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ABSTRACT

This thesis explores the use of State-Space models in
Time Series Analysis and Forecasting, with particular
reference to the Dynamic Linear Model (DLM) introduced by
Harrison and Stevens. Concepts from Control Theory are
employed, especially those of observability, controllability
and filtering, together with Bayesian inference and
classical forecasting methodology.

First, properties of state-space models which depart
from the usual Gaussian assumptions are examined, and the
predictive consequences of such models are developed. These
models can lead to new phenomena, for example it is shown
that for a wide class of models which have a suitably
defined steady evolution the usual properties of classical
steady models (such as exponentially weighted moving
averages) do not apply.

Secondly, by considering the forecast functions,
equivalence theorems are proved for DLMs in the steady
state and stationary Box-Jenkins models. These theoremns
are then extended to include both time-varying and non-
stationary models thus establishing a very general predictor
equivalence. However it i1s shown that intuitively appealing
DLMs which have diagonal covariance matrices are restricted
by only covering part of the equivalent stability /
invertibility region, and examples are given to illustrate
these points.

Thirdly, some problems of inference involving state-
space models are looked at, and new approaches outlined.

A class of collapsing procedures based upon a distance
measure between posterior components is introduced. This
allows the use of non-normal errors or Harrison-Stevens
Class II models by condensing the normal-mixture posterior
distribution to prevent an explosion of information with
time, and avoids some o0f the problems of the Harrison-
Stevens solution.

Finally, some examples are given to illustrate the
way in which some of these models and collapsing procedures
might be used in practice.
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CHAPTER 1

INTRODUCTION

Time plays an important rdle in many situations which
involve data, for example much economic data consists of
quantities or statistics which vary with time. In the
context of experimentation although strictly speaking each
observation is made at a unique time, in some instances
time is a necessary ingredient of the analysis. This means
that the ordering of the data matters, and it is this
dependence between data items that complicates the analysis.

Throughout this thesis we shall be concerned with
situations such as these, where we have a set of observations
or data indexed by t, {yt} say. We shall only look at the
case where time is discrete, with observations made at
equally spaced intervals, that is a Time Series. Unless
otherwise stated we shall further assume that the observations
Yy are univariate, and let the indexing parameter t range
over a subset of the integers.

A time series might be analysed for a variety of reasons,
for example:

(1) To generate information about the underlying
process from which the observations came; this might lead
on to questions of model determination or hypothesis testing.

(2) In a control situation, where the observations
are arriving in 'Real Time' and we wish to alter certain
physical parameters to achieve a specified objective.

(3) To enable us to make statements or forecasts about

future V-



This list is neither exhaustive nor indeed are its
items mutually exclusive. However, there is a difference
in emphasis between them and different criteria are used
to judge model performance.

We shall mainly be concerned with the last objective
given above, namely (3). That is we have observations {yt}
up to some point to’ and we wish to make statements about
Vi for t>t0. In this case our success is measured by the
quality of our forecasts, namely how close our forecasts
or predictions are to the subsequently observed values,
where closeness is suitably defined.

To be able to analyse time series statistically we
require an appropriate mathematical framework, which is the
class of discrete stochastic processes. A discrete
stochastic process is a family of random variables {yt}
indexed by t where t varies over the integers. Strictly
speaking we should distinguish in notation between the
underlying mathematical model and a particular observed
time series or realisation of the stochastic process.
Indeed it is important to remember that any model we build
is an approximation, which we use to draw inferences using
the actual data.

It is necessary to impose additional structure if we
are to be able to make meaningful statements about a
particular time series, and now two cases arise. The first
is where there is an underlying model which presents itself
from physical or theoretical considerations, or perhaps a
model specified up to a certain point. For example, if the
time series is the observed position of a space-craft at

equally spaced intervals of time, then successive positions
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are related by the equations of motion. However, in a more
comprehensive model uncertain factors - suchas wind-strength
if in the atmosphere, errors of measurement and other
unmeasured forces - can be represented probabilistically.

To represent this, the deterministic equations of motion

are incorporated in a probabilistic model.

The second case is where we have no firm idea of the
nature of the underlying model. This might be because one
is not known or because there are too many factors to take
account of. It is these type of time series which are most
commonly studied in Statistics and indeed in Economics.

One is left with little more than the data from which to
deduce the structure of the series.

In an attempt to make this thesis largely seif-contained,
Chapters 2-4 are of an introductory nature, describing the
background against which Chapters 5-9 are set.

Chapter 2 gives a resumé of some of the main ideas
that are used in classical statistical Time Series analysis,
which is linked with objective (1) above. The first step
in developing a tractable class of time series models is to
introduce the concept of stationarity, and in particular
second-order stationarity, which requires that the first
and second order properties of the time series are independent
of time.

It is then possible to use the so-called 'Time Domain'
or 'Frequency Domain' approaches. The first deals with
properties of the time series per se, whilst the second in
essence performs an harmonic analysis, which gained impetus
from the widespread use of Fourier analysis in the engineering

disciplines. This latter approach leads to spectral
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decomposition and the identification of frequencies, for -
example as described by Hannan (1960).

The simplest additional structure to impose is linearity,
which is strongly linked to the Gaussian distribution. The
general ARMA (auto-regressive moving average) models express
a linear combination of past and present observations as a
linear combination of past and present 'noise! variables.
Non-stationary models can be generated.by suitably
differencing the series tb give a stationary ARMA model,
creating the ARIMA models - I for integrated. The popularity
and widespread use of such models owes much to the work of
Box-Jenkins (1970) and Jenkins (1979).

As we have mentioned, another use of time series is in
a control environment. In the example of a space-craft given
above, not only do we wish to be able to predict the position
of the space-craft at future instants of time, but also we
want to be able to alter its position by applying the
appropriate thrusts to achieve a desired objective, such as
landing on the moon.

The illustration of a space-craft is no accident:
‘classical' control theory is the analysis of differential
equations or difference equations, often by transform
methods, which received a boost from military applications
in the Second World War. But modern control theory which
uses a state-space approach, benefitted from the enormous
amount of reseach undertaken during the American Space
programme. In the state-space approach the system is
déscribed by a state vector, each of whose components are
physical quantities of interest, such as the pdsition and

momentum co-ordinates of the vehicle. However normally
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these are not all directly available, instead observations
contain information about part of the state vector. This
relationship is specified, as is the evolution of the state
vector in time, and the object is to estimate the state
vector, or control it by applying suitable inputs.

Chapter 3 introduces some of the key concepts in
control theory, especially those of the pioneering work of
Kalman (1963) on controllability and observability, and
various types of stability are mentioned and linked together
The idea of equivalence between different descriptions is
introduced.

When the error terms in linear state-space models are
Gaussian, the Kalman filter provides optimal estimates of
the state vector. This is one of the concepts which has
been part of a healthy cross-fertilisation between the
disciplines of Engineering (in particular control theory)
and Statistics.

Harrison and Stevens in particular (1971, 1975, 1976)
have shown that it is possible to usefully use concepts from
control theory in Time Series analysis. At the heart of
their theory is the Dynamic Linear Model (DLM), which is
a linear state-space model with additive Gaussian noise,
upon which the Kalman filter is used. These models, together
with extensions developed by Harrison and Stevens, are
discussed in Chapter 4, which also includes a brief intro-
duction to the Bayesian paridigm.

In many branches of statistics, distributions are
assumed to be Gaussian, or 'normal' and indeed it is often
very difficult work outside this framework. Chapter 5

examines the possibility of using non-normal state-space
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models in the context of Bayesian analysis. Unless the
error distributions are stable, it is not easy to introduce
non-normality into the state-space description and obtain
tractable results. Smith (1979) used a slightly indirect
method of extending the simplest DLM - the steady model - to
include non-normality. The implications for the predictors,
or the predictive distributions, of using such a steady
evolution are examined. In particular, the exponential
family is used, and it is shown that when a steady evolution
is used with members of this family, that many of the familiar
properties of the steady model fail to hold. For example,
the predictors at a particular time for different lead times
need not be identical, as they are for the Normal Steady
model. Some of these results have alreédy been discussed
in Key and Godolphin (1981).

Certain types of equivalence between state-space and
ARIMA models have been discussed before, such as in Godolphin
and Harrison (1975). Chapter 6 looks at predictor
equivalence between DLMs and ARIMA models, that is models
which yield the same predictors for all lead times. First
the role of observability is established in this context -
essentially one only has to consider the observable subsystem
of any DLM. Then constant DLMs which are in the steady
state (for which conditions are given in Chapter L) are
shown to be equivalent to ARIMA models with constant
coefficients. These results encompass both stationary and
non-stationary models. It is then further shown that DLMs
which are time-varying (or constant ones not yet in the
steady-state) are equivalent to ARIMA models with varying

parameters.
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An alternative way to demonstrate equivalence is to
use the covariance properties of the models, and subject
to mild restrictions, the equivalence classes are
isomorphic to those generated by looking at predictors. A
slightly surprising result is that in many cases unless the
system matrix of the DLM is singular, the parameters in the
equivalent ARIMA model can be severely restricted.

Chapter 7 examines the consequences of Chapter 6 as
they apply to practical DLMs. Theoretical results are
proved which describe the invertibility regions that are
mapped out by DLMs having constant system and observation
matrices, but whose covariance matrices vary. It is shown
that practical DLMs, which have diagonal covariance matrices,
can only cover part of the invertibility region of the
equivalent ARIMA models, except in the case of first order
models. A slightliy different way of writing some useful
DLMs is given, which calls for a slight ammendment to the
Kalman filter. Finally, a summary is provided of some
frequently used ARIMA models and their DLM equivalents.

The Bayesian forecasting methodology of Harrison-
Stevens (1976) not only included DLMs but also introduced
the idea of multi-process models. In other words, one can
assume that different DLMs are operative at different times,
with a transition matrix describing the evolution between
them. The problem with this generality is in.'collapsing'
the ever increasing number of normal components of the
posterior to a smaller number. A simple approach is given
in Harrison;Stevens (ibid). However, Chapter 8 describes
a new class of collapsing procedures, based upona clustering

approach with an appropriate metric. In particular, the
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Hellinger distance is examined and certain desirable
properties of the collapsing procedure proved.

Chapter 9 illustrates how some of the preceeding ideas
might be applied in practice by looking at two real time
series. The augmented steady model is used for simplicity,

together with the collapsing procedure of Chapter 8.
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CHAPTER 2

TIME SERIES

2.1 Introduction

At the present time there is much interest in time
series analysis, partly because it finds applications in
very diverse fields and partly because of the problems
involved, even in simple models. We take a time series
to mean a series of observations taken at discrete points
in time, and only consider univariate observations. The
corresponding probability model is a family of random
variables, {yt}’ where without loss of generality the
index t ranges over the integers.

The simplest models are linear and much current
practice using these has been influenced by the seminal
work of Box and Jenkins (1976). This theoretical work is
complemented by Jenkins (1979) who illustrates the use of
such models in practical situations. There is a great
deal of literature on all aspects of time series, and
useful reviews are provided by Chatfield (1977) and Cox
(1981).

First we consider stationary series, which form the
backbone of the subject, and then describe some models,
how to forecast with them and discuss the problems of

inference.

2.2 Stationary Time Series

A time series {yt} is said to be second-order (or
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weakly) stationary if E(yt) =p is a constant for all t
and cov(yt,yt+h) is a function of h alone. We can
therefore describe the second-order properties by the

autocovariance function

Yn = oV (yy Ty
where h is an integer, or by the autocorrelation function
Php © Yh/YO = cor(yt!yt+h)'
It follows that v, =v_;» pg=1s py =0 _y-
Other descriptors are possible, for instance the

spectral distribution function G(w) and density function

g(w) come from a harmonic decomposition of y, given by

T .
Yy = J ciut dG(w)
-T

glw) = G'(w) = 31 § e™¥% y ST <Ww< T,

s = ==

This forms part of the Frequency Domain approach to time
series as expounded by Hannan (1960) say. We shall
concentrate on the so-called Time Domain approach.

For any discrete stationary process {yt} the Wold
decomposition theorem states that the process can be
represented as the sum of two mutually uncorrelated
processes {Xt} and {Zt}’ Yy =xt-+zt, where

(i) x, is deterministic

(ii) z, is a purely non-deterministic moving average

o5}

where J] . b.? < = and €, 1s a sequence of uncorrelated
j=0

random variables of zero mean and finite variance. {Xt}

and {Zt} are uniquely specified and either may be absent.
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2.3 Models for Time Series

Early time series models were often of the form

+ +

Y T By T Sg T By
where m, is a trend term, depicting a smooth long term
movement,st a seasonal term - periodic oscillations of known

frequency - and z, an error term, usually of zero mean.

t
Multiplicative models and mixed additive/multiplicative
models can similarly be defined iIn these terms. The
analysis might then proceed by fitting some form of

polynomial to m, or Sy the former being the basis of the

t
much used moving average trend removal techniques (XKendall
1976). There. are problems concerning this more or iess
empirically based approach, not least concerning the
reasonableness of the assumptions. Modern classical time
series analysis has tended towards a more theoretical
model based approach.

The widely used ARMA (p,q) models, auto-regressive

moving average models of order p,q are defined by

+ ... + a =g, + Bls + .. + B €

pyt-p t t-1 q t-q
(2.1)

y pure noise, that is random variables of zero mean

Vg T Vi
with €
and common variance 02. In fact the ARMA (p,q) is usually

taken to mean the above, (2.1), with the conditions lxi]<1,

[ui|<l where X, and u; are the roots of the polynomials

P
= 7 p: -
a(z) 1+ayz+ ...+ o2 _g (1 Aiz)
1=1
and
B(z) =1 + 8,z + + q—q(l )
z) = lz .o qu —121 -uiz .

Ikil<l ensures that the model in stationary, so that the
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non-deterministic time series {y.} has an infinite moving
e}

average representation ) . bjEt-j ; (2.2)
j=0

the second condition is the invertibility relation which

ensures that the model has an infinite autoregressive

representation

with ao = 1.

Each Vi j in 2.1) can be replaced by yt-j -u so that we can
assume without loss of generality the model has zero mean.
The autocovariance function can be found from (2.2)

by multiplying by Yt+h and taking expectations, giving

=g i£0 Dby (2.3)

where o° = var(et). Defining the generating functions

] _ 5 j _ 5
a.zv, Blz) = b.z r(z) = Z
32 (z) Zo 527 ( kz_w Yy

A(z) = k

J

ne-18

0

then for an ARMA (p,q) process A(z) =1 + ajz + ... + apzp

1+ Byz + ...t quq

and B(z)=1/A(z) enabling the coefficients b, to be found.
Alternatively the well known relation F(z)=02/{A(z)A(z-l)}

can be used to determine the autocovariances.

Example 2.1

Consider the ARMA(1,1l) model
Vi Toygog T eg * Beg g o
Then B(z) = (1+8z)/(l+cz) and equating powers of z gives
by=1l, b, = (-0)* " (B-a), i=1,2

so that y, is given by (2.3). Using generating functions

-19-



I(z) = o2 148z.148z°T.

1+az ltaz "+

If we write I'(z) = Ay + Alz + Alz_l
2 -

9 ltaz l+az 1

then equating powers of z gives

An =1 + 8% - 238, A, = (1 -oaB)(B - a)

0 1

1-aqa? 1 - a2
it k , o -k
but T(z) = ygt I Yz * I Y.2 so that
k=0 ~ k=0 ~
yn = A, 02, Ty £ = o247 .
0 = 4o Lo Y
l+alz

.
Thus equating coefficients of z"

Yo = 02(1+B2-208) , Yy = 02(1-cB)(B-a)
l-a? 1l-a?
and since +a =0 Y. = (-a)k-ly k>1
Y k17" k 1 =

This approach is a specific example of Quenouilles
algorithm for obtaining the autocovariances using
generating functions.

If we denote the backward shift operator by T, so
K

that Ty, then the ARMA(p,q) model can

ERA T A AT A

be written as

a(Dy, = 8(De,

These models can only represent stationary time series.
A class of models for non-stationary models can be obtained
by first differencing the series d times to give the

transformed series X4

d
Xt = (1-T) Vg

and then fitting an ARMA(p,q) model to x,. These are

-20-



called ARIMA (p,d,q) models, and can be written

(1) (1-1) % = 8(T)e, .

In practical situations d is usually chosen to be small,

for example a model which we shall meet later is the

ARIMA (0,1,1) or IMA (1,1) model

= g, + Be

Yy = Va1 t t-1

with single differencing. In general single differencing
describes a process whose level is continually updated and
double differencing introduces a slope term which is also
updated.

Seasonal models can be described by similar models
using a difference operator of the required periodicity.

For example if s is the period then an appropriate model is
a(T®)(1 - Ts)yt = B(Ts)at

and more generally multiplicative (p,d,q) x (P,D,Q)s

models

ap(Dap (1%) (1-1)4(1-1%) %y, = 8_(+)8(T%)e,

where ap is a polynomial of degree p and so on.

2.4 TForecasting

In many situations we have observations up to time t,
YioVgo1s = o which from now onwe write as yt, and we
wish to predict Yitm for m greater than or equal to one.

The predictor yt(m) of ¥itp that minimises the mean square

error

04*(n) = Elyy(n) - Vi) ® | (2.4)

-21-



is the conditional expectation

yo(m) = By, Iy, (2.5)

In general a lot of information about the time series is
required to be known before this quantity can be calculated,
however it is relatively easy to calculate for linear models
with a simple error structure.

Less information is required if we restrict yt(m) to
a linear function of the past data

©
yt(m) = jéo dj(m)yt-j (2.6)

and seek to minimise the mean square error (2.4). We then
only need the first and second order properties of the
process, although in practice even these will only be known
approximately from the observations. The resulting
predictor will then be best if and only if the conditional
expectation (2.5) is linear.

From the Wold decomposition theorem a purely non-

deterministic stationary series can be written as

= b. .. 2.
Vi JZO 3643 (2.7)

The minimum mean square error (MMSE) linear predictor of

y[(m) is then given by
m) = b., e, . 2.8
yt( jz jtmot-j ( )

2 2 Mol 2
with mean square error oi(m) = o ) bj . (2.9)
j=0

This gives the forecasts in terms of the random errors
rather than the observations which is what we require.

If we let



D _(z) =

ne-18

d.(m)zj
j=o.
then the forecast weights dj(m) can be calculated from

the generating function relation

D (z)

z J+m (2.10)

B(z)

where as in §2.3 B(gz)

?'bjzj. The dj(m) can be calculated
from (2.10) and substituged into (2.6) to give the forecasts
provided that (2.10) can be expressed as a power series.
This condition holds true for ARMA models proved that they
are invertible.

Three consequences of the above are

: t s
(1) E(yt+m]y ) = -EO bjE(et+m le ) using the Wold

decomposition which since

"

0 j=0,1... m-1

= g, otherwise

t
is identical to (2.8). The predictor is therefore the

MMSE predictor and is obtained form the Wold decomposition
by setting all future random disturbances to zero, their
expectation.

(ii) The mean square predictor error<3§(m) increases

with m to the limit o° ij2 = Yy- The smallest error is
for lead time 1, that is m = 1 and o = o°,

(iii) The sequence ¢ €,4o +-- are the one step ahead

t+1”’
predictor errors.

Example 2.2

For the ARMA (1,1) process of example 2.1

Yy toeyy g T eyt Beg 4
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the coefficients in the Wold decomposition are
b, = (<) ™1 (8-0) for i>1, and B(z) = (1+82)/(1 +az).

Substituting in (2.10)

o

D (z) = (Ltaz) J (-a)® 1*i(g-a)z

equating powers of z to obtain dj(m) and substituting in

(2.6) gives

«©

y(m) = (-)"(g-a) 7

Lo (-B)jyt_j (2.11)
J:

The mean square prediction errors of (2.4) are given from

(2.9)

oi(m) = | 1+ (a-p)R{1-aR(m-1)y |

l-a2

Alternatively, at time t+1
S B S
taking conditional expectations at time t
v4(1) = -ay, + Bey (2.12)
and similarly at lead time m
yi(m) = -ay (m-1). (2.13)
Expressing €y in terms of the past data yt, which we can
do since the model is invertible, and substituting in
(2.12) and (2.13) gives (2.11).
At time t+1, (2.12) is
Vi1 (1) = oy F o Beyy
= (8-a)y,,; - By (1)
showing how the forecasts can be updated when a new .
observation arrives.

Although we have only dealt with stationary models

so far, the second method of the above example can be
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used to forecast non-stationary models as follows. First
define yt(m) and G%(m) as in (2.4) and (2.5), so that
Gi(m) = var (yt+m[yt). Now the general class of ARIMA
models, including seasonal variants, which were described
in §2.3 can all be expressed in difference equation form

as o(T)y = 6(T)ey (2.14)

where 6(z) is a polynomial with all its zeros outside the
unit circle, ensuring that the model is invertible, and
¢(z) has no zeros inside the unit circle.

Forecasts can then be calculated by using (2.14) at
times t+1l, t+2 ... and taking conditional expectations at

time t using

B(yyps1v") = v,(3) 5 =1, 2,
E(yt_jlyt) = Vg | j =0, 1, ...
E(et_j]yt) = €p5 T Vgog C yt_j_l(l) j=0,1, ...
E(€t+j|yt) = 0. J =1, 2,

This algorithm . produces a difference equation in terms of
the observatipns Yioj and predictors yt_j(l), yt(j) which
can then be solved to give yt(m) in terms of the past
observations.-

The prediction errors at lead time m are given in Box

and Jenkins (1976, p 128) as

ep(m) = yipp - vy(m) = cgepyp +oeqeing e CpiaBiyn
The cj are the coefficients of the random terms when the
observation is expressed as an infinite weighted sum of

current and previous shocks

[oe)

= S CLEL .
Tt jZO J =]

so that under (2.14) the cj's are obtained from
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6(T)(L + ¢y T + ¢ T° )

1 STy ee ) = 8(T).

For stationary models ¢(z) has zeros all outside the unit
circle so that the cj's are identical to the bj's of (2.7).

It follows that the forecasts are unbiased with

. . . 2 — mRq 2 2
prediction variance Ot(m) =0%(1 + cl 4t m-l)
2 02
m-1 *

2
g -
t(m‘l) + c

The coefficients cj also enable us to up-date the
forecasts:
At time t yt(m) = Yiiq - et(m),
if a new observation arrives

Yt+1(m'l) = yt+m - et+l(m-l),
but
op(m) - ey (m-1) = ey jepyy = cpgoy (D)

and on substituting

yt+1(m-l) = yt(m) + Cm_l{yt+l - yt(l)}-

Example 2.3

Consider the ARIMA (0,1,1) model

+ Be

Yy = Vg1 T &y t-1°

At time t+1 y, .. -y, = e, ; t Bey

so taking conditional expectations and using the above

algorithm gives

yt + B(Yt - Yt;l(l))
v (1+8) - By, 1 (1)

vy (1)

which has solution

vy (1)

oo

(L+8) T (-8)3
j=0

(2.15)

I

For k22, writing down the model at time t +k and taking

expectations conditional upon yt gives
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y (k) =y, (k-1)

which completes the specification of the forecast function.
The cj can be obtained from

(1-T)(1 + oy T+ e, T8+ o o . ) = (L+8)
equating powers of T, ¢, = 1+8 i>1
so that
_ 2 2
o (m) = o"{1+(m-1)(1+8)%}.
The above results are identical to those of Example 2.2

with o formally replaced by a = - 1.

Apart from simple cases, the difference equation
produced by the algorithm can be difficult to solve.
Godolphin (1975) introduces an updating and component
series which enables yt(m) to be calculated without first
calculating the forecasts of Ye41? « Yi+p-1®
It follows from (2.14) and the forecasting algorithm

given above that for k>q, where g is the order of the

polynomial 6(z) that

¢(T)yt(k) =0 (2.16)

where T operates on k, so that Tyt(k) = yt(k-l) and so on.
This means that the eventual forecast function is

determined solely by o¢(z).
If ¢(z-l) has r roots A; with multiplicity m;, so
) m; =p then the general solution of (2.16) is

r mi-i ik
vy (k) = izl jZO L
where the constants hij are determined from the first p
forecasts, and so depend upon the data and the parameters

C!l L) OLpBl... Bqn
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For example

¢(z) = 1- 3z, yt(k)

hl’ a constant k>1

h-. + h.k

(1-2)2 yt(k) 1 5

¢(z)
which is the so called linear growth model.

Some methods of forecasting involve choosiﬁg the
eventual forecast function first and then fitting the
coefficients from the data, whereas Box and Jenkins fit
the model first, and so get the eventual forecast function

as a consequernce.

2.5 Parameter Estimation

In the Box-Jenkins approach to time-series, first a
model is tentatively identified, then parameters are fitted,
diagnostic checks are applied and if inadequacy is shown
then the iterative process of identification, estimation
and checking is repeated until a suitable model is found.
Each of these three stages is a subject in itself with its
own extensive literature, which we shall not go into.
Apart from the theoretical side, examining real data poses
its own problems; for example the famous Lynx data has
been analysed over the years by many authors using
different models. Even within the same framework
practitioners can fit different models to the same series,
for example Chatfield and Prothero (1973).

The first step with non-stationary models is to try
and transform to a stationary time-series. In the ARIMA
(p,d,q) models ( and seasonal variants) this is achieved
by differencing the series. Box and Jenkins suggest looking

at the correlogram, which is the plot of the sample
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autocorrelations ry against h where
4

r, = ch/cO (2.17)

5 (2.18)
c, = _1 V. ¥ 2.18
b §op gy Tt

and N is the number of observations. There are possible
variants of (2.18) such as having the denominator N rather
than N - k. These are model-free estimators of
autocorrelations Py of 82.2 but are best viewed as
estimating the autocorrelation function oy rather than
individual values.

The sampling properties of the individual rh's
depend upon all the Py - However for stationary series
the estimates are asymptotically unbiased, and so non-
stationary data is differenced d times until the estimated
autocorrelation function of G-Iﬁd'yt dies away fairly
rapidly.

Having chosen d, it remains to choose p,q and estimate
the parameters. Most methods assume normally-distributed
errors (or are equivalent to doing so), and many are based
on maximising the likelihood or an approximation to it.

In general closed forms for the maximisation do not exist,
so that numerical methods are used which usually give
iterative solutions to the equations.

Alternative models can be compared by looking at
maximum log - likelihoods. The principle of parsimony of
Box-Jenkins is to only fit models of low order (p,q small).
Procedures such as Akaike's AIC attempt to avoid over
fitting models by subtracting from the maximised
iikelihood a constant multipiied by the dimension of the

parameter vector.
-29-



Tests of model adequacy of stationary series examine
whether p and q are appropriate. For example the Box-
Pierce test looks at the first few autocorrelations of the
residuals of the fitted model which is asymptotically
chi-squared distributed.

Since we are concerned with forecasting it is worth
quoting from Cox (1981, p 99)

"When there is a tightly specified objective, such as
forecasting, considerations of choosing a notional 'true'
model become less important and error of forecasting is
the appropriate criterion for judging any particular
model selection procedure."

We close this section with an example which not only
gives an idea of the complexity involved in estimating
parameters of the simplest models, but also shows a novel

way of deriving this estimator.

Exampie 2.4

Consider the MA(1l) model

tBe, q (2.19)

Tt T Fg
with B8 unknown. For a loss function L(a,b), which we take
to be a non-negative function Rx R + IR with L(a,a) =0
(defined in Chapter L) let us choose the value of B that
minimises

DETHENNCS (2.20)

where n is the number of observations. That is we
minimise the loss between the one-step ahead predictors
and the observations.

From Example 2.3, if yo(l)=OIiSthe initial predictor
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then Yy . (1)

B(Yt_l - yt_z(l))
, 2. . ’ RN A T
Byt_l - 8 yt_2 e t ('J-) B YJ_
(2.21)
so that on using the quadratic loss function L(a,b)=(a-b)2
substituting (2.21) into (2.20), differentiating with

respect to B and equating to zero gives

n

Y (y, -By + ...
420 Vb t-1

f(-1) " 1gt 1 ) «

1)
x (yy - 28Yy gt (-l)t-z(t—l)Bt—2yl) - 0.

That is
n-1 r r -
) Ytyt-l'*rzl B (-1)" Ly qyy p* 2L Yy p¥grna

co 2 (rtl) Ly, 1Y} = 0.

then the condition simplifies

n
If we denote r, = ]

thz
to

ry -3(1-+r2)-+62(rl-+2rl-+3r3) -83(r2-+2-+3r2-+4r4)

s 00 + (‘l)}\-lsn-l X = 0
or

ry -B(1+r,) +82(3r1 +3r,) -87(2 thr, t4r)) oL

¥ (-1)2 121 x - 0 (2.22)

Where the last term X {(n-2)+n(r,+r, + .. +rn_2)},n—1.odd

2L

+ .90 «l+
n(r1 Ty T

Il

and -l) if n-1 even.

n
Assuming n-1 is odd, then on rearranging, the condition
becomes

B{1 + 28° + 3p% + 456 + ...+ (n-2)gR78

44 .. #(n-1)8""3 +

= r {1 +38%+58
+ ry(38° + 584+ .3 r 028 +487 ). (2.23)

As n increases the term involving Ty tends to
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) ag* = (-1F k(1 -g®)e¥t 4 og*M

2)2

(-1

38(1-8%) (1-8

Since (1 +282'*3BA vee ) = 4
(1 -8%)"

equation (2.23) simplifies to
(-8)% tir, - 28 v (-8)%r, (2.22)
k=1 k=1
which is the same as the asymptotic likelihood equation in
Godolphin (1977), but derived in a different way. This
equation is well conditioned provided that the modulus of
B is not too close to 1 so a starting value will converge
to the single solution in the interval (-1,1). ©Note that
formulae (2.22), (R.23) give exact recursions for finite
samples using this approach. The method can be extended

to looking at different loss functions, but in general the

solution for B will be difficult.
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CHAPTER 3

CONTROL THEOQORY

3.1 Introduction

In this chapter we give a brief discussion of the
principles of control theory and introduce the fundamental
concepts of controllability and observability. Much of the
material for this chapter can be found in Kwakernaak and
Sivan (1972), Kushner (1971), Jacobs (1974), Barnett(1975)
and Gelb (1974). We shall only look at the discrete time

case.

3.2 Control Systems -:-Non Stochastic

Consider a situation where a set of admissible inputs
to a 'dynamical system' gives rise to observed outputs. We

shall take the dynamic equations of the system to be

y; = g(x;,u;,1)

= f(zlrﬂ- !i)

Xi+1 i

for functions f and g where the system behaviour is observed
at discrete points ti, i=0, 1, 2, ... . This description

also follows from Kalman's (1963b) axiomatic definition of a
dynamical system. In general the u, belong to the topological
space of admissible inputs, y. is the (m-dimensional)
observation at time ti and gi-is the state of the system,
taking values in a topological space X. In what follows X

n

will be real and finite dimensional Euclidean space ;]{

say. Linear systems have the simpler description
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. F.x.
L3 =i=i

(3.1)

e
i

1]

Xy = Gi%;5 9 t By (3.2)

where y, x and u are m, n and p vectors respectively with
Ei’ gi, and Ei matrices of the appropriate dimension.

It is useful to note that systems of the form

I3 = Eyxg * Giuy

with the state evolving under (3.2) can be cast in the above

form by defining an augmented state vector as

* * *
F., G., and Ei can then be obtained in a straightforward

=i’ =1
manner.

We shall often consider the following simplification

Definition 3.1

The system (3.1), (3.2) is said to be time invariant
if the matrices E., G.» Ei do not depend on 1i.

It is sometimes preferable to consider the form of the
system in terms of the initial specification at some point
i=1,. This is achieved by solving the state difference
equation (3.2) and substituting the result in (3.1). We
present this formally as the following theorem and its

corollary in the general and time invariant case.

Theorem 3.2

Equation (3.2) has the solution

-34-



Cx, = 0(d,i)x. ¢t ] 8(i,j)B.u. i>i,t1
i Bl BT R oS =0

where 8(i,i5), i>i, is the matrix
g

' —io+l i>i +1

| G,
Q(i,io) ={"t
I i=i,. (3.3)

The transition matrix i is the solution to the homogeneous

equation

8(i+1,i5) = Gy ,18(i,14) i>1
with g(io,io) = 1.
For the time invariant case g(i,io) = gi'io.

Corollary 3.3

The system (3.1), (3.2) has the solution

R i
., = F.o(i,i~)x. + F. . o(i,i)B.u. 3.
¥s —1—( o)_lo E, j=3;+l_( ,J)_J_J (3.4)
i
The second term can be written as ) k(i,j)u.
where k(i,j) =| F. @(i,j)gj i>j (3.5)
0 1=t

is the pulse response matrix. For time invariant systems

this 1s a function of i-j.
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3.3 Stability

We now introduée some of the different formé of étability
involved in deterministic control systems and comment on the
connection between the different definitions.

The simplest form of stability seems to arise from the
corresponding result for ordinary differential equations.
The point O is an equilibrium point for the system
x; = ;(xi,i) if x,= 0 for all k»ij, for some i,. Without
loss of generality we can consider the point at the origin
by defining new state variables to be deviations about a
non-zero equilibrium point if necessary. We then have the
following definitions for the equilibrium point x=0, putting

iOEO.

Definition 3.4

x=0 is stable in the sense of Lyapunov if for every

positive € there exists a 9 such that

||x0"<a impliesuxk“<g for all tk;tO'

Definition 3.5

x=0 is asymptotically stable if it is stable and
xt+0 as tso,

By only looking at linear systems

(3.6)

X341 - Gi41%
we can show that these definitions, which describe the
behaviour we would like to see, are equivalent to the more
manageable ones of Jazwinski (1970, chapter 7) involving

the transition matrix & of (3.3). Defining the norm of an’

r x ¢ matrix M = (mij) to be
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il = § 0§ gl
i=i j=i

we have

Theorem 3.6

For the system (3.6), Definitions 3.4 and 3.5 are

equivalent to

(i) The system is stable ifng(k,OMlis bounded above for

all tk>to

(ii) The system is asymptotically stable if in addition

>0,

|2k, 0)l[>0 as

Proof

For (1) x, = 8(k,0)xgs 50 llxll < 11e(k,0)] llxgll so tnat

3&0”:

(i) implies Definition 3.4 Conversely if (i) is not satisfied

then we can choose an € such that for all positive §

onll<a but kallze for all t.>t

k="0°

The equivalence of (ii) and 3.5 follows from the fact that

9(k,0)»0 if and only if ||8(k,0)|] 0 if and only if ||®(k,0)x|+0.

o
A stronger type of asymptotic stability is given by

Definition 3.7

The system is uniformly asymptotically stable if
llo(k,0) ]| < ¢ 8P {-cz(tk-td)} for all t,>%, and some fixed

and c..

positive constants cq 5

In the time invariant case where G.=G then

8(k,0) = G~.

But gk+o as k»wo if and only if the eigenvalues of G are less

than one in modulus, proving
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Theorem 3.8

In the time invariant system the origin is asymptotically
stable if and only if the matrix G has eigenvalues less than
one in modulus.

A slightly stronger result is given in Kwakernaak and

Sivan (1972, page 454) namely

Theorem 3.9

The system X = g;i;l is stable if and only if the
eigenvalues of G have modulus less than one or equal to one
with any modulus one eigenvalue of multiplicity m having

m linearly independent eigenvectors.
10

For example the matrix (
10

) i stable whereas

(l 1 or 0 l) are unstable.
01 -1 2

Procedures for checking on whether the eigenvalues are
less than one in modulus are the Routh-Hurwitz or Schur;Cohn
criteria for example, which are explained in Jacobs (1974)
or Jury (1964).

The above definitions relate to systems that do not
have any inputs; we would like to know how our systems
behave when inputs are applied. In particular control
engineers like systems to behave 'nicely' - for example
tend to a steady value - if an input is applied and then

removed. They therefore use

Definition 3.10

A dynamical system is bounded-input bounded-output
stable (b.i.b.o.) if its response to any bounded input is

to produce a bounded output.
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In fact we can show that the types of stability defined

above do produce the required behaviour. For the linear case

Theorem 3.11

If X 7 giﬁi_l is uniformly asymptotically stable then
(3.1), (3.2) is b.i.b.o. stable if in addition ||F, || and
H§i]|are bounded, say Hgi]]<f, H§i|]<b, with £ and b

positive constants.
Proof

Taking norms in (3.4) with 1,20

i
ly; H<WE, TCHa(L,0) [ 12, [l + jzllli(i.j) B 11y 11
_ (3.7)
But from Definition 3.7, for some c;, cC,
[|e(k,0)]]<c, exp {-c,k} so if u; is bounded, nglbalfor some

u and

+ bu % e-cz(i_j)}

g ll< feale™®2 | x
j=1

o

i . .
Z e'Cz(l-J)< e’cz
j=1

which is bounded above as , thus

-c
l-e 72

proving the theorem.

In the time invariant case we can prove the slightly

stronger result.

Theorem 3.12

i

If x. gzi_l is asymptotically stable, then

-1
¥; = By
Xy = Gx; 5 * Buy

is b.i.b.o. stable.
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Proof

From (3.3), Q(i,O)'='gi; so in (3.7), if ng1hu1 for
all j _
i : T -1
llys 1< £ 4G lIxpll + bu_zlg },
J:

But this is bounded above since the sequence I+G + ... + gn

is convergent if G has eigenvalues less than one in modulus.

3.4 The g-transform -

The z-transform is a useful tool in the analysis of
discrete time systems, and is the discrete equivalent of the
Laplace transform. For a discrete time vector variable

Xs i=0,1... we have

Definition 3.13

The z-transform of {zi} is given by

-1
. Z

X(z) = . &

ne~18

i
defined for those complex z for which g(z) is convergent.

For a time invariant linear system, (3.1), (3.2) become

y; = Fx. (3.8)

£i41

= _Gll + §Ei+l. (3-9)

Because the Laplace transform of x.

541 18 zX(2) - zx4»

taking transforms of (3.9) gives

zX(z) - ZXy = GX(z) + ZB_tT('Z) - ZEBO

where U(z) is the Laplace transform of u,, and so rearranging

X(z) = (s1-8)'2BU (2) + (2l-G) alxy-Bug).
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Taking transforms in (3.8) and substituting gives -

-1

¥(2) = B2l - 6)712BU(2) + E(aI = @) a(zy - Bu )

which relates the input transform U to the output transform Y.
The quantity H(z) = F(zI - ) TzB , (3.10)
is called the z transfer matrix of the systemn.
For time invariant systems, the pulse response matrix (3.5)

t

is ki = FG'"IB; putting i-j = t, so that k, = FG'B then

H(Z) = K(Z)r
that is H is the z-transform of the pulse response matrix.
The z-transform can be used to test stability as the

following result, proved in Lindorff (1965) or Jury (1964)

shows

Theorem 3.14

A linear discrete filter is b.i.b.o. stable if and only
if its transfer function H(z) contains no poles on or outside
the unit cirecle.

The proof of this theorem can also be seen from Theorems
3.8, 3.12 and equation (3.10). We shall illustrate the use
of the above theorem by considering the Kalman filtering

equation (which is explained in detail in the next chapter).

Example 3.15

In the steady state, the time invariant Kalman

Filter has the form

6, = G8

8, =GB, | + Aly, - FC8

t-l)

where A, F, G are fixed matrices, 8 the 'state'! of the
system and y the observation vector. Taking transforms,

using a notation consistent with definition (3.10),
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0 (z) = (I-AF)G 0(z) + AY(z)
T2

so the z-transfer function is

1

H(z) ={z1 - (I - AF)G} ~zA

The poles of H(z) are the zeros of the determinant

|zI - (I - AF)G|, which are the eigenvalues of (I - AF)G,
and the system is stable if the poles of H(z) lie inside
the unit circle or the eigenvalues of (I -AF)G are less
than one in modulus.

3.5 Observability and Controllability

Observability and controllability are key concepts in
the theory of control theory. Losely speaking, controllability
ensures that we can apply an input function which enable us
to reach any given state, whilst observability means that
the state vector can be calculated if we know the observations
and the model equations. Used somewhat differently in a
forecasting context, these two conditions will ensure that
the filtering procedure we use has certain optimum properties
and also that we use the model of the smallest dimension
whilst retaining all of the information in the model. These
concepts are developed in Chapters 6 and 7, with a foretaste

in the following section.

Definition 3.16

-

The linear discrete time system (3.1), (3.2) is
completely observable if for any tO and initial state Xq
there exists a finite time tr > to such that knowledge of
u, and y4 for tg £t £ t, is sufficient to determine Xqe

Conditions to determine observability are given by
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Theorem 3.17

The system (3.1), (3.2) is completely observable if

and only if there exists a tr such that

M(I‘,O) = T

i

I ~1+

N . _
9(1,0) Ei gig(l,o) > 0

0
that is the matrix M(r,0) is positive definite.

Proof

Consider the case of scalar Vi3 without loss of

generality assume that utEO, then

- _
Yo £y W Xqe
= | F2(1,0) (3.11)
V] | E.2(r,0)
To obtain a solution for xj in terms of (y, ... yr)T it is

necessary and sufficient that the matrix premultiplying x,
has full rank. This is equivalent to requiring M(r,0)
positive definite. The proof for vector Vi is similar. In
fact since the matrix premultiplying X, is an r+l x n
matrix, in the univariate case then r > n-1, and we can

put r = n-1 in the statement of the theorem, ie tr = tn-l’

In the time invariant case we reserve the symbol M to

describe the matrix appearing in (3.11), that is we define
M= /E

FG (3.12)
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corresponding to time points to . tn-l' For this case the

criterion for observability can be specified as follows

Theorem 3.18

The system (3.1), (3.2) is completely observable if and
only if the observability matrix M has rank n.

As its name implies, controllability means that it is
possible by the application of control-functions to move the

system to any state.

Definition 3.19

The system (3.1), (3.2) is completely controllable if
for initial state x; = 0 and final state Xp there is a finite
t

time t, and a control sequence Uu < t <t such that

t* 70

Again we can show that conditions to test for

controllability are given by

Theorem 3.20

A necessary and sufficient condition for controllability

is that there exists a tr such that the symmetric matrix

v T . T
W(r,0) = Z @(r,i+1) B;,qB.,q" 2(r,i+1)

in positive definite. See for example Kwakernaak and Sivan

(1972, page 460).
Indeed, uj = E? g(r,j)@:lzf is the requisite control.

In the time invariant case we have

Theorem 3.21

A necessary and sufficient condition for complete
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controllability in the time invariant case is that the matrix
W = [B,GB ... GR"1B] (3.13)
has rank n.
The two concepts of controllability and observability

are in fact closely related through duality, namely

Theorem 3.22 Kwakernaak and Sivan (1972, page L66)

The system (3.1), (3.2) is completely controllable if

and only if its dual systemn

¥ B T %
L1 7 2% Xy

* T

x, =8 T :

. . . ou .
i-1 =i* i =1

*
is completely observable, where 1 is an arbitrary fixed

integer, and conversely.
Consequently any theorem for observability implies a
corresponding controllability result, and vice-versa, for

example Theorem 3.21 follows immediately from Theorem 3.18.

3.6 Algebraic Equivalence and Canonical Structure

In a vector space, we are free to choose our basis
vectors, which gives rise to equivalent transformations or
matrices, that is ones which have ideﬁtical properties.
Kalman (1963b) introduced the notation of algebraic

equivalence for control systems.

Definitions 3.23

Two linear dynamic systems of the form (3.1), (3.2)
%
with state vectors x, x are algebraically equivalent
whenever their phase vectors, defined by the pairs (t,x),

(t,z*) are related for all t by (t,x*)= (t,itz ) for some

non singular matrix Et'
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In other words there is a one-one correspondence between

*
the phase spaces T x X and T x X. 1In such a case the matrices
* * *

Et’ gt and Et are related to Et’ gt and Et according to

* -1
Ey = BTy

* -1
Gy = Ip8¢dyy
B = T,B
By = I8y

Algebraic equivalence is insufficient as it stands to
preserve the stability properties of a linear dynamic system,
for which we require topological equivalence. Topological
equivalence is algebraic equivalence plus the additional
conditions Hgtllé cl,HEt-lllé:czfor fixed constants c,

and c,. It can be varying even with time-invariant systems,

however if it is constant then we use

Definition 3.24

Two constant linear dynamic systems are strictly
equivalent if they are algebraically equivalent with zt
a constant matrix.

Using the Definition 3.23 with Theorems 3.17, and 3.20

we can show that

Theorem 3.25

Controllability and observability are preserved under
algebraic equivalence.
It is then possible to prove the following canonical

decomposition theorem.

Theorem 3.26

In a fixed linear dynamic system (3.1), (3.2) at every

fixed instant of time there exists a co-ordinate system such
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that the state variable can be decomposed into four mutually

exclusive parts, zT = (zcu’éco’ﬁuu’zuo)T corresponding to
parts which are completely controllable but unobservable,
completely controllable and observable, uncontrollable and
unobservable, and uncontrollable but completely observable
respectively. Such decompositions always have the same
number of state variables in each part, and it is possible
to chose one such decomposition which produces the following

canonical form

B D

vy = (0 F, 0 F)) %

xy = [t o it P\ x, g + By
0 6 o 6P
o o0 il
o o o ol

with

By = BAt
B,
0
0

Example 3.27

Consider a time invariant system with observability

matrix M found from (3.2). Let the non-singular matrix T be

(2

where T, is a basis for the subspace spanned by the rows of
M, and Tz is chosen to make T a basis for the n-dimensional

3
state space, then defining x, = Ix, the system can be

represented as
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[
d.
1
[ep]
=
(@]
>
+
t
[

3* ¥*
Ga Gz
. % %
with {F Gu} completely observable.

If the system is initially at rest, then from (3.4),
(305)

[l e 1 ol

zj_ = k(l’J)HJ'

j=0
With a physical system it is possible to empirically‘determine
the impulse response matrix k by applying a unit impulse to
each input in turn. The question then arises as to whether

such a matrix k(i,j) is realisable by a system of form (3.1),

(3.2). Classical control theory uses difference equations

Y t ... t a y. = bogi+...+ b

nii-n n-12i-n+l. (3.13)

Taking Laplace transforms and ignoring the transient terms

yields

Y(z){1 +a+ ... ta,| =u(z)| bo+ by + ... t b
z z z n-1

Z

~

so in the notation of Section 3.3

n

H(z) = bgz + ... + D

(3.14)

n

Since for time invariant systems knowledge of k(i,j) is
equivalent to knowledge of its z-transform H(z), then we say
that realisations of a dynamical system expressed in terms
of a difference equation (3.13), or by a time-invariant
linear model (3.1), (3.2) are equivalent if they give the

same z-transfer matrix.
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To answer our question, it follows from (3.3) - (3.5)
that we must have k(i,j) = P(i)Q(j) for some matrices P and
Q. We say that a realisation is reducible of there is a
proper subset of a realisation which also realises k. The

main result i1s then

Theorem 3.28

Knowledge of the impulse response matrix identifies the
completely controllable and completely observable part, and
this part alone, of the dynamical system which generated it.
This part is itself a dynamical system, haé the smailest
dimension among all realisations and is uniquely determined
up to algebraic equivalence, -

with the corollary,

Corollary 3.29

Every stationary impulse response matrix (that is a

function of i-j) has constant irreducible realisations.

Example 3.30

In a time invariantunivariate model m = p = 1, so

from (3.10)

1

H(z) = F(zI-G) ~zB

But (zI-G)"L = adj.(zI-G) det(zI-G) " in which each term
is a polynomical of degree n-1 divided by a polynomial of
degree n. Consequently H(z) tends to a constant as z
increases and so is of form

n-1
bgz' + byz Tt ...t D7

27+ alzn-l +

ces T a

the same form as (3.14). A realisation of such a model is

given by
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Theorem = 3.31

A canonical decomposition of (3.14) is

F= (b, ++- by

G=,0 1 0... 0 B =/0
0 0 1 o 0
0 . 1 0
-an- "al l

provided that (3.14) has no common root.
Proof

By considering G of the above from and writing down
(z;-g)T or by an inductive argument we can show that

adj.(zI1-G)B=[,

so that H(z)

{]
I
P
N
n
I
S

where | 2I-G | = det(zI-G)

n n-1 ‘
OZ + b]_Z + * o0 + bn_lZ

b

| 2I-G |

But |zI-G| = 2z + s B a because G is a companion

matrix, so that H(z) is as in (3.14). The decompositicn is
canonical if it is completely observable and completely
controllable which is easily checked by applying the criteria
of Theorems 3.18 and 3.21.

X % %
An alternative canonical decomposition, F, G, B,is
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=3
*

¢ =g
§*=ET

with F, G, B as in Theorem 3.31.

The above process is analagous to converting an nth

order differential equation to a system of first order
equations. For example for the alternative canonical

decomposition above we are effectively defining a new state

vector:
Oi -a 0 0 . 0 Vs
l
O| -a, 1 &, o ... 0 Yi-1
_ o | . . +
=i A . .
Or -az -aa . . -an -
1+ 0 . . . 0 Yi-n+l
| 0 . . 0 0]
01 bn-l
[
. . 0 u
; bn-z bn-l
;e *
[ e .
- .
[
Ol b * bn-l
Tt
O] O O ui-n+2

3.7 Stochastic Systems

We now let u. be a discrete time vector stochastic
process rather than a deterministic imput. If {u.,} is
weakly or second order stationary, defined by analogy with

§2.2, then let I'y (i-j) be the covariance matrix
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Ly(im3) = B 0(ymw) (a7

where E:=E(Ei): and let Zu(w). -m<w<m be the power spectral

density matrix ©

L) =] el (s). (3.15)
u® T L

We then have the result, Kwakerwaak and Sivan (1972, page 4L69)

Theorem 3.32

If the input to an asymptotically stable time invariant
linear discrete time system with z-transfer matrix H(z) is
weakly stationary then the output is weakly stationary. The

output y has power spectral density matrix

L) = H(e™) [ (@B (™) -ncugr. (3.16)

So for example if the input is a stationary Gaussian
process, the output will be a stationary Gaussian process.
If we write zEe-iw then (3.15) becomes with a slight
abuse of notation
o

L,(z) =1 27°r_(s)

-_— -0

the z-transform of the covariance matrix, and (3.16) becomes

1,(2) = E(2)[ (2)E(z7).

Example 3.33 considers the process.

Yip oo tAY o, T DoEg e b, 1€, 347 2s in (3.13)

Then the process is asymptotically or bibo stable if the

n n-1
Z

roots of 7z~ + a, ceo T a, lie within the unit circle

L
(see eg Theorem 3.1L), and the transfer function is given
by (3.14). If the €y are a stationary Gaussian process - a

-52-



sequence of mutually uncorrelated random variables with

constant variance matrix C say, then

1 .(z) = ¢C

and the output has covariance matrix with z-transform

E(Z)QH(Z_l)

The case of univariate y corresponds to the models of
Chapter 2, and the remarks made concerning realisations and
canonical representations of the last section apply. Indeed
it follows from the above discussion that finding a model of
form (3.1), (3.2) with stochastic input which realises a
given wide sense stationary process is equivalent to finding
a realisation of the transfer matrix H(z) of the systenm,
which was discussed in the previous chapter.

We introduce the following two definitions which will

be used in the analysis of stochastic systems in Chapter 4.

Definition 3.34

The system (3.1), (3.2) is uniformly completely
observable if there is an integer k>1 and positive constants

a0, a3, Bo and B; such that
(a) ﬂ(r,r-k)>o for all r
(b) OLOI_S_M'.]'(r,r-k);ulE for all r

() BOZ;E (r,r-k)ﬁ-l(r,r—k)_igT(r,r—k); I for all r

where Mand ¢ are defined in Theorems 3.17 and 3.2.

Definition 3.35

The dual condition is the system is uniformly completely
controllable if there exists a k>1 and positive constants

QO,0Q 3 BO:B]_ such that
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(a) W(rtk,r)>0 for all r -
(B) oul<W (r+k,r) <ol for all r

(c) BO_I_;QT(r+k.r)W_'1(r+k,r) 8 (rtk,r) <g;I for all r
where W is defined in Theorem 3.17.

In the time invariant case, systems are uniformly
completely controllable/observable if and only if they are
completely controllable/observable, so that the definitions

in § 3.5 may be used.
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CHAPTER 4

BAYESTAN FORECASTING

4.1 Introduction

The last chapter listed some of the key concepts in
control theory, whose classical development was concerned
with non-stochastic inputs and outputs. However, in the
real world measurements are subject to error and for
simplicity, or because of ignorance of all the relevant
influences, our mathematical model will usually only be a
good rather than a perfect description of reality. These
problems lead naturally to the introduction of error terms,
which can often be described probabilistically.

A natural question that arises is how to estimate the
state in the presence of errors, or how to 'filter!' out
these quantities. For example control theory, including
filtering theory, became very important during the American
space programme, since one wanted to be able to estimate
the position and velocity of space-vehicles - which corres-
pond to state variables - in the presence of extraneous
forces and measurement errors.

Harrison and Stevens in a series of papers (1971, 1975,
1976) used a similar methodology to attack problems in
forecasting Time Series, which they termed Bayesian
Forecasting. Such an approach differs from the classical
approach and forms the starting point for the rest of this

thesis.

Before embarking upon a brief description of Bayesian
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forecasting we give a brief description of the ideas behind

Bayesian inference.

L.2 Bayesian Inference

The foundations of Bayesian inference can be traced to
the Reverend Thomas Bayes' work of 1763; a readable review
of the subject is given in Lindley (1971) whose notation we
now use. Other relevant works are Box and Tiao (1973), De
Groot (1970), Ferguson (1967) and Raiffa and Schlaiffer (1961).
Suppose that we have a measure space of observations
(X, &, v) where v is a o-finite measure on the o-field o
of subsets of the general space X. Let {Fe, 6e0} be a family

of probability measures on (X, @), each F. being dominated

8
by v so that

P(Ale) = [, p(x]6) dv(x) (4.1)

according to the Radon-Nikodym theorem, where A is any
member of the o-field ¢. p(x|8) is thus a probability
density function.

The Bayesian theory now éssumes the existence of a
probability system (0, Q, P) where P is a probability measure
on the o-field Q of subsets of 0. If P is dominated by a
measure u on (0, ) then a prior density p(8) can be defined
on Q. If further the likelihood function p(x]-) (p(x]|6) as

a function of 6 with x fixed) is P integrable and
f@ p(x|e) dp(8) = 0 implies that p(x|6) = O
then according to Bayes rule

p(8]x) = p(x]e) p(e)
fgp(xl8) p(8) o

provided that p(x|8) is non-zero. Otherwise p(8[x)=0.
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Manski (1981) mentions that such an analysis effectively
imposes two restrictions. First, we require that the o;
finite measure p has domain Q,_which implieé no practical
restrictions. But, secondly, the requirement that the
likelihood be integrable means that it must be QQmeasurable,
which can be severely restrictive in a practical sense.
Manski discusses possible solutions to this problem, however
we shall assume that the likelihood is integrable.

Equation (4.1) is a statement of conditional probability
and a mathematical statement; disagreement arises over the
nature and meaning of the prior, and whether or not the
measure P exists. Cox and Hinkley (1974, p375) give three
possible interpretations of the prior:

(a) As a frequency distribution; this might occur if
the parameter is generated by a random mechanism amenable
to statistical analysis.

(b) As an objective representation of what is rational
to believe about a parameter - usually in the face of
'ignorance'.

(¢c) As a subjective probability assessment.

It is the last two cases that fall under the distinctly
Bayesian umbrella. For the second case, various suggestions
as to what constitutes a prior expressing ignorance have
been made by Jeffreys (1961), Box and Tiao (1973) and more
recently by Bernardo (1979) amongst others. Warnings against
the use of improper priors in such situations have been made
by Stone (1970) amongst others.

The third case can be expressed in deéiéion theoretié
terms - indeed it is a moot point as to whether or not all

statistical theory involves decision theory. If we have a
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decision space D of decisions d, and a real non-negative loss

function L(d,8) on D x © then a Bayes decision is one that

minimises the expected loss
E(L) = [, L(d,8) dp(e)

provided that L is integrable and that a minimum exists.
Some argue that it is more natural to work with bounded
utility functions, U(d,0) in which case a Bayes decision
maximises the expected utility. Much work has centred on
the use of convex loss functions, for example L(d,e)=(d¥6)2,
when the Bayes decision is the expectation E(8) with respect
to P(8). However it is well known that unbounded loss
functions, such as the above, can create problems. A cléss
of bounded loss functions has been given by Lindley (1976),
whilst Smith (1980) has given bounds for decisions using
bounded loss functions.

De Groot (1970) develops an axiomatic approach,
considering the subjective probability space (6xX, Qx9o, FG°P)
and shows that the axioms, if accepted, lead to a unique
choice of prior probabilities and utilities - unique that is
for each person. Manski (1981) points out that this is
effectively using Bayes Theorem, which says that a measure
on a product space can be decomposed into marginal and
conditional measures, rather than Bayes rule.

Smith (1978) adopts a pragmatic approach by requiring
that if two priors pl(e), pz(e) are 'close! then their
associated posteriors and decisions are tclose'. This then
allows some latitude in the specification of prioré. If we
use the weak (or star) topology to define closeness, which
is effectively the strongest requirement, then we require

(i) the likelihood is bounded
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(ii) the set of discontinuities has measure zero

with respect to the prior
the latter being redundant if we use absolutely continuous
priors.

The choice of loss function plays an important role in
practical situations, because under different loss functions
the same posterior can give rise to very different decisions.
In a sense this is because we are choosing a single point
to summarise an entire distribution; indeed by choosing an
appropriate loss function we can reach almost any decision.

For example

Theorem 4.1

Let f be a probability density function with continuocus
derivative defined on the real line with boundary points
11 and 12 satisfying

(1) lim f(x) = lim f(x) =0
x+ll x+12

(ii) f(x) is strictly unimodal with £'(x)=0 at one and
only one point in (1., 12), m say.

Then for each point x € (ll’ 12) there is a loss
function L increasing in (y-d), positive, with L(0)=0

such that the Bayes decision with respect to f and L is x.

Proof

Consider the asymmetric loss function of gauge (a,b)

defined by

0 -a< y-d <b a,b>0
Ly b(Y‘d) = { d
1 otherwise

Then E(L) = 1 + F(d-a) - F(d+b) under the above conditions

is a continuous function of d whose minimum satisfies
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f(d-a) = f£(da+b). (4.2)

At any point x € (ll, 12) f(x) is non-zero; by the
intermediate value theorem applied to (ll’ m) and (m, 12)

there are two points Xq and X, such that

f(xl) = f(xz) = figl.

Then x is the Bayes decision for the loss function gauge

(x—xl, xz-x), because (4.2) holds, and X1s» X, are the only

2
two points distance ,XZ'Xll apart satisfying f(xl)=f(x2). If
this last condition does not hold then for some ¢

f(xl+s) = f(x2+€);

+e and x

but x,te < m < x 1 < m< x5, so that from (ii)

2

f(xl+d) > f(xl), f(x2+d) < f(x2) so that f(xq+e) # flx,te).

2
Thus x is indeed the Bayes decision and the theorem is proved.
How one actually choses a loss function in a practical
context when one is not estimating a parameter is a subject
largely glossed over by Bayesians. If one accepts De Groot's
axiomatic approach then it is a question of extracting the
persons personal utilities, by asking suitable preference
type questions. A more pragmatic approach might be to try
and use an approximate bounded loss function with a small
number of adjustable parameters that can be altered to
approximately represent the individual's preferences. This
whole question is in need of further research, and one that
we shall from now on sidestep by concentrating on symmetric

loss functions which provide a degree of 'impartiality'.
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4.3 Bayesian Forecasting: The Dynamic Linear Model -

The Bayesian Forecasting approach to Time Series analyéis
assumes the following description, known as a Dynamic Linear

Model or DLM: an observation equation

Y = Etﬁt'+ Xt (4.3)

and a system equation

8y = G48yq + ¥y (4.4)

In general y, is an m vector of observations, 8, an n vector

t
of process parameters with Et’ gt mx nand n x n matrices

respectively, known at time t. v, and w, are random normal

t
vectors of appropriate dimension with

t

w, ~ N(0,H,) (4.6)

independently.

Such a description postulates an (unobserved) underlying
process characterised by 84s which evolves in a Markov
fashion, together with an observation equation relating the
observations Vi to 8. For example one of the simplest

models is the 'steady model',

vy T 8yt vy

+ wt

Oy = 841
which can be interpreted by saying that the observations are
noisy measurements of an underlying level or mean, which is
described by a random walk. Some éonsequences of this
model are investigated in Chapters 5 to 7.

The theory for the model (4.3) - (4.4) with assumptions
(4L.5) - (4.6) is enshrined in the Kalman filter after

Kalman (1963a).
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Theorem 4.2

For a DLM with {E,, Gy, V,, W.} known at time t, if the

posterior distribution for gt;l at time t-1 is Normal
then the posterior at time t is also Normal

where Bt represents the data up to time t, so that

Dy = (Dy_1»¥yoEysGyn Vo).
The equations relating Dys Qt‘to Dy q» gt;l are
m, = Gym, 5 tAe, (4.9)
¢, =P, -ATA" (4.10)
where
&y = ¥y - Uy
Iy = EiGymya
By = 8i841Gy * N, (4.11)
I, = BB +_-Y-t
B, = BET(E)
Proof

This can be found in any text-book on stochastic
control theory, for example Jazwinski (1970, chapter 7).
A particularly simple proof is given in Harrison and

Stevens (1971), proved using Bayes rule

P(Qtlgt) & p(thgt'Et’Et) p(ﬁtlgt_l)

where

p(8¢1Dy 1) = J p(84184 1) P8y 7[Ry 4) A8y, -
Since all the relevant distributions are Normal, the

relations simplify to give the above recursions.
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Remarks

1. The quantities in (4.11) are of interest in
themselves, for instance 2t’ it are the expectation and
variance of Yy conditional upon gt;l’ so that ey is the one
step ahead forecasting error which occurs in many fore-
casting systems. At is the Kalman gain vector.

2. The process needs to start off with a prior for 8
so that the forecater needs to build his prior opinions into
the model -gained from experience, forecasting in similar
circumstances, inside knowledge and so on. The simplest
case occurs when we can approximate prior knowlege by
p(go)% N(QO,QO). In fact we can approximate any prior by
a Normal mixture (see for example Sorenson and Alspach 1971)
however in most practical cases the effect of the prior
decays with time so that a single Normal distribution
suffices.

3. If V, is positive then

t

1o -1 T -1
tEYTE

- (4.12)
and AL = C.E Y

which are alternatives for (4.11).

We can allow a more general form for the error terms,

for example

|<
|

-
-V
voON ) I (4.13)

X Hu

1<

with the suffix t understood, in which case

= G + u. + A

my = Gyl FoHy T A¢8y (4.14)

c, =P, - AT.AT (4.15)

where
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- -‘t t t 1 =tiw i 4
2y T Yy " Yy
— T
2y = Gilp 1G," t W (4.16)
Y, = F,P,F.+ F,RY + RF,Z + V
I T LgfgfyT EE T RE;C 4 X
- T T N |
At - (Btf-t + E ) (lt) .

The above recursions can be thought of as defining
posterior distributions, or as defining estimates mys Oy

of the mean and variance. In the latter case m, is the

t
Bayes decision for 8 within the class of loss functions
L(g,gt) = L,(d - Qt) where L, is symmetric about zero and
a non;decreasing function of || d-6 || . For example with
L;(x) = 0 if x=0 and 1 otherwise, the Bayes estimate is the
mode which for Gaussian random variables is the mean .
Jazwinski (1970, chapter 7) details several alternative
derivations of the filter. For example the above filter is
optimal for m, in the sense of
(1) recursive least squares with appropriate weighting
matrices corresponding to the variance matrices V and W.

(2) The linear minimum variance estimator, that is a

linear estimator chosen to minimise

E{(et-mt)T (8,-m,)} = trace E{((8,-m,)(8,-n t)T}

i}

trace Qt‘

In particular, if v, and w, are not Normally distributed,
the filter is still optimal in this linear minimum variance
sense. Whilst if it and ﬁt are Normal mixtures then the
optimal non-linear filter is given by the Class II models

of §4.7; see also Chapters 8 and 9.
The Kalman filter also provides a particularly
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convenient framework in which to alter the model: provided
that the posterior at time t-1 is normally distributed as
say (4.7), and that (4.3), (4.4) are appropriate as we

pass from time t-1 to t, then the posterior is as given in
Theorem 4.2 . Consequently we can incorporate subjective
information into the model in two ways: firstly we can alter
the values of {F,,G,,V,,W,} at time t to take account of
new information; in the simplest such case we might express

increased uncertainty by larger varianceé y and W

t t°
Secondly we might decide to directly amend the posterior;
for instance if we thought that there was a change in the

system parameters, then we might model the posterior by

p(8,_ 11Dy ;) ~ N(u, 7,C0; ;) with typically Gy ; > Gy ; to
express increased uncertainty. An example is given in
Harrison and Stevens (1976).

Models other than the steady model are given in
Harrison and Stevens (1976). These include seasonal models
and also the Markov polynomial models considered by
Godolphin and Harrison (1975). In their case studies paper

Harrison and Stevens only look at models whose non-seasonal

part is the steady model or the linear growth model
vy = O T gy
Op = Op1 F By Ty

Bpoz T Woyo

>
ct
1}

This is readily put in DLM form and takes its name from the
fact that the underlying level undergoeé an increase Bt’
which can be thought of as a growth term that pursues a
random walk. Also the forecast function for such a model
is linear.
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A useful property of DLMs is the superposition property
which says that a linear combination of linear models is
itself a linear model. Again this is illustrated in Harrison
and Stevens. The practical implication of this is that we
can model the seasonal part, trend and other factors by
DLMs and then combine them linearly to achieve a DLM for

the whole process.

L.t Forecasting with DLMs

One of the primary objectives of the theory is to make
inferences about future observations, or about linear
transformations of the observation vector. In Bayesian
inference this requires knowledge of the predictive

distributions. If we denote
Byt = E(844p /D) (4.17)
C, ¢ = Var(8y,, 1D,) (4.18)
with my o= By, Co,t = Cy» using (4.4) we have

S+ = Gptik-1 b iy 3

conditioning on time t and using the normality of €,[D,

and w, for all t gives

|_12t nv N(m, c

Stk oy v St

with parameters generated recursively from

LR S 9 (4.19)
C. ., = Gyop C G,,,0 +W (4.20)
-k, t =t+k =k-1,t=t+k —t+k
which requires knowledge of G,, W, up to time ttk.
Similarly defining
Yk. t = E(ylt.;.kl]_). ) (4.21)
Jk, J
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T Lg,p 7 Var(yy,,IDy) (4.22)

then using (4.3) and taking conditional means and variances

T, t 7 el ¢ (4.23)
e w e w T
Lot = Dondli tBea + Yo (4.24)

and the predictive distributions are Normal:

ToarlBy v Wlyy g0 I o)
In particular Y1, = Jy» X7 4= Y,. Note that in the time
- ’
invariant case

X
Ik, t - 8oy - (4.25)

These results have been derived under assumptions (4.5) and

(4.6). Under assumptions (4.13) the formulae are slightly

altered,
By,t = StekBr-1,t F Bu, b4k (4.26)
_ T
St = Serlion, t84x T Hpsx (4.27)
Yi,t = EprBie, vt By, b4k (4.28)
b S PG F T E R T bR (4.29)
=k,t  Stt+k=k,t=t+k Zt+k=t+k B ricfete .

Frequently (4.23) or (4.28) are used as k-step ahead
predictors of T4k’ under the Normality assumptions the
marginal predictive distributions are themselves Normal, so
such forecasts are optimal under the wide class of symmetric
loss functions mentioned in §4.3. As has already been
mentioned, in a practical situation we might want to use
different loss functions such aé aéymmetrié ones to
represent the differing éonéequenéeé éf overeétimating or
underestimating.

The following is another inétanée of when such forecasts
might not be the best.
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Example 4.3

Suppose that we have univariate data and make a
transformation Zy = log Vi This is common practice in
Time Series Analysis for various reasons, for example we
might think that a multipliéative model is more appropriate

than an additive one. Suppose further that z, can be

t
modelled as a univariate DLM, so that F, G in (4.3) and
(4.4) are scalars. Then applying the Kalman filter will

produce the predictive distribution

A EARE [ETINE N (4.30)

In classical analysis 2y, 4 is taken as the forecast
of 2z, and so exp(zk’t) is used as the forecast of Ytk
This corresponds to using a symmetric loss function on
(4.30). However the primary quantities of interest are the
observations y,,,. Now the conditional distribution (4.30)
corresponds to to log y.,, having a (conditional) normal
distribution, so that yt+klyt has a log;normal distribution

with density function

1 1 exp{-% (log y - Zk,t‘)z} |
VAT Zy b Vi 7y 4 y
14

If we apply the guadratic loss function to this

quantity then the Bayes estimate, -the mean

eXp { Zk,t + % Zk,t }’

is the 'usual' estimate multiplied by exp ( % zk’t ), which
can take values considerably different from 1. It is more
sensible to apply loss funétioné to the quantities of
interest, and in thié examble différent éymmetrié loss

funetions will produce different answers. In certain cases
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the traditional estimate exp(zk’t)might not be very

sensible.

An example that will recur throughout the thesis in
various guises is the following steady model mentioned in

§ 4—-3

Example 4.4

yt = et + Vt ’ (4.31)

8y = 8y q * Wy (4.32)

where all the quantities are univariate. For this model

F=0G=1, and if v, v N (0, V), w_ ~ N (0,W) with constant

t
variance error terms then the Kalman filter equations (4.8)

- (4.11) reduce to

my = my o Ay (yy - my_q)
ag = G+ W C, = AV
Gy TWEV

and the predictive distributions (4.23), (4.24) give
yt+k’yt v N (myy,, Cp + KW 4V)

so that under symmetric loss yt(k) = yt(l) = m, and the
model produces constant forecasts.

Either by applying Corollary 4.6 to the model (4.31),
(4.32) or directly we have that A  tends to a limit A, so
that in the limit A.={Lw-+(w2+4vw)%}/2v, and

v (k) =y (1) = my (4.33)

where m, = mt;l‘+ A (yt - mt;l)' (4.34?

But (4.34) has the solution

IR I .
m = Ajzo(l A) Vo (4.35)
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which is the same as (2.15) if A=14+8. Consequently this
model produces the same forecasts as an ARIMA(0,1,1)
model. In Chapters 6 and 7 we generalise this result to
predictor equivalence between a wide class of DLMs and
ARIMA models.

In Chapter 5 we show how even with steady models, if
non-normal models and differing loss functions are used

then (4.34) can be violated.

L.5 Applications of Control Theory

The error covariance term gt is calculated recursively

from (4.10), (4.11) as

) T T\ T
Oy = 848y 8y * My - (&84 187 + MR x
T_ T T 1
x (ByGyly 1Gy By + EgMyE + L) 7 Ey x
T
X (gtgt—l-c—}t + Ht) (4.36)

This equation is independent of the data and so can bte
calculated as soon as the quantities {E, G, V, Ht} are
known. In certain cases this matrix Ricatti equation
tends to a limit C. Equivalently, since

Ty

Q
"

(l = Atﬁt

T
By = G818y * L

2y

it can be seen that P, tends to a limit if and only if

C, tends to a limit. The updates for P, are sometimes
simpler to work with; they are
T T, T + -1
P =GPy 10y + Wy =GPy 0 Fy 0 (By qPe g8 Ve1) Tk
X Et-lgt-lﬁtT (4.37)
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It turns out that sufficient conditions are those of
observality and controllability given in Chapter 3.
Observability implies that a solution exists and
controllability that such a solution is unique. In
complete generality we have from Kwakernaak and Sivan
(1972, p535 theorem 6.45) and Jazwinski (1970, pR40 theorem
7.4)

Theorem 4.5

*
If Fy» Gy» ¥, and W, = MM T are bounded for all t
¥*
and W, > ol, Vi > BI for all t , for positive constants a,
R then

(i) if the DLM is either observable or uniformly
asymptotically stable with go=o (20=0) then the variance
C, (BPy) tends to a steady state solution of (4.36) {(4.37)}
as tow.

Moreover if the system

*

8y = Gi8y 1 MM,

Y = Egfy
is either both uniformly completely observable and
uniformly completely controllable or uniformly asymptot-

ically stable then C, (P,) tends to a unique solution of

%
(4.36) (or (4.37)) for all initial conditions. Also the

filter is uniformly asymptotically stable; that is the

filter

The relevant definitions are all in Chapter 3. This

theorem (part(ii)) is important because it means that not
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only does a steady state exist which means that the prior
effects decay to zero, but also it ensures that the
recursions for Qt and gt are numerically stable, which is
important for computational purpoéeé.

We shall mainly look at time-invariant sytems for
which observability and controllability imply uniform
observability and controllability, so that the theorem can

be expressed more simply as

Corollary 4.6

If the time-invariant system

Iy T 22y T Xy Yy N(0,V)

+ Et Et N N(O,E)

is observable then O, (B;) converges to a limit provided
that Cy=0 (By=0). If in addition W=dM' with (G, M)
controllable then gt (gt) converges to the unique solution

of (4.36) ((4.37)) irrespective of the initial conditions.

Now from (3.13), (G, M) is controllable if

C o= (M, GM, ... , G"71N)

has rank m where G is m x m and M ism x p. 3But if ¥

is positive definite then there is an m x m matrix of full
rank such that W = ﬂﬂT, so that C has rank m. Thus in the
time invariant case, provided that W is positive definite,

Corollary 4.6 will be satisfied if the system is

observable.

In Chapter 6 it will be shown that it is sufficient
to look only at observable systems, in which case provided

that the system covariance matrix is positive definite
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(which is usually true) the filter is stable and the
covariance matrices gt, Py will converge.

The algebraic equivalence of Definition 3.23 can be
applied to the model (4.3), (4.4) relating the state

*
vectors gt and gt by a non-singular matrix I, via

8¢ = I8y -

* *
The matrices Et’ gt of the algebraically equivalent

system are related to F,, G, by

* -1
Ty = B3y

% -1
Gy = LG Ty 4

*
and the error terms w, v N(O,ﬂt) by

wy = Iiwy
SO

* T
Et - Etﬂtit .

The Kalman updates (4.9) -(4.11) of the two systems

are related by

* -1 T ,
Gy = 1,77C. Ty (£.39)
with
Ay = Ly
b3 T
Py = Etitit
and A A
NS (4.40)
A%\L = v . l
1, =1, (4.41)

provided that the priors are related by (4.38),(4.39). 1In

fact we can show more generally than (4.40),(4.41) that

the recursions for_gk’t, Xk,t of (4.21), (4.22) are
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preserved under algebraic equivalence. This means that
the predictive distributions (for the observations) are

identical for any algebraically equivalent models, thus

enabling us to use equivalent models.

L.6 Class I models

The Kalman Filter requires knowledge of F, G, Y and
W at time t. In practice it is extremely unlikely that
we know these quantities exactly, especially in statistical
applications where no physically based model presents
itself. This problem is discussed further in Chapter 8
however one soiution is to use the Harrison-Stevens Class
I modei. ©Such an approach assumes that during the time
interval under consideration the data is best described by
a single but unknown model Mi’ where Mi is one of n possible
models, i=l...n, each Micorresponding to a set of values

for {E,,G Et’wt} throughout the time period.

t’
If po=(pl’O ce pn,O) is the vector of prior
probabilities whose j°0 term is the probability that model

j is 'correct' at time t=0, then defining
= P(u=t_ |y, pg) (4.42)
pj,t g ¥ »Pg

and using Bayes theoren

, t-1
pj,t = P(yt]Mj’ Y )

Py t-1°
The first term in the product is the likelihood. ITf we
denote thée probability density of a normal random variable

mean y variance o? evaluated at x by Noz(x-u) then

t-1

P(y-thj! y ) =X

A A

where yj, Yj are the mean and variance of the predictive
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. . . t-1
distribution p(ytly ©) calculated from the Kalman filter
assuming that Mj is in operation from time t =0 to t.

Consequently

p- _p- b Nl\ ( -A.
J’t Jst‘L Y. yt yJ)

: . (L..3)
i,t-1 NQi(Yt -¥5)

n
Zp
i=1
This is the prior-posterior analysis for the probability
that model j is correct. Once we have these updates, the
remaining quantities of interest are readily calculated,

for example

[l

t-1
L p(8yly™ ™ oMy) by 4

p(eyly® ) = payly® . uy) P4 (4.42)

t t
P(yt+k|y ) = z P(yt+kly ’Mi) pi’t

where for instance p(gtlyt,Mi) is the posterior for B,
if Mi is in operation for all time and is found from the
Kalman filter by using the values of {F,G,V,W} which
correspond to Mi' In other words at each time stage we
apply the Kalman filter n times, once for each set of
values from model 1, yielding n normal distributions which
we then mix by using the appropriate probabilities.
Decisions are then based upon these normal mixtures.
Such models might be used

(i) as a discrete form of Bayesian parameter
estimation. In this case each Mi will correspond to a
particular set of parameter values, and P; ¢ represents

the posterior probability that the parameters have values
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as in model i. TFor example if the variances V and W are
unknown then we could set up a grid of values to cover
their possible ranges. Some care needs to be exercised in
the choice of this grid, and the implications of the
simplications inherent in this method have not been
studied.

(ii) If we are unsure as to which of a number of
models best describes the data then we can use this method
to choose a single model or a smaller number of models.

(iii) In situation (ii) we can use the forecasts
from the whole suite of models, possibly to cater for
parameter values changing in time, so that this is using
a convex combination of models. If in fact the data are
generated from a single model, such an approach will lead
to a loss of performance.

(iv) 1If there is little or no data available, so
that classical approaches to analysis are inappropriate.
By using the class I procedure we can build upon our prior

opinions.

L.,7 Class IT Models

In some applications of Time Series, expecially those
involving economic data, it is extremely unlikely that we
shall be able to successfully model any particular series
by a model which has the same dynamics for all time. One
possibility is to postulate a class of models at each time
stage and allow the process to jump between models. The
simplest way of describing the jumps is to specify a Markov
evolution with a transition matrix {wij(t)}, LIy being

the probability that model j is operative at time t given
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that model i operates at time t-1. This very general
structure can be siuplified by having {ﬂij(t)} independent
of t, and simplified further by having Tss =Tes with wj;O,
an =1, which nakes nij(t) independent of the past. These
simplifications were assumed by Harrison-Stevens (1975,
1976), although relaxing these assumptions introduces a
much wider class of models and it is envisaged that further
research could lead to practical examples of such models.
Note that Wij =6ij gives the class I model of §L.6.

Suppose that at time t-1 the posterior distribution
is a mixture of m normal distributions.corresponding to m
past histories Hl ".Hm, for example each past history might
correspond to any one of n models being involved at each
time stage. If n models My "'Mn are introduced at time t
then using the transition matrix {nij} we can calculate
the mxn transition matrix giving the transition
probabilities from Hi to Mj’ which without ambiguity we
can denote as (ﬂij). At time t -1 the posterior

distribution can be represented by

lyt-ty = N (6

m
(8 NS P 8,7 - @y 4 1)
t-1 B N I = T PR T AT

where P; .1 cen be thought of as the probability that
’ - .
model i is operative at time t -1.
Now

t-1 t-1 t-1
p(8 1y ™) = 1_Zj p(8ly ,Mj..Hi) p(Mj,Hin ) (4L.L6)
Ly
t-1 t-1 .
and so p(8;ly"™7) = izj P(Oyly™ ™ MBI 55 Py gy
’
where p(gt[yt'l,Mj,Hi) is calculated from the Kalman filter -

in fact it is normal with mean gjgi £o1 and covariance
, b=
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. T ..
matrix gjgi,t_lgj + ﬂj' By similarly conditioning

- t : t , t
8 = M : Ay
where again p(gtlyt,p%, Hi) is the normal distribution
calculated from the updating procedure using the parameter
values of model Mj and history Hi‘ We shall denote the
mean and covariance matrix of this distribution by gt(i,j)

and gt(i,j) respectively. Finally

. . t t-1 t-1..
p,(1,3) & p(Mj,Hily ) « p(ythj,Hi,y ) p(Mj,Hi!y )

= . . (4.48)
) V9 (1,59 - §5(L,303m55 by 4 g

substituting (4.48) into (4.47) gives the posterior density
and we can similarly calculate the predictive distributions
using the above probabilities.

The problem is that we now have a mn component normal
mixture instead of an n component mixture; so that the
situation is 'explosive'. Harrison-Stevens introduce a
collapsing procedure to overcome this by reducing the mn
components to n. This is achieved by integrating over the
past histories for each model lj’ giving the following

relations:

il
P4 ;iél py(1,3)
m
By Tydy Peltd) Be(E D) (4.49)
pj,t
¢ . - . T
it =i£l py(1,3) Ly(1,9) +{m (1,5) -n, Hali,§) -m, 3

pj,t
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giving rise to new posterior for et,

00,1y = T by g Mg (8, - b -

i=1 =it

The above relations are obtained by equating the first two
novements of the collapsed and uncollapsed systems.

The class II models admit another interpretation if
ﬂij =ﬂj and the n different models consist of different
values of the observation and state noise variances. Then
we are effectively modelling non-normal error terms, namely
mixtures of normal distributions,

vy ) Dy Nvi(vt)'

Conversely given error terms that are mixtures of normal
distributions we can model them in this way. This is
extremely useful since we can approximate any distribution
by a normal mixture (see Sorenson and Alspach, 1971) and

thus use any noise distribution.
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L.8 Parameter Estimation

The Kalman updating procedure (4.12 - 4.16) assumes
that the matrices F, G, V and W are known at time t.
Indeed it is necessary to know or have estimates of these
inputs to the filter if we are to be able to derive
forecasts. 1In practice some or all of the matrices will
be unknown and so estimates are required. As we have
already mentioned, one solution is to use the Class I
models defined above by putting a discrete grid of values
on the unknown parameter, and then updating the posterior
probabilities on each of these values. However we now
consider different approaches to the problem.

Classical Time-Series analysis is very much concerned
with the identification.and fitting of modeils to
particular series, where it is assumed that some single
model (possibly non-linear and time-dependent) can
adequately describe the data. We shall show later in
Chapters 6 and 7, particularly Theorem 6.13 and following,
that constant DLMs are equivalent in a suitably defined
sense to ARIMA models. Consequently techniques applicable
to ARIMA models can be used to identify and estimate the
parameters of an ARIMA model, from which an equivalent
state-space form can be used as a DLM.Q This is not a
particularly interesting procedure because the state-space
form is almost redundant when so used. We are more
concerned with situations where interpretability of the
model is important and also where it is inappropriate to
postulate a single model valid for all time, in which case
classical procedures are of less value. This point is

developed in Chapters 7 and 8.
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The underlying equivalence also implies that classical

procedures can be applied directly to DLMs, for example

Maximum Likelihood Estimates

For univariate observations Vi with F, g known but

V, W not, then

ko]

Yg = Qt + Vi vy N(0,V) (L.50)

Lo

+ w

Ga, t+ w, w, v N(O,W). (4.51)

By repeated application of (4.51)

= g9, + G Wy ot oee. tu (L.52)

gr 0

If we denote the vector of n observations Yy by
y= (yl cee yn)T,4then if 8, is known, the log-likelihood
is given from (4.50), (4.51) as

(L.53)
L(V,W) = -n log(2n) - dloglz| - 3(y-u)Tz 1(y-u)
2 y-u I
where uT = F(G G? ... gn)§0 and
i . .

“k_, T\i-k _T
z =(2.. T.. =6..V+FY GwW(g)ITEF
p=(ryy), my=eV+E] 6@ IR

and where 8§ is the Kronecker delta; p, I are the mean and
covariance matrices of the observations respectively.
If instead 8; is unknown and is represented by the

prior 8,\N(my,Cy) then the log-likelihood is (4.53) with

Wl = E(g 8% ... 6Ynm,
. 1 . g
g =s..v+reic, eDIFT +r 7 ot Fuw(eh)Iikg!
ij ij == =0"= = “k=1
Using the formulae g; log|z]| = trace{Z 13;_}
004 36-



1 -1 - .
= =X 3ZZ 1 in (4.53) gives the maximum

905

Q

)

and 3%
3¢i
likelihood estimates of ¢i - where the ¢i are the free

parameters of {V,W} - as the solution of

3¢i 3¢i 3¢1
iy -wT ez z ) (y - w)-
8¢i

(4.54)

Apart from simple examples this is difficuit to solve
analytically and numerical methods are needed to find a
solution. An added problem is the possible lack of
identifiably, in that V and W might not be uniquely
determined from the likelihoad equation (4.54).

The difficulty of solving (4.54) implies similar
obstacles to an exact Bayesian approach, since Bayesian

estimation is essentially a modified likelihood method.

We shall illustrate some of the problems mentioned
at the beginning of this section by considering the
simplest practical DLM, namely the steady model of Example
L.4 defined in (4.31), (4.32) as

ye = 8 F vy vy v N(Q,V)

8, = 6 t w v N(O,W)

t W

t t

where V and W are now unknown.

The simplest method of estimating V and W consists
of using the covariance properties of the 'derived' series
Zp = Yy~ Ve_1- (The justification for doing this is given
later iﬁ Chapters 6 and 7). The properties are
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E(Zt) =0

Yo = E(ztz) =W + 2V (L.55)

E(zt ) = -V.

Y1 Zta1

Comparing these theoretical values with the estimated

first two sample autocovariances c, and c, of the

1
differenced data gives point estimates of V and W which
can then be used in the Kalman filter.

This technique needs some data to start with,
although it might be possible to use a weighted average
of prior values and estimates to overcome this.

We shall develop very. general results of equivalence

between ARIMA models and DLMs in Chapters 6 and 7. It

will be shown that an MA(1l) model

By T Vg Yyo1 Ty FBEL 4 (4.56)

is equivalent to the DLM (4.31), (4.32) where B really
depends upon t. However in the limit as t -+, from

Chapter 6 or directly from Example 4.4

B = W - 2V + /(W2+LVW) (4.57)
2V

and the problem is to estimate B. This can be done by
any classical approach, for example an asymptotic
likelihood approach is presented in Example 2..4.

Having found B the ratio V/W is calculated from
(L.57), which is all that is needed for filtering or
forecasting since the Kalman filter for the steady model
depends upon V, W only through the ratio V/W. If
additionally individual values of V and W are needed then

either the Bayesian technique described below can be used
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or alternatively the variance o2? of (L.56) can be estimated
and equated to V, W. For instance from (6.71) and Example

b b

2

0% = -V . (L.58)
/ B

Note that (4.57) and (L.58) follows from equating (4.55)
to the autocovariances of (4.56). It will be proved in
Chapter 6 that this is permissible for equivalence between

(4L.55) and (4.31), (L.32) using the Kalman filter as t-w.

Exact Bayesian Analysis

The only case where 'nice' results can be derived
appears to be when there is a single unknown parameter of
such a form that the standard Normal-Gamma theory can be
used. By 'nice'! we mean that at each time stage priors
and posteriors can be described in closed form
corresponding to standard distributions. For example

suppose that

t-1

yely "7t v N(my, 1/1)

that is the predictive distribution has unknown precision
T, and suppose further that conditional upon data up to

time t-1, T has a gamma distribution

p(rlyb™) n  (4p)P0 fBocl oo28T (1.59)

I'(za)

which we denote by G[za , 3B].
Then applying Bayes theoren
- t-1
p(rly®) = ply, ly" L 0prly®™h) (4.60)
v Gl3(atl) , 3{B+(y-n)?]] (4.61)
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so that the posterior distribution is also a gamma
distribution. The unconditional predictive distribution
is

I (%a)v/(2m)

= {8 + (y-m)2}~tlatl)

which is a Student-t distribution.

These recursions have a simple form, however
unfortunately the Kalman updating procedure involves two
parameters V and W together with gt_l]yt-l and not a
single precision t. For example for the steady model

(4.31), (4.32)

=C, . tWH TV

Tt T V-l
so that not only does Ty provide information on the sunm
W+V but also Ct-l is involved additively.

These problems can be circumvented if we let CO=CO*V,
W=W*V with Cy*, W* known so that there is just a single
unknown V. The predictive distribution is then a constant
multiplied by V, enabling the Normal-Gamma theory to be
applied. Moreover the Kalman recursions depend only in
W/V = W*, so that the analysis can be repeated at each
stage. Unfortunately these assumptions are unlikely to
be realistic precisely for these reasons, since knowledge
of W/V completely determines the filter, as we have already

mentioned. Equivalently from (4.55), the autocorrelations

depend on W, V only through W/V.

It is interesting to note that if we put independent

priors on V, W, both of which are inverse-gamma distributed
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then we obtain an unconditional distribution for the
system vector that is the first term in Smith's t-product
(1979) which is mentionéd in the next chapter. However
again it 1s not clear how to proceed for the next time
stage.

The problems of a fully Bayesian analysis can be seen
by considering just one evolution for the steady model: if
% is normally distributed then from the Kalman filter
p(ellyl)<rp(yl]91,V)p(Glleo) is also normally distributed
if V and W are known. But if they are unknown, with priors

p(¥), p(W) say, then

p(8;lyy) = [ p(eyly;,V,W) p(w,V]y,) dvaw

which is a mixture of normal distributions weighted by
p(W,V]y) = p(yy[VsW) p(V) p(W)

which removes all of the normality.

Approximate Bayesian Analysis

Instead of using a fully Bayesian analysis with priors
for the unknowns and integrating at each time stage with
respect to the unknowns to obtain the unconditional
posteriors for the observation and system vectors, it is
possible to approximatequantities. The simplest way of
proceeding is to approximate the posteriors of the unknown
parameters by singular distributions concentrated at a
single point, so that the resulting integration consists
of substituting a single value in the integrand. 1In
other words point estimates of V and W are used at each

time stage as inputs to the filter, the mean and variance
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of the system vector are then updated via the recurrence
relations, new posteriors for V and W are formed, point
estimates derived and the process iterated. In general
this approach involves discarding a lot of information.

For the steady model of Example 4.4, if et]ytmN(mt,Ct)

then the Kalman filter gives

t
et+l|y " .N(mt ,Ct+W)
t+1l

where
ey = Byt (W Cy) (v, - my) (4.63)
(W%Ct+r-¢)
-1 _ -1
Ciyy = (ct + W) + T (4L.64)
where the precision r=vL.

If the conditional distribution p(let) has a gamna
distribution (4.59), then using Bayes theorem (4.60) gives

the posterior for 1 as

-3 (y-m,)?

n 2\Y 1. _

t l) « 1 exXp El - %BA Tga 1
C,tW+t

plt]y
-1 %
(ct+w+r ) t

(4.65)

If in addition W is known ~ so that t is the only unknown
- then the exact Bayesian procedure is to find the

bl by integrating (4.62) with respect

posterior of et+lly
to T having the measure (4.65). However the resultant
distribution will not then be normal. An approximate
method is to derive a point estimate of 1 from (4.65) (or
less satisfactorily from p(tlyt)) and then substitute this
into (4.63) - (L.64). The posterior p(6t+l|yt+l) will

then be normal with parameters Myyqs Ct+l’ Unfortunately
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(L.65) does not have a particularly convenient form, but
if we approximate this by a gamma distribution then the
procedure can be repeated iteratively.

This leaves the problem of how to best approximate
(L.65) by a gamma distribution.. West (1981) considers
general symmetric error terms for vt, and in the normal

case effectively uses

p(lytth) o (FleFl)-1 -drlBH(yy-n )2}

At each time stage the posterior is then gamma distributed
ty . 1
p(tly”) = Glda,,38,]

with the recursions

at =y + 1

_ 2
By = By_1 * (yyoq - my_1)?-

The mode or the mean (ai+l / Bi+l) can then be used as the
point estimate of 1 in (4.63), (4.64).

This is tantamount to approximating (Ct+W+T-l) by 7t
which is not without its disadvantages. For example (4.65)
can become multimodal whereas it is being approximated by
a unimodal distribution. The multimodality can be
demonstrated by differentiating (4.65) with respect to Tt.
Equating this derivative to zero gives a cubic in 1, and
if for instance ly-mtf is large enough it is straight -
forward to show that the cubic has three positive roots,

thereby demonstrating multimodality.
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CHAPTER 5

NON-NORMAL MODELS

5.1 Introduction

Chapter 4 reviewed Bayesian Forecasting which is a
theory of forecasting based upon a 'state-space'! description
of a time series, Bayesian inference and Normal error
distributions; the Kalman Filter then enables us to
recursively update our beliefs as expressed in the
appropriate posterior and predictive distributions. 1In
this chapter we look briefly at the problems encountered
when non-Normal error distributions are introduced and when,
more generally, the state and observation equations are
redefined.

There is currently much interest in both non-stationary
and non-linear Time Series, for example in the papers of
Priestley (1980), Haggan and Ozaki (1981), Lawrance and
Lewis (1980) and the piece-wise linear work of Tong in, for
example, Tong and Lim (1980). Our attention will be focussed
more on non-linear forecasting models or non-linear forecasts.
Indeed it is possible for a linear model to yield non-linear
forecasts, that i1s the forecasts are non-linear functions of
the data; for instance the application of the Class 11
procedure to a time-invariant DLM gives posterior means and
variances which are not linear in the observations - since
we are effectively updating the mixture proportions -
consequently the forecasts obtained from the predictive
distributions will in general be non-linear. This example
highlights the importance of loss functions in forecasting,

because the predictive distributions are Normal mixtures
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so that any point forecast will be heavily dependent on the

loss function used.

5.2 General Filtering Theory

The state-space representation introduced in Chapters
3 and 4 consists of an observation equation relating the

observations to an underlying system parameter 6., which

t
undergoes a Markov evolution. In discrete time the system
process 1s a Markov chain on a continuous vector space ©
which we shall assume is a subspace of 1R". We shall assume
further +that this process can be described by a transition
density with respect to Lebesgue measure on ]Rn, and that
for each 6ec0 there is a probability density f(x[8) with
respect to a fixed measure yu on the observation space X,
the latter being a subset of the real line or more generally
a subset of IRP. 1In practice yu will either be Lebesgue
measure or such that f(x|g) represents a discrete density
function.

Suppose that the process starts at time t=0 and that
the initial state is described by a density p(8,), then at

time t the observation has density function
P(Et) = Jf(ztl_e_t)P(ﬁt) det (5.1)

where p(8,) is the density function of the observation

vector at time t, given by

p(_e_t) = j .. jp(ﬁtl_e_t_l)p(ﬁt_llgt_z) . -P(Q_llgo)P(.e_O)deo' 'dgt_j_'

(5.2)
The simplest such models are those in which p(gtlgt_l) and

f(ztlgt) do not depend on t.
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By placing-certain restrictiOns on the unconditional
densities (5.1) and (5.2) we can obtain conditions on the
pair {f(x]8),p(4]8)}, for example we might require (5.1)
to be of the same type for all t. However we are more
interested in conditional inference, or sequential,
although (5.1) and (5.2) should have a 'nice' form for all
t if we are to be able to simulate the process.

Suppose that p(go) is the prior distribution for § at

time 1=0, then the posterior at time t is given by

oo flygleele, Iyt h
p(8,ly") = - I (5.3)
Jf(ltlgt)p(gtll TT)dey
where  p(g,ly*™) = [p(8, 18, )p(e, Iy g, 4. (5.4)

The relevant predictive densities are obtained from

£ %
p(8pyply’) = fp(§t+k|9t+k-1>p(ﬁt+k-1'X )48 1k-1  (5-5)

£y "jf(lt+k’9t+k)P(9t+k'Zt)dgt+k : (5.6)

As we have seen in Chapter 4, under assumptions of normality
all the equations (5.1) - (5.6) possess a particularly simple
form.

If the predictive density functions of the observations
are to be evaluated easily we require that the densities
obtained from (5.6) via (5.3) - (5.5) should be tractable

for each k and t. We can write from above
ty _
F(yerely’) =

t
Jf(zt'fk '-e-t'l'k) jmjp (gt"l'k |gt+k-l Joss p(gt'l'l lgt)p(_e_-b I_.‘/_' )dgtq.k'" dgt
(5.7)

which will be 'tractable! if for no k ort do we have to resort
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to numerical methods for its calculation, which will be the
case if the densities (5.7) are 'standard' density functions
or can be expressed analytically in closed form.

Three problems associated with using non-normal
recursions are
(1) Finding pairs {£(x]8),p(4|6)} which lead to tractable
results in the above sense.
(2) Identifying subsets of the admissible pairs in (1)
which do not need the past history g e Vg stored for
each t. More precisely Bather (1965) requires that there
exists a sequence of statistics ut(yl coo yt) such that
p(gtlzt) {and hence all the other predictive distributions}

depends on Xt only through u This is a stochastic type

t.
of sufficiency.

(3) 1Interpreting such models - that is choosing models of
the form satisfying (1) and (2) which correspond to a

reasonable model for the situation under consideration,

rather than being just of a convenient mathematical form.

Example 5.1

Consider the steady model of Chapter 4
vy = Bytvy (5.8)

0, = By _qtwy - (5.9)

This widely used model has a ready interpretation, with vy
and w, error terms. Usually these are taken to be Normal,
with mean 0 and variance V, however we can think of

situations where it might be preferable to have non-normal

error terms. For example following the work of Huber (1981)

we might want to put a heavy tailed distribution on v, or
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w, to 'protect' us against outliers; this is very closely
linked to the 'outlier resistant' distributions of O'Hagan
(1979) and has motivated West's (1981) work.

The next two examples use (5.8) and (5.9) with non-

normal errors.

Example 5.2

Let w, have a strictly Levy-stable distribution of
characteristic exponent o independent of t, W say, and let
vy be strictly Levy-stable of the same type; definitions are
given in say Feller (1970, page 170). This gives a general
class of steady models which can be simulated.

From (5.9) assuming that 8,=u with probability one (we
could equally easily assume a Levy-stable distribution with

location u, exponent a),
6T =yt Wy ... T W
1
vy T oy

by definition of stable distributions. By assumption,
Vp = CW for some positive C, so

yp = 8¢ * vq

A (T + )Y %y 4y (5.10)

using the fact that smxxl + tiA x2 v (s + t)“&)c for all
strictly stable laws x, with X1 Xg N x, which holds true
for all s,t>0. Thus each marginal predictive distribution
(5.10) is Levy-stable with exponent a.

The above assumptionscan also be used with the more
general steady model introduced in Chapter 7 which replaces
(5.8) by

Vi = 0 T8 Ty
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giving

Yp = 2u + 2(wl ve. + wT-l) towp t g

nvoRu F (2%(T-1) + 1+ c¥) Wy

in place of (5.10).

The limitations of this class of models lies in the
complicated nature of the Levy-stable density functions.
The case a = 2 corresponds to the Normal distribution and
the results of Chapter 4; with o =1, we have the Cauchy

distribution giving the following .

Example 5.3

Consider the case where Vis Wy have a Cauchy

distribution, which has form

f(x) =1 ¢t 2
T t+(x-u)

where t is a scale parameter and y the location. If we
suppose that vy is Cauchy with location zero, scale v, Wy
Cauchy location zero, scale w then under the analysis of
Example 5.2

Yo is a Cauchy distribution with location p and scale
nwtv.

This example illustrates the remarks made earlier, in
that the posterior distributions of (5.3)and (5.4)have a
complicated form. Moreover if we have
t 7 Y
with w, a Cauchy distribution and suppose that et_llyt has
a Cauchy distribution, then it is not possible to find -
f(y|8) such that p(etlyt) has a Cauchy distribution for
all t.
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5.3 Predictive Consequences of Non-Gaussian Steady Models

The laét éection contained examples where the
convolution of densities lead to tractable results, because
the relevant distributions were stable. If additive error
terms are used it is difficult to work outside such a class
of distributions, otherwise approximations have to be made
as in West (1981) for example.

We now consider alternative specifications of state-
space models, and consider. the predictive implications of
such models. That is we discuss the predictive distributions
and point estimates under various loss functions which
correspond to the classical k-step ahead predictors. In
particular we consider the exponential family and show that
for models which undergo a suitably defined evolution, non-
normal distributions can give rise to behaviour very
different from the classical steady model. For example the

condition (4.33)

which says that the forecast are constant at all lead times &
need no longer hold. The results given amplify the initial
work of Key and Godolphin (1981).

From now on we only consider models whose system
parameter is univariate with observation space a subset of
the real line.

An alternative to specifying the system evolution by
a transition density p(etlet_l) is to define the conditional
evolution of et—llyt to etlyt. The quantities of interest
can be calculated from (5.3) - (5.6), and if a 'sensible'
evolution is defined some of the integration problems can be

avoided.
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This is the approach of Smith (1979), motivated by the
steady model of Example 4.4 expressed in (5.8) and (5.9)
with normal errors. Such a model can be rewritten as

yiley v w(e,,v) (5.11)

with the evolution

p(8,,117%) « (p(o,ly")1"s (5.12)

where kt = Ct/(ct + W), W>0. As t increases the prior

effects disappear, C,»C, k,+k, with O<k<l, where k depends

t t

on V and W. Then
t
mt = E[etly ]

is obtained from

mg = mg g+ (1-k)(y -m ;) (5.13)

so that mg = (1-k) jzo kat_j (5.14)

the familiar EWMA of (2.15) and (4.35).
Using this example, Smith abstracts two requirements
for his models:

(i) Decisions about 6, at times t and t+1 conditional

t
upon information up to time t should be the same

(ii) The uncertainty associated with such decisions
should increase.

As remarked upon in Chapter 4, decisions depend on the
choice of loss function, so that the above requirements
generate a whole class of decision based steady models,
which are 'subjective' in that they depend upon the loss
function used. To obviate this problem, Smith restricts his
attention to his so-called 'utility—invariant' loss

functions, namely the step-loss functions of gauge b defined

by
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Ly(y-d) = .{? ly-d|<b b>0 (5.15)

L .
otherwise

Using such loss functions with (i) and (ii), together with
an additional requirement to make the results independent
of any preconditioning of et to lie in a specific interval,
Smith arrives at his 'steady model'. This is a model
described by a probability density for y |6, for which
(5.12) holds with k, independent of t,

£y ley) (5.16)

p(6t+llyt)a{p(et|yt)}k- (5.17)

In fact such a 'steady evolution' can always be
expressed via a transition density p(etlet_l) through (5.4).
This is because subject to certain regularity requirements,
the Radon-Nikodym theorem states that there is a function
p(etlet_l) such that (5.4) holds. However, in general such
a function will depend on t and may not have a closed form.

In a forecasting context the main quantities of .
interest are the joint and marginal predictive densities,
f(yt+k cos yt+l|yt) and f(yt;klyt). Although Smith's
formulation appears to be only a one-step ahead phenomenum,
in fact (5.16) and (5.17) enable us to calculate all the
required predictive densities. For example (5.6) gives

f(yt+1|yt) while

t : t
Eyg4ply ) = Jf(yt+2’yt+l,y )y 4y
t+1 t
Jf(yt+2ly )f(ytﬂly )dyt+l‘

The joint predictive densities are given by

t+2-l) t+2-2)

f(y ...f(yt+1'yt)

ty
E(yyygrtan|77) = Tlygyy ly trg-1!Y
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and the marginal densities f(yt+zlyt) are obtained from

(5.18) by integrating out Yitgol ** Vi1

Example 5.4

In the normal steady model of Example 4.4 or above

t
Ve |y~ Nmy,Cotw+v)

and in the limit C,+C, but k=C/C+W or C=W(k/1l-k) so

£
Yoeply" v W, B+ V)
] “17x
and yt+zlyt A N(m,,Cp + LW + V)

= N(mt’lf[k+%£i—k)] V).

Consequently using any loss function symmetric in {yt(l)-yt+£}
we have '
v (2) =y (1) = my (5.19)
so that using (5.13)
ve(2) =y (1) + (1-K){y -y, _;(1)} (5.20)

where m, is the EWMA (5.14).

t

Equations (5.19) and (5.20) are the familiar defining
relations for a steady forecasting model and for a predictor
updating equation respectively. These results are detailed
in Box and Jenkins (1970, chapter 5) and have been described
under a variety of assumptions by Holt (1957), Brown (1959),
Muth (1960) and Whittle (1963, chapter 8). The steady
forecast equation (5.19) suggests that the model is trend
free, a condition which is independent of any model

assumptions and a point discussed in Godolphin and Harrison

(1975). Equations (5.19) and (5.20) imply that yt(z) is
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the EWMA (5.14), however the 'discount factor' k assumes
only the positive part of its natural range |k|<1. This
point is developed further in Chapters 6 and 7.

The two equations (5.19) and (5.20) are a more natural
example of a steady forecasting model than the equations
giving a steady evolution of the system parameter. However
the latter based upon (5.16) and (5.17) are well defined
and it is interesting to examine the consequences of these
assumptions in terms of predictions.

To obtain general results we shall consider the
exponential family of distributions, so that the observation

equation is of the form

£y ley) = expla(e )b(y,) + c(ey) + d(y,)}. (5.21)

All of the examples in Smith (1979) lie in this family apart
from the interesting Student-Tsteady model. Under
requirement (2) of §5.2 and certain differentiability
conditions Bather (1965) shows that under a given Markov
evolution p(etlet_l),f(ytlet) must be of the form (5.21).
Strictly speaking we need to apply the mild restrictions
that the distributions (5.23) are strictly identifiable
with respect to the dominating measure and also that the
sample space Y does not depend upon 6, that is f(y[6)>0 always.
In order to satisfy requirement (1) of §5.2 we shall
assume that at each time stage the posterior distribution

p(Gt]yt) has the conjugate form
p(8,y") = exply ale,) + 6,c(8,)) (5.22)

for some parameters y,,§,. Then under (5.17)

p(9t+llyt)m exp [ iy a6 ) +6,c(6,,4)}] . (5.23)
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Consequently using (5.21) and (5.3) we have the recurrence

relations
Yoep = XYy F D(yipq) 5 8y = k6 H1 (5.24)

which for sufficiently large t have the solution
© .

yoyu, = jEO ka(yt_j) , 8y (1-k) 7T, (5.25)
In the limit with §, glven by (5.25), (5.22) and (5.23) form
the 'invariant conditional densities' of Bather (1965), that is
both densities depend upon Vi e Vg only through Yys which
is the appropriate sequence of real valued functions
mentioned in criterion 2 of §5.2.

If we substitute the limiting values of (5.25) into

(5.22), (5.23) and define the functions Y,p by

exp{A(ut)} = Jexp{a(e)ut + c (8)} de (5.26)
1-k

exp{p(kutﬂ = jexp{ka(e)ut + k c(6)}ds (5.27)
1-k

where the definitions hold for those regions for which the
integrals are finite, then the predictive distribution (5.6)

is given by

ty
f(yt+1|y ) —Jexp{a(et+l)b(yt+l)+c(et+l)+d(yt+l)-l-ka(etﬂ_)ut

+ k c(8y49) - o(kuy)}de,

17k -
= exp{A(ug ) -olkuy) + aly,,q)} (5.28)
: ] ST g
with Upeq = b(yt+l) t ku, = jgok b(yt+l-j)’

The joint predictive distributions are given by

g
£y _ o
E(¥gag Yrgo1r Veanly ) _eXp{iglA(ut+i)-p(kut+i-l)+d(Jt+i)}’
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and the marginal predictive densities can be calculated by

integration, for example
t

where
eXp{a(yt+2)} =j8Xp[ A{b(yt+2)+kl%c+l}+)\(%+l) ol (k%+l)+d(yt+l)] du(yt-}-l)

(5.31)
where u(y) in the appropriate measure, so that we include

discrete distributions.

Such a system gives the invariant conditional
distributions defined by Bather (1965) provided that the
system evolution corresponds to a Markov evolution, that
is provided that there is a function p(¢|6,u) satisfying
explkuale) + k o(s) - p(ku)} = [p(6]8) explua(e) + 1 c(s)-A(u)}ds
1-k 1-k

(5.32)
such that

(i) p(¢]|6,u) is a non-trivial function of 8

[ so that 3 p(¢|6,u) #0] and for each 6,e0 p(o|6,u) is a
a6

probability function.
(ii) p(¢]6,u) is independent of u

(iii) p(¢]6,u) is integrable with respect to the dominating
measure u.

If these conditions are satisfied, then p(¢[6) will be
a (stationary) transition probability, since for example we
can always satisfy (5.32) with

p(6]8,u) = exp {kua(s) + T c(6) - p(ku)}.

We can show that
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Theorem 5.5

A transition density p(¢|6) exists which satisfies the
conditions (i), (1i), (iii) and (5.32) if and only if there

is a function v such that

' JV(w)eXp(uw)dw = exp{A(u) - p(ku)} (5.33)

the equation holding for the values of u such that the

right-hand side is well defined.

Proof

The necessity of the result follows from the work of
Bather (1965) with only minor modifications, these are needed
because we have a function a(6) instead of the function 6.

We briefly give the mainsteps in the proof with the required
modifications. Here ¢ denotes the system parameter at the
next time stage from that for 6, at say t+1 and t
respectively. If we reverse the natural order and look at

6 conditional upon ¢, then if a transition density exists

iza(e)

E{ei‘a(e)|¢.u} = fp(¢le)p(elu)e de

p(oTu)
which using (5.22) and (5.27) using the limiting values
(5.25)

- jp<¢le>exp{a<e><u+ic> + (1-x)"Le(e) - A(u)}ds

explkua(o) + k(1-k) Le(o) - p(ku)}
which using (5.32)

= exp | a(d)kig + A(u+i;)-A(u)+p(ku)-p{k(u+icx ].

iz{a(p) - ka(4)}
This implies that E[e |6,u] does not depend

on ¢ and so ¢ and a(8)-ka(¢) are independent random variables.
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Putting ¥=a(6)-ka(¢) then the two alternative forms for the

joint pdf of ¢ and 6 are

p(0]6) exp{a(8)u + clgek) - A(u)}

and exp{a(d¢)ku + lgkc(¢) -p(ku)}|a'(e)|wl{a(e) - ka(s)|u}

where ¢ has the conditional density w(¥|u). In the above

we have used the fact that a(6)=y+ka(¢), so that after
transforming variables the density of 6 conditional on ¢
and u is [a'(8)|w{a(6)-ka(4)]|u}, provided that the function

a is 1-1. On replacing a(6) by y+ka(¢) in the above we have

w(Wlu) =p[ola {v+ka(s)}] exp{vut p(ku)-A(u)} x

ex

pfcla™ {vtka(o)]] - ke(o) ) la'{y+ka(o)}|*
\1-k 1-k

which is of exponential type and so can be written

w(ylu) = v(y)exp{yu-r(u)+e(ku)}
so that v(y) satisfies Jv(w)exp(wu)dw = exp{A(u)-p(ku)}

as required. This proves necessity - in fact we have also
proved the existence of ¢ in this case. Conversely suppose

that such a function exists and define

p(¢]8) = exp{a(d)ku - a(6)u + k c(¢) -c(8) + A(u) -po(ku)} x
1-k 1-k

la'(e)|vi{a(e) -ka(o)texp[{a(8) -ka(o)}tu-Ar(u) + o(ku)]]

= exp { k c(¢) -c(8)} [a'(0)|v{a(B) -ka(d)}.
1-k 1-k

Then jp(¢|6)exp~{a(e)u + ?5%2-A(u)} de

1=

= expl k c(8) - Alw)} J[ 2(8)U | 21 (g){a(e) - ka(e)} do,
1-k

which putting ¥ = a(6) - ka(¢)
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exp{ k c(¢)-a(u) + ka(4)u} fewuv(w)dw
1-%

expluka(9) + k c(¢) - p(ku)}
1-k

so that (5.32) is satisfied and the result is proved.
This theorem enables us to reduce the steady models

to the form
fygley)
p(By104,;)
provided that we can solve the transform equation (5.33).

Example 5.6

If we consider the Gamma-Gamma steady model of Example

5.8 then
exp{Aa(u) - p(ku)} = cu™* where c is a constant;

But ‘J” e St gy =
0

w |-

so that v(y) = { 0 >0
c y<0

satisfies the required integral equation and so since for

this example a(8)=-8, c(68)= a log 9

p(o]e) = c(%) k/1-x % ,  O<ko<b

which is a Beta distribution. ©Note that in this example
(-9) has an exponential distribution.

If equations (5.21) - (5.23) define a steady model in
the sense that the predictors are trend free then we expeqt
(5.19) to be satisfied for 2>2. It would appear however
from (5.28) and (5.30) that even in the case 2=2 we would
often not obtain yt(2)=yt(l) except possibly if the

functional form of the loss function depends upon the chape
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of the distribution. For example there are several members
of the discrete form of the exponential family where the
expectations differ,that is E[ yt+2lyt] #E[ yt+l|yt]
corresponding to the use of quadratic loss functions. We
are once again in a situation where our»forecasts are
dependent upon the choice of loss function. There are two
possible cases where we can obtain some measure of

independence from the loss function:

Case 1 Where the marginal predictive distributions are
symmetric and unimodal since then any symmetric loss
function yields the mean (which equals the mode) as the

point estimate.

Case 2 Where the predictive distributions undergo a steady

evolution as defined by Smith, that is
t t
E(yyynoly ) e T{E(y 11y 7))

for a convex function T and in particular

f(yt+2lyt)oc{f(yt_i_llyt)}ko (5.34)

for some kg, O<kg<l. There are several well defined
members of the exponential family steady models where (5.34)
is not satisfied. A similar set of remarks may be made
concerning the Kalman updating equation (5.20). It follows
that the examples satisfying Smith's definition of a steady
model do not always satisfy the familiar expressions for
predictors of the steady model given by the EWMA.

On the other hand Smith derives the EWMA in many of
his particular models and we can generalise his argument as
follows. Take the limiting forms for 5t’Yt defined by (5.25)

and let &, denote the mode of et+l|yt which from (5.17) is

t
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also the mode of etlyt. Then 6, satisfies
vpat (8,) + 6,c'(8,) =0 (5.35)

provided that the supremum of (5.2) does not occur at a
boundary point of the support and that a(.) and c(.) are
differentiable. But f(ytlet) is a probability distribution

and so

[exptate,)blyy) +els,) + aly)} avlyy) =1 (5.36)

where v(yt) is either Lebesgue measure or a discrete
measure. Provided that sufficient regularity exists,(which
is always true for discrete measures otherwise we require
la'(8)b(y) + c'(6)]|exp{a(d)b(y) + c(8) + d(y)lzg(y) for an
integrable function g(y) for all y,8 which will be satisfied
if a'(8) and c'(8) are bounded and if the expectation of
b(y) with respect to f(y|6) exists for all 6), then we can

differentiate (5.36) to obtain

f (a1 (8)bly) + c(8) £(y]o) = O

that is a'(e)E[b(ytlet)] + c'(et) =0

and so for sufficiently large t

-1 o (1-x) Eo Kby, )

E[b( 8.)] 0 28 = Y48 -
Y1104 0= 04 17t ; I (5.37)

where ét is a mode. So that under the natural parametrisation
of the exponential family with b(yt)syt the expectation
E[yt+l|et]|et =gt is given by an. EWMA. In general the
quantity on the left hand side of (5.37) would not be
considered a sensible forecast since to use it would be té
discard much of the information about 6t+1 contained in

t
p(et+lly ).
Finally it is perhaps worth pointing out that the
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steady evolution described by (5.18) is essentially a one-

step phenomenum. This is because

p(et+2’yt) = Jp(8t+2lyt+l)f(

t
Verr !y )y

1}

Jexp{kut+la(et+2) + 1%kc(et+2)—p(kut+l)

FAlugyg)-pChug) + dlyy ) dygy -

But ut+1'=‘kut + b(yt+l)
so
ty, _ 2
p(8,,51y") = exp{kuia(e,,,) + l_1_gkc(et+2)—p(kut) t B(6y,5))
(5.38)
where

explB(8y,0)) = jeXP{a(et+2)kb(yt+1)"p(k“t+1)'+*(ut+1)
Fa(y a1 Y4 (5.39)

. ty tik
so that in general p(6,,,ly )/{p(et+lly )*9, for any

ko, O<ko<l, the latter density given by (5.23), (5.25) as

[exp{kuta(8t+l) + 1%kc(et+1) 'D(kut)] o

5.4 Examples of Non-Normal Evolutions

This section illustrates the points raised in the
previous sections by giving particular examples of the
exponential family. We shall only consider the limiting,
steady-state forms to avoid results being dependent upon
assumptions concerning the prior.

First Example 5.7 considers the normal case and shows
that the typical features of the EWMA forecast function |
follow when the loss function is symmetric. Example 5.8
considers the Gamma-exponential model. In this case it is

shown that the forecast function depends heavily on the
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loss function, for example under step loss functions the
forecast function is a constant which is independent of the
data, and for which the uncértainty associated with the
forecasts can decrease. However under quadratic loss this
model has many of the features of the standard normal model.
Similar remarks apply to the Gamma-Gamma model of Example
5.13 which extends Example 5.8. Lastly Example 5.14, the
Beta-Binomial shows that it is possible to have neither of
the EWMA criteria (5.19), (5.20) satisfied when we have non-

normal recursions.

Example 5.7

For compafison purposes we show how the Harrison-
Stevens model of Examples 5.1 and 5.4 falls into the

exponential form. The observations are normal
ytletf»N(et,v)

which corresponds to (5.21) with

a(6) = 9/V .
b(y) =y

c(8) = -8°/2V

a(y) = =y° -  1n(2rv).

_V
Equations (5.22) - (5.25) give
Stlyt v N(mg, (1-k)V)

t
et+lly v N(mt,(l-k)V/k)
where

Uppq = Kuy toyggpe oy = (A-K)uy

MUt) - T Vexp (ui(1-K)}
2V
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p(kuy)
= 21 (1-k)V ex ku?(1- .
e /27 = )V exp { u;g} k}}

The predictive distributions (5.28), (5.30) are

Yy 1" & Nlm,V/k) (5.40)

Yipoly® ™ N, L{(1-1)% + 1)) (5.41)

and the joint predictive distributions (5.29)

t - - % 2 2 1- 2
E(hypgeedpen |y )_<2ﬂ$/k)%exp[2lv izl R (1"‘)‘1‘(1'1‘)“’5+i-1}J

2
= 1 & exp| -k ) {y,.. - (L-kK)u,,. - }2 (5.42)
using Upps = yt+i-+kut+i—l’ so that
= 2 + + Ci-l .
Uppiol T Ygeiol P K Vpago, Foeer T Ut

Note that (5.42) can be written as

3
(27%/1:)2/2 exp{-zkv izl (s -u“l‘i)z} )

On making the substitution z,,. =y, . -(l-k)ut, (5.42)

becomes a positive quadratic form in z since

t4i?

i-2 )

e P kT T2y

; - (1-k)(z

Y41 ~ (1‘k)ut+i-f Z+ t4i-1 T -

so that the joint predictive distribution is multivariate
normal with each marginal predictive distribution

t . . . t
f(yt+2|y ) univariatenormal with mean E[yt+£|y ] = m .
Consequently using any symmetric loss function (5.19) and

(5.20) are satisfied. In particular with any step loss
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function we must have (5.34) satisfied, which also follows
from (5.40), (5.41) giving ky=1/{(1-k)2 +1}.

Indeed this example has all the desirable properties
since either from Example 5.4 or using (5.38), (5.39)

8000y’ v N(my , V(1-K)(2-k)/k)

t ty (2-k) -1
so that p(6,4oly7) @ ploy,11y") (2-%)

and similar results can be obtained for p(9t+2lyt).

Example 5.8

If the observations have an exponential distribution

with parameter Gt

flygley) ={ 6, exp(-8, y,) y>0 (5.43)
0 elsewhere
then the appropriate conjugate posterior for et is the gamma -
distribution
p(8,ly") = et(l'k)_1 exp(-6,u,) 8,50 (5.44)

i t
where ut=2k3yt_j, and p(et+1]y ) also has a ganma
distribution. In this case

exp{a(u)} = T{(2-k)/(1-k)} u~(R-%)(1-k)7*

explo(ku)} = [{1/(1-k)} ku~(1-E)7F

f? x% e "X 4x.

where T'(a) is the gamma function T'(a) =
Both et]yt and et+1|yt are unimodal with mode 1/{(1-k)u}.

Under this model the predictive distributions are given

by
Theorem 5.9
. ' 1-k)-1 1
f(ytﬂlyt) = (l—k)-l kut >( ) (E—'_},——' (5.45)
—_— u
KU Y41 t I t+1)

which is a Pareto distribution whilst
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oo

(yyaply®) = (x2u,) (7K (1-k)-zf )=(2-%)/(1-5)

-1
z (kz+yt+2

ku
E (5.46)

Proof

From (5.28) and above

f(yt+llyt) =.J“Ae om0y gk/(1-k) () 1+k/\1-k) -k g
0 r{l+k/(1-k)}
i J” o(1-K)TH e (ury) gy (1-0)7E L
0 r{1/(1-kx)}
-1
= Pl14{1/(1-%)}] (ku) (2-K)
(kuty) THI/(L-B)} poq /11y
which since TI'(a+l) = al(a) (5.47)

reduces to (5.45). From (5.30)
)-l

£(ye,olv?) = exp{a(yt+2)}rggu>§f;k}

where from (5.31)

_ ~k* ~k* (1-x)-?
eXP{“(yt+2)},' f (%) (yyqp +ku) rglg?l-ii} () RS

where k*=(2-k)/(1-k) and where uzu If we now

g4l T Ve
denote ku,+y,,; by kutz then using (5.47) with the above

f(-"’t+2lyt) -

1-k)-? ; . i
%Eﬁlé ) J (y+i2utkz) 5 (kutz) 5 (k2utkg) (1787 g,
1-k)2

L e (0T

o ok
(y+k2u+kz)ﬂk dz
0 kutz
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*

-1
or transforming = gkzuz(l'k) ‘Jm Z_l(k )-k dz.

zty
i t+2
(l—k)g kut .

We can show that for the predictive distributions

Lemma 5.10 f(yt+2(yt) is a monotonically decreasing

function of Yy4q for all lead times 221.

Proof
ty _ [ t
Fgag 197 = | f g l0gyIpey Iy Tde, )
thus
t oo t
3 Sy ly) = J'o 5 f(ygupl8pg o8y, lyds,,,
RS W i4g
But
- _a? -0y
3f(yle) = -8%¢ "7 <0 for all 8,y>0 and so

oy

t .
Bf(yt+£|y )<0, that is f(y lyt) is a strictly decreasing

ttg
V41 function.

Because of this result, the point forecasts are heavily
dependent upon the shape of the loss function used. For
example under step loss functions gauge b (defined in
(5.15)),

yo(1) =y, (2) =0 (5.48)

so that (5.19) is satisfied, and (5.21) trivially that k=1.
Of course the decisions (5.48) are not particulary sensible
since they are independent of the data.

Under such loss functions the expected loss is 1-F(2b)
where F is the appropriate distribution function. Using |
(5.45), (5.46) and (5.48) we have in an obvious notation

that the expected loss of decision (5.48) at lead time one is
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i ku (l_k)-l
E[L{y,(1)}] = j 1 ( : 1 gy
2b (1-k) (kut+y) (y+kut)
- () (07
(kut2b) (1K) 77
and for lead time 2
-1
E[L{y,(2)}] = (x2u) (397 o | ,jm ]
Z
(1-x)2 2 L (k)<

where k* is as defined above., Using Fubini's theorem to

interchange the order of integration simplifies this to

-1
E[L{y,(2)}] = (kzut)(l-k) A(m
Jku

, dz
7 (kz+2b) %/

(l-k) (l-k)

An interesting point emerges from the following lemma

where the loss function is step loss gauge b.

Lemma 5.11

For certain values of k, u b we have

t!
E[L{y,(2)}] < E[L{y,(1)}]

which says that the uncertainty associated with decisions

(5..8) decreases, thus violating Smith's axiom (ii) of §5.3

for a steady evolution (applied to the predictive

distributions).
Proof

Provided that 0O<k<1l

f(yt.i.l,u.t)(o) = (_11]; =
and e (l-k)_l - : ’
£( [u,)(0) = (Xx2u) “(2-%)(1-k)-1, -1
Viezlly ({j%)z f {(xz ) =7F }z"hdz

ku
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(x2y) 2/ (1-K) - ku

(1ox2) e PETTE) | oy (2-K)/(1-k)

oo

1
(2-%)(1-k)k?u

But 1 > 1 since 1> 2k-k?2
(2K (1-K)k%u (T-x) &

thus f(yt+2|yt)(0) > f(yt+l|yt)(0)-

Since both of these functions are continuous, there is some

t
b such that on [0,2b), f(yt+2|yt)> f(yt+lly ) so that

which implies that

l1-F )(Zb) <1 - Fyt(l)(2b)

yt(z
or
ElL{y,(2)}] < E[L{y,(1)}] .

If we consider the usual quadratic loss functions then
the predictors are just the conditional mean. The mean of

the Pareto distribution (5.45) is (l-k)ut, so that
7o (1) = m, = (1-K)u,

which is the traditional EWMA.

For the two-step ahead predictor

Ely,,oly"] = E{E[yt+21yt+l]}

E[(1-%)uy,; ]

E[(lék)(yt+l'+ kut)]

(1-k){(1;k)ut'+ xu, )
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= (l—k)ut
so that by an inductive argument
ty =
E[yt+2ly ] - mt
or vy (2) = yt(l) = m.
The associlated expected loss is the conditional variance
- 2 2
f (Vg = mp) 20y [¥%) dygyy
so that for the uncertainty to increase we require
Elyiin?lyy] > Elygyq%lyy] (5.49)
We shall now prove this :

Theorem 5.12

For this model under quadratic loss the uncertainty is

increasing between lead times 1 and 2, that is
E[L{y,(2)}] > E[L{y (1)}] .
Proof

E[yt+12]yt] is given in most text-books, however

directly we find
t
E[yt+12'Y ]

- @ 1/(1-k)
T [ 2 ) -

- 0 kuy ty (ku:y)

o : e 1/(1-%k) .. ,
= 1 J‘{kut+y)2 - (kut)2 - 2kuty} kut 1 dy
(l‘k) 0 ku£+y (kut+Y)
= (xw) /(R [y - (kxu)? - 2ku(l-k)u

(1-k) (2k-1)/(1-k)

(2k-1) (ku)
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provided that 2k - 1 > 0, ie k > 3,

= (xu)? - (ku)? - 2ku?(l-k) = 2ku? (1-k)2
2k-1 2k-1
= 2kn? , (5.50)
2k-1
1 o] o] 2 - . . .
-k dz d
Now Elyy, *luyl = é?épgz/l f T

0 ku (kZ+y)(2-k)/(l-k) z

which on changing the order of integration and using (5.50)

= (EiE)l/(l-k) jcn dz (1_k)l , 2kz2(1-k)2
(1-k)?2 ku a3k
2k-1 Jow GE/(1-X)

Rk-1 (2k-1)(ku)(2k‘l)/(l-k)

provided that k > 3,

= 2(1-k)2(xu)3k = 2k°m? .
(Rk-1)2 (Rk-1)?2

But 2k3m? > 2km? because k2>2k - 1, so that (5.49) is
(2k-1)2 2k-1

satisfied, and thus E[L{yt(Z)}] > E[L{yt(l)}] .

Consequently under quadratic loss this model appears
to emulate most of the features of the Harrison-Stevens

steady model.

This example, like the last, illustrates the important
point that the steady evolution of the system parameter is

essentially a onertep phenomenon. We have from (5.39) that
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-(2-k)/(1-k)

explB(6y,,)} = J‘n e YK r(2-x)/(1-x)} (ku,+y) .
o - T{1/(1-X)) {k(ku£+y)}‘l/(l-k) y

o 1
= 'f oy /(1-k) -8ky (ku, + y)_l dy

. (1-k)
so that from (5.38)

1
X /1-k
ty _ _-k2uf /(1-k) (%X%u,) oo
p(By4oly7) = ¢ i t j o OV E (ku, +y) " gy .

(1-k) r{1/(1-k)} 0

On transforming the integral using z=ek(y-+kut) we have

k 1
by _ /(1-%) /(1-k)
p(8,,ly") =8 (k?u,) £y (k?u,6) (5.51)
(1-k) r{1/(1-k)}
where El(x) = jm g:Z dz is the exponential integral whose
Z
X

properties are given in Abramowitz and Stegun (1965, p228).

As remarked upon earlier, the conditional densities
p(8t+llyt) and p(etlyt) are unimodal with mode at {ut(l-k)}-1
provided that 1>k>0. HNow

- (g ) Y0

z p(et+2lyt)
b2 (1-k) T{1/(1-k)} (5.52)
2
{ k B, (k?u,8) - ¢ % %9 };
P

from Abramowitz and Stegun(ibid),

1 X 1
*fL < © El(x) <3
so that if 8 > {(l—k)kut}'l then

ck?utb

<y

By (k2u, 8) < 1-

1

.
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and so from (5.52) p(9t+2|yt) is decreasing. On the other
hand, if 6 < (2k-l)/{(l-k)k2ut} with k>3 then

2
gk ul E,(k?u8) > _1 - =1-k
T+ 2k-1 X
T-%

and p(6t+2[yt) is increasing. The density p(et+2lyt) given
by (5.51) is continuous, and so from the last two results

has at least one mode et satisfying

&]'ﬂ‘. < 8 < L ¢

(1-k)k?u (1-k)ku

=1

In general we will not have 6, = {(1-k)u since for

almost all k

2 k2
k El(l%k) £ e /(1-k)

1-k

so that the mode of p(8 yt) will not be the same as that

g2l
for p(8t+l[yt), a fact which precludes any relationship of

the form

P(6,,,07") = T {(p(8,,,1y")}

for a convex function T.
For this Gamma-exponential model it can be seen (from
Example (5.6) or directly) that
k 2-k

sI-E o=kuo (i y=(1-k)7 =.j o(s]g) p(1-k)7H j-ue Tok
r{1/(1-x)} r(£5)
is satisfied by
X
(618) = (_k_y (1, (koy'7® 0<ko <8  (5.53)
plofo) = (k) (1) (kb

which is a special case of Bather's (1965) example. p(¢]8)
satisfies requirements (i) and (ii) introduced after (5.32),

and indeed EQ has a Beta distribution. Therefore in this
0
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example p(etlyt) and p(6t+l|yt) form invariant conditional
densities and so all of Bather's theory carries across.

To summarise, this example is interesting because
(1) it can be described by an observation equation on a
Markov chain whose transition density is given by (5.53);
(2) under quadratic loss it is a steady model in that (5.19),
(5.20) hold with the forecasts given by the EWMA (5.14),
moreover the uncertainty associated with such decisions is

increasing with each lead time as required.

Examnple 5.13 The Gamma-Gamma Model

Example 5.8 can be simply extended to the case where

y has a gamma distribution

flyle) = 1 %y% te™8
r(a)

with a(6) =-8, b(y)=y, c(8)=alogd, d(y)=(a-1)logy-logl(a).
Under conjugate analysis

etlyt o e"eth 6('161;

so that again the system parametres have gamma distributiouns,

with limiting values

p(8,1y") « [0 gla/(1-k)} 8,20
0 . otherwise
For this example
-{ L+1)
exp{A(u) =T [{1+ ¢ ) u 1k

1-k 5

14 X0

(L+l-k)

n

exp{p(ku)}

r (l+k_) (ku)
1-k

with predictive distribution from (5.28)
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(2 41)
£(ypep v = v*7h T4 (ku +y) 17K
(P
I'(a) F(l+ka)(ku )7 IS
1-k
ok 43
_ ol (1u,) T
(y+ku, )Iﬂk ! Be(a @, 5 £ 41) (5.54)

where Be(a,b) =P§a%F§b;, so that (5.54) is an Inverse-Beta
Ir'(at+b

distribution with mean (1-k)u, and mode (l-k)kut(a-l) and

2+k(a=-2)

t

where, as in the previous exampie, uy =ZkJ yt-j. The
predictive distributions soon become complicated, however

under quadratic loss

v(2) = E[y 2] = m,=(1-k)u,

As in Example 5.8 the steady evolution of the system
parameter can be expressed by means of a Beta transition

density from 6, to 6

t t+1°
Examples 5.8 and 5.13 iliustrate a general point:
suppose that we choose to work within the framework of

quadratic loss functions, then for a steady model we

require at least

. t £
Elyipoly’] = Elyi 1y

t+l]}

t

t+1

We mentioned earlier the desirability of a stochastic
form of stability, which in this context implies that there

is some function f such that
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t
E[yt+1|y ] = f(ut).
Our requirement for a éteady model then becomes
B[ £luy,)] = £uy).
Y41
In the case of linear connecting functions, ut+1==kut+b(yt+l)
so that we then require

yﬁif £(ku +b(y )] = f(ut).

Under the 'natural parametrization'! this becomes

yéil[f(kutfyt+l)] = £(u,). (5.55)

The simplest examples of such functions are when f is a

linear function, f(ut) = au,tb say, then (5.55) holds if

t
E[a(kut+yt+l)-Fb] = autb

which is true if

+ ab=au

2
aku, + a ut %

t
or (k+a‘)ut tbo=u.
For this to be true for all u, we require b=0, a =(1-k)

which gives

Blygelyt] = (1-k)u,. (5.56)

This relation holds for Exanmples 5.8, 5.13 and the normal

model of Example 5.7.

Example 5.14 The Beta-Binomial Model

We now give an example where neither (5.19) nor (5.20)
is satisfied. It is assumed that the observation variable

has a binomial distribution
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y n-y
£y lo,) = (n ) B, *(1-8,) °° y.=0,1...n (5.57)
It

0 . otherwise
with n known. Again b(yt)==yt, so that uy =Zkﬁyt_j

giving under conjugate analysis in the steady state.

)_l 0<9,<1

“Uy t

% Uy o an(l-k
= 0 otherwise

which is a Beta distribution. The other requisite

quantities are d(y) =log(§)

"

exp{ A(u)} B{u+l, n(l-k)'l-u+1} (5.58)

explp(ku)} = B{kuti, nk(1-k) L-ku+l}. (5.59)

The predictive distribution is from (5.28)

t
f(yt+lly ) - (g )exp{k(ku-f.y't.*l)'p(kut)} yt_l_l =0,1l..n
t+1

which on substituting (5.58) and (5.59) becomes a Beta

binomial distribution, and from (5.30)

%
£(ygealy™) = (; )exp{a<yt+2)'p(kut)} Y41 = 0eeen
£42
where
n
T+1° Yt+1
With Upip = Kupya¥Vegpr Ugel T KUT e

The predictive distributions are discrete in this
example, so that step loss functions are no longer so
appropriate, and the question arises as to what is a
suitable loss function. Under quadratic loss, the

conditional mean is
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Elvgeplugl = Eet+llut [n0441]

[t}

n(l'-k)(ku£+ 1)

xn(1-k) t+2

¢ (kuy +1)

where the constant ¢ = n(1-k) .
nk+2-2k

It follows from (5.55) and (5.56) that in general

Elyiyoluy] # Elyy,qlug]s in fact directly

Elyiyolug] = ¢B{k(y q+ku )+1]

¢{k2ut+l+k¢(kut+l)}

SL(0+1) (K*u,) +ko+1)
so that E[yt+2]ut] # E[yt+l|ut] unless

2 _
(o+1)k ugtke = kug.

This is true if (n+2-2k)kut+n(l-k):=(nk+2--2k)ut

which implies (2-2k)ut(k-l)-+n(l-k) =0

giving uy = n

It is not easy to apply standard loss functions to
such predictive distributions. One estimate we might use
is the mode of y,, |u’, which is the integer part of

(n;l)(l-k)ut.

5.5 Other Models and Extensions

We can of course apply the steady evolution to obtain

tractable results with any single parameter distribution of
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of exponential form and its conjugate. - Although all the
examples give have satisfied b(y)sy there is no need to
apply this restriction; for example we could have the
observations distributed as a Rayleigh distribution in which
case b(y)=y2. The examples have been chosen to illustrate
some of the points made earlier.

We can think of all these examples as being a
particular subset of the univariate class of 'conjugacy

state-space models'. These can be represented as

£(y,l08,) = expla(8,)b(y,) +clo,) +d(y,)} (5.60)
p(etlyt) = exp{y a(8,) +8,c(6,)} (5.61)
P(etﬂlyt) <"exp{mta(et) +Bt°<9t)} (5.62)
together with a mapping T :(yt,dt)-*(at,Bt) (5.63)

so that Smith's models correspond to T being the mapping
Then applying Bayes' theoren

£41 £
)= £y gy 10441 )P(Bgyn [v7)

p(8, 411y
and so from (5.60), (5,62)
= explygygalByg) ¥ 6,50(8;,5)]

where Yiep = 9g ¥ b<yt+l) (5.64)

i

841 Byt 1 (5.65)

Under such a system we can look at some kind of steady

evolution (suitably defined), or other types of behaviour.
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In the above, yy can be a vector, and the extension .

to vector parameters is obtained by considering
£y 18,) = exp{Za (8,)b,(y,) +c(8,) +dly,)) (5.66)

in place of (5.60), which with the appropriate conjugate
priors gives the set of multiparameter state-spacé models.
Indeed, although this chapter has concentrated on the
unvariate case, the theory applies equally well to
multivariate multiparameter models, provided that the
obvious extensions are made; for example all the theory
of Section 5.3 is directly applicable to multivariate
observations.

Smith (1981) considers two types of multiparameter
models. The first is the 'Symmetric Multivariate Power
Steady Model!, SMPSM where 8 evolves through (5.17) with
9§ a vector, and the second is the 'Stacked Steady Model'
with (ei]ei+l cee en) evolving as a SMPSM with parameter
L O<ki<ki+l;l. The predictive consequences of both of
these models can be analysed using the techniques of
Section 5.3 by suitably generalising the equations, for
instance by using the generalised exponential family
(5.66) with conjugate priors, thus giving a particular
class of conjugate state-space models.

Similar remarks apply to the predictive distributions
of multiparameter models as were made for the single
parameter models. TFor example the forecasts can be
heavily dependent upon the loss function used, and for
univariate observations the relations (5.19) - (5.20)
need not hold. These are consequences of the fact that
the steady evolution is for the parameters rather than

the observations.
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CHAPTER 6

GENERAL EQUIVALENCE'THEOREMS FOR DLis

6.1 Discussion

It is well known that certain equivalences exist
between different types of models used to describe Time
Series, or models used in forecasting. Before proceeding,
it is worth specifying what we mean by equivalence:

Definition 6.1

We say that two forecasting systems are predictor
equivalent if their forecast functions coincide for all
time, that is yt(k) is the same for all t and lead times k
given data up to time t.

A slightly stronger definition is that two forecasting
systems are (second-order) completely predictor equivalent
if they are predictor equivalent and if in addition the
uncertainty associated with each forecast as expressed by
the variance is the same for the two systems, again for
all t and k.

This is not such a useful definition since within a
Bayesian framework it only really makes sense with quadratic
loss functions. The strongest relationship between models
that describe Time Series is

Definition 6.2

Two descriptions of a time series {Xt} are said to be
model equivalent if they induce the same joint probability
distribution over {Xt} for all.t.

Although this appears to be the most important type of

equivalence it is inadequate in a forecasting situation
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because firstly we do not need to postulate a probability
model to define a legitimate forecasting system, and
secondly because model equivalence does not imply predictor
equivalence. For example in a Bayesian context we would
need to specify equivalent loss functions. Another example
is provided by the linear model in statistics, where the x

t

depend upon a parameter 6. Then the predictor of x given

b+l
data up to time t will depend upon the way we have estimated
0.

Several authors - for example Priestley (1980) - have
commented on the fact that ARMA models can be expressed in
a state-space form (DLM), showing model equivalence; in
effect this is discussed in Section 3.6 where (3.13)
represents an ARMA model if the u; are regarded as error
terms. There are many equivalent state-space represent-
ations and a 'canonical' description is provided by Theorem
3.31, which has similarities with the canonical description
we develop later. Akaike (197.) only considers stationary
ARMA models and uses the Wold decomposition theorem to
obtain a state-space representation, where the system
vector comprises conditional expectations at various lead
times of the observations given data up to time t and where
the error terms depend upon the innovation of y,, that is
the difference between Yy and the l-step ahead predictor
of y, at time t-1. Because of the particular way the state-
space is defined, this embodies a type of predictor
equivalence - provided that conditional expectations are
used as forecasts, but no mention is made of the Kalman
filter.

We shall be concerned with predictor equivalence. 1In
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this context McKenzie (1976) showed that certain traditional
forecasting schemes based on EWMA's, such as Holt-Winter's
method, are predictor equivalent to particular Box-Jenkins'
ARIMA models. Godolphin and Harrison (1975) looked at
methods having a polynomial forecast function and showed
that they were all equivalent to IMA models. In particular
the Markov polynomial models (Harrison, 1967) which are a
type of DLM fall in this category, but are limited by being
a strict subset of the IMA models. Godolphin and Stone
(1980) considered polynomial projecting models based upon
DLMs and the Kalman filter, deriving conditions for the DLMs
not to be limited. Stone (1982) extended this work,
looking at equivalence for more general forecast functions.
In this chapter Section 2 stresses the role of
observability, while Section 3 examines the equivalence
between DLMs in the steady state and ARIMA models, giving
general results anticipated in the work of Godolphin and
Stone. Section 4 shows that time-varying DLMs are equivalent
to time-dependent ARIMA models, and Section 5 relates model
equivalence to predictor equivalence. Section 6 examines

the structural properties of DLM.

6.2 Non-Derogatory Models and DLMs

Consider the general univariate time-invariant DLM

8, = GO (6.2)

8y = &8¢ 17 Ky
where Vi is a scalar and where from now on we use
assumptions (4.5), (4.6) unless stated otherwise. Provided
that we use a symmetric loss function the forecast function

at lead time 2 is given by (4.25)



where m, is obtained from (4.9) - (4.11).

Since Q is a square matrix and Fe 1R", there is a
positive integer k such that FG, ... Egk are linearly
independent row vectors, whilst FG, ... Egk+l are
linearly dependent. Let us call this k the horigon of
{F,G}. It then follows that for any & Eg{can be expressed
as a linear combination of {FG, ... Egk} so that knowledge
of k, m, and {FG, ... Egk} completely determines the
forecast function.

This is closely related to a more familiar concept in

matrix theory:

Definition 6.3

For any row vector Fe R" and square nxn real matrix
G, the G-order of F is the monic polynomial of least degree,

hF(x) which satisfies
Fny(8) = 0

where hF(x) is a member of the polynomial ring over the
reals. Therefore hF(x) is the minimal polynomial of the
linear transformation QF induced by the G-cyclic subspace
generated by F (under the fundamental isomophism between
matrices and linear transformations). See Birkhoff and
Maclane (1965, chapter 10, §7). The following properties
follow |

Lemma 6.4

(i) If g(x) is the minimal polynomial of G then
hF(x)]g(x) for all Fe 1R", where our notation means that
hF(x) divides g(x).

(ii) There is some F such that hF(x) = g(x).
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(111) hp(x) = g(x) =hy(x) if and only if ¥ = Fr(G)
where I'(x) is coprime with g(x), provided that g(x) is a

polynomial of the same degree as Q.
Proof

Parts (i) andi(ii) are derived in Birkhoff and Maclane
(ibid). It is also possible to adapt the argument of
Theorem 19 of Birkhoff and Maclane (p 303) to derive part
(iii) of the present theorem, however the following direct
proof appears to lend some insight to the result. Suppose
Y = Fr(G), where I'(x) is coprime with g(x), then

Fr(G)hy(G) = 0

which implies o |T(8)hy(G)

so that hplhy(G)

by assumption of I'(x) comprime with g(x). ,
But ghF(g) = 0 implies that hYth, so hp =h,.

Conversely since g(x) has order n then the linearly
independent vectors F,FG ... Egn-L are a basis for R",
so that

I - Er (o)

for some polynomial T'(x). Suppose g(x) = I'(x)f(x), then
Y£(g) = Fr(g)f(g) = Fg(g) =0

so hy(x) = g|f which is a contradiction, therefore g, I are

coprime.

The decomposition Theorem 3.26 states that (6.1),

(6.2) is algebraically equivalent to

vy = (0 go)<gu) b (6.4)

0
=0
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—00 o) -0t

where {EO,QOO} is observable. That is we have decomposed
the system into its unobservable and observable parts.
Section 4.5 assures us that (6.1), (6.2) is predictor
equivalent to the above system; however we can derive a

stronger result:

Theorem 6.5

System (6.4), (6.5) and hence (6.1), (6.2) is
predictor equivalent both in terms of Vi and 8, to the

observable subsystem

yt =-Eogo * Vi

(6.6)

8 = S50 &5 Ty (6.7)

Proof

Using the Kalman updating equations (4.9) - (4.11) and

the relation

Loy ~ (Qoxu ’luxu) But =R Bt say
m m
-0t —ot

where O is the oxu gzero matrix and I the u x u
—oxu =uxu

identity, then

Doy = B4 Guy Suo \[ Bug-1 | * At{yt-(o Eo) Suu Suo \[ But-1
0 goo Zot-1 0 guu Zot-1
= G0 Bot-1 O RE (yt T =0 goo—mot-l) :
But »
E}-\t =k =uu =uo 0 (0 Fo) L Euo 0\ +v -
PuoZoo ) \Fo' Zyo Zoo | \Fo'
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-p F{r P F T +vL (6.8)

where
T
Poo 18 B[Ry B B = R [Gyy Syo c C T 0
' —uu ~uo | {=uu
P 0G T T T
ou 13-oo 00 Euo goo guo' Goo
+ /W W RT
uu —uo =
W W
~ou =00
soP =G C G T +u (6.9)
=00 =00 =00 =00 » =00 :
thus m., = G m +p PR P Flevii(y T )
=0t =~ <oo=-o0t-1' =00=0 "=0=00=0 Y £ioZool0t-1
Now Co = [Cuy Cio\™ (L - AF)E, (6.10)
T
Suo S0
_ T _ T T -1
thus —G-oot = RO B = By "B  Eg{E B Eo ¥ VI TE R
(6.11)

But (6.8) - (6.11) are exactly the recursions obtained from
the subsystem (6.6), (6.7). Moreover, with a slight abuse

of notation

e

_ t _
myx = Bl 8opaxlv ] =R E| 8 14y .
go t+k v
= ROE) Oy 4rp1 %
y
90 t+k-1
L .
= 8o0 B, t4k-1 (6.12)
and = Var(6 l t)
=0,k Lo, tt+k!Y
_ - T
= R} Var [8,, ¢4k R
%
8o, t4x
= R G Ver /8, tix at+ulr
O, t+k-1
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T

- goo goo k-1 goo ¥ Hoo’ (6.13)
Moreover, we éan éimilarly show
ty 2
E[yfb‘!'kly ] = .F_‘O.I.n.o,k (6.14)
t T
Var(ypy ly™) = B, Cop  B7+ X (6.15)

so that since (6.12) - (6.15) are the predictive recursions
for the subsystem we have completed the proof.

In fact we have used the decomposition theorem which
applies to both vector and time varying case. Consequently

we have the completely general

Corollary 6.6

Dynamic linear models are predictor equivalent to their

observable subsystems.
This motivates us to make the following assumption
concerning G, namely that the only set of scalars (CO, . G

satisfying n .
cI + ¥ C.0=0 (6.16)

is the set (CO, we G _

and 0 the zero n-vector. This is equivalent to saying that

the minimal polynomial has degree n and so is equal to the
characteristic polynomial, (up to units in the ring of
polynomials over the real field), a statement which follows
from (6.6) and the Cayley-Hamilton theorem. This last fact
is the definition of a non-derogatory matrix. The
importance of this is seen from Lemma 6.4 (ii), Theorem_é.5

and the following

Theorem 6.7

I1f {F,G} is observable, that is {EF,FG ... an-l} are
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linearly independent with G an nxn matrix, then G is non=-

derogatory.

The proof follows from Lemma 6.4 (i) and the definition of
a minimal polynomial.

We draw the following implications

Lemma 6.8

*

(1) G is similar to the companion matrix G given by

* glxn—l ln—l
G, = T (6.17)
- i)

n el

¢ _
where ¢ 1 = (¢, 95 -.. ®;) and é;, ... ¢ are the

coefficients of the characteristic polynomial

n .
det(AI-G) = A" + § A", . (6.18)

(ii) Either the rank of G is n; implying that G is
non-singular, or the rank of G is n-1, and G is singular,
according to whether ¢n = 0 or not.

Define s to be the largest integer such that ¢85£O,

so that s =n in the non-singular case, and denote

6(z) = 25 + ¢lzs'l R (6.19)

Then in both cases

r+l _
G Te(G) =0, (6.20)

where r =0 is the non-singular case, and r =n-s-1 in the

singular; in the latter case note that

cFe(G) # 0 (6.21)

—nxn’
When it is positive we refer to r as the system shift.
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This links up to our earlier definitions as follows

Lemma 6.9

If G is singular then {F,G} has horizon <n-l. If G

is non-singular then G has horizon <n. In particular if

{F,G} is observable then the inequalities are replaced by

equalities.
Proof

We shall prove a slightly stronger result: Suppose

that G has minimal polynomial

then G is singular if and only if a4=0, in which case

{gd-l’ ... G} are linearly independent (f.i) with {Qd . G}

dependent (f.d4) so that G has horizon <d-1. If G is non-

d-1

singular a4 #0, so that {G ... 1} are 2.1 with {gd".l}z.d,

which is true if and only if {gd ... G} is 2.1 and

{Qd+l

... G}2.d. Consequently we have proved the first part
of the assertion, with d =n in our case. The second follows

on relacing gl by E:glin the above argument.

6.3 Eguivalence Results for the General Model-Time

Invariant, Steady State

In this section we show that the forecast function for
the DLM (6.1), (6.2) is identical to that for an ARIMA
process, subject to certain conditions to be determined.

In what follows we assume that Atszﬁ for 2all t, for which
sufficient conditions are given in Chapter 4, and also that
G is non-derogatory, so that it has minimal pblynomial

-135-



defined above. We are then able to express the forecast
function {yt(k) :k>1} of the DLM in an interesting form.
Godolphin and Harrison (1975), Godolphin and Stone (1980)
considered polynomial=-projecting predictors and looked at
conditions under which DLMs have such predictors. Stone
(1982) extended the results to forecast functions which -
are a polynomial after a certain lead time and also

briefly considered the equivalence between DLMs and certain
ARIMA(p,d,q) models. This section considers the completely
general case and encompasses the results of the previous
papers. The results contained in Theorems (6.12) to (6.14)
have been found by Godolphin and Stone (private
communication), however independent proofs are given here
gsince they are needed for the time-varying results of
Section 6.4.

We prefer to work with (6.1), (6.2) rather than

Y =E8; (6.22)
8,=G68, 1% U, (6.23)

not only because most DLMs are expressed in the form (6.1),
(6.2) in a natural way which is open to interpretability,
but also because by re-expressing models in the form (6.22),
(6.23) does not preserve observability. For example in
the univariate case by defining Qt==<gg> we can rewrite

V

(6.1), (6.2) in the form t

(6.24)

o\ o, 1 *[H, (6.25)
0 v, |

I
-4
~
e
C+

¢ <

(
Qr = (

o o

then we have
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Lemma 6.10

If (F,G) is observable then the system (6.24), (6.25)
observable if and only if Q is non;singular.
Proof

The observability matrix of the extended system has

determinant
F 1] = E |Gl
FG o0
. . ﬁ,Gn;l
FG 0 -

which is non-zero if and only if [Ql is non-singular.

We shall see later that singular G matrices play
an important role in applications so that to represent the
model in the form (6.22), (6.23) would mean that the new
system would be unobservable, éonsequently the item of
interest to us, namely the observable subsystem, has to be

derived via the decomposition theorem.

Example 6.11

We shall see later that the Godolphin and Stone model

'+ 6, +

Vi T 014 2t T Vg
014 = 9%14-1 T Wyt
0oy 087¢-1 T Woy

is

(ibid) is an example of a steady model. The augmented state

representation (6.24), (6.25)is unobservable since G is

singular. An observable version in the form (6.22-6.23) is

yi = 8pq t 6%

1t 2t

01t 7 B14-1 F Wiy
¥ = ' ¥*
8% = 8141 T Wiog
P 3 $ s 3* = .
where 6 ot is defined to be 62t-+vt’ w ot vt-szt

We now develop the main theorems of equivalence where

we assume that 2, Q is observable.
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Theorem 6.12

. . S )
(1) For all k>r+s, y, (k) + ] ¢jyt(k-j) =0

j=1 (6.26)

(ii) TFor l<k<r+s, the forecast vector £,» given by

£o= 0y, (1) ... yt(r+s)frhas the updating equation

#* 4
£,=G £ g tae, (6.27)
where a4 = FGkA o= (o . )T o = _ (1)
k — r = 1 eee r+s ’ t yt yt_l
* ~ . . r>0, Gn o I
Qr+s - -O-r+_s—lxl '];I"I‘S-l O+s s-1x1 s-1
T T
=1xr '95 -QS
T (6.28)
with 07 = (655 05 g0 -e- 07)

Proof

(k-r-s-1) an

Premultiplying equation (6.20) by FG d

postmultiplying by m, yields (6.26). Premultiplying the

Kalman updating formula (4.9) by Egk,11§1<;xﬁs gives

vy (k) = yy_1(k-1) + opet (k=1, ... rts-1) (6.29)
_ oaTtstl %
and yt(r+s) = FG 81t dnyg eyt
s

i=1

from (6.20). Equations (6.29), (6.30) are equivalent to

the matrix equation (6.27) for the vector f,.
Remark

Equation (6.27) is of a similar form to the Kalman

updating equation (4.9), however in general the equations

o .
are not the same since the matrices G and G can differ.

3* 3
In the singular case G shas order one less than gn, namely

+
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n-1, whatever the value of r. In the non-singular case

¥* % ¥* ¥*

g-i'+s = Q_O+s.= gn, S0 QO ts is similar to G. DNote that
g{;+s is singular in the case of positive system shift
(r>0) with rank (ghr+s)= r+s-1, otherwise go+s is non

singular irrespective of the rank of G.

*
The following three properties of G follow easily

Lemma 6.13
* T S r+s-1
(1) The minimal polynomial of G is z ¢(z)= ] v, 2
S0
*aTeet ) = 0 * (6.31)
and so (G rts’ (D(ngrs T =rtsxrts -3l
®i : _
(2) €& = (95515 0pyg g g) Whore £ =(1 4 0y 0 1)
(6.32)
s
implying kG "o = ) i<rts-1 (6.33)
k-1 y
¥* c * 3
(3) £, =G “Bg,+ ] (6BYae, , B the backward
§=0 shift operator
k-1 4
_ Wk ‘*J
=G £y ¥ Jzo_g gey ;- (6.34)

Proof
*
(1) follows from the fact that G is a companion
matrix whilst (3) is immediate from (6.27). (2) is proven

by induction using

%*
(91552 12 O1xrts-3-1) 9.1 Ter | =1-1€71,
T
_glxr B Qs
= (glxj+1’]” lef+s-j-2)'

We are now in a position to derive the main equivalence
theorems for DLMs in the steady state. For the purposes of
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the next theorem only we assume that the zeros of &(z) 1iie

strictly inside the unit circle.

Theorem 6.14

For each k=1,2 ... the k step ahead predictor for
the DLM coincides with k step ahead predictor for the
autoregressive moving average (ARMA) model of order (s,r+s)

given by

Vg T ogygy Foeee T Oy o TEgtBiEL gt TR L 1s
(6.35)

S
By= 1 050y ;5 t0,(Igics),B . = izo %1%+5-1  (1gjgr)

(6.36)

and the sequence {et, t=0%+1,...} consists of purely random

variables.
Proof
Let P(k) denote the statement of the theorem and

consider the proof of P(1). Now

). (6.37)

1
A
—
Hy
+
o~
©
Hy

S
p 1)+ ) ey, ()= (£, ¢ [ o,

Defining ¢ =1 and using (6.34), gives the right hand side

of (6.37) as

S %* r+s 2 r+s-j-1,.% i
< 0L 058 )" "Ly ¥ .Zo¢j g0 (G el 5y
j=0 j= 121
ooy T (6.31) and (6.33)
= j o . €L g using . an .
320 120 i+l i-j
r+s-1 6 38j
= izo bj+l et—j .
= 0y (15558), by, = ] j
where bj = .;O¢iaj-i 1<i<s), S+j-_i=o¢ias+j-i(lé3ér ).
J (6.39)
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On using the fact that yt_j(l) = (1<j<s) in

Yt41-3"%t+1-j

equations (6.37) and (6.38) gives

s=-1 rts-1
yt(l) + jéd ¢j+lyt-j = jzd Bj+let—j (6.40)
where Bj = bj-+¢j, (1<j<s), Bs+j = bs+j (1gj<r) which

proves P(1l) since (6.40) is the defining relation for the,
one step ahead predictor for the ARMA model (6.35). That
is if observations are generated by (6.35), then (6.40) is

the conditional expectation of Y41 given Vi with
e, . = E[e, .ly°] = .y, (1) (6.41)
t-j t-3 1Y Tt+1-3" 435 "7 .

Let k be an integer in the range 2<k<s. Now

l{'l % k-l-’j
(bp1s oee v 000 Opprpgna) = jéo 0; &G h4)

using (6.32). Consequently
k-1 s-k

. k-3) + . . 1 6.42
jzo 65 ¥y (k-3) jzo bt Vgog-1(L) (6.42)
k-l 3% S‘k
- k-1-j
= jZO 65K(G 1y g) £ ¥ jZO dpry£Ly 5
*k'l"- I’+S 1; 3%

J[ (qF | )rs-kil

i
-K{ Z y—r+s £y s+k+l+ Z (G ) aey ;]

+ . 1 (G f + - (G Jue, . .

jéo ey LG rag =t-r-stk-1 iZO ( ey -j-1-i ]]
using (6.34)

s ( x Tts=j k-1 r+s-k 4 )kfl-j+i

= K (G ) b : + . . (G o e .

~ {.£O¢J = =t-r-stk-1 j£O¢JiZO L—r+s = "t-1

r+s;J-l
+ 8
R ) (6")* e :



T 3* k r+s-k
= {Crg) 0 B pgin * L 05 Ty gy
' : : j=0 i=0
§ f%s—j-l
+ b . Q. ,- €, )
2k 4 g 1l Tttk-j-l 1

using (6.33), which by (6.31) and the definitions of (6.39)
rts-k

= jzo bitk Cpoj (6.43)

On substituting for yt_j_l(l)from (6.41) in (6.42) - (6.43)

gives )
k-1 ) s-k A rts-k
. k-' + . . = . e ] 2<k<- .

(6.44)

But this is exactly the predictor updating equation for
the ARMA model (6.35) obtained by replacing t by t+k and
taking expectations conditional upon the data up to time
t, so we have now proved P(k) for 1l<k<s. It only remains
to prove the result for s<k<r+s, since for k>r+s the
result is a consequence of (6.26). The proof for s<k<rts

is similar to the above and is obtained by considering

: . - S ( * )k-l-J
jZO 0. yi(k-3) = gjz ¢5(G 1y £,
s r+s-k r+s-k
= jZO ¥ izo ®pt+i-j ®t-1 =i§0 Byts ®p-i-

Thus P(k) is proved for all k>1, and so predictor

equivalence is established.
Remark

We have not used the assumption that the zeros of
#(z) lie inside the unit circle, and so we have the

following important corollary.
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Corollary 6.15

For each k=1,2 ... the k step ahead predictor for
the DLM (6.1), (6.2) coincides with the k-step ahead

predictor of the linear difference equation

Ve ¥ O Vg oor ¥ g Vqog T 84T BeEgy vor T BB g
(6.45)

where the B are as in (6.36), the sequence {st} are

purely random variables, and the forecasts of (6.45) are

obtained by taking conditional expectations using

(2) Elygyly"] =y,(3) 90
() Elyy_1v°] =y, 120
() El ey ly"] =0 §>0
(a) EJ et_jlyt] = Vi3 " ¥o3-1(1) j>0.

This is a Very important result since it includes non-
stationgry models. In particular the zero's of ¢(z) may
have zeros on the unit circle, in which case (6.45) may
represent an ARIMA process, and quite generally (6.45)
includes the general multiplicative seasonal model. For
example if several of the ¢'s.are zero then (6.45) may
describe a non-multiplicative seasonal model.

We have made the assumption that F, G is observable,
in which case the matrix G is non-derogatory and (6.45)
has its autoregressive part of lowest order, however the
procf of Corollary 6.15 rests on.Theorem (6.12), which ié
true for general F,G provided that we define r,s and Qs to

be the smallest values of r,s such that
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Fefe(e) = 0 (6.46)

if G is singular with ¢(z) given by (6.19); and r=0,

s the smallest integer such that

Fo(G) =0 (6.47)

in the non-singular case. Then we have

Corollary 6.16

With r,s, ¢ defined via (6.46), (6.47), Corollary

6.15 is true for any n-vector F and nxn matrix G.
Remark

The order of the right hand side of (6.45) can be
greater than, equal to or less than that of the left hand

side. TFor if >0

0, EGTT°7H A = FeTo(Q)A

™
n
il ©~1

r+s

i=0

t-l)FT

Now A « EET = cov(gﬁly which is in general non-zero

so that from (6.21) Br+8740 in general, so that the

right hand side is of order r+s. If r =0 then

g, = FG(ci™t +

. 5 N
GI™% ..+ b, SIVA F 0. l<i<s
j = ¢J-2 JA QJ SJ=

o1

which could be zero if the ¢'s are suitably defined, and
the right hand side can be any order form.zero to s. DNote

that if A= 0 then (6.45) becomes
@(B)yt = @(B)et

where B is the backward shift operator.
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The parameters Bj of equation (6.45) or equivalently of

an ARIMA type model are related to stability requirement
by

Theorem 6.17

The stability conditions for the DLM (6.1), (6.2)

coincide with the invertibility conditions for the process

(6.45).
Proof

Taking z-transforms of (6.37), (6.38), and denoting

the z-transorms of yt(l),yt, and e, by Fl(z), y(z) and

t
E(z) then

Fy(z) [1-+ %1 Fooo. 4 gs] = E(z) [bl tby wu. t b ]

s —_— _—

A Z r+s-1
Z

where we have ignored the transieht terms, which we can do
by assuming an infinite past history or equivalently zero

starting conditions.

Now ey = Vi -yt-l(l)

SO E(z) = ¥(z) —2352)
rt+s -
thus Fy(z) = < 7 b rHstl-] B(z)
r+s rt+s R
where B(z) = 275 {8(z )+ J b,z 9} = 8.7 oI,
55 j=1 j=0 J

We can also show that Fi(z)/Y(z) has denominator B(z),
where Fi(z) is the z-transform of yt(i), i=2 ... rts.
The above recursions are stable if the zeros of B(z) are
less than one inmodulus (Theorem 3.13) which is the

invertibility condition for (6.45) and the theorem is proved.
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If the DLM is uniformly completely observable and
uniformly completely controllable then from Theorem 4.5
the linear discrete filter is uniformly asymptotically

stable, that is the homogeneous part of the filter
8y = (T-AL B Gy 8y g * Apyy.

If we consider the time invariant case, then we only need
to consider the steady state case, which exists by Corollary
L .6 . 1In such a case the filter is also b.i.b.o. stable,
that is treating the yy as inputs, from Example 3.15 the

zeros of

H(z) = {2I-(I-AF)G] tza

are less than one in modulus, where © (z) = H(z)Y(z).
But F,(z) = FG* 0 (z) = FG'E(z)¥(z), so that if the zeros
of H(z) have modulus less than one, so do those of
Fi(z)/Y(z). In other words we have proved the following

theoren

Theorem 6.18

In the time-invariant case, ifthe DLM is obserwvable
and controllable then the Kalman filter is stable, and

the equivalent ARIMA model is invertible.

6.4, Equivalence Theorems for TimeVVarying DLMs

Section 6.3 concerned theorems for constant (time;
invariant) DLMs in the steady state, whereas in fact we
can extend Theorems 6.14 and 6.15 to include much more
general models. We shall consider first the case where

E,Q are constant but the gain matrix At is not constant.
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This can happen in two cases -

(1) When V =var Vs W=var Et are constant but the matrix
At has not converged to its limiting value. In fact we
could also work in the terms of Corollary 6.16 in which
case such a 1limit need not exist.

(2) Vt:=var Vs W, =var Ht are not constant in time.

t
By defining ak,t:zzgkﬁt’ then by proceeding exactly

as for the proof of Theorem 6.12 we have

Theorem 6.19

S
(1) for all korts, yy(k) + [ o05y.(k-3) = 0

j=1
(ii) for 1<k<rts the forecast vector f, has the

updating equation

£y = Opesfyg * 2y 0y
T
where 2y = (al,t .. ar+s,t) .
This enables us to deduce
Lemma__ 6.20 \
£, = (giﬁs)kft_k + jg; Lgi+s)jgt_jet_j (6.48)

which with the aid of Lemma (6.13) parts (i) and (ii)
enables us to mirror the proof of Theorem 6.1 end its

corollaries yielding

Theorem 6.21

For each k=1,2 ... the k step ahead predictor for the
DLM of this section coincides with the k-step ahead

predictor for the linear difference equation

l + ."‘ = (XY ]
Vi t 0¥y POy s 8 P Brpa®pa F e P Brtg porostoras
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where the Bj,t-j are given by

j-1 ,
B. . = . 4, . .t 0.
Jrt-] iZo 1 %5-1,4-5 7 9
(recall that ¢s+j = 0, j>0).

Proof

The proof is exactly as in Theorem 6.14, except that

(6.48) is used instead of (6.34)
Remark

In the difference equation (6.35), or (6.45) the £y
are usually taken to be independently and indentically
distributed random variables; however it should be noted
that the predictors derived for such models are also the
optimal predictors (in the sense of smallest mean square
error, that is the predictor in the conditional expectation)
if the £, are merely independent. In fact they are also
optimal if the B's are allowed to evolve in time in such

a way that Bj depends on t through t-j, as happens in this

theorem. So that the prescription under Corollary 6.15

still applies. For the DLM's the e, are indeed

t
independent, as is well known, and under ncrmality
T.T ET+E

assumptions they have variance f_ggt_lg Fo 4 _F_'__Iﬂ_ft

which is constant i1f the error variances ¥ and Y are

t

constant and if G, has converged to a limit.

The above theorems quantifies the change of information
that occurs through time as our prior knowledge is |
superceded. That is, i1f we are in the 'sensible' situation
of having an observable and controllable model, then At+g
and so a, s, SO that our forecasts come from models with

it
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constant auto-regressive parts (not necessarily stationary)
whose moving average parts converge in the sense of the
parameters to a single model.

Finally we consider the completely general case where
F(t), G(t) are time varying matrices, F(t)e R", G(t)an
nxn matrix. Therefore there is some number k, real numbers
¢i(t) not all zero such that

k k-1-1
F(t+k)G(t+k) ... G(t+1) + ¢; (t+k-1)E(t+k-1) T  G(t+k-1i-j)=0

i=1 5=0

which on using the definition of the transition matrix
(i, j) given in Chapter 3 can be rewritten as

k
F(t+k)o(t+k,t) + ) o.(t+k-i)F(t+k-1)e(t+k-i,t) = O.
i=1 = (6.49)

In order that our models have a constant horizon for all
t we require that (6.49) is only true for k=n. In other

words we require that the matrix given by

t+n-1 T .
M(t+n-1,t) = §  a(i,t)F(i) F(i)a(i,t)>0
i=t
or in other words is positive definite (see Section 3.5).
But this condition is satisfied if the system is uniformly
completely observable .

With such a condition satisfied, two possiBilities
arise according to whether ¢n(t) = 0 or not. That is we
can mimic the exposition of Section 6.2 and define r,s in
the case of ¢n(t) =0 by r+s =n-1 where s is the largest

integer such that o #0 and in (6.49)

F(t+r+s+l)d(ttrtstl,t) +

(@)

S
) ¢i(t+r+s+1-i)g(t+r+s+1-i)g(t+r+s+1-i,t) =
1=1 (6.50)
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or if ¢n(t) #0, define r to be zero, s=n so that

postmultiplying (6.49) (with

F(t+n)d(t+n,t-1) +

n

)

i=1
In order that our conditions

Condition

Either ¢ﬁ(t) is non-gero

else s, (the largest integer

zero in (6.49) with k=n) is.

r = n_s"lo

Obviously we then have a

cases as in the time invariant case.

k=n) by _Q(t) gives

¢; (t+n-1)F(t+n-1)e(t+n-1,t-1) = 0. (6.51)

are consistent we require

for all t, so s=n, r= 0, or
such that ¢S(t+n—s) is non

a constant throughout time,

constant horizon r+s in both

We can then prove

Theorem 6.22
s
(i) For all k>rts, yt(k) + ¢j(t+k-j)yt(k—j) =0
7t (6.52)
(ii) TFor lick<rts the forecast vector £, has the
updating equation
3
o R T (6.53)
3 _
where giﬁs B =r+s-1x1 rts-1
———e = s m o= - if >0
T
O yr -gs(t+r+s)
G .. = /0
= ots —s=-1x1 Is_1
'QST(t+r+s)
3 —_ T - T L . 0}
with g, = (ul,t ceo 'r+s,t) y ooy oy = g(b+1)g(t+1,t)§t and
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o (ttr+s) T = (0 (r4t) 0 (b42+1), ... oy (tr+s-1)).

Proof

yt(k) = E(t+k)g(t+k,t)§t.Now (6.50) and (6.51) can
both be expressed in the form (6.50). Putting j =k-(r+s+l)

for k>rts+l gives for t=t+j

S
F(t+k)a(t+k,t+j) + ¥ 0, (t+k-1)F(t+k-1)@(t+k-1i,+j) = 0.
i=1

Postmultiplying by g(t+j,t)gt and using the fact that

o(t+k,t+j)a(t+j,t) = o(t+k,t)

gives us the statement of (6.52). Premultiplying the
Kalman updating formula (4.9) by F(t+k)d(ttk,t) l<k<rts

gives

yt(k) = yt-l(k+l) + AL (6.54)

and yt(r+s) S E(t+r+3)2(t+r+s’t—l)ﬂt_l + ar+s’tet

which from (6.50)

J

i~

¢j(t+r+s-j)yt_l(r+s+l-j) LI TR A (6.55)

-
L

Equations (6.54), (6.55) are equivalent to the matrix
equation (6.53).

We can now prove

Theorem 6.23

The time dependent DLM model is predictor equivalent

to the time dependent ARMA type model
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vy ¥ ¢l(t-l)yt_l ee. ¢S(t-s)yt_s =

StA+ Bl(t-l) ee. + gt-r-sBr+s(t'r's) (6.56)
-1
where Bj = iz ¢i(t-i)aj-i,t-j + ¢j(t-j) 1<j<s
s
Baty T izo ¢i(t-l)as+j-i.t-s-j 1<j<r

and the sequence {et} consists of zero mean, uncorrelated

random variables.

Proof

The proof cannot be proved by analogy with Theorem
6.1, since there is no equivalent to (6.31), so that the
proof loses much of its elegance. Instead we have to
resort to expressing v4(J) in terms of yt-i(l) from (6.5L),
(6.55) to prove P(1), where P(1) is the equivalence of the
forecast yt(l) for all t. That is, from (6.54)

yt(k+l) = yt+l(k) - Oy 4418441 1<k< .rts
so

v (k1) =y (1) = oy yiie44g -
Cp-1,t42%t42 o0 T %1, t4kCt4k”
Substituting into (6.55) gives

Visrts-1(D)

T Orts-1,t41%t4+1 T %rt+s-2,t+2%t+2 c
T %1, tir+s-1%t4rte-1
= Q

S
r+s,t%t ~ jzl¢j(t+r+s_j)[yt+r+s-j(l) “Crig-j,t St e

T %1, ttrts-3-1%¢+rts-j-1]
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Putting t+r+s = t and defining ¢,(t) =1 gives

, s
Vo1 (1) 10 (6-0)y 51 (q)

j=1
. +s
s rts=-j r .
- . b.(t-j)e, .
= o.(t- a. - . . -
jZo j (3 iil i,t-1-3%4-1-] j£1 J b
(4-3) = T o,(
where b,(t-j) = At-1i)a, . .
g0 = L ey (etlay
and since yt-j-l(l) = Viog T Cgoj then
(1) + T 6.(6-3) i
l + . t—. . = . t-. . 6- 7
Vo1 jzl 65 (t=3)y4_; jzl B;(t-3ley_; (6.57)

where Bj(t—j) = bj(t-j) + ¢j(t-j), which since ¢s+j =0
j>0 is the same as in (6.56). But (6.57) is the one step-
ahead predictor equation for (6.56) and so P(1) is proved.

By a similar argument we can show that

k-1 S
vk + T os(etk-flyp(k-3) + T 05 (6+k=-3)yp 1y
j=1 j=k
rts
= (ttk-j)e . <k<r+
I oglereeg ey 2gkrs

which is the defining relation for the k-step ahead
predictor for (6.56). This together with Theorem 6.22

proves the result.
Remarks

(1) 1r ¢i(t) is independent of t for all i then the

theorem reduces to Theorem 6.21.

(2) The theorem assumes knowledge of F(t+k),G(t+k)
for all t and k, since knowledge of ¢i(t+k-i) is needed.

If this is known only up to some fixed k for each t, then
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the theorem holds for all lead times less than or equal to k.

(3) There is an abuse of notation in the above proof
since Bj(t-j) depends on ¢l(t-l) .o ¢j_l(t-j+l) so strictly
speaking we should have Bj(t-l). We prefer not to do this
to preserve the identity of the Bj(t-j)s with those of

Theorem 6.21 in the case where the ¢is are independent of t.

6.5 Covariance Properties

We now return to the time invariant case, where we
assume that {F,G} is observable so that G is non-derogatory
and the discussion of Section 6.2 applies. Using the model

(6.1), (6.2) we have using (6.2) repeatedly that

X k-1 k-2
SE8 PG Ty ey P G

ek + W, . (6.58)

gy Tp-k+2 "0 7 Iy

Using (6.58) to express gt_j in terms of 8,_, and then

using (6.1) gives

_ n n-1
Vg FOq¥pq eee POy SE(GT 080T e F o) By
n-1 n-2
e T _»gt)
n-2
PO E(G Ty pgg e g g) e H 0 g (B )

+ vJG + ¢lvt-l ees T ¢nvt-n'

Using the fact that. the minimal -polynomial of G is given by

6.18 with ¢j = 0 for j>s then we have on rearranging

Lemma 6.24

The DLM (6.1), (6.2) gives rise to the following

relation
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S S
[ o;¥gs = iz 3Vpog t L YsMys

O.¢jgi-j) , ¢j = 0 for j>s (6.59).

In the terms of matrices (6.59) is

(15 (10 0} (2 )

Y1 4710 - 0

1=
o)

b, 67 1

(-]
—
>
ID.._
jai
A

x? \n-

or Y = M

—

where M is the observability matrix. Consequently provided
that the observability matrix has rank n, since @ and M are
non-singular, knowledge of any two of Ys 2, M uniquely
determines the third. 1In particular Yy has rank n.

If we define the quantity z by the difference

equation

then we have from Lemma 6.24,

Lemma 6.25
s End _ . —_ - T - :
Provided that L[Vt] = 0, E[Et] =0, n[vivj ] = dijV,
Ty _ _ .
E[Eilj ]= ijE E[vilj] = 0 then z, is a zero mean

stationary stochastic process.with autocovariance function

given by
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= = T T
x E[ztzt+k] - .Y_O-W Yy * l’_l]/_‘h’k.;.ll ces F In_k_lﬂz.n_lT
+
(o + 0304y woe 0 400)
n-k-1 T s~k
B iZQ liH Yitx v iZO (¢i¢i+k)
for O<k<n-1 =1 (6.60)
Cn = Vd)n
Coyx = 0, k>0.
So if G is singular En = 0, because ¢n5(3.

Since we are dealing with a stationary process we
know from the Cramer-Wold factorisation that Zy has the

same second order properties as

S
g = Lo 0¥es T ey T Biep g see FBLig®h s

where the {et} form an independent white noise sequence
for some set {Ei}. We are now in a position to relate our

theorems of §6.3 to the covariance properties of the model.

Theorem 6.26

Provided that P is a solution to P = g;igT-rw-g_ TE_QT

1=

2

T+V

1=
1=

P

that is a steady state solution of the matrix Ricatti
equation in the Kalman updating formulae, then the
autocovariance function generated by (6.45), with B's

defined by (6.36) where
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o, = FG*A = Folpr’

1
FPE +V

is identical to that given by (6.60) in the sense of Zy»

using the additional relation that

Var(et) = g% = E_ET+V. (6.61)

Proof

(6.61) is a consequence of the remark of Section 6.4.
th

The k covariance of z, from (6.45) is
c. =0%(8, + 8.8 + B B, )- (6.62)
k k 17k+1 *°° str-k"r+s :
From (6.60)
n-%-l T Sik
c, = YWy, + Vv b.0d. .
k 120 Li=-Li+k =t ivi+k
Now if the relation for P holds then
W=p - Geg" + GPPERG
FPFL+ V
n-k"l T T T S"k
thus e = ] y;(B-GPG +GAFPG )y, " +V [ 650,
i=0 i=0
(6.63)
Now from (6.59) lig = Y541 - £¢i+l which is true for
n .
1<ign-1 provided that we define y = F( ) ¢jgn'3) = Q.
i=0
n-k-l T m
Thus X Y;(E- GPG JYi+x =
i=0 -1
n-k-1
—. T T T
.iZO STIATIAEE P RS LFFERIAC FRONE IS JRSHEL A
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n-k-1 T T T
- igo (LaBY 54" = Ysr1BYiwenn P Y5418 000E +E05 1B ipig

T
T B0y 1a R0 B
T n-k-1 T
= YoRy, -07 izo (93 4141Y 542 BF P41 Y 54
- 0,0 FPFY) (6.64)
1i+1%1+k+12EE8 /e g
Now vy, = E, EET = goz, EEET = 0" -V and
_ -3
YA =F % 0,67 A =B, -6, +Fd.A =B -0¢.(1-FA
—J g2o ¥ = T3 O T O TR T 6;(1-E4)
so YjEET = Ozle = Bj02 - ¢jV since ¢%(1 - FA) =y

thus (6.64) simplifies to
n-k-1

2
OBy = OVt iZO[ 14141 (B3429% = 03497

03540 (B34pr10” 05V ) = 034705 4300p (021D

n-k-1
— 2 £
= OBy A izo [03434285429% * 03428545419"
= 054305454 (0740 ]
T (6.65)
The third term in (6.63) is Jy, (GAc?ATG™ )y 4, T
which from (6.59) and (6.36) is
n-k-1 ,
Lo O B1a1 054 ) By < O5ken) (6.66)

so that using (6.66) and (6.65) in (6.63) we have
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, . n-k-1 n-k-1
G T OB 0 VR ) BiaaBiap - L 954205401
i=0 i=0
s-k
1
PVOL 050
which since ¢j = 0, j>s gives
, n-k
¢, =0 izO BByt (6.67)

There are two cases to consider

(i) if n=s, so r=0 then (6.67) is exactly (6.62)

(ii) n=r+s+l. Then in (6.66) we have defined B,

from (6.36) as

nil n-i E 1+r-i
B =¢ + $.FG A = ¢.FG A
n n i=0 T - i=0 177 -
-§r+l®(g)é =0
thus in both cases
) r+§-k
c =0 B.B.
k 120 iti+k

which is (6.62) and the result is proved.

So Theorem 6.20 assures us that in the steady state,
the predictors of a time-invariant DLM are precisely those
of an ARMA type model whose autoregressive parameters are
obtained from the minimal polynomial of G and whose moving
average parameters can be obtained from an examination of
the autocovariance properties of the derived process Zy e
Of course before we reach this state the discussion of

Section 6.4 applies.
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6.6 Structural Properties ( of the general model)

We now illustrate some of the consequences of the
above theorems for the structural properties of DLM's
which can be used to describe various types of univariate
time series. We assume that s is a fixed positive integer
and begin by examining the dimension of G. The case r>0
is the so-called forward shifted model, and it follows from
the definition of r that G is singular in this case, that
is n = r+s+l whereas rank (g) = r+s. On the other hand if
r = 0 then there are two possibilities, n =8 or n =stl.
The first corresponding to a non-singular system matrix G
and the second to a singular system matrix. Consider the
case n=s= rank (g), then in the non-singuiar case the
characteristic polynomial is givén by (6.18). 1In such
circumstances severe restrictions are placed upon values
of Bl ...BS. For example

s-1

B.=d_+ T o

IR N R Fo(G)A + o (1-FA)

= ¢s(l-E4)
since ¢(G) =0 . However 1 -FA = ¥ , so 0<1 -FA<1
= —nxn -- =T : = -
FPF +V
thus BS has the same sign as ¢S and
0 2lBglzlogl. (6.68)

Strict inequalities hold provided that V is non-zero and
the model is controllable. However the region (6.68) is

to be compared with the invertibility/stability region for
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the B's, which has |Bs|<l. In typical ARMA cases ]¢S[<1,
which supports the conjecture of Godolphin (1976) that
DLM's with non-singular system matrices can be more
severely restricted even than the polynomial DLM's
discussed by Harrison and Stevens (1976).

It follows that if s>0 and r>0 are given then the
choice of n=rt+st+l is to be preferred on the grounds that
if produces an observable model of smallest rank which
does not impose the obvious restrictions that the case
n =r+s does. Such a choice has a slightly counter-
intuitive appearance to it, since the dimension for the
system vector gt may appear to comprise one more component
than might be expected. For example the case r=0 is
considered by Harrison and Stevens (1976), Smith (1981).

If we make the selection

*
E=lrpeer 1 9 yrig )
together with the matrix
- = (o I
G =8 4641 T =r+sxl rt+s
. T
Qixr+1  ~ %

then the model is observable since using (6.32) we have
T T +s\T1 T .
that [F°,(F¢)", ... (FG""°)"] 7 =1, ., which has rank

rts+tl. Consequently it follows from Lemma 6.4 (iii) that

the model

I

(6.69)
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is observable provided that the polynomials © (z) and
z0(z) are coprime. In general we know that for {F,G} to
be observable G must be non-derogatory, consequently G is

*
similar to G , and so a general specification is provided

by
_ 3 * =1
E=E 441 O(GIR
(6.70)
~ * . -1
G=RG 4452

for any non-singular matrix R of order (r+l+s)x(r+stl),
which is strictly equivalent to (6.69).

The theorems have -been mainly concerned with deriving
and ARMA-type model from a given DLM. All such procedures
involve the determination of the steady state Kalman
gain vector A, which is a simple proposition numerically
since we can use the Kalman filter. The procedure for
reversing the process i1s in general more difficult. That

in given r,s and a set of parameters Bl we can

e Br+S
invert (6.36) to obtain

nY G AR

B1

61 1

o

62 6.

. . .

\\ar¥§/ \\er+s er+s-l e l// 'Kfr+fy

where B, + 078; 1+ .u. F 0y 10, F 6 =0 1<k<s

+ 6.9 =0 stl<k<rts

Gk + ¢lek-l + ... s9%-s

and where ¢y +.. 0 are the coefficients of o(z).
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Since the matrix is lower triangular, the a, are

uniquely determined. Having determined these, then

A = (Ee ) &= (o )

rt+s
72 “r+s )

H is the (rts) x (n) matrix whose i row is FG. IfG is

non-singular then r+s = n, thus H is non-singular so that

A is uniquely determined. In the singular case as already
mentioned
o2 = FPF' +V  or (1-FA)o? = V

-

thus FA = (1-02/V) (6.71)

and since {FT,(FG)T ...,(FGr+S)T}T is non-singular then A
is uniquely determined given 1 - o?/V.
In both these cases it is then required to solve for

v and W from (6.71) and

A = PF

P = GPG' + W - GPFIFRGT

Some conditions under which it will be possible to do this

have already been given. This topic is continued in

Chapter 7.
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CHAPTER 7

INVERTIBILITY REGIONS AND PRACTICAL DLMS

7.1 Introduction

In this chapter we illustrate some of the results of
Chapter 6 by applying them to typical DLMs. In particular
we comment on the stability regions that are covered by
DLMs which possess a certain intuitive appeal. The
appropriate theory is developed in Section 2, and Sections
3 to 5 consists of examples. In §7.6 a slightly different
way of writing some useful DLMs is given, and 57.7 shows
how the Kalman filter can be applied to them. Section 7
also summarises the examples of the chapter concerning

some frequently used ARIMA models and their DLM equivaients.

7.2 Theoretical Results

The specification of general F and G matrices in the
time-invariant case for univariate observations is
provided by (6.70). However in applications it will be
necessary to specify V and the elements of the positive
semi-definite matrix W. In practical éituations if we do
not employ a statistical estimation procedure then Harrison
and Stevens (1976), Godolphin and Stone (1980) and others
remark that it is only the specification and updating of .
variances that can be carried out with any confidence.
Consequently in practice we require W to be diagonal, or

expressible in the form §ﬂd§T where B is a fixed known
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matrix and W, diagonal, whose elements can vary. The

latter case can be reduced to the former by using the

equivalence between {F,G, EHdBT} and {F B, E—IQE,Ed}.
We therefore have two sets or regions
Ry = {V,¥]|v20,u>0} (7.1)
Rep = (V,M]V20,i20 and diagonal) (7.2)

where the second is of much more use practically. A
general DLM is represented by (6.70) with V,W belonging to
(7.1) or (7.2).

We know from §6.3 and in particular Theorem 6.1/ and
Corollary 6.15 that a time-invariant DLM is predictor

equivalent to the moving average model
o L e T s LT B

where the Si are given by (6.36), namely

j-1
B. = b.a, + ¢ 1<ij<s
j iZO iTj-1 0 %) =J
(7.3)
S
Baty = iZo 3% +j-1 i

It is then natural to ask what is the nature of the
stability/invertibility region under this equivalence for
a DLM with {F, G} fixed but where {V, W} are allowed to range
over R. or R_... For example we have already seen that too

I IT
small a G matrix precludes us from covering the full region.

For R the equivalence gives a mapping, dependent

I!

upon F, G
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¥, G

Ry ———= {B; ... 8

I } (7.4)

rt+s

provided that a steady state A exists. First we shall

show

Theorem 7.1

For fixed G, the image of the mapping (7.4) is the

same for all F, provided that {F, G} is observable.

Proof

Let F,G be any two matrices for which the
observability matrix M'has rank n. Then from Lemma 6.24
there is a non-singular matrix y, which depends upon F, G

given by
Yy =2H4

using the notation of the Lemma, where & is a lower
triangular matrix with 1's on the diagonal and éij = ¢j-i
for j>i. Consequently the DLM can be written in the form

n-1

S
o ®1¥ter T Lo 44Teos igo Yi¥y g

jo~1m

i

S .
Lo 0aveeg P (rmg)y * (g g)p bl
1= )

¥ (lft-n+l)n (7.5)

where the subscripts denote components of the column
vector. Now from Theorem 6.26 the Bi's can be obtained
from the autocovariance function of (7.5), but this
function depends only on xyng and since the two sets

{lﬂlT | W>0, Y fixed and non-singular} and {¥ | >0} are
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identical, then the Bi‘s are independent of Y and hence F.

The theorem is therefore proved.

From the proof it follows that a 'canonical form' for

-
L

the mapping (7.4) is (on putting thzl- u)
S . S
R e T B TR S B Lo 05V
J J (7.6)
where W.y 1s a scalar, W, = Wit s
it
Sw.w, T = 6., W o (7.)
=i~k ik = )

and W is positive semi-definite.
This enables us to prove

Theorem 7.2

The mapping (7.4) under Ry allows the B, to cover the

full stability region, provided that n-l=r+s, i.e. n=rts+l.

Proof

Put V =0, then if n=r+s+l (7.6) gives

S
L0y g Teg FBeg g F o F B g

j=0
and the matrix W of (7.6) is positive semi-definite as
required. Now by varying the B8's we can cover the full

region, which completes the proof.
So under BI’

linear difference models. Now consider the region RII and

DLMs encompass all the traditional

the mapping
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=11 i* Br+S} (7.8)

again under (7.3) with F,G fixed. It follows from the
proof of Theorem 7.2 that a canonical form for the mapping
(7.8) is given by (7.6) but where now instead of (7.7) for

a fixed B (=R),

. T
E[Ejgk ] = 6jk§ Wy B (7.9)

o

w

o

The difference is because {E}iETlﬂgOanddiagonal}#{E{W>O
and diagonal}., It will bealgebraically more convenient to use

the autocorrelation of the derived process z, defined in

t
Chapter 6 rather than the B;'s. Thus the mapping (7.8) can

be obtained by looking at the mapping

EII _— {pl\’ s DI‘+S

using (7.6) and (7.9) with B fixed. To summarise we have

the following, which we formally state as a theorem:

Theorem 7.3

Let {y,} denote a DLM with canonical form given by (7.6),

(7.9). Then the autocorrelation function for

j=0 J°t-]
n-k T S-k .
o = Elzgzpyy ] = T byiby "+ VL 05044y (7.10)
— LI 35 120
Elz,2] n-k S
t I b.Hb,L 4V T e,
i=1 T izg 1



where Ei in the ith row of the B matrix in (7.9), and

¥ =diag {W ...W}.

The proof follows immediately from (7.6) and (7.9).
So an examination of the mapping (7.8) is found by

considering the mapping from

Ryp = {V,W; ... W [V20,W,20} —=— {p; ... Prist  (7.11)

under (7.10).

T, ‘ |
Now b;HByyy” = (Pyg +ov Byy) (W7 o |f Pitx1
0 - .
W .
S T
1TLn
n
= JZ LI R
Thus we can write
n .
Py = 121 S Wst Cppnpy ¥ (7.12)
n
jzlcojw teg ey U
n-k
where ey 5 .Z ijbi+k ; 1<jzn
i=1
s-k O<k< rts
“kn+1 ” iZO 1954 - (7.13)

Since py=1, the image of the mapping (7.11) consists
of a reglon in r+s dimensional space whose co-ordinate axes

are 0.5 wep that is we have a mapping from the set

rts’
Re BT — o mTHS given by

T
c x [¢] X C X T
« - -1 '_’ =22 ’ e 0 . —-I‘+S.— (7.14)
= CosX Lo-X Co-X



where ¢, .x is the dot product between Ly = (ckl oo Ckn+l)

T _
Xn+1) . Note that ch>O

since the matrix B is non-singular, and without loss of

and x = (W; ... wov) = (x; ...

generality we can put X 41 = V equal to 1, by say defining
W, = W,/V.
J J/

Define the mapping yi:=cOiin/ (cle1 toew. tegpxtegigy

for i=1 ... n. This is clearly a one-one nmapping on ik
because the denominator is non-zero and the inverse mapping
18 X5 = Y5 Contl

> 0 under the inverse mapping. Thus we can reparameterise

/ (coj{l—Zyi}), and further Ogy, <1 with

Xy

(7.14) to yield the mapping from CeRLAeR TFS

given by

Lcinyn.+cl_n+1.(l-yl-"yn) C21Y1

<011Y1+°12Y2 s

s o a T » _— . . +
01 Co2 ®on Con+1 °o01
Ch o e . c Yot ... C o J
0n+l 01 S0 n+tl

where y.>0 , Zy.<1 and C is the region covered by {y, ..y

v

If we now put Yn+1 = l-yl- SR then every point in
the image is of the form inuiwhere yi;O, Zyi==l,and
Sl C = (7.15)
01 01
.Thus every point is a convex combination of the Us s and
so the image which consists of all such combinations is
by definition a convex hull of the us . Now we can select
a minimal set of the ui's such that the image is the
convex hull of these points, and it is easy to show that
these points are vertices (see for example Trustram (1971)).
The above means that we can now fully characterise

the image. That is
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Theorem 7.4

The image under the mapping (7.8) from Rip to the

autocorrelation space {pl .o } is the convex hull of

pr+S

its vertices, which are a subset of the points u, of (7.15).

The theorem tells us that the image in the auto-
correlation plane is bounded by vertices and straight lines.
This means that if the invertibility region is not a convex
polytope (the convex hull of a finite set) then it is

impossible to cover the region under the mapping R In

IT”
fact the invertibility regions are convex sets with no
vertices, however we can make them into convex polytopes
by including the limit points to make the above statement
non-trivial. The implications of this are that for higher
order models, practical DLM's can only cover part of the
invertibility region of the equivalent ARIMA model. This

is illustrated in Section 4.

Note that the region may depend upon Uog1

Yn+1 T (Clnﬂ. G n+l)
°0 n+1 Co n+l
which is soley a function of the ¢'s, so that if the region
is to be independent of the ¢'s then in some sense the Vi
term is redundant (see (7.13)).
The following sections contain examples which use

the theory of both Chapter 6 and this section, so that

the various theorens and results can be seen in context.
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7.3 An Uncontrollable Model

Chapter 6 examined the role of observability; however
controllability is not so easily dealt with. Although
controllability is a sufficient condition for the
convergence of the filter, it is not necessary, and DLM's
need not be predictor equivalent to their controllable

subsystems. Consider the model

Example 7.5

vy = (3 1) 8,

84 (l :L)gt-l + (l) Wy
0 1 0

which is observable but clearly uncontrollable. The

@D
1}

updates for P, are given by (L.37) under the assumption

that w, vN( 0, W), which on writing P, ; = (;Pl P, )
Py Pj
and substituting for F, G, W, and V (=0) gives
= S+
P, P ¥RP, P, W PP, P¥2P, 4P, (P, +2P,*P, P, P3)
- P +2P TP
175723
P,+P, Py P,+P,
- T = _ 2
so that P,.= W, Pzt’o’ 3 (Pl 3 P, )/(P 2P, 3) and

after one recursion P3 = (P 3t lW)/(PBt l-PW) which tends
to the 1limit O as t increases.

The updates for the system parameter are

mg\= Mpgop toPapar FoApe(¥y - mypg - Rmpyg)
m =
—t _ - _ _
mop/= Moy q * Baplyy - myy g - 2myy 1)
- ith 1imit 1
where Alt (Plt-+P2t)/(P,t-+2P 3t) wi limi
- ith 1imit O.
and Ay = (Pyy +Pgy)/(Pyy #2P, +P5, ) With limd

,
The forecasts are yt(k)==§g‘gt = mlt+(k+l)m2t = ¥y tkm,,
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therefore in the limit myy =My, ;=0 say, and
v (k) =y, + ki (7.17)
Now G has minimal polynomial G? -2G+I so from

Theorem 6.21, Byt 1= alt—i toy = EGA -2

= -Pyy g1 “Poyg (7.18)
Pig-1 T 2P 1 T P34 1
= = 2 - " =
and Boy =0y p 010y p 0y = EGPA, 5 -2FGA, 541 =0,

consequently the DLM (7.16) is equivalent to the time-

varying ARIMA model

Yo = Wgo1 T Vgl T By T Bri 184

with 8,,_; given by (7.18). After one recursion P, =0 and

in the 1imit P3t=0_so that the steady state equivalence is

yt - 2yt—l + yt-?, = St - Et‘l. (7019)

The z-transfer function of (7.16) is, from (3.10),

H(z) = (1 1) (’zI -1 1\t 2 (1)
0 1 0
= z(z=-1) = g
(z-1)2 a-1
so that Y(z) = z W(z), (7.20)
z-1

As Kalman pointed out (Theorem 3.28), only the observable
and controllable part of the system can be deduced from

(7.20); such a part is

ve = 8
vt (7.21)
g = Bpat My

which has transfer function z/(z-1) as required.
For the model (7.21) At =(Ct+W)/(Ct+W) =1, so that

my =Yy and the forecasts are

t
yo (k) =y, ol (7.22)
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the equivalent ARIMA model being

Vi = Vi1 = €4 (7.23)
However (7.17) is not in general equal to (7.22), since in
general fi # 0, so that (7.16) is not predictor equivalent
to its controllable subsystem. In ARIMA modelling (7.19)
would be treated as the model (7.23) with forecasts (7.22)

and so similar remarks apply.

7., TFirst Order Models

The general univariate DLM has the form

vy = £0, + vy (7.24)

) oy (7.25)

t = 8%.1
where f and g are scalars. This is observable and
controllable provided that f and g are non-zero, and will
converge to a steady state solution in the sense of Theorem
L.6 if W==Var(wt) # 0. In this case the équivalent ARIMA
model is (c¢f Theorem 6.1.)

Vi = 8Y4.1 T €y T Bey 4 (7.26)
however the models are restricted in that B can only cover
part of its allowable region |B| <1. Indeed, from Ssction
6.6, 8 has the same signas ¢; = -g andO__<_]B];l¢l], so for
positive g, -g<B<0. A much used example of (7.24), (7.25)
is the Harrison;Stevens steady model, where f=g=1, which
corresponds to the restricted IMA(1,1) model

Vg = Yyop T By T BEL |
with -1<B<0, which has been remarked upon by others (eg
Godolphin and Stone (1980)).
Before the steady state is reached B in (7.26) depends

upon t, as detailed in Theorem 6.23.
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We now consider ARIMA(p,d,q) models with gq=1, pt+d=1
and show that it is possible to construct equivalent DLMs

that are unrestricted.

IMA(1,1) A general DLM that is predictor equivalent to an
IMA(1,1) must have s=1, ¢l=-l, and to avoid restrictions

on 82 oo B

s put r=0. Consequently it follows from the

discussion of §6.6 that a better choice than the above n=1
non-singular case is n=r+s+1=2, with

G2 - G = 0. (7.27)

The general model is given from (6.69)
= (1 0)o(g¥e, *+ v

94 <O 1>9t-1+3’-t
0 1

where 0(x) is coprime with x(x-1) and so can be taken to

<<:
ct
[

t
(7.28)

D -
1

be xta, a#0, a#-1; G* is the 2 x2 matrix in (7.28). Thus

= = .2
vy = (1 0)<aAl>gt (a 1)@,C (7.29)
0 1l+a
which with a=1 gives, on putting elt:82t’ 82t=elt
)
<t (7.30)

(91t> = (91 t-l> ¥ <Wlt>

924 1 42 Vot

the model given in Godolphin and Stone (1980), Stone (1982).
For this model thyt-yt-l:vt-vt-l+w1t+wlt-1+W2t_w2t-l

so that if Wiy and w,, are independent with variances Wi

2t
oy = Wy - (V+i,) ) (7.31)
2 (V+wl) +2W,

The invertibility region is [8]<1l or |p|<} and it is
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immediate from (7.31) that by altering V, W, and W, we can

2

cover the full region. The DLM (7.30) is clearly
observable and controllable thus assuring us of all the
desirable properties, and we have covered the region with
a model whose éovariance matrix is diagonal.

In fact if we put W,=0 so that p1.=(Wi—V)/(2V+2W1)

2
then this still covers the region |p|<% and under the

equivalence yields

B = WV + /(AVW) .. chosen so that [B]<1.
V-W

By redefining elt=et, 62t=6t_l the model can be conveniently

expressed in the form (with W25§O)
Yy = 0y t Oyt vy

Op = 041 + Wy

(7.32)

where et can now be thought of as an underlying level - as
is the case for the restricted Harrison-Stevens steady
model. This expression has the added advantage of being
parsimonious with respect to the unknown parameters.

Both (7.31) and (7.32) are much more appealing ways
of covering the invertibility region than having vy and Wy
correlated in (7.24), (7.25).

Note that the convex polytope in this case is the

extended region |p|<3#, which the nodels can also cover.

Exarple 7.6 - ARMA(1,1)

The Box-Jenkins ARMA(1,1) model is given by

+ Be (7.33)

Yy = ®Yg.1 T By t-1°

By a similar argument to above, G? =aG in the case of n=2

so that G* = /0 1.) and the general model is of the form
0 «
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vy = (1 0)8y + vy (7.34)
or yp = (b 1)gy + v, (7.35)
with 8, =/ 0 1\8 +ow
£ ( ) t-1 Wy (7.36)
0 «

because 0(x) is of the form x+b, b#0, b#-a.

We know from Section 7.2 that a 'canonical form' is
z, = wf£'+w§£'+vt -aevy_1, and by using the knowledge gained
from the IMA(1,1) example it is clear that putting

* - A - A
Wit T Yig T Vot

Why T Wiy oWy

- (7.37)

with "'}lt’ %Zt independerit enables us to cover the full region
indeed we can do so without the Vi term which illustrates
the remark made at the end of Section 7.2 concerning the
'redundancy' of V. In the notation of that section

Y = F , and it follows that any DLM of the form
£G

- aF

= (b 1)g, + for (1 0)g + v

i Vi )
+

-1 .
8, =/0 1\ e, _ Y w¥
£ ( ) t-1 Y ( *lt> (7.38)
0 «a LEPY

will yield the canonical form. For example if b=1,
y =[1 l) and substituting in (7.38) using (7.37) gives
-a 1

8 /0 1\&p */O0 -2 ) W4 (7.40)
0 « 1l+a 1l1l-o Wot

or redefining gt
8, =<0L O)Qt—l + [/ 1+a l‘—a)(wlt) (7.41)
1 0 0 -2 /\ V2t
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where wy,, W,,  are independent (wit=w*it/{l+a}). (7.39)
and (7.41) gives the model (7.30) when a=1.

Using the equivalenée between {E,Q,EETET} and

1

{FR, R QE,H} gives the equivalent model

Vi = (1 1)gt tvy
= & v +1 -
Lo d(““ o 1>-9—t-1 VTR (7.22)
a+tl a-1 w2t

Alternatively using (7.34) gives by a similar
argument the model

yt = (1 O)_e_t + Vt

8¢ (O 1) 8¢y <l -1 ) LAV (7.43)
0 «o o+l l1-qa w2t

All the unrestricted models (7.38) - (7.43) differ

from the Harrison;Stevens model
Vg T 8y T vy
Oy = a8y g T Wy
» 50 py = -aV/{W+V(1+a?)} yielding

(7.44)
t

for which zt=wt+vt-ozvt

the restricted region

~
-1

—a < Pq 0.

1+a?

fia

It is possible to consider the extended version of

(7.44) by analogy with (7.32), namely

Vg =0 01tV

t

(7.45)
By = @by Ty
however this region is also somewhat restricted, for

zt=wt+wt_i+vt5avt;l, p1_=(W-aV)/{2W+V(1+a2)} implying

oj=
.

.-u = Py £
1+a?
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7.5 Second Order Models

We now look at models whose autoregressive part is of

order 2. The -general ARMA(2,2) model is

Vi = OqFA)yy g F My p = €y T BiEy gt BoEy 5 (7. 46)

where [A1|<L |A,1<1 and the roots of z2+8,2+8, are less
than 1 in modulus. From Chapter 6 it follows that an
equivalent time-invariant DLM must have a system matrix G
satisfying

Gr+1{

2 =0 (7.47)

2 ‘,
G? - (A*A5)G + Aq2
where the mest' choice of n is n=r+st+l=r+3 since s=2 in
this case. The smallest possible value of n is 3, in

which case the general model is

vy = (1 0 0) o(G*) g, + v, (7.48)
Qt = G* Qt-l + L% (7.L9)
where
G*¥ =/0 1 0
0] 0 1

0 -Alkz A1+A2 /

and 0(x) is coprime with x{xz-(A1+A2)x t A A5} so that

the three possibilities are

(1) o(x) =1
(ii) o(x) = x - a af0, 1352,
(1ii) o(x) = (x - al)(x - a2) ai%O,Al,AZ.

By redefining the w,'s in (7.6) these models can be written

in the 'canonical! form
| (7.50)
2y = ¥y~ (AgtA)yy 1 ¥ Aoy o = Wygtuoy 1%Way o

- + L
=) vy 1t avy o)
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giving the following autocovariances for gz

t
_— . . - : - ! 2° 242
Yo = Wy FWon t Wag + V{4 (AgA5)2 4 ATA2)
Yq = Wyp t Wy - (A F2,) (1 + Agn,) v (7.51)
Y2 T W3 F M

with autocorrelations p, = Yk/YO’ k=1,2.

It is well known (for example Box-Jenkins 1970, p 71)
that the invertibility (stability) region in the auto-

correlation space for the model (7.46) is

lool<d,  lojl<optd,  log|?<doy(1-207) for 026 (4 sy

1+8,%+83 18R,

For convenience we call the region (7.52) together with

its limit points the extended invertibility region, so that
the inequalities in (7.52) are no longer strict. This
corresponds to allowing the roots of z®+B,z+B, to have
modulus one. Both regions have the appearance of Figure

7.1 where the boundaries are either included or excluded.

FIGURE 71: STABILITY REGIONS

full region for 2nd
order modals

-1

ARIMA(0,2,2) region of
(7,57), {7,59)




The invertibility region can be thought of as the sum
of two areas; the first is the triangle bounded by the
vertices (#%,¢ ), (0, -3 ) which is the convex hull of the

three points. The second is the remainder bounded by the

1
T °

curve Ipll2<4p2(l;202) and the line p,= It is obvious
that the whole region is not a convex polytope, since
topologically it has an infinite number of boundary points
which do not lie on a finite collection of straight lines.
It therefore follows from Theorem 7./ that it is impossible
to cover the full invertibility region with a DLM that has

a diagonal covariance matrix, in the sense that the image

under RII is not the whole region.
If we put W = B /W, 0 0 QT then from Theorem 7.3
0 w2 0
0 0 w3

or direetly from (7.50), (7.51),

Wl(b b )+W2(b b +

coP1 11P21%P21P31 12P221Po5035)

+ W3(bygbyatbygbag) = (A +2a,) (1A,

(7.53)

CoPp = WibyqDgy#Woby obssytH by sbggta A, T

— 2 2 2 A 2 2 2 1 2 2 2
where cg = Wl(bll+b21+b31)+w2(b12+b22+b32)+W3(b13+b23+b33)+

’ 2 ' 2 2
TOVLIH(ATA,) 242 2052
Theorem 7.4 tells us that as Ni and V are allowed to vary

over the non-negative reals the region traced out is the

convex hull of the four points

( Dysboy F Ppibay 0 bygby. ) i=1,2,3  (7.5L)
2
3i

2 2 2 2 2
bli +b2i +b3i b 5 +Db +b

1 21
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-(A1+A2)(1+A1A2) P

and 172

1+( A, +tA,) +A, 20,2 T o1t(a 4 22,2 (7.55)
112,) A 2, LH(A PA,) TR %,
which depends upon the ki. For the convex hull to cover
as large an area as possible the points (7.5) should

coincide with boundary points of the full invertibility -

region. For example putting bli=b3i=b2i//2 gives the point

(V3, 1) (7.54) gives (0, #3) if and only if b,,=0, by =tbg,
and the value (+%, %) if by;=bs., by, =*2b,,. Thus if
B=/1 11
0 0 2 (7.56)

1-1 1

then the three points (7.54) are (0,3), (0,-3), (%,%.).
The region depends upon Ay because (7.55) does. 1In the
=A

case A =1, giving the ARIMA(0,2,2) model, then (7.55)

1

2
iS (-%J %)

and the region is the shaded area in Figure 7.1 .
This is the best that can be done in this case.

For different values of Ai the areas covered shrink
as the point (7.55) moves. The smallest region covered in
such a case is the triangle bounded by the three points
(0,23), (2 ,1).

The models mentioned above can be realised by applying

the procedure of Example 7.6, for instance

vy = (1 0 0)8, + vy (7.57)
8, = [0 1 0 \8,.1 * 1‘* 11 1) [y

0 0 1 0 0 2| w,y,

0 -Xllz K1+K 1 -1 1 w3t

where y is obtained from (6.60) as
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0

1=
1
)
o

Y = | G- (M*tA)E - = —(A1+A2) 1 0
, |
FG* - (M+A)EG + A A F Ay =(Ag#r,) 1
(7.58)

Substituting A;=1 in (7.57), (7.58) gives the evolution

0 1 0 et_l 1 1 1 V1t
8, =10 0 1 12 2 4wy (7.59)
0 -1 2 L 2 8

where the Wiy are independent. This can be used to give
an equivalent DLM that has a diagonal covariance matrix by
proceeding @s in Example 7.6.

The region covered depends upon Ays Ape If we wish
to cover the shaded area in Figure 7.1 for all As then
the dimension of the system vector must be increased - to
at least 4. For n=/ the matrix G satisfies (7.47) with
r=1, but for this to be equivalent to an ARIMA model with
moving average part of order 3 we requife additionally
83=O (or p3=0) which places restrictions on the matrix B.
The exact form can be obtained by a similar procedure to
the above. Only by having a system vector of size n with
n large can we start to cover all of the invertibility

region (unless we allow W to range over the positive semi-

definite matrices).

Example 7.7

The Harrison-Stevens ARMA(2,2) model is

Yy = (1 O)gt vy

0., = A0 + 0., +w

1t 1%1¢-1 2t (7.60)

1t
S 0

2t = MO 1 gy
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This has a non-singular system matrix when expressed as a
DLM so the invertibility region is restricted.

It follows directly from (7.60) that

2y & V- PRy 1P M Ay g = Wy gm Ay gty

-(A1+A2)v i

TR RS R

Py =[-A2Wl-(A1+A2)(1+A1A2)V}/D, p2:=xlx2\f/D , where

D:=W1(1+A22)-+W2-+V{l+(A1+A2)2+AiZK22}. Theorem 7.L says
that the image under RII is the convex hull of the vertices
A
2 ¥* *
1+A2 D D
with D* ={l+(Al+A2)2+k12A22}. These points are obviously

5}

heavily dependent upon the Ai and the region is much more
severely restricted than the preceding models in this

section. Some of the regions are sketched in Figure 7.2.

FIGURE 7.2: INVERTIBILITY REGIONS FOR EXAMPLE 7.7

Harrison-Stevens models

)
0,5%
T ARMA(2,2)
-+ A=A :_%
IMA(2,2) ] 12
A=A=1
1 2 e
F——— ' ——+——>p,
-1 2 !
7
ARIMA(1,1,2) :
A =-b AT y 4 ARIMA (1,1,2)
L 2 A=1A =3
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It is possible to proceed in an exactly analagous way
to this and the last section and consider higher order
ARIMA models, although the invertibility regions become
more complex.

We have derived 'canonical forms' in the above by
confining attention to diagonal covariance matrices. Note
however that any iiggg ARMA/model (i.e. fixed parameters)
can be represented by a DLM with a fixed diagonal
covariance matrix. This is because we know from Theorem
7.2 that we can cover the invertibility region with a DLM
that has a non-negative. covariance matrix, {F, G, W} say.
But then W i1s diagonisable as E}£3T==diag{wi}‘for some

non-singular R and where Wi are specific values, and so
1

-
L

the strietly equivalent DLM {FR ~, RGR™ ,EEB_T} proves

the assertion.

7.6 Augmented DLM's and Summary

Example 7.7 and (7.4.) are two instances of a much
broader class of DLMs used by Harrison and Stevens (1971,
1976). These are the so-called extended Markov polynomial

models, which are given by

yt = el“b + vt (7.61)
014 = MO14.1 F 8o YWy

0ot = ApBop1 F O3y T vy

: : : . (7.62)
ent = Anent;l * Wnt

which can be expressed as the DLM
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yo= (1 0 ...0)g, + v, (7.63)
B = /A Ay eee A \Ey gt (1 1 ...1 /wlg\
2 1 ...1 Wot (7.6L)

0 0 An K L\ ¥nt)

where the wi's are independent and the Xi non-zero, thus

o

this is an example of the preferred covariance structure.
For this class of models the observability matrix is

.=0 for j#1,. and

=1, mlJ

M=={mij} with mg4

+ ) otherwise.

mig T Almgpat miiyat eee omy g

Expanding by the first row gives the determinant

(M| = Moy + « » By | = Ahgeeed |11 ... 1
E b32 b33 .o b3n
Mo+ o+ W :
bn2 bn3 ‘e bnn

where bij =n5j‘/kj' Subtracting the jth column from the
541% ) ror j2n-1, ... 1, with the relation

b and expanding by the first row gives

1341 " P13 T P71 541

[M] = AZAB cee Ap |mpg ee moy

But this is Apeesdy nultiplying the determinant of an n-1
order model with parameters Ay, ... An’ and so a simple

inductive argument proves that |M]| = X2K32...Ann-1, hence

Theofeﬁ 7.8-

The system (7.61),(7.62) or (7.63),(7.64) is
observable if and only if Ay # 0 for 122, and has a non-

singular system matrix if in addition A # 0.
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For this latter class of models the characteristic

n

equation is I (A-—Ai) which is also the minimal polynomial.
I

The model is controllable and in the steady state is

equivalent to

n _
H(J.-}\iB)yt +

1
an ARIMA(n-d,d,n) model where d is the number of Ai's

Sey P Byegy Foees Bueg
equal to one. Since the systém matrix is non-singular
these models can only describe very restricted regions
in the correlation or parameter spaces.

However such models do have the advantage of easy
interpretability, in contrast to those of the previous
sections where the emphasis was on finding models which
possess desirable mathematical properties. For example

if all the X; are equal to one, then in (7.61) o can

1t
be thought of as an underlying level which evolves in =a
Markov fashion, namely is a noisy version of the previous

level augmented by a slope term, 6 The slope is the

2t°
first difference of the level =~ a discrete version of the
derivative- and similarly for the other terms in (7.62).
Ideally we would like to have DLM's that have an easy
interpretation and which cover the entire stability region
of the equivalent ARIMA model. This is the case for
IMA(1,1) models as illustrated by (7.32). Motivated by

this we look at models
vy = 83p F 8pg vy (7.65)

where 8,, evolves as (7.62) <or (7.6L). The model can be
witten in DLM form by defining 6 ., .= 6, 7 with

matrices F*, G* and B* where
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F*=(F 0), G*= G 0\, B*= B (7.66)

and where ¥, G and B are the matrices in (7.64). The

observability matrix for (7.66) M* has determinant

el s - e | lerzli=iul lerIl.
FG+F 0 FG
Eg;n+£gn-1 0 Egﬂ-l

Using this result with Theorem 7.8 proves

Theorenm 7.9

The augmented model (7.66) is observable provided
that G+1I has full rank, where G i1s the system matrix in
(7.64), that is if and only if xi.#-l for any i. Moreover

under these conditions the model is controllable.

The proof of controllability follows from the fact
that (B* G¥B*) has rank n+l since the first column of
G*B* is (Al 0 ... 0 1) which is linearly independent of

the n columns of B¥.

Thus we have a class of 'augmented' Markov polynomial
models which are observable and controliable, which have
a diagonal covariance matrix and which cover more of the

invertibility region than the unaugmented versions.

Example 7.10

An augmented version for the ARMA(2,2) model is

Vi = 874 F 0141 F Yy (7.67)
01t " A874-1 PO T oWyy
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0 A0

ot = ABapl1 T oWay (7.68)

thus the derived process

7y =Wypt(L-dg)wgy (=dgWyy g tWop g, v (A FA) vy 1 4A AV, o

has autocorrelations

py = {W (1-25)2 + Wy - V(Al+x2)(1+xlxz)} / D (7.69)

= - 2 2 T 2 24 2
where D wl{1+(1 xz) A, }-+2N24-V{l+(kl+A2) tA2452)

and the vertices of the convex hull are therefore

1 2 - -
Dl Dl Dv Dv
(7.71)
. _ 2 2 I 2’ 24 2
with Dy -1+(1-A2) tay%, Dv-—¢+(A1+A2) A 202

Some of the appropriate regions in the autocorrelation
space for various values of the Ai are sketched in Figures

7.3 to 7.6, using (7.71).

Box-Jenkins place great emphasis on parsimony, which
in practice means that the class of ARIMA(p,d,q) models
considered is a very small one -for which p, d and g are
usually less than 2 or 3. The results of this Section and
the previous ones as they apply to most of these models
are summarised in Table 7.1.

In Table 7.1 the ARIMA(1,1,2) and (0,2,2) models can
be obtained from those for the ARMA(2,2) model by putting
A2=l or A1=A2=l respectively. We allow for some of the B;s

to be zero to include ARIMA(p,d,q) models with g<ptd.
(7.74), (7.75) illustrate the general result that Markov

polynomial models and their augmented versions depend upon
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the particular permutation of Al . An used whereas the
ARIMA models are independent of such ordering.

The invertibility regions for these models (that is

for the derived processes Zy in the correlation plane) are

1. ARMA(1,1)

Harrison-Stevens

L [ E——
-3 =1 0
1l+a?
Augmented
L e |

e~
o L

CIMA(1,1) - as above with a=1.

ARMA(2,2), ARIMA(1,1,2), ARIMA(0,2,2)

The Harrison-Stevens' regions are detailed in Example
7.7 and illustrated in Figure 7.2. The augmented model is
given in Example 7.10 and some of the regions are given

below in Figures 7.3 - 7.6.

e,
\

FIGURE 7.3: STABILITY REGION FOR ARIMA(0,2,2) MODEL
OF EXAMPLE 7.10
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FIGURE 7.4

FIGURE 7.5

FIGURE 7-6

FIGURES 7-4-7.6: STABILITY REGIONS FOR EXAMPLE 7-10
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TABLE 7.1:

SUMMARY OF FIRST AND SECOND ORDER MODELS.

1. ARMA(1,1)

Harrison-Stevens

Augmented model

3. IMA(1,1)

Harrison-Stewvens

Augmented / Full

3. ARMA(2,2)

Harrison-Stevens

Augmented

Full

V=M ta)yy 1t 225y 5 =

Oyg_1 T €y T BEy g

Iy T

g SHy TV

t t t (7.72)
Hy = OHg_q +owy

Yy T My THg g T vy (7.73)
My = QMy_q Fowy

Vi = 87 T Oy T vy

61y = 2latllegy o + 2(a-1)0y, 1 + wpy
6o = 2(atl)oyy 1 *+ Ela-1)6, o + wyy

Wigs Woy independent

Yy T Y4o1 T €yt Beg g

Vg T Mg TV

t t % (7.74)
Hy T Mgy towy
Vg THy tugg tovy (7.75)

Wy = Mgoy Towy

eytBiey_1%BoEs o

Yy T Hy vy

By = AgBy g t woy

Vg T My THpg P vy

My S AqHgg By F oy (7.77)
By = AgBy_ g T oy

Vg T Hg T Vg

My T Bgan TV

By = Ygo1 F Woy _

Yy = OqFA)yy_ 1 - ApAgBy g + wgy

Eit not independent

A 'best! model with L independent is provided in

Section 7.6.
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7.7 Inference For Augmented DLMs

It 1s possible to use the standard Kalman Filter on
the augmented models provided that we express them in DLM
form, as in (7.66) say. However these relations can be
slightly simplified by effectively reducing the dimension
of the system vector so that it has the same dimension as
before augmentation. This is becaues if we write
o, = Cov[gt|yt]= (cij)’ 1<i,j<n+l, the posterior
covariance of the augmented system, then in the notation

T-FE*E*Q*T is a function of the

% = QXC* o%*
of (7.66) P¥ = G*C*.G
unaugmented matrices G, B, W and O, = (Cij)’ l<j<n. But
the Kalman filter depends only on g*t and E*g*gt which is

a function of Mygs +oe oDy and so confirms the conjecture.

The following example makes the point clear

Example 7.11

The steady augmented model (7.75)

Yy = 6, 6, 4 TV

et = 6

can be expressed via (7.66) as a DLM with matrices

F=( 1), G= (1 0Y\, w=[w o>
1 0 0 o0

and system vector (8, 6, ;) From the filter
P, =GC, G +W = [Cy, +W C
=t ==t-1-= - 1t-1 1t-1
C1t-1 C1t-1

where Clt_l:=(gt_l)ll. Thus the updates are

y = 2mlt-l s Y = AClt-l + W+ V
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By = M) 7 [Paeen \TO O™ (- )
Moy, myy1 2Cy4.1 E
and
gt = gt 2clt_l+w (2clt_l+w 2C1t-1)/ )
20141 Y
with predictors
E[yt+klyt] = Egkgt = 2mlt (7.78)

and  Var(y,,, y¥) = 40y, 1 * A-L)W + W + V.

Therefore provided that we are not interested in the
smoothed estimate et_llyt, the forecasting equations can

be simplified to

2n

Iy

t-1

T, =40, , *W Y

Tl S L Py = Cgy * 1 (7.79)
40, _ FHHY

my = mpp P A Gyy - )

Op = (T-ApIPy - A0y y = Py - ARy # 0y )

which only involves the two terms my and Ct’ corresponding
to the old my, and C;,, with the predictors given by (7.78)
with these assignments. Although (7.79) is very similar
to the Kalman filter updates it is slighlty different,
indeed it is not the filter for any scalar DLM.

If the error terms are allowed to take the more

general form

Ve v N(m_, V) and wy v N(mW y W)

v ’
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then the updates are as in (7.79) except for

Jy = 2mgy tom, b (7.80)
mp = ey Pomg ALl - F).
It is possible to interact with state-space models

in a simple way, as Harrison and Stevens (1976) mention.
For example for the steady model (7.75) we can'alter some
of the values of m,s B s V or Wat some specific time T.
For the model, altering m or V just affects the current
observation, whilst changing m alters the underlying level
of the process which affects all subsequent time-points. -

Increasing W allows the level to change more over time,

thereby increasing our uncertainty as to its value. If m

is non-zero for successive time periods then a
deterministic growth is introduced into the model.

The implications on the estimators of altering these
quantities are a little more hidden. For example a non-
zero m affects the posterior estimate of the level (and
therefore successive estimates as well) through (7.80).

A non-zero value of m increases the posterior of the
level not by m_ but by m (1-A.) which is less than m .

Increasing W increases A, (in (7.79)) so that more

weight is given to the current observation in updating

the level through
my = myy FoAg(ry - Fy)e
Conversely increasing V means that the observation

contains less information, At decreases and less weight

is given to the observation.
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- CHAPTER 8

EFFICIENT COLLAPSING PROCEDURES FOR CLASS TI MODELS

8.1 INTRODUCTION

In Chapter 4 Section 7 we showed how given m past
histories Hl’ "'Hm at time t =1 which lead to a posterior

t-1 that is a mixture of m (multivariate) normal

8, 1y
distributions, the introduction of an mxn transition
matrix {Hij(t)} leads to a posterior at time t, gtlyt,
which is a mixture of mnnormal distributions. This obviously
creates an explosive situation, for example if we were to
introduce n new models at each time stage, then after time

T we would have a posterior of nTcomponents, assuming that
we had started from a single component at time zero.
Consequently the model becomes prohibitively cumbersome,
with more and morelcomputations required, each component
having to be updated via the Kalman Filter. In this
chapter we comment briefly on the Harrison-Stevens Class
II approach to this problem, as outlined in Chapter 4, and

then propose a different solution.

8.2 Problems with Class IT Models

If {Hij(t)} = {Hij} is an nxn matrix independent of
t, introducing n models each time, then the Harrison-
Stevens collapse procedure reduces the number of models
entertained from ng to n each time so that the posterior
is an n component normal mixture. If we denote the history
arising from model j at time t and history i at time t -1
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by Mij(t), then as pointed out by Gathercole and Smith
(198L4), the Harrison-Stevens approach can be thought of
as a collapse of the n® histories {Mij(t)} into n groups
{Gk} under the relation

= M i M J =
G, = {M,g s.t.. DHS(Mij,MrS) 0}

_ ( i i 3
where DHS‘Mij’MrS) is the binary distance measure

Dpo(M,.,M_ ) =0 if j = s

HS( ij’ 'rs

=1 otherwise.
Each of the n groups Gj is then represented by a single
normal density together with an associated probability as
detailed in Chapter L. Such modelling assumes that the
underlying system vector has the same dimension for each
of the n2 elements in the precollapsed mixture, if
necessary this can be achieved by embedding the models
using the largest system vector. If the dimension of
this vector is k say, then each of the n2 elements in the
mixture corresponds to a surface in k-dimensiénal space,
or alternatively to n2 points in k(k + 3)/2 +1 dimensional
Buclidean space. k(k+ 3)/2 being the number of free
parameters in the normal distribution, the 1 being for its
associated probability. Seen in this light, the collapsing
procedure is a clustering algorithm which forms n clusters
from the n2 points or surfaces, the cluéter centre being
chosen to preserve the information within the group. As
remarked in Gathercole and Smith (1984), using the method
of moments as Harrison-Stevens do to chose the cluster
centre means that the increase in uncertainty incurred in
representing a cluster by its centre is represented by an

increased variance.
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The weakness of the above collapsing procedure is
that the clusters are determined solely on the labelling
of the n2 histories or points, and takes no account of how
"close'! or 'far apart' the points are under sensibly
defined distances. Consequently it is.not difficult to
construct examples where such a collapse would not be
sensible, for instance Gathercole and Smith construct
an example where multimodal posteriors are approximated
by ﬁnimodal densities so that the approximation is not
even topologically equivalent to the uncollapsed mixture.
These authors propose a decision theoretic solution to
such problems. The disadvantages of such a method, apart
from the fact that the clustering is not necessarily
defined in a natural way, is that it depends on the
appropriate loss function. Although ultimately any
decisions in a Bayesian framework depend on the decision-
makers loss function, the Gathercolie-Smith approach
actually alters the form of the predictive distribution,
so that using different lioss functions would require
complete recalculation. We now outline a whole class of
collapsing procedures which are not subject to such
restrictions and which have a readier interpretation in
terms of 'a clustering procedure.

The procedure given has links with that of Sorenson
and Alspach (1971), where a justification for using
Gaussian sums is given, and a simple method of collapsing

is given.

8.3 A Class of Collapsing Procedures

Consider the simpler case examined by Harrison and
Stevens where Hij(t) is independent of i, that is the

-198-



probability that model j is in operation at time t is
independent of the past history. At time t we have a
posterior of the form

N
) pkN(Ek,gk) where Zpk = 1 for some integer N and we
k=1

wish to approximate this by a normal mixture with a
smaller number of components, say

N #*

¥ *, 0% i * = 3
N pEN(uf,C0f) with Jpf = 1 and N* <¥.

To achieve this we adopt a clustering procedure by using
¥

a criterion to form N clusters and then defining cluster

centres to summarise the information contained in the

clusters. Two ways in which we can do this are

Cluster Method 1

If we define £, = pkN(Hk,gk) where each N(Ek,gk) is
an r dimensional Normal distribution then £, is an L
integrable function with Jik = DPy-
Let d(f,g) to be a metric on the space of L' integrable
functions, and let C be a clustering mapping which is
complete in that it is a mapping from i,j onto 0,1 such
that

c(d. .) =.{O if i,j in the same cluster

L 1 otherwise .

Then we can define a clustering procedure c(d) to induce

clusters or groups Gk’

%)
7

G = {fk,fml c(d(fk,fm)) = 0}.

It is then a simple matter to define cluster centres by

analogy with Harrison and Stevens.
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Cluster Method II

Alternatively we can treat the associated
probabilities separately, so that we perform a clustering
procedure on the probability densities fk:=N(ﬁk,gk)
enabiing us to use a metric d on the space of probability
densities together with a clustering prodedure c(d). To
avoid too many comparisons we can discard those models
whose associated probability falls below a critical value,
or as in Gathercole and Smith (1984) omit those whose odds

ratio with respect to the most probable model falls

below some value; in both cases distributing the probability

among the remaining models.

In effect we then have four steps

[

Discard those models whose odds ratio with respect to

the most probable falls below a specified critical

value and adjust the probabilities accordingly

2 Calculate a distance matrix using a probability
matrix d

3 Perform a clustering procedure to produce m clusters

L  Calculate the cluster centres.

It is important that the clustering mapping is

complete in that it produces a number of clusters; for example

agglomerative clustering produces chains-of clusters, so
that our clustering C might consist of an agglomerative
procedure together with a stopping rule, which produces a
definite number of clusters.

It can be seen that provided we define suitable
metrics such procedures can be appiied to general

mixtures - - not just Normal mixtures.

-200-



We shall use the second cluster method, which has
certain advantages in that we can use more tractable
metrics, and also mixtures such as plf-fpzf would De
clustered, since (f,f) has distance gzero, which is what we
want. Conversely method I would define in general non-
zero distance between plf and p2f and so not necessarily
cluster them together. The disadvantage of method II is
that it is independent of Py and Pos and there might be
cases where plf and p,g are close whilst f and g are not.

The clustering method used in Chapter 9 is
agglomerative clustering based upon furthest neighbour
distance. That is we start from singie objects, find the
two nearest ones and make them into a cluster. The
distances of all objects from this cluster are calculated
and the process is repeated by joining the two nearest
objects (clusters) until all the clusters are greater than
some specified distance apart. The clustering then stops.
'"Furthest neighbour' distance defines the distance between

two clusters I, J as

D = max di'
ieI,jed J
where dij is the distance between two objects. 1In our

applications objects are density functions.

8.4 Suitable metrics

We now look at some metrics dij suitable for use in
the above framework. We can consider in complete generality
metrics defined on the space of all probability measures

M defined on (Q, B) where Q is a polish space and B the



Borel ¢ - algebra; we shall let Q be r dimensional
Euclidean space. The weak or gtar topology is the weakest
topology on M such that the map

F » [wdF
J

from M into R is continuous for all bounded continuous
functions Y. Losely speaking this is the smallest
topology under which the above mapping is continuous. 1In
fact we can find metrics which metrize the weak topology;

the following results are taken from Huber (1681):
Lemma

For 2 = R, the Levy distance between two distribution
functions given by

d; (F,G) = inf {e|VxF(x-¢€) -e<G(x) <F(x+te) +e}
metrizes the weak topology.

For more general Q (remember that we require a=R7T)
the somewhat complicated Prohorov metric metrises

the weak topology, as does the bounded Lipschitz metric
a5 (F,G) = sup | fwdF-Jw ac |

the supremum being taken over all ¢ satisfying
[v(x) -v(y)] <d(x,y) where d isany distance function on Q
bounded by 1.

Of course many metrics do not metrize the weak
topology, such as the Kolmogorov distance defined on the
real line by

dk(F,G) = sup|F(x) - G(x)].

The first two metrics have more use in a theoretical
context, such metrics being the 'least discriminatory'.
However we require distances which have a closed form
solution, since the purpose of introducing the metrics is
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to perform a clustering procedure which will enable us to
reduce the computational aspect. Even the Kolmogorov
metric depends on the distribution function. We shall
therefore consider metrics based upon probabiiity density
functions f and g which are easier to handle. There is no
loss of generality in the restriction since even in non-
Normal cases we shall want to assign meaningful
distributions to error terms, which in practical terms
means assigning density functions.

Some discrimination measures - quantities which do
not necessarily obey the triangle inequality requirement
for metrics - are given by Rao (1976). Ali and Silvey (1966)
give four conditions that such measures satisfy, and produce
a theoretical form. Examples are, for densities f, ¢
defined with respect to measure v

(1) The Minkowski distance
N 1/t
{Jlf(X) - g(x)] "dv t>1.

(2) Kullback-Lieber's divergence

Jd = J(f-g) log £ dv.
g

This widely used measure is not a metric since it does not
satisfy the triangle inequality.
(3) The Hellinger distance
b b2y 12
h = J(f -g®)%dv ¢~
1
= {2(1-[@@)}2-
The quantity ?log:[/(fg):issometimes called the Hellinger
dissimilarity coefficient. This distance is a special

1/ 1
case of Jeffrey's invariant I = f]f'/m- g/m'm dv .

(L) Mahalanobis' D2, which for two normal densities
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1
(uy - Ez)TI§liE3)' (g - up)

Both (1) and (3) are true metrics as is () if 7L,
Although the triangle inequality is not so essential in
the context of discrimination, it is important for
performing a cluster analysis. We shall use the Hellinger
metric; this satisfies the requirements of Ali and Silvey

and has a convenient form for multivariate normal

populations:

Lemma 8.1 (Matusita)

If fi N N(Hi,gi) i=1,2 then

i1
o A J /(fif2) = lzl-zzli exp[—%{(uz-gl)T<§l+£2)-l(HQ'Hl)}]
_’_z_l};_z,z- -
2 (8.1)
Proof

From Matusita(1965)

T,
o = IPl_ZI el T ST zEZ i
3 -1 :
|3(2;4R,) | - (Ryuy *Roup) (B #Rp) TH(Byug #Bu,) )]
-1
where P. = L. ~. But
-1 1
Byug ¥ Bpup = (By¥Bpluy * Bp(up - uy)

or (By*Bo)up + Bylyg - mp).

On substituting, the exponent becomnes

1 T T - - i - _ T "l
‘4[“1 Elul + U2 £2U2 {(_P_l+£2>ul + _P_2(U2 Ul)} (£l+£2)

X {<.‘El+£2)£ + .El(E -EZ)}]
which on simplifying
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T -
= -y, - u)) By(R) +RY7TE

-1 -1 -1y-1. -1 _ -1
because I, (gl tz, ) I, = (;2 + gl) . So
T -1
RS IR P
2liy T L &
1
12,2, 1 T -1

which completes the proof. The last equality follows from

- -1 2
|32 (2,7 + 2,70z 0

& - - L
22,1518z, v, |®

|3z, + )]

So the Hellinger distance can now be calculated
using the above result in h = {2(1 - p)}%.

The exponent is 1/8 D? where D2 is Mahalanobis' D2,
In the special case of equal covariance matrices §l=§2’
then

T, -1
which is a monotone function of DZ2.

Example 8.2

In the case of univariate density functions, using

Lemma 8.1 with the variances o, for L. gives

- 2
h? = 2(1 - /20,0, exp|-i (uy - wp) ) (8.3)
Z 2 2 2 .
01770, 03" * 9

thus h? is a function of the difference in the means of

the two distributions. The exponent depends upon the
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reciprocal of the sum of the variances and is premultiplied

by a term depending on the ratio of these variances.

In the two special cases Hq =l 01=02 we have
20,0

n? = 2(1 ‘J/ i 2 2) (8.4)
01 %9,

and
_ 2 .
h? = 2|1 - exp{—%<ul uy) } (8.5)
2012

respectively.

We have not yet specified what these measures or
distances will be applied to. In many cases the natural
quantity is the posterior distribution of the system
vector, however we can also use the predictive
distributions. Smith and Gathercole (1984) suggest the
latter and are concerned that one should not combine, or
cluster, distributions which are not topologically
equivalent. In other words one would not wish to
approximate a multimodal distribution by a unimodal one.
In fact this criteria can be translated into a condition
on the clustering distance as we now demonstrate in the

univariate case.

Theorem 8.3

Let f f2 be any two univariate normal density

l’
functions, and let h=h(fl,f2) be the Hellinger distance

between the two distributions. Then if

2e
(27)

[ = ]

h? < 2(1 - ) (8.6)

the mixture pf'l+(l-p)f2 is unimodal for all p, O<p<l.
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Proof

Suppose that (8.6) is satisfied, then from (8.3)

(8.7)

_ 2
2040, { N (ul u2)
eXDy -2

2 T2 — =z } > 2 t e
o, %to, o -+02 (27)

L
2 2 2 -2
We clainm that | 29192 exp(-2F %1 %2 } g 22~ (8.8)
2452 L 7r5y2 = (R7)
Ol+02 (01+02)

so that from (8.7) and (8.8)

A

_ 2 2. 2
exP{ -é(il——ggl } >  exp {-2% °1 32 !
1 2
0,20,2
. . . : 27 71 2
which implies that (uq -us)?2 < &5 —=—. (8.9)
P 17 H2 4 (o2+02)

But (8.9) is a sufficient condition for the normal mixture
to be unimodal (Eisenbergers result quoted by Johnson and
Kotz 1970 p.89) so that the theorem is proved. It only

remains to prove (8.8). Write ol=k02 and consider

(k) = V(FE) expt-2] FEga) (8:10)

defined on O<k<w, f(k) is differentiable and

d log £(kx) = _(1-k?)| 1 - 27 _k (8.11)
dk 2(k2+1) | k4 (1+k?)?

which has roots k=1 and L(1+k2?)2=27%k% at which points f(k)
_1
takes the values exp(-27/6L) and 2(27e)"*. But f(k)+0 as

k+0 or k+x so that

which establishes (8.8).
This theorem assures us that if h? < 2(1 -
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that is h< 0.796 (to three significant figures), that the
nixture cannot be bimodal. A slightly stronger result can

be proved if 0y = Ops namely

Theorem 8.4

If g, = 0, o then
? < 2(1 - o 27/64) (h<0.829) (8.12)
implies that the mixture is unimodal.
Proof

This follows from the proof above or directly.using.

(8.5); if (8.12) holds then

. 2 =27/
eXP{-- $(wy - us) l >e ’
202

so that
2

(uy -uH2) < 27 02 which is (8.9) with 01=02=0.1
8
The converse is not so relevant: if (U1-u2)2>8012022
012+022
then there is a value of p for which the mixture is bimodal.

One can show by arguing as above that this condition

impiies that

2
R010 exp ) -4(uy -yuy) < -
012+022 0'12"‘0'22 ( )

11
in which caseh? > 2{1 -27%" %}

so h > 0.830.

xS

18] [
>
]

8.5 Continuity Properties

Theorems 8.3 and 8.4 show that the clustering
procedure applied to Gaussian mixtures with the Hellinger
distance has desirable properties. We now establish

certain continuity resuits that apply when the Kalman
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updating procedure is used, but first we need to prove two

subsidiary results.

Theorem 8.5

Let X be a 1 xn row vector, not identically zero and

-

let gl, 22 be any two positive matrices. Then

|20, x|l 20, X7 |6,8,t (8.13)
T 2 o
(8 +C,)X lgl +92‘
2 2

Proof

If R is a non-singular matrix, and if we let

- T v -1 :
Qi—ﬂgiﬂ » Yy=XR T then since
[81C,1 T T
8ol - jny 8T R, 5T 1Dy,
C, +C T,2 2
ei FEET R
2 2
. A T T -
(8.13) is equivalent to |y D,y || yD,y | |D.D,| (8.1L)
L =1L L =2 L N 1=2"
' T2 2
y(2y +D)y7 " 12y * Dyl
2 2

But there exists a non-singular matrix R such that

T _ T_ .. .
RC;R =1 and RC,E —dlag{)\l e An} where A, are the

eigenvalues of C,. Using this transformation in

-
L

y=XR~ = (xl xn) say then (8.14) becomes
(5,5 (I g x,%) A
> (8.15)
{Z (Ay l)xi2}2 = {n(xi +1)} 2
2 -2

The left-hand side in unaffected by the scaling of Xs

so that on putting z:xi2= 1, we require to prove
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2
) Ay Xy A, (8.16)

{Z(-Ai* 1)_;{12}2 = {n(xiu)} 2
2 2

Now Az/{(Z'+l)2} has a single maximum at z =1, so that on

any bounded interval it has a minimum on one of the
boundaries. Now since inz =1, then inxiz is a convex
hull (on the line) and so is a bounded interval whose end
points are two of the Ai' Consequently

2
AIAs x4 > A for some A .  (8.17)

(Tay x, 2 +1)? (g +1)%

But (A +1)?
n

so that 1>1 'AAi'
i=1

i#3 (Ai+l)2

which combining with (8.17) gives

. 2 n
L Zlixi § 4 HAi
2 2 - - 2
(Z)\ixi + 1) n(xi+1)

this proves (8.15) and so the theorem.
The second result that we require can be proved in a

similar fashion:

Theorem 8.6

Under the conditions of Theorem 8.5, the matrix

(G, +C,) ™t - X{X(0, +0,)X"}7IX is positive semi-definite.
(8.18)
Proof
Without loss of generality we can put §:=§§i—l, R non-

singular, and invoke the simultaneous diagonalisation of

quadratic forms as above, so that it is sufficient to prove
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. -1
1+ LoxT(x |1+ ) x>0

n . n (8.19)

for all row vectors X. But on premultiplying (8.19) by a
row vector z::(yl’".yn) and postmultiplying by ZT we have
the quadratic form
2 2
Vi (1 x5y
2
142y L ox (1)

which is non-negative by virtue of the Cauchy-Schwarz
inequality, so that the theorem is proved. 1In fact the
matrix of (8.18) is positive definite provided that n is

larger than 1.

We are now in a position to prove certain continuity
results, where the metric d refers to the Hellinger metric

defined above.

Theorem 8.7

If d(gl,gz) <e then d(X8 4, _}ggz) <e where §. is
normally distributed, giﬂJN(gi,_Qi), and X is a fixed 1lxn

. - ~ T
matrix, so X_@i’\JN(ﬂi, Xo.Xx7).
Proof

By definition

{2 (1 - 18,8, 1% expl -4 {(1, - m)T(C) +C,) H(my - ml)}])}"é<g

1
2

(8.20)
It follows from Theorem 8.6 that

T

exp [ - (my-1) X {X(C; +C,) K 1T X (my-my) ]

; T, -1

v

which combined with (8.13) gives
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T, % T, 2
XC. X |*]xc,x"|*% -1 - “Lin -
X6, X7 1P 1XCX T [* exp[ -4 (my -m)) X (X(C+C,)X 1 (my-my) )

T
X(C14C,)X
2

1
> ICl _214 exp{-i(gz-gl)T(Ql+Q2)-1(22‘El)}.
c+c}

(8.21)
Substituting (8.21) into (8.20) proves the theoren.

It now follows immediately that

Corollary 8.8

The mapping N(m,C) ~+ N(KQ,XCXT) is continuous with

respect to the Hellinger metric.

If we now consider a univariate normal distribution

N(u,C) then we can show

Theorem 8.9

If V is non-negative then the mapping N(u,C)+N(u,C+V)

is continuous with respect to the Hellinger metric.

Proof
If Cl’CZ are positive then
1 1 1
(Cy V)7 (Gt V)7 (6,0)7 . (8.22)
(Cl+02+2v)§ = (cl+c2)§

This follows from

2 2 2 2
(01+C2) {0102+V(c1+02)+v };{(Cl+02) + LV +

+ !-,V(C1 +02)}0102

which is true since V(Cl +02)(C -C )2'+V2(Cl -02)2 > 0.

Also expl|- (uy-us)? || 2 exp|-1 (u -u, )%
{ H17H2)" H1-Hp)® (8.23)
Cl+C2+2V Cl‘*'C2
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Combining (8.22), (8.23) with the Hellinger distance
function (8.3) for two univariate normal distribution

N(m,,Cq),N(my, C,) gives
a{N(uy,0q + V), Wluy,Cp+VI} < a{N(uy,0q),N(ny,Cp0))

which is a sufficient condition for continuity of the
mapping, and the theorem is proved.
By combining the last two results, we can now prove the

following important two theorems.

Theorem 8.10

The mapping gtlyt.+ ytﬂrlyt is continuous with respect

to the Hellinger metric.
Proof

From Chapter 4, if 8, ~N(m,,C,) then

t

t 1
Visply vN(EG m, ,EGC

t

k-1 T)k-l

rl o+ FIwrl+ v,

where V=FG (G F'u

so that defining §:=§;gk, and invoking Corollary 8.8 and
Theorem 8.9 proves the results since the composition of

continuvous functionsiscontinuous.

This theorem shows that if Qttand §2tare close, then
so are the predictive distributions zlt+k1yt and 12t+k,yt’
so that it is sufficient to see how cloée two system

vectors gl and §, are. In fact with the assignments in

2
the proof of the above theorem it follows from the proofs

of Theorems 8.6 and 8.9 (using an obvious notation ) that

T —
af N(Xm,XCX + V), N(Xm

< d{ N(Xp X8 XT) ,n(xm, , X0 XT))



So the predictive distributions of the observations are

closer together than the system vector, that is
t t : t t
d(ylt+k|}’ ’y2t+k|y ) b d(gj_t]y ,ta]y ).

Finally we shall show that for univariate DLMs the
Kalman updating procedure is continuous with respect to
the Hellinger metric. In our clustering procedure, if at

some time two components N(m ) and N(EZ,QZ) are close

108
then we would like posteriors corresponding to each of
these components at later time stages still to be close.
This means that we do not lose much by joining the two to-
gether; if this condition does not hold then the clustering
procedure would be dubious. A partial answer 1is provided
by the limit theorems of Chapter 4 which say that if the
system is observable and controllable then the effects of
prior knowledge decay. This means that if at time t=0
there are two priors N(g,gi), N(E2,92) then under the

same DLM {zt,gt,y,y} as t increases the posteriors will
converge to a common limit. However in the univariate

case we shall prove a more specific result:

Theorem 8.11

For a univariate DLM the Kalman updating procedure

is continuous with respect to the Hellinger metric.
Proof

If at time t the system vector posterior is N(mi,Ci)

then at time t+1 the posterior is N(Ei,ﬁi) where

-— = 2 T, -
m, = gmy * £(g2C +W) (y-fgm,)

£2g2C, +£20 + V



3 3
Vm,®  +  fyG; (8.24)
£20.%+V £20., *+V
1 1
Y - P2( 520 1w)2
C, g?C, + W £2(g ci+w)
f2g20i+f2W +V
= ¥*
Vey (8.25)
2
f ci+v
where
n.* = gn,
1 1 - (8.26)
¥ = 52
ci g Ci f V.

Without loss of generality f can be taken to be 1 (for
example by putting V=£f2V and y=fy in (8.24), (8.25)) so

that
™ = 3# 3*
my = Vmg* o+ yCy (8.27)
C.*+V C.*+V
1 1
T = 3
Ci VCi . (8.28)
C.*+V
1

Suppose that
df{ N(ml,Cl) ,N(m2,02) } < €. (8.29)
then from Theorem 8.10 withF=1
da{ N(ml*,Cl*) ,N(mz*,CZ*) } < e. (8.30)

For simplicity drop the * suffix in (8.27) and (8.28).

Then by the triangle inequality

d

1

d{ N(my,Cq) , N(m,,T,) }

d{N(m,C;),N(m,,Cy)} + d{F(w,,C;),N(m,,T,)}

-
L

A
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A

(ml-mz)z_v?-/(clw)2 ]é
2vcl/(cl+v)

i Ve, [V, Y318
+ /2|1 2 o3 Y\eor)|
1 - C,tup V\CTFv ]

/2 [1 - exp{-%

(8.31)

The first term is

i 2 )
V2|1 - exp {- t V(ml"m2) % 2
L

A

3 2

/2| 1 - exp {— vy (mll-m2) % (8.32)
I N

because ' B <1.

Cl'+V

If Cl is the maximum of Cl’ C2 then (8.32) is

(m, -m,)"°
V2|1 - exp - % 21" "2
C,+C

2
- 2 é
val1 (2080 )% opp Jo 1(my - m))
T, +0, C. ¥ C
i

1
d{N(m;C,),N(m,,C,5)} <e. (8.33)
Now (Cy +V)(Cy+V)(Cy +C,)% 2 (20,6, +V(C, +C,)}°  (8.34)

IIn

lin
f—

"

because on simplifying

2
{V(Cy #0,) + CC,}{(Cy #C,)7 - 4C 0.} 2 O.

(8.34) implies that (014-02);:/(01-+V)/(02-+V) Cl + 02 )

C,+V C,ytV
giving
/(0102) S /(Clcz> (8.35)
/{(ci-yv)(czwfv)} Cl+02
O 4 %
C,+V C+V

Using (8.35) means that the second term in (8.31) is
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<v2| 1 - {2/(650,) 1 | < ali(u, 00 (m,,C) <€ (8.36)

€140,
from (8.29). Thus (8.31), (8.33), (8.36) imply
d < 2¢

which with (8.29) gives the continuity condition, as

required.
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CHAPTER 9

CASE STUDIES

9.1 Introduction

We now show how some of the theory of the previous
chapters could be applied in a practical context, by
considering two Time Series. One is monthly U.K. chlorine
production 1970 - 1982, the other is sulphuric acid
production 1963 - 1982. The analyses given are not
claimed to be definitive, but rather are used to illustrate
by means of simple examples the way in which state-space
models, Bayesian forecasting and a suitable collapsing
procedure can be used with traditional techniques.

There are occasions when detailed analysis of a
specific time-series is not possible, perhaps because of
cost or time in a commercial setting. Consequently some
kind of automatic procedure is desirable, and this is a
possibility if we use the collapsing procedure of the
last chapter and keep a number of models under consideration
(in a similar fashion to the Class II models of Chapter 4).
Traditional approaches to the problem, inciluding many
based upon Box-Jenkins models, tend to rely on a time-
invariant model, fitting one model throughout the time
period. But many time series do not behave in a
particularly nice way, and different techniques are
therefore needed.

The data are plotted in Figures 9.1 and 9.2. Certain

features common to both series stand out: the extreme
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FIGURE 9.1
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FIGURE 9.2
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value in January 1979 which looks like an outlier
statistically, and the very different character of the
data after 197.L. Both of these phenomena have ready
explanations: in 1979 there was a haulage strike and 1974
wa.s the start of the o0il crisis. Indeed these two series
are typical of many time series which are connected in
some way with the economy, characterised by a period of
gradual growth up to the time of the oil crisis when
suddenly all of the underlying 'steadiness!' or 'stability!'
went. This fall was followed by a period of recovery
until a second big drop around 1980 caused by the world

recession.

9.2 Analysis of Sulphuric Acid Data

The sulphuric acid data has slightly more clearly
defined features than the chlorine data, for example
different underlying mpdels appear more clearly. 1In a
retrospective data analysis we might be interested in
determining where a change point occurred possibly fitting
different models either side of it. If we were fitting a
Box-Jenkins ARIMA model then the outlier would be removed,
for example by replacing with its expected value.
Aternatively we might be interested in some form of trend
analysis.

If on the other hand the data unfolds with time, then
the 'obvious' features do not appear to be so until well
after they have happened. We wish to be able to make
statements about what will happen before the observations
become available. In this case, as emphasised in Chapters

2 and L the relevant criteria are not significance tests
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et al but rather how good the forecasts are.

If we only had a few observations to go on, a good
starting point would be a steady model or linear growth
model as described in Chapters 4, 6 and 7. This also
appears to be a reasonable assumption if the correlogram
of the data is examined, together with those of the
differenced data - shown in Figure 9.3. These are of
course based upon all of the data. The correlograms of
the data transformed by taking logarithims are practically
identical, so that nothing is gained by this transformation.
There is perhaps a suggestion of seasonality, indicated by
the somewhat larger value at lag 12, which is not
surprising given the nature of the product.

In the U.K. Sulphuric acid is produced by burning
sulphur rather than as a by-product of other processes as
is the case in some countries, so that it is very much
tied to demand. But demand for some of the products
produced from sulphuric acid, such as fertilisers, can
fluctuate greatly and depends upon the time of year.
However the introduction of seasonal and indeed growth
terms complicates an analysis designed primarily for
illustration, so we shall concentrate on the simpler
steady model.

The simplest steady model of Chapter 4 is

yy = 0y vy (9.1)

T+ oW (9.2) -

0 £-1 %

Il
<D

t

and the extended steady model introduced in Chapter 7 is

vy = et + et-l + vy Vt’\JN(O,V) (9.3)
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6, = 0 towy w, VN (0, W) (9.4)

with the updates given in (7.79) and more generally in

(7.79), (7.80) if

vy o N(mv , V) (9.5)

w, v N(m, W). (9.6)

As in Chapter 7, equating the autocovariances of the

differenced series Yi=YVio1 gives

Yo = 2 + 2V
Yq =W -V

so that W = (YO + 2Yl)/4 (9.7)
Vo= (yy - 2yy)/4. (9.8)

An increasing level can be accounted for by putting

m.. = 3(mean of differenced data).

v (9.9)

Descriptive statistics for the data are shown in .

Table 9.1

TABLE 9.1

Sample Statistics for Sulphuric Acid Data

Raw Data Differenced Data

Sample size 217 216
Maximum 11439 3106
Minimum 5538 -3878

Range 5901 6984

Mean 9223.32 -1.398
Variance (unbiased) 751027.56 .20251.78
Standard Deviation 866.62 648.27
Median 9200 i2.5

-22/-



The estimated first two autocovariances of the

differenced data are

) £L18306.17

¢, = -113999.03

so that using the method of moments gives the following

estimates of V and W - from (9.7), (9.8) -

\Y

161576.07 (9.10)

1 47577.02. (9.11)

The observations and one-step ahead predictors using
these simple estimates of V, W are plotted in Figure 9.4%4.
The other parameter values used were m,o=m = 0 with the

prior for GO

6.~ N(L000, 6 x 106) (9.12)

0

where the large variance expresses our uncertainty of the
initial mean.
The forecasts exhibit the typical characteristics of"
IMA(1,1) models in that they lag the data and take some
time to adjust to sudden changes in level or to outliers.
The error sum of squares for this model is 8.088 x 107.
Accounting for the slight fall in level of the
differenced data by putting mw=(-l.398)/2 = -0.669 gives
very similar results, which is not surprising considering
the small size of this term in comparison with the values
of et. Indeed the error sum of squares is the same to
four significant figures.
For convenience we shall index the data by the integers

rather than the year and month, so that t=1 corresponds to
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October 1963, L to January 196L and so up to t=217 for
October 1981. Features of the data that stand out are a
more or less steady evolution from t=1 to t=135, with a
slight growth. A drop in level from time 136 to 143 is
followed by a rising level from t=14/ to 200 with a
dramatic outlier at t=184Z. The level then drops slightly
around t=201 to 202 and a steady model continues for t=203
to 217.

It is clear from (9.3) - (9.6) that a non-gzero m
term allows a deterministic rise or fall in level, which
enables simple growth tp be modelled rather than using the
linear growth model, which involves an increase in the
dimension of the system vector. With the benefit of hind-
sight we can perform a piecewise analysis by breaking the
series up into the five parts mentioned above (apart from
the outlier) and then using (9.7) to (9.9) to calculate
values of V, W and o for each of the constituent series.
The error sum of squares then reduces to 7.15 x 107, about
a 10% reduction. However this piecewise approach is only
really possible as a retrospective analysis, while we are
interested in improved forecasting.

- We now consider the period t=181 to 190 in more detail
to see if it is possible to cope with the outlier in a
sensible way without prior knowledge. We shall show that
the use of Class II models with a collapsing procedure goes
some way towards achieving this.

To begin with we use the steady model (9.3), (9.4)
with parameters (9.10), (9.11) and prior (9.12). The
observations and one-step ahead predictors for time t=181
are given in Table 9.2. The extreme value at time 184
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drags the one-step ahead predictors down, and they remain
low for the next three time-periods.

The filter behaves in such a manner because the error
distributions are normal, and the normal distribution is
'outlier-resistant' - see O'Hagan (1979) - that is it tends
to give outliers too much credence. A simple distribution
which gives some protection against outliers is a normal

mixture such as

v, ~ 0.9 N(O,V) + 0.1IN(O0,9V) (9.13)

t

say. So there is a small probability that the error term
comes from a distribution with a much larger variance than
normal, and overall the error distribution is 'heavy-
tailed'. Similar distributions play an important role in
the related field of robust estimation (Huber, 1981).

We now have a structure that falls into the class II
models of Chapter 4. This is because using an error term
(9.12) for v, is equivalent to postulating two underlying
steady models (9.3), (9.4) with in both cases W given by

(9.11), but with V., =V in (9.10) and V2==9V. At each time-

1

stage the transition matrix between the two models is

Mys = (0.9 0.1) (9.14)
0.9 O

-
oL

so that at each time stage model 1 has probability 0.9 of
being in operation, independently of the past, and model
2 0.1.

On inspection it can be seen that this distribution
is not really heavy-tailed enough to cope with the extreme
nature of the outlier in this example, but it is one that
would typically be used without such a-posteriori knowledge
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of the data. This is the reason that it is used here.
Starting from a single prior at time t=180 means
that there will be 2!° components at time 190, and we
therefore use a cluster collapsing procedure of Chapter 8
to avoid this explosion. The resulting predictors to the
nearest integer are given in Table 9.2 and Figure 9.5.
The predictors respond much better to the outlier than
the 'ordinary' predictors, obtained using the steady
model as above, in that it is largely ignored. The error
sum of squares for t=181 to 190 is reduced by some 21%

and the overall sum of squares is reduced by 6.4%.

TABLE 9.2

Comparison of Predictors for Time t = 181 to 190

Time |Observation Ordinary Predictor using Harrison

predictor Cluster Collapse -Stevens
181 10277 10096 10096 10096
182 9858 10223 10218 10218
183 9416 9966 9975 9975
184 5538 9579 9598 9599
185 86LL 6736 8923 8851
186 9585 8078 8713 8695
187 9916 9138 9291 928.
188 9607 9685 9720 9717
189 10485 9630 9L6L 9645
190 9592 10232 10197 10197
Error sum 2.L460x107 1.9273 x107 1.9280x 107

of squares
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FIGURE 9.5
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At time 180 the posterior of the system vector was
taken from the the simple steady model with the parameters
as above. As mentioned in the last chapter the clustering
procedure used the distance between clusters defined as
the greatest distance between elements in. the two clusters
(based on the Hellinger metric), with the nearest clusters
being progressively joined..

A Harrison-Stevens Class II collapse is also
included for comparison, and which gives almost identical
results. This is probably because there are only two
alternative models introduced at each time stage, and most
of the time the posterior is dominated by one or two
components. In such circumstances summing over the past
histories will not be so bad, as this example illustrates.
The reasons why this is not always the case were given in
the last chapter and illustrated in Gathercole and Smith
(1984).

We now investigate the effect of the collapsing
procedure a little more closely. In §7.7 we remarked
that the model (9.3), (9.4) can either be analysed as a

1

DLM with F=(1 1), G=[1 1),w=w 0\, or by using
0 0

1 0
the modified updates given in Example 7.11. In the
following we shall use the former description, so that

the posterior of the system vector is effectively

O

0

t-1
At time 183, preceding the abnormal observation, the

posterior is a three component mixture ZpiN(gi,Qi) where
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the parameters are

1 Pi 2; Es

1 .933 4789.0) £L3955.9 13212.4)
1856.0 13212.L  242.0.7

2 .06. 4937.6) ( 80610.5 36877.3)
4953.2 36877.3 39372.0

3 .003 4996.0) 104227.5  62092.0
5013.0 62092.0  66292..

so that the most probable component dominates the‘mixture,
this component also has‘the smaliest covariance matrix for
the system posterior, corresponding to the 'normal' size
V.

The predictor at time 184 is obtained from the

usual relations ( as in Z.23) as
.933 x 2 x L789.0 + .06l x 2 x 4937.6 + .003 x 2 x 4996.

which is 9598, the value in Table 9.2.
At time t=184, the observation is 5538. Because two
models are introduced (via (9.14)) the uncollapsed

posterior now has six components, with parameters

* Py =i 9-JL

1 1x107° 3367.2 (43848.9 13016.2)
3866. . 13016.2  23880.7

2 3><1o"6 (3234.1) (46176.6 17286.7)
3622.2 17286.7  31715.7

3 8x10°7 (3174.6) (47098.8 18978.7)
3513.2 18978.7  3.820.2

L 0.951 LL62.7 (80590.3 36855.8)
L577.3 36855.3  3$319.0



5 0.0L47 (4441.2) (104288.5 62157.2)
L55L.3 62157.2  66362.0

6 0.002 (4402.1 117639.0 76410.8
L512.5 76.10.8 81579.8

The new observation means that there is an extremely
small probability that the current model has a small
observation error (VIEV), so that the posterior
probabilities of the corresponding three models are small.
Note that if these posterior probabilities are not small,
such as is the case when there is no alternative model,
then the means of the system vector are drastically reduced
from around 5000 to 3000, giving a predictor of the next
observation of about 6000. This is what happends under a
single steady model. With the collapsing procedure these
three components are removed because of their small odds
ratio, and the probability distributed amongst the
remaining components.

Using the Hellinger distance function gives the

distance between the three models as

4 5 . 6
4 0 0.1896 0.2841
5 0 0.1057
6 0

It follows that components 4 and 6 are the furthest apart,
and 5 and 6 the closest. Components 5 and 6 are closer
together than L and 5 because although the means of the
latter two are more similar, the covariance matrices are
not.

The cluster cut-off distance was set at 0.2 in

the above analysis, mainly for pragmatic reasons: it
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reduced the mumber of models reasonably, and also in much
less than the upper bounds discussed in the last chapter.
As we have already mentioned, the choice of this figure
needs further investigation. With this assumption
components 5 and 6 are clustered together, .but 4 is not
further added because using furthest neighbour distances,
the distance of 4 from {5,6} is 0.2841. This results in
the collapsed posterior

e

0.951 N (4462.7 ) ,< 80590. 3 36855.8 )
L577.3 39349.0

1552.3 62908. L 6716L.0

+ 0.049 N _(4439.3 ) ,(104992.11 62908. L )
L

The second component comes from joining 5 and 6 where
the 5th component has the predominant effect in the mixture
because the cluster centre is formed by weighting the
‘points according to their probabilities.

Table 9.3 shows how the number of models involved

at each stage alters

TABLE 9.3 : Summary of posterior component evolution

- Number of Most probable

Time models after probabilities mean & variance
collapse of ©

181 2 .098 .052 5111.6 43838
182 3 .943 .054 .003 £981.9 43985
183 3 .933 .064 .003 L789.0 43956
184 2 .951 .049 L462.7 80590
185 2 .940 .060 £L351.7 L6223
186 L .826 .073 .094 .006 | 4665.0 44LOL3
187 VA .887 .0L2 .066 .005 | 4873.3 L3933
188 L .892 .057 .048 .003 | 4823.8 L3859
189 4 .88 .056 .092 .005 |5117.9 L3854
190 L .806 .121 .065 .007 | 4L892.0 L3856
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The table also illustrates the effect of the collap-
sing procedure: nearly all the time the most probable
component is the result of assuming that Vl:=V, giving a

posterior variance for 6, of the order of 43{105. However

t
when the extremely low observation appears, these
components are filtered out by the collapsing procedure,
leaving posterior variances of the order of 8){105 or more,
that is the term Vé==9V comes into play. As the next
observation is close to the predicted means, the 'normal!
system variance again becomes the dominant term and stays
that way. Thereafter the number of collapsed models

remains at 4, a number greater than 1 partly because a

better model would be more complex than a steady model.

9.3 Measures of Accuracy

The Kalman filter produces a predictive distribution,
so that as we have mentioned before, using a summary
statistic - such as the mean - to represent this distri-
bution involves some loss of accuracy. . However when point
forecasts are required, some measure of their accuracy is
required. Much of the discussion in Chapter 4 on loss
functions can therefore be applied, since loss functions
are appropriate measures of accuracy. More specifically,
if we have a single forecast f of a point p, both possibly
multidimensional, then a loss function L(f,p) which maps
onto the reals is a suitable measure. Typically we look
for a function of the form L(f-p), with L(x)>0, and L=0
because f =p is a 'perfect'! forecast.

In a practical situation it is unlikely that L will
be a symmetric function because there are many reasons why
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underestimating or overestimating will produce different
consequences. It is likely that only in the abstract
context of estimation will we be unconcerned as to the
direction of the error. Nevertheless, in making

comparisons between different methods it is more helpful

to use symmetric loss function rather than asymmetric ones.
The classical measure of error is the sqgared loss

function

L(y, §) =(y -§)?

which has a number of drawbacks, some of which are touched
upon in Harrison and Stevens (1976). Another choice when
we have normal distributions is to use the loss function

"conjugate' to the normal density function (Lindley (1976)),
A l AL
L(y,§) =h[1-exp{ -5 (y- §)}] - (9.15)

Without loss of generality we take h =1, so that

L(y,¥y) =1 - exp{ -%k(y- 3’5“}

We shall only consider the one-step ahead predictor,
but this is not the only possibility; for example we might
be interested in forecasts at different lead times, such
as a year ahead (lag 12).

Another possible measure of accuracy given in Harrison-
Steven (1976) is to consider cunulative forecasts, for six
months say. In effect this looks at L(Zyt, Z&t) rather

than ZL(yt’§t)’ which in general will be different.
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9., Chlorine Data Analysis

Some reéulté of uéing different forecasting techniques
to-gether with measures of performance introduced in the
previous section are presented in Table 9.4. The figures
have been scaled across the rows (which is equivalent to
altering the constant premultiplier h of the loss function
(9.15)) to give a loss of 100 for Mesthod 1; this enables
the different procedures to be compared more easily. The
methods used were as follows:

First, in Method 1, the classical EWMA approach was
used, fitting an IMA{1l,1) model with moving average
parameter B estimated through the iterative likelihood
equation (2.24), giving the estimate B= -0.5253.. .

Method 2 used the steady DLM (9.3) - (9.6) with the
free parameters estimated from the method of moments via
(9.7) - (9.9) giving

W

36392 (9.16)

V = 242822. (9.17)

Not surprisingly the mean square error is larger than
for the first method - indeed Example 2./ demonstrated that
the maximum likelihood equation is equivalent to minimising
this quantity. However for some of the conjugacy parameters
k this Kalman filter gives slightly betfer results. The
conjugate loss function behaves differently to the mean
square error criterion, as this and the following examples
illustrates.

Methods 1 and 2 are both retrospective - they
presuppose knowledge of the whole (or at least fart) of the

Time Series. In practice we would be uncertain as to the
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TABLE 9.4

Comparison of methods and loss functions

Parm. Method
k 1 1 2 3 4 5 6
scaled

1|144.76 100 100.17 100.02 99.48 100.17 100.15
10 | 144.13 100 100.59 100.01 99.91 100.35 100.12
500 | 141.76 100 . 98.69 99.16 98.65 99.07  98.66
1000 {139.55 100 98.54 98.99 98.72 98.91  98.75
5000 [ 129.03 100 98.30 98.51 98.85 98.46  98.79
10% [ 122.03 100 98.38  98.53 98.9L 98.50  98.93
5x108 | 6.12 100 100.47 100.74 99.89 100.81  99.56
Squared 6.665 100 100.60 100.89 99.73 100.95  99.37

loss

Method 1:

The parameter k refers to the loss function (9.15).

x107

Classical EWMA from IMA

2: Augmented steady DLM.

(1,1) model.

3: Class I procedure with a grid of values for V,

1 for W.

L: Class II procedure with collapsing

VA 0.9N(0,V) + 0.1N(O,9V).

5: Class II procedure with grid of values of W

and V.

6: Class II with collapsing, V and W as in 5.

-238-



values of V and W for at least the first few time points.
As a first step towards modelling this, Method 3 assumes W
known with value (9.16), but V unknown and described by an

equally spaced grid of values as follows:

vV, = 2x10°%, Vy=V from (9,17), Vg = 2.85645 x 10°
and Vi such that Vl’ V2 RN V9 equally spaced (9.18)
with the prior probabilities
p; = i/25 i<5
(9.19)

Py =-P1o-1 1<
where p; = Prob{V=Vi}.

V5 is therefore the most probable component initially.

The Harrison-Stevens Class I model was then used with
these assumptions, as described in Chapter 4. As can be
seen from the table, overall this gives a similar perfomance
to Method 2, with siightly lower loss for k=1 and 10,
slightly higher otherwise..

In percentage terms the differences are small, indeed
for all the various methods the variations across the table
are small. In part this is because the data would be better
described by a more sophisticated model - the steady model
is not wholly appropriate. However even the small
differences show that it 1s possible to use more realistic
models than those which presuppose the data and do as well,
or even slighlty better than a retrospective analysis.

Method 4 was the jump method used in the analysis of
the sulphuric acid data. That is with W as in Method 2,

given by (9.17), we allow the error term v, to take the
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value V from (9.16) with probability 0.9, and 9V with

probability 0.1, or

Ve v 0.9 N(0O,V) + 0.1 N(O, 9V)
which is a heavy-tailed distribution robust against
outliers. The collapsing procedure of Chapter 8 was used
with the parameters set as in §9.3.

This method gave better results than the classical
EWMA for all the conjugate paramters, and also for squared
loss. Again overall the differences are small because
although this error distribution gives much improved
estimates around the ouflier, which considerably reduces
the squared error locally, the introduction of two models
at each time stage gives slighlty poorer estimates if there
are no outliers or changes in level. Comparing with §9.3
it can be seen that the improvement that this method gives
is much less marked for the chlorine data than for the
sulphuric acid data.

Methods 5 and 6 extend Method 3 by putting a grid of
values on W as well as V, with 9 different values for W
chosen in an analagous way to that given above for V in

(9.18), (9.19) with in this case W, = W from (9.17).

5
Method 5 used the Class I procedure, so that one of the 81
models is assumed to hold over the entire time period,
whereas Method 6 used a Class II model with the collapsing
procedure of Chapter 8. This is equivalent to assuming a
normal error distribution of 9 components for vy and
similarly for Wy which holds at each time stage.

In terms of mean square error, and for nearly all the

parameters of the loss function, Method 6 which uses
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the collapsing procedure gave slightly better results than
Method 5. 1In fact in terms of mean square error this
approach gave the best improvement over the maximum
likelihood approach, which underlines the point made
earlier that it is possible to use models (DLMs with a
collapsing procedure) that do not require the data to be
known in advance and obtain good results.

The above comparisons also illustrate that using
different criteria when assessing forecasting performance
can favour different models according to the criterion
chosen. In the results given, it can be seen that the .
bounded loss function behaves differently to the usual

squared loss function.

9.5 Further Analysis

For the reasons stated it is difficult to draw strong
conclusions about the relative merits of the different
methods from analysing the chlorine data. It is conjectured
that when parameter values in DLMs are unknown it is better
to use a Class II collapsing procedure rather than a Class
I procedure (unless it is required to identify a particular
parameter value). This needs to be substantiated by
further research, and the question of how many grid-points
to chose and over what range of values also need
investigation. Certainly the sulphuric acid data shows the
advantage of using outlier resistant error distributions
when there is the possibility of outliers or changes in
level.

More sophisticated analyses of either Time Series would
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involve more complicated models, such as those involving
growth terms and possibly seasonal factors. Also the two
series are not independent, since at the very least they
are related via the underlying economic climate, and it
would be possible to perform a bivariate analysis, so that
the observation vector in the appropriate DLM has dimension
2. A preliminary investigation of the possibility of using
a bivariate analysis is to assume one series known and then
use the information fron this series to interact with the
other (asumed unkown) to improve the forecasts. Initial
attempts at this on the chlorine data, using the
interactions described in Chapter 7 on the steady model,
suggest that it is possible to reduce the mean square error
by over 15%. Of course a true bivariate forecasting model

dose not assume one series known.
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CHAPTER 10

SUMMARY

This thesis examines the use of state-space models in

Time Series analysis, particularly those of the form

L9

|
i
fas}
+

<

@
N

I

|

which relate the observations ¥y to a state vector 8.3

these are termed Dynamic Linear Models (DLMs) by Harrison-
Stevens (1976). They coined the phrase 'Bayesian forecasting',
for these models are naturally amenable to Bayesian inference.
Indeed, analysis by the Kalman filter can be viewed as
successively updating the posterior for gt by incorporating
new information as it arrives. Forecasts or predictors are
obtained from the appropriate predictive distribution
function by using a suitable loss function. The background
is summarised in Chapters 2 to 4, which includes certain
concepts from control theory that we use.

The usual assumption in the above DLM is that.ztgﬂt
are independently normally distributed, VtmN(an)’Et“N(O:H)
say. Chapter 5 considers the possibility of relaxing the
assumptions by allowing distributions other than Gaussian
ones. If the additive descriptionis retained then handling
other distributions soon becomes intractable because of the
convolutions involved. This is true even for the simplest.

steady model

Yy = 0 t vy



unless the error terms have a stable law, so an alternative
description is needed if we are to be able to use non;
normal distributions.

Using the normal steady model as a starting point,
Smith (1979) proposes a class of steady evolutions. This
specifies the conditional distribution f(yt,et)’ and the

t-1 t-l)kt

. t t
evolution of et[y to Bt[y by p(et]y ) « p(etly

for some constant kt’ The implications for the predictors
of such a system are discussed in Chapter 5; f(ytlet) is
taken to be a member of the exponential family with p(etlyt)
the appropriate conjugate. Theoretical results concerning
the predictive distributions of the observations and the
systenm vector are derived, and conditions under which the
evolution corresponds to an invariant transition density
proved.

With this scenario the nature of the forecasts depends
very much upon both the model chosen and the loss function
used. The properties of the normal model are constant
forecasts at all lead times, with the uncertainty associated
with the forecasts increasing with the lead time. Examples
are given which show that it is possible to construct non-
normal models that under symmetric loss functions have one,
both or neither of these properties.

Chapter 6 explores the relationships between DLMs
(with normal errors) analysed by the Kalman filter, and
ARIMA models; comprehensive equivalence theorems are proved,
where equivalence is taken to mean that the forecasts of |
the two descriptions are identical for all lead times.

Firstly, DLMs are .shown to be predictor equivalent to their
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observable subsystems, so that we only need to consider
observable DLMs. If a DLM {F ; G} is observable then G is
non;derogatory, that is G is similar to a companion matrix
and has minimal polynomial identical to its characteristic

. n -
polynomial. If GiSof order n, then this is A" +3 ¢.A""t

.41

say. Let s be the 1argest.integér such that ¢S ;;lnon-zero,
and define r the 'system shift' to be the maximum of 0 and
n-s-l1. Two cases arise, either G is non-singular, so that
s=n and G has rank n, r=0, or G is singular with rank n-1
and system shift r =n-s-1> 0.

A DLM with non-derogatory matrix G which 1s in the
steady state, so that the Kalman gain vector A, has

converged to A, is shown to be predictor equivalent to the

ARMA model
Vg T 0¥ g toeee T Oy g T eyt ByEp gt e T8t g

where the ¢i‘s are obtained from the charactéristic
polynomial and the Bj's depend upon the ¢i's and A through
FGIA. In fact this result is independent of assumptions
on the~¢i's and so includes non-stationary models as well,
in particular the ARIMA models. Once the autoregressive
parameters are obtained, then it is possible to derive the
Bi's by considering the covariance properties of the DLM,
which gives the same values provided that certain mild
restrictions hold.

The stability conditions for the DLM are-shown to
coincide with the invertibility conditions for the equivaleht
ARIMA process; these will be satisfied if the DLM is

observable and controllable. The equivalence theorems are
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extended to incorporate time-varying DLMs in which F, G and
At can vary in time - in this instance the parameters ¢
and Bj are also time-dependent.

An examination of the structural properties of DLMs is
started in Chapter 6 and extended in Chapter 7. In the
case of zero system shift, r=0, G can be singular or non-
singular. The latter can place severe restrictions on the
parameters Bl ...BS. This surprising result says that a
singular matrix G is preferable for zero system shift, where
the order of the system vector is one larger than it need
be, namely n+l rather than n. For example with the steady
model, an unrestricted system vector is of order 2 rather
than 1, as pointed out by Godolphin and Stone (1980).

For an observable univariate DLM with constant matrices
F and G, when the error variances V and ¥ are allowed to
vary, an image is traced out in the invertibility space of
the equivalent ARMA model. V must be positive and W
positive semi-~definite, and if this is the domain of the
mapping then, provided the system is observable and has
large enough order (n=r+s+1), it is possibie to cover
the entire invertibility region. This is proved in Chapter 7. -
The invertibility region can be pictured in the parameter
space of (Bl "'Br+s) or equivalently in the correlation
space (p, "'pr+s)’ the autocorrelations of yt-+¢1yt_l eoo it
¥ ¢syt-s' »

In a practical context only the diagonal terms in ¥
can be realistically updated, unless an estimation procedure
is applied. With W restricted to a diagonal matrix (or

equivalently to EjﬂiET, with Ed diagonal and B fixed), the
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image in the autocorrelation space iS a convex hull of its
vertices. Consequently unless the invertible region of the
ARIMA model is a convex polytope, it will not be possible
to cover the full region with such practically attractive
DLMs.

These results are illustrated by considering ARIMA
(p,d,q,) models with p+d=1 or 2, g<p+d. For first
order models, by choosing a system matrix of order 2 it is
possible to cover the full invertibility region with a DLM
having a diagonal covariance matrix. However the appropriate
region for second-order models, such as ARMA (2,2), cannot
be so covered, since the region is not a convex hull of a
finite set of points. ZEither an infinitely large DLM has
to be used, or a DLM with a non-diagonal matrix W whose
elements can vary. However, it is possible to cover a
larger part of the region than that achieved by models
advocated by Harrison-Stevens, which suffer from the defect
of too small a dimension. A summary is provided which gives
second-order ARIMA models, the equivalent Harrison-Stevens
DLMs, unrestricted equivalent DLMs and suitable practical
(possibly restricted) DLMs.

An alternative way of writing an unrestricted DLM

equivalent to a steady model is
Vi = 0 O TV

6, =6

Tt
% W

t-1 t

which has the attraction of a single system parameter,
rather than a vector of order 2 when it is expressed in
standard DLM form. The so-called 'Markov-Polynomial' models

can be also be extended and written in this "augmented' form.
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The analysis of these models is discussed in Chapter 7; it
is shown that it is possible to derive a slightly different
form of the Kalman filter for such 'augmented' models.

Chapter 8 focusses attention on the Multiprocess models
of Harrison-Stevens, lookingat alternative ways of collapsing
the components of the normal mixture of the posterior at
each time stage. A class of clustering collapsing procedures
is developed, where the distance between normal components
is used together with a clustering procedure to form clusters
of the components. The cluster centres can then be used to
summarise the information in the cluster, effecting a
reduction in the number of components.

The Hellinger metric is chosen as a suitable metric and
certain desirable properties follow, for example if the
distance between two unimodal densities is below a certain
threshold then the mixture is unimodal. This means that if
we use say agglomerative clustering and stop forming clusters
before this threshold is reached, then we would not approxi-
mate a bimodal distribution by a unimodal one, which is
important not least from a decision theoretic standpoint.

Certain continuity properties are then proved with
respect to the Kalman filter, which show that the clustering
is sensible. That is, if two components of the system
posterior are close then so are the corresponding components
of the predictive distribution, and successive posteriors
remain close under the influence of the filter. This last
point, whiéh says that 1ittle is lost by combining components
that are close is only proved for a univariate DLM with
univariate system matrix. The effect of the clustering
procedure chosen, and the choice of 'cut-off' distance if
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using agglomerative clustering needs further research.

Chapter 9 applies some of the preceding theory,
particularly of Chapters 7 and 8, to two real Time Series,
namely monthly sulphuric acid production in the U.K. and
monthly chlorine production from 1963-1982. These series
exhibit characteristics typical of much economic-related
data of the past two decades, such as a period of steady
growth followed by a dramatic fall caused by the oil crisis
of the mid-seventies, with the ensuing recovery punctuated
by a number of depressions. In these circumstances a single
time-invariant model is unlikely to produce optimal forecasts,
but there are situations where forecasts need to be made
automatically, without the direct intervention of an
experienced statistician.

It is possible to use a-semi-automatic procedure, by
using the Multiprocess procedure of Harrison-Stevens,
together with a suitable collapsing procedure. Ideally one
would have different types of DLMs with the Multiprocess
models, however for illustrative purposes the augmented
steady model is used, with error variances that can vary.
Using the collapsing procedure introduced in Chapter 8, it
is possible to improve on the performance of the traditional
EWMA of the IMA (1,1) model. The performance is markedly
improved in the region of an 'outlier', to which the EWMA
is very sensitive, enabling outliers to be automatically
treated statistically. It is also shown that the use of
different measures of performance - other than the usual

squared-error criterion - can favour different methods.

-249-



REFERENCES

ABRAMOWITZ, M. and STEGUN, I.A. (1965). Handbook of
Mathematical Functions. New York: Dover.

AKAIKE, H. (1974). Markovian representation of stochastic
processes, and its application to the analysis of

autoregressive-moving average processes. Ann. Inst.
Statist. Math., 26, 363-383,

ALT, S.M. and SILVEY, S.D. (1966). A general class of
coefficients of divergence of one distribution from
another., J.R. Statist. Soc. B, 28, 131-142.

BARNETT, S. (1975). Introduction to Mathematical Control
Theory. Oxford: University Press.

BATHER, J.A. (1965). Invariant conditional distributions
for Bayesian inference. Ann. Math. Statist., B, 36,
829-846.

BERNARDO, J.M. (1979). Reference posterior distributions
for Bayesian inference. J.R. Statist. Soc. B, 41,
113-147.

BIRKHOFF, G. and MACLANE, S. (1965). A Survey of Modern
Algebra. New York: MacMillan.

BOX, G.E.P. and JENKINS, G.M. (1970). Time Series
Analysis, Forecasting and Control. (2nd edition: 1976)
San Francisco: Holden Day.

BOX, G.E.P. and TIAO, G.C. (1973). Bayesian Inference
in Statistics. Reading, Mass: Addison-Wesley.

BROWN, R.G. (1959). Statistical Forecasting for
Inventroy Control. New York: McGraw-Hill.

CHATFIELD, C. (1977). Some recent developments in time
series analysis. J.R. Statist. Soc. A, 140, 492-510.

CHATFIELD, C. and PROTHERO, D.L. (1973). Box-Jenkins
seasonal forecasting: problems in a case study (with
Discussion). J.R. Statist. Soec. 4, 136, 295-336.

COX, D.R. (1981). Statistical analysis of time series:
some recent developments. Scand. J. Statist., 8,

93-115.

C0X, D.R. and HINKLEY, D.V. (197.). Theoretical
Statistics. London: Chapman Hall.

DE GROOT, M.H. (1970). Optimal Statistical Decisions.
New York: McGraw-Hill.

FELLER, W. (1970). Introduction to Probability Theory.
New York: Wiley.

-250-



FERGUSON, .T.S. (1967). Mathematical Statistics: a
Decision Theoretic Approach. New York: Academic
Press.

GATHERCOLE, D. and SMITH J.Q. (1984). A dynamic
forecasting model for a general class of discontinuous
time series. Time Series Analysis: Theory and
Practice 5, (0.D. Anderson. ed). North-Holland.

GELB, A. (Editor). (1974). Applied Optimal Estimation.
M.I.T. Press.

GODOLPHIN, E.J. (1975). A direct basic form for
predictors of autoregressive integrated moving average
processes. Biometrika, 62, 483-496.

GODOLPHIN, E.J. (1976). Comment on a paper by Harrison
and Stevens. J.R. Statist. Soc. B, 38, 238-239.

GODOLPHIN, E.J. (1977). A direct representation for the
maximum likelihood estimator of a Gaussian moving
average process. Biometrika, 64, 375-384.

GODOLPHIN, E.J. and HARRISON, P.J. (1975) . Equivalence
theorems for polynomial projecting predictors.
J.R. Statist. Soc. B, 37, 205-215,

GODOLPHIN, E.J. and STONE, J.M. (1980). On the structural
representation for polynomial projecting predictor
models based on the Kalman filter. J.R. Statist.
Soc. B, 42, 35-16.

HAGGAN, V. and 0ZAKI, T. (1981). Modelling non-linear
random vibrations using an amplitude dependent
auto-regressive time series model. Biometrika, 68,
189-196. .

HANNAN, E.J. (1960). Time Series Analysis. London:
Chapman-Hall.

HARRISON, P.J. and STEVENS, C.F. (1971). A Bayesian
approach to short-term forecasting. Oper. Res.
Quart., 22, 341-362.

HARRISON, P.J. and STEVENS, C.F. (1975). Bayesian
forecasting in action: case studies. University
of Warwick: Statistics Research Report.

HARRISON, P.J. and STEVENS, C.F. (1976). Bayesian
Forecasting (with Discussion). J.R. Statist. Soc.
B’ 38’ 205'247-

HOLT, C.C. (1957). Forecasting seasonals and trends by
exponentially weighted moving averages. Carnegie
Institute of Technology: ONR Memorandum 52.

HUBER, P.J. (1981). Robust Statistics. New York: Wiley.

-251-



JACOBS, 0.L.R. (1974). 1Introduction to Control Theory.
Oxford: Clarendon Press.

JAZWINSKI, A.H. (1970). Stochastiec Processes and
Filtering Theory. New York: Academic Press.

JEFFREYS, H. (1961). Theory of Probability. Oxford:
University Press.

JENKINS, G.M. (1979). Modelling and Forecasting Time
Series. Lancaster: G.J.P.

JOHNSON, N.L. and KOTZ, S. (1970). Continuous Univariate
Distributions - 1. Boston: Houghton Mifflin.

JURY, E.I. (1964). Theory and Application of the
z-Transform Method. New York: Wiley.

KALMAN, R.E. (1963a). New methods in Weiner filtering
theory. In Proc. 1lst Symp. on Eng. Applications of
Random Function Theory and Probability Theory.

(J.L. Bogdanoff and F. Kozin, eds). New York: Wiley.

KALMAN, R.E. (1963b). Mathematical description of linear
dynamical systems. J. STAM Control A, 1, 152-192,.

KENDALL, M. (1976). Time Series. 2nd edition. London:
Griffin.

KEY, P.B. and GODOLPHIN, E.J. (1981). On the Bayesian
stegdy forecasting model. J.R. Statist. Soc. B, 43,
92- 60

KUSHNER, H. (1971). Introduction to Stochastic Control.
New York: Holt, Rinehart and Winston.

KWAKERNAAK, H. and SIVAN, R. (1972). Linear Optimal
Control Systems. New York: Wiley.

LAWRENCE, A.J. and LEWIS, P.A.W. (1980). The
exponential autoregressive-moving average EARMA(p,q)
process. J.R. Statist. Soc. B, 42, 150-161.

LINDORFF, D.P. (1965). Theory of Sampled-Data Control
Systems. New York: Wiley.

LINDLEY, D.V. (1971). Bayesian Statistics, a Review.
SIAM, Philadelphia.

LINDLEY, D.V. (1976). A class of utility functions. Ann.
Statist., 4, 1-10.

MANSKI, C.F. (1981). Learning and decision making when
subjective probabilities have subjective domains.
Annc Statistn, 9, 59-65.

MATUSITA, S. (1965). A distance and related statistics in
multivariate analysis. In Proc. 1lst Int-Symp. on
Multivariate Analysis, Dayton Ohio, 187-200.

-252-



MCKENZIE, E. (1976). A comparison of standard forecasting
systems with the Box-Jenkins approach.
The Statistician, 23, 107-116.

MUTH, J.R. (1960). Optimal properties of exponentially
weighted forecasts. J. Amer. Statist. Ass., 55,
299"306 .

O'HAGAN, A. (1979). On outlier rejection phenomena in
Bayes inference. J.R. Statist. Soc. B, L1, 358-367.

PRIESTLEY, M.B. (1980). State dependent models; a
general approach to non-linear time series analysis.
J. Time Series Analysis 1, 4A7-71.

RAIFFA, H. and SCHLAIFFER, R. (1961). Applied Statistical
Decision Theory. Boston: Harvard Business School.

RAO C.R. (1976). Cluster analysis applied to a study of
race mixture in human populations. Classification
and Clustering, (J. Van Rygzin, ed). New York:
Academic Press.

SORENSON, H.W. and ALSPACH, D.L. (1971). Recursive
Bayesian estimation using Gaussian sums. Automatica,

7, L65~L79.

SMITH, J.Q. (1978). Problems in Bayesian statistics
relating to discontinuous phenomena, catastrophe
theory and forecasting. Ph.D. Thesis, University of
Warwick.

SMITH, J.Q. (1979). A generalisation of the steady
forecasting model. J.R. Statist. Soc. B, 4i,
375-387.

SMITH, J.Q. (1980). Bayes estiamtes under bounded loss.
Biometrika, 67, 629-638.

SMITH, J.Q. (1981). The multiparameter steady model.
J.R. Statist. Soc. B, A3, 256-260.

STONE, M. -(1970). Necessary and sufficient conditions for
convergence in probability to invariant posterior
distributions. Ann. Math. Statist. 4, 134A9-1353.

STONE, J.M. (1982). Investigation of the structural
properties of Kalman filter models for forecasting
non-stationary time-series. Ph.D. Thesis, London
University.

TONG, H. and LIM, K.S. (1980). Threshold autoregression
limit cycles and cyclical data (with Discussion).
J.R. Statist. Soc. B, L2, 245-292.

=253~



TRUSTRAM, K. (1971). Linear Programming. London:
Routledge and Kegan Paul.

WEST, M. (1981). Robust sequential approximate Bayesian
estimation. J.R. Statist. Soc. B, 43, 157-166.

WHITTLE, P. (1963). Prediction and Regulation by Linear
Least-Squares. Princeton: Van Nostrand.

-254-



