A time series might be analysed for a variety of reasons, 
for example:

(1) To generate information about the underlying 
process from which the observations came; this might lead
on to questions of model determination or hypothesis testing.

(2) In a control situation, where the observations 
are arriving in 'Real Time' and we wish to alter certain 
physical parameters to achieve a specified objective.

(3) To enable us to make statements or forecasts about 
future y^.



This list is neither exhaustive nor indeed are its 
items mutually exclusive. However, there is a difference 
in emphasis between them and different criteria are used 
to judge model performance.

We shall mainly be concerned with the last objective 
given above, namely (3). That is we have observations (y^} 
up to some point t^, and we wish to make statements about 
y^ for t>t^. In this case our success is measured by the 
quality of our forecasts, namely how close our forecasts 
or predictions are to the subsequently observed values, 
where closeness is suitably defined.

To be able to analyse time series statistically we 
require an appropriate mathematical framework, which is the 
class of discrete stochastic processes. A discrete 
stochastic process is a family of random variables {y^} 
indexed by t where t varies over the integers. Strictly 
speaking we should distinguish in notation between the 
underlying mathematical model and a particular observed 
time series or realisation of the stochastic process.
Indeed it is important to remember that any model we build 
is an approximation, which we use to draw inferences using 
the actual data.

It is necessary to impose additional structure if we 
are to be able to make meaningful statements about a 
particular time series, and now two cases arise. The first 
is where there is an underlying model which presents itself 
from physical or theoretical considerations, or perhaps a 
model specified up to a certain point. For example, if the 
time series is the observed position of a space-craft at 
equally spaced intervals of time, then successive positions
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are related by the equations of motion. However, in a more 
comprehensive model uncertain factors - such as wind-strength 
if in the atmosphere, errors of measurement and other 
unmeasured forces - can be represented probabilistically.
To represent this, the deterministic equations of motion 
are incorporated in a probabilistic model.

The second case is where we have no firm idea of the 
nature of the underlying model. This might be because one 
is not known or because there are too many factors to take 
account of. It is these type of time series which are most 
commonly studied in Statistics and indeed in Economics.
One is left with little more than the data from which to 
deduce the structure of the series.

In an attempt to make this thesis largely self-contained. 
Chapters 2-1 are of an introductory nature, describing the 
background against which Chapters 5-9 are set.

Chapter 2 gives a resume of some of the main ideas 
that are used in classical statistical Time Series analysis, 
which is linked with objective (1) above. The first step 
in developing a tractable class of time series models is to 
introduce the concept of stationarity, and in particular 
second-order stationarity, which requires that the first 
and second order properties of the time series are independent 
of time.

It is then possible to use the so-called 'Time Domain' 
or 'Frequency Domain' approaches. The first deals with 
properties of the time series per se, whilst the second in 
essence performs an harmonic analysis, which gained impetus 
from the widespread use of Fourier analysis in the engineering 
disciplines. This latter approach leads to spectral
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decomposition and the identification of frequencies, for 
example as described by Hannan (i960).

The simplest additional structure to impose is linearity, 
which is strongly linked to the Gaussian distribution. The 
general ARMA (auto-regressive moving average) models express 
a linear combination of past and present observations as a 
linear combination of past and present 'noise' variables. 
Non-stationary models can be generated.by suitably 
differencing the series to give a stationary ARMA model, 
creating the ARIMA models - I for integrated. The popularity 
and widespread use of such models owes much to the work of 
Box-Jenkins (1970) and Jenkins (1979).

As we have mentioned, another use of time series is in 
a control environment. In the example of a space-craft given 
above, not only do we wish to be able to predict the position 
of the space-craft at future instants of time, but also we 
want to be able to alter its position by applying the 
appropriate thrusts to achieve a desired objective, such as 
landing on the moon.

The illustration of a space-craft is no accident: 
'classical' control theory is the analysis of differential 
equations or difference equations, often by transform 
methods, which received a boost from military applications 
in the Second World War. But modern control theory which 
uses a state-space approach, benefitted from the enormous 
amount of reseach undertaken during the American Space 
programme. In the state-space approach the system is 
described by a state vector, each of whose components are 
physical quantities of interest, such as the position and 
momentum co-ordinates of the vehicle. However normally
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these are not all directly available, instead observations 
contain information about part of the state vector. This 
relationship is specified, as is. the evolution of the state 
vector in time, and the object is to estimate the state 
vector, or control it by applying suitable inputs.

Chapter 3 introduces some of the key concepts in 
control theory, especially those of the pioneering work of 
Kalman (1963) on controllability and observability, and 
various types of stability are mentioned and linked together 
The idea of equivalence between different descriptions is 
introduced.

IVhen the error terms in linear state-space models are 
Gaussian, the Kalman filter provides optimal estimates of 
the state vector. This is one of the concepts which has 
been part of a healthy cross-fertilisation between the 
disciplines of Engineering (in particular control theory) 
and Statistics.

Harrison and Stevens in particular (1971, 1975, 1976) 
have shown that it is possible to usefully use concepts from 
control theory in Time Series analysis. At the heart of 
their theory is the Dynamic Linear Model (DLM), which is 
a linear state-space model with additive Gaussian noise, 
upon which the Kalman filter is used. These models, together 
with extensions developed by Harrison and Stevens, are 
discussed in Chapter 4-, which also includes a brief intro
duction to the Bayesian paridigm.

In many branches of statistics, distributions are 
assumed to be Gaussian, or 'normal' and indeed it is often 
very difficult work outside this framework. Chapter 5 
examines the possibility of using non-normal state-space
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models in the context of Bayesian analysis. Unless the 
error distributions are stable, it is not easy to introduce 
non-normality into the state-space description and obtain 
tractable results. Smith (1979) used a slightly indirect 
method of extending the simplest DLM - the steady model - to 
include non-normality. The implications for the predictors, 
or the predictive distributions, of using such a steady 
evolution are examined. In particular, the exponential 
family is used, and it is shown that when a steady evolution 
is used with members of this family, that many of the familiar 
properties of the steady model fail to hold. For example, 
the predictors at a particular time for different lead times 
need not be identical, as they are for the Normal Steady 
model. Some of these results have already been discussed 
in Key and Godolphin (1981).

Certain types of equivalence between state-space and 
ARIMA models have .been discussed before, such as in Godolphin 
and Harrison (1975). Chapter 6 looks at predictor 
equivalence between DLMs and ARIMA models, that is models 
which yield the same predictors for all lead times. First 
the role of observability is established in this context - 
essentially one only has to consider the observable subsystem 
of any DLM. Then constant DLMs which are in the, steady 
state (for which conditions are given in Chapter l) are 
shown to be equivalent to ARIMA models with constant 
coefficients. These results encompass both stationary and 
non-stationary models. It is then further shown that DLMs 
which are time-varying (or constant ones not yet in the 
steady-state) are equivalent to ARIMA models with varying 
parameters.
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An alternative way to demonstrate equivalence is to 
use the covariance properties of the models, and subject 
to mild restrictions, the equivalence classes are 
isomorphic to those generated by looking at predictors. A 
slightly surprising result is that in many cases unless the 
system matrix of the DLM is singular, the parameters in the 
equivalent ARIMA model can be severely restricted.

Chapter 7 examines the consequences of Chapter 6 as 
they apply to practical DLMs. Theoretical results are 
proved which describe the invertibility regions that are 
mapped out by DLMs having constant system and observation 
matrices, but whose covariance matrices vary. It is shown 
that practical DLMs, which have diagonal covariance matrices, 
can only cover part of the invertibility region of the 
equivalent ARIMA models, except in the case of first order 
models. A slightly different way of writing some useful 
DLMs is given, which calls for a slight ammendment to the 
Kalman filter. Finally, a summary is provided of some 
frequently used ARIMA models and their DLM equivalents.

The Bayesian forecasting methodology of Harrison- 
Stevens (1976) not only included DLMs but also introduced 
the idea of multi-process models. In other words, one can 
assume that different DLMs are operative at different times, 
with a transition matrix describing the evolution between 
them. The problem with this generality is i n . 'collapsing' 
the ever increasing number of normal components of the 
posterior to a smaller number. A simple approach is given 
in Harrison-Stevens (ibid). However, Chapter 8 describes 
a new class of collapsing procedures, based upon a clustering 
approach with an appropriate metric. In particular, the
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Hellinger distance is examined and certain desirable 
properties of the collapsing procedure proved.

Chapter 9 illustrates how some of the preceeding ideas 
might be applied in practice by looking at two real time 
series. The augmented steady model is used for simplicity, 
together with the collapsing procedure of Chapter 8,
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CHAPTER 2

TIME SERIES

2.1 Introduction

At the present time there is much interest in time 
series analysis, partly because it finds applications in 
very diverse fields and partly because of the problems 
involved, even in simple models. We take a time series 
to mean a series of observations taken at discrete points 
in time, and only consider univariate observations. The 
corresponding probability model is a family of random 
variables, {y^}, where without loss of generality the 
index t ranges over the integers.

The simplest models are linear and much current 
practice using these has been influenced by the seminal 
work of Box and Jenkins (1976). This theoretical work is 
complemented by Jenkins (1979) who illustrates the use of 
such models in practical situations. There is a great 
deal of literature on all aspects of time series, and 
useful reviews are provided by Chatfield (1977) and Cox 
(1981).

First we consider stationary series, which form the 
backbone of the subject, and then describe some models, 
how to forecast with them and discuss the problems of 
inference.

2.2 Stationary Time Series

A time series {y^} is said to be second-order (or
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weakly) stationary if E(y^) =w is a constant for all t 
and cov(.y^,y^^^) is a function of h alone. We can 
therefore describe the second-order properties by the 
autocovariance function

Yh = c°v(yt'yt+h)
where h is an integer, or by the autocorrelation function

Ph = = oor(yt'yt+h)-

It follows that pQ = 1, ^ P-h"
Other descriptors are possible, for instance the 

spectral distribution function G(w) and density function 
g(w) come from a harmonic decomposition of y^ given by

dG(co)

g(o)) = G'(w) = èïï J e^^^ y  -TT < w ̂  Tr.
-7T

CO 10)Se
—00

This forms part of the Frequency Domain approach to time 
series as expounded by Hannan (I960) say. We shall 
concentrate on the so-called Time Domain approach.

For any discrete stationary process (y^l the Wold 
decomposition theorem states that the process can be 
represented as the sum of two mutually uncorrelated 
processes {x^} and {z^}, y^ = x^ t , where

(i) x^ is deterministic
(ii) is a purely non-deterministic moving average

z

where  ̂ b^^ < <» and is a sequence of uncorrelated

random variables of zero mean and finite variance. {x^} 
and {z^} are uniquely specified and either may be absent.

-17-



2.3 Models for Time Series

Early time series models were often of the form

yt = %t + St + H

where m^ is a trend term, depicting a smooth long term 
movement, a seasonal, term - periodic oscillations of known 
frequency - and an error term, usually of zero mean. 
Multiplicative models and mixed additive/multiplicative 
models can similarly be defined in these terms. The 
analysis might then proceed by fitting some form of 
polynomial to m^ or s^, the former being the basis of the 
much used moving average trend removal techniques (Kendall 
1976). There are problems concerning this more or less 
empirically based approach, not least concerning the 
reasonableness of the assumptions. Modern classical time 
series analysis has tended towards a more theoretical 
model based approach.

The widely used ARMA (p,q) models, auto-regressive 
moving average models of order p,q are defined by

+ ■•• + “pyt-p = S  + + ••• + SqEt-q
(2 .1 )

with e. pure noise, that is random variables of zero mean 
and common variance a  . In fact the ARMA (p,q) is usually 
taken to mean the above, (2.1), with the conditions |A^|<1, 
|lj^|<l where and are the roots of the polynomials

a(z) = 1 + a-, z + ... + a z^ = IT (1-A.z)1 P 1=1 1
and

3(z) = 1 + 3^ z + ... + 3 = n (1-y.z).
u ^ 1=1 ^

|X^|<1 ensures that the model in stationary, so that the

-18-



non-deterministic time series {y^} has an infinite moving
00

average representation ^  ■ b.e. . ; (2 .2)
j =0 ^

the second condition is the invertibility relation which 
ensures that the model has an infinite autoregressive 
representation

e. = y a.x. . with a« = 1 .t j t-j 0

Each y^ ^ in (2.1) can be replaced by - U so that we can
assume without loss of generality the model has zero mean.

The autocovariance function can be found from (2.2) 
by multiplying by y^^^ and taking expectations, giving

J o  (2.3)

2where a = var(e^). Defining the generating functions

A(z) = I a zJ, B(z) = I b ẑ ', r(z) = I

j =0 • j =0 k=-oo

then for an ARMA (p,q) process A(z) = 1 + a^z + ... + a^z^
1 + t • • • + 

and B(z)=1/A(z) enabling the coefficients b^ to be found. 
Alternatively the well known relation F (z)=o^/{A (z)A (z”^ )} 
can be used to determine the autocovariances.

Example 2.1
Consider the ARMA(l,l) model

yt + “yt-i = H  •
Then B(z) = (1+3z)/(1+az) and equating powers of z gives

bg=l, b^ = (-a)* ( 3 ”0t ) , i=l,2 ...

so that is given by (2.3). Using generating functions

-19-



r(z) = 1+3z •l+3z ^ .
1+az 1+az ^

If we write F (z) = Ag + A^z + A^z ^

then equating powers of z gives

Aq = 1 + g: - 2aB. A^ = (1 - aB)(8 - a )
2

but F(z ) = Yn+  ̂ Yir2 + Z so that
 ̂ k=0 ^ k=0 ^

yo = V ^  •
1+a^z

Thus equating coefficients of z"’̂

Y g = ( 1+3  ̂-2a3 ) , Y^ = (l-a3 ) ( 3-ot)
1-a^ 1-a^

and since Y%.+aY^_2 = 0, Yĵ  = , k>l.

This approach is a specific example of Quenouilles 
algorithm for obtaining the autocovariances using 
generating functions.

If we denote the backward shift operator by T, so 
that Ty^ = y^_^, T^y^ = y^_^ then the ARMA(p,q) model can 
be written as

a(T)y^ = 3 (T)e^ .

These models can only represent stationary time series.
A class of models for non-stationary models can be obtained 
by first differencing the series d times to give the 
transformed series x^

x^ = (1 ” T) y^

and then fitting an ARMA(p,q) model to x ^ . These are

-20 —



called ARIMA (p,d,q) models, and can be written 

a(T)(l-T)‘̂y. = S(T)e ..

In practical situations d is usually chosen to be small, 
for example a model which we shall meet later is- the 
ARIMA (0,1,1) or IMA (1,1) model

yt - yt-1 = H  + ® H -1

with single differencing. In general single differencing 
describes a process whose level is continually updated and 
double differencing introduces a slope term which is also 
updated.

Seasonal models can be described by similar models 
using a difference operator of the required periodicity. 
For example if s is the period then an appropriate model is

a(T®)(l - T®)y^ = B(T®)e^

and more generally multiplicative (p,d,q) x (P,D,Q)s 
models

ap(T)ap(T®)(l-T)‘̂ (l-T®)^y^ = g^( t) Sq (T®) 

where is a polynomial of degree p and so on.

2.4- Forecasting

In many situations we have observations up to time t, 
y^,y^_2 , .*• » which from now on we write as y ^ , and we
wish to predict y^^^ for m greater than or equal to one. 
The predictor y^(m) of y^^^ that minimises the mean square 
error

Pt^(%) = E£y^(m) - y^+^}2 (2 .1)

-21-



is the conditional expectation

y^(m) = Ety^+mly^)• (2.5)

In general a lot of information about the time series is 
required to be known before this quantity can be calculated, 
however it is relatively easy to calculate for linear models 
with a simple error structure.

Less information is required if we restrict y^(m) to 
a linear function of the past data

y.(m) = I d (m)y. . (2 .6)
^ j=0 ^ J

and seek to minimise the mean square error (2 .4-). We then
only need the first and second order properties of the
process, although in practice even these will only be known
approximately from the observations. The resulting
predictor will then be best if and only if the conditional
expectation (2 .5) is linear.

From the Wold decomposition theorem a purely non-
deterministic stationary series can be written as

00

(2.7)

The minimum mean square error (MMSE) linear predictor of 
y^(m) is then given by

= J o  (2 .8)

2 Q ni 1 2
with mean square error a,(m) = a  ̂ b . . (2 .9)

^ j=0 J

This gives the forecasts in terms of the random errors 
rather than the observations which is what we require.
If we let
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D (z) = I  d.(m)zj
j=0 J

then the forecast weights d̂. (m) can be calculated from 
the generating function relation

= J o  (2 .10)

B(z)
00

where as in §2.3 B(z) =  ̂ b.z*^. The d.(m) can be calculated0 J J
from (2 .10) and substituted into (2 .6) to give the forecasts 
provided that (2 .10) can be expressed as a power series.
This condition holds true for ARMA models proved that they 
are invertible.

Three consequences of the above are

(i) " .1 tyE(Et+%_jly^) using the Wold
decomposition which since

^ j = 0, 1 ... m-1 
= otherwise 

is identical to (2.8). The predictor is therefore the 
MMSE predictor and is obtained form the Wold decomposition 
by setting all future random disturbances to zero, their 
expectation.
(ii) The mean square predictor erroro^(m) increases

2 2with m to the limit o J b̂. = y g . The smallest error is
2 2for lead time 1 , that is m = 1 and o^ = o .

(iii) The sequence ••• are the one step ahead
predictor errors.

Example 2.2

For the ARMA (1,1) process of example 2.1

n  + “yt-i = + ®^t-i

-23-



the coefficients in the Wold decomposition are
= (-a)^ ^(3-oi) for i>l, and B(z) = ( 1 + 3z)/( 1 + az) . 

Substituting in (2.10)

D (z) = (1 + az) y (-a)^ "̂*"̂ *(3-a)ẑ ' 
i T g E  j=0

= (-a)^~^(3-g) 
l+3z

equating powers of z to obtain dj(m) and substituting in 
(2 .6) gives

(m) = (-a)™~^(3-a) y (-3 )̂
1 =0 t-j (2.11)

The mean square prediction errors of (2.4) are given from

(2.9)
1 , ■ po^(m) = a

1-a

(2.12)

(2.13)

Alternatively, at time t +1

rt+i = -“̂t + Et+i + Gct'
taking conditional expectations at time t

y^(l) = -ay^ + Bst

and similarly at lead time m 
y^(m) = -ay^(m-l).

Expressing in terms of the past data y^, which we can 
do since the model is invertible, and substituting in 
(2 .12) and (2 .13) gives (2 .11).

At time t + 1 ,  (2.12) is

yt+iO) - -“yt+i + Gct+i 
= (9-a)yt+i -

showing how the forecasts can be updated when a new . 
observation arrives.

Although we have only dealt with stationary models 
so far, the second method of the above example can be
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used to forecast non-stationary models as follows. First 
define y^(m) and a-^(m) as in (2,4.) and (2 .5), so that 
o2(m) = var (y^+^jy^). Now the general class of ARIMA 
models, including seasonal variants, which were described 
in §2.3 can all be expressed in difference equation form 
as b(T)y^= e(T)e^ (2 .11)

where 0 (z) is a polynomial with all its zeros outside the 
unit circle, ensuring that the model is invertible, and 
&(z) has no zeros inside the unit circle.

Forecasts can then be calculated by using (2.11) at 
times t+1 , t+2 ... and taking conditional expectations at
time t using

E(y^+.|y*) = y^(j) j = i. 2, ...
sCy^. j I y* )  = X t - j  j = 0 , 1 , . . .

s ( Et_ j l y^)  = E f j  = y t - j  ■ y t - j - i ( i )  j = • • •

E(e^+. |y^)  = 0 .  j  = 1, 2, . . .

This algorithm, produces a difference equation in terms of 
the observations y. . and predictors y, .(l), y,(j) whichU-J U- J Tj

can then be solved to give y^(m) in terms of the past 
observations.'

The prediction errors at lead time m are given in Box 
and Jenkins (1976, p 128) as

: yt+m - = °o^t + m +
The c. are the coefficients of the random terms when the J
observation is expressed as an infinite weighted sum of 
current and previous shocks

so that under (2 .11) the cu's are obtained from
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d)(T)(l + 0^ T + ... ) = e(T).

For stationary models 6(z) has zeros all outside the unit
circle so that the cy's are identical to the b^'s of (2 .7)

It follows that the forecasts are unbiased with
prediction variance a^(m) = #^(l + c\V^+c^^ ^)

= O'^(m-l) + -, .0 m-±
The coefficients c^ also enable us to up-date the

forecasts :
At time t y^(m) = y^+^ - e^(m),
if a new observation arrives

yt+l(m-l) = y^+n -
but

and on substituting
yt+i(m-i) = y^(m) + o„.i{y^.+i - y ^ d ) } -

Example 2.3

Consider the ARIMA (0,l,l) model

yt - yt-i = + ^ H - i -

At time t + 1  y^+1 - y^ = S f l  + ®^t

SO taking conditional expectations and using the above 
algorithm gives

y + d )  = yt + G(yt - yt-i(i))
= y^fl + 3) - Gy^.pfl)

which has solution

y,(l) = (1 + B) I  (-S)Jy. .. (2.15)
^ j=o

For k22, writing down the model at time t + k and taking 
expectations conditional upon y^ gives
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= y^(k-l)

which completes the specification of the forecast function
The c . can be obtained from 

J

(1-T)(1 + 0^ T + Og + . . . ) = (1 + B)

equating powers of T, c^ = 1 +3 i^l
so that

a^(m) = 0^(1 + (m r. 1) (1 + 3)^} .
The above results are identical to those of Example 2.2 
with a formally replaced by a = - 1 .

Apart from simple cases, the difference equation 
produced by the algorithm can be difficult to solve. 
Godolphin (1975) introduces an updating and component 
series which enables y^(m) to be calculated without first 
calculating the forecasts of y^^^, ... yt+%_q'

It follows from (2.11) and the forecasting algorithm
given above that for k>q, where q is the order of the 
polynomial 0(z) that

<î>(T)y^(k) = 0 (2 .16)
where T operates on k, so that Ty^(k) = y^(k-l) and so on. 
This means that the eventual forecast function is 
determined solely by b(z).

If 6(z has r roots with multiplicity m^, so
% mu = p  then the general solution of (2 .16) is

r ,
y^(k) =  I  I h

 ̂ i=l j=0 ^
where the constants h. . are determined from the first p
forecasts, and so depend upon the data and the parameters
Od-j ... CL 3"i ... 3 •1 p i  q
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For example
(j)(z) = 1 -z, y^(k) = h^, a constant k>l

(j)(z) = (1-z)^ y^(k) = t h^k

which is the so called linear growth model.

Some methods of forecasting involve choosing the 
eventual forecast function first and then fitting the 
coefficients from the data, whereas Box and Jenkins fit 
the model first, and so get the eventual forecast function 
as a consequence.

2.5 Parameter Estimation

In the Box-Jenkins approach to time-series, first a 
model is tentatively identified, then parameters are fitted, 
diagnostic checks are applied and if inadequacy is shown 
then the iterative process of identification, estimation 
and checking is repeated until a suitable model is found. 
Each of these three stages is a subject in itself with its 
own extensive literature, which we shall not go into.
Apart from the theoretical side, examining real data poses 
its own problems; for example the famous Lynx data has 
been analysed over the years by many authors using 
different models. Even within the same framework 
practitioners can fit different models to the same series, 
for example Chatfield and Prothero (1973) .

The first step with non-stationary models is to try 
and transform to a stationary time-series. In the ARIMA 
(p,d,q) models ( and seasonal variants) this is achieved 
by differencing the series. Box and Jenkins suggest looking 
at the correlogram, which is the plot of the sample
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autocorrelations r^ against h where

I’h = °h/°0 (2-17)

' 6
and N is the number of observations. There are possible 
variants of (2.18) such as having the denominator N rather 
than N - k. These are model-free estimators of 
autocorrelations p^ of §2.2 but are best viewed as 
estimating the autocorrelation function rather than 
individual values.

The sampling properties of the individual r^'s 
depend upon all the p ^ . However for stationary series 
the estimates are asymptotically unbiased, and so non- 
stationary data is differenced d times until the estimated 
autocorrelation function of 0-“T)^ y^ dies away fairly 
rapidly.

Having chosen d, it remains to choose p,q and estimate 
the parameters. Most methods assume normally-distributed 
errors (or are equivalent to doing so), and many are based 
on maximising the likelihood or an approximation to it.
In general closed forms for the maximisation do not exist, 
so that numerical methods are used which usually give 
iterative solutions to the equations.

Alternative models can be compared by looking at 
maximum log - likelihoods. The principle of parsimony of 
Box-Jenkins is to only fit models of low order (p,q small). 
Procedures such as Akaike’s AIC attempt to avoid over 
fitting models by subtracting from the maximised 
likelihood a constant multiplied by the dimension of the 
parameter vector.
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Tests of model adequacy of stationary series examine 
whether p and q are appropriate. For example the Box- 
Fierce test looks at the first few autocorrelations of the 
residuals of the fitted model which is asymptotically 
chi-squared distributed.

Since we are concerned with forecasting it is worth 
quoting from Cox (1981, p 99)

"V/hen there is a tightly specified objective, such as 
forecasting, considerations of choosing a notional 'true' 
model become less important and error of forecasting is 
the appropriate criterion for judging any particular 
model selection procedure.”

We close this section with an example which not only 
gives an idea of the complexity involved in estimating 
parameters of the simplest models, but also shows a novel 
way of deriving this estimator.

Example 2.4-

Consider the MA(l) model

+ 8 E f l  (2.19)

with 3 unknown. For a loss function L(a,b), which we take 
to be a non-negative function ]R x ]R ]R with L(a,a) =0 
(defined in Chapter 4-) let us choose the value of 3 that 
minimises

I L(y ,y (D) (2.20)
t=l ^

where n is the number of observations. That is we 
minimise the loss between the one-step ahead predictors 
and the observations.

From Example 2.3, if y q (l)=0 is the initial predictor
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then Y t - l d )  =

= ' ®^yt-2 -  + (-1)^3*'V i(2.21)
so that on using the quadratic loss function L(a,b)=(a-b) 
substituting (2.21) into (2.20), differentiating with 
respect to 3 and equating to zero gives

I + —  + (-l)^“^s^"^y^) x
t=2

X (y^_^ - 26y ^_2 ■••• + (-l) ^ * 2 ( t - l ) g ^ "2y^) _ 0 _
That is

Z Vt-l + L (Iyt_iyt.r + 2Z yt-2yt-r+l
... + (r+1) I y^.p.iytJ =

n
If we denote r, = 7 y.y,  ̂ then the condition simplifies

t=k ^
Zyt^

to
-g(l + Tg) + g2(r^ + 2r^ + 3r^) - S^Ctj + 2 + + 4r.)

... + (-i)^-ig"-i S = 0
or

-B(l + Tg) +B^(3r\ +3ry) - 8^(2 + + 4r,) + ...

+ (-l)"-lg"-l X = 0 (2.22)
Where the last term X = { (n - 2) + n(r_ + r, + ... + r o)}» odd4 n-4
and = n(r\ +r_ ». t r  ̂) if n-1 even.J. J  n -_L
Assuming n-1 is odd, then on rearranging, the condition
becomes

8(1 + 2 8 ^ + 3 8 ^ + 4 8 ^ + ... + (n-2 )g“ '2j

= r^(l + 36^ + 58'( + ... +(n-l)8^"2} +

+ iy(38^ + 58̂  ̂+ ...}- rg{28 + 48  ̂...}. (2.23)

As n increases the term involving r, tends to
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(-1 )^'^ k(l - + 26 ^̂ ^
3B(l-3^) (1 - @2)2

Since (1 + 2g2 + 36^ ... ) =
(1 - g2)2

equation (2.23) simplifies to
00 00

e = I (-3) kr - 23 I (-6) r. (2.21)
k=l ^ k=l ^

which is the same as the asymptotic likelihood equation in
Godolphin (1977), but derived in a different way. This
equation is well conditioned provided that the modulus of
3 is not too close to 1 so a starting value will converge
to the single solution in the interval (-1,1). Note that
formulae (2.22), (2.23) give exact recursions for finite
samples using this approach. The method can be extended
to looking at different loss functions, but in general the
solution for 3 will be difficult.

-32-



CHAPTER 3 

CONTROL THEORY

3.1 Introduction

In this chapter we give a brief discussion of the 
principles of control theory and introduce the fundamental 
concepts of controllability and observability. Much of the 
material for this chapter can be found in Ewakernaak and 
Sivan (1972), Kushner (1971), Jacobs (1971), Barnett(1975) 
and Gelb (1971). We shall only look at the discrete time 
case.

3.2 Control Systems --Non Stochastic

Consider a situation where a set of admissible inputs 
to a 'dynamical system' gives rise to observed outputs. We 
shall take the dynamic equations of the system to be

li = gCZi'Ui'i)

-i+1 "

for functions f and g where the system behaviour is observed
at discrete points t^, i=0, 1, 2, ... . This description
also follows from Kalman's (1963b) axiomatic definition of a
dynamical system. In general the u^ belong to the topological
space of admissible inputs, y^ is the (m-dimensional)
observation at time t. and x. is the state of the system,1 — 1
taking values in a topological space X. In what follows X 
will be real and finite dimensional Euclidean space - ]R^ 
say. Linear systems have the simpler description
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l i  = I^ X i (3 .1 )

-i " % 2 i _ i  + Bi^i (3.2)

where y, x and u are m, n and p vectors respectively with 

— i * — i * — i M&trices of the appropriate dimension.
It is useful to note that systems of the form

l i  = Fi% i + Ç iü i

with the state evolving under (3.2) can be cast in the above 
form by defining an augmented state vector as

^ if
— i' — i' — i then be obtained in a straightforward
manner.

We shall often consider the following simplification 

Definition 3.1

The system (3.1), (3.2) is said to be time invariant
if the matrices F., G., B. do not depend on i.— 1 “ 1 — 1 ^

It is sometimes preferable to consider the form of the 
system in terms of the initial specification at some point 
i = i g .  This is achieved by solving the state difference 
equation (3.2) and substituting the result in (3.1). We 
present this formally as the following theorem and its 
corollary in the general and time invariant case.

Theorem 3.2

Equation (3.2) has the solution
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%  = l(l,io)Xi^ + i>Âo+l
■0 j=io+l

where ±>1^ is the matrix

i d . i p  4 -  • "

I i=ig. (3.3)

The transition matrix ^ is the solution to the homogeneous 
equation

l(i+l,ig) = G^^^i(i,ig) i>i 0

with _|(ig,ig) = I.

For the time invariant case £(i,ig) = G^”^0.

Corollary 3.3

The system (3.1), (3.2) has the solution

Zi = + Zi I u (3.4)

i
The second term can be written as  ̂ k(i,j)u.

where k(i,j) = Zi *(l,j)Zi i>j (3.5)
° 0 ' j=lo

is the pulse response matrix. For time invariant systems 
this is a function of i-j.
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3.3 Stability

We now introduce some of the different forms of stability
involved in deterministic control systems and comment on the
connection between the different definitions.

The simplest form of stability seems to arise from the
corresponding result for ordinary differential equations.
The point 0 is an equilibrium point for the system
X. = f(x.,i) if X , = 0 for all k>in» for some i^. Without “ I — 1 — k = 0  0
loss of generality we can consider the point at the origin 
by defining new state variables to be deviations about a 
non-zero equilibrium point if necessary. We then have the 
following definitions for th.e equilibrium point x=0, putting 
io+O.

Definition 3.4

x=0 is stable in the sense of Lyapunov if for every 
positive E there exists a 9 such that

||Xq||<3 impliesjXj^|[<£ for all tj^>tg.

Definition 3.5

x=0 is asymptotically stable if it is stable and
x^+0 as t->oo.

By only looking at linear systems

^i+l = ^l+lSf (3.6)

we can show that these definitions, which describe the 
behaviour we would like to see, are equivalent to the more 
manageable ones of Jazwinski (1970» chapter 7) involving 
the transition matrix $ of (3.3). Defining the norm of an 
r X c matrix M = (mij) to be
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2 r c 2
I|M|| = 1 1  Imijl

i=i j=i

we have 

Theorem 3.6

For the system (3.6), Definitions 3.4 and 3.5 are 
equivalent to

(i) The system is stable if||_£(k,0)|| is bounded above for 
all t%>tg

(ii) The system is asymptotically stable if in addition 
||^(k,0)11^0 as t^+m.

Proof

For (i) Xq. = î(k,0)xg, so || || £ || i(k, 0 )|| ||xg II» so that
(i) implies Definition 3.4 Conversely if (i) is not satisfied
then we can choose an e such that for all positive <S

llxgll <5 but llxĵ ll >E for all t^>tg.

The equivalence of (ii) and 3.5 follows from the fact that 
£(k,0)+0 if and. only if ||£(k,0)|| ^0 if and only if || (k, 0 ) Xq|| ̂ 0

A stronger type of asymptotic stability is given by

Definition 3.7

The system is uniformly asymptotically stable if 
Il^(k,0)||£ c^exp (-C2 (t^-tg)} for all t ^ t g  and some fixed 
positive constants c^ and c^.

In the time invariant case where G.=G then

$(k,0) =

But G^->0 as k-»-oo if and only if the eigenvalues of G are less 
than one in modulus, proving
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Theorem 3.8

In the time invariant system the origin is asymptotically 
stable if and only if the matrix G has eigenvalues less than 
one in modulus.

A slightly stronger result is given in Kwakernaak and 
Sivan (1972, page 454) namely

Theorem 3.9 '

The system x^ = Gx^' ^ is stable if and only if the 
eigenvalues of G have modulus less than one or equal to one 
with any modulus one eigenvalue of multiplicity m having 
m linearly independent eigenvectors.

For example the matrix ( ^\ is stable whereas
U  0/

^ ^ I or(  ̂ ^ 1 are unstable.
0 1/ V-1 2/

Procedures for checking on whether the eigenvalues are 
less than one in modulus are the Routh-Hurwitz or Schur-Cohn 
criteria for example, which are explained in Jacobs (1974) 
or Jury (1964).

The above definitions relate to systems that do not 
have any inputs; we would like to know how our systems 
behave when inputs are applied. In particular control 
engineers like systems to behave 'nicely' - for example 
tend.to a steady value - if an input is applied and then 
removed. They therefore use

Definition 3.10

A dynamical system is bounded-input bounded-output 
stable (b.i.b.,0 .) if its response to any bounded input is 
to produce a bounded output.
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In fact we can show that the types of stability defined 
above do produce the required behaviour. For the linear case

Theorem 3.11

If Xq = — i— i 1 uniformly asymptotically stable then
(3.1), (3.2) is b.i.b.o. stable if in addition ||Fq|| and 
II II are bounded, say ||F̂ || <f, 11 11 <b, with f and b
positive constants.

Proof

Taking norms in (3.4) with i^EO

llyJI<llFp|{ 111(1.0)11 llxgII + J _  ||i(i,j)||||B.||||u.||}
(3.7)

But from Definition 3.7, for some ci, C2
II (k, 0 ) II <Cj exp {-Cak} so if u^ is bounded, || u ̂ || <u for some 
u and

Il2 .||<fci(e- = ̂ h|xg|| + bu I =
1 J=1

which is bounded above as @-=2 e~  ̂ , thus
j=l l_e-C2

proving the theorem.

In the time invariant case we can prove the slightly 
stronger result.

Theorem 3.12

If Xq = — i-1 asymptotically stable, then

Zi = ZSi

X. = Gx. -, + Bu.— 1 — 1-1 — 1

is b.i.b.o. stable.
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Proof

From (3.3), 0(1,0) = G^, so in (3.7), if [|u/'H<u for
all j

Il2ill<f f/l|xoll + bu j  çj-i).
j

But this is bounded above since the sequence I+G + ... + G^ 
is convergent if G has eigenvalues less than one in modulus

3.4 The z-transform

The z-transform is a useful tool in the analysis of
discrete time systems, and is the discrete equivalent of the
Laplace transform. For a discrete time vector variable
X., i = 0, 1 ... we have — 1
Definition 3.13

The z-transform of (xq) is given by

X(z) = I X . z 
1=0

-1

defined for those complex z for which X(z) is convergent.
For a time invariant linear system, (3.1)  ̂ (3.2) become

li = Fx^ (3.8)

2i+i = GXi + Süi+i. (3.9)

Because the Laplace transform of Xq+q Ls zX(z) - zxg, 
taking transforms of (3.9) gives

zX(z) - zXq' = GX('z) + zBD(z) - zB Ug

where IJ(z) is the Laplace transform of u^, and so rearranging

X(z) = ( zI-G) ~~̂ zBIJ ( z) + (z£-G) ^%(xg-BUg ).
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Taking transforms in (3.8) and substituting gives 

Y('z) = F( zI G)' ^ zBU'('z ) t F('zl - G) ^z(xn' “ Bu_)

which relates the input transform U to the output transform Y. 
The quantity H(z) = F(z_I - _G) ^zB (3.10)
is called the z transfer matrix of the system.
For time invariant systems, the pulse response matrix (3.5) 
is kqj = FĜ "**̂ *B; putting i-j = t, so that k^ = ^*^B then

H(z) = K(z),

that is H is the z-transform of the pulse response matrix.
The z-transform can be used to test stability as the 

following result, proved in Lindorff (1965) or Jury (1964) 
shows

Theorem 3.14

A linear discrete filter is b.i.b.o. stable if and only 
if its transfer function H(z) contains no poles on or outside 
the unit circle.

The proof of this theorem can also be seen from Theorems 
3.8, 3.12 and equation (3.10). We shall illustrate the use 
of thA above theorem by considering the Kalman filtering 
equation (which is explained in detail in the next chapter).

Example 3.15

In the steady state, the time invariant Kalman 
Filter has the form

it = iit-i + A(Zt - m i t . p

where A, F, G are fixed matrices, the 'state' of the 
system and y the observation vector. Taking transforms, 
using a notation consistent with definition (,3.10),
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0 (z) = (l-AF)i 9(z) + ^ ( z )■ z
so the z-transfer function is

H(z) ={zl - (I - AF)G]"^zA.

The poles of H(z) are the zeros of the determinant 
Izl - (I - AF)G|, which are the eigenvalues of (I - AF)G, 
and the system is stable if the poles of H(z) lie inside 
the unit circle or the eigenvalues of { I - A F ) G  are less 
than one in modulus.
3.5 Observability and Controllability

Observability and controllability are key concepts in 
the theory of control theory. Losely speaking, controllability 
ensures that we can apply an input function which enable us 
to reach any given state, whilst observability means that 
the state vector can be calculated if we know the observations 
and the model equations. Used somewhat differently in a 
forecasting context, these two conditions will ensure that 
the filtering procedure we use has certain optimum properties 
and also that we use the model of the smallest dimension 
whilst retaining all of the information in the model. These 
concepts are developed in Chapters 6 and 7, with a foretaste 
in the following section.

Definition 3.16

The linear discrete time system (3.1), (3.2) is 
completely observable if for any tg and initial state Xg 
there exists a finite time t^ > tg such that knowledge of 
u^ and y^ for tg < t < t^ is sufficient to determine Xq * 

Conditions to determine observability are given by
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Theorem 3.17

The system (3.1), (3.2) is completely observable if 
and only if there exists a t^ such that

M(r,0) = I $(i,0)7'F.7F.$(l,0) > 0 
1=0 ^ ^

that is the matrix M^r,0) is positive definite.

Proof

Consider the case of scalar ŷ *, without loss of 
generality assume that u^EO, then

yo
=

Z q
(3.11)

Fj.i(r,0)

To obtain a solution for X q in terms of (yg ... y^) it is
necessary and sufficient that the matrix premultiplying Xq

r&nk. This is equivalent to requiring M(r,0)
positive definite. The proof for vector y^ is similar. In
fact since the matrix premultiplying Xq is an r+1 x n
matrix, in the univariate case then r >  n-1, and we can
put r = n-1 in the statement of the theorem, ie t = tr n--L

In the time invariant case we reserve the symbol M to 
describe the matrix appearing in (3.11), that is we define

M =
(3.12)
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corresponding to time points tg ... t^ For this case the 
criterion for observability can be specified as follows

Theorem 3.18

The system (3.1), (3.2) is completely observable if and 
only if the observability matrix M has rank n.

As its name implies, controllability means that it is 
possible by the application of control functions to move the 
system to any state.

Definition'3.19

The system (3.1), (3.2) is completely controllable if
for initial state x^ = 0 and final state x„ there is a finite— u — — I
time t and a control sequence u ,, t^ < t < t such thatr — t U = = r
-r " - f '

Again we can show that conditions to test for 
controllability are given by

Theorem 3.20

A necessary and sufficient condition for controllability 
is that there exists a t^ such that the symmetric matrix

W(r,0) = I l(r,i+l) B ,,B _$(r,i+l)'^
t  = 0 J. J. X  J.

in positive definite. See for example Kwakernaak and Sivan
(1972, page 4-60) ,

T 1Indeed, u^ = 0(r,j)W" x^ is the requisite control.

In the time invariant case we have 

Theorem 3.21

A necessary and sufficient condition for complete
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controllability in the time invariant case is that the matrix

W = [B,GB ... g“ "^B] (3.13)
has rank n.

The two concepts of controllability and observability 
are in fact closely related through duality, namely

Theorem 3.22 Kwakernaak and Sivan (1972, page 4.66)

The system (3.1), (3.2) is completely controllable if
and only if its dual system

% . T *y i = B . « _. X .

# q * q #
X i = G . * .1 X . ̂  + F . * _ . u .

%is completely observable , where i is an arbitrary fixed 
integer, and conversely.

Consequently any theorem for observability implies a 
corresponding controllability result, and vice-versa, for 
example Theorem 3.21 follows immediately from Theorem 3.18.

3.6 Algebraic Equivalence and Canonical Structure

In a vector space, we are free to choose our basis 
vectors, which gives rise to equivalent transformations or 
matrices, that is ones which have identical properties.
Kalman (1963b) introduced the notation of algebraic 
equivalence for control systems.

Definitions 3.23
Two linear dynamic systems of the form (3.1), (3.2) 

with state vectors x , x. s-re algebraically equivalent 
whenever their phase vectors, defined by the pairs (t,x), 
(t,x^") are related for all t by (t,x’0  = (t,T^x ) for some 
non singular matrix T^,
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In other words there is a one-one correspondence between 
the phase spaces T x X and T x X. In such a case the matrices 
Fq, and are related to G^ and B^ according to

4  =

4  = itZt-

Algebraic equivalence is insufficient as it stands to 
preserve the stability properties of a linear dynamic system, 
for which we require topological equivalence. Topological 
equivalence is algebraic equivalence plus the additional 
conditions || T^ || ^ Ci, || T^ 1̂1 £02 for fixed constants Ci 
and C2 . T^ can be varying even with time-invariant systems, 
however if it is constant then we use

Definition 3.24

Two constant linear dynamic systems are strictly 
equivalent if they are algebraically equivalent with T^ 
a constant matrix.

Using the Definition 3.23 with Theorems 3.17, and 3.20 
we can show that

Theorem 3.25

Controllability and observability are preserved under 
algebraic equivalence.

It is then possible to prove the following canonical 
decomposition theorem.

Theorem 3.26

In a fixed linear dynamic system (3.1), (3.2) at every 
fixed instant of time there exists a co-ordinate system such
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that the state variable can be decomposed into four mutually

exclusive parts, x"̂  = (2Scu»-co'-uu*-uo^corresponding to 
parts which are completely controllable but unobservable, 
completely controllable and observable, uncontrollable and 
unobservable, and uncontrollable but completely observable 
respectively. Such decompositions always have the same 
number of state variables in each part, and it is possible 
to chose one such decomposition which produces the following 
canonical form

F? 0 ) -t%t = ( 0 -t
,AA ^AB ^AC ^AD

-t ^t ^t Gf 2£t-l + B^u^

0 GBB 0 GBD

0 c f

0 0 0 GDD

with

^t B

BB

0 /
Example 3.27

Consider a time invariant system with observability 
matrix M found from (3.2). Let the non-singular matrix T be

T = /Ti 

( l 2

where Tj is a basis for the subspace spanned by the rows of
M, and Tj is chosen to make T a basis for the n-dimensional

%state space, then defining x^ = Txq the system can be 
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it = (Z*. 0)=I
Xt " /  -Sii ° \  Xt_i + B u

r* r*Lroi Lr ■
* #

"t-1 — t — t
Ü21 H 22

with {F Gii} completely observable.
If the system is initially at rest, then from (3.4),

(3.5)
i

k(i.l)u^

With a physical system it is possible to empirically determine 
the impulse response matrix k by applying a unit impulse to 
each input in turn. The question then arises as to whether 
such a matrix k(i,j) is realisable by a system of form (3.1),
(3 .2). Classical control theory uses difference equations

ii + ... + a^y..^ = bou.+...+ (3.13)

Taking Laplace transforms and ignoring the transient terms 
yields

ï(z) 1 t a. t ... + â ^ = u(z) bo + bi + . . . + b  tT  — n-12 zn_
- ' z - h

so in the notation of Section 3.3

H(z) = bgZ^ t ... + bn -1
(3.14)

n

Since for time invariant systems knowledge of k(i,j) is 
equivalent to knowledge of its z-transform H(z), then we say 
that realisations of a dynamical system expressed in terms 
of a difference equation (3.13), or by a time-invariant 
linear model (3.1), (3.2) are equivalent if they give the 
same z-transfer matrix.
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To answer our question, it follows from (3.3) - (3.5) 
that we must have. k(i,j) = P(i)^(j ) for some matrices P and 
Q . kJe say that a realisation is reducible of there is a 
proper subset of a realisation which also realises k. The 
main result is then

Theorem 3.28

Knowledge of the impulse response matrix identifies the 
completely controllable and completely observable part, and 
this part alone, of the dynamical system which generated it. 
This part is itself a dynamical system, has the smallest 
dimension among all realisations and is uniquely determined 
up to algebraic equivalence, • 
with the corollary,

Corollary 3.29

Every stationary impulse response matrix (that is a 
function of i-j) has constant irreducible realisations.

Example 3.30

In a time invariant univariate model m = p = 1, so 
from (3.10)

H(z) = F(zI-G)'^zB

But (zI-G)’^ = adj.(zI-G) det(zI-G)' in which each term 
is a polynomical of degree n-1 divided by a polynomial of 
degree n. Consequently H(z) tends to a constant as z 
increases and so is of form

bgZ° + biz"'l + ... + bn-1%

z“ + aiz"'^ + ... +

the same form as (3.14). A realisation of such a model is 

given by
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Theorem 3*31

A canonical decomposition of (3,14.) is

- " • • • bg)

G = / 0  1 0 . . .  O n  B = / 0
0 0 1 0 . . 0

0 . .

provided that (3.14) has no common root

Proof

By considering G of the above from and writing down 
T(z^-G) or by an inductive argument we can show that

adj.(zI-G)B = P  \

n-_L

3 0  that H(z) = F ( zl-G) ”'̂ zB
= F adj.(zI-G) I zI-G -1zB

where | zI_-G | = det(zI-G)

= bgZ^ + biz^ ^ + ... + b^_^z

I zI-G I

But I z%-GI = z^ + aiz^”^ + ... + a^ because G is a companion 
matrix, so that H(z) is as in (3.14). The decomposition is 
canonical if it is completely observable and completely 
controllable which is easily checked by applying the criteria 
of Theorems 3.18 and 3.21.

An alternative canonical decomposition, F > G > B^is
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* m
I  =  à

* TG = G 
B* = pT

th

with F, G_, B as in Theorem 3.31.

The above process is analagous to converting an n 
order differential equation to a system of first order 
equations. For example for the alternative canonical 
decomposition above we are effectively defining a new state 
vector :

-a^ 0 0 . . .  0'

-a 2 -3. 3
1 I 0

n
. . . 0

^i

^i-l

‘̂ i-n+;

■0 1 b -, 01 n-1
lb b -,I n-2 n-1
I *

o; b
0 0 i-n+ 2'

3.7 Stochastic Systems

We now let u. be a discrete time vector stochastic — 1
process rather than a deterministic imput. If is
weakly or second order stationary, defined by analogy with 
§2.2, then let P u (i-j) be the covariance matrix
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= E{(u.-u) (u -u)^}■J

wnere iJ -^E(u^), and let ^^(w), -7r̂ co<7r be the power spectral 
density matrix

lu(w) = I .  e-iws p (g) . (3.15)
—  S = -oo

We then have the result, Kwakerwaak and Sivan (1972,. page 469) 

Theorem 3.32

If the input to an asymptotically stable time invariant 
linear discrete time system with z-transfer matrix H(z) is 
weakly stationary then the output is weakly stationary. The 
output y has power spectral density matrix

|_y(üj) = H(e^^) J]^(a))H^(e"^^) (3.l6)

So for example if the input is a stationary Gaussian 
process, the output will be a stationary Gaussian process.

If we write zEe”^^ then (3.15) becomes with a slight 
abuse of notation

00

the z-transform of the covariance matrix, and (3.16) becomes 

%y(z) = H(z)|_u(z)H(z"^) •

Example 3.33 considers the process.

Yl+ ••• + V i - n  = toE. + ... + (3.13)

Then the process is asymptotically or bibo stable if the 
roots of z^ + a^z^’^ ... + lie within the unit circle 
(see eg Theorem 3.14), and the transfer function is given 
by ( 3 .1 4 ) .  If the are a stationary Gaussian process - a
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sequence of mutually uncorrelated random variables with 
constant variance matrix C say, then

J^(z) =  C

and the output has covariance matrix with z-transform

H(z)CH(z“^)

The case of univariate y corresponds to the models of 
Chapter 2, and the remarks made concerning realisations and 
canonical representations of the last section apply. Indeed 
it follows from the above discussion that finding a model of 
form (3.1), (3.2) with stochastic input which realises a 
given wide sense stationary process is equivalent to finding 
a realisation of the transfer matrix H(z) of the system, 
which was discussed in the previous chapter.

We introduce the following two definitions which will 
be used in the analysis of stochastic systems in Chapter 4«

Definition 3.34

The system (3.1), (3.2) is uniformly completely 
observable if there is an integer k^l and positive constants 
ao, a 1, go and g % such that

(a) M(r,r-k)>o for all r

(b) a„I < M ‘^(r,r-lc) < a^I for all r

(o) 6gl < $ (r,r-k) H‘^(r,r-k) $'^(r,r-k) < for all r
where M and 0 are defined in Theorems 3.17 and 3.2.

Definition 3.35

The dual condition is the system is uniformly completely 
controllable if there exists a k > l  and positive constants 

oto,ai,go,gi such that
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(a) W(r+k,r)^0 for all r

(b) «0̂ . = — ^(r+kfrj^a^I for all r

(c) 3q^ < £^(r+k,r)W ^(r+k,r) £ (r+k,r)^3^^ for all r 
where ¥ is defined in Theorem 3.17.

In the time invariant case, systems are uniformly 
completely controllable/observable if and only if they are 
completely controllable/observable, so that the definitions 
in §3.5 may be used.
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CHAPTER L  

BAYESIAN FORECASTING

4.1 Introduction

The last chapter listed some of the key concepts in 
control theory, whose classical development was concerned 
with non-stochastic inputs and outputs. However, in the 
real world measurements are subject to error and for 
simplicity, or because of ignorance of all the relevant 
influences, our mathematical model will usually only be a 
good rather than a perfect description of reality. These 
problems lead naturally to the introduction of error terms, 
which can often be described probabilistically.

A natural question that arises is how to estimate the 
state in the presence of errors, or how to 'filter' out 
these quantities. For example control theory, including 
filtering theory, became very important during the American 
space programme, since one wanted to be able to estimate 
the position and velocity of space-vehicles - which corres
pond to state variables - in the presence of extraneous 
forces and measurement errors.

Harrison and Stevens in a series of papers (1971, 1975, 
1976) used a similar methodology to attack problems in 
forecasting Time Series, which they termed Bayesian 
Forecasting. Such an approach differs from the classical 
approach and forms the starting point for the rest of this 

thesis.
Before embarking upon a brief description of Bayesian
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forecasting we give a brief description of the ideas behind 
Bayesian inference.

4.2 Bayesian Inference

The foundations of Bayesian inference can be traced to 
the Reverend Thomas Bayes* work of 1763; a readable review 
of the subject is given in Bindley (1971) whose notation we 
now use. Other relevant works are Box and Tiao (1973), De 
Groot (1970), Ferguson (1967) and Raiffa and Schlaiffer (1961)

Suppose that we have a measure space of observations 
(X, 0, v) where v is a o-finite measure on the o-field 0 
of subsets of the general space X. Let (Fg, 6e0} be a family 
of probability measures on (X, 0), each Fg being dominated 
by V so that

p ( A | e ) = / ^ p ( x | e ) d v ( x )  (4.1)

according to the Radon-Nikodym theorem, where A is any 
member of the o-field 0. p(x|0) is thus a probability
density function.

The Bayesian theory now assumes the existence of a 
probability system (0, P) where P is a probability measure 
on the o-field Q  of subsets of 0. If P is dominated by a 
measure p on (0, ü )  then a prior density p(0) can be defined 
on Ü .  If further the likelihood function p(x|•) (p(x|0) as 
a function of 0 with x fixed) is P integrable and

/q p(x|0) dP(0) = 0 implies that p(x|0) E 0 

then according to Bayes rule

p(0|x) = p(x|0) p(0)
/qP(x|0) p(0) d0

provided that p(x|0) is non-zero. Otherwise p(0|x)-O.

-56-



Manski (1981) mentions that such an analysis effectively 
imposes two restrictions. First, we require that the o- 
finite measure p has domain Q,. which implies no practical 
restrictions. But, secondly, the requirement that the 
likelihood be integrable means that it must be 0-measurable, 
which can be severely restrictive in a practical sense.
Manski discusses possible solutions to this problem, however 
we shall assume that the likelihood is integrable.

Equation (4*1) is a statement of conditional probability 
and a mathematical statement; disagreement arises over the 
nature and meaning of the prior, and whether or not the 
measure P exists. Cox and Hinkley (1974, p375) give three 
possible interpretations of the prior:

(a) As a frequency distribution; this might occur if 
the parameter is generated by a random mechanism amenable 
to statistical analysis.

(b) As an objective representation of what is rational 
to believe about a parameter - usually in the face of 
’ignorance’.

(c) As a subjective probability assessment.
It is the last two cases that fall under the distinctly 

Bayesian umbrella. For the second case, various suggestions 
as to what constitutes a prior expressing ignorance have 
been made by Jeffreys (1961), Box and Tiao (1973) and more 
recently by Bernardo (1979) amongst others. Warnings against 
the use of improper priors in such situations have been made 
by Stone (1970) amongst others.

The third case can be expressed in decision theoretic 
terms - indeed it is a moot point as to whether or not all 
statistical theory involves decision theory. If we have a
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decision space D of decisions d, and a real non-negative loss 
function L(d,0) on D x 0 then a Bayes decision is one that 
minimises the expected loss

E(L) = /q L(d,0) dP(0)

provided that L is integrable and that a minimum exists.
Some argue that it is more natural to work with bounded 
utility functions, U(d,0) in which case a Bayes decision 
maximises the expected utility. Much work has centred on 
the use of convex loss functions, for example L(d,0)=(d-0)^ , 
when the Bayes decision is the expectation E(0) with respect 
to P(0). However it is well known that unbounded loss 
functions, such as the above, can create problems. A class 
of bounded loss functions has been given by Bindley (1976), 
whilst Smith (19^0) has given bounds for decisions using 
bounded loss functions.

De Groot (1970) develops an axiomatic approach, 
considering the subjective probability space (0xX, 0x0, Fg.P) 
and shows that the axioms, if accepted, lead to a unique 
choice of prior probabilities and utilities - unique that is 
for each person. Manski (1981) points out that this is 
effectively using Bayes Theorem, which says that a measure 
on a product space can be decomposed into marginal and 
conditional measures, rather than Bayes rule.

Smith (1978) adopts a pragmatic approach by requiring 
that if two priors p^(0), PgfO) are 'close' then their 
associated posteriors and decisions are 'close'. This then 
allows some latitude in the specification of priors. If we 
use the weak (or star) topology to define closeness, which 
is effectively the strongest requirement, then we require

(i) the likelihood is bounded
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(ii) the set of discontinuities has measure zero 
with respect to the prior
the latter being redundant if we use absolutely continuous 
priors.

The choice of loss function plays an important role in 
practical situations, because under different loss functions 
the same posterior can give rise to very different decisions. 
In a sense this is because we are choosing a single point 
to summarise an entire distribution; indeed by choosing an 
appropriate loss function we can reach almost any decision. 
For example

Theorem 4.1

Let f be a probability density function with continuous 
derivative defined on the real line with boundary points 
1^ and 1^ satisfying

(i) lim f(x) = lim f(x) = 0
x+l^ X+I2

(ii) f(x) is strictly unimodal with f'(x)=0 at one and 

only one point in (1^, ^ 2 '^* ™ say.
Then for each point x e (l^, ^2  ̂ there is a loss 

function L increasing in (y-d), positive, with L(0)=0 
such that the Bayes decision with respect to f and L is x.

Proof

Consider the asymmetric loss function of gauge (a,b) 
defined by

0 -a< y-d <b a,b>0
1 otherwise

Then E(L) = 1 + F(d-a) - F(d+b) under the above conditions 
is a continuous function of d whose minimum satisfies
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f(d-a) = f(d+b). (4.2)

At any point x e (l^, 1^) f(x) is non-zero; by the 
intermediate value theorem applied to (l^y m) and (m, 1^) 
there are two points x^ and x_ such that

f(x ) = f(Xp) = f(x).
-L 2

Then x is the Bayes decision for the loss function gauge 
(x-x^, x^-x), because (4-2) holds, and x^, x^ are the only 
two points distance jx^-x^j apart satisfying f(x^)=f(x2). If 
this last condition does not hold then for some e

f(x^tc) = f(x2+e); 
but x^+e < m < x^+a and x^ < m < x^» so that from (ii) 
f(x^+d) > f(x^), f(x2+d) < f(x2) so that fix^+s) /  f(x2+s).
Thus X is indeed the Bayes decision and the theorem is proved.

How one actually choses a loss function in a practical 
context when one is not estimating a parameter is a subject 
largely glossed over by Bayesians. If one accepts D.e Groot's 
axiomatic approach then it is a question of extracting the 
persons personal utilities, by asking suitable preference 
type questions. A more pragmatic approach might be to try 
and use an approximate bounded loss function with a small 
number of adjustable parameters that can be altered to 
approximately represent the individual's preferences. This 
whole question is in need of further research, and one that 
we shall from now on sidestep by concentrating on symmetric 
loss functions which provide a degree of 'impartiality'.
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4.3 Bayesian Forecasting; The Dynamic Linear Model

The Bayesian Forecasting approach to Time Series analysis 
assumes the following description,, known as a Dynamic Linear 
Model or DLM: an observation equation

It = I t ^ t  + Z t (4 -3 )

and a system equation

-t ~ -t-t-1 -t* (4 .4)
In general 2 ^ is an m vector of observations, an n vector 
of process parameters with F^, m x n and n x n matrices 
respectively, known at time t.. v^ and w^ are random normal 
vectors of appropriate dimension with

4, N(O.V^) (4.5)

 ̂ N(0,W^) (4.6)

independently.
Such a description postulates an (unobserved) underlying 

process characterised by 0_̂ , which evolves in a Markov 
fashion, together with an observation equation relating the 
observations y^ to For example one of the simplest
models is the 'steady model',

®t = ®t-i +
which can be interpreted by saying that the observations are 
noisy measurements of an underlying level or mean, which is 
described by a random walk. Some consequences of this 
model are investigated in Chapters 5 to 7.

The theory for the model (4.3) - (4.4) with assumptions
(4.5)  - (4.6)  is enshrined in the Kalman filter after 

Kalman (1963a).
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Theorem 4.2

For a DLM with {F^, G^, V^, W^} known at time t, if the 
posterior distribution for at time t-1 is Normal

^-t-ll-t-1^ ^^-t-l^-t-1^ (4.7)
then the posterior at time t is also Normal

(0^|Dt) ^ N(mt,Çt) (4.8)

where D^ represents the data up to time t, so that

-t " ^-trl'Zt'-t'-t'-t'-t^ '
The equations relating m^, _Ĉ' to m^ ^ are

"t = + h S - t  (4-9)

where

= It - It 
It = At^t^t-i

2t = AtÇflAt̂  + Mt (4-11)

it = ItltAt^ + It 

At = Ptlt^dt)'^-

Proof
This can be found in any text-book on stochastic 

control theory, for example Jazwinski (1970, chapter 7).
A particularly simple proof is given in Harrison and 
Stevens (1971), proved using Bayes rule

l-t^ P^Ztl-t'-t'-t^ P^-t^-t-1^
where

P(itl-t-l) ^  ̂P^-t^-t-1^ Pf^t-ll-t-l) ^-t-1 '
Since all the relevant distributions are Normal, the 
relations simplify to give the above recursions.
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Remarks

1. The quantities in (4-11) are of interest in 
themselves, for instance ÿ^, are the expectation and 
variance of conditional upon so that e_̂  is the one
step ahead forecasting error which occurs in many fore
casting systems. is the Kalman gain vector.

2. The process needs to start off with a prior for _9q 
so that the forecater needs to build his prior opinions into 
the model -gained from experience, forecasting in similar 
circumstances, inside knowledge and so on. The simplest 
case occurs when we can approximate prior knowlege by

N(mo,_Cg). In fact we can approximate any prior by 
a Normal mixture (see for example Sorenson and Alspach 1971) 
however in most practical cases the effect of the prior 
decays with time so that a single Normal distribution 
suffices.

3. If is positive then

and At =

(4.12)

which are alternatives for (4.11).
We can allow a more general form for the error terms, 

for example

w 
\ /

N
ÜV

ÜW.

V R 
T

A

R W (4.13)

with the suffix t understood, in which case

Et = h ^ t - 1  + Hw + At®t

where
^t ■ At - AtltAt
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it = AtÇtEt-i + Atlw + £v

= It - it

At = Atlt-iAt^ + M (4.16)

it = ltAtAt+ A t f  + M t ^  + Ï

At = (£tAt^ + R b  ( i p - h

The above recursions can be thought of as defining
posterior distributions, or as defining estimates m^,
of the mean and variance. In the latter case m. is the— t
Bayes decision for _9̂  within the class of loss functions
B(d,0_^) = L^(d - _0̂ ) where is symmetric about zero and
a non-decreasing function of || d-6 || . For example with
L^(x) = 0 if x=0 and 1 otherwise, the Bayes estimate is the
mode which for Gaussian random variables is the mean m ..— t

Jazwinski (1970, chapter 7) details several alternative 
derivations of the filter. For example the above filter is 
optimal for m^ in the sense of

(1) recursive least squares with appropriate weighting 
matrices corresponding to the variance matrices V and W.

(2) The linear minimum variance estimator, that is a 
linear estimator chosen to minimise

E{(_9^-m^)^ (8^-%^)} ^ trace E{(6^-m^)(8^-m^)^}

= trace _Ĉ .

In particular, if v^ and w^ are not Normally distributed, 
the filter is still optimal in this linear minimum variance 
sense. Whilst if v^ and w^ are Normal mixtures then the 
optimal non-linear filter is given by the Class II models 
of §4.7; see also Chapters 8 and 9-

The Kalman ' filter also provides a particularly
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convenient framework in which to alter the model; provided 
that the posterior at time t-1 is normally distributed as 
say (4 .7), and that (4.3), (4.4) are appropriate as we 
pass from time t-1 to t, then the posterior is as given in 
Theorem 4.2 , Consequently we can incorporate subjective 
information into the model in two ways; firstly we can alter 
the values of { G^,V^,¥^} at time t to take account of 
new information; in the simplest such case we might express 
increased uncertainty by larger variances and 
Secondly we might decide to directly amend the posterior; 
for instance if we thought that there was a change in the 
system parameters,, then we might model the posterior by

P(lt-llAt-l) ~ with typically to
express increased uncertainty. An example is given in 
Harrison and Stevens (1976).

Models other than the steady model are given in 
Harrison and Stevens (1976). These include seasonal models 
and also the Markov polynomial models considered by 
Godolphin and Harrison (1975). In their case studies paper 
Harrison and Stevens only look at models whose non-seasonal 
part is the steady model or the linear growth model

yt = ®t i ^t

®t = ®t-i t ®t t “it

®t = ®t-i t "zt-
This is readily put in DLM form and takes its name from the
fact that the underlying level undergoes an increase g^, 
which can be thought of as a growth term that pursues a 
random walk. Also the forecast function for such a model 
is linear.
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A useful property of DLMs is the superposition property 
which says that a linear combination of linear models is 
itself a linear model. Again this is illustrated in Harrison 
and Stevens.. The practical implication of this is that we 
can model the seasonal part, trend and other factors by 
DLMs and then combine them linearly to achieve a DLM for 
the whole process.

4.4 Forecasting with DLMs

One of the primary objectives of the theory is to make
inferences about future observations, or about linear
transformations of the observation vector. In Bayesian 
inference this requires knowledge of the predictive 
distributions. If we denote

Ek,t = (4.17)

Ak.t = Var(®t+klAt) (4.18)

with fflg m^, Cq ^ using (4 .4) we have

-^t+k ^ -t+k-ttk-1 -t+k : 
conditioning on time t and using the normality of | D^ 
and w^ for all t gives

At+klAt ~ ®(Ek,t ' Ajc.f)
with parameters generated recursively from

Ek,t " At+kEk-l,t (4.19)

Ak,t " At+k + At+k (4.20)

which requires knowledge of G^, up to time t+k.
Similarly defining

Ik,t = B(Zt+klAt) (4.21)
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Ik.t = Var(lt+klAt) (4.22)

"then using (4-3) and taking conditional means and variances

Ik.t = At+k£k,t (4.23)

%k,t = At+kAk,tAt+k^ + At+k (4.24)
and the predictive distributions are Normal:

It+klAt ~ “ (Zk.t- %k,t)'
In particular = y.̂ , Y^. Note that in the time
invariant case

Ik,t " • (4.25)

These results have been derived under assumptions (4.5) and
(4 .6). Under assumptions (4.13) the formulae are slightly 
altered,

Ek.t = At+kSk-l.t + Aw,t+k (4-26)

Ak.t  ̂ At+kAk-l,tAt+k At+k (4.27)

Ik.t = At+kEk,t + Iv.t+k (4-28)

Ak,t ^ At+kAk,tAt+k At+k^t+k At+k^t+k - (4-29)
Frequently (4.23) or (4 .28) are used as k-step ahead 

predictors of y^^^; under the Normality assumptions the 
marginal predictive distributions are themselves Normal, so 
such forecasts are optimal under the wide class of symmetric 
loss functions mentioned in §4.3. As has already been 
mentioned, in a practical situation we might want to use 
different loss functions such as asymmetric ones to 
represent the differing consequences of overestimating or 
underestimating.

The following is another instance of when such forecasts 
might not be the best.
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Example 4.3

Suppose that we have univariate data and make a 
transformation = log ŷ .. This is common practice in 
Time Series Analysis for various reasons, for example we 
might think that a multiplicative model is more appropriate 
than an additive one. Suppose further that z^ can be 
modelled as a univariate DLM, so that F, G in (4.3) and 
(4 .4) are scalars. Then applying the Kalman filter will 
produce the predictive distribution

~ - (4.30)

In classical analysis z^ ^ is taken as the forecast 
of z^^^ and so exp(z^ ^ ) is used as the forecast of y^^^. 
This corresponds to using a symmetric loss function on
(4 .30). However the primary quantities of interest are the 
observations y^^^. Now the conditional distribution (4.30) 
corresponds to to log y^^^ having a (conditional) normal

.j.
distribution, so that Has a log-normal distribution
with density function

1 1 exp{-5 (log y - z, . )̂  }
/ ?t+k -----

If we apply the quadratic loss function to this 
quantity then the Bayes estimate, the mean

exp { ^ %k.t

is the 'usual' estimate multiplied by exp ( & ), which
can take values considerably different from 1. It is more 
sensible to apply loss functions to the quantities of 
interest, and in this example different symmetric loss 
functions will produce different answers. In certain cases
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the traditional estimate exp(z^ ^)might not be very 
sensible.

An example that will recur throughout the thesis in 
various guises is the following steady model mentioned in 
§ 4.3

Example 4.4

?t = ®t + (4.31)

®t “ ®t-l  ̂ (4.32)

where all the quantities are univariate. For this model
F = G = 1, and if v^ ^ N ( 0 ,  V), w^ N (0,¥) with constant
variance error terms then the Kalman filter equations (4.8) 
- (4 .11) reduce to

"t = “t-i + h  (yt - ”t-i)
^ ^t-l ^  ^  C = A V

+ W + V t -c

and the predictive distributions (4.23), (4.24) give 

yt+k'y^ ~ ( “t+k’ ™
so that under symmetric loss y^(k) = y^(l) = m^ and the 
model produces constant forecasts.

Either by applying Corollary 4.6 to the model (4.31), 
(4 .32) or directly we have that A^ tends to a limit A, so 
that in the limit A = {-¥ + (¥^+4V¥)/2V, and

yt(k) = y^fl) = (4 .33)

where m^ = + A (y^ - ®t-l^‘ (4.34)

But (4 .34) has the solution

=  A  I (l-A)j y^_. (4 .35)
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which is the same as (2.15) if A=l+g. Consequently this 
model produces the same forecasts as an ARIMA(0,l,l) 
model. In Chapters 6 and 7 we generalise this result to 
predictor equivalence between a wide class of DLMs and 
ARIMA models.

In Chapter 5 we show how even with steady models, if 
non-normal models and differing loss functions are used 
then (4 .34) can be violated.

4.5 Applications of Control Theory

The error covariance term C_̂  is calculated recursively
from (4.10), (4.II) as

At = + At - (AtAt-iAt" + At)It̂ "
X (ZtAtlt-iAt^At^ + At ^

X (GtAt-iAt^ + At) (4.36)

This equation is independent of the data and so can be 
calculated as soon as the quantities are
known. In certain cases this matrix Ricatti equation 
tends to a limit _C. Equivalently, since

Ct = (I - a ,f / ) p ,

At = AtAt-iAt' + At
it can be seen that tends to a limit if and onuy if 
C^ tends to a limit. The updates for are sometimes 
simpler to work with; they are

It = Itlt-ilt̂  + At ■ °tIt-iAt-î (It-iIt-iIt-i At-i) X
 ̂It-lAt-lIt̂  (4.37)
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It turns out that sufficient conditions are those o'f 
observality and controllability given in Chapter 3 ,  

Observability implies that a solution exists and 
controllability that such a solution is unique. In 
complete generality we have from Kwakernaak and Sivan 
(1972, p535 theorem 6.45) and Jazwinski (1970, p240 theorem 
7.4)

Theorem 4.5
If G^, and are bounded for all t

and ^ a_I, V.j. ^ g_I for all t , for positive constants a,
3 then

(i) if the DLM is either observable or uniformly 
asymptotically stable with Zq=0 (Pg=0) then the variance 

(P^) tends to a steady state solution of (4.36) {(4.37)} 
as t-̂’oo.

Moreover if the system

it = itAt-i + AtAt 

It = AtAt
is either both uniformly completely observable and 
uniformly completely controllable or uniformly asymptot
ically stable then C^ (P^) tends to a unique solution of 
(4.36) (or (4.37)) for all initial conditions. Also the 
filter is uniformly asymptotically stable; that is the 

filter

it = (% - itlt̂Atit-i + Atlf
The relevant definitions are all in Chapter 3. This 

theorem (part(ii)) is important because it means that not
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only does a steady state exist which means that the prior 
effects decay to zero, but also it ensures that the 
recursions for and are numerically stable, which is 
important for computational purposes.

W e  shall mainly look at time-invariant sytems for 
which observability and controllability imply uniform 
observability and controllability, so that the theorem can 
be expressed more simply as

Corollary 4.6

If the time-invariant system

I t  =  l i t  +  Et It ~ M(0,V)

it ^ — t-1 + it ~ N(0,W)

is observable then C_̂  (P^) converges to a limit provided 
that Cq=0 (Pq=0). If in addition W=MM^ with (G, M) 
controllable then _Ĉ  (P^) converges to the unique solution 
of (4 .36) ((4 .37)) irrespective of the initial conditions.

Now from (3.13), (G, M) is controllable if 

Ç = (M, GM, ... , g”'4m)

has rank m where G is m x m and M is rn x p. But if W

is positive definite then there is an m x m matrix of full
Trank such that W  =  M  , so that C has rank m. Thus in the 

time invariant case, provided that W is positive definite. 
Corollary 4.6 will be satisfied if the system is 
observable.

In Chapter 6 it will be shown that it is sufficient 
to look only at observable systems, in which case provided 
that the system covariance matrix is positive definite
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(which is usually true) the filter is stable and the 
covariance matrices C^, will converge.

The algebraic equivalence of Definition 3.23 can be 
applied to the model (4.3), (4.4) relating the state 
vectors and 0_̂  by a non-singular matrix T^ via

At = hh •

The matrices F^, of the algebraically equivalent 
system are related to F^, G^ by

At = Atit

= ItAtAt-i'^
and the error terms w^ ^ N(0,¥^) by

Et = AtEt

.

The Kalman updates (4.9) -(4.11) of the two systems 
are related by

Et = AtEt (4.38)

Al = At'^AtAt" (4-39)
with

At = Atit

At = AtAtAt^

y;  = yt  (4 -40)

A A
Ï, = Y, (4.41)— t — t

provided that the priors are related by (4.38),(4.39). In 
fact we can show more generally than (4. 4D) » (4. 4-a) that 
the recursions (4.21), (4.22) are
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preserved under algebraic equivalence. This means that 
the predictive distributions (for the observations) are 
identical for any algebraically equivalent models, thus 
enabling us to use equivalent models.

4-.6 Class I models

The Kalman Filter requires knowledge of F , G, V and 
¥ at time t. In practice it is extremely unlikely that 
we know these quantities exactly, especially in statistical 
applications where no physically based model presents 
itself. This problem is discussed further in Chapter 8 
however one solution is to use the Harrison-Stevens Class 
I model. Such an approach assumes that during the time 
interval under consideration the data is best described by 
a single but unknown model M^, where is one of n possible 
models, i=l...n, each M^corresponding to a set of values 
for (F^,G^,V^,¥^} throughout the time period.

If pg=(p^ Q ... p^ g) is the vector of prior 
probabilities whose j t e r m  is the probability that model 
j is 'correct' at time t=0, then defining

Pj^t P(M=Mj|y^,pg) (4-.4-2)

and using Bayes theorem

Pj.t “ pfytiMj' Pj.t-i •
The first term in the product is the likelihood. If we 
denote the probability density of a normal random variable 
mean p variance evaluated at x by N^^(x-u) then

f(ytlMj' y"‘^) = (yt - y,)
j

where y ., Y. are the mean and variance of the predictive
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distribution p(y^|y^"^) calculated from the Kalman filter 
assuming that is in operation from time t = 0 to t . 
Consequently

Pj.t = %  (yt - /j)Y. ^ ' J
 ̂  • (4.43)
4 , ( y ta—J- 1

This is the prior-posterior analysis for the probability
that model j is correct. Once we have these updates, the
remaining quantities of interest are readily calculated, 
for example

p ( i t l y ^  ) = I p ( i t h ^  , M^) (4.44)

p(yt+kly*) = I p(yt+kly*«Mi) Pi,t
wh ere for instance p(£^|y ,M_) is the posterior for _0̂
if is in operation for all time and is found from the 
Kalman filter by using the values of {F,G,V,W} which 
correspond to . In other words at each time stage we 
apply the Kalman filter n times, once for each set of 
values from model i, yielding n normal distributions which 
we then mix by using the appropriate probabilities. 
Decisions are then based upon these normal mixtures.

Such models might be used
(i) as a discrete form of Bayesian parameter 

estimation. In this case each will correspond to a 
particular set of parameter values, and p^ ^ represents 
the posterior probability that the parameters have values
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as in model i . For example if the variances V and W are 
unknown then we could set up a grid of values to cover 
their possible ranges. Some care needs to be exercised in 
the choice of this grid, and the implications of the 
simplications inherent in this method have not been 
studied.

(ii) If we are unsure as to which of a number of 
models best describes the data then we can use this method 
to choose a single model or a smaller number of models.

(iii) In situation (ii) we can use the forecasts 
from the whole suite of models, possibly to cater for 
parameter values changing in time, so that this is using 
a convex combination of models. If in fact the data are 
generated from a single model, such an approach will lead 
to a loss of performance.

(iv) If there is little or no data available, so 
that classical approaches to analysis are inappropriate.
By using the class I procedure we can build upon our prior 
opinions.

4-.7 Class II Models

In some applications of Time Series, expecially those 
involving economic data, it is extremely unlikely that we 
shall be able to successfully model any particular series 
by a model which has the same dynamics for all time. One 
possibility is to postulate a class of models at each time 
stage and allow the process to jump between models. The 
simplest way of describing the jumps is to specify a Markov 
evolution with a transition matrix (t)}, being
the probability that model j is operative at time t given
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that model i operates at time t-1. This very general 
structure can be simplified by having (t)} independent
of t, and simplified further by having tt̂ .̂ with Wj>0,

. =1, which makes 7T..(t) independent of the past. These 
simplifications were assumed by Harrison-Stevens (1975, 
1976), although relaxing these assumptions introduces a 
much wider class of models and it is envisaged that further 
research could lead to practical examples of such models. 
Note that ~ *̂ ij the class I model of §1.6.

Suppose that at time t-1 the posterior distribution 
is a mixture of m normal distributions corresponding to m 
past histories ... H^, for example each past history might 
correspond to any one of n models being involved at each 
time stage. If n models ... are introduced at time t 
then using the transition matrix we can calculate
the m X n transition matrix giving the transition 
probabilities from to M^, which without ambiguity we
can denote as At time t - 1  the posterior
distribution can be represented by

P ( e , . p y ^ - h  = Pi.t-i

where pu ^ ^ can be thought of as the probability that 
model i is operative at time t-1.

Now
p(Mj,Hily^ (l.l6)

1 » J

and so p(i^ I P (i^ I y^ ^ Pi^t-l
^ > J

where p(i^ I y*^"^, ,H^) is calculated from the Kalman filter -
in fact it is normal with mean G.m. . -, and covariance-j-i,t-±
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Tmatrix  ̂t-1— j  ̂ similarly conditioning

= I Pd+ly^.M-.H ) p(M ,a lyt) (4.47) i,j J J -L

where again p(0 - | y"̂ , M ., H ) is the normal distribution^ J 1
calculated from the updating procedure using the parameter 
values of model M^ and history We shall denote the
mean and covariance matrix of this distribution by m^(i,j) 
and £^(i,j) respectively. Finally

P^(l.j) â p(Mj'Hily^) “ p(ytlMj,H^,yt'l) p(Mj,H^|y^'l)

% ( i . j )  - ytd.j)} w . .  Pi,t-1

MYt(i.j)(yt - Pi,t-1

substituting (1.18) into (1.17) gives the posterior density 
and we can similarly calculate the predictive distributions 
using the above probabilities.

The problem is that we now have a mn component normal 
mixture instead of an n component mixture, so that the 
situation is 'explosive*. Harrison-Stevens introduce a 
collapsing procedure to overcome this by reducing the mn 
components to n . This, is achieved by integrating over the 
past histories for each model , giving the following 
relations :

Pj.t Pt(i'j)
m

A; t = I P+(i,j) ®td>j)
i-1 ^ (4.49)

m
" J .  Pt(i'j) C^(i, j) + (ffl̂ (i, j) - m^.^^}{m(i, j) -
1=-L____________________________

Pj.t
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giving rise to new posterior for 0^,

pdtiyh = I Pi,t-1 /it -
i=l

The above relations are obtained by equating the first two
movements of the collapsed and uncollapsed systems.

The class II models admit another interpretation if
TT. . = TT . and the n different models consist of different ij J
values of the observation and state noise variances. Then 
we are effectively modelling non-normal error terms, namely 
mixturœ of normal distributions,

~ % Pi

Conversely given error terms that are mixtures of normal 
distributions we can model them in this way. This is 
extremely useful since we can approximate any distribution 
by a normal mixture (see Sorenson and Alspach, 1971) and 
thus use any noise distribution.
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1.8 Parameter Estimation

The Kalman updating procedure (1.12 - 1.16) assumes 
that the matrices F, G, V and ¥ are known at time t .
Indeed it is necessary to know or have estimates of these 
inputs to the filter if we are to be able to derive 
forecasts. In practice some or all of the matrices will 
be unknown and so estimates are required. As we have 
already mentioned,, one solution is to use the Class I 
models defined above by putting a.discrete grid of values 
on the unknown parameter, and then updating the posterior 
probabilities on each of these values. However we now 
consider different approaches to the problem.

Classical Time-Series analysis is very much concerned 
with the identification.and fitting of models to 
particular series, where it is assumed that some single 
model (possibly non-linear and time-dependent) can 
adequately describe the data. ¥e shall show later in 
Chapters 6 and 7, particularly Theorem 6.13 and following, 
that constant DLMs are equivalent in a suitably defined 
sense to ARIMA models. Consequently techniques applicable 
to ARIMA models can be used to identify and estimate the 
parameters of an ARIMA model, from which an equivalent 
state-space form can be used as a DLM. This is not a 
particularly interesting procedure because the state-space 
form is almost redundant when so used. We are more 
concerned with situations where interpretability of the 
model is important and also where it is inappropriate to 
postulate a single model valid for all.time, in which case 
classical procedures are of less value. This point is 
developed in Chapters 7 and 8.
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The underlying equivalence also implies that classical 
procedures can be applied directly to DLMs, for example

Maximum Likelihood Estimates
For univariate observations y ., with F, G known but 

V, ¥ not, then

= £ l t  '̂ t n(o,v) (4..50)

it = i i t  + Mt ~ H(0,W). (4.51)

By repeated application of (4.51)

9 = + G^‘^w, + ... + w . (4.52)— r — — U — —1 — r

If we denote the vector of n observations y^ by
y= (y^ ... y^) , then if is known, the log-likelihood 
is given from (4-.50), (4..51) as

(4 .53)
L(V , ¥) = -n log(2m) - slogjzj - 2(y-p)^Z ̂ (y-u)

where = F(G G^ ... G^) £ q and

I = ( 2.. ) . 2. . = 5. .V + I I )')-''f
k = l

and where 6 is the Kronecker delta; y, Z are the mean and 
covariance matrices of the observations respectively.

If instead ,0q is unknown and is represented by the . 
prior £Q'^N(mQ,CQ) then the log-likelihood is (4.53) with

= F ( G G" .. . o'") So

Z.. = Ô..V + FG^Cg (g ’’̂)J F^ + F I G^‘’"w(G^)j'’'F' .̂
 ̂ k=l

-1Using the formulae 3  log[_2| = trace{_Z 3_2 }
3*i
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and 9,Z ^ - ~ Z  ^ in (4.53) gives the maximum
9 6 96^

likelihood estimates of -where the cj)̂ are the free 
parameters of {V,W} - as the solution of

trace(Z ^ 9^ 
9 ^

= (y-u)'^ r ^ 3 p  + 3u (y-u) +
9 d 9 d

+ i z  - u)'̂  [ r ^ ^ .  (£ - p).1 1
(4.54)

Apart from simple examples this is difficult to solve 
analytically and numerical methods are needed to find a 
solution. An added problem is the possible lack of 
identifiably, in that V and ¥ might not be uniquely 
determined from the likelihood equation (4.54).

The difficulty of solving (4.54) implies similar 
obstacles to an exact Bayesian approach, since Bayesian 
estimation is essentially a modified likelihood method.

¥e shall illustrate some of the problems mentioned 
at the beginning of this section by considering the 
simplest practical DLM, namely the steady model of Example
4.4 defined in (4.31), (4.32) as

Yt " ~ N(0,V)

®t = ®t-l + "t "t ~

where V and ¥ are now unknown.
The simplest method of estimating V and ¥ consists 

of using the covariance properties of the 'derived* series 
= y^ - y^ (The justification for doing this is given

later in Chapters 6 and 7). The properties are
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E(z^) = 0

Y q = = tf + 2V ( (4.55)
Yi = E(z^z^_^) = -V.

Comparing these theoretical values with the estimated 
first two sample autocovariances c^ and c^ of the 
differenced data gives point estimates of V and ¥ which 
can then be used in the. Kalman filter.

This technique needs some data to start with, 
although it might be possible to use a weighted average 
of prior values and estimates to overcome this.

We shall develop very general results of equivalence 
between ARIMA models and DLMs in Chapters 6 and 7. It
will be shown that an MA(1) model

= yt - yt-i = + Gct-i (4.56)

is equivalent to the DLM (4.31), (4.32) where 3 really 
depends upon t. However in the limit as t ^ , from 
Chapter 6 or directly from Example 4*4

3 = -W - 2V + /(W2+4VW) (4.57)
2V

and the problem is to estimate 3. This can be done by 
any classical approach,, for example an asymptotic 
likelihood approach is presented in Example 2.4.

Having found 3 the ratio V/W is calculated from 
(4.57), which is all that is needed for filtering or 
forecasting since the Kalman filter for the steady model 
depends upon V, ¥ only through the ratio V/¥. If 
additionally individual values of V and ¥ are needed then 
either the Bayesian technique described below can be used
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or alternatively the variance of (4.56) can be estimated 
and equated to V, W. For instance from (6.71) and Example
4.4

= -V / . (4.58)
‘ 3

Note that (4.57) and (4.58) follows from equating (4.55) 
to the autocovariances of (4.56). It will be proved in 
Chapter 6 that this is permissible for equivalence between 
(4 .55) and (4 .31), (4 .32) using the Kalman filter as t ^ .

Exact Bayesian Analysis
The only case where 'nice’ results can be derived 

appears to be when there is a single unknown parameter of 
such a form that the standard Normal-Gamma theory can be 
used. By 'nice' we mean that at each time stage priors 
and posteriors can be described in closed form 
corresponding to standard distributions. For example 
suppose that

N(m^ , 1/t )

that is the predictive distribution has unknown precision 
T, and suppose further that conditional upon data up to 
time t-1, T has a gamma distribution

P(x|y*'^) ~ e (4 .59)
r(sa)

which we denote by G[èa , è3].
Then applying Bayes theorem

p(T|y^) a: p(y^|y^ ^,T)p(x|y'^ ^) (4.60)

% G[s(atl) , è{3 + (y-ci) }̂] (4 .6I)
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so that the posterior distribution is also a gamma 
distribution. The unconditional predictive distribution 
is

f(ytlyt-l) = f (B/g) e-&T(6 + (y-m):} ^è(a+l)-lJ r(èa)/(2TT)

= (6 +

which is a Student-t distribution.
These recursions have a simple form, however 

unfortunately the Kalman updating procedure involves two 
parameters V and W together with ^|y"^"^ and not a 
single precision x. For example for the steady model
(4.31), (4.32)

H  = °t-i ' ^ + V

so that not only does x.̂  provide information on the sum 
¥+V but also ^ is involved additively.

These problems can be circumvented if we let C q = C q*V, 

¥=¥*V with Cq*, ¥^ known so that there is just a single 
unknown V. The predictive distribution is then a constant 
multiplied by V, enabling the Normal-Gamma theory to be 
applied. Moreover the Kalman recursions depend only in 
¥/V = ¥^, so that the analysis can be repeated at each 
stage. Unfortunately these assumptions are unlikely to 
be realistic precisely for these reasons, since knowledge 
of ¥/V completely determines the filter, as we have already 
mentioned. Equivalently from (4.55), the. autocorrelations 
depend on ¥, V only through ¥/V.

It is interesting to note that if we put independent 
priors on V, ¥, both of which are inverse-gamma distributed
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then we obtain an unconditional distribution for the 
system vector that is the first term in Smith's t-product 
(1979) which is mentioned in the next chapter. However 
again it is not clear how to proceed for the next time 
stage.

The problems of a fully Bayesian analysis can be seen 
by considering just one evolution for the steady model: if 
0Q is normally distributed then from the Kalman filter 
p(e^.|y^) oc p(y^| e^,V)p(0^| 0g) is also normally distributed 
if V and ¥ are known. But if they are unknown, with priors 
p(V), p(¥) say, then

p(0llyi) = / p(0p|yp»V,¥) p(¥,V|y^) dVd¥

which is a mixture of normal distributions weighted by

p(M,V|y^) oc p(y^|Vj¥) p(V) p(¥)

which removes all of the normality.

Approximate Bayesian Analysis
Instead of using a fully Bayesian analysis with priors 

for the unknowns and integrating at each time stage with 
respect to the unknowns to obtain the unconditional 
posteriors for the observation and system vectors, it is 
possible to approximate quantities. The simplest way of 
proceeding is to approximate the posteriors of the unknown 
parameters by singular distributions concentrated at a 
single point, so that the resulting integration consists 
of substituting a single value in the integrand. In 
other words point estimates of V and ¥ are used at each 
time stage as inputs to the filter, the mean and variance
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of the system vector are then updated via the recurrence 
relations, new posteriors for V and ¥ are formed, point 
estimates derived and the process iterated. In general 
this approach involves discarding a lot of information.

For the steady model of Example 4*4, if 9^Jy^^N(m^,C^) 
then the Kalman filter gives

t+1 y^ N(m. , C.+¥)

where
mt+1 = “t + (4.63)

(W+C^+T"^)

°t+l'^ = (C^ + W)'l + T (4 .64)

where the precision t =V ^ .
If the conditional distribution p(x|y^) has a gamma 

distribution (4.59), then using Bayes theorem (4 .6O) gives 
the posterior for t as

t+1p(T|y ) = ___________  ̂ exp
(C.(.+W+t ‘^)®

1 [-à(y-m^)2 J  ta-1
-1 - 23AC^+¥+t

X

(4.65)

If in addition ¥ is known - so that t is the only unknown 
- then the exact Bayesian procedure is to find the 
posterior of 8^+1^^^^^ by integrating (4.62) with respect 
to T having the measure (4.65). However the resultant 
distribution will not then be normal. An approximate 
method is to derive a point estimate of t from (4 .65) (or 
less satisfactorily from p(x|y^)) and then substitute this 

into (4 .63) - (4 .64). The posterior p( 6-^+11 ) will

then be normal with parameters m^^^* *^t+l* Unfortunately
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(4.65) does not have a particularly convenient form, but 
if we approximate this by a gamma distribution then the 
procedure can be repeated iteratively.

This leaves the problem of how to best approximate
(4 .65) by a gamma distribution.. West (1981) considers 
general symmetric error terms for v^, and in the normal 
case effectively uses

p(T|yt+l) .

At each time stage the posterior is then gamma distributed

p(x|y^) = G[èa^ ,

with the recursions

“t = “t-1 + ^

Bt = 6t-i + (yt-1 - ”t-i^'-

The mode or the mean (a^^^ / 3^^^) can then be used as the 
point estimate of t in (4 .63), (4 .64).

This is tantamount to approximating (C^+W+t ^) by t ^ 
which is not without its disadvantages. For example (4 .65) 
can become multimodal whereas it is being approximated by 
a unimodal distribution. The multimodality can be 
demonstrated by differentiating (4 .65) with respect to t. 
Equating this derivative to zero gives a cubic in t, and 
if for instance |y-m^| is large enough it is straight - 
forward to show that the cubic has three positive roots, 
thereby demonstrating multimodality.
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CHAPTER 5 

NON-NORMAL MODELS

5.1 Introduction

Chapter 4 reviewed Bayesian Forecasting which is a 
theory of forecasting based upon a 'state-space' description 
of a time series, Bayesian inference and Normal error 
distributions; the Kalman Filter then enables us to 
recursively update our beliefs as expressed in the 
appropriate posterior and predictive distributions. In 
this chapter we look briefly at the problems encountered 
when non-Normal error distributions are introduced and when, 
more generally, the state and observation equations are 
redefined.

There is currently much interest in both non-stationary 
and non-linear Time Series, for example in the papers of 
Priestley (1980), Haggan and Ozaki (1981), Lawrance and 
Lewis (1980) and the piece-wise linear work of Tong in, for 
example, Tong and Lim (1980). Our attention will be focussed 
more on non-linear forecasting models or non-linear forecasts 
Indeed it is possible for a linear model to yield non-linear 
forecasts, that is the forecasts are non-linear functions of 
the data; for instance the application of the Class 11 
procedure to a time-invariant DLM gives posterior means and 
variances which are not linear in the observations - since 
we are effectively updating the mixture proportions - 
consequently the forecasts obtained from the predictive 
distributions will in general be non-linear. This example 
highlights the importance of loss functions in forecasting, 
because the predictive distributions are Normal mixtures
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so that any point forecast will be heavily dependent on the 
loss function used.

5.2 General Filtering Theory

The state-space representation introduced in Chapters 
3 and 4 consists of an observation equation relating the 
observations to an underlying system parameter 0^ which 
undergoes a Markov evolution. In discrete time the system 
process is a Markov chain on a continuous vector space 0 
which we shall assume is a subspace of ]R^. We shall assume 
further that this process can be described by a transition 
density with respect to Lebesgue measure on ]R^, and that 
for each 0£0 there is a probability density f (x 10_) with 
respect to a fixed measure q on the observation space X, 
the latter being a subset of the real line or more generally 
a subset of JR^. In practice u will either be Lebesgue 
measure or such that f(xj^) represents a discrete density 
function.

Suppose that the process starts at time t=0 and that
the initial state is described by a density p(0^), then at
time t the observation has density function

p(X|.) = f l-t^^(-t^ ^®t (5.1 )

where p(^^) is the density function of the observation 
vector at time t, given by

P(it) = }•••
(5.2)

The simplest such models are those in which p(^^|0^_2) .̂nd 
f(x^|0,t) do not depend on t.
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By placing-certain restrictions on the unconditional 
densities (5.1) and (5.2) we can obtain conditions on the 
pair {f(x|^)»p(^|^)}, for example we might require (5.1) 
to be of the same type for all t . However we are more 
interested in conditional inference, or sequential, 
although (5.1) and (5.2) should have a 'nice' form for all 
t if we are to be able to simulate the process.

Suppose that p (0.q ) is the prior distribution for 0, at 
time t=0, then the posterior at time t is given by

p(itly ) = (5.3)

t-1

The relevant predictive densities are obtained from

P(-ttklZ )  ̂ P(-t+kl-ttk-l)p(-t+k-llZ )̂ t̂tk-l (5.5)
and

f ( y t + k h b  = jf(yt+kl^t+k^p(^t+khb‘5it+k (5.6)

As we have seen in Chapter 4» under assumptions of normality 
all the equations (5.1) -(5.6) possess a particularly simple 
form.

If the predictive density functions of the observations 
are to be evaluated easily we require that the densities 
obtained from (5.6) via (5.3) -(5.5) should be tractable 
for each k and t . We can write from above

^ ( ï t + k h  ) =

P(Zt+kl-t+k̂  •"|p(-t+kl-t+k-l̂ "‘P̂ -t+ll-t̂ P(-th )‘̂lt+k’"'̂-t
(5.7)

which will be 'tractable' if for no k ort do we have to resort
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to numerical methods for its calculation, which will be the 
case if the densities (5.7) are 'standard' density functions 
or can be expressed analytically in closed form.

Three problems associated with using non-normal 
recursions are

(1) Finding pairs {f(xl£)»p(^|£)1 which lead to tractable 
results in the above sense.
(2) Identifying subsets of the admissible pairs in (l) 
which do not need the past history y^ ... y^ stored for 
each t . More precisely Bather (I965) requires that there 
exists a sequence of statistics u^(y^ ... y^) such that

tiip(Ê+|y^) (and hence all the other predictive distributions}
depends on y^ only through u^. This is a stochastic type 
of sufficiency.
(3) Interpreting such models - that is choosing models of 
the form satisfying (l) and (2) which correspond to a 
reasonable model for the situation under consideration, 
rather than being just of a convenient mathematical form.

Example 5.1

Consider the steady model of Chapter 4

Ft = (5.8)

®t = (5-9)

This widely used model has a ready interpretation, with v^ 
and w^ error terms. Usually these are taken to be Normal, 
with mean 0 and variance V, however we can think of 
situations where it might be preferable to have non-normal 
error terms. For example following the work of Huber (1981) 
we might want to put a heavy tailed distribution on v^ or
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to ’protect' us against outliers; this is very closely 
linked to the 'outlier resistant' distributions of 0 'Hagan 
(1979) and has motivated West's (1981) work.

The next two examples use (5.8) and (5.9) with non
normal errors.

Example 5.2

Let w^ have a strictly Levy-stable distribution of 
characteristic exponent a independent of t, W say, and let 
v^ be strictly Levy-stable of the same type; definitions are 
given in say Feller (1970, page 170). This gives a general 
class of steady models which can be simulated.

From (5.9) assuming that 0Q=y with probability one (we 
could equally easily assume a Levy-stable distribution with 
location p , exponent a),

0^ = p t wi ... t w^
V a

by definition of stable distributions. By assumption,
Viji = CW for some positive C, so

ŷji - 0IJI t Vij,
a, (T + “ W + u (5.10)

using the fact that xi + xz ~ (s + t)^%x for all
strictly stable laws x , with x^, x^ x, which holds true
for all s,t > 0. Thus each marginal predictive distribution 
(5.10) is Levy-stable with exponent a.

The above assumptions can also be used with the more 
general steady model introduced in Chapter 7 which replaces
(5.8) by

Ft = ®t + ®t-l + '̂ t 
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giving
y ~  2 p + 2(Wj^ + W|ji 2) t

2p + (2°^(T-1) + 1 + 0°^)^ ¥

in place of (5.10).
The limitations of this class of models lies in the 

complicated nature of the Levy-stable density functions. 
The case a = 2 corresponds to the Normal distribution and 
the results of Chapter J+; with a= l ,  we have the Cauchy 
distribution giving the following .

Example 5.3

Consider the case where v^,#^ have a Cauchy 
distribution, which has form

f(x) = 1 t 2
TT tt(x-p)

where t is a scale parameter and p the location. If we 
suppose that v^ is Cauchy with location zero, scale v, w^ 
Cauchy location zero, scale w then under the analysis of 
Example 5.2

y2 is a Cauchy distribution with location p and scale
pw+v.

This example illustrates the remarks made earlier, in 
that the posterior distributions of (5.3) and (5.4) have a 
complicated form. Moreover if we have

with w^ a Cauchy distribution and suppose that has
a Cauchy distribution, then it is not possible to find • 
f(y|8) such that p^O^ly^) has a Cauchy distribution for 
all t .
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5.3 Predictive Consequences of Non-Gaussian Steady Models~

The last section contained examples where the 
convolution of densities lead to tractable results, because 
the relevant distributions were stable. If additive error 
terms are used it is difficult to work outside such a class 
of distributions, otherwise approximations have to be made 
as in West (1981) for example.

We now consider alternative specifications of state- 
space models, and consider the predictive implications of 
such models. That is we discuss the predictive distributions 
and point estimates under various loss functions which 
correspond to the classical k-step ahead predictors. In 
particular we consider the exponential family and show that 
for models which undergo a suitably defined evolution, non
normal distributions can give rise to behaviour very 
different from the classical steady model. For example the 
condition (4.33)

y^( ̂ ) = y^fl)

which says that the forecast are constant at all lead times £ 
need no longer hold. The results given amplify the initial
work of Key and Godolphin (1981).

From now on we only consider models whose system
parameter is univariate with observation space a subset of
the real line.

An alternative to specifying the system evolution by 
a transition density p^Q^IO^ q) is to define the conditional 
evolution of 6^ ]_ I to G^ly^. The quantities of interest 
can be calculated from (5.3) -(5.6), and if a 'sensible' 
evolution is defined some of the integration problems can be 
avoided,
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This is the approach of Smith (1979), motivated by the 
steady model of Example 4.4 expressed in (5.8) and (5.9) 
with normal errors. Such a model can be rewritten as

y^l^t ^ N(8^,V) (5.11)

with the evolution

p(8t+ily^) ^ (p(0.|. Iy^))"^t (5.12)

where + W ) , W>0. As t increases the prior
effects disappear, k^+k, with 0<k<l, where k depends
on V and W. Then

= E[0tly^]

is obtained from

”t = “t-1  ̂ (5.13)
oo

so that m, = (1-k) J k^y, . (5.14)
t j=o

the familiar EWMA of (2.15) and (4.35).
Using this example. Smith abstracts two requirements 

for his models:
(i) Decisions about 0^ at times t and t+1 conditional 

upon information up to time t should be the same
(ii) The uncertainty associated with such decisions 

should increase.
As remarked upon in Chapter 4, decisions depend on the 

choice of loss function, so that the above requirements 
generate a whole class of decision based steady models, 
which are 'subjective' in that they depend upon the loss 
function used. To obviate this problem. Smith restricts his 
attention to his so-called 'utility-invariant' loss 
functions, namely the step-loss functions of gauge b defined

by
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Ll)(y-<i) j o  |y-d|<b b>0 (5.15)
otherwise

Using such loss functions with (i) and (ii), together with 
an additional requirement to make the results independent 
of any preconditioning of 6^ to lie in a specific interval, 
Smith arrives at his 'steady model'. This is a model 
described by a probability density for y^ls^ for which 
(5.12) holds with k^ independent of t,

f(y^|e^.) (5.16)

p(8-t+l V ^ ) “(p(9tly^))'^- (5.17)

In fact such a 'steady evolution' can always be 
expressed via a transition density p^G^IS^ through (5.4) 
This is because subject to certain regularity requirements, 
the Radon-Nikodym theorem states that there is a function 
p(0^|0^ ^) such that (5.4) holds. However, in general such 
a function will depend on t and may not have a closed form.

In a forecasting context the main quantities of . 
interest are the joint and marginal predictive densities,

f(yt+k '•* yt+lly^) f(yt+kly^)' Although Smith's
formulation appears to be only a one-step ahead phenomenum, 
in fact (5.16) and (5.17) enable us to calculate all the 
required predictive densities. For example (5.6) gives 

f(yt+ily^) while

f(yt+2ly^) = jf(yt+2'yt+iiy^)dyt+i

|f (yt+2 f (yt+i I y^)<iyt+i •
The joint predictive densities are given by

f(yt+%.-yt+ily^)
_97_ (5.18)



and the marginal densities are obtained from

(5.18) by integrating out y^+^^q ••• y^tl.

Example 5.4

In the normal steady model of Example 4.4 or above 

y^+ily^ ^(m^tC^+w+v) 

and in the limit C^+C, but k=C/C+¥ or C=W(k/l-k) so

y^+ily^ N(m^, W + V)
1-k

and y^ + ̂ ly^ + V)

= N(m., W r k+£(l-k)l tv).
^ ^ ~ T - k

Consequently using any loss function symmetric in {y^(&)-y2+^} 
we have

y^fü) = y^fi) = (5.19)

so that using (5.13)

y^(jl) = yt_i(&+l) (l-k){y2-yt_q(l)} (5.20)

where m^ is the EWMA (5.14).
Equations (5.19) and (5.20) are the familiar defining 

relations for a steady forecasting model and for a predictor 
updating equation respectively. These results are detailed 
in Box and Jenkins (1970, chapter 5) and have been described 
under a variety of assumptions by Holt (1957), Brown (1959), 
Muth (i960) and Whittle (1963, chapter 8). The steady 
forecast equation (5.19) suggests that the model is trend 
free, a condition which is independent of any model 
assumptions and a point discussed in Godolphin and Harrison 
(1975). Equations (5.19) and (5.20) imply that y^(&) is
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the EWMA (5.14), however the 'discount factor' k assumes 
only the positive part of its natural range |k|<l. This 
point is developed further in Chapters 6 and 7.

The two equations (5.19) and (5.20) are a more natural 
example of a steady forecasting model than the equations 
giving a steady evolution of the system parameter. However 
the latter based upon (5 .16) and (5.17) are well defined 
and it is interesting to examine the consequences of these 
assumptions in terms of predictions.

To obtain general results we shall consider the 
exponential family of distributions, so that the observation 
equation is of the form

f(y.j.|0.j.) = exp{a(8^)b(y^) + c(8^) + d(y^)}. (5.21)

All of the examples in Smith (1979) lie in this family apart 
from the interesting Student-Tsteady model. Under 
requirement (2) of §5.2 and certain differentiability 
conditions Bather (1965) shows that under a given Markov 
evolution p( 0^ I 0.f._q),  f (y.̂. I 0.|. ) must be of the form (5.21). 
Strictly speaking we need to apply the mild restrictions 
that the distributions (5.23) are strictly identifiable 
with respect to the dominating measure and also that the 
sample space Y does not depend upon 0 , that is f (y | 0 )>0 always .

In order to satisfy requirement (l) of §5.2 we shall 
assume that at each time stage the posterior distribution 
p(0^|y^) has the conjugate form

p(0^|y"^) ® exp{y .|.a(0.f. ) + 6^0(82)} (5.22)

for some parameters Then under (5.17)

p(0t+ily^)  ̂ ' (5.23)
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Consequently using (5.21) and (5.3) we have the recurrence 
relations

Yt+i = kYt + b(yt+i) , V l  = +1 (5.24)

which for sufficiently large t have the solution

Y t ^ " t  = k^b(yt_.) . 6 ^ i ( l - k ) - t  (5.25)

In the limit with 6^ given by (5.25), (5.22) and (5.23) form 
the 'invariant conditional densities’ of Bather (1^65), that is 
both densities depend upon y^ ... y^ only through , which 
is the appropriate sequence of real valued functions 
mentioned in criterion 2 of §5.2.

If we substitute the limiting values of (5.25) into 
(5.22), (5.23) and define the functions y,p by

exp{X(u^)} = exp{a(0)u^ + _c (0)} d0 (5.26)t 1-k
exp{p(ku.)} = exp{ka(9)u. + k c(0)}d0 (5.27)

^  t 1-k
where the definitions hold for those regions for which the 
integrals are finite, then the predictive distribution (5.6) 
is given by

=jexp{a(8t+i)b(yt+i) + cfe^+i) +d(y^+3^) +ka(6^^.^)u^

J-—Ic

= exp{x(u^^^) -p(ku^) + dXy^+q)} (5.28)

with Ut+1 = b(yt+i) + = jZ^k^b(yt+i_j).

The joint predictive distributions are given by

t ^fCytn'̂ tn-i’-yt+ily ) =exp{_ĵA(ut+i)-p(k"t+i.i)+d(yt+i)).
- l O o /  (5.29)



and the marginal predictive densities can be calculated by 
integration, for example

^ expfafy^+g) “ p(ku^) + (5.30)

where
exp(a(y^_^^)}= exp[ A{b(y^_^^)tku^_^^}+A(u^^^)-p (kû _̂ )̂ td(^_^^)] du(y^^. )

(5.31)
where u(y) in the appropriate measure, so that we include 
discrete distributions.

Such a system gives the invariant conditional 
distributions defined by Bather (1965) provided that the 
system evolution corresponds to a Markov evolution, that 
is provided that there is a function p(b|6,u) satisfying

exp{kua(b) + k c(b) - p ( ku )} = p(b|8) exp(ua(0) + 1 c(0)-x(u)}d0
1-k J 1-k

(5.32)
such that

(i) p(b|8,u) is a non-trivial function of 0
Q so that _9 p (b I 8 ,u ) ^ O] and for each 0 . e 0 p(b|8,u) is a

00
probability function.

(ii) p(b|0,u) is independent of u

(iii) p(b|0,u) is integrable with respect to the dominating
measure y .

If these conditions are satisfied, then p(b|8) will be 
a (stationary) transition probability, since for example we 
can always satisfy (5.32) with

p((t)|8,u) = exp {kua(4>) + c(b) - p(ku)}.

We can show that
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Theorem 5.5

A transition density p(b|0) exists which satisfies the 
conditions (i), (ii), (iii) and (5.32) if and only if there 
is a function v such that

v($)exp(u$)d^ = exp{X(u) - p(ku)} (5.33)

the equation holding for the values of u such that the 
right-hand side is well defined.

Proof

The necessity of the result follows from the work of 
Bather (1965) with only minor modifications, these are needed 
because we have a function a(0) instead of the function 0.
We briefly give the mainsteps in the proof with the required 
modifications. Here b denotes the system parameter at the 
next time stage from that for 0, at say t+1 and t 
respectively. If we reverse the natural order and look at 
0 conditional upon b , then if a transition density exists

= p(b|0)p(0|u)e^G&(8)
p(b|u)

which using (5.22) and (5.27) using the limiting values 
(5.25)

p(bI0)exp(a(0)(u+ic) + (1-k) ^c(0) - X(u)} d0

exp{kua(b) + k(l-k) ^c(b) - p(ku)} 
which using (5.32)
= exp [ a(b)ki; + x(u+iç )-X(u)+p (ku)-p{k(u+iç )j ] .

iç{a(0) - ka(b)}. .This implies that E[ e does not depend
on b and so b and a(0)-ka(b).are independent random variables.
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Putting b-a(0)-ka(b) then the two alternative forms for the 
joint pdf of b and 0 are

p(b|0) exp{a(0)u + c(0 ) - X(u)}
1-k

and exp{a(b)ku + k c(b) -p(ku)}|a*(0)|w{a(0) - ka(b)|u}
1-k

where b has the conditional density w(b|u). In the above 
we have used the fact that a(0)=b+ka(b), so that after
transforming variables the density of 0 conditional on b
and u is |a'(0)|w{a(0)-ka(b)|u}, provided that the function 
a is 1-1. On replacing a(0) by b+ka(b) in the above we have

w(b|u) = p[]b I {b+ka(b))3] exp(bu+p(ku)-X(u)} x 

Gxp /' c [a  ̂(b+ka(b) 0  - kc(b) ) | a ’{b+ka(b) } |
\ r r "  1-k /

which is of exponential type and so can be written

w(b|u) = v(b)exp(bu-X(u)+p(ku)}

so that v(b) satisfies jv(b)exp(b%)db = exp{X(u)-p(ku)}

as required. This proves necessity - in fact we have also 
proved the existence of b in this case. Conversely suppose 
that such a function exists and define

p(b|0) = exp{a(b)ku - a(0)u + k c(b) - c(0) + A( u ) - p(ku)} x
1-k 1-k

|a’(0) I v{a(0) - ka(b)}expQa(0) - ka(b)}u - X(u) + p(ku)%]

= exp { k c(b) - c ( 0 ) } |a ’(0 )| v{a(0) -ka(b)).
1-k 1-k

Then p(b|0) e x p { a ( 0 )u + c(0 ) - X(u) } d0
1-k

= exp{ k c(b) - X(u)} I a*(0 )|{a(0) - ka ( b )} d0 j
1-k J

which putting b = a(0) - k a (b )
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= exp{ k c(b)-X(u) + ka(b)u} 
1-k e^^v(b)db

= exp{uka(b) + k c(b) - p(ku)}
1-k

so that (5 .32) is satisfied and the result is proved.
This theorem enables us to reduce the steady models 

to the form

f C y J e p

provided that we can solve the transform equation (5.33). 

Example 5.6

If we consider the Gamma-Gamma steady model of Example 
5.8 then

exp{X(u) - p(ku)} = cu ^ where c is a constant;

But " e-stdt = 1

SO that v(b) = j 0 b>0
I c b^o

satisfies the required integral equation and so since for 
this example a(8)= -8, c(0)= a log 0

p(b|8) = c k/j_-k ^ , O<kb<0
I0/ 0

which is a Beta distribution. Note that in this example 
(-b) has an exponential distribution.

If equations (5.21) -(5.23) define a steady model in 
the sense that the predictors are trend free then we expect
(5.19) to be satisfied for &>2. It would appear however 
from (5.28) and (5.30) that even in the case il=2 we would 
often not obtain y^(2)=y^(l) except possibly if the 
functional form of the loss function depends upon the shape
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of the distribution. For example there are several members 
of the discrete form of the exponential family where the 
expectations differ,that is E[ ^ [ y-5+1 1 ]
corresponding to the use of quadratic loss functions. We 
are once again in a situation where our forecasts are 
dependent upon the choice of loss function. There are two 
possible cases where we can obtain some measure of 
independence from the loss function:

Case 1 Where the marginal predictive distributions are 
symmetric and unimodal since then any symmetric loss 
function yields the mean (which equals the mode) as the 
point estimate.

Case 2 Where the predictive distributions undergo a steady 
evolution as defined by Smith, that is

f(yt+2ly^) “

for a convex function T and in particular

f(yt+2ly^) (yt;+ily^)}^° (5*3^)

for some ko, 0<ko<l. There are several well defined 
members of the exponential family steady models where (5.34-) 
is not satisfied. A similar set of remarks may be made 
concerning the Kalman updating equation (5.20). It follows 
that the examples satisfying Smith's definition of a steady 
model do not always satisfy the familiar expressions for 
predictors of the steady model given by the EWMA.

On the other hand Smith derives the EWMA in many of 
his particular models and we can generalise his argument as 
follows. Take the limiting forms for defined by (5.25)
and let 6^ denote the mode of 8^+1 1 w h i c h  from (5.17) is

-105-



also the mode of 6^|y . Then 8 . satisfies

+ <StC'(9t^ = ° (5.35)

provided that the supremum of (5 .2) does not occur at a 
boundary point of the support and that a(.) and c(.) are 
differentiable. But f(y^|0^) is a probability distribution 
and so

exp{a(0^)b(y^) + c (0^) + d(y^)} dv(y^) = 1 (5.36)

where v(y^) is either Lebesgue measure or a discrete 
measure. Provided that sufficient regularity exists,(which 
is always true for discrete measures otherwise we require 
|a'(0)b(y) + c ’(0) Iexp{a(0)b(y) + c(0) + d(y)}<g(y) for an 
integrable function g(y) for all y ,0 which will be satisfied 
if a*(0) and c '(0) are bounded and if the expectation of 
b(y) with respect to f(y|0) exists for all 0), then we can 
differentiate (5.36) to obtain

(a’(0)b(y) + c(0) f(y|0) = 0

that is a'(0)E[b(y^|0^)] + c'(0^) = 0

and so for sufficiently large t

E[b(y,,pe,)Jĝ .ĝ  = YtV' ~ (1-k) kJb(y,..)

where 0^ is a mode. So that under the natural parametrisation 
of the exponential family with b(y^)=y^ the expectation 
E[yt^l|0t]l0 =0 is given by an. EWMA. In general the 
quantity on the left hand side of (5.37) would not be 
considered a sensible forecast since to use it would be to 
discard much of the information about 8^^^ contained in

p(6t+ily*).
Finally it is perhaps worth pointing out that the
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steady evolution described by (5.18) is essentially a one- 
step phenomenum. This is because

p(®t+2ht) =

exp(kUt+ia(8t+2) + c(0^^2)-p(ku^^^)

+l(Ut+i)-p(k"t) + dfy^+i) dy^+i 

But "t+1 = k"t + b(yt+i)

= expfk^u^afe^+g) + k c(@t+2)'P(^"t) + ®(®t+2^
(5.38)

SO

where
exp{g(6^+2)} exp{a(8^^2)kb(y^+^) -p(ku^+^)+X(u^+^)

+d(yt+i)}iyt+i (5.39)

so that in general p(8^+2ly^)//p(8t+ily^)^°' any
ko, 0<ko<l, the latter density given by (5.23), (5.25) as

^exp{ku^a(8^+^) + ^k^c(8^^^) -p(ku^)J .

5.4- Examples of Non-Normal Evolutions

This section illustrates the points raised in the 
previous sections by giving particular examples of the 
exponential family. We shall only consider the limiting, 
steady-state forms to avoid results being dependent upon 
assumptions concerning the prior.

First Example 5.7 considers the normal case and shows 
that the typical features of the EWMA forecast function 
follow when the loss function is symmetric. Example 5.8 
considers the Gamma-exponential model. In this case it is 
shown that the forecast function depends heavily on the
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loss function, for example under step loss functions the 
forecast function is a constant which is independent of the 
data, and for which the uncertainty associated with the 
forecasts can decrease. However under quadratic loss this 
model has many of the features of the standard normal model. 
Similar remarks apply to the Gamma-Gamma model of Example 
5.13 which extends Example 5.8. Lastly Example 5.14-, the 
Beta-Binomial shows that it is possible to have neither of 
the EWMA criteria (5.19), (5.20) satisfied when we have non- 
normal recursions.

Example 5.7

For comparison purposes we show how the Harrison- 
Stevens model of Examples 5.1 and 5.4- falls into the 
exponential form. The observations are normal

yJe^'-NO^.v) 

which corresponds to (5.21) with

a(e) = e/v

b(y) = y
c(e) = -e^/2v

d(y) = -y^ - i  ln(2mv).
2V

Equations (5.22) -(5.25) give

e.lyt .V N(m, , (l-k)V)

8^+1|yt ~ N(m^, (l-k)V/k)
where

%t+l = ku^ + yt+i' = (l-k)u^

= /i2ir(l-k) V exp (u^ (1-k) }
2V
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p(ku^)
/^ttC 1-k) V exp ( ku^ (l-k) 1 . 

V k L 2V i

The predictive distributions (5.28), (5.30) are

Yt+ily N(m^,V/k)

y^+ply N(m^,V{(l-k)V+l})

(5.40)

(5.41)

and the joint predictive distributions (5.29)

(5.42)

using "t+1 = Yt+i +kut+i_l' that

ut+i-1 y^ti-i  ̂ ^ yt+i-2

Note that (5.4Z) can be written as
£r, 1 ,  , 0/ exp< -k I(27TV/k)^/2 I 2V i=:

On making the substitution z^^^=y^^^-(l-k)u^, (5.42) 
becomes a positive quadratic form in since

Yt+i ■ %t+l t ••• t

SO that the joint predictive distribution is multivariate
normal with each marginal predictive distribution

t t^(yt+j^ly  ̂univariate normal with mean E[y^_j_^|y ] = m^.
Consequently using any symmetric loss function (5.19) and
(5.20) are satisfied. In particular with any step loss
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function we must have (5.34) satisfied, which also follows
from (5.40), (5.41) giving = l/{(1-k)^ +1}.

Indeed this example has all the desirable properties 
since either from Example 5.4 or using (5.38), (5.39)

~ N ( m ^  , V ( l - k ) ( 2 - k ) / k  )

so that P(0t+2ly^) “ P(8t+ily^)

and similar results can be obtained for p(8^^^|y^).

Example 5.8

If the observations have an exponential distribution 
with parameter 8^

®t ®xp(-8^ y^) y^>0 (5.43)
L 0 elsewhere

then the appropriate conjugate posterior for 8^ is the gamma 
distribution

p(8^|y^) oc 8^^^"^) exp(-8^u^) 8^>0 (5.44)

where u^=ZkJy^_j, and also has a gamma
distribution. In this case

exp{X(u)} = r{(2-k)/(l-k)} u-(2-k)(l-k)

exp{p(ku)) = r{l/(l-k)}

-  1

where l(a) is the gamma function I (a) =• x^ ^ e ^ dx.
Both 8^|y^ and 8 ^ + 1 are unimodal with mode l/{(l-k)u}.

Under this model the predictive distributions are given

by
Theorem 5.9

which is a Pareto distribution whilst
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f(yt+zly^) = z''(kz+yt+2)"(^"^)/(^"d3.ku^t + 2 •' kUj.
(5 .46)

Proof
From (5.28) and above 

t+1f(y+iTlyt) 8 e'Gy 0k/(l-k) (ku)l+k/li-k) «-^«8
■' 0 r{l+k/(l-k)}

' e(l-k)' e-G(k"+y) d8
■° r{i/(i-k)}

= r[i+fi/(i-k)>] (ku)(i"k)
(ku+y) l+(l/(l-k)} r{l/(l-k)}

which since P(a+l) = aP(a) (5.47)
reduces to (5.45). From (5.30)

f(y++2ly^) = exp(a(y,+2)) (ku)r{l/U-k)}
where from (5.31)

exp{a(y,^p)) = f f(k*) (y+12 +ku)"^* r(k*) u'^^ (ku)^!"^) gy t+<: j t+<: r{l/(l-k)}

where k* = (2-k)/(l-k) and where uEu^_j_^=ku^ + . If we now
denote ku^+y^^^ by ku+z then using (5.47) with the above

f(yt+2ly^) =

(1-k) -1" [ (y+k2u+kz)-k*(ku + z)-k* (k2u+kz)(l-k)-'a2
(l-k)2 J

=  (kZu)(l-k)'^ f- ^_k*
(y + k^u + kz)' dz(1-k) ku+z
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or transforming = (k^u)(^~k) “ z"^(kz+ d z .
(1-k) 2 -%"t

We can show that for the predictive distributions

Lemma 5.10 f(y^+^|y^) is a monotonically decreasing
function of y^^^ for all lead times &>1.

Proof
tf(yt+&iy ) = J, f(yt+%i8t+&)p(8t+&iy )aet+&

thus
i f(yt+&lŷ ) " [r" f(y+.+o l9++o )p(9+4.Jŷ )<59tt&' t+& tt&'J t + l .

^ \ + i  3yt+i
But

_9f(y|0) = -0^e <0 for all 8, y ̂  0 and so
9y

3f(yt+&ly that is f(y^^^|y^) is a strictly decreasing
^y^+i function.

Because of this result, the point forecasts are heavily 
dependent upon the shape of the loss function used. For 
example under step loss functions gauge b (defined in
(5.15)),

y^fi) = y^Cü) = b (5.4-8)

so that (5.19) is satisfied, and (5.21) trivially that k = l. 
Of course the decisions (5.4-8) are not particulary sensible 
since they are independent of the data.

Under such loss functions the expected loss is 1-F(2b) 
where F is the appropriate distribution function. Using 
(5.4-5), (5.4-6) and (5.48) we have in an obvious notation
that the expected loss of decision (5.48) at lead time one is
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E[L{y,(1)}] J L  /  ]2b (1-k) ^(ku^+y)J

(ku)(l"^) 
(ku+2b)(l-k)"'

(1-k)
(y+ku,) dy

and for lead time 2
E[L{y^(2)}] = (k^u^)(l-^)

-1

(1-k) 2b dy dz
k*ku z(kz+y)

where k* is as defined above. Using Fubini's theorem to 
interchange the order of integration simplifies this to 

E[L{y+(2)}] = (kZu.)(^'k) f" ,
(lUU 'k" ' z(kz+2b)W(l-k)

An interesting point emerges from the following lemma 
where the loss function is step loss gauge b .

Lemma 5.11

For certain values of k, u^, b we have

E[L{y^(2)}] < E[L{y^(l)}]

which says that the uncertainty associated with decisions 
(5.4-8) decreases, thus violating Smith's axiom (ii) of §5.3 
for a steady evolution (applied to the predictive 
distributions).

Proof

and

Provided that 0<k<l

f(yt+il"tUo) = (1-k)ku

(k*u)
(I^)^

(l-k)'l {(kz)‘(2‘^Ul-k)-lj^-l^
ku
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(l-k2)k(2-k)/(l-k) (2-k) z(2-k)/(l-k)

ku

(2-k)(l-k)k^u

But 1 > 1 since 1 > 2k-k^
(2-k)(l-k)k^u (1-k)ku

thus f(yt+2ly^)(o) > f(yt+ily^)(o).

Since both of these functions are continuous, there is some 

b such that on [0,2b), f ( y ^ ^ 2 I ^  ^ t h a t

% ( 2 ) ( 2 b )  > % ( l ) ( 2 b )  

which implies that

1 - Fy^(2)(2b) < 1 - Fy^(i)(2b)
or

S [ L{y^(2)} ] < E [ L{y^(l)} ] .

If we consider the usual quadratic loss functions then 
the predictors are just the conditional mean. The mean of 
the Pareto distribution (5.45) is (l-k)u^, so that

y^(l) = m^ = (l-k)u^

which is the traditional EWMA.
For the two-step ahead predictor

E[yt+2ly*I = 2(E[y^+2|yt+l]}

= E[(l-k)Ut+i]

= E[(l-k)(y^^^ + ku^)]

= (1-k){(l-k)u^ + ku^}
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= (l-k)u.

so that by an inductive argument

E [ y t + J y U  =

or y+(&) = y+(i) = m.
The associated expected loss is the conditional variance

t + Z

so that for the uncertainty to increase we require

Ely^+zUyt] > E[yt+i'lyt] (5.49)

We shall now prove this

Theorem 5.12

For this model under quadratic loss the uncertainty is 
increasing between lead times 1 and 2, that is

E[L(y.(2)}] > E[L{y.(l)}] .

Proof

ti .E[yt^l^|y ] is given in most text-books, however
directly we find 

;t+1E[y+4.T^ |y^]

( T ^ k )  I y
1 r 2 / ku l/(l-k) 1

t I 2 dy
kut+y, (ku+y)

/ iç.,', • \ l/(l“k)
1 I (ku.+y)^ - (ku, )2 - 2ku.y}( ^  ) 1 dy

(1-k) •'0

= (ku)^/(l-k)
(1-k)

1-k
(2k-l)(ku)(2k-l)/(l-k)
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provided that 2k - 1 > 0, ie k > &,

= (ku) * 
2k-l

= 2km2 , 
2k-l

- (ku)2 - 2ku^(l-k) =

(kin)(1-k)
V 1 -k ■oo

2ku  ̂( l-k)2 
2k-l

y^ dz dy 
(kz+y)(2-k)/(l-k) ^

(5.50)

which on changing the order of integration and using (5.50)

(1-k) 2kzZ(l-k)2
(kz)^/(^"k) 2k-l

= 2(ku)l/(l"k) k(i.k)-
2k-l

dz
Jku zk/(l-k)

= 2(ku) k(l-k) ‘ f (1-k) _____
2k-l I (2k-l)(ku)(2k-l)/(l-k) ^

provided that k >

= 2(l-k)^(ku)^k
(2k-l)2

= 2kJ_m^ 
(2k-l)2

But 2kJ_râ  > 2km^ because k*>2k - 1, so that (5.49) is 
(2k-l): 2k-l

satisfied, and thus E[L{y^(2)}] > E[L(y^(l)}] .

Consequently under quadratic loss this model appears 
to emulate most of the features of the Harrison-Stevens 
steady model.

This example, like the last, illustrates the important 
point that the steady evolution of the system parameter is 
essentially a one-step phenomenon. We have from (5.39) that
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exp(3(8^^2^) =
°° -flvlr “(2-k)/(l-k)e“ y r { (2-k)/(l-k)} (ku^+y)
0 r{l/(l-k)} (k(ku++y)}-l/(l-k)

i//(l-k) e-8ky (ku^ + y)-l ay
TT^)

SO that from (5.38)

P ( . , „ l y b  ■ <-■“.1'^^-“ t - . - e y - n
(1-k) r{i/(i-k)} J„ t

On transforming the integral using z=8k(y + ku^) we have 

p(et+2ly'^) = 9 (k^u^)V(^-^^ E^(k2u^0) (5,51)
(1-k) r(l/(l-k)}

where E^(x) = f°° e__̂  dz is the exponential integral whose

properties are given in Abramowitz and Stegun (1965, p228).
As remarked upon earlier, the conditional densities 

p(8t^lly"^) and p(8^|y^) are unimodal with mode at {u^(l-k)}”  ̂

provided that l>k>0. Now

i p O t + a h b  = (k^up^/(^-^^ g(2k-i)/(i_k) ^

(1-k) r(l/(l-k)} (5.52)
v2.

X  { k E, (k^u, 0) - e"*̂  "t“ } ;
1-k ^

from Abramowitz and Stegun(ibid),

x+1  ̂ < X

so that if 8 > {(l-k)ku^) ^ then

ek^ut8 g (k^u. 8) < If^ I t  k
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and so from (5.52) is decreasing. On the other
hand, if 0 < (2k-l)/{(l-k)k^u^) with k>& then

e^^^-9 E (k^uG) > 1 = 1 ^

1 + 2k-l k 
1-k

and p(0^+2ly^) is increasing. The density pCOt+q^^^) given 
by (5.51) is continuous, and so from the last two results 
has at least one mode 8^ satisfying

^  < -1- '
(l-k)k^u (l-k)ku

In general we will not have 8^ = {(l-k)u^)  ̂ since for 
almost all k

k E^(lTk) ^1-K

SO that the mode of P ( 8i-j-21 ) will not be the same as that
for s. fact which precludes any relationship of
the form

P(Gt+2ly^) T {p(8^+^|yt)}

for a convex function T.
For this Gamma-exponential model it can be seen (from

Example (5.6) or directly) that
k 2-k

b"̂  e (ku) = I p(bl8) 6^^ e u^ ^ d81-k e-ku* (ku)-(l-k)"' = f c (*|8)
r{l/(l-k)) '

is satisfied by

p(b|8) = (_L_) (i) 0 < kb < 8 (5 .53)

which is a special case of Bather’s (1965) example. p(b|8) 
satisfies requirements (i) and (ii) introduced after (5.32), 
and indeed kb has a Beta distribution. Therefore in this

a
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example p(6^|y^) and form invariant conditional
densities and so all of Bather’s theory carries across.

To summarise, this example is interesting because
(1) it can be described by an observation equation on a 
Markov chain whose transition density is given by (5.53);
(2) under quadratic loss it is a steady model in that (5.19), 
(5.20) hold with the forecasts given by the EWMA (5.14), 
moreover the uncertainty associated with such decisions is 
increasing with each lead time as required.

Example 5.13 The Gamma-Gamma Model

Example 5.8 can be simply extended to the case where 
y has a gamma distribution

f(y|9) = 1 e“y“ '^e'®y
r{^)

with a(6) =-0, b(y)=y, c(0)=alog0, d(y ) = (a-l)log y -log f (a ) . 
Under conjugate analysis

e^lyt cc e-®tYte“«t

so that again the system paramétrés have gamma distributions, 
with limiting values

p O t l y b  » fe-"tSt 0(“/(l-k)} 0 ^ 0
j 0 otherwise

For this example

exp{X(u) = T  1 1 +  a. \ u
\ 1-k /

exp{ p(ku)} = r/l+ ka W k u )
\  1 - k  J

with predictive distribution from (5.28)
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/1+ ka \
r(a) r ( l + ^  ) (ku. )“  ̂ 1-k^

1-k

(y+ku^)^"^ Be(a,£^+l) (5.54)

where Be(a,b) = F (a)r(b), so that (5.54) is an Inverse-Beta
r(a+b)

distribution with mean (l-k)u^ and mode (l-k)ku^(a-l) and
2+k(a-2j

where, as in the previous example, u^ = J]k̂  y^-j. The 
predictive distributions soon become complicated, however 
under quadratic loss

y+(&) = E[y.+il] = m, = (l-k)u. .

As in Example 5.8 the steady evolution of the system 
parameter can be expressed by means of a Beta transition 
density from 0^ to 0^^^.

Examples 5.8 and 5.13 illustrate a general point: 
suppose that we choose to work within the framework of 
quadratic loss functions, then for a steady model we 
require at least

E[yt+2ly*] = E[yt+ily^]

or Ely^+gly^^b) = E[yt+ilyt].

We mentioned earlier the desirability of a stochastic
form of stability, which in this context implies that there
is some function f such that
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- E[yt+ily^] =

Our requirement for a steady model then becomes

E [ f(u + +i) ] = f (u ) .
yt+i "

In the case of linear connecting functions, u, , = k u .+b(y, ,)U T J. "b 0 T -L
so that we then require

y M  f(ku^+b(y^^^)] = f(u^).

Under the 'natural parametrization' this becomes

y M  f(kUt+yt+i) ] = (5.55)

The simplest examples of such functions are when f is a 
linear function, f(u^) = au^+b say, then (5.55) holds if

E [ a(ku^+y^_^g) + b ] = au^+b 

which is true if
2aku^ + a u^ + ab = au^ 

or (k+a')u^ + b = u^.

For this to be true for all u^ we require b = 0, a = (l-k) 
which gives

Ely^+ily^] = (l-k)u^. (5.56)

This relation holds for Examples 5.8, 5.13 and the normal 
model of Example 5.7.

Example 5.14 The Beta-Binomial Model

We now give an example where neither (5.19) nor (5.20) 
is satisfied. It is assumed that the observation variable 
has a binomial distribution
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f(y^|et) = J \ y^ = 0,l...n (5.57)

0 otherwise
with n known. Again bfy^) = y^, so that u_̂  =)] k^y^_j 
giving under conjugate analysis in the steady state.

pÔ lŷ ) - 0 < ®t < 1
= 0 otherwise

which is a Beta distribution. The other requisite
quantities are d(y) =log(^)

exp{x(u)} = B{u+1, n(l-k)’■^-u+1) (5.58)

exp{p(ku)} = B{ku+1, nk(l-k) ^-ku+1}. (5.59)

The predictive distribution is from (5.28)

f(yt+ily ) = /n \ exp{X(ku+y^^^)-p(ku^)) = 0,1 ...n
\yt+i /

which on substituting (5.58) and (5.59) becomes a Beta 
binomial distribution, and from (5.30)

f(yt+2ly^) =[n jexp{a(y^^2)-p(ku^)} y^^^ = 0...n
\yt+2/

where
n

exp{a(y,^p)) I f " 1 exp{ X(u^^2) (ku^^^) }
yt+i=° V^t+l 

with %t+2 = k"t+i+yt+2' "t+1 = k"t+yt+i-
The predictive distributions are discrete in this 

example, so that step loss functions are no longer so 
appropriate, and the question arises as to what is a 
suitable loss function. Under quadratic loss, the 
conditional mean is
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= n(l-k)(ku^ + 1) 
kn(l-k) ”■̂ +2

= b(ku^+1)

where the constant b = n(l-k) .
nk+2-2k

It follows from (5.55) and (5.56) that in general 
^[yt+2l^t^ ^ E[y^^^|u^]; in fact directly

%^yt+2l^t] " bE[k(y^^^+ku^)+l ]

= b{-k^-u^+l+kb (ku^+1 )}

= b{(b+l)(k^u^) + kb+1} 

so that ^ E[y^+^|u^) unless

(b+l)k^u^+kb = ku^.

This is true if (n+2-2k)ku^+ n(l-k) = (nk+2-2k)u^

which implies (2-2k)u^(k-l) + n(l-k) =0 
giving u , = n

2TT^) .

It is not easy to apply standard loss functions to 
such predictive distributions. One estimate we might use 
is the mode of which is the integer part of
n+lj(l-k)u^.

5.5 Other Models and Extensions

W e  can of course apply the steady evolution to obtain
tractable results with any single parameter distribution of
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of exponential form and its conjugate. ■ Although all the 
examples give have satisfied b(y)Ey there is no need to 
apply this restriction; for example we could have the 
observations distributed as a Rayleigh distribution in which 
case b(y)=y . The examples have been chosen to illustrate 
some of the points made earlier.

We can think of all these examples as being a 
particular subset of the univariate class of 'conjugacy 
state-space models’ . These can be represented as

" exp{a(0^)b(y^) + c(9^) + d(y^)} (5.60)

p(0.j.|y^) exp{y^a(0^) +6^c(0^)} (5.61)

p(0t^ll ŷ ) ®xp(ata(0^) +3^c(0^)} (5.62)

together with a mapping t : (y ^,6^) (a^,3^) (5.63)

so that Smith's models correspond to t being the mapping

(Y^'^t) ^ (ky^,k5^).

Then applying Bayes' theorem

and so from (5.60), (5,62)

exp(Yt+ia(8t+i) + «t+l°(®t+lU 

where ^^^t+1^ (5.64)

«t+1 = (5.65)

Under such a system we can look at some kind of steady 
evolution (suitably defined), or other types of behaviour.
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In the above, can be a vector, and the extension _ 
to vector parameters is obtained by considering

^(Ztl-t^ = exp{Za^(^^)b^(y^) + c(£^) + d(y^)} (5.66)

in place of (5.60), which with the appropriate conjugate 
priors gives the set of multiparameter state-space models. 
Indeed, although this chapter has concentrated on the 
unvariate case, the theory applies equally well to 
multivariate multiparameter models, provided that the 
obvious extensions are made; for example all the theory 
of Section 5.3 is directly applicable to multivariate 
observations.

Smith (1981) considers two types of multiparameter 
models. The first is the 'Symmetric Multivariate Power 
Steady Model’, SMPSM where Q_ evolves through (5.17) with 
_0 a vector, and the second is the 'Stacked Steady Model' 
with 8^) evolving as a SMPSM with parameter
k^, 0<k^<k^^^<l. The predictive consequences of both of 
these models can be analysed using the techniques of 
Section 5.3 by suitably generalising the equations, for 
instance by using the generalised exponential family 
(5.66) with conjugate priors, thus giving a particular 
class of conjugate state-space models.

Similar remarks apply to the predictive distributions 
of multiparameter models as were made for the single 
parameter models. For example the forecasts can be 
heavily dependent upon the loss function used, and for 
univariate observations the relations (5.19) - (5.20) 
need not hold. These are consequences of the fact that 
the steady evolution is for the parameters rather than 
the observations.
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CHAPTER 6

GENERAL EQUIVALENCE THEOREMS FOR DLMs

6.1 Discussion
It is well known that certain equivalences exist 

between different types of models used to describe Time 
Series, or models used in forecasting. Before proceeding, 
it is worth specifying what we mean by equivalence: 
Definition 6.1

We say that two forecasting systems are predictor 
equivalent if their forecast functions coincide for all 
time, that is y^(k) is the same for all t and lead times k 
given data up to time t.

A slightly stronger definition is that two forecasting 
systems are (second-order) completely predictor equivalent 
if they are predictor equivalent and if in addition the 
uncertainty associated with each forecast as expressed by 
the variance is the same for the two systems, again for 
all t and k.

This is not such a useful definition since within a 
Bayesian framework it only really makes sense with quadratic 
loss functions. The strongest relationship between models 
that describe Time Series is 
Definition 6.2

Two descriptions of a time series {x^} are said to be 
model equivalent if they induce the same joint probability 
distribution over {x^} for all.t.

Although this appears to be the most important type of 
equivalence it is inadequate in a forecasting situation
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because firstly we do not need to postulate a probability 
model to define a legitimate forecasting system, and 
secondly because model equivalence does not imply predictor 
equivalence. For example in a Bayesian context we would 
need to specify equivalent loss functions. Another example 
is provided by the linear model in statistics, where the x^ 
depend upon a parameter 0. Then the predictor of x^^^ giv^n 
data up to time t will depend upon the way we have estimated 
0 .

Several authors - for example Priestley (1980) - have 
commented on the fact that ARMA models can be expressed in 
a state-space form (DLM), showing model equivalence; in 
effect this is discussed in Section 3.6 where (3.13) 
represents an ARMA model if the u^ are regarded as error 
terms. There are many equivalent state-space represent
ations and a 'canonical' description is provided by Theorem 
3 .31, which has similarities with the canonical description 
we develop later. Akaike (1974.) only considers stationary 
ARMA models and uses the W o l d  decomposition theorem to 
obtain a state-space representation, where the system 
vector comprises conditional expectations at various lead 
times of the observations given data up to time t and where 
the error terms depend upon the innovation of y^, that is 
the difference between y^ and the 1-step ahead predictor 
of y^ at time t-1. Because of the particular way the state- 
space is defined, this embodies a type of predictor 
equivalence - provided that conditional expectations are 
used as forecasts, but no mention is made of the Kalman 
filter.

We shall be concerned with predictor equivalence. In
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this context McKenzie (1976) showed that certain traditional 
forecasting schemes based on SWMA’s , such as Holt-Winter *s 
method, are predictor equivalent to particular Box-Jenkins’ 
ARIMA models. Godolphin and Harrison (1975) looked at 
methods having a polynomial forecast function and showed 
that they were all equivalent to IMA models. In particular 
the Markov polynomial models (Harrison, 1967) which are a 
type of DLM fall in this category, but are limited by being 
a strict subset of the IMA models. Godolphin and Stone 
(1980) considered polynomial projecting models based upon 
DLMs and the Kalman filter, deriving conditions for the DLMs 
not to be limited. Stone (1982) extended this work, 
looking at equivalence for more general forecast functions.

In this chapter Section 2 .stresses the role of 
observability, while Section 3 examines the equivalence 
between DLMs in the steady state and ARIMA models, giving 
general results anticipated in the work of Godolphin and 
Stone. Section 4- shows that time-varying DLMs are equivalent 
to time-dependent ARIMA models, and Section 5 relates model 
equivalence to predictor equivalence. Section 6 examines 
the structural properties of DLM.

6.2 Non-Derogatory Models and DLMs
Consider the general univariate time-invariant DLM

yt = l i t  + (6-1)
i t = i i t - i + i t  (6.2)

where y^ is a scalar and where from now on we use
assumptions (1.5), (1.6) unless stated otherwise. Provided
that we use a symmetric loss function the forecast function 
at lead time ü is given by (1.25)

Yt = “t (6-3)
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where is obtained from (1.9) - (l.ll).
Since G is a square matrix and Fe there is a

positive integer k such that FG, ... FG^ are linearly
independent row vectors, whilst FG, ... FG^^^ are
linearly dependent. Let us call this k the horizon of

t{F,G}. It then follows that for any £ FG can be expressed 
as a linear combination of {FG, ... FG^} so that knowledge 
of k, m^ and {FG, .... FG^} completely determines the 
forecast function.

This is closely related to a more familiar concept in 
matrix theory:

Definition 6.3

For any row vector Fe ]R^ and square nxn real matrix 
G, the G-order of F is the monic polynomial of least degree, 
hp(x) which satisfies

Fhp(G) = 0

where hp(x) is a member of the polynomial ring over the 
reals. Therefore h^(x) is the minimal polynomial of the 
linear transformation G^ induced by the G-cyclic subspace 
generated by F (under the fundamental isoniophism between 
matrices and linear transformations). See Birkhoff and 
Maclane (1965, chapter 10, §7). The following properties 
follow

Lemma 6.1 '

(i) If g(x) is the minimal polynomial of G then 
hp(x)lg(x) for all Fe IR^, where our notation means that 
hp(x) divides g(x).

(ii) There is some F such that hp(x) E g(x).
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(iii) hp(x) 5 g(x) E-hy(x) if and only if Y = FF(G) 
where f(x) is coprime with g(x), provided that g(x) is a
polynomial of the same degree as G.

Proof

Parts (i) and (ii) are derived in Birkhoff and Maclane 
(ibid). It is also possible to adapt the argument of 
Theorem 19 of Birkhoff and Maclane (p 303) to derive part
(iii) of the present theorem, however the following direct
proof appears to lend some insight to the result. Suppose
Y = FI(G), where f(x) is coprime with g(x), then

Fr(G)hy(G) = 0 
which implies hj,|r(G)h^(G)

so that hp|hy(G)
by assumption of P(x) comprime with g(x).
But %kp(G) = 0 implies that hy|hp, so h^ =h^,

Conversely since g(x) has order n then the linearly 
independent vectors F,FG ... FG^"^ are a basis for ]R^, 
so that

I = Fr(G)

for some polynomial l(x). Suppose g(x) = l(x)f(x), then

Yf(G) = Fr(G).f(G) = Fg(G) = 0
so hy(x) = g|f which is a contradiction, therefore g, V are 
coprime.

The decomposition Theorem 3.26 states that (6.1),
(6.2) is algebraically equivalent to

yt = (0 4 )  (6-4)
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r
^uu ^uo 
^ 0  ^00

J \ rv
(6.5)

where {F ,G } is observable. That is we have decomposed — o — 00
the system into its unobservable and observable parts. 
Section 4-.5 assures us that (6.1), (6.2) is predictor 
equivalent to the above system; however we can derive a 
stronger result:

Theorem 6.5

System (6.4-), (6.5) and hence (6.1), (6.2) is 
predictor equivalent both in terms of y^ and to the 
observable subsystem

9 = G  ̂0 + w— o — 0 0 — o — t

(6.6)

(6.7)

Proof

Using the Kalman updating equations (4.9) -(4.11) and 
the relation

^ o t  =  C ^ o x u  - i u x u ) / S u t \  "  :
Sot

utS o t
say

where 0 is the oxu zero matrix and the u x u— oxu —uxu
identity, then

u t - 1G , G — uu — uo
0 G— — 0 0 \ — ot-1

y+-(o I J  G  G
— 0  1 —UU — uo

J \
S u t - 1
S o t - 1

— 00 Sot-1 + R A t  (yt'Zo  ̂ ooSot-l)
But
RA. = R /P P \— uu — uo n \ i(o lo)

p p p
UO — 0 0 1 \ O I

— uu — uo + V -1
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= F; {F p „ F„ + V)— 0 0 — 0 — O — 0 0 — O
-1

where
£oo i® ^ /£uu £uo 

^0 0

/:m, G

L\

UU — uo 
° °oo

/ c c— UU uo 
TC C

(6.8)

/o " 0— uu
T _ T

\ T 

G

+ / W W — uu — uo
w ¥— ou — 00

\ — uo — 00 I \— uo ^00 
TR-

so P = G C G +. ¥ — 00 — 00 — 00 — 0 0 ’— 0 0 (6.9)

thus = ÇooSot-1- + + ̂ >'^(yt ̂ o^ooSot-l)

Now Çuu ¥.o\= (i -

C ^ C — uo —00

(6.10)

thus C.. = R G , f  = - P ^ o F j ( F ^ P o o : J +  V } - ¥ ^ P— 00 t o — 00(6.11)
But (6.8) -(6.11) are exactly the recursions obtained from 
the subsystem (6,6), (6.7). Moreover, with a slight abuse 
of notation

£o,k = ^ot+kiy^i = : ®

= R G E

-u t+k 
— o t+k

®u t+k-1 
^0 t+k-1

— 00 — o, t+k-1

and ^o.k = Var(^^,t+kly )
= R Var /iw,t+k

— 0,t+k

R

R G Var '®u,t+k-1 \ oi * s

^®o,t+k-1 ' ) .

R

(6.12)
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= Goo ^00 k-1 ^00^ " Hoo • (6.13)

Moreover, we can similarly show

E[yt+kly^] = I o H o , k  (6-14)

Var(y^,Jyb = V (6.15)

SO that since (6,12) -(6.15) are the predictive recursions
for the subsystem we have completed the proof.

In fact we have used the decomposition theorem which 
applies to both vector and time varying case. Consequently 
we have the completely general

Corollary 6.6

Dynamic linear models are predictor equivalent to their 
observable subsystems.

This motivates us to make the following assumption 
concerning G, namely that the only set of scalars (C^, ... Ĉ _̂ ) 
satisfying

Cola + .1^ C. (6-l6)
1 —X

Tis the set (C , ... C _ )= _0 , where _0 is an nxn zero matrixo *L ""IT
and the zero n-vector. This is equivalent to saying that 
the minimal polynomial has degree n and so is equal to the 
characteristic polynomial, (up to units in the ring of 
polynomials over the real field), a statement which follows 
from (6.6) and the Cayley-Hamilton theorem. This last fact 
is the definition of a non-derogatory matrix. The 
importance of this is seen from Lemma 6.4 (ii). Theorem 6.5 
and the following

Theorem 6.7
n -1If {F,G} is observable, that is (F,FG ... FG " } are
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linearly independent with G an n x n  matrix, then G is non- 
derogatory.

The proof follows from Lemma 6.4 (i) and the definition of 
a minimal polynomial.

We draw the following implications

Lemma 6.8
%

(i) G is similar to the companion matrix G^ given by

*
=

' — lxn-1 —n-1 ^
T (6.17)

-^n-1 /

Twhere è  ̂ , ... (j)̂ ) and (i)̂ , ...({) are then “X n -X X X n
coefficients of the characteristic polynomial

det(XI-G) = + I x"'^<t>.- (6.18)
1=1 ^

(ii) Either the rank of G is n, implying that G is 
non-singular, or the rank of G is n-1, and G is singular, 
according to whether = 0 or not.

Define s to be the largest integer such that / 0,
so that 8 = n in the non-singular case, and denote

$(z) = z^ + ^ ' (6.19)X s

Then in both cases

G^^^0(G) = 2̂ 1 xn (6.20)

where r = 0 is the non-singular case, and r=n-s-l in the 
singular; in the latter case note that

G^<î>(G) ^ —nxn* (6.21)

When it is positive we refer to r as the system shift.

-134-



This links up to our earlier definitions as follows 

Lemma 6.9

If G is singular then (F,G} has horizon < n-1. If G 
is non-singular then G has horizon ^n . In particular if

{F,G} is observable then the inequalities are replaced by- 
equalities.

Proof

We shall prove a slightly stronger result: Suppose
that G has minimal polynomial

+ i A^-i ei.
1=1 -

then G is singular if and only if 2 0, in which case 
{^d-1^ ... G} are linearly independent (A.i) with {G^ ... G}
dependent (£.d) so that G has horizon <d-l. If G is non
singular a^T^O, so that {G^”^ ...1} are 1 , 1  with {G^..._!} 5, .d, 
which is true if and only if {G^ . . , G} is &.i and 
{^d+1..^ G}il.d. Consequently we have proved the first part 
of the assertion, with d = n in our case. The second follows 
on relacing G^ by F G^ in the above argument.

6.3 Equivalence Results for the General Model-Time 
Invariant, Steady State

In this section we show that the forecast function for 
the DLM (6.1), (6.2) is identical to that for an ARIMA 
process, subject to certain conditions to be determined.
In what follows we assume that A ^ E A  for all t, for which 
sufficient conditions are given in Chapter 4, and also that 
G is non-derogatory, so that it has minimal polynomial
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defined above. We are then able to express the forecast 
function (y^(k) : k^l} of the DLM in an interesting form. 
Godolphin and Harrison (1975), Godolphin and Stone (1980) 
considered polynomial-projecting predictors and looked at 
conditions under which DLMs have such predictors. Stone 
(1982) extended the results to forecast functions which ; 
are a polynomial after a certain lead time and also 
briefly considered the equivalence between DLMs and certain 
ARIMA(p,d,q) models. This section considers the completely 
general case and encompasses the results of the previous 
papers. The results contained in Theorems (6.12) to (6.14) 
have been found by Godolphin and Stone (private 
communication), however independent proofs are given here 
since they are needed for the time-varying results of 
Section 6 .4 .

We prefer to work with (6.1), (6.2) rather than

yt — t (6 .22)
It ^ - -t-1 -t (6 .23)

not o n l y  because most DLMs are expressed in the form (6 .I),
(6.2) in a natural way which is open to interpretability, 
but also because by re-expressing models in the form (6.22), 
(6 .23) does not preserve observability. For example in 
the univariate case by defining ^ A  we can rewrite
(6 .1), (6 .2) in the form \^t/

Yt = (Z l).&t (6 .24)
ÉL-t =  (6 .25)

t
-t /- "\^t-l -t

0 0 j V  V.
then we have
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Lemma 6.10
If (F,G) is observable then the system (6.24), (6.25) is 

observable if and only if G is non-singular.
Proof

The observability matrix of the extended system has
determinant

F 1 = F
' F G 0 ;

1 •
F G^ 0

G

which is non-zero if and only if |G| is non-singular.
We shall see later that singular G matrices play

an important role in applications so that to represent the 
model in the form (6.22), (6.23) would mean that the new 
system would be unobservable, consequently the item of 
interest to us, namely the observable subsystem, has to be 
derived via the decomposition theorem.

Example 6.11
We shall see later that the Godolphin and Stone model

yt = ®it + ®2t +

®it " ®it-i "it
®2t " ®lt-l "2t

(ibid) is an example of a steady model. The augmented state
representation (6.24), (6.25)is unobservable since G is
singular. An observable version in the form (6.22-6.23) is

yt = ®it + ®*2t
®it " ®it-i "it
®*2t " ®lt-l ''' "*2t 

where 0''̂ 2t defined to be 82t '**''̂t* M*2t"^t^'^2t"
We now develop the main theorems of equivalence where

we assume that F, G is observable.
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Theorem 6,12

(i) For all k>r+s, y.(k) + f  ct),y (k-j) = 0r t (6.26)
(ii) For l ^ k ^ r + s ,  the forecast vector f . , given by

f. ={y.(l) ... y.(r+s)} has the updating equation

it = (6.27)

k Twhere = FG A , a = (o^ ... a^+g) , = Yt'yt-l^^)

- r+s
r0 , . I . I > -0+s— r+s-lxx — r+s-x

= r

0. \j-xxr

0 - 1 1  I 1— 5-1x1 — S-1A

V -As

with i  = (6g, • • • 6]_) •

J
(6.28)

Proof

Premultiplying equation (6.20) by FG^^ r s l) 
postmultiplying by m^ yields (6.26). Premultiplying the 
Kalman updating formula (4.9) by FG^, l ^ k ^ r + s  gives

y^(k) = y^_^(k-l) + a^et (k=l, ... r+s-l) (6.29) 

and y^(r+s) = = 8t

= -  *s+l-j yt-l(r+j) + %r+s (6.30)

from (6.20). Equations (6.29), (6.30) are equivalent to 
the matrix equation (6.27) for the vector f^.

Remark

Equation (6.27) is of a similar form to the Kalman
updating equation (4.9), however in general the equations
are not the same since the matrices G and G can differ.

■>(-In the singular case G has order one less than G^, namely
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n-1, whatever the value of r. In the non-singular case
G ' , = Gn , = G , so G/, , is similar to G. Note that— r+s — u T8 — n — Ü +s —
G is singular in the case of positive system shift
(r > 0) with rank (G , ) = r+s-l, otherwise G„ is non- r+s “ 0+s
singular irrespective of the rank of G,

%The following three properties of G follow easily 

Lemma 6.13
\ _ r . r+s-i(l) The minimal polynomial of G is z $(z) = % & z

i=o ̂
and so (g'¥s)'’«>(gVs) = ^ r + a x r + s  (6.31)

(2) k G ' ^ =  (Oixi. 1. O r + s - i - l )  " h e r e  < = ( 1  ,
(6.32)

implying k G i ^  r + s-l (6.33)

k-1I =0(3) f. = G^^ B^f, + I (G B)^ ae, , B the backward
1 =0 shift operator

Proof

(l) follows from the fact that G is a companion 
matrix whilst (3) is immediate from (6.27). (2) is proven
by induction using

(4lxj' 1' Olxr+s-j-l) I,.i\ = !•[ G*] .

-■2lxr ■ A j

lxj+1’ ^lxr+s-j-2 )*

We are now in a position to derive the main equivalence 
theorems for DLMs in the steady state. For the purposes of
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the next theorem only we assume that the zeros of 0(z) lie 
strictly inside the unit circle.

Theorem 6.14-

For each k = l , 2  ... the k step ahead predictor for 
the DLM coincides with k step ahead predictor for the 
autoregressive moving average (ARMA) model of order (s,r+s) 
given by

y t ^ h y t - l  + • • •  + * g y t - s  "  H  + + ® r + s H - r - s

where (6.35)
.] -1 s

L- = Jo + 4j(l<j<s),Bg + j = + (l<j<r)
(6 .36)

and the sequence t=0±l,...} consists of purely random
variable s.

Proof

Let P(k) denote the statement of the theorem and 
consider the proof of P(l). Now

yt(l) + 6y^..(l) = K (f_t + (6-37)

Defining 6 ^ = 1  and using (6.34), gives the right hand side 
of (6.37) as

E i !  6 j(4+s)"''A .r.s + jo 1=1
s . r+s-1-1

= y y a.,-, e^ . . using (6.31) and (6.33)
j:o i=o

r + s-l
= Jo "t-j (̂ 3̂8)

j_l S
where bj = J  V  j -1 (̂  ̂  ̂’ ^3 +j = I <!> . (l< j<r ).

 ̂ (6.39)
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On using the fact that y _̂̂ . (l) = ^t+1-j "®t+l-j in

equations (6.37) and (6.38) gives
s-1 r+s-l

+ J o  " J g  (6.10)

where g  ̂ = ĥ y (l<j<s), + j (l<j<r) which

proves P(l) since (6 .40) is the defining relation for the, 
one step ahead predictor for the ARMA model (6.35). That 
is if observations are generated by (6.35), then (6.40) is 
the conditional expectation of y^^^ given y^ with

®t -j " = Xt+i-j-yt-jd)' (6-41)

Let k be an integer in the range 2 ^ k ^ s .  Now

('t’k-l' --- • °ixr+s-k) " J g  6j £(Oj. + g)

using (6,32). Consequently

jio yt(k-j)+ j g  6k+j yt-j-l(^) (6-42)

= Y  j g

s-k iE r+s-j-k r+s-j-k-1* .
 ̂ j^Q ^k+j [ r+s) ^t-r-s+k-1 ^®t-j-1-i ] ]

using (6.34)
s r+s-j k-1 r+s-k ^ k-l-j+i

" ~  ̂ At-r-s+k-l + J o b i L  -®6-l

s r+8-j-l * ..+
j =ic
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{(-r+s) '®(A r+s) At+k-r-s-1 . J  . J  “k+i-j ®t-iJ =U i=U **

s r+s-j-1
+ j^k 1%0 *1+1 *t+k-j-l }

using (6.33), which by (6.31) and the definitions of (6.39)
r+s-k

= J g  tj+k *t-j- (6-43)

On substituting for y^_^._^(l) from (6.41) in (6.42) - (6.43) 
gives

X " j o  "k + j ̂ t-j = j g  ""Sk + j ,^-J (2^k< J
*) •) (6.44)

But this is exactly the predictor updating equation for 
the ARMA model (6.35) obtained by replacing t by t+k and 
taking expectations conditional upon the data up to time 
t, so we have now proved P(k) for l^k^s. It only remains 
to prove the result for s<k^r+s, since for k>r+s the 
result is a consequence of (6.26). The proof for s<k^r+s
is similar to the above and is obtained by considering

j o  yt(k-j) = 5 j g  *FY+s)'''"''At

s r+s-k r+s-k
= J o  i L  “k + i - j S - l = j g  ®k + l®t-i-

Thus P(k) is proved for all loi, and so predictor 
equivalence is established.

Remark

We have not used the assumption that the zeros of 
#(z) lie inside the unit circle, and so we have the 
following important corollary.

-142-



Corollary 6.15

For each k = 1,2 the k step ahead predictor for
the DLM (6.1), (6.2) coincides with the k-step ahead 
predictor of the linear difference equation

yt + h  yt-l + <^syt-s = ••• + ®r+s = t-r-s
(6.45)

where the 3 are as in (6.36), the sequence are
purely random variables, and the forecasts of (6.45) are 
obtained by taking conditional expectations using

(a) E[ ^t+j lyt] = y^(j) j>0

(b) E[ lyt] " ^t-j j>0

( c) E[ ^t+j lyt] = 0 j>0

(d) E[ lyt] = yt-j ■■yt-j-i(i) jZO

This is a ve ry important result since it in
stationary models. In particular the zero’s of $(z) may 
have zeros on the unit circle, in which case (6.45) may 
represent an ARIMA process, and quite generally (6.45) 
includes the general multiplicative seasonal model. For 
example if several of the 4^8 are zero then (6.45) may 
describe a non-multiplicative seasonal model.

We have made the assumption that F, G is observable, 
in which case the matrix G is non-derogatory and (6.45) 
has its autoregressive part of lowest order, however the 
proof of Corollary 6.15 rests on Theorem (6.12), which is 
true for general F,G provided that we define r,s and to 
be the smallest values of r,s such that
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^ 0 and
F $(G) = 0 (6 .46)

if G is singular with 0(z) given by (6.19); and r =0, 
s the smallest integer such that

F 0 (G) = 0  (6.47)

in the non-singular case. Then we have

Corollary 6 .I6

With r,s,^^ defined v i a  (6.46), (6.47), Corollary 
6.15 is true for any n-vector F and nxn matrix G.

Remark

The order of the right hand side of (6.45) can be 
greater than, equal to or less than that of the left hand 
side. For if r>0

Br+s = I $1 Z f A  = FG"'$(G)A. 
i=0 ^

T t—1 TNow A a ]PF = cov(0_. |y )F which is in general non-zero
so that from (6.21) 3^^^^0 in general, so that th e
right hand side is of order r+s. If r =0 then 

6. = FG(G')'4 + <i>3_Ĝ '̂  ..• + + ij l<J<s

which could be zero if the c{)’s are suitably defined, and 
the right hand side can be any order form.zero to s. Note 
that if AE  0 then (6.45) becomes

$(B)y^ = $(B)c^

where B is the backward shift operator.
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The parameters 3  ̂ of equation (6.45) or equivalently of 
an ARIMA type model are related to stability requirement

by

Theorem 6.17

The stability conditions for the DLM (6.1), (6.2) 
coincide with the invertibility conditions for the process
(6.45).

Proof

Taking z-transforms of (6.37), (6.38), and denoting 
z-tra]

E(z) then
the z-transorms of y^(l),y^, and e^ by E\(z), y(z) and

1 + + ... + = E(z) bi + b2 ... + b^+g
z'*' S Z z r+s-l L z

where we have ignored the transient terms, which we can do 
by assuming an infinite past history or equivalently zero 
starting conditions».-

Now

so

t

E(z)

thus El(z)
• T T D

where 3(z) =

I b. + 3(z)
■r+s

I  ,
J‘=l ^ 

r + s {$(z ) + I b.z"')} = I  3.Z
3=0 Js 3=1 ^

We can also show that E\(z)/Y(z) has denominator 3(z), 
where F.(z) is the z-transform of y,(i), i=2 ... r+s.1 U
The above recursions are stable if the zeros of 3(z) are 
less than one in modulus (Theorem 3.13) which is the 
invertibility condition for (6.45) and the theorem is proved.
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If the DLM is uniformly completely observable and 
uniformly completely controllable then from Theorem 4.5 
the linear discrete filter is uniformly asymptotically 
stable, that is the homogeneous part of the filter

it = it-i + At yf
If we consider the time invariant case, then we only need 
to consider the steady state case, which exists by Corollary 
4 . 6 . In such a case the filter is also b.i.b.o. stable, 

that is treating the y^ as inputs, from Example 3.15 the 
zeros of

H(z) = { zl - (I - AF)G ] '^zA

are less than one in modulus, where 0 (z) = H( z )Y(z ).
But F^(z) = FG^ 0 (z) = FG^H( z )Y(z ), so that if the zeros 
of H( z ) have modulus less than one, so do those of 
F\(z)/Y(z). In other words we have proved the following 
theorem

Theorem 6.18

In the time-invariant case, ifthe DLM is observable 
and controllable then the Kalman filter is stable, and 
the equivalent ARIMA model is invertible.

6.4 Equivalence Theorems for Time Varying DLMs

Section 6.3 concerned theorems for constant (time- 
inyariant) DLMs in the steady state, whereas in fact we 
can extend Theorems 6.14 and 6.15 to include much more 
general models. We shall consider first the case where 
F,G are constant but the gain matrix A^ is not constant.

— 146 -



This can happen in two cases
(1) When V = var W = var w^ are constant but the matrix

has not converged to its limiting value. In fact we
could also work in the terms of Corollary 6.16 in which 
case such a limit need not exist.
(2) V ^ = v a r  v,̂ , W^ = var W,̂  are not constant in time.

By defining t ~ ~t' then by proceeding exactly
as for the proof of Theorem 6.12 we have

Theorem 6.19
s

(i) for all k>r+s, y.(k) + I ct),y.(k-j) = 0
3=1 ^

(ii) for l<kj<r+s the forecast vector f, has the 
updating equation

At = + ^t®t

T
where “r+s,t) *

This enables us to deduce 

Lemma 6.20

-t " r+s^ ^t-k r+s^'^ -t-j ®t-j (6-48)

which with the aid of Lemma (6.13) parts (i) and (ii) 
enables us to mirror the proof of Theorem 6.14 and its 
corollaries yielding

Theorem 6.21

For each k = l,2 ... the k step ahead predictor for the
DLM of this section coincides with the k-step ahead
predictor for the linear difference equation

yt + V t - l  + -  + “>syt-s = ̂ t + ̂ It-lH-l + -  + ®r+s.t-r-sH-r-s
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where the 3  ̂ are given by

(recall that 6 , . = 0 ,  j>0).ST J

Proof

The proof is exactly as in Theorem 6.14, except that 
(6 .48) is used instead of (6.34)

Remark

In the difference equation (6.35), or (6.45) the
are usually taken to be independently and indentically
distributed random variables; however it should be noted
that the predictors derived for such models are also the
optimal predictors (in the sense of smallest mean square
error, that is the predictor in the conditional expectation)
if the are merely independent. In fact they are also
optimal if the 3's are allowed to evolve in time in such
a way that 3j depends on t through t-j, as happens in this
theorem. So that the prescription under Corollary 6.15
still applies. For the DLM’s the are indeed
independent, as is well known, and under normality

T T Tassumptions they have variance F G _C_j_ q 5. F F jf̂ F + v̂ .̂ 
which is constant if the error variances T and W are 
constant and if _Ĉ  has converged to a limit.

The above theorems quantifies the change of information 
that occurs through time as our prior knowledge is 
superceded. That is, if we are in the 'sensible' situation 
of havin? an observable and controllable model, then A,->Ao — %; —

and so so that our forecasts come from models with
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constant auto-regressive parts (not necessarily stationary)
whose moving average parts converge in the sense of the
parameters to a single model.

Finally we consider the completely general case where
F(t), G(t) are time varying matrices, F (t)c ]R^, G(t)an
nxn matrix. Therefore there is some number k, real numbers
4u(t) not all zero such that

k k-i-1
F(t+k)G(t+k) ... G(t+1) + I *.(t+k-i)F(t+k-i) n G(t+k-i-j)=0

i=l ^ j=0

which on using the definition of the transition matrix 
^(i,j) given in Chapter 3 can be rewritten as

k
F( t+k) $ ( t+k, t ) + I (j). (t+k-i)F(t+k-i)£(t+k-i, t) = 0.

i=l ^ (6.49)

In order that our models have a constant horizon for all
t we require that (6.49) is only true for k = n .  In other
words we require that the matrix given by

t+n-1 m
M(t+n-l,t) = I i(l,t)F(i)-^F(i)i(l,t) > 0 

i = t

or in other words is positive definite (see Section 3.5).
But this condition is satisfied if the system is uniformly 
completely observable .

With such a condition satisfied, two possibilities 
arise according to whether 4^jt) = 0 or not. That is we 
can mimic the exposition of Section 6.2 and define r,s in 
the case of 6^(b) E 0 by r+s = n-1 where s is the largest
integer such that bg 0 and in (6.49)

F(t + r+s+1) £( t + r+s+1,t ) +
8

+ I (J). (t+r+s+l-i)F(t+r+s+l-i)^(t+r+s+l-i, t) =0 
4=1 ^ (6.50)
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or if ç^(t) ^ 0, define r to be zero, s = n so that 
postmultiplying (6.49) (with k = n) by G(t) gives

F(t+n)$(t+n,t“l ) t 
n

+ I b-(t+n-i)F(t+n-i)£(t+n-i,t-l) = 0. (6.51) 
i=l ^

In order that our conditions are consistent we require 

Condition

Either 6^(t) is non-zero for all t, so s=n, r =  0, or 
else s, (the largest integer such that bg(t+n-s) is non 
zero in (6.49) with k = n )  is- a constant throughout time, 
r = n-s-1.

Obviously we then have a constant horizon r+s in both 
cases as in the time invariant case. We can then prove

Theorem 6.22
s

(i) For all k>r+s, y,(k) + I b .(t+k-j)y.(k-j) = 0
' (6.52)

(ii) For l^k^r+s the forecast vector f^ has the
updating equation

" -r+s  ̂ t-1 *  -t ®t (6.53)

where r+s / — r + s-lxl ^r + s-1

% x r  -^(t+r+s)
if r>0

— o + s / — s-lxl I -1s - ±

(t+r+s)

with a. = (a-, + ... ,)^, a. , = F(t + i)^(t+i, t)A and
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^^(t+r+s)^ - (bg(r+t) ,bg_2 ('b+r+l), . . . t+r+s-1 ) ) .

Proof

y^(k) = F(t+k)^(t+k,t)m^.NoxNT (6.50) and (6.51) can 
both be expressed in the form (6.50). Putting j =k-(r+s+l) 
for k>r+s+l gives for t=t+j

s
F(t+k)b(t+k,t+j) + I b.(t+k-i)F(t+k-i)b(t+k-i,t+j) = 0 .

i=l ^

Postmultiplying by b^t+j,t)m^ and using the fact that

b ( t+k, t+j )_b (t+J ,-t) = _b(t+k,t)

gives us the statement of (6.52). Premultiplying the 
Kalman updating formula (4.9) by F( t+k)_b ( t+k, t) l^k^r+s 
gives

y^fk) = t®t (6.54)

and y, (r+s) = F( t+r+s ) b( t + r + s, t-1) m, -, + , e ,Ü — — — u-u rTSjt/ Xi

which from (6.50) 
s

= - bj(t+r+s-j)y^_^(r+s+l-j) + (6.55)

Equations (6.54), (6.55) are equivalent to the matrix 
equation (6.53).

We can now prove

Theorem 6.23

The time dependent DEM model is predictor equivalent 
to the time dependent ARMA type model
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G i ( t - l )  . . .  + Et_r_gBy+g(t - r -8)  (6.56)

j ”1
where 3. = I b.(t-i)a . + b (t-j) l<j<s

J 2 = 0 J  f tl J

^8 + j ■ ‘*’l̂ '’̂ '^^“ s+j-l,t-s-j l<j<r

and the sequence consists of zero mean, uncorrelated
random variables.

Proof

The proof cannot be proved by analogy with Theorem 
6.14 since there is no equivalent to (6.31), so that the 
proof loses much of its elegance. Instead we have to 
resort to expressing y^(j) in terms of y^ ^^l) from (6.54) 
(6.55)  to prove P(l), where P(l) is the equivalence of the 
forecast y^(l) for all t . That is, from (6.54)

= yt+l(k) - “k,t+l®t+l l<k< -r+s

so

y^(k+l) Yt+k^^) " °^k,t+l®t+l “

°‘k-l,t + 2®t+2 •** " °^l,t+k®t+k‘

Substituting into (6.55)  gives

y+J L ̂ T (l) “ n 4-J.l®4-XT “t+r+s-1"/ "r+s-l,t+l"ttl "r+s-2,t+2"t+2 ***

^1, t+r + s-l®t+r+s-l
8

°‘r+s,t®t "

^l,t+r+8-j-l^t+r+s-j-l]
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Putting t+r+s = t and defining bo(t) El gives

8 r+s-j / , . \
= Ao = .1, /

j -1
where b.(t-j) = I b.(t-i)a. . . .

J 2=0 ^

and since = y^_j “ ®t-j ^hen

s r+s
+ I $.(t-j)y+_. = i e.(t-j)e, (6.57) ̂ 1=1 J J i=l J ^ J

where 3.(t-j) = b (t-j) + b.(t-j), which since b„.. = 0 J J J STJ
j^O is the same as in (6.56). But (6,57) is the one step-
ahead predictor equation for (6.56) and so P(l) is proved.
By a similar argument we can show that

k-1 s
y^(k) + I bj(t+k-j)y^(k-j) + bj(t+k-j)y^+^_j

j j “k
r+s

= I $.(t+k-j)e.+%_. 2<k<r+s
j=k J J

which is the defining relation for the k-step ahead 
predictor for (6.56). This together with Theorem 6.22 
proves the result.

Remarks

(1) If b^(t) is independent of t for all i then the 
theorem reduces to Theorem 6.21.

(2) The theorem assumes knowledge of F(t+k),G(t+k) 
for all t and k, since knowledge of bu(t+k-i) is needed.
If this is known only up to some fixed k for each t, then
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the theorem holds for all lead times less than or equal to k,

(3) There is an abuse of notation in the above proof 
since 3̂. (t-j) depends on b^ft-l) ... b j ^(t-j+l) so strictly 
speaking we should have 3j(t-l). We prefer not to do this 
to preserve the identity of the 3j(t-j)s with those of 
Theorem 6.21 in the case where the bĵ s are independent of t .

6.5 Covariance Properties

We now return to the time invariant case, where we 
assume that {F ,G} is observable so that G is non-derogatory 
and the discussion of Section 6.2 applies. Using the model
(6.1), (6.2) we have using (6.2) repeatedly that

+ 4^-"wt-k+l + 4^''%t-k+2 + ï f  (6-58)

Using (6.58) to express 1^ terms of and then
using (6.1) gives

yt + h y t - i  --- + • • • +

,n-l , ^n-2

n

,n-2

Using the fact that, the minimal,-polynomial of _G is given by 
6.18 with j = 0 for ĵ ŝ then we have on rearranging

Lemma 6.24

The DLiM (6.1), (6.2) gives rise to the following 
relation
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with y. = F ( % b.G^'j ) , b. = 0 for j>s (6.59).j = 0 J *J

In the terms of matrices (6.59)

L. 0 '

Ï1 4>]_ 1 0

“’2 h  1

or X = £ M

b F 

F G

J  K
F Gn-1

where M is the observability matrix. Consequently provided 
that the observability matrix has rank n, since £ and M are 
non-singular, knowledge of any two of y, £, M uniquely 
determines the third. In particular y has rank n.

If we define the quantity z by the difference 
equation

d  = J o  h ^ t - i

then we have from Lemma 6.24,

Lemma 6.25

Provided that E[v , ] = 0, E[;c, ] = 0, E[v.v.^] = 6. .V,^  ̂ 1 JT 1F[w .w . J = 6. E[v.w. ] = 0 then z , is a zero mean -i-J  ̂ i-J t
stationary stochastic process,with autocovariance function 
given by
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'  Ï 0 -  ï k ' ^  +  % l ^ ^ k + l ^  • +  I n - k - l ^ ^ n - l

+ V U ^  + • + ^s-k^s)

n-k—1 s-k
Jo :i+k + J o  (*i*i+k)

for 0<k<n-l = 1
>

“n =

c ., = 0, k>0 .n+k

(6.60)

So if G is singular c = 0 ,  because b =0.— 6 _n ' ^n
Since we are dealing with a stationary process we 

know from the Cramer-Wold factorisation that has the 
same second order properties as

s _ _
"t = .^0 b^t-i = + h^t-l ••• + S^+s^t-r+s

where the form an independent white noise sequence
for some set {3^}. We are now in a position to relate our 
theorems of §6.3 to the covariance properties of the model

Theorem 6.26

Provided that P is a solution to P = GPG^+W-GPF^FPG^
FPF^+v

that is a steady state solution of the matrix Ricatti 
equation in the Kalman updating formulae, then the 
autocovariance function generated by (6.45), with 3*s 
defined by (6.36) where
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a. = FG^A = FG^PF^ 
FPF^+ V

is identical to that given by (6 .60) in the sense of z ^ ,  

using the additional relation that

var(e^) = a = FPF +V. (6 .61)

Proof

(6 .61) is a consequence of the remark of Section 6 .4 . 
The k^^ covariance of z ^  from (6.45) is

=k = 0^X6% + BiBk+l ••• + Bs+r.kBy+s). (6.62)

From (6.60)
n-k-1 ,ji s-k

%  = J o  l Æ i + k  + J i g  h h + k  •

Now if the relation for P holds then

T T TW = P - GPG + GPF FPG
FPF^t V

thus Ok = " j j  Ik(P - gPG^ + GAFpJ)Y.,k^ + V J j  q q , k '  
1 —U 1 — u

(6.63)

Now from (6.59) y . G = y. - Fb.,n which is true for— 1 —  - i - i + x  —  i + x
n

l<i<n-l provided that we define y = F( T b-G^ *̂ ) = 0. = = 'n - j:Q j-

m-k-1 m m
Thus I I i ( P - g P G  )Yi+k =

1 — u

• L ” ^Ii+1 “ -^i+l^-^Ii+k+1 ■ ̂ ifk+1^
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n—k—1
J o  (ii£ii+k - li+iSii+k+i + ii+i:*i+k+i: + z*i+i:ii+k+i

ï o ^ i J  - ° + + h+l??ïi2 = 0  -i- ' ' -L-X 1 J.-- - L r x - - - i + k + l

■ ^l+l^i+k+lSI^) • (6.6i)

Now Yq = I ,  PF = Aa^, FPF^ = - V and

Id = F 2 = g - <t> +F(J) A = B -(J).(l-FA)«J £=0 ^ . J J J J J

Tso YjPF = o^%.jA = gjO^ _ (j)̂ V since a^(l - FA) = v 

thus (6 .64) simplifies to

G^^k - . L   ̂ ^i+k+1 ( ^i+1^^ " ̂ i+1^ )1—u

+ ^i+1 ( ^i+k+1^^ ■ ^i+k+1^ ) “ ^i+l'^i+k+l^^^"^^ ^

°^Gk"*k^ * . L  [^i+ktl^i+l^^ ^i+l^i+k+1^^1—u

(6 .65)
The third term in (6,63) is ĴYj_ (GAo^A^O^) ^i+k^ 
which from (6,59) and (6 .36) is

• L  °^(^i+i - ^i+i^(^i+k+l " ^i+k+1^ (6.66)1 —u

so that using (6.66) and (6 .65) in (6.63) we have
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°k = 6i+l6i+k+l - '"JJ *i+lh+k+W

' " I t  b h + k

which since bj = 0 ,  j>s gives

= k = J o  Sih+k- (6.67)

There are two cases to consider

(i) if n = s, so r =0 then (6.67) is exactly (6.62)

(ii) n=r+s+l. Then in (6.66) we have defined 3^ 
from (6 .36) as

n-1 . s 1+r-i
3 = b + I b.FG = y b.FG An n .^0 1 -  - .£q 1 --

= G^'*'^b(G)A = 0 

thus in both cases
r+s-k

"k = Jo b®i+k

which is (6 .62) and the result is proved.
So Theorem 6.26 assures us that in the steady state, 

the predictors of a time-invariant DLM are precisely those 
of an ARMA type model whose autoregressive parameters are 
obtained from the minimal polynomial of G and whose moving 
average parameters can be obtained from an examination of 
the autocovariance properties of the derived process z ^ .

Of course before we reach this state the discussion of 
Section 6.4 applies.
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6.6 Structural Properties ( of the general model)

We now illustrate some of the consequences of the 
above theorems for the structural properties of DLM's 
which can be used to describe various types of univariate 
time series. We assume that s is a fixed positive integer 
and begin by examining the dimension of G. The case r>0 
is the so-called forward shifted model, and it follows from 
the definition of r that G is singular in this case, that 
is n = r+s+1 whereas rank (G) = r+s. On the other hand if 
r = 0 then there are two possibilities, n = s or n = s+1.
The first corresponding to a non-singular system matrix G 
and the second to a singular system matrix. Consider the 
case n=s= rank (G), then in the non-singular case the 
characteristic polynomial is given by (6.18). In such 
circumstances severe restrictions are placed upon values 
of 3^ ••• 3g. For example

s -1
+ .1^ + ^^(l-FA)

= $ (1-FA) s —

since b(G) = 0 . However 1 - FA = V , so 0_<1 - FA^l
FPF + V

thus 3g has the same sign as bg and

0 <|3gl<Usl . (6.68)
Strict inequalities hold provided that V is non-zero and 
the model is controllable. However the region (6.68) is 
to be compared with the invertibility/stability region for

-160-



the 3 's, which has |3g|<l. In typical ARMA cases |bg|<l, 
which supports the conjecture of Godolphin (1976) that 
DLM*s with non-singular system matrices can be more 
severely restricted even than the polynomial DLM's 
discussed by Harrison and Stevens (1976).

It follows that if s>0 and r^O are given then the 
choice of n = r + s+1 is to be preferred on the grounds that 
if produces an observable model of smallest rank which 
does not impose the obvious restrictions that the case 
n = r+s does. Such a choice has a slightly counter
intuitive appearance to it, since the dimension for the 
system vector may appear to comprise one more component 
than might be expected. For example the case r = 0 is 
considered by Harrison and Stevens (1976), Smith (1981).

If we make the selection

^ ■ ^r+s+l - ( 1, _01 X r+s

together with the matrix

^  ■ ^^ + 3+1 /̂ o .— r + sxu

lxr+1 ^s y

then the model is observable since using (6.32) we have 
that [F^,(FG)^, ... (FG^^^)^] ^ = l^^g+p which has rank 
r+s+1. Consequently it follows from Lemma 6.4 (iii) that 
the model

^ . 7'f- .I = F 0 (G )
G = G*

(6.69)
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is observable provided that the polynomials 0 (z) and
zb(z) are coprime. In general we know that for {F,G} to
be observable G must be non-derogatory, consequently G is 

%similar to G , and so a general specification is provided
by

F = F r + s +1 8 (G )R

G = R g J i , 3 R ' ^
(6.70)

for any non-singular matrix R of order (r+l+s)x(r+s+l), 
which is strictly equivalent to (6.69).

The theorems have been mainly concerned with deriving 
and ARMA-type model from a given DLM. All such procedures 
involve the determination of the steady state Kalman 
gain vector A, which is a simple proposition numerically 
since we can use the Kalman filter. The procedure for 
reversing the process is in general more difficult. That 
in given r,s and a set of parameters 6^ ... we can
invert (6.36) to obtain

1

_L
=

, ^r+s ,

1
1 -L

b  7i y
3i

r+s r+s-1 ... I

l<k<s

+ h ^ k - l  + ••• + &s8k-s = ° s+l<k<r+s

and where b̂ _ ••• bg are the coefficients of b(z).
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Since the matrix is lower triangular, the are 
uniquely determined. Having determined these, then

H A  = f l G  \ A = Jti \

F Gr + sJ V “r+s;

H is the (r+s) x (n) matrix whose i^^ row is F g\ If G is 
non-singular then r+s = n, thus H is non-singular so that 
A is uniquely determined. In the singular case as already 
mentioned
02 = FPF + V or (l-FA)a^ = V

thus FA = (1-aVV) (6.71)

and since {F^jFG)^ ...,(FG^^^)^}^ is non-singular then A 
is uniquely determined given 1 - a^/V.

In both these cases it is then required to solve for 
V. and W from (6.71) and

TA = PF

P =

FPF^ + V
T T TGPG + ¥ - GPF FPG

+ V

Some conditions under which it will be possible to do this 
have already been given. This topic is continued in 
Chapter 7.
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CHAPTER 7

INVERTIBILITY REGIONS AND PRACTICAL DLMS

7.1 Introduction

In this chapter we illustrate some of the results of 
Chapter 6 by applying them to typical DLMs. In particular 
we comment on the stability regions that are covered by 
DLMs which possess a certain intuitive appeal. The 
appropriate theory is developed in Section 2, and sections 
3 to 5 consists of examples. In §7.6 a slightly different 
way of writing some useful DLMs is given, and §7.7 shows 
how the Kalman filter can be applied to them. Section 7 
also summarises the examples of the chapter concerning 
some frequently used ARIMA models and their DLM equivalents

7.2 Theoretical Results

The specification of general F and G matrices in the 
time-invariant case for univariate observations is 
provided by (6.70). However in applications it will be 
necessary to specify V and the elements of the positive 
semi-definite matrix W. In practical situations if we do 
not employ a statistical estimation procedure then Harrison 
and Stevens (1976), Godolphin and Stone (1980) and others 
remark that it is only the specification and updating of . 
variances that can be carried out with any confidence. 
Consequently in practice we require ¥ to be diagonal, or 
expressible in the form B ¥ ̂  B where B is a fixed known
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matrix and diagonal, whose elements can vary. The 
latter case can be reduced to the former by using the

• m
equivalence between {F,G, B W ̂  B } and (F B , B“ G B , ¥^} .
We therefore have two sets or regions

Rj. = {V,W|V>0,W>0} (7.1)

Rjj = {V,W|V^O,i^O and diagonal} (7.2)

where the second is of much more use practically. A 
general DLM is represented by (6.70) with V,W belonging to
(7.1) or (7.2).

We know from §6.3 and in particular Theorem 6.14 and 
Corollary 6.15 that a time-invariant DLM is predictor 
equivalent to the moving average model

yt + h y t - l  + ••• + «^yt-s = + h s - l  + ••• + ^r+sH+r-s

wh ere the 3^ are given by (6.36), namely

t) i = 0 J «J

83+j = Jo b “ s+j-i

(7.3)

It is then natural to ask what is the nature of the 
stability/invertibility region under this equivalence for 
a DLM with {F , G} fixed but where {V, W} are allowed to range 
over Rj or R^^. For example we have already seen that too 
small a G matrix precludes us from covering the full region 

For Rj, the equivalence gives a mapping, dependent 
upon F, G
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F, G
^  ••• (7 .4)

provided that a steady state A exists. First we shall 
show

Theorem 7.1

For fixed G, the image of the mapping (7.4) is the 
same for all F, provided that (F, G} is observable.

Proof

Let F,G be any two matrices for which the 
observability matrix M has rank n . Then from Lemma 6.24 
there is a non-singular matrix y ,  which depends upon F, G 
given by

Y = £ M

using the notation of the Lemma, where £ is a lower 
triangular matrix with 1's on the diagonal and = bj ^
for j>i. Consequently the DLM can be written in the form

Jo ■ Jo * Jo
1 —U

+ (]2:t-n+lL (7-5)

where the subscripts denote components of the column
vector. Now from Theorem 6.26 the 6^’s can be obtained
from the autocovariance function of (7.5), but this

Tfunction depends only on Y ¥ % a.nd since the two sets 
{ Y W y '̂ 1 W ^ O ,  Y fixed and non-singular} and {¥ | ¥^0} are
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Identical, then the 6^’s are independent of y_ and hence F. 
The theorem is therefore proved.

From the proof it follows that a 'canonical form' for 
the mapping (7.4) is (on putting W. )

J-L = "it + "2t-l + + "nt-n+l + J o
(7.6)

where w^^ is a scalar. = /"it^ '

V " n ty

(7.7)
and W is positive semi-definite.
This enables us to prove 
Theorem 7.2

The mapping (7.4) under allows the 3^ to cover the 
full stability region, provided that n-l=r+s, i.e. n=r+s+l

Proof

Put V =0, Wĵ  ̂= 3^ l^t* then if n=r+s+l (7.6) gives 

■ L  4yyt-j + ®l^t-l ■*■•••+ Sr+s^t-r-s

and the matrix W  of (7.6) is positive semi-definite as 
required. Now by varying the 3's we can cover the full 
region, which completes the proof.

So under R^, DLMs encompass all the traditional 
linear difference models. Now consider the region R^^ and 
the mapping
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••• Gr+s^ (7.8)

again under (7.3) with F,G fixed. It follows from the 
proof of Theorem 7.2 that a canonical form for the mapping
(7.8) is given by (7.6) but where now instead of (7.7) for 
a fixed B (e R),

/ W^ \ B-
W,

wn

(7.9)

J

The difference is because { R W R  [¥>0 and diagonal}/{W|W>0 
and diagonal). It w i H  be algebraically more convenient to use 
the autocorrelation of the derived process defined in 
Chapter 6 rather than the 3^’s. Thus the mapping (7.8) can 
be obtained by looking at the mapping

••• Pf+g)

using (7.6) and (7.9) with B fixed. To summarise we have 
the following, which we formally state as a theorem:

Theorem 7.3

Let {y^} denote a DLM with canonical form given by (7.6)
(7.9). Then the autocorrelation function for

't = J o

Pk = B[zt^t+k] . b  -l--l+k '*'7.1------------ 1=1 1 = U_________
E[z + 2 ] 'Irk J s

Siüii * » J .  *1

(7.10)
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thwhere in the i row of the B matrix in (7.9), and
W = diag {WJ ...W } . — 1 n

The proof follows immediately from (7.6) and (7.9). 
So an examination of the mapping (7.8) is found by 
considering the mapping from

R _  E {V,¥. ... ¥ |V>0,¥.>0} lU 1 n ' = 1= (Pl • • • Pp+g) (7.11)

under (7.10).
Now b . ¥ b . ,, ̂  = ( b . ... b . )“ 1 i+k il in '̂1

0

n

J=-L
Thus we can write

0
¥n

\ J \°i + k n J

nI C
j = l 0 j j °C n+1 7

where '"kj J k ’" i j b + k j

S-k
°k n+1 ^i^i+k •

l<j<n

(7.12)

>0^k^ r+s
(7.13)

Since po=l, the image of the mapping (7.11) consists 
of a region in r+s dimensional space whose co-ordinate axes 
are p^, ^r + s* that is we have a mapping from the set
Ruje X R

n+1 TD I*"*" S . T_-iR given by

Çi.x Ç 2 .X  ̂ Çr+s-2
X _Ço,X £o *X Co .X (7.14)
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where c,.x is the dot product between c. = (c, , ... c, .)“ X — ^ — k kl kn+j-
and X = (W^ ... V) E (x^ ... Note that CQj>0
since the matrix B is non-singular, and without loss of 
generality we can put x^^^ = V equal to 1, by say defining 
Wj = W /V.

Define the mapping = =0^ +°0n%n*°0n+l)

for i=l ... n. This is clearly a one-one mapping on H  

because the denominator is non-zero and the inverse mapping 
is Xj = y . / (c q .̂ {1-Ey^} ) , and further O ^ y ^ l  with
x^ ̂  0 under the inverse mapping. Thus we can reparameterise
(7 .14) to yield the mapping from ("ĉ s by

f°liyi,°12y2 , ^flnyn^hui±l(^'^l'"^n) f2iyi ^
J o i  °02 =0n CQn+1 ' °01 "

^ M l - y , -  ..yj..:. , L ± s ^ l d - y r - y n j '
°On+l ^ °01 °On+l /

where y^>0 , Z y^^ 1 and C is the region covered by {y^.»y^j

If we now put y^^^ “ l-y^" • • • -y^, then every point in 
the image is of the form E ̂  u^ where y^>0, Ey^ = 1, and

" / °li, .... d  + s i V  (7.15)1
'̂ Oi ^ 0  i

.Thus every point is a convex combination of the u^, and 
so the image which consists of all such combinations is 
by definition a convex hull of the u^. Now we can select 
a minimal set of the u^'s such that the image is the 
convex hull of these points, and it is easy to show that 
these points are vertices (see for example Trustram (1971)) 

The above means that we can now fully characterise 
the image. That is
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Theorem 7.4

The image under the mapping (7.8) from to the
autocorrelation space (p^ ... p^^^} is the convex hull of
its vertices, which are a subset of the points u^ of (7.15)

The theorem tells us that the image in the auto
correlation plane is bounded by vertices and straight lines 
This means that if the invertibility region is not a convex 
polytope (the convex hull of a finite set) then it is 
impossible to cover the region under the mapping Rjj» In 
fact the invertibility regions are convex sets with no 
vertices, however we can make them into convex polytopes 
by including the limit points to make the above statement 
non-trivial. The implications of this are that for higher 
order models, practical DLM's can only cover part of the 
invertibility region of the equivalent ARIMA model. This 
is illustrated in Section 4»

Note that the region may depend upon u^^^

"n+1 " (  °1 n + 1 ........ °r+s n+1 j
0 n+1 Cq

which is soley a function of the b ’s, so that if the region
is to be independent of the b 's then in some sense the v^
term is redundant (see (7.13)).

The following sections contain examples which use 
the theory of both Chapter 6 and this section, so that 
the various theorems and results can be seen in context.

-171-



7.3 An Uncontrollable Model

Chapter 6 examined the role of observability, however 
controllability is not so easily dealt with. Although 
controllability is a sufficient condition for the 
convergence of the filter, it is not necessary, and DLM's 
need not be predictor equivalent to their controllable 
subsystems. Consider the model

Example 7.5

yt = d  1) it (7.16)
' (o)

which is observable but clearly uncontrollable. The 
updates for are given by (4.37) under the assumption
that w^'u N ( 0 , W. ) , which on writing = / P^ P^ \

V J  ^ 3 )
and substituting for F, G, W, and V (=0) gives

■  f  P j * P 3 \  / P i P P P z ' P A  ( P i * 2 P ; * P ,  P ; P P , )I P.PP3 PJ ■ I P / P ,  J

SO that ¥, P2t=0, P^^= and
after one recursion = (B^-j^_q¥)/(P^^_^ + ¥) which tends 
to the limit 0 as t increases.

The updates for the system parameter are

^ït\^ ^lt-1 ^2t-l ̂ It^^t " °lt-l " ̂ °2t-l^'m.
-t

'“2t/ ”2t-l ^2t(yt ■ "lt-1 ■

where = (^it + P2t)/(^lt + ^P s t +^31^ ^
b t  = (P2t +f3t)/(Plt +2Pzt+ ?3t) "ith limit 0.

The forecasts are y^(k) = FG^m^ = m^^ + (k+l)m2^ = y^ + km̂ .̂ .
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therefore in the limit ^2t~™2t-l^“ say, and

= yt + kn (7.17)

Now G has minimal polynomial G^ - 2G + !_ so from 

Theorem 6.21, ^lt-1 ' °^lt-l  ̂̂ 1 " Z G - 2

^ "^lt-1 "^2t-l (7.18)
^lt-1 2^21-1 ^3t-l

821-2^^21-2 ̂ *1^11-2 ̂ *2  ̂— ^-t-2 " ̂ ^^t-2 ^  ̂ O'
consequently the DLM (7.16) is equivalent to the time- 
varying ARIMA model

d  - 2yt-i + yt-2 = d  + h t - i d - i
with given by (7.18). After one recursion P2t~0
in the limit P^^=0 so that the steady state equivalence is

d  - 2yt-i + yt-2 = d  - d - i -  (7.19)

The z-transfer function of (7.16) is, from (3.10),

H(z) = (1 1) ^ z I - 1 l\"l z ^1^

= Z(z-l) = Z

(2-1)2 z-l
SO that Y(.z). = _z W ( z), (7.20)

z-l
As Kalman pointed out (Theorem 3.28), only the observable 
and controllable part of the system can be deduced from 
(7.20); such a part is

yt = (7 .21)
t = ®t-+ "t

which has transfer function z/(z-l) as required.
For the model (7.21) A^ = (C^+W)/(C^+W) =1, so that 

râ  = y^ and the forecasts are

y^fk) = k>l (7.22)
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the equivalent ARIMA model being

d  - d - l  = d -  (7.23)
However (7.17) is not in general equal to (7.22), since in
general m / 0, so that (7.l6) is not predictor equivalent
to its controllable subsystem. In ARIMA modelling (7.19) 
would be treated as the model (7.23) with forecasts (7.22) 
and so similar remarks apply.

7.4 First Order Models

The general univariate DLM has the form

d  = + d  (7-24)
®t = 2®t_l + d  (7.25)

where f and g are scalars. This is observable and 
controllable provided that f and g are non-zero, and will 
converge to a steady state solution in the sense of Theorem
4.6 if W = Var(w^) ^ 0. In this case the equivalent ARIMA 
model is (cf Theorem 6.14)

d  • gyt-l = d  ■*■ 8 ^ - 1  (7.26)
however the models are restricted in that 3 can only cover 
part of its allowable region |3 | <1. Indeed, from Section
6.6, 3 has the same sign as ~ “S' s.nd 0^| 3 |^ | | , so for
positive g, -g<3<0. A much used example of (7.24), (7.25) 
is the Harrison-Stevens steady model, where f=g=l, which 
corresponds to the restricted IMA(l,l) model

yt - yt-i = H  + 8=t-i
with -1<3<0, which has been remarked upon by others (eg 
Godolphin and Stone (1980)).

Before the steady state is reached 3 in (7.26) depends 
upon t, as detailed in Theorem 6.23.
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We now consider ARIMA(p,d,q) models with q=l, p+d=l 
and show that it is possible to construct equivalent DLMs 
that are unrestricted.
IMA(l,1) A general DLM that is predictor equivalent to an 
IMA(1,1) must have s=l, ^^=-1, and to avoid restrictions 
on g2 ' + s r=0. Consequently it follows from the
discussion of §6.6 that a better choice than the above n=l 
non-singular case is n=r+s+l=2, with

- G = 0. (7.27)

The general model is given from (6,69) 
y^ = (1 0)G(G^)8^ + v^

it = fO l\it-l + «t
(7.28)

.0 1 /
where 0(x) is coprime with x(x-l) and so can be taken to 
be x+a, a^O, a^-1; Ĝ  ̂ is the 2 x 2  matrix in (7.28). Thus

y^ = (1 0 ) / a 1 \ it l)i^ (7.29)
\0 1+a/

which with a=l gives, on putting 0qt~®2t* ®2t~®lt

\®2t/ (7.30)

i t A  = 6 ^ 1  t-A + p i t \
'zt/ \ ®1 t-1/ \̂ 2t/

the model given in Godolphin and Stone (1980), Stone (1982)

For this model Ztryt-yt-l=^t-Vt-l+"lt+"lt-l+"2t-"2t-l
SO that if W-, , and w^. are independent with variances W.

Pi = - (V+Vfg) _ (7.31)
2(V+W^)+2W^

The invertibility region is |3 |<1 or |p|<è and it is
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immediate from (7.31) that by altering V, and we can
cover the full region. The DLM (7.30) is clearly
observable and controllable thus assuring us of all the
desirable properties, and we have covered the region with
a model whose covariance matrix is diagonal.

In fact if we put #2=0 so that = (#^-V)/(2V+2W^)
then this still covers the region |p|<é and under the
equivalence yields

3 = W+V ± /(4-VW) • chosen so that |g|<l.
V-W

By redefining 6^^=8^, 82^=8^ 1 model can be conveniently
expressed in the form (with #2 = 0)

= (7.32)
®t = ®t-l + "t

where 8.̂ can now be thought of as an underlying level - as 
is the case for the restricted Harrison-Stevens steady 
model. This expression has the added advantage of being 
parsimonious with respect to the unknown parameters.

Both (7 .31) and (7.32) are much more appealing ways 
of covering the invertibility region than having v.j. and w.̂  
correlated in (7.24-), (7.2$).

Note that the convex polytope in this case is the 
extended region |p|<^, which the models can also cover.

Example 7.6 - ARMA(1,1)

The Box-Jenkins ARMA(l,l) model is given by

/t - “^t-l " S  + (7-33)
By a similar argument to above, = otG in the case of n=2 
so that Ĝ(' = / 0 1 \ and the general model is of the form

\0 a/
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yt = (1 0)it + (7.34)
or = (b 1)0^' + (7.35)

with 8, =/ 0 1\8, -,+w,t (7.36)

because 0(x) is of the form x+b, b^O, b/-a.
We know from Section 7.2 that a ’canonical form’ is

and by using the knowledge gained 
from the IMA(l,l) example it is clear that putting

*lt = "it - "2t
'

with w^^, W 2 ^  independent enables us to cover the full region 
indeed we can do so without the v.j. term which illustrates 
the remark made at the end of Section 7.2 concerning the 
’redundancy’ of V. In the notation of that section 
X ” / F \ » a.nd it follows that any DLM of the form 

F G - aF

= (b 1)8_^ + v.̂  (or (l 0)£.j. + v.̂ }

i t = / °  &t_i +=  /  0  1 \ 6 +  1 +  Y / w -

(7.38)
0 a/

will yield the canonical form. For example if b=l, 
y  =  I 1  1 \  and substituting in (7.38) using (7.37) gives

-a 1/
= (1 1)0^ + (7.39)

-t " / ° f  °  (7.40)
\0 a/ ^1+a l ~ C L / \ \ i 2 - t J

or redefining 8_.̂

V 1 0 / V o  -2 A'^2t /
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where w^^, ŵ .̂  are independent (w\^=w*^^/{l+a}). (7.39)
and (7.4-1) gives the model (7.30) when a=l.

T TUsing the equivalence between {F,G,R¥ R } and 
(F R, R ^0 R ,¥} gives the equivalent model

'it + ^
' " Y  (7.42)

2ty
Alternatively using (7.34) gives by a similar 

argument the model

a+1 a-1

= (1 0)9. +

0 (X
~ r  " i - t - i ^  r  i/"it\. (7.4.3)

2̂t
All the unrestricted models (7.38) - (7.4-3) differ 

from the Harrison-Stevens model

(7.44)
®t = “®t-l + '̂ t 

for which z^=w^tv^-uv^_^, so = -aV/(W+V(l+a^)} yielding
the restricted region

-(% < Pp < 0.
1+a^

It is possible to consider the extended version of 
(7.4-4.) by analogy with (7.32), namely

yt = ®t + ®t-i +
(7.45)

®t = “®t-l + "t
however this region is also somewhat restricted, for 
z^=w^tw^_^tv^-av^_^, p^ = (W-aV)/{2W+V(l+a^)} implying

-1̂ < Pj_ < i -
i+a^
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7.5 Second Order Models

We now look at models whose autoregressive part is of 
order 2. The -general ARMA(2,2) model is

yt - ( V ^ 2 ^ y t - l  + h V t - 2  = + 8l = t-l + 62=t-2 (7.46)

where | | <1, | ̂ 2 1 <1 and the roots of zZ+3^z + g2 less
than 1 in modulus. From Chapter 6 it follows that an 
equivalent time-invariant DLM must have a system matrix G 
satisfying

_G (.Ĝ  - (À2^tX2)^ t ^1^2^ ~  ̂ (7.47)

where the ^best’ choice of n is n=r+s+l=r+3 since s=2 in 
this case. The smallest possible value of n is 3, in 
which case the general model is

y^ = (1 0 0) 8(G*) 0^ + v^ (7.48)

it = i* it-i + ̂ t (7.49)
where

G* = / 0  1 0
0 0 1

V °  " ^ 1 ^ 2  J

and 0(x) is coprime with x(x^- ( A^ +^2)x + ^2.̂ 2  ̂ so that 
the three possibilities are

(i) 0(x) = 1
(ii) 0(x) = X - a a/0,X^,X2
(iii) 0(x) = (x - a^)(x - a2)

By redefining the w^'s in (7.6) these models can be written 
in the 'canonical' form

(7 .5 0 )
^t " yt"(Ai*^^)yt-i^^i^2yt-2  ̂"it*"2t-i^"3t-2
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giving the following autocovariances for

Yq = # 22' +  W j j  + V { 1  + ( X i + X 2 )  = ' +

^1 " ^12  ̂ ^^23 " (Ai+Xgjfl + XiXg) ^ (7.51)

^2 ^13 ^1^2

with autocorrelations = Y î /Yq » k=l,2.

It is well known (for example Box-Jenkins 1970, p 71)
that the invertibility (stability) region in the auto
correlation space for the.model (7.4-6.) is

P2 l<2, |p^|<p2+è, Ip^I ̂ <lp2(l-2p2) for P2>s 52)

with p^ = P2
l+3l^+B| 1+3i ^+S2^

For convenience we call the region (7.52) together with 
its limit points the extended invertibility region, so that 
the inequalities in (7.52) are no longer S'trict. This 
corresponds to allowing the roots of z^ + 32_z + 32 to have 
modulus one. Both regions have the appearance of Figure
7.1 where the boundaries are either included or excluded.

FIGURE 7-1; STABILITY REGIONS
ful l  region for  2nd 

order model s

AR IMA(0,2,2] region of 
(7,57), ( 7,59)
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The invertibility region can be thought of as the sum 
of two areas; the first is the triangle bounded by the 
vertices ( ±-|- , , (0, -g ) which is the convex hull of the
three points. The second is the remainder bounded by the 
curve |p̂ _ I ̂ <4-P2(l"2p2) and the line p^^ . It is obvious
that the whole region is not a convex polytope, since 
topologically it has an infinite number of boundary points 
which do not lie on a finite collection of straight lines.
It therefore follows from Theorem 1 . 4  that it is impossible 
to cover the full invertibility region with a DLM that has 
a diagonal covariance matrix, in the sense that the image 
under is not the whole region.

If we put W = B 0 0 \ then from Theorem 7.3

0 #2 0
\ o  0

or directly from (7.50), (7.5l)>

^0^1 " ^1 (^11^21*^21^31)^^2(^12^22*^22^32) *
+ - (X^+Xj)(I+X2A2)V

(7 .53)
°0^2 ■ ^1^11^31^^2^12^32*^3^13^33*^1^2^^

where Cq = ^l(^ll*^21*^3l)*^2(^12*^22*^32)*^3(^13*^23*^33)*

+ V{1+(X^ + À2)^ + A^2A2^} .

Theorem 7 . 4  tells us that as and V are allowed to vary 
over the non-negative reals the region traced out is the 
convex hull of the four points

^11^21  ̂ ^21^31 ’ ^li^3i \ 1=1,2,3 (7.54)
bi.^+b2i^+b3i^ b l f + ’̂ 2 f + V
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1+(Ai +A2)
(7.55)

which depends upon the A^* For the convex hull to cover 
as large an area as possible the points (7.54-) should 
coincide with boundary points of the full invertibility \ 
region. For example putting gives the point
(/&, 4); (7 .54.) gives (0, ±i) if and only if bg.=0, bn.=±bg.2i ' 11
and the value ( ± y , ) if b^^=b^^, ^2i~*^**li‘ Thus if

3i

B = / l  1 1
0 0 2 

V I  -1 1 1

(7.56)

then the three points (7.54-) a.re (0,g), (0,-g), (— » 4" ) •
i ®

The region depends upon Â  ̂ because (7.55) does. In the 
case giving the ARIMA(0,2,2) model, then (7.55)
is ( -y, y ) the region is the shaded area in Figure 7.1 .
This is the best that can be done in this case.

For different values of A^ the areas covered shrink 
as the point (7.55) moves. The smallest region covered in 
such a case is the triangle bounded by the three points 
(0.±s). (| ,|).

The models mentioned above can be realised by applying 
the procedure of Example 7 .-6', . for instance

yt = (1 0 0)8^ + ^t

it = fo 1 0 \
0 0 1

1° '7^2

(7 .57)

^ t - i  + I ■^/i 1
0 0
_L -_ L 7

w2t
V3tJ

where y is obtained from (6.60) as
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/

Y = F G-
l^F - (X^+X2)FG + X^X^F /

-(Xi+X^)

o \

G

V  ^1^2 "(^1*^2) ^ )
(7.58)

Substituting X^=l in (7.57), (7.58) gives the evolution

-t

/  0 1 o\
0 0 1

V  0 -1 2j

-t-1 f 1 \X \
2 2 4  

\ 4  2 8/
\"2ty (7.59)

where the w^^ are independent. This can be used to give 
an equivalent DLM that has a diagonal covariance matrix by 
p r o c e e d i n g  3-s in Example 7.6.

The region covered depends upon X^, X^« If we wish 
to cover the shaded area in Figure 7.1 for all X^ then 
the dimension of the system vector must be increased - to 
at least i .  For n=4 the matrix G satisfies (7.47) with 
r=l, but for this to be equivalent to an ARIMA model with 
moving average part of order 3 we require additionally 
3^=0 (or p^=0) which places restrictions on the matrix B. 
The exact form can be obtained by a similar procedure to 
the above. Only by having a system vector of size n with 
n large can we start to cover all of the invertibility 
region (unless we allow ¥ to range over the positive semi- 
definite matrices).

Example 7.7

The Harrison-Stevens ARMA(2,2) model is

yt = (1 0)it + Vt

'it h®it-i ®2t ^it
'2t = 7®2t-l + *2t

(7.60)
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This has a non-singular system matrix when expressed as a 
DLM so the invertibility region is restricted.

It follows directly from (7.60) that

*̂ 1 ”  ̂”^ 2 %  ~  ̂ *̂ 2 ~ ^1^2 ̂  ' where

D = W^Cl + X^^ ) ^2  ̂̂ 1^^2^ ̂ "*"̂ 1̂  ̂ 2^ ̂ * Theorem 7.4- says
that the image under is the convex hull of the vertices
(- \  ,0), (0,0) and {-( X^+Xj) (l + X^Aj). X^Xg }
l+Xg: D* D*

with D’'̂ = {l+( A^ + À2) ̂ + ̂2^X2 }̂ • These points are obviously 
heavily dependent upon the and the region is much more 
severely restricted than the preceding models in this 
section. Some of the regions are sketched in Figure 7.2.

FIGURE 7-2: INVERTIBILITY REGIONS FOR EXAMPLE 7-7

H a r r i s o n - S t e v e n s  model s

1
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It is possible to proceed in an exactly analagous way 
to this and the last section and consider higher order 
ARIMA models, although the invertibility regions become 
more complex.

¥e have derived 'canonical forms' in the above by 
confining attention to diagonal covariance matrices. Note 
however that any fixed ARMA/model (i.e. fixed parameters) 
can be represented by a DLM with a fixed diagonal 
covariance matrix. This is because we know from Theorem
7.2 that we can cover the invertibility region with a DLM 
that has a non-negative covariance matrix, {F, G, ¥} say. 
But then ¥ is diagonisable as R ¥ R = diag{¥^} for some 
non-singular R and where ¥^ are specific values, and so 
the strictly equivalent DLM {F R R G R ^ ,R¥ R ^ }  proves 
the assertion.

7.6 Augmented DLM's and Summary

Example 7.7 and (7.4-4) are two instances of a much 
broader class of DLMs used by Harrison and Stevens (1971, 
1976). These are the so-called extended Markov polynomial 
models, which are given by

yt = Git +
®it ^ ^ ®2t *  ”it
®2t " ^2®2t-l ®3t "2t

(7 .62)

'nt ^n®nt-l ^nt

which can be expressed as the DLM
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yt =  ( 1 0 0)0^ +

â-f- “ n

V0 0

-t-1 f x A

1

V

A
I t

w2t

\"nty

(7.63)

(7.64)

where the w ^ 's are independent and the X^ non-zero, thus 
this is an example of the preferred covariance structure.

For this class of models the observability matrix is 
M = {m^j} with m^^ = l, m^j=0 for ĵ l,'. and 
m. . =X.(m. -,-,+ m. -, r. t  ... + m .  -, ..') otherwise.ij j 1-1 1 1-12 1 - 1 2

Expanding by the first row gives the determinant

Ml = ®22 * * * ®2n X%X3...X^ 1 .1 ... 1
; ^32 ^33 ••• ^3n

“m2 * * • “nn Lkn3 • • • *̂1111
whe . thre b j  ~ ̂ ii' ^ ' Subtracting the j column from the

th ■J
j+1 , for j=n-l, ... 1, with the relation

buj^2 “ ̂ ij ~ °̂ i 1 j+1^^^ expanding by the first row gives

m23 m2n

% - 1 3  ■' ®n-ln
But this is ^2*'*^n multiplying the determinant of an n-1 
order model with parameters X2» ••• X^, and so a simple 
inductive argument proves that |M| = X^X^^.'.X^^"^, hence

Theorem 7.8 •

The system (.7.~6l), (7.62) or (7.63), (7.64) is 
observable if and only if X^ ^ 0 for i ̂  2, and has a non
singular system matrix if in addition X^ ^ 0.
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For this latter class of models the characteristic 
n

equation is H (X- X.) which is also the minimal polynomial 
1 “

The model is controllable and in the steady state is 
equivalent to

n (l-Xj_B)y^ = + ^l^t-1 ^ ^n^t-1 *

an ARIMA(n-d,d,n) model where d is the number of X^'s 
equal to one. Since the system matrix is non-singular 
these models can only describe very restricted regions 
in the correlation or parameter spaces.

However such models do have the advantage of easy 
interpretability, in contrast to those of the previous 
sections where the emphasis was on finding models which 
possess desirable mathematical properties. For example 
if all the X̂  ̂ are equal to one, then in (7.61) 8^^ can 
be thought of as an underlying level which evolves in a 
Markov fashion, namely is a noisy version of the previous 
level augmented by a slope term, The slope is the
first difference of the level - a discrete version of the 
derivative- and similarly for the other terms in (7.62).

Ideally we would like to have DLM's that have an easy 
interpretation and which cover the entire stability region 
of the equivalent ARIMA model. This is the case for 
IMA(l,l) models as illustrated by (7.32). Motivated by 
this we look at models

yt = ®lt + ®lt-l + ^7.65)

where 0^^ evolves as (7.62) -or (7.64). The model can be 
witten in. DLM form by defining 0^^^ t ~ ®1 t-1 ' w%th 
matrices F^S G* and B* where
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F* = (F 0), G* = (7.66)

and where F, G and B  are the matrices in (7.64). The 
observability matrix for (7.66) has determinant

|G + I| = |M| 1G + I|.1 - F 1 = F
FG + F 0 FG

FG^ + FG^"^ 0

Using this result with Theorem 7.8 proves 

Theorem 7.9
The augmented model (7.66) is observable provided 

that G + !_ has full rank, where G is the system matrix in 
(7 .64), that is if and only if ^ -1 for any i. Moreover 
under these conditions the model is controllable.

The proof of controllability follows from the fact 
that (B^ G^B^) has rank n+1 since the first column of

j_g ( 0 ... 0 1 ) which is linearly independent of
the n columns of B̂ .̂

Thus we have a class of 'augmented* Markov polynomial 
models which are observable and controllable, which have 
a diagonal covariance matrix and which cover more of the 
invertibility region than the unaugmented versions.

Example 7.10
An augmented version for the ARMA(2,2) model is

^t ®lt ®lt-l ^t (7.67)
®lt ^ ^l®lt-l ®2t ^It
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®2t ^2®2t-l ^2t (7.68)
thus the derived process

has autocorrelations

= {W^(l-Xg)2 + Wg - VfXi+Xgjfl+X^Xg)} / D (7.69)

P2 = ('^2% '*’ ^1^2^^ / B (7.70)

where D = W ^ d + d - X g l ^  + X g P  + 2Wg + V{l+( X3_+X2 )̂  + Xj_^X2 }̂

and the vertices of the convex hull are therefore

(& .0), /(l-Xg): , -X2 / -(X^+X2) (1+X^X,) , Xj_X2

% ° l /  V ^  ^
(7.71)

with =l+(l-X2) d X 2d  = 1+(X^+X2)^ + X3_ d 2  ̂ .

Some of the appropriate regions in the autocorrelation 
space for various values of the are sketched in Figures
7.3 to 7.6, using (7.71).

Box-Jenkins place great emphasis on parsimony, which 
in practice means that the class of ARIMA(p,d,q) models 
considered is a very small one -for which p, d and q are 
usually less than 2 or 3. The results of this Section and 
the previous ones as they apply to most of these models 
are summarised in Table 7.1.

In Table 7.1 the ARIMA(l,l,2) and (0,2,2) models can 
be obtained from those for the ARMA(2,2) model by putting 
^2=1 or respectively. We allow for some of the g's
to be zero to include ARIMA(p,d,q) models with q<p+d. 
(7 .74), (7 .75) illustrate the general result that Markov 
polynomial models and their augmented versions depend upon
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the particular permutation of used whereas the
ARIMA models are independent of such ordering.

The invertibility regions for these models (that is 
for the derived processes in the correlation plane) are

1. ARMA(1,1)
Harrison-Stevens

Augmented
-  2 ~1

iTa"

-_L
1+a'

0

2. IMA(l,l) - as above with a=l.

3. ARMA(2,2), ARIMA(1,1,2), ARIMA(0,2,2)

The Harrison-Stevens’ regions are detailed in Example
7.7 and illustrated in Figure 7.2. The augmented model is 
given in Example 7.10 and some of the regions are given 
below in Figures 7.3 - 7.6.

1-p
FIGURE 7.3: STABILITY REGION FOR ARIHA (0,2,2) MODEL

OF EXAMPLE 7-10
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FIGURE 7.4

^ 0
- 2

FIGURE 7-5

ARIMA (1,1.2) x=1

FIGURE 7 6

ARMA(2,2)

FIGURES 7 4-7-6: STABILITY REGIONS FOR EXAMPLE 7-10
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TABLE 7.1: SUMMARY OF FIRST AND SECOND ORDER MODELS.

1. ARMA(1.1) Yt - “yt-1 = h  + 6ct-1
Harrison-Stevens yt =

"t =
h  + ^t 
G"t-1 + h

(7.72)

Augmented model yt =
‘̂t "

:"t + Ut-1 + ^t 
“^t-l + "t

(7.73)

'Full' model yt = h t  + h t  + h
h t = &(a+l)8it_i + è(a-l)02t.i + h t
®2t = &(a+l)8it-l + *(“'l)62t-l + h t

*lt' ^2t independent

3. IMA(l.l)
-  yt--1 = h  + ® h - i

Harrison-Stevens = h + ’̂t (7.71)
"t = h - -1 + h

Augmented / Full y. = h + h - i  + h (7.75)
h = h - ■1 + h

3. ARMA_( 2 j 2  ) Yt" ̂ t-l'^^2^t-2

Harrison-Stevens

Augmented

Full

yt = h  + h
"t = h'^t-i * 6t + h t (7.76)
6t — h ® t-i h t

yt = ^t + + Vt
»t = V t - i  + ®t + h t (7.77)
6t ^2®t-i  ̂ h t

yt = h  + h
h = 6t-i + h t
6t = ^t-i + h t
Yt = (Ai + Ajht-i 'hh®t-i + h t

w^^ not independent
A 'best' model with w^^ independent is provided in 

Section 7.6.
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7.7 Inference For Augmented DLMs

It is possible to use the standard Kalman Filter on 
the augmented models provided that we express them in DLM 
form, as in (7.66) say. However these relations can be 
slightly simplified by effectively reducing the dimension 
of the system vector so that it has the same dimension as 
before augmentation. This is becaues if we write 

= Cov[6^|y^]= (ĉ .̂ ), l^i,j<n+l, the posterior
covariance of the augmented system, then in the notation
of (7.66) is a function of the
unaugmented matrices G, B, W and C_̂  = (c^^), l^j^n. But 
the Kalman filter depends only on and F̂ ''Ĝ m_̂  which is
a function of m^^, ... ,m^^ and so confirms the conjecture
The following example makes the point clear

Example 7.11
The steady augmented model (7.75)

h  = ®t  ̂ ®t-i + h
®t = ®t-i + h

can be expressed via (7.66) as a DLM with matrices 
F = (1 1), G = / 1 0 \ , W = / W 0 \

1 , 1 0 /  \ 0  0  I

Tand system vector (6^ 6^ ^) . From the filter

£t = + w =

^It-l
where ^ = (^^ 1^11* Thus the updates are

y = 2%it-i ' ^ = ^°it-i + w + V
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=  h l t \  =  \ (y, - y)
,°2t/ V^lt-l / \

and

26lt-l
/

with predictors

E[yt+kly^] = = 2m^t (7.78)

and Var(y^+^ y^) = + l(k-l)¥ + W + V .

Therefore provided that we are not interested in the 
smoothed estimate 9^ ^ | , the forecasting equations can 
be simplified to

yt = 2°t-i 

4  = ^^t-l + + V

- ^°t-l + = Ct_i + W (7.79)
lCt_i+W+V

mt = “t-1 + *t(yt - yt)

Ct = (l-ApPt - Â Ct.i = Pt - Â (Pt + Ĉ -i)
which only involves the two terms m^ and C,̂ , corresponding 
to the old and with the predictors given by (7.78)
with these assignments. Although (7.79) is very similar 
to the Kalman filter updates it is slighlty different, 
indeed it is not the filter for any scalar DLM.

If the error terms are allowed to take the more 
general form

V^ ^ ,V) and w^ N (m^ , W )
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then the updates are as in (7.79) except for

(7.80)
"t = “ t-1 + “w  + - yt)'

It is possible to interact with state-space models
in a simple way, as Harrison and Stevens (1976) mention.
For example for the steady model (7.75) we can alter some
of the values of m.̂ , m^, V or Wat some specific time T.
For the model, altering m.̂  or V just affects the current 
observation, whilst changing m^ alters the underlying level 
of the process which affects all subsequent time-points. ' 
Increasing W allows the level to change more over time, 
thereby increasing our uncertainty as to its value. If m^

is non-zero for successive time periods then a 
deterministic growth is introduced into the model.

The implications on the estimators of altering these 
quantities are a little more hidden. For example a non
zero m^ affects the posterior estimate of the level (and 
therefore successive estimates as well) through (7.80).
A non-zero value of m^ increases the posterior of the
level not by m but by m (1-A.) which is less than m .w w t w

Increasing W increases A.̂  (in (7.79)) so that more 
weight is given to the current observation in updating 
the level through

“t = “t-1 + - yt)'
Conversely increasing V means that the observation 
contains less information, decreases and less weight 
is given to the observation.
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CHAPTER 8

EFFICIENT COLLAPSING PROCEDURES FOR CLASS II MODELS

8.1 INTRODUCTION

In Chapter 4 Section 7 we showed how given m past
histories , ... at time t =1 which lead to a posterior

that is a mixture of m (multivariate) normal
distributions, the introduction of an m x n  transition
matrix {II..(t)} leads to a posterior at time t, 0.. |y"̂ ,
which is a mixture of mn normal distributions. This obviously
creates an explosive situation, for example if we were to
introduce n new models at each time stage, then after time

TT we would have a posterior of n components, assuming that 
we had started from a single component at time zero. 
Consequently the model becomes prohibitively cumbersome, 
with more and more computations required, each component 
having to be updated via the Kalman Filter. In this 
chapter we comment briefly on the Harrison-Stevens Class 
II approach to this problem, as outlined in Chapter 4» and 
then propose a different solution.

.2 Problems with Class II Models

If {n^j(t)} = {R^^} is an n x n  matrix independent of 
t, introducing n models each time, then the Harrison- 
Stevens collapse procedure reduces the number of models 
entertained from n . to n each time so that the posterior 
is an n component normal mixture. If we denote the history 
arising from model j at time t and history i at time t - 1
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by then as pointed out by Gathercole and Smith
(1984), the Harrison-Stevens approach can be thought of 
as a collapse of the n histories (t)} into n groups
{G^j under the relation

Gj = (Mrs s-t. Dgg(M..,Myg)=0)

where D (M..,M ) is the binary distance measure11Û ij rs

= 1 othe rwise.
Each of the n groups G  ̂ is then represented by a single
normal density together with an associated probability as
detailed in Chapter 4» Such modelling assumes that the
underlying system vector has the same dimension for each 

2of the n elements in the precollapsed mixture, if
necessary this can be achieved by embedding the models
using the largest system vector. If the dimension of

2this vector is k say, then each of the n elements in the
mixture corresponds to a surface in k-dimensional space,
or alternatively to n points in k ( k + 3 ) / 2 + l  dimensional
Euclidean space. k(k + 3)/2 being the number of free
parameters in the normal distribution, the 1 being for its
associated probability. Seen in this light, the collapsing
procedure is a clustering algorithm which forms n clusters 

2from the n points or surfaces, the cluster centre being 
chosen to preserve the information within the group. As 
remarked in Gathercole and Smith (1984), using the method 
of moments as Harrison-Stevens do to chose the cluster 
centre means that the increase in uncertainty incurred in 
representing a cluster by its centre is represented by an 
increased variance.
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The weakness of the above collapsing procedure is
that the clusters are determined solely on the labelling 

2of the n histories or points, and takes no account of how 
'close' or 'far apart' the points are under sensibly 
defined distances. Consequently it is not difficult to 
construct examples where such a collapse would not be 
sensible, for instance Gathercole and Smith construct 
an example where multimodal posteriors are approximated 
by unimodal densities so that the approximation is not 
even topologically equivalent to the uncollapsed mixture. 
These authors propose a decision theoretic solution to 
such problems. The disadvantages of such a method, apart 
from the fact that the clustering is not necessarily 
defined in a natural way, is that it depends on the 
appropriate loss function. Although ultimately any 
decisions in a Bayesian framework depend on the decision
makers loss function, the Gathercole-Smith approach 
actually alters the form of the predictive distribution, 
so that using different loss functions would require 
complete recalculation. W e  now outline a whole class of 
collapsing procedures which are not subject to such 
restrictions and which have a readier interpretation in 
terms of a clustering procedure.

The procedure given has links with that of Sorenson 
and Alspach (1971.) , where a justification for using 
Gaussian sums is given, and a simple method of collapsing 
is given.

8.3 A Class of Collapsing Procedures

Consider the simpler case examined by Harrison and 
Stevens where IT^.(t) is independent of i, that is the
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probability that model j is in operation at time t is 
independent of the past history. At time t we have a 
posterior of the form 

N
Ï where = 1 for some integer N and we

wish to approximate this by a normal mixture with a 
smaller number of components, say 

N*
I Pk^(^k'-k^ with ^pg = 1 and N* < N .

To achieve this we adopt a clustering procedure by using 
a criterion to form N clusters and then defining cluster 
centres to summarise the information contained in the 
clusters. Two ways in which we can do this are

Cluster Method 1

If we define f^ = k* —k^ where each N ^ s
an r dimensional Normal distribution then f, is an L— k

integrable function with f^ = p^.
Let d(f,_g) to be a metric on the space of L^ integrable 
functions, and let C be a clustering mapping which is 
complete in that it is a mapping from i ,j onto 0,1 such 
that

c(d..) = I 0 if i ,j in the same cluster 
j 1 otherwise .

Then we can define a clustering procedure c(d) to induce
clusters or groups G^,

Gk' = (fk'fm I = 0}.
It is then a simple matter to define cluster centres by 
analogy with Harrison and Stevens.
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Cluster Method II

Alternatively we can treat the associated 
probabilities separately, so that we perform a clustering 
procedure on the probability densities f^ = N ( , C_̂ )
enabling us to use a metric d on the space of probability 
densities together with a clustering prodedure c(d). To 
avoid too many comparisons we can discard those models 
whose associated probability falls below a critical value, 
or as in Gathercole and Smith (1984-) omit those whose odds 
ratio with respect to the most probable model falls 
below some value; in both cases distributing the probability 
among the remaining models.

In effect we then have four steps
1 Discard those models whose odds ratio with respect to 

the most probable falls below a specified critical 
value and adjust the probabilities accordingly

2 Calculate a distance matrix using a probability
matrix d

3 Perform a clustering procedure to produce m. clusters
1 Calculate the cluster centres.

It is important that the clustering mapping is 
complete in that it produces a number of clusters; for example 
agglomerative clustering produces chains of clusters, so 
that our clustering C might consist of an agglomerative 
procedure together with a stopping rule, which produces a 
definite number of clusters.

It can be seen that provided we define suitable 
metrics such procedures can be applied to general 
mixtures - not just Normal mixtures.

-200-



We shall use the second cluster method, which has 
certain advantages in that we can use more tractable 
metrics, and also mixtures such as p^f + p^f would be 
clustered, since (f,f) has distance zero, which is what we 
want. Conversely method I would define in general non
zero distance between p^f and p^f and so not necessarily 
cluster them together. The disadvantage of method II is 
that it is independent of p^ and p^» and there might be 
cases where p^f and p^g are close whilst f and g are not.

The clustering method used in Chapter 9 is 
agglomerative clustering based upon furthest neighbour 
distance. That is we start from single objects, find the 
two nearest ones and make them into a cluster. The 
distances of all objects from this cluster are calculated 
and the process is repeated by joining the two nearest 
objects (clusters) until all the clusters are greater than 
some specified distance apart. The clustering then stops. 
'Furthest neighbour' distance defines the distance between 
two clusters I, J as

D = max d . .
lEl.jcJ

where d^^ is the distance between two objects. In our 
applications objects are density functions.

8.1 Suitable metrics

We now look at some metrics d̂ .̂ suitable for use in 
the above framework. We can consider in complete generality 
metrics defined on the space of all probability measures 
M defined on (fi, B ) where ^ is a polish space and B the
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Borel a -algebra; we shall let ^ be r dimensional 
Euclidean space. The weak or star topology is the weakest 
topology on M such that the map

dF

from M into H  is continuous for all bounded continuous 
functions . Losely speaking this is the smallest 
topology under which the above mapping is continuous. In 
fact we can find metrics which metrize the weak topology; 
the following results are taken from Huber (1981):

Lemma

For Ü  =  IR, the Levy distance between two distribution 
functions given by

d^(F,G) = inf (e|VxF(x - e) - £ < G ( x ) ^ F ( x + e ) + e } 
metrizes the weak topology.

For more general 0 (remember that we require = jR ̂ ) 
the somewhat complicated Prohorov metric metrises 
the weak topology, as does the bounded Lipschitz metric

dg^(F,G) = sup I j^dF - ^ d G  |

the supremum being taken over all if; satisfying
|^(x) - 1)(y) I ^ d(x, y ) where d is any distance function on
bounded by 1.

Of course many metrics do not metrize the weak 
topology, such as the Kolmogorov distance defined on the 
real line by

dk(F,G) = sup|F(x) - G(x)I.

The first two metrics have more use in a theoretical 
context, such metrics being the 'least discriminatory'. 
However we require distances which have a closed form 
solution, since the purpose of introducing the metrics is
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to perform a clustering procedure which will enable us to 
reduce the computational aspect. Even the Kolmogorov 
metric depends on the distribution function. We shall 
therefore consider metrics based upon probability density 
functions f and g which are easier to handle. There is no 
loss of generality in the restriction since even in non- 
Normal cases we shall want to assign meaningful 
distributions to error terms, which in practical terms 
means assigning density functions.

Some discrimination measures - quantities which do 
not necessarily obey the triangle inequality requirement 
for metrics - are given by Rao (1976). All and Silvey (1966) 
give four conditions that such measures satisfy, and produce 
a theoretical form. Examples are, for densities f, g 
defined with respect to measure u
(1) The Minkowski distance

j I f (x) - g(x) I ̂ du

(2) Kullbaok-Lleber's divergence

■) 1/t
f t > l .

J = ( f - g) log f do .

This widely used measure is not a metric since it does not 
satisfy the triangle inequality .
(3) The Hellinger distance

h = j | ( f i - g b ^ d u  Y

=  I 2 ( 1 - j /fg du ) . ̂  .

The quantity -log .|/( fg) : is some times called the Hellinger
dissimilarity coefficient. This distance is a special

’ 1/. 1/
case of Jeffrey's invariant = |f - g ^ | ̂  du i
(4-) Mahalanobis' D^, which for two normal densities
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1=1,2 is

(El - Eg) —1 —2 (El - E2^ •

Both (l) and (3) are true metrics as is (4) if .
Although the triangle inequality is not so essential in 
the context of discrimination, it is important for 
performing a cluster analysis. We shall use the Hellinger 
metric; this satisfies the requirements of Ali and Silvey 
and has a convenient form for multivariate normal 
populations :

Lemma 8.1 (Matusita)
If f^ W(]j^,Z_^) i=l,2 then

P A /(fif2) III I1^~2*  ̂ exp [-i(

(8.1)
-l"^-2

Proof
From Matusita(1965)

P = * exp[-i(u^^P^u^ + 112^12^2
MZi+Pj)! -  (ElEl+E2E2)^(£f £2^ '^(:lEl+Z2E2))]

where P. = I. — 1 — 1
-1 But

or
-1^1 -2’̂2 -̂l'̂ “ 2^ül -2^Ü2 “

(Fq+£2̂ 112 “ l^Hl “ Ü2^ '

On substituting, the exponent becomes

+ U 2 % > ^ 2  ■ ((Ei+Iz^Ul + E 2(p2'1‘i^F(P,+P2) ^ x

X  ̂(-l'''-2^Ü2 “1 ^Hi "Ü2^^^
which on simplifying
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- H u 2 - Uq) F2^-1 - 2  ̂ -1^22 “

= -è(Up - U^) (I^ + Ig)"^(u‘̂ 2 m
-l/_ -1 -1 \ -1 r. “1

±L2 ■ Ü1

because = (Zp +1.)"^. So1'

exp[-i((u2 -Uq)^(Zq+Z2) ( E 2"kl)}]P =
+ III 1,1■1 1 -2

exp [-i{(£2 - + -2^'^(Z2 ' E l ^  ]
l i d l + I g U

which completes the proof. The last equality follows from

U(I, + % )  I®.

So the Hellinger distance can now be calculated 
using the above result in h = {2(1 - p)}^.

The exponent is ^/8 where is Mahalanobis' .
In the special case of equal covariance matrices 
then

h^ = 2(1 - exp[-|{(u2-Uq)^Z^"^(u2-Uq)}]) 

which is a monotone function of .

(8.2)

Example 8.2
In the case of univariate density functions, using 

Lemma 8.1 with the variances for gives

(8.3)h^ = 2(1 - exp
y  3^ 2'

1 (u^ - )

thus h^ is a function of the difference in the means of 
the two distributions. The exponent depends upon the
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reciprocal of the sum of the variances and is premultiplied 
by a term depending on the ratio of these variances.

In the two special cases Uq~U2> ‘̂ l“^2 h&ve

h^ = 2(1 -/ ) (8.4)

and
1 - exp(-j(^l '

I 20.2 ;
h^ = 2 (8.5)

'1
respectively.

We have not yet specified what these measures or 
distances will be applied to. In many cases the natural 
quantity is the posterior distribution of the system 
vector, however we can also use the predictive 
distributions. Smith and Gathercole (1984) suggest the 
latter and are concerned that one should not combine, or 
cluster, distributions which are not topologically 
equivalent. In other words one would not wish to 
approximate a multimodal distribution by a unimodal one. 
In fact this criteria can be translated into a condition 
on the clustering distance as we now demonstrate in the 
univariate case.

Theorem 8.3
Let f^, f2 be any two univariate normal density 

functions, and let h=h(f^,f2 ) be the Hellinger distance 
between the two distributions. Then if

h' < 2(1 -(ffyi) (8.6)

the mixture pf^+(l-p)f2 is unimodal for all p, O^p^l.
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Proof
Suppose that (8.6) is satisfied, then from (8.3)

2a-, Op

We claim that

exp ( Uq- Up)^
■i ^ (27)

2 e - i

(8.7)

(8.8)

so that from (8.7) and (8.8)

(n, -
-i {-it 2 ) 2 Ir

1

which implies that (Uq-Up^^ < — ^apa|) (8.9)

But (8.9) is a sufficient condition for the normal mixture 
to be unimodal (Eisenbergers result quoted by Johnson and 
Kotz 1970 p.89) so that the theorem is proved. It only 
remains to prove (8.8). Write o^=ka2 and consider

2k 27 kZf(k) - /(fcT+i) ( F + D ^ J

defined on 0<k<™. f(k) is differentiable and

(8.10)

d log f(k) 
dk

(1-kH
2(k=+l)

1 - 2 7  Jq_ 
k 4 (l+kZ):

(8.11)

which has roots k=l and 4(1+k^)^=27k^ at which points f(k) 
takes the values exp(-27/64) and 2(27e) ^ . But f(k)+0 as 
k-̂ 0 or k-)-oo so that

which establishes (8.8).

This theorem assures us that if h^ < 2(1 - 2
(27)

e~ i )
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that is h< 0.796 (to three significant figures), that the 
mixture cannot be bimodal. A slightly stronger result can 
be proved if namely

Theorem 8.4

If 0^ = 0^ = a then

h2 < 2(1 - e"27/6l) (h<0.829) (S.12)

implies that the mixture is unimodal.

Proof

This follows from the proof above or directly.using. 
(8 .5); if (8 .12) holds then

expf - i  (u 1 -u?) l>e"
1 2a^ )

so that 2 2
(u 1 -U2) < £2. ^ which is (8.9) with ai=02=a

8 2 2 2
The converse is not so relevant: if (ui-Pa) >80% O2

oH+a- ^1 ^^2
then there is a value of p for which the mixture is bimodal 
One can show by arguing as above that this condition 
implies that

O 2 e 
2 , ̂  2 xp

2
-i(ui “ I-12)

0^+02^ O i ^ + O z ^

in which caseh^ > 2{1 - 2"^e"^} 
so h >0,830.

8.5 Continuity Properties

Theorems 8.3 and 8.4 show that the clustering 
procedure applied to Gaussian mixtures with the Hellinger 
distance has desirable properties. We now establish 
certain continuity results that apply when the Kalman
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updating procedure is used, but first we need to prove two 
subsidiary results.

Theorem 8.5

Let X be a I x n  row vector, not identically zero and 
let _Ĉ , Be any two positive matrices. Then

(8.13)X Ç g X iÇiZat
X(C^ + Cg)X^ Çl +22

2 2

Proof

If R is a non-singular matrix. and if
= R R- , i = X R then since

IÇ1Ç 2 I
2 iDqDgl

Ç1 + Ç 2 R ( Ç i + Ç g ) R ^ P
2 2 1 2

(8.13) is equivalent to | y || y Dg y'̂ 1-2 (8.11)

y(£i + D,)y2'i. IZi+Zal

But there exists a non-singular matrix R such that
R C-, r '̂ = I and R = diag{ X-, . . . A } where A. are the 1 — —  2 — ^ 1  n 1
eigenvalues of . Using this transformation in . 
y = X R  = (x^ ••• x^) say then (8.14) becomes

(I )( I )

jl (À. + D x / j2l2 = 'n(A^ +1)
(8 .15)

The left-hand side in unaffected by the scaling of x^,
2so that on putting I x^ = 1 ,  we require to prove
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I HÂ  (8.16)
+ 1) X. Jn(Â . + i)] ^

2
Now 4z/{(z+l) } has a single maximum at z=l, so that on 
any bounded interval it has a minimum on one of the

n Q
boundaries. Now since I =1, then x^ is a convex 
hull (on the line) and so is a bounded interval whose end 
points are two of the Consequently

2
4-lAi Xq_______  2 - for some A.. (8.17)-L__
(lA^x.'^ + l)^ (Aj +1) J

But 4A<(A+1)^
n

so that 1 >. n ■ 4 A.
~ i=l --- 1

which combining with (8.17) gives
2 n1 lÂ. X 1 HA. i— ± —  > -£

(lA^ x^2+ 1)2 n(A^ +1)2

this proves (8.15) and so the theorem.
The second result that we require can be proved in a 
similar fashion:

Theorem 8.6

Under the conditions of Theorem 8.5, the matrix
ii
(8.18)

F 0̂ 2 ) ^ is positive semi-definite.

Proof

Without loss of generality we can put X = X P R non
singular, and invoke the simultaneous diagonalisation of 
quadratic forms as above, so that it is sufficient to prove
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/ \
I t r X

r
1 t A^

■ ' 1 +
V J A I /

-1
X' X > 0

(8.19)
for all row vectors X. But on premultiplying (8.19) by a

Trow vector y = (y^'... y^) and postmultiplying by y we have 
the quadratic form

Ï y  I  (I y ^

1 + Xf I (i + x^)

which is non-negative by virtue of the Cauchy-Schwarz 
inequality, so that the theorem is proved. In fact the 
matrix of (8.18) is positive definite provided that n is 
larger than 1,

We are now in a position to prove certain continuity 
results, where the metric d refers to the Hellinger metric 
defined above.

Theorem 8.7

If d(8n , 8g) < £ then d(X 8 , X 8^) < £ where 8. is—J. —2  1 ---- 2 — 1
normally distributed, N (m^, _Ĉ ) , and X is a fixed I x n
matrix, so X8.^N(Xm.,XC.X^).

Proof

By definition
. , r/ \T,_ . _ \-l, \ lAl A<£ 

(8.20)
1̂ 2 ̂ 1 - i 2 " 1 "̂ — 2^ ^(%2 "

Ç i + Ç a U

It follows from Theorem 8,6 that

exp [ - i  ( m^ “ iïiq) ̂  X ̂ {X( C_̂  "** — 2^ 1 (m^ - m^) ]

^ exp {-Î (m^ - (£q'^£2^ 2“~1^^

which combined with (8.13) gives
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-T.i

K ç ^ + ç p x ^  *
2 - 1 ' -1-2 ■2 - 1 '

-2 -I'-' .

Ç 1+Ç2
(8.21)

Substituting (8,21) into. (8,20) proves the theorem.

It now follows immediately that 

Corollary 8»8
TThe mapping N (m,_C) N(Xm,XCX ) is continuous with 

respect to the Hellinger metric.

If we now consider a univariate normal distribution 
U(u,C) then we can show

Theorem 8.9
If V is non-negative then the mapping N(p, C)>N (jj , C+V) 

is continuous with respect to the Hellinger metric.

Proof
If positive then

(C^ + V)^ (Cg + v)^ (cz^g)^

(C, + Cj + 2V)® (c^ + c p

This follows from

(8 .22)

(C^ + CgjZfC.Cg + V(C^ + Cg) + V^} > {(C^ + Cg)^ + iv^ +

+ 4V(C^ +

which is true since V(C^ + Cg) ( - Cg)^ + V^(Cj^ - Cg)^ > 0.
Also exp - i J (Ul-Up)^ I > exp

( c^tc^tzvl
- è j  ( p 2  - h , ) 2

C1 + C2
(8.23)
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Combining (8.22), (8.23) with the Hellinger distance 
function (8.3) for two univariate normal distribution 
N(m^,C^),N(m2 > C^) gives

d{N(wi,Ci +V), N(p2,C2 +V)} < d{N(u^,Ci),N(w2,C2)}

which is a sufficient condition for continuity of the 
mapping, and the theorem is proved.
By combining the last two results, we can now prove the 
following important two theorems.

Theorem 8.10

The mapping is continuous with respect
to the Hellinger metric.

Proof

From Chapter 4» if ^(iEq ) then

,F g^c ^(g '^)^f ^ + V) 

where V = F G^"^ W( G*^)^"^F^ + F ^ W f '^1 V,
so that defining X = F G^ , and invoking Corollary 8.8 and 
Theorem 8.9 proves the results since the composition of 
continuous functions is continuous.

This theorem shows that if and are close, then
t tso are the predictive distributions ypq+j^l y .̂nd ypq+i^ly » 

so that it is sufficient to see how close two system 
vectors and are. In fact with the assignments in 
the proof of the above theorem it follows from the proofs 
of Theorems 8.6 and 8.9 (using an obvious notation ) that

d{ N(Xm^,X^x'^+ V) , N(X Bg.XÇg x'̂ +̂V) }

< d{ N(X m^.Xg^ x1'),N(Xmg , XCgX'^) }
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< d{ N(m^, C^) . , NCra^ ,0^) }•

So the predictive distributions of the observations are 
closer together than the system vector, that is

Finally we shall show that for univariate DLMs the 
Kalman updating procedure is continuous with respect to 
the Hellinger metric. In our clustering procedure, if at 
some time two components N(m^,C^) and N (m2'—2  ̂ are close 
then we would like posteriors corresponding to each of 
these components at later time stages still to be close. 
This means that we do not lose much by joining the two to
gether; if this condition does not hold then the clustering 
procedure would be dubious. A partial answer is provided 
by the limit theorems of Chapter 4 which say that if the 
system is observable and controllable then the effects of 
prior knowledge decay. This means that if at time t=0 
there are two priors N(m,_C^), N (m2 Ĉ̂ p) then under the 
same DLM {F^,G^,V,W} as t increases the posteriors will 
converge to a common limit. However in the univariate 
case we shall prove a more specific result:

Theorem 8.11

For a univariate DLM the Kalman updating procedure 
is continuous with respect to the Hellinger metric.

Proof

If at time t the system vector posterior is N(mu,C^) 
then at time t+1 the posterior is N(mq>*^q) where

L = gm^ + f(g^C^+W)(y-fgm^) 
fZgZC. + f^W t V
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Vmj* + fyCj* (8.24)
f2C_*+V, c *+v

Cl = g^Ci + ¥ - f2(g^Ci+¥)
‘2 _2f=g=C +f2W +V

I V  (8.25)
f=C +v

where

( 8. 26)
C .* = g:C. + V.

Without loss of generality f can be taken to be 1 (for 
example by putting V=f^V and y=fy in (8.24), (8.25)) so 
that

i. = Ym.* + y C p  (8.27)
c.*+v c.*+v1 1

Gi = VC^*. (8.28)
c . *+v 1

Suppose that

d{ N(mu,C^) ,N(m2»C2) } < e. (8.29)

then from Theorem 8 .10 with Fe I

d{ ¥(%!*,Cl*) ,N(m2*,Cg*) ) < e. (8.30)

For simplicity drop the * suffix in (8.27) and (8.28).
Then by the triangle inequality

d E d{ N(ii,Ci) .tfCSg.Cg) }

< d{N(ni,Ci),N(m2,Ci)} + d{H(Sg,Ci),N(ig,Cg)}
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<  / 2

(m,-m^)^V^/(C.+V)^
J. - exp{-4 2VCi/(Ci+V) ^

+ /2 1 - ' { ^ 4

è

t c_2I c tv C2+V>

(8.31)

The first term is

/2

< /2

because V

1 - exp

±  - exp

< 1 .

- i V(Kl-%2)
2C^(C^ + V)

JL (m^ - m^) 

2^1
( 8.32)

+ V

If is the maximum of C^, then (8.32) is 

1 - exp ( - è (%1< /2

< /2

C1 + C2

±  - 2/(CiCg)
-0 7 + 0 7

exp J- ï__xi(in, - m„)
O1 + O2

= d{N(iHiCi) ,N(m2,02)} < z . (8.33)
Now (Cl + V)(C2 + V)(Ci + Og)^> {20^02 + V(Oi + Cg)}^ (8.34)

because on simplifying
{V(Ci + Og) + CiCg}{(0i + 0g)2 . 4Ci0g} > 0.

(8.34) implies that (Ci + Og) > /(Ci + V)/(Cg + V) / ^i + Cg

giving
/ (CjCz)
/{(Oi + V)(Og + V)) 

■Oi -+ Cg

/(CjCz)
C.+Co

^1+V Og+V

(8.35)

Oi+V Cg+V

Using (8.35) means that the second term in (8.31) is

- 2 1 6 -



< /2 J. - i2/(CiCg) ' <  d{N(mi,Ci)N (iUg.Cg)} ̂  E (8.36)

from (8.29). Thus (8.31), (8.33), (8.36) imply

d ^ 2e

which with (8.29) gives the continuity condition, as 
required.
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CHAPTER 9 

CASE STUDIES

9.1 Introduction

We now show how some of the theory of the previous 
chapters could be applied in a practical context, by 
considering two Time Series. One is monthly U.K. chlorine 
production 1970 - 1982, the other is sulphuric acid 
production 1963 - 1982. The analyses given are not 
claimed to be definitive, but rather are used to illustrate 
by means of simple examples the way in which state-space 
models, Bayesian forecasting and a suitable collapsing 
procedure can be used with traditional techniques.

There are occasions when detailed analysis of a 
specific time-series is not possible, perhaps because of 
cost or time in a commercial setting. Consequently some 
kind of automatic procedure is desirable, and this is a 
possibility if we use the collapsing procedure of the 
last chapter and keep a number of models under consideration 
(in a similar fashion to the Class II models of Chapter 4). 
Traditional approaches to the problem, including many 
based upon Box-Jenkins models, tend to rely on a time- 
invariant model, fitting one model throughout the time 
period. But many time series do not behave in a 
particularly nice way, and different techniques are 
therefore needed.

The data are plotted in Figures 9-1 and 9.2. Certain 
features common to both series stand out: the extreme
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value in January 1979 which looks like an outlier 
statistically, and the very different character of the 
data after 1974-. Both of these phenomena have ready 
explanations: in 1979 there was a haulage strike and 1974 
was the start of the oil crisis. Indeed these two series 
are typical of many time series which are connected in 
some way with the economy, characterised by a period of 
gradual growth up to the time of the oil crisis when 
suddenly all of the underlying 'steadiness' or 'stability' 
went. This fall was followed by a period of recovery 
until a second big drop around 1980 caused by the world 
recession.

9.2 Analysis of Sulphuric Acid Data

The sulphuric acid data has slightly more clearly 
defined features than the chlorine data, for example 
different underlying models appear more clearly. In a 
retrospective data analysis we might be interested in 
determining where a change point occurred possibly fitting 
different models either side of it. If we were fitting a 
Box-Jenkins ARIMA model then the outlier would be removed, 
for example by replacing with its expected value. 
Aternatively we might be interested in some form of trend 
analysis.

If on the other hand the data unfolds with time, then 
the 'obvious' features do not appear to be so until well 
after they have happened. We wish to be able to make 
statements about what will happen before the observations 
become available. In this case, as emphasised in Chapters 
2 and 4 the relevant criteria are not significance tests
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et al but rather how good the forecasts are.
If we only had a few observations to go on, a good 

starting point would be a steady model or linear growth 
model as described in Chapters 4, 6 and 7. This also 
appears to be a reasonable assumption if the correlogram 
of the data is examined, together with those of the 
differenced data - shown in Figure 9.3* These are of 
course based upon all of the data. The correlograms of 
the data transformed by taking logarithims are practically 
identical, so that nothing is gained by this transformation 
There is perhaps a suggestion of seasonality, indicated by 
the somewhat larger value at lag 12, which is not 
surprising given the nature of the product.

In the U.K. Sulphuric acid is produced by burning 
sulphur rather than as a by-product of other processes as
is the case in some countries, so that it is very much
tied to demand. But demand for some of the products 
produced from sulphuric acid, such as fertilisers, can 
fluctuate greatly and depends upon the time of year.
However the introduction of seasonal and indeed growth 
terms complicates an analysis designed primarily for 
illustration, so we shall concentrate on the simpler 
steady model.

The simplest steady model of Chapter 4 is

yt = (9.1)

®t = ®t-l + '̂ t (9.2)

and the extended steady model introduced in Chapter 7 is

=  9^ + 8^^^ + v^ v^^N(0,V) (9.3)

-222-



SULPHURIC ACID DATA

0 T T f r n  0

- 1  I-

CHLORINE DATA

Tjprrr

DIFFERENCED DATA

-1 — 1 *■

DIFFERENCED CHLORINE DATA

1 r TWICE DIFFERENCED DATA
FIGURE 9-3

CORRELOGRAMS OF DATA

- 1

-223-



t-1 + "t ( 0, W ) (9.4)

with the updates given in (7.79) and more generally in 
(7.79), (7.80) if

v^ N(m^ , V) 
w^ 'b N(m^ , ¥) .

(9.5)
(9.6)

As in Chapter 7, equating the autocovariances of the 
differenced series y^-y^ ^ gives

Yg = 2¥ + 2V
Y^ = ¥ - V

so that W = (y q + 2y ^)/4

V = (Yq “ 2Yi)/4.

An increasing level can be accounted for by putting

(9.7)

(9.8)

m = &(mean of differenced data).
" (9.9)

Descriptive statistics for the data are shown in 
Table 9.1

TABLE 9.1
Sample Statistics for Sulphuric Acid Data

Raw Data Differenced Data
Sample size 217 216
Maximum 11439 3106
Minimum 5538 -3878
Range 5901 6984
Mean 9223.32 -1.398
Variance (unbiased) 751027.56 420251.78
Standard Deviation 866.62 648.27
Median 9200 12.5
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The estimated first two autocovariances of the 
differenced data are

Cq = 4-18306.17 
c^ = -113999.03

so that using the method of moments gives the following 
estimates of V and W - from (9.7), (9.8) -

V = 161576.07 (9.10)
W = 4-7577.02. (9.11)

The observations and one-step ahead predictors using
these simple estimates of V, W are plotted in Figure 9.4-.
The other parameter values used were m = m = 0  with the 

^  V w
prior for 60

~ N(4.000 , 6 X 10&) (9.12)

where the large variance expresses our uncertainty of the 
initial mean.

The forecasts exhibit the typical characteristics of' 
IMA(1,1) models in that they lag the data and take some 
time to adjust to sudden changes in level or to outliers.

7The error sum of squares for this model is 8.088 x 10 .
Accounting for the slight fall in level of the 

differenced data by putting m^=(-1.398)/2 = -0.669 gives 
very similar results, which is not surprising considering 
the small size of this terra in comparison with the values 
of 0^. Indeed the error sum of squares is the same to 
four significant figures.

For convenience we shall index the data by the integers 
rather than the year and month, so that t=l corresponds to
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October 1963, 4- to January 1964- and so up to t=217 for
October 1981. Features of the data that stand out are a
more or less steady evolution from t=l to t=135, with a 
slight growth. A drop in level from time 136 to 14-3 is 
followed by a rising level from t=14-4- to 200 with a 
dramatic outlier at t=184-. The level then drops slightly 
around t=201 to 202 and a steady model continues for t=203 
to 217.

It is clear from (9.3) - (9.6) that a non-zero m^
term allows a deterministic rise or fall in level, which
enables simple growth to be modelled rather than using the 
linear growth model, which involves an increase in the 
dimension of the system vector. With the benefit of hind
sight we can perform a piecewise analysis by breaking the
series up into the five parts mentioned above (apart from 
the outlier) and then using (9.7) to (9.9) to calculate
values of V, ¥ and m for each of the constituent series.w
The error sum of squares then reduces to 7.15 x 10?, about 
a 10^ reduction. However this piecewise approach is only 
really possible as a retrospective analysis, while we are 
interested in improved forecasting.

We now consider the period t=181 to 190 in more detail 
to see if it is possible to cope with the outlier in a
sensible way without prior knowledge. We shall show that
the use of Class II models with a collapsing procedure goes 
some way towards achieving this.

To begin with we use the steady model (9.3), (9.4-) 
with parameters (9.10), (9.11) and prior (9.12). The 
observations and one-step ahead predictors for time t=181 
are given in Table 9.2. The extreme value at time 184.
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drags the one-step ahead predictors down, and they remain 
low for the next three time-periods.

The filter behaves in such a manner because the error 
distributions are normal, and the normal distribution is 
'outlier-resistant' - see 0 'Hagan (1979) - that is it tends 
to give outliers too much credence. A simple distribution 
which gives some protection against outliers is a normal 
mixture such as

v^ 'x. 0.9 N(0,V) + 0.1N(0,9V) (9.13)

say. So there is a small probability that the error term 
comes from a distribution with a much larger variance than 
normal, and overall the error distribution is 'heavy- . 
tailed'. Similar distributions play an important role in 
the related field of robust estimation (Huber, 1981).

W e  now have a structure that falls into the class II 
models of Chapter 4-. This is because using an error term 
(9.12) for v^ is equivalent to postulating two underlying 
steady models (9.3), (9.4) with in both cases W given by 
(9.11), but with = V in (9.10) and = 9V. At each time- 
stage the transition matrix between the two models is

= /0.9 0.l\ (9.14)
 ̂ \0.9 0.1/

so that at each time stage model 1 has probability 0.9 of
being in operation, independently of the past, and model 
2 0.1.

On inspection it can be seen that this distribution 
is not really heavy-tailed enough to cope with the extreme 
nature of the outlier in this example, but it is one that 
would typically be used without such a-posteriori knowledge
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of the data. This is the reason that it is used here.
Starting from a single prior at time t=180 means 

that there will be 2^° components at time 190, and we 
therefore use a cluster collapsing procedure of Chapter 8 
to avoid this explosion. The resulting predictors to the 
nearest integer are given in Table 9.2 and Figure 9.5*
The predictors respond much better to the outlier than 
the 'ordinary' predictors, obtained using the steady 
model as above, in that it is largely ignored. The error 
sum of squares for t=181 to 190 is reduced by some 
and the overall sum of squares is reduced by 6 , i % .

TABLE 9.2

Comparison of Predictors for Time t = 181 to 190

Time Observation Ordinary
predictor

Predictor using 
Cluster Collapse

Harrison
-Stevens

181 10277 10096 10096 10096
182 9858 10223 10218 10218
183 9416 9966 9975 9975
184 5538 9579 9598 9599
185 8644 6736 8923 8851
186 9585 8078 8713 8695
187 9916 9138 9291 9284
188 9607 9685 9720 9717
189 10485 9630 9464 9645
190 9592 10232 10197 10197

Error sum 2.44.60 X 10^ 1.9273 xlO? 1.9280 x 10 ^

of squares

-229-



FIGURE 9 - 5

inc_o-MO
-  I-- f

■aCDc_
CL

coen- j— f
c_CDCLSOCJ

Q.

ro T3 ai ai
CL

tnco

s

o§ oooo 0
1

ooo oC3s
-230-



At time 180 the posterior of the system vector was 
taken from the the simple steady model with the parameters 
as above. As mentioned in the last chapter the clustering 
procedure used the distance between clusters defined as 
the greatest distance between elements in. the two clusters 
(based on the Hellinger metric), with the nearest clusters 
being progressively joined.,

A Harrison-Stevens Class II collapse is also 
included for comparison, and which gives almost identical 
results. This is probably because there are only two 
alternative models introduced at each time stage, and most 
of the time the posterior is dominated by one or two 
components. In such circumstances summing over the past 
histories will not be so bad, as this example illustrates. 
The reasons why this is not always the case were given in 
the last chapter and illustrated in Gathercole and Smith 
(1984).

We now investigate the effect of the collapsing 
procedure a little more closely. In §7.7 we remarked 
that the model (9.3), (9.4) can either be analysed as a 
DLM with F = (l l ) , G = / l  l \ , W = / W ^  0 \, or by using

\1 0/ \0 0/ 
the modified updates given in Example 7.11. In the 
following we shall use the former description, so that 
the posterior of the system vector is effectively

h - 1
At time 183, preceding the abnormal observation, the 

posterior is a three component mixture Zp^N(m_,C^) where
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the parameters are

Si c. — 1

4789.0\ / 43955.9 13212.4
4856.0/ \ 13212.4 24240.7
4937.6\ 1 80610.5 36877.3
4953.2/ \ 36877.3 39372.0
4996.0\ /104227.5 62092.0
5013.0/ I 62092.0 66292.4

.933

.064

.003

so that the most probable component dominates the-mixture, 
this component also has the smallest covariance matrix for 
the system posterior, corresponding to the 'normal' size 
V.

The predictor at time 181 is obtained from the 
usual relations ( as in 4 .23) as

.933 X 2 X 4789.0 + .064 x 2 x 4937.6 + .00] x 2 x 4996

which is 9598, the value in Table 9.2.
At time t=181, the observation is 5538. Because two 

models are introduced (via (9.14)) the uncollapsed 
posterior now has six components, with parameters

1

4

Pi m .— 1 C.— 1
1 X  10

3x10

8 X 10

-6

-6

-7

0.951

^367.2
3^66.4
^234.1
3622.2
'3174.6'
3513.2
4462.7
4577.3

43848.9 13016.2
13016.2 23880.7
46176.6 17286.7
17286.7 31715.7
47098.8 18978.7
18978.7 34820.2
8O59O.3 36855.8
36855.8 39349.0
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0.047 U i i l , 2 \  /104288.5 62157.2 \
1 4554.3/ I 62157.2 66362.0/

0.002 / 44-02.1 \ 4 117639.0 76410.8 \
\ 4512.5/ \ 76410.8 81579.8/

The new observation means that there is an extremely 
small probability that the current model has a small 
observation error (V^eV), so that the posterior 
probabilities of the corresponding three models are small. 
Note that if these posterior probabilities are not small, 
such as is the case when there is no alternative model, 
then the means of the system vector are drastically reduced 
from around 5000 to 3000, giving a predictor of the next 
observation of about 6000. This is what happends under a 
single steady model. With the collapsing procedure these 
three components are removed because of their small odds 
ratio, and the probability distributed amongst the 
remaining components.

Using the Hellinger distance function gives the 
distance between the three models as

0.1896 0.2841
0.1057

It follows that components 4 and 6 are the furthest apart, 
and 5 and 6 the closest. Components 5 and 6 are closer 
together than 4 and 5 because although the means of the 
latter two are more similar, the covariance matrices are 
not.

The cluster cut-off distance was set at 0.2 in 
the above analysis, mainly for pragmatic reasons: it
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reduced the mumber of models reasonably, and also in much 
less than the upper bounds discussed in the last chapter. 
As we have already mentioned, the choice of this figure 
needs further investigation. With this assumption 
components 5 and 6 are clustered together,but 4 is not 
further added because using furthest neighbour distances, 
the distance of 4 from {5,6} is 0.2841. This results in 
the collapsed posterior

0.951 N

+ 0.049 N

4462.7
4577.3

36855.8
39349.0

62908.4
67164.0

80590.3

4439.3 Y ,/104992.11
4552.3 / \ 62908.4

The second component comes from joining 5 and 6 where 
the 5th component has the predominant effect in the mixture 
because the cluster centre is formed by weighting the 
points according to their probabilities.

Table 9.3 shows how the number of models involved 
at each stage alters

TABLE 9.3 : Summary of posterior component evolution

Number of 
Time models after 

collapse
probabilitie s

Most probable 
mean & variance 

of 0

181 2 .098 .052 5111.6 43838
182 3 .943 .054 .003 4981.9 43985
183 3 .933 .064 .003 4789.0 43956
184 2 .951 .049 4462.7 80590
185 2 .940 .060 4351.7 46223
186 4 .826 .073 .094 .006 4665.0 44043
187 4 .887 .042 . 066 .005 4873.3 43933
188 4 .892 .057 .048 .003 4823.8 43859
189 4 .848 .056 .092 .005 5117.9 43854
190 4 .806 .121 .065 .007 4892.0 43856
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The table also illustrates the effect of the collap
sing procedure: nearly all the time the most probable 
component is the result of assuming that = V, giving a 
posterior variance for 0^ of the order of 4-xlO^. However 
when the extremely low observation appears, these 
components are filtered out by the collapsing procedure, 
leaving posterior variances of the order of 8 x 1 0 ^  or more, 
that is the term V2 = 9V comes into play. As the next 
observation is close to the predicted means, the 'normal' 
system variance again becomes the dominant term and stays 
that way. Thereafter the number of collapsed models 
remains at 4, a number greater than 1 partly because a 
better model would be more complex than a steady model.

9.3 Measures of Accuracy

The Kalman filter produces a predictive distribution, 
so that as we have mentioned before, using a summary 
statistic - such as the mean - to represent this distri
bution involves some loss of accuracy. . However when point 
forecasts are required, some measure of their accuracy is 
required. Much of the discussion in Chapter 4 on loss 
functions can therefore be applied, since loss functions 
are appropriate measures of accuracy. More specifically, 
if we have a single forecast f of a point p, both possibly 
multidimensional, then a loss function L(f,p) which maps 
onto the reals is a suitable measure. Typically we look 
for a function of the form L(f-p), with L(x)>0, and L = 0 
because f = p is a 'perfect' forecast.

In a practical situation it is unlikely that L will 
be a symmetric function because there are many reasons why
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underestimating or overestimating will produce different 
consequences. It is likely that only in the abstract 
context of estimation will we be unconcerned as to the 
direction of the error. Nevertheless, in making 
comparisons between different methods it is more helpful 
to use symmetric loss function rather than asymmetric ones.

The classical measure of error is the sqared loss 
function

L(y, y) = (y - ÿ)^ 
which has a number of drawbacks, some of which are touched 
upon in Harrison and Stevens (1976). Another choice when 
we have normal distributions is to use the loss function 
'conjugate' to the normal density function (Lindley (1976)),

L(y,y) = h [ 1- exp{ “ (y " y)) ] * (9-15)

Without loss of generality we take h E 1, so that 
L(y,y) = 1 - exp{ - (y - ÿî}.

We shall only consider the one-step ahead predictor, 
but this is not the only possibility; for example we might 
be interested in forecasts at different lead times, such 
as a year ahead (lag 12).

Another possible measure of accuracy given in Harrison- 
Steven (1976) is to consider cumulative forecasts, for six 
months say. In effect this looks at L(^y^, ^ÿ^) rather 
than jL(y^,y^), which in general will be different.
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9.4 Chlorine Data Analysis

Some results of using different forecasting techniques 
to-gether with measures of performance introduced in the 
previous section are presented in Table 9.4. The figures 
have been scaled across the rows (which is equivalent to 
altering the constant premultiplier h of the loss function 
(9.15)) to give a loss of 100 for Method 1; this enables 
the different procedures to be compared more easily. The 
methods used were as follows:

First, in Method 1, the classical EWMA approach was 
used, fitting an IMA(l,l) model with moving average 
parameter 3 estimated through the iterative likelihood 
equation (2.24), giving the estimate 3= -0.5253.. .

Method 2 used the steady DLM (9.3) - (9.6) with the 
free parameters estimated from the method of moments via 
(9.7) - (9.9) giving

w  = 36392 (9.16)
V = 242822. (9.17)

Not surprisingly the mean square error is larger than 
for the first method - indeed Example 2.4 demonstrated that 
the maximum likelihood equation is equivalent to minimising 
this quantity. However for some of the conjugacy parameters 
k this Kalman filter gives slightly better results. The 
conjugate loss function behaves differently to the mean
square error criterion, as this and the following examples
illustrate.

Methods 1 and 2 are both retrospective - they 
presuppose knowledge of the whole (or at least part) of the 
Time Series. In practice we would be uncertain as to the

-237-



TABLE 9.4
Comparison of methods and loss functions

arm.
k 1 1 2

Method
3 4 5 6
8caueu ■

1 144.76 100 100.17 100.02 99.48 100.17 100.15
10 144.13 100 100.59 100.01 99.91 100.35 100.12

500 141.76 100 98.69 99.16 98.65 99.07 98.66
1000 139.55 100 98.54 98.99 98.72 98.91 98.75
5000 129.03 100 98.30 98.51 98.85 98.46 98.79
lO^ 122.03 100 98.38 98.53 98.94 98.50 98.93

5x10* 6.12 100 100.47 100.74 99.89 100.81 99.56

Squared 6.665 100 100.60 100.89 99.73 100.95 99.37
loss xlO

Method 1: 
2: 
3:

4:

5:

6 :

Classical EWMA from IMA (1,1) model.
Augmented steady DLM.
Class I procedure with a grid of values for V, 
1 for W,
Class II procedure with collapsing 

0.9N(0,V) + 0.1N(0,9V) .
Class II procedure with grid of values of W 
and V.
Class II with collapsing, V and W as in 5.

The parameter k refers to the loss function (9.15).
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values of V and W for at least the first few time points.
As a first step towards modelling this. Method 3 assumes W 
known with value (9.16), but V unknown and described by an 
equally spaced grid of values as follows:

= 2 X 10*, V ^ = V  from (9,17), = 2.85645x10*
and V. such that V., ... V q equally spaced

^ ± y (9.18)

with the prior probabilities

Pi = V 25^  (9.19)
P i  = P l O - i

where p^ = Prob{V=V^}.
is therefore the most probable component initially.

The Harrison-Stevens Class I model was then used with 
these assumptions, as described in Chapter 4. As can be 
seen from the table, overall this gives a similar perfomance 
to Method 2, with slightly lower loss for k=l and 10, 
slightly higher otherwise..

In percentage terms the differences are small, indeed 
for all the various methods the variations across the table 
are small. In part this is because the data would be better 
described by a more sophisticated model - the steady model 
is not wholly appropriate. However even the small 
differences show that it is possible to use more realistic 
models than those which presuppose the data and do as well, 
or even slighlty better than a retrospective analysis.

Method 4 was the jump method used in the analysis of 
the sulphuric acid data. That is with W as in Method 2, 
given by (9.17), we allow the error term v^ to take the
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value V from (9.16) with probability 0.9, and 9V with 
probability 0.1, or

v^ % 0.9 N(0 , V) + 0.1 N(0 , 9V)

which is a heavy-tailed distribution robust against 
outliers. The collapsing procedure of Chapter 8 was used 
with the parameters set as in §9.3.

This method gave better results than the classical 
EWMA for all the conjugate paramters, and also for squared 
loss. Again overall the differences are small because 
although this error distribution gives much improved 
estimates around the outlier, which considerably reduces 
the squared error locally, the introduction of two models 
at each time stage gives slighlty poorer estimates if there 
are no outliers or changes in level. Comparing with §9.3 
it can be seen that the improvement that this method gives 
is much less marked for the chlorine data than for the 
sulphuric acid data.

Methods 5 and 6 extend Method 3 by putting a grid of 
values on W as well as V, with 9 different values for W 
chosen in an analagous way to that given above for V in 
(9.18), (9.19) with in this case W^ = W from (9.17).
Method 5 used the Class I procedure, so that one of the 81 
models is assumed to hold over the entire time period, 
whereas Method 6 used a Class II model with the collapsing 
procedure of Chapter 8. This is equivalent to assuming a 
normal error distribution of 9 components for v^ and 
similarly for w^ which holds at each time stage.

In terms of mean square error, and for nearly all the 
parameters of the loss function. Method 6 which uses
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the collapsing procedure gave slightly better results than 
Method 5. In fact in terms of mean square error this 
approach gave the best improvement over the maximum 
likelihood approach, which underlines the point made 
earlier that it is possible to use models (DLMs with a 
collapsing procedure) that do not require the data to be 
known in advance and obtain good results.

The above comparisons also illustrate that using 
different criteria when assessing forecasting performance 
can favour different models according to the criterion 
chosen. In the results given, it can be seen that the . 
bounded loss function behaves differently to the usual 
squared loss function.

9.5 Further Analysis

For the reasons stated it is difficult to draw strong 
conclusions about the relative merits of the different 
methods from analysing.the chlorine data. It is conjectured 
that when parameter values in DLMs are unknown it is better 
to use a Class II collapsing procedure rather than a Class 
I procedure (unless it is required to identify a particular 
parameter value). This needs to be substantiated by 
further research, and the question of how many grid-points 
to chose and over what range of values also need 
investigation. Certainly the sulphuric acid data shows the 
advantage of using outlier resistant error distributions 
when there is the possibility of outliers or changes in 
level.

More sophisticated analyses of either Time Series would
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involve more complicated models, such as those involving 
growth terms and possibly seasonal factors. Also the two 
series are not independent, since at the very least they 
are related via the underlying economic climate, and it 
would be possible to perform a bivariate analysis, so that 
the observation vector in the appropriate DLM has dimension 
2. A preliminary investigation of the possibility of using 
a bivariate analysis is to assume one series known and then 
use the information fron this series to interact with the 
other (asumed unkown) to improve the forecasts. Initial 
attempts at this on the chlorine data, using the 
interactions described in Chapter 7 on the steady model, 
suggest that it is possible to reduce the mean square error 
by over 15%. Of course a true bivariate forecasting model 
dose not assume one series known.
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CHAPTER 10

SUMMARY

This thesis examines the use of state-space models in 
Time Series analysis, particularly those of the form

It =

i t  = i i t - i +  iît

which relate the observations y^ to a state vector _6̂ ; 
these are termed Dynamic Linear Models (DLMs) by Harrison- 
Stevens (1976). They coined the phrase 'Bayesian forecasting' , 
for these models are naturally amenable to Bayesian inference. 
Indeed, analysis by the Kalman filter can be viewed as 
successively updating the posterior for by incorporating 
new information as it arrives. Forecasts or predictors are 
obtained from the appropriate predictive distribution 
function by using a suitable loss function. The background 
is summarised in Chapters 2 to 4» which includes certain 
concepts from control theory that we use.

The usual assumption in the above DLM is that v^; w^ 
are independently normally distributed, v '̂XjN (0,V) , ŵ '\̂ N(0,W) 
say. Chapter 5 considers the possibility of relaxing the 
assumptions by allowing distributions other than Gaussian 
ones. If the additive descriptionis retained then handling 
other distributions soon becomes intractable because of the 
convolutions involved. This is true even for the simplest 
steady model

=  ®t ^

®t = ®t-i + "t
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unless the error terms have a stable law, so an alternative 
description is needed if we are to be able to use non
normal distributions.

Using the normal steady model as a starting point.
Smith (1979) proposes a class of steady evolutions. This 
specifies the conditional distribution f(y^|0^), and the 
evolution of e^ly"^’^ to G^Jy^ by p(0^|y^) « 
for some, constant k^. The implications for the predictors 
of such a system are discussed in Chapter 5» f(y^|0^) is 
taken to be a member of the exponential family with p(0^|y^) 
the appropriate conjugate. Theoretical results concerning 
the predictive distributions of the observations and the 
system vector are derived, and conditions under which the 
evolution corresponds to an invariant transition density 
proved.

With this scenario the nature of the forecasts depends 
very much upon both the model chosen and the loss function 
used. The properties of the normal model are constant 
forecasts at all lead times, with the uncertainty associated 
with the forecasts increasing with the lead time. Examples 
are given which show that it is possible to construct non
normal models that under symmetric loss functions have one, 
both or neither of these properties.

Chapter 6 explores the relationships between DLMs 
(with normal errors) analysed by the Kalman filter, and 
ARIMA models; comprehensive equivalence theorems are proved, 
where equivalence is taken to mean that the forecasts of 
the two descriptions are identical for all lead times. 
Firstly, DLMs are .shown to be predictor equivalent to their
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observable subsystems,so that we only need to consider 
observable DLMs. If a DLM {F ; G} is observable then _G is 
non-derogatory, that is G is similar to a companion matrix 
and has minimal polynomial identical to its characteristic

n n-ipolynomial. If G is of order n, then this is + Z b .A
i=l ^

say. Let s be the largest.integer such that is non-zero, 
and define r the 'system shift' to be the maximum of 0 and 
n-s-1. Two cases arise, either G is non-singular, so that 
s=n and G has rank n, r=0, or G is singular with rank n-1 
and system shift r = n-s-1 ̂ 0.

A DLM with non-derogatory matrix G which is in the 
steady state, so that the Kalman gain vector A^ has 
converged to A, is shown to be predictor equivalent to the 
ARMA model

yt + hyt-l + ••• + *syt_8 = ••• +Gr+8Et-r-,
where the are obtained from the characteristic
polynomial and the g^'s depend upon the and A through
F G*̂ A. In fact this result is independent of assumptions 
on the and so includes non-stationary models as well,
in particular the ARIMA models. Once the autoregressive 
parameters are obtained, then it is possible to derive the 
3^'s by considering the covariance properties of the DLM, 
which gives the same values provided that certain mild 
restrictions hold.

The stability conditions for the DLM are shown to 
coincide with the invertibility conditions for the equivalent 
ARIMA process; these will be satisfied if the DLM is 
observable and controllable. The equivalence theorems are
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extended to incorporate time-varying DLMs in which F, G and 
can vary in time - in this instance the parameters 

and Bj are also time-dependent.
An examination of the structural properties of DLMs is 

started in Chapter 6 and extended in Chapter 7. In the 
case of zero system shift, r=0, G can be singular or non
singular. The latter can place severe restrictions on the 
parameters 3^ ... 3^. This surprising result says that a 
singular matrix G is preferable for zero system shift, where 
the order of the system vector is one larger than it need 
be, namely nil rather than n. For example with the steady 
model, an unrestricted system vector is of order 2 rather 
than 1, as pointed out by Godolphin and Stone (1980).

For an observable univariate DLM with constant matrices 
F and G, when the error variances V and W are allowed to 
vary, an image is traced out in the invertibility space of 
the equivalent ARMA model. V must be positive and W 
positive semi-definite, and if this is the domain of the 
mapping then, provided the system is observable and has 
large enough order ( n = r  + s + l), it is possible to cover 
the entire invertibility region. This is proved in Chapter 7. 
The invertibility region can be pictured in the parameter
space of (3^ ••• B^^g) or equivalently in the correlati on
space (p^ . . . Pp4_g) » the autocorrelations of y^ +

In a practical context only the diagonal terms in W 
can be realistically updated, unless an estimation procedure 
is applied. With W restricted to a diagonal matrix (or 
equivalently to with W^ diagonal and B fixed), the
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image in the autocorrelation space i.s a convex hull of its 
vertices. Consequently unless the invertible region of the 
ARIMA model is a convex polytope, it will not be possible 
to cover the full region with such practically attractive 
DLMs.

These results are illustrated by considering ARIMA 
(p,d,q,) models with p t d = 1 or 2, q £ p  + d. For first 
order models, by choosing a system matrix of order 2 it is 
possible to cover the full invertibility region with a DLM 
having a diagonal covariance matrix. However the appropriate 
region for second-order models, such as ARMA (2,2), cannot 
be so covered, since the region is not a convex hull of a 
finite set of points. Either an infinitely large DLM has 
to be used, or a DLM with a non-diagonal matrix W whose 
elements can vary. However, it is possible to cover a 
larger part of the region than that achieved by models 
advocated by Harrison-Stevens, which suffer from the defect 
of too small a dimension. A summary is provided which gives 
second-order ARIMA models, the equivalent Harrison-Stevens 
DLMs, unrestricted equivalent DLMs and suitable practical 
(possibly restricted) DLMs.

An alternative way of writing an unrestricted DLM 
equivalent to a steady model is

yt = + +

®t = ®t-i + "t
which has the attraction of a single system parameter, 
rather than a vector of order 2 when it is expressed in 
standard DLM form. The so-called 'Markov-Polynomial' models 
can be also be extended and written in this 'augmented* form,
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The analysis of these models is discussed in Chapter 7; it 
is shown that it is possible to derive a slightly different 
form of the Kalman filter for such 'augmented' models.

Chapter 8 focusses attention on the Multiprocess models 
of Harrison-Stevens, looking at alternative ways of collapsing 
the components of the normal mixture of the posterior at 
each time stage. A class of clustering collapsing procedures 
is developed, where the distance between normal components 
is used together with a clustering procedure to form clusters 
of the components. The cluster centres can then be used to 
summarise the information in the cluster, effecting a 
reduction in the number of components.

The Hellinger metric is chosen as a suitable metric and 
certain desirable properties follow, for example if the 
distance between two unimodal densities is below a certain 
threshold then the mixture is unimodal. This means that if 
we use say agglomerative clustering and stop forming clusters 
before this threshold is reached, then we would not approxi
mate a bimodal distribution by a unimodal one, which is 
important not least from a decision theoretic standpoint.

Certain continuity properties are then proved with 
respect to the Kalman filter, which show that the clustering 
is sensible. That is,, if two components of the system 
posterior are close then so are the corresponding components 
of the predictive distribution, and successive posteriors 
remain close under the influence of the filter. This last 
point, which says that little is lost by combining components 
that are close is only proved for a univariate DLM with 
univariate system matrix. The effect of the clustering 
procedure chosen, and the choice of 'cut-off' distance if
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using agglomerative clustering needs further research.
Chapter 9 applies some of the preceding theory, 

particularly of Chapters 7 and 8, to two real Time Series, 
namely monthly sulphuric acid production in the U.K. and 
monthly chlorine production from 1963-1982. These series 
exhibit characteristics typical of much economic-related 
data of the past two decades, such as a period of steady 
growth followed by a dramatic fall caused by the oil crisis 
of the mid-seventies, with the ensuing recovery punctuated 
by a number of depressions. In these circumstances a single 
time-invariant model is unlikely to produce optimal forecasts, 
but there are situations where forecasts need to be made 
automatically, without the direct intervention of an 
experienced statistician.

It is possible to use a semi-automatic procedure, by 
using the Multiprocess procedure of Harrison-Stevens, 
together with a suitable collapsing procedure. Ideally one 
would have different types of DLMs with the Multiprocess 
models, however for illustrative purposes the augmented 
steady model is used, with error variances that can vary.
Using the collapsing procedure introduced in Chapter 8, it 
is possible to improve on the performance of the traditional 
EWMA of the IMA (1,1) model. The performance is markedly 
improved in the region of an 'outlier', to which the EWMA 
is very sensitive, enabling outliers to be automatically 
treated statistically. It is also shown that the use of 
different measures of performance - other than the usual 
squared-error criterion - can favour different methods.
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