
UBRAfiY

STUDIES OF INSPECTION ALGORITHMS AND ASSOCIATED
MICROPROGRAMMABLE HARDWARE IMPLEMENTATIONS

A Thesis submitted for the degree of
Doctor of Philosophy

of the University of London

by

John Mark Edmonds

Machine Vision Group, Department of Physics
Royal Holloway and Bedford New College

University of London

February 1988

ProQuest Number: 10090156

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest.

ProQuest 10090156

Published by ProQuest LLC(2016). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code.

Microform Edition © ProQuest LLC.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

Abstract

This work is concerned with the design and development of real-time
algorithms for industrial inspection applications. Rather than

implement algorithms in dedicated hardware, microprogrammable machines

were considered essential in order to maintain flexibility.

After a survey of image pattern recognition where algorithms
applicable to real-time use are cited, this thesis presents industrial
inspection algorithms that locate and scrutinise actual manufactured

products. These are fast and robust - a necessary requirement in
industrial envi ronments.

The National Physical Laboratory have developed a Linear Array
Processor (LAP) specifically designed for industrial recognition work.
As with most array processors, the LAP has a greater performance than

conventional processors, yet is strictly limited to parallel algorithms
for optimum performance. It was therefore necessary to incorporate
sequentialism into the design of a multiprocessor system. A microcoded
bit-slice Sequential Image Processor (SIP) has been designed and built
at RHBNC in conjunction with the NPL. This was primarily intended as a
post-processor for the LAP based on the VMEbus but in fact has proved

its usefulness as a stand-alone processor. This is described along with
an assembler written for SIP which translates assembly language

mnemonics to microcode.

This work, which includes a review of current architectures, leads

to the specification of a hybrid (SIMD/MIMD) architecture consisting of
multiple autonomous sequential processors. This involves an analysis of

various configurations and entails an investigation of the source of

bottlenecks within each design. Such systems require a significant

amount of interprocessor communication: methods for achieving this are

discussed, some of which have only become practical with the decrease in

- 2 -

cost of electronic components. This eventually leads to a system for
which algorithm execution speed increases approximately linearly with

the number of processors. The algorithms described in earlier chapters
are examined on the system and the practicalities of such a design are
analysed in detail.

Overall, this thesis has arrived at designs of programmable
real-time inspection systems, and has obtained guidelines which will
help with the implementation of future inspection systems.

— 3 —

CONTENTS

CHAPTER 1 INTRODUCTION

1.1 INTRODUCTION...12
1.2 THE PROBLEM WITH ROBOT V I S I O N 13

1.3 ACHIEVING REAL-TIME PATTERN RECOGNITION........... 14

1.3.1 Programming Problems.............................. 15
1.4 THE PROBLEMS WITH C O M P U T E R S........................ 15
1.5 SO WHERE DO WE GO FROM H E R E ? 16
1.6 THE AIM OF THIS THESIS.............................. 17
1.7 OVERVIEW OF FOLLOWING CHAPTERS......................18

CHAPTER 2 THE REPRESENTATIF OF REAL-TIME ALGORITHMS

2.1 INTRODUCTION...21
2.2 SEQUENTIAL AND PARALLEL FUNCT I O N S..................23
2.3 GREY LEVEL VS BINARY PROCESSING....................24
2.4 IMAGE PROCESSING 25
2.4.1 Grey-level Correction 25
2.4.2 Grey-scale Transformations 25
2.4.3 Sharpening...26
2.4.4 S m o o t h i n g ...27

2.4.5 Advantages and Disadvantages of Image Processing 28

2.4.6 Brief S u m m a r y 29
2.5 IMAGE ANALYSIS.......................................29

2.5.1 Segmentation of Images............................ 30

2.5.2 Edge Detectors.....................................31

2.5.2.1 Differential Gradient Edge Detectors 31

- 4 -

2.5.2.2 Template Match Edge Detectors 35

2.5.2.3 Analysis of Parallel Edge Detectors 37
2.5.2.4 Sequential Edge Detectors 38
2.5.3 Thresholding and Clustering 38

2.5.4 Region Extraction 42
2.6 SHAPE ANALYSIS AND FEATURE RECOGNITION...............43

2.6.1 Binary Thinning Algorithms........................ 43

2.6.2 Disadvantages of Binary Thinning Algorithms . . 48
2.6.3 Grey-scale Thinning Algorithms 49
2.6.4 The Hough T r a n s f o r m.............................. 50

2.6.5 Template Matching 53
2.7 PATTERN RECOGNITION................................ 54
2.7.1 Statistical Pattern Recognition... 55

2.7.2 Syntactic Pattern Recognition 57
2.7.3 Hybrid Methods of Pattern Recognition 58
2.8 EXTENSION TO THREE DIMENSIONS 59

2.9 OPTICAL IMAGE PROCESSING 61
2.10 CONCLUSIONS...63

CHAPTER 3 THE DEVELOPMENT OF REAL-TIME INSPECTIF ALGORITHMS

3.1 INTRODUCTION................................... 66
3.2 THE NEED FOR INDUSTRIAL RECOGNITION SYSTEMS . . . 67
3.3 THE 0-RING ALGORITHM...........................70

3.3.1 Algorithm Strategy................................ 72
3.3.2 Finding the Centres of the 0-rings................74

3.3.3 Locating the True C e n t r e s 77

3.3.4 Detecting Defects in an 0-ring....................80

3.3.5 Results and Timings for the 0-ring Algorithm . 83
3.4 THE RECTANGULAR BISCUIT A L G O R I T H M89

- 5 -

3.4.1 Previous Work on Object Orientation............. 89
3.4.2 Algorithm Strategy................................ 96
3.4.3 Biscuit Orientation 96

3.4.4 Determining the Peak Angles in the Image 100

3.4.5 Least Squares Fit Matching to the Edge Points . 101
3.4.6 Finding the Corners and Size of the Biscuit . . 106

3.4.7 Determining the Amount of Chocolate Coating . . 107
3.4.8 Determining the Amount of Chocolate Overflow . . 107

3.4.9 Run-time Results and Timings.....................108
3.5 PROGRAM OPTIMISATION...............................112
3.5.1 A Priori Knowledge for Industrial Recognition . 113
3.5.2 Eliminating Bottlenecks using Hardware

Accelerators 115
3.6 S U M M A R Y ... 115

CHAPTER 4 SEQUENTIAL IMPLEMENTATIF OF INSPECTIF TASKS

4.1 INTRODUCTION..................................... 117
4.2 SEQUENTIAL ALGORITHMS IN INDUSTRIAL INSPECTION . . 118
4.3 BOUNDARY EXTRACTION ALGORITHMS.................. 119
4.3.1 Problems with Boundary Extraction Algorithms . . 121
4.4 THE CHAIN C O D E122
4.4.1 Derivation of the Chain C o d e 122

4.4.2 Perimeter and Area of a S h a p e 125

4.4.3 Finding Corners in a S h a p e................... 127
4.5 BOUNDARY EXTRACTION FROM A GREY SCALE IMAGE . . .129
4.6 SEQUENTIAL IMPLEMENTATION OF THE CHOCOLATE BISCUIT

A L G O R I T H M 131

4.6.1 Finding the Corners of the Biscuit........... 131

4.6.2 Application of the Hough Transform to the Chain

— 6 —

C o d e ... 132
4.6.3 R e s u l t s ..133
4.6.4 Discussion....................................... 134

4.7 SEQUENTIAL IMPLEMENTATION OF THE 0-RING ALGORITHM 135

4.8 LIMITATIONS OF SEQUENTIAL ALGORITHMS............... 136
4.9 S U M M A R Y ..137

CHAPTER 5 A HIOI-SPEED SEQUENTIAL IMAGE PROCESSOR

5.1 INTRODUCTION..139
5.2 REASONS FOR A PARALLEL/SEQUENTIAL ARCHITECTURE . .140

5.3 MICROPROGRAMMING 141
5.3.1 Horizontal and Vertical Microcoding 144
5.4 USE OF BIT-SLICE ARCHITECTURES FOR IMAGE

PROCESSING... 145
5.5 A SEQUENTIAL IMAGE PROCESSOR - S I P147

5.5.1 The Processor S e c t i o n 149
5.5.2 The Image Processing Interface.................... 155
5.5.3 The Program S e c t i o n 159
5.5.4 The I/O Interface................................. 161
5.6 PIPELINING THE PIXEL FETCH 164
5.7 SIP'S ASSEMBLY LANGUAGE 164

5.7.1 The Assembler and Intermediate Code Generator . 165
5.7.2 The Translator................................... 170
5.7.3 The Loader..171
5.8 MICROCODE OPTIMISATION............................. 172

5.8.1 Optimising SIP's microcode 174

5.9 THE VMEBUS..176

5.10 S U M M A R Y ..177

- 7 -

CHAPTER 6 RESULTS AND THE FUTURE

6.1 INTRODUCTION..178
6.2 THE LINEAR ARRAY PROCESSOR......................... 178

6.2.1 The PPL Compiler................................. 179
6.2.2 LAP-II..184

6.3 MACHINE PERFORMANCE............................... 184

6.3.1 Machine Architecture and Machine Performance . . 186
6.4 PROGRAM R E S U L T S 188
6.5 ANALYSIS OF THE R E S U L T S 192
6.5.1 Performance against other machines 192

6.6 A PARALLEL/SEQUENTIAL CONFIGURATION.............. 193
6.6.1 Conclusions......................................196
6.7 S U M M A R Y ..197

CHAPTER 7 ARCHITECTORES

7.1 INTRODUCTION..198
7.2 ARCHITECTURES..................................... 199
7.2.1 Pipelining..203
7.3 WHAT IS AN ARCHITECTURE?........................... 205
7.4 CLASSIFICATIONS OF ARCHITECTURES...................206

7.5 CRITERIA FOR CHOOSING AN ARCHITECTURE............ 209
7.5.1 Optimising an Architecture on a Performance

B a s i s ... 209
7.5.2 Optimising an Architecture on a Cost-Speed Basis 210

7.6 SIMD MACHINES FOR IMAGE PROCESSING.................212

7.6.1 The ILLIAC I V 215
7.6.2 The ICL D A P 218

7.6.3 The GOODYEAR M P P 222

7.6.4 C L I P 4 ..223

7.6.5 CLIP4S and C L I P 7 225
7.6.6 The GRID C h i p 226

7.6.7 Linear Array Processors 227
7.7 PIPELINED ARRAY PROCESSORS 228
7.8 MIND M A C H I N E S 229
7.8.1 D I P O D ..230

7.8.2 The Transputer................................... 232
7.8.3 The Hyper c u b e 233

7.8.4 The Pyramid Architecture......................... 236
7.9 WARP - A SYSTOLIC ARRAY P R O C E S S O R................. 237
7.10 BIT-SERIAL M A C H I N E S 240
7.11 HYBRID ARCHITECTURES............................... 241
7.11.1 PASM - Partitionable SIMD/MIMD 242
7.12 A COMPARISON OF SEQUENTIAL VS PARALLEL MACHINES . 247
7.12.1 Bartliff's Algorithm............................. 248
7.12.2 Nevatia-Babu Algorithm........................... 248
7.12.3 Merge .. 249

7.12.4 Conclusions 249
7.13 S U M M A R Y ..250

CHAPTER 8 DEVELOPMENT OF A MULTI-SEQUENTIAL ARCHITECTURE

8.1 INTRODUCTION.. 254
8.2 REASONS FOR A HYBRID ARCHITECTURE.................255
8.2.1 Exploiting Instruction and Data Parallelism . . 256
8.2.2 Matching the Task to the Architecture.......... 260

8.2.3 Simulation .. 260
8.3 CONFIGURATION 1 - THE MASTER/SLAVE ARRANGEMENT . .262

8.3.1 The 0-ring Algorithm and the Master/Slave

- 9 -

Arrangement..................................... 264
8.3.2 Analysis of the Master/Slave Arrangement 266

8.3.3 Topologies Related to the Master/Slave

Configuration......... 272
8.4 CONFIGURATION 2 - ARCH-1............................273

8.4.1 Sharing the Data in the System...................277
8.4.2 The 0-ring Algorithm and A R C H - 1278
8.4.3 Topologies Related to ARCH-1 282

8.5 CONFIGURATION 3 - ARCH-2...................... 283
8.5.1 Improving the Communication Bottleneck 283
8.5.2 Avoiding Memory Conflicts 285
8.5.3 Synchronising the Processors 287
8.5.4 The 0-ring Algorithm and A R C H - 2288
8.5.5 The Practicality of ARCH-2294
8.5.6 Topologies Related to ARCH-2.....................294

8.6 CONFIGURATION 4 - ARCH-3............................296
8.7 CONCLUSIONS..298
8.8 S U M M A R Y ..299

CHAPTER 9 CONCLUSIFS AND SUGGESTIFS FOR FURTHER WORK

9.1 INTRODUCTION..301
9.2 INDUSTRIAL INSPECTION ALGORITHMS................... 301
9.3 SIP - A BIT-SLICE IMAGE PROCESSOR AND THE LAP . . 303
9.4 MULTIPROCESSOR ARCHITECTURES....................... 304
9.5 SUGGESTIONS FOR FURTHER W O R K 307

9.6 CONCLUSIONS..309

- 10 -

ACKNCWLEDGEMENTS

GLOSSARY

REFERENCES

APPENDIX A INSTRUCTIF SET FOR SIP

APPENDIX B IMPLEMENTATIF OF THE O-RING ALGORITHM F SIP

- 11 -

CHAPTER 1

INTRODÜCTIF

"Where there is no vision the people will perish:..."
Proverbs 29:18

1.1 INTRODUCTION

Thirty years ago computers were bulky contraptions that were
applied to problems where large amounts of repetitive number crunching
was involved. The concept of trying to make computers "see" was
developed in the fifties when applications such as fingerprint
recognition [36], [60], character recognition [68],[69],[81],[91], robot

guidance and assembly [17],[18],[2], and industrial inspection
[2],[14],[16],[9] were cited as the main areas for vision machines.
Numerous "vision algorithms" suitable for computer representation were
developed but it quickly came to light that the current generation of
computers were too slow for practical use. Special computer

architectures were developed in an attempt to reduce the execution time

of these algorithms, many of which are currently still employed.
However, these tend to be only suited for specific classes of

algorithms. A concentrated effort has been applied to solving this

problem but the solutions generally tend to be ad hoc. Probably more

important is that, while algorithmic development is at a fairly advanced

stage, architecture development has lagged behind the technology.

- 12 -

This thesis is concerned with the problems associated with machine
vision with particular emphasis on the problems of industrial
inspection. Electronic components are cheaper and faster than several

years ago. This means that one can take advantage of some of the
remarkable technological developments that have emerged in the last few
years to produce affordable automated inspection systems. First, let us

discuss some of the problems associated with machine vision in general.

1.2 THE PROBLEM WITH ROBOT VISION

"Humans are not logical". This familiar Vulcan proverb illuminates
one of the issues frustrating computer scientists. While computers
out-perform the human brain in solving certain classes of mathematical

and logical problems, they appear inadequate for other tasks that humans
can do instantly such as pattern recognition. Even supercomputers with

subnanosecond gate delays get bogged down on true real-time vision
tasks.

The reason for this lies in the enormous amount of computation

involved. The human eye has the equivalent resolution of a computer
4 4image of about 10 xlO picture elements (pixels) [53]. Humans can

recognise a variety of objects in a room in a matter of milliseconds.
For a computer to achieve the same capabilities, a single processor

working at over lO^^MHz would be required based on these figures.
Today's processors run at speeds in the region of 25MHz meaning that

several million orders of magnitude speed up is required to achieve true
real-time pattern recognition on the same tasks.

A study into how the brain works reveals that the response time of

the neuron is in the millisecond range [127]. It would therefore appear

that faster processors are not the solution if they are to achieve the

same tasks that humans can do. Making computers faster would only mean

- 13 -

that they would excel at the tasks on which today's computers already
perform well, and it would only come a small fraction closer to
defeating the problems associated with real-time pattern recognition.
So how can we achieve it? The answer is vital for our future as an
industrial nation - not least in the area of automated inspection to be
covered in later chapters of this thesis.

1.3 ACHIEVING REAL-TIME PATTERN RECOGNITION

The answer almost certainly lies in the neural-net model based on
the interconnection pattern of neurons observed in the brain. The
hallmark of the neural-net is massive parallelism and high

interconnectivity between a large number of relatively slow and simple
processors (neurons) [127]. The general consensus that is emerging is
that the information stored in a neural processor is distributed among
the various nodes and their connections rather than being at discrete
spatial memory locations as in the computer representation of an image.
When a neuron receives a message, it immediately transmits it to the

other neurons connected to it.

The obvious approach would therefore be to design a computer
architecture with a large number of autonomous processors and high
connectivity. However, such designs are generally expensive and often
introduce data bottlenecks because of processor autonomy and their
connectivity arrangements. As with any multiprocessor system, efficient

use of processing resources is important. The computational load in the
human brain is evenly distributed between communication and decision

making so, at any given time, a substantial fraction of the decision

making units are performing meaningful computation [127]. This is not

always the case with autonomous machines and tends to be program

specific. Architectures designed to eliminate data bottlenecks and

obtain 100% utilisation of the available processing resources have

- 14 -

nonautonomous processors and only have local connectivity between
neighbouring processors (see Chapter 7). They thus only contain
information local to a specific part of the image and are hence
inadequate for certain classes of pattern recognition algorithms that

would otherwise be beneficial to the solution of a problem.

1.3.1 Programming Problems

The problems with both of the above approaches is the programming
problem. Autonomous processors can invoke data bottlenecks if
processors frequently need to access shared memory. Where one processor

takes longer to run, others may lie idle making inefficient use of
processing power and resources. Both of these problems occur through
inefficient partitioning of an algorithm. For efficient use of
processing power and resources, an algorithm must be partitionable into
N independent processes for N processors. In general, this is not
possible. Nonautonomous processors share the same amount of processing
and programming is made easier; however, sequential algorithms cannot be
executed efficiently as they require processor autonomy and access to
global information. This has meant that ad hoc implementations of
algorithms have been typical in past work.

1.4 THE PROBLEMS WITH COMPUTERS

Computers lend themselves to solving problems that by nature are
structured in such a way that they use algorithms having many short
steps. Humans do not recognise scenes by sequential steps but rather by
a process of global associations [127], processing all the received data

simultaneously. To expect a computer to be able to approximate this
process in step-by-step algorithms seems unrealistic. Recognising

objects in an image is thus inherently difficult for a computer. For

instance, take the example of locating a blue mini in a car park with a

- 15 -

given registration number, bearing in mind that a computer has to
approach this problem in a sequential manner.

Complications initially arise for the recognition of the
registration number - for instance, broken or occluded letters present a

problem. A much wider problem exists when it is required to recognise
the car. The most obvious approach is to store a picture of the car in
the computer's memory then, for every car encountered, match it with the
stored picture on a point-by-point basis. However, various factors need
to be considered. Many pictures would have to be stored in order to

take into account all possible different lighting conditions and the
different orientations of the car. In fact, the number of pictures to
be stored would be exceptionally large. Also, since the car cannot be
guaranteed to be in the same position in the image, each stored picture
would have to be applied to every point in the image until a match was
found. This would clearly take such an enormous amount of time that

this approach has limited practical applications. However, the same
sort of problems arise for relatively "simple" tasks such as those
associated with industrial inspection where an object has to be undergo
detailed scrutiny in typically one-tenth of a second.

1.5 SO WHERE DO WE GO FROM HERE?

It is postulated that the human brain has about 10^^ neurons and
each neuron may be connected to up to 10,000 other neurons [127]. Such
a system is beyond the scope of this thesis; however, by applying the
same principles as the neural-net architecture on a smaller scale in
that the information is fairly evenly distributed among the processors

and each processor has access contention free access to the same

information when required, this would solve many of the problems
associated with today's architectures, i.e. efficient use of processing

resources and execution of parallel and sequential algorithms.

— 16 —

Current vision systems are usually employed as inspection machines
for recognising and inspecting one particular product. More complex
systems involved in the mechanical assembly of machinery involves

recognition of several, well defined objects. However, because of the
cost involved and the amount of processing time permitted by industrial
requirements, these machines have not progressed greatly and are limited
to simple tasks involving two dimensional data. If such machines could
be made to execute complex pattern recognition tasks in real-time while
remaining cost-effective and without the burden of having to match the

algorithm to the architecture, one could consider developing practical
inspection systems that could perform more complex intelligent vision
tasks such as gauging three-dimensional products in real-time. The
recognition stage alone for 3-D inspection currently takes several
minutes on today's processors. Such systems could in principle be made
much more flexible and robust.

1.6 THE AIM OF THIS THESIS

The need to achieve real-time recognition is evident from the last
two sections. Achieving greater processing power would mean that
computers could perform more complex decisions on the basis of visual

inspection. This work attempts to develop the interprocessor
communication problem with the aim of eliminating data bottlenecks
traditionally associated with multiprocessor systems while maintaining
processor autonomy. However, the cost of such a system must also be
considered. A bit-slice processor called SIP (Chapter 5) is described
which offers a cost effective solution for high speed processing. This
processor is used to investigate the communication problem and

architectures based on the neural-net model, i.e. the information is
evenly distributed among the processors and each processor has

contention free access to the same information when required. This

- 17 -

represents a radical departure from traditional digital computer
architectures.

Such systems are not beneficial unless they are accompanied by
efficient, robust and reliable algorithms. This means that they should
be tolerant to effects such as noise and incomplete data. Algorithms
suitable for these purposes are cited, discussed and it is shown how
they may be implemented with minimum programming effort on the SIP
system. This thesis emphasises the industrial vision area as this is

currently a practically useful application for vision systems.

1.7 OVERVIEW OF FOLLOWING CHAPTERS

The work is divided into three sections. Part 1 (Chapters 2-4) is
concerned with the concepts of designing efficient and robust algorithms

suitable for industrial applications. Part 2 (Chapters 5-6) is
concerned with the execution of such algorithms in real-time and the
design and development of a high speed, low cost bit-slice processor is
described. The concept of combining a parallel processor with a
sequential processor is proposed and an investigation into its
feasibility is undertaken. Part 3 (Chapters 7-8) is concerned with an

investigation into architectures that have been developed for image
processing. This work, building on the results from Part 1 and Part 2
arrives at an architecture that reduces processor bottlenecks
traditionally associated with interprocessor communication: its study

entails an investigation of the origins of data bottlenecks.

Chapter 2 - Reviews current and past work in the fields of image

processing, image analysis and pattern recognition. An
attempt to highlight the topics relevant to real-time work
and robustness is undertaken and shows how they can be

applied to real-world problems.

- 18 -

Chapter 3 - Describes two industrial algorithms. These are "typical"
algorithms in that they both contain sequential and parallel

processes. This is emphasised as the results from these
algorithms are used later in the thesis.

Chapter 4 - Describes the sequential implementation of the industrial
algorithms given in Chapter 3. These results are compared

and a discussion on the usefulness of sequential and

parallel processors in an industrial environment is
undertaken. This attempts to highlight the areas where
these processors would be suited, bearing in mind the
applications and the cost-effectiveness in each case.

Chapter 5 - Introduces the idea of microcode and microcoded processors
A low cost, high-speed processor is described along with an
accompanying assembler.

Chapter 6 - Describes the Linear Array Processor (LAP) and is used to
investigate a parallel/sequential processor architecture in
conjunction with SIP (Chapter 5). This arrangement is

necessary in order to execute general purpose algorithms
(algorithms consisting of parallel and sequential tasks)
efficiently. Machine performance is also discussed
particularly in relation to SIP and the LAP.

Chapter 7 - Reviews current architectures that have been used for image

pattern recognition. Methods that have been used to achieve
a higher instruction throughput in the past are discussed.

Current trends towards architectures for image processing

are highlighted: included is a discussion of the usefulness

for general purpose applications. Tradeoffs are discussed

— 19 —

with regard to speed and cost.

Chapter 8 - Discusses the design of a novel architecture that attempts
to reduce data bottlenecks commonly associated with multiple

autonomous processor architectures. The methodology for

reducing the bottlenecks is discussed and proposes a system
which increases performance approximately linearly as N
increases. This is based on the neural-net model described

above.

Chapter 9 - Concludes the thesis. Conclusions and suggestions for
future work are proposed.

With this wide scope ranging over the whole of vision and real-time
cost-effective architectures, a fair amount of review material is
required: this is provided in Chapters 2 and 7. The remaining chapters
(Chapters 3,4,5,6 and 8) all describe new work. Below is a map showing
how the chapters are "linked" together. This provides an overall view

of this thesis.

Chap 2
IP/IA/PR
review

Chap 3/4
Inspection
algorithms

S/W

Chap 5 Chap 6
SIP

H/W

INDUSTRIAL INSPECTION
"systems

Chap 8 Chap 7

LAP Multiple SIP Architecture
configuration review
investigation

GENERAL PURPOSE I.P
ARCHITECTURES

AFFORDABLE
SYSTEMS

HIGH PERFORMANCE IMAGE
INSPECTION SYSTEMS

THE FUTURE

- 20 -

CHAPTER 2
THE REPRESENTATIF OF REAL-TIME ALGORITHMS

"Experience is the name everyone gives to their mistakes"
Lady Windermere's Fan

2.1 INTRODUCTION

Image recognition has several applications in the real-world
including document processing (reading of printed or hand written
characters), industrial automation (inspection of products and robotic
assembly), medicine and biology (blood cell counting, tumour detection)
and remote sensing (environmental monitoring, metrology) [103].

The general goal of a pattern processor is to generate descriptions
of images and relate those descriptions to models characterising classes
of images. A pattern processor can be partitioned into three basic
parts - a preprocessor, an image analyser and a pattern recogniser, the

associated algorithms of which are better known under the general term
image pattern recognition. Operations which fall into the class of
image processing (preprocessing) transform an image into a modified
output image which can be described as an improved or otherwise modified

version of the input image. Image analysis is the area studying image

descriptions which are expressed by relationships between the features

of the image. Segmentation techniques fall into this category. Pattern

- 21 -

recognition is primarily concerned with the description and
classification of measurements taken from the image analysis section.

In any application area, the stages in the analysis process are
similar. An image is initially preprocessed, for example, to

standardize the grey-level, to remove noise or to deblur it.
Segmentation often follows to partition the image into regions; the
result is then passed to the pattern processor to analyse these regions
and determine the properties of the image. If we have a model that
describes these properties then we can recognise the image as belonging
to a certain class - hence recognition is performed.

This chapter reviews some of the areas that have been developed and
used successfully in image processing, image analysis and pattern
recognition. However, there also exists a class of operations that
locates and recognises specific features of an image, e.g. the centres
of circles. Strictly speaking, this comes under the heading of image
analysis; however, it deserves special attention as it is particularly

relevant to industrial applications and will be discussed under the
separate heading of "shape analysis and feature extraction". Throughout
this chapter, those areas particularly relevant to industrial
applications are emphasised and will be discussed in detail. Clearly
for space, not all topics can be covered. However, an attempt is made
to highlight those topics from the field of image pattern recognition

that are particularly relevant for real-world problems, and short
discussions follow many of the sections in order to cite the practical
usefulness of these operations. First, let us consider the three basic

types of operations that constitute the entire range of picture
processing functions.

— 22 —

2.2 SEQUENTIAL AND PARALLEL FUNCTIONS

Picture processing operations fall into three categories:

1. Single point operations - every point in the resultant image plane

P' is a function of its equivalent point in P. These are restricted
to the most primitive class of operations such as thresholding and
grey-scale modification as they are not dependent on the semantic
content of the image.

2. Neighbourhood operations - every point in P' is a function of its
equivalent point in P and its neighbours. This is probably the most
common type of operation as it is context dependent. Examples are
edge detectors, smoothing algorithms and thinning operations.

3. Distant neighbour operations - every point in P' is the result of
its equivalent point in P and any or all of the points in P. An
example is the Fourier transform. Because of the amount of

computation frequently required by these types of operations, they

are not suited to real-time image analysis tasks.

The second and third classes of operation are usually classed as
parallel functions, i.e. a point in the original image and its
neighbours are used to yield a result for the equivalent point in a new
image. Because the order in which all the points in the image are

accessed is immaterial, they can be considered as being operated on in
parallel. In other words, the same operation can be applied to all
pixels simultaneously. Conversely, sequential functions depend at each

stage on the result from previous operations. Therefore, as a result is
evaluated, it is written back into the current location in the original

image. In this case the order of evaluation is important.

- 23 -

2.3 GREY LEVEL VS BINARY PROCESSING

All operations described above can be applied to both grey-level
and binary pictures. Grey-level pictures allow any point in an image to

be one of (usually) 256 different levels (zero representing black and
255 representing white) while binary images only consist of two values,
which may be represented as one and zero. The choice of whether
grey-level or binary images are used is application dependent. For
instance, textural information processing is not usually carried out for
binary images while chain coding and thinning are generally restricted
to binary images (except see [87] and Chapter 4). Environmental
conditions must also be considered, for instance, thresholding an image
to extract edges where edges are not clearly defined from the background
is nontrivial; however, when lighting and other conditions can be
controlled, processing can be often kept to a minimum by thresholding.

A traditional pattern processing machine consists of a
preprocessor, an image analyser and a pattern recogniser. A pattern
processing operation will usually fall into one of the above three
categories. However, image processing and pattern recognition are
fields that developed rather separately [74] and therefore there are
some areas that cover both topics. For instance, image processing
includes not only coding, filtering and enhancement but also analysis
and recognition of images. On the other hand, pattern recognition
consists not only of feature extraction and classification but also
preprocessing of patterns. For example, consider optical character
recognition (OCR). The characters generally have to be preprocessed
before analysis can proceed; however, preprocessing consists of

segmenting and thinning the characters - operations that come under the

heading of image analysis.

24

The algorithms related to the fields of image processing, image
analysis, feature extraction and pattern recognition will now be

discussed under their respective headings. Particular emphasis will be

placed on the use of each topic in industrial inspection, where the
performance of an algorithm is critical.

2.4 IMAGE PROCESSING

An image can be seriously degraded by effects such as illumination

(shadows), reflectivity (glints), noise (general camera interference)
and blur. Image processing (or preprocessing) is frequently concerned
with the transformation of images such that the output image is an
improved or otherwise modified version of the input image. This is
important if we want to classify pixels based on their grey-level
values. In this section we will discuss several preprocessing

operations that can be applied in order to improve the quality of an
image from the four most frequently occurring picture degradation
effects: nonuniform lighting, low contrast, blurred, and noisy images.

2.4.1 Grey-level Correction

The brightness of a point in a scene (f) is effected by several
factors including the illumination (i) and the reflectivity (r).
However, it is often the case that i varies slowly across an image

producing a nonuniformly lit scene. We can write the effects of this in

the form f(x,y)=i(x,y)*r(x,y). By rewriting this in the additive form
log(f)=log(i)+log(r), using high emphasis spatial frequency filtering

and then taking the antilog, the effects of i can be reduced.

2.4.2 Grey-scale Transformations

A low contrast image is often the result of low lighting

- 25 -

conditions. We can increase the contrast by adjusting the grey-levels
by an appropriate transform which can be expressed in the form z'=h(z)

where z' and z are the new and old grey-levels respectively. If we
consider that a range of pixel intensities that occur frequently lies in

a range R while the rest lie outside R (which is the case in low

contrast images), then we can stretch R and compress the rest of the
scale such that the full bandwidth of the grey-scale range is used.

2.4.3 Sharpening

Blurring can often arise from an incorrectly focussed camera or
through the effects of motion. The outcome of this is that high spatial
frequencies are weakened more than the low ones. Sharpening is the
process of emphasising the high spatial frequencies by filtering;

however, this cannot be done indiscriminately since noise is usually

stronger than the image signal at high frequencies. A simple way of
sharpening the image (to a first approximation) is to apply the
Laplacian operator:

V V = (9"f/9x2) + (92f/9y2)

and subtract a multiple of this from the blurred image. This can be
explained in the following way. The Laplacian is proportional to f-f'
where f is the original image and f' is the blurred version. Now in f',

high spatial frequencies have been weakened more than low ones. Hence,

when we subtract f' from f, the low frequencies in f are more or less
cancelled out while the high ones remain relatively intact. Thus, when

we add a multiple of f-f' to f, we are boosting the high frequencies

while leaving the low ones relatively unaffected.

- 26 -

2.4.4 Smoothing

Perhaps the most frequently occurring source of image degradation
is the presence of noise. If the noise can be distinguished from the
signal then it becomes easy to remove. An example of this is isolated

dots in a binary image, commonly referred to as "salt-and-pepper" noise.
An ideal image will not, by definition, contain noise, so application of

a simple operation, e.g. the elimination of a white point if it is
surrounded by black points (and vice-versa) will often suffice.
Grey-level smoothing can be carried out by replacing each pixel with the
average of its neighbours. The generalised cases of both operations are
given below.

nn nn
F' = 1 ^^/(x+i,y+j) Grey level case

n i=-nn i.-nn
nn nn

if ^/(x+i,y+j) < T Binary casefo i:
P' =< j=-nn i=-nn

otherwise

where x and y are the (x,y) coordinates at that point in the image, n is
the number of pixels in the NxN window, nn is (N-l)/2 and T is an

arbitrary threshold, depending on the level of smoothing required.
However, this strategy for smoothing grey-level images is well-known to
have the effect of blurring the edges. This is undesirable as it masks
much of the information at the edges - contrary to the reason for
applying the preprocessing operations in the first place. To avoid
this, several schemes have been considered, two of which have been
proposed by Rosenfeld [102].

1. Average each pixel only with those neighbours vdiose grey-levels are
closest to that of the pixel.

- 27 -

2. Perform edge detection^ at every point in the image. If an edge is

present then average only in the direction along the edge or only
with those neighbours on the same side of the edge as the current
point.

These methods are known under the heading of selective averaging.
We give weights to the neighbours, chosen in such a way that neighbours

belonging to the same region as the given pixel have high weights. Both
of these schemes can be iterated if desired to increase the degree of
smoothing. The disadvantage with these techniques is that they are
computationally expensive. However, in a later paper, Davis and

Rosenfeld [30] produced a technique called the K-nearest neighbour
method which produced a trade-off in computation and enhancement power

with both schemes mentioned above.

Another alternative for noise removal is to apply a median filter,
i.e. replace each point with the median intensity value of its
neighbours. This has the advantage that the edges are not blurred
although again, this is computationally expensive (but see [20] for a

slightly improved version).

2.4.5 Advantages and Disadvantages of Image Processing

Application of such steps as the median filter and selective

averaging are, in general, computationally expensive, making them less

appealing for real-time work. Ultimately, the need to preprocess an

image depends on the amount of control over the lighting of the scene.
For instance, inspection of industrial objects is often carried out

 ̂As edge detection falls into the class of image analysis topics, this
is a case where an image analysis topic falls into the class of image
processing.

— 28 —

under controllable lighting conditions. Thus, in the majority of cases,
the effects described above can be avoided by suitably adjusting the

lighting and hence eliminating the need to preprocess the image. This
is highly advantageous as the overall execution time of the algorithm
will be reduced.

Preprocessing an image has other advantages that are not
immediately obvious. For instance, when thresholding an image, edges of

objects can become broken because of an incorrectly chosen threshold.
Thus, operations such as tracking algorithms will fail to track around
the complete edge. Smoothing an image can often join up the breaks.
However, the disadvantage with this is that if the object in question is

to be analysed for defects, these breaks may actually be real defects
and could go unnoticed.

2.4.6 Brief Summary

This section has discussed several image processing algorithms.

These transform images into other images such that the output image is a

modified version of the input. The result of this stage is usually
passed to the image analysis stage where the pixels can then be
classified. Because the majority of image analysis operations classify
pixels on their grey-level values, one must be careful when applying

preprocessing algorithms as they change the grey-level values.

2.5 IMAGE ANALYSIS

Image analysis is the area studying image descriptions which are

expressed in the form of relationships between, and properties of, image

parts. This section discusses some of the types of operations that fall

into the class of image analysis operations.

29 -

2.5.1 Segmentation of Images

Probably one of the most important classes of techniques used in
image analysis is that of segmentation. This can be described as the
division of an image into regions of homogeneity based on the properties

associated with each pixel, such as the local texture or the gradient.

Segmentation is a critical component in the pattern processing stage
because errors here might propagate to the feature extraction and

classification stages. It is important to note that if an image can be
classified, segmentation is the first stage at which a description or
classification can be attempted.

Segmentation techniques can be categorised into three
classes: (1) edge detection, (2) thresholding and clustering, and
(3) region extraction. Two basic points arise that are common to all
three classes:

1. Every point must be in a region - this means that the segmentation

algorithm must process all points in an image.

2. Regions must be contiguous.

Segmentation algorithms have historically been somewhat ad hoc [51].
There are no general algorithms for all images because a two-dimensional
image can represent an effectively infinite number of possibilities. To

build a general image understanding system, the computer would require a
vast amount of knowledge. For this reason, a priori contextual
knowledge is usually incorporated into segmentation algorithms. For

example, take the famous image of a dalmatian dog. Without a priori

knowledge this appears to be noise to many human observers. However,
given the knowledge that a dalmation dog is present in the picture, the

dog becomes instantly recognisable.

- 30 -

Most segmentation algorithms are based either on the concepts of

discontinuity (e.g. edge detection), or similarity (e.g. thresholding).
The next few sections look at the case of discontinuity. The case of
similarity follows in Section 2.5.3.

2.5.2 Edge Detectors

Edge detection techniques are important because, in many cases,
most of the useful information in an image lies at the boundaries
between different regions. (This would therefore appear an appropriate
subject to cover with regard to industrial inspection.) Since high

spatial frequencies are associated with sharp changes in intensity, one
can extract the edges by performing high-pass filtering, i.e. take the
Fourier transform of the image, multiply this by a linear spatial
frequency filter and take the inverse transform. The main disadvantage
with this approach is that much of the localised edge information is
lost.

The class of edge detectors that extract local information from the
edge points fall into two categories - parallel and sequential edge
detectors. Parallel edge detectors are those whose operations can, in
principle, be applied to every point in the image simultaneously while

sequential edge detectors depend on the results of previous operations.

Both of these will be covered. We will first describe the two types of
edge detector that exist for the parallel case: the differential
gradient and the template match edge detectors.

2.5.2.1 Differential Gradient Edge Detectors -

Most of the edge detection techniques examine the grey-level

intensity changes within a local neighbourhood. The differential
gradient edge detectors determine the magnitude and direction of the

- 31 -

intensity gradient at each point by calculating the x and y derivatives.
A high magnitude results where there is an abrupt change in grey-level
(an edge) and a low magnitude where there is little change in grey-level
(no edge). (A threshold is usually applied to the magnitude to suppress

the effects of noise.) This method has the particular advantage that,
since the directions of the edges are readily available, only edges with

a preferential direction, e.g. horizontal, may be detected. The
simplest case of an edge detector is

~ /(x+l,y) - f(x,y) = A f(x,y)
9x ^

~ /(x,y+l) - f(x,y) = A f(x,y)
9y ^

thus, the magnitude of the gradient is approximately

|V/(x,y)l ~ /([A^/(x,y)]2 + [A ^(x,y)]2)

and the direction is given by

0 = tan"^[A^(x,y)/A^f(x,y)]

where f(x,y) is the intensity value of the pixel at the current
position (x,y). The information derived from these values can then be
analysed to give some insight into the properties of the image; for

example, if we accumulated all edge points with their corresponding

angles, large accumulations would correspond to the most prominent
angles in the scene [34].

Another well known edge detector is the Robert's cross operator

[100]. This estimates the derivatives diagonally and is equivalent to a
linear fit over a 2x2 neighbourhood, i.e.

- 32 -

\ = /(x,y) - /(x+l,y+l)
2̂ = f(x+l,y) - f(x,y+l)

again, the magnitude is given by
M = /[A^2 + Ag:]

Note that the calculation of the magnitude (as with many others) tends

to be computationally expensive, involving two multiplications and a
square root calculation. A simpler approximation is

M = IAJ + IA2I

This is not as accurate but is adequate for many purposes. An
alternative to the gradient estimates within a 2x2 window is the maximum
difference operator [53]. This finds the maximum and minimum values
within the four-pixel group and subtracts the minimum from the maximum.
However, this tends to be very sensitive to noise and could give

misleading results.

The above approaches all use 2x2 windows. These are the least
computationally expensive but because the window is relatively small,
they require that there be distinct changes in intensity between two
adjacent points. Thus, only very sharp edges with high contrast between
the surfaces which form the edges will be detected while ill-defined

edges (edges formed by a gradual change in intensity across the edge)
will not be detected. The result is therefore quite susceptible to

noise. An alternative is to use a 3x3 neighbourhood. Examples of such
edge detectors are Prewitt [96], Frei-Chen [50] and the Sobel [33],

which are known as the "fast edge detection operators". These masks are

given in Figures 2.1a to 2.1c, the differences being the weights

assigned to the elements in the 3x3 window. The Prewitt mask smooths
the gradient (average of both sides of the window) while the Frei-Chen

mask is based on "isotropic weighting functions". This is intuitively

better as the weightings reflect that the corner neighbours within the

- 33 -

Figure 2.1a Prewitt Masks

-1 0 1 \ / I n/2 1
-v/2 0 v/2 0 0 0
-1 0 1 / V - 1 -v/2 -1

Figure 2.1b Frei-Chen Masks

-1 0 n / 1 2 1
-2 0 2 0 0 0
-1 0 1/ 1-1 -2 -1

Figure 2.1c Sobel Masks

3x3 window are /2 further from the centre pixel than the other
neighbours. The Sobel operator depicted in Figure 2.1c organises its

neighbourhood pixel weightings such that it reflects the proportion of a

circle which is present within the neighbour [26].

More complex edge detectors such as the Marr-Hildreth [75]

"difference of gaussian" and that developed by Hueckel [58],[59] use
larger masks. Hueckel's edge detector used a 52 element mask which is

arranged such that it approximates a disk-like shape as shown in

Figure 2.2. This has the advantage that it removes most of the local

noise; however, the disadvantage with both of these is that they are
computationally expensive and therefore less suited for industrial
inspection requirements.

- 34 -

1 2 3 4

5 6 7 8 9 10

11 12 13 14 15 16 17 18

19 20 21 22 23 24 25 26

27 28 29 30 31 3 2 33 34

35 3 6 37 3 8 3 9 40 41 42

4 3 44 4 5 46 4 7 48

49 5 0 51 5 2

Figure 2.2 Heuckel's mask

2.5.2.2 Tenplate Match Edge Detectors -

Another approach to edge detection employs template matching masks.
The edges are found by applying a series of masks (each of which
represents an ideal edge) to every point in the image. (In general,
eight masks are used, one for each of the eight main compass
directions.) The angle is determined from the template which gives the

maximum response. Examples of teirplate masks are: Prewitt [96], Kirsch

[65], and the "3-level" and "5-level" Robinson masks [28]. Two of the
eight possible compass directions for these are given in Figures 2.3a to
2.3d.

The main disadvantage with the teitç)late matching approach is that

it is not as accurate as the differential edge approach, either for

estimating magnitudes or for determining orientations. Also, it is

computationally quite expensive since all eight masks have to be applied
to every point in the image.

- 35 -

-1 -2

Figure 2.3a Prewitt Masks

Figure 2.3b Kirsch Masks

-1 0 / 0 1
-1 0 1 -1 0
-1 0 1 1 - 1 -1

Figure 2.3c 3-level Robinson masks

- 1 0 I ^ 1
- 2 0 2 - 1 0
- 1 0 1 I - 2 - 1

Figure 2.3d 5-level Robinson masks

The masks for many differential gradient and template matching

operators appeared to be ad-hoc and Davies attempted to overcome this
problem in each case [26],[28].

- 36 -

2.5.2.3 Analysis of Parallel Edge Detectors -

Abdou and Pratt [1] investigated the probabilities of "true edge"
and "false edge" detection for the 2x2 differential gradient operators,
the 3x3 differential gradient operators and the template match

operators. Not surprisingly, they showed that the 3x3 operators

detected more "true edges" than the 2x2 operators. However, their
results also revealed that the Prewitt operator was better for detecting
vertical edges than the Sobel, but the Sobel was better for detecting

diagonal edges. With regard to the template operators, they showed that
the 3-level and 5-level Robinson operators exhibited almost identical
performance while being superior to the Kirsch operator. Finally, they

also showed that the Sobel and Prewitt operators performed slightly
better than the 3-level and 5-level template masks.

Lee [71] developed a method for improving the execution time of the
Sobel operator at the expense of storage. By retaining the results from
the previous line, a factor two speedup could be achieved. In a

discussion on the detailed implementation of circular operators, Davies
[26] showed that the Sobel operator is near optimal. It is known
[26],[53] that a circle (rather than a 3x3 digitised approximation) will
give the maximum response to any image processing algorithm. However,
whether the circle should be drawn within the 3x3 region as depicted in
Figure 2.4a or outside as in Figure 2.4b is a relevant question. Davies

investigated how the angular accuracy of circular differential gradient

operators depends on the radius of the circular neighbourhood. The
problem with Figure 2.4b is that the pixels outside the 3x3

neighbourhood must also be included. This is obviously undesirable as

it adds to the computation time and makes life very awkward in general.

Davies went on to show that the most accurate version, lies somewhere

between the two cases but lies much closer to the former case

(Figure 2.4a) than the latter (Figure 2.4b).

— 37 —

(a) (b)
Figure 2.4 3x3 windows for the circular operators

2.5.2.4 Sequential Edge Detectors -

All the above algorithms are classed as parallel edge detectors.
Thus, edge classification is based only on the grey level values of a
points' neighbours. For sequential edge detectors, the result at a

point is contingent upon the results of previous operations [76]. This
class of edge detectors are of less interest to us as they tend to be
computationally expensive and will not be discussed any further.

So far, we have discussed the segmentation of a scene by
classifying pixels as edge/non-edge. Quite often, it is necessary to
differentiate between several regions, for instance, when distinguishing
between regions in a satellite image, we may want to classify pixels
according to their texture. In this case, we need to cluster the

pixels, classify them and assign them values in the original picture.

This is discussed next.

2.5.3 Thresholding and Clustering

Each pixel in an image generally has one or more features
associated with it. The "first-order" features are grey level and

spatial coordinates \diile its "higher order" features includes such

items as gradient and texture. These features can be mapped to a point

— 38 —

in feature space. (Feature space is a high dimensional space Wiere each

point is represented by a vector of features, the dimensionality being
equivalent to the number of features recognised.) Clusters in feature

space therefore arise from subpopulations of the pixels in the original

image space. By separating the clusters in n-dimensions such that
feature space is partitioned into a number of mutually exclusive and
contiguous regions, the points in feature space can be mapped back to

the original spatial domain to produce a segmented picture. We now give
some examples of this.

The most widely used and simplest technique of clustering is that
of thresholding. The features in this case are based only on the
grey-level intensity of the pixels. Clusters are formed which represent
dark (generally objects) and light (generally background) regions. By

classifying the clusters as object and background respectively and
assigning them the appropriate label in the original image, objects

become easily distinguished from the background in high contrast images.
There are a number of schemes for separating the clusters in this case,
most of which are based on the grey-level histogram for determining the

threshold. A dark object on a white background will produce a well
defined bimodal histogram (Figure 2.5b). The threshold is chosen at the
valley of the two peaks such that the clusters are partitioned. The

results are then mapped back to the original image, to produce the

segmented image. This has many disadvantages, the main one being that
high contrast images are needed between the "object" and the
"background" and noise should be low - neither condition being

accurately achievable in practice, particularly in an industrial

environment. Low contrast images have the effect of merging the

clusters together, hence making separation difficult.

- 39 -

Mapping an image into several different regions is basically a
multidimensional extension to the concept of thresholding, i.e. several
clusters are formed from a single feature. However, as the number of

regions grows, it becomes increasingly difficult to partition the

clusters using just one feature. We may therefore have to take into
account multiple features (as in the case of multispectral images such
as LANDSAT) in order to resolve the problem. As an example, consider
the case of a dark object on a light background, i.e. a high contrast
image. If we chose our feature as being based on the mean grey-level
then the mean grey levels of the object will fall into the category Sq
and those of the background will fall into the category S^. A straight
threshold in this case will often suffice to segment the image as
before.

Grey-level values

\ /I Object J / Background {

X 9I Boundary

Figure 2.5a Clustering of pixels based on
edge and grey-level values

Now consider the case that the edges of the objects are blurred.

The grey-level values of the pixels at the edges will typically fall

between Sq and S^, hence leaving them undefined and separation of the

- 40 -

clusters difficult. Panda and Rosenfeld [89] considered a
two-dimensional feature space based on the values of the grey-level
pixels and the magnitude of the gradients to solve this problem.
Although the mean grey levels of the pixels at the edges will be
undefined, the magnitudes of the gradient at these points will be high.
Thus, by use of the two-dimensional feature space previously described,
a map will be produced as in Figure 2.5a where the boundary points have
a high edge value and fall between the regions Sq and and the areas
away from the edges fall distinctly into either region. This is a sort

of trimodal histogram in two dimensions. In cases vdiere the edge
elements also become undefined, it may be necessary to adopt three or
more features.

(b) (c)

Figure 2.5 Segmenting an image based on bimodal and
unimodal histograms

Various methods can be used to separate the clusters in this case.
One such method is to choose the original bimodal histogram based on the

grey-level values and choose a threshold as depicted in Figure 2.5b.

Alternatively, one could consider, a unimodal histogram based on the edge

magnitudes and base the threshold on the mode as shown in

Figure 2.5c - this corresponds to those points on the borders between
object and background. The separation of clusters will be discussed in

- 41 -

more detail later in Section 2.7.1. First, we shall look at another

form of segmentation based on similarity but which is different from the
above method for reasons that will be explained.

2.5.4 Region Extraction

Two methods formally exist for extracting regions - region growing

and region dividing. Region growing is effectively a bottom-up process

where the region starts from a single point and "grows" by grouping all
neighbouring points that possess a similar property, e.g. its grey-level
value. On the other hand, region dividing (top-down process) initially
treats the whole image as one region and decomposes it into regions that
are again similar in nature. These two methods are similar to
clustering discussed in the last section apart from the constraint that

points within a cluster must be contiguous within an image plane as well
as similar in properties. These approaches to recognition are less

attractive because regions that have been segmented in this way may
proceed too far and miss edges that are significant. As edges are
generally more important than regions (especially for extracting
dimensional measurements so frequently used in industrial inspection),

edge detection techniques are more often used.

Edge detection is often a prerequisite for shape analysis and
feature recognition. These are both used for the recognition and the

inspection of objects. This is particularly important in industrial
applications where it may be required to locate an object, recognise it

and then scrutinise it for defects. The next section discusses several

shape analysis and feature recognition techniques that have been
developed which are advantageous for object recognition.

- 42 -

2.6 SHAPE ANALYSIS AND FEATURE RECOGNITION

Shape analysis is important for object recognition. After the
edges of an object have been found (whether by thresholding or edge
detection) it is usually necessary to examine the edges in order to get
some sort of shape description, following which it can be recognised.

Techniques for shape analysis can be classed into information

preserving and non-preserving techniques. Such methods are the

transform schemes, spatial techniques and global shape analysis
techniques. The two problems that frequently occur are dependency on
scale and orientation. Common spatial techniques, i.e. working in the
image space domain, are the boundary encoding schemes, the most popular
of which is that developed by Freeman [45] known as the chain code. A

shape analysis scheme using the chain code has been developed [49] and
has been successfully employed in an industrial environment [19]. The
transform schemes include the Hough transform - this is discussed in
Section 2.6.4. Another approach uses the Fourier boundary descriptors
[99]. This is easily implemented but lacks the ability to extract local
information which is crucial for industrial inspection where small

defects may need to be located. However, they are useful in object
recognition as described in Chapter 4.

So far, we have only been concerned with the boundary of an object.
An alternative approach is to examine its medial axis by thinning. This
can often have distinct advantages over boundary algorithms which will

be discussed in the next section.

2.6.1 Binary Thinning Algorithms

Other terms commonly associated with thinning are "skeletonisation"

and "symmetric axis transformation". In general, thinning is restricted

to binary images where the boundary of the shape to be thinned is

- 43 -

clearly defined; however, there have been attempts to thin grey-scale
images (Section 2.6.3). For the moment, we will assume that the images
are in a binary format. The purpose of thinning is to thin an object
many pixels wide down to just a single pixel wide. There are several
advantages to be gained from doing this:

1. The large reduction of volume of data resulting from thinning

produces a significant improvement in the storage efficiency. This

is particularly important for real-time applications as a
significant amount of redundant information is removed. The
processing time involved in analysis is (in principle) thus
decreased.

2. It plays a particularly important role in optical character
recognition (OCR) where, to some extent, thinning provides a
unification of character shapes by reducing the effects of various
types of fonts. It also helps in extracting the fundamental
features of letters.

3. Thinning is a prerequisite for many shape analysis routines such as
the chain code or Fourier descriptors as discussed in Chapter 4.

As all the critical information is contained within the skeleton for
some industrial uses, thinning results in the elimination of a lot of
redundant information. This makes it appealing for industrial use,

particularly in OCR and post-edge detection techniques. Various

techniques of thinning have been developed, all of which rely on the
steady erosion of the boundaries while maintaining connectivity of the

shape. The basic idea is to iteratively delete edge points while

ensuring that (1) end points are not removed, (2) connectedness is

maintained and (3) excessive erosion leading to eventual skeleton bias

is not caused. One of the general problems that occurs in thinning is

the need for a consistent definition of connectedness when a rectangular

- 44 -

tessellation is used. For instance, consider the box below:

1 0
0 1

Here, the I's represent an object and the O's represent the background.

The natural interpretation of this is that the I's represent a diagonal

line of a skeleton bisecting two background areas. However, there is no
reason why this should not be interpreted as the background bisecting

the object and hence producing a discontinuity in the object. In other
words, connectivity is not defined rigorously and consistently. This is
known as the crossing paradox and has been discussed in detail by

Rosenfeld [102]. There are two main types of connectedness that exist

for rectangular tessellations - 4-connectivity and 8-connectivity. When
an object is 4-connected, only the horizontal and vertical edge elements

are allowed to be connected, while 8-connectivity allows the diagonals
to also be connected. Thus, allowing the background to be 4-connected
and the object 8-connected solves the paradox as the background

diagonals cannot now be connected.

Thinning algorithms differ in the way they conduct their tests to
meet the criteria, although there is usually a partial commonality
between the approaches. As Davies and Plummer [23] pointed out, most
authors give no standards for skeleton precision, and leave the
definition of a skeleton undefined. For example,

1. Montanari [79] propagates wavefronts from the inside of the edge of
the figure. The skeleton in this case is defined as the locus of

the intersections of wavefronts from opposite sides.

2. Rosenfeld [92] defines a skeleton as being the shape formed from the

centres of maximal discs placed within the object. From the

skeleton, the original object can be reconstructed by retaining the

radii of the maximal discs and simply re-drawing them.

- 45 -

A recent approach is that described by Zhang and Suen [130]. This
consisted of only two subiterations - the first subiteration deleted the
centre point from a 3x3 window if
(a) 3 < B(Pq) < 6
(b) A(Pq)=1

(c) P3 *Pi*Py= 0

(d) Pi*P7*Pg=0

vhere A.(Pq) is the number of 01 patterns in the ordered set

^l'^2'^3'^4***^8 B(Pg) is the number of non-zero neighbours in the
set P^,P2 ,P2 ,P^...Pg as shown in Figure 2.6. The second iteration is
the same except for

(c) P2*P^*Pg=0
(d) P3*P^*Pg=0

4 3 2

5 0 1

6 7 8

Figure 2.6 3x3 thinning window

The first sub-iteration removes the south-east boundary points while the
second removes the north-west boundary points that do not contribute to

the ideal skeleton. Condition (a) ensures that the end points of the

skeleton are preserved and diagonal elements with a thickness of two
will not disappear \diile condition (b) prevents the deletion of those

points that lie between the end points of a skeleton line. Both of

these conditions are shown in Figure 2.7. These steps are repeated
until there is no further change. Naccache and Shinghal [82] reviewed

14 different thinning algorithms, the majority of which were similar to

that just described. They found that the disadvantage with most of them

— 46 —

was the lack of reconstructability from the skeleton. They went on to
derive a fast method of thinning that achieved reconstructability.

 0---0--- 0 p— -Q— 01 I I I I
I I I I

■0 0 0 0 0

1 0

0 0 0 0 0 0 0 0 0

Figure 2.7 Preventing the deletion of end points

The problems with the majority of thinning algorithms is that no
two skeletons are always identical for every possible shape. In attempt
to set standards for the precision with which they could be performed,
Davies and Plummer approached the subject systematically. Their method
initially propagated the distance function throughout the shape. (The
8-connected definition of connectedness was chosen as this allowed the
propagation function to be carried out more rapidly.) The second step
was to mark all local maxima of the distance function points with the
constraint that these must not be removed in the next step. The
original figure was then "slimmed", i.e. thinned but with the constraint
that those points marked in the last section were to remain. The steps
were repeated until there was no change.

Although this may appear to be a computational burden on the
algorithm, Davies and Plummer noted that the slim algorithm used could
be a simple one as little care needs to be taken over the end-points,
this being the main source of complexity in conventional thinning
algorithms. Their definition of a skeleton is useful because strict
connectivity is maintained, unlike the definition by Rosenfeld. An
optional step proposed by Davies was the "purge" step that eliminated
noise spurs. A decision on whether a point is noise is highly
subjective and is inherently data and problem dependent. However, all

- 47 -

the relevant information is retained in the final skeleton so one can
interpret those points with a distance function of (say) unity as noise.
Stentiford and Mortimer [119] applied heuristics to avoid such effects

as spurious tails and distortions with good results.

2.6.2 Disadvantages of Binary Thinning Algorithms

The binary thinning approach has some severe disadvantages. First,
a simple threshold to achieve a binary image where edges are clearly

distinguished from the background is by no means realistic. As Smith
pointed out [117], thinning is frequently used in OCR but variations in
paper colour and shade, print quality, contrast and lighting introduce
severe difficulties in thresholding black and white images. This is
particularly true for paper that contains lines, text and pictures, all

with different levels of contrast, e.g. text printed in shaded boxes.
When such cases arise, it rapidly becomes impossible to threshold
effectively.

Unfortunately, even fast thinning algorithms run too slowly to be
of any practical use without the use of parallel hardware. As shown by
Naccache and Shinghal, a GDC 170-825 computer required 15-30 minutes to

thin a page consisting of 60 lines with 80 characters per line and an
average character size of 23x17 pixels. A visual inspection task that
employs both thinning and template edge detection is described by
Kaufmann, Medioni and Nevatia [62]. Their algorithm inspected PCB's

designed for watches. The object of the algorithm was to detect broken
PCB's and missing components. The steps consisted of edge detection,

edge thinning, thresholding and approximation of edges by line segments.

Although no times were given, this demonstrates a practical example of

three of the techniques discussed so far (although one suspects that

from previous attempts of thinning, this algorithm would probably take a
relatively long time to execute).

- 48 -

2.6.3 Grey-scale Thinning Algorithms

As mentioned above, achieving a suitable threshold is often
impossible. The aim of thinning a grey-scale image is to retain the

connectivity of the original image while producing a result which is not

determined wholly by the original outline of the image but which is
sensitive to grey-level values and lies along darker ridges in the
image. Thus, well-defined edges are no longer mandatory. One could

suggest applying an edge detector and thresholding the magnitudes to
produce a binary image, i.e. thresholding the edges. However, Paler and
Kittler [87] stated that this had several disadvantages, namely that
thresholding removes information concerning the position of the maximum
of the edge magnitude and the methods are very sensitive to noise.
Instead, they chose a method whereby, for each edge pixel found, two

neighbouring pixels with an angle nearest to the perpendicular to the
edge direction of the edge pixel were found. These angles were compared
with the edge pixel and if they were both within a predefined angular

tolerance, the edge magnitudes of the edge pixel and both neighbours
were compared. If the magnitude of the edge pixel was less than either
of the two neighbours then it was set to zero. The process was

continued until all edge pixels had been processed.

Another technique was that described by Hilditch [54]. Here, a

binary image is thinned in the usual way, i.e. by any of the methods
described in the Section 2.6.1, except that the deletion of a point was
also governed by the value of the equivalent point in the grey-level

image. This method was generalised to the grey-scale picture; however,

this required a definition of connectedness. The most common definition
is that two pixels in a grey-level image are connected if there is a

path joining them that contains no pixels lighter than both of them. A

pixel is set equal to the lightest of its neighbours if it does not
disconnect any of its neighbours. This condition proved to have been

- 49 -

too "strong" and a definition of the "strength" of connectedness had to
be derived.

Another alternative to the above method is as follows [54].
Suppose that in the binary case {N^} is the set of neighbours
(4- or 8-connected) which must have a value one and {Nq } is the set of
neighbours that must have a value zero. The grey-level equivalent is

that {N^} is the set of neighbours which must have a value greater than

or equal to that of the pixel under consideration and {Nq } is the set of
neighbours which must have a lower value. If these requirements are
both satisfied then the pixel is thinned by setting its value to the
darkest of the set of neighbours {Nq }.

As an epilogue to the thinning section, a novel application for

thinning is that of palm reading [85]. Palms are in fact a better means
of identification than fingerprints but the method is less practical.
However, under controlled conditions it would be possible to detect the
presence of the life, head, heart and fate line (as these are the most
prominent lines on the palm), thin them to a single pixel width, then
chain code the thinned lines for further analysis.

2.6.4 The Hough Transform

We shall now discuss the Hough transform. As we will see, this is
a very useful transform as it can still work without a complete set of
data. This is particularly useful where robust algorithms such as those
employed in industrial recognition systems are required.

The classic Hough transform technique was originally developed by

P.V.C Hough [57]. It constitutes a class of procedure for extracting

analytically defined shapes. For example, consider the task of

detecting collinear points, i.e. straight lines, in a grey-level image.
The equation of a straight line is given by

- 50 -

y = ax + b

which has slope of a and intercept b. This can be transformed into
Hough space by rearranging the equation into a form

b = -xa + y

Hough space being represented by the parameters a and b. This means
that a point in x-y space is mapped into a line in Hough space with a

slope of -X and an intercept y. The Hough transform accumulates lines

in an accumulator array (conveniently represented by a two dimensional
array) with slopes and intercepts corresponding to the (x,y) coordinates
of the points. Thus, collinear points in image space correspond to
lines in Hough space that intersect at exactly one location and peak
locations in Hough space give the position and orientation of the line
in image space.

Generally, Hough space can have any one of a number of
parameterisations, the parameters being chosen on the information
required from the image. Points in x-y space are accumulated in Hough
space and the information required is derived either from the

relationships between the accumulated points or the values of the peak
heights. The advantage of this is that global information about the
image can be read directly from Hough space when it would be difficult
to obtain from the image in other ways. Another advantage is that it is

reversible, so by applying the inverse function to the points in Hough
space, the original image can in principle be reproduced. The two main
advantages of the transform that make it suitable for industrial use

are:

1. It is insensitive to noise. A suitable threshold for detecting high

count cells (representing the geometric properties of the object)

will eliminate cells with low counts arising from noise.

- 51 -

2. The transform will work even when the boundary is disconnected

because of noise or occlusions. This is generally not true for
other strategies which track edge elements, and makes it
particularly useful for industrial analysis applications where
objects may be overlapped or occluded.

In effect, each point "votes" on where a line exists and the accumulator
"adds up the evidence". Hence, very little deterioration in performance

need occur if some points on the boundary of an object are missing.
This explains why the Hough transform is particularly robust.

Kimme et. al. [63] applied the transform for finding circles by
using three parameters: two for the circle and one for the radius. This
has been extended for finding parabolas (four parameters) and ellipses
(five parameters) [116]. In a later paper, Sklansky applied these
techniques for detecting the rib cage in chest radiographs [125]. When
a rib is viewed on from an angle, the dorsal and ventral portions of the
ribs appear parabolic. The Hough transform in this case was useful
because, even if parts of the rib were occluded because of an

overlapping tumour or a damaged rib, the model outline could still be
determined. Further analysis revealed whether the rib was normal.
Ballard [5] generalised the Hough transform for detecting arbitrary
(analytic and nonanalytic) shapes.

The Hough transform has been applied to various practical
applications such as optical character recognition (OCR) to recognise
printed Hebrew characters [68]. All the characters in the Hebrew

alphabet are composed of straight lines allowing the number of classes
of characters to be significantly reduced. Other applications include

3-dimensional object recognition [115], data compression [106],

determining the orientation of rectangular objects (Section 3.4),

decomposition of polyhedral scenes [123] and locating straight-line edge

- 52 -

segments in outdoor scenes [34]. Probably one of the more interesting

applications of the Hough transform is to correct for linear variation
of background illumination in images [84]. The linear brightness
distribution may be characterised by

f{x,y) = m X = m̂ V + cA y

Application of the Hough transform means choosing an appropriate
parameter space for m^, m^ and c. An accumulator array contains the
count of those points matching the variation defined by that particular
m^, m^ and c. Searching through the image space for the maximum value
gives us the most likely brightness variation. Thus, determination of

these areas makes feasible their suppression thereby restoring the
image.

2.6.5 Template Matching

Another approach that is frequently used in industrial inspection

is template matching. Here, a template of the pattern to be matched is
compared with the current pattern in the image on a pixel-by-pixel

basis. The percentage of right/wrong matches gives the degree of fit.
If a large pattern exists then naturally, using a large template is
computationally expensive. Alternatively, a small template can be used
but several applications of different templates may be needed in order

to match the feature. The disadvantage with template matching is that
it is sensitive to variations in the lighting, reflectivity of the

material, size and orientation of the object. In this case, a
cross-correlation scheme is often employed in order to maximise some

measure of the degree of match between the pattern and picture.

- 53 -

The template matching scheme has found its uses where these effects
are generally not important, e.g. in industrial applications where the
conditions can be controlled. They are often employed in binary images;
for instance, a series of templates recognises removable points in

binary thinning algorithms. A classic example is in the case of PCB

track inspection [16] v^ere the image can be suitably thresholded.
Here, four templates are used (one for each 90° orientation) that
represent "nicks" along the edges. These are depicted in Figure 2.8.
Another exanple of locating PCB defects involves the use of a series of
5x5 templates [61] that describes the normal track of a perfect PCB. If
this did not match then a fault locator algorithm was executed. A

similar approach has also been applied to detect the defective portions
of an IC mask [16]. Other applications include cosmetic inspection of
jars, bottles, cans and correct labeling of drugs etc. [2]. Because of
its triviality and easy implementation, template matching has been
widely used in many applications, although these are very specific uses
and always restricted to a 3x3 or at most a 5x5 neighbourhood for
real-time work.

Figure 2.8 Templates for detecting 'nicks' on a PCB

2.7 PATTERN RECOGNITION

Image and feature analysis algorithms describe the features of the
image as a parsable string of numbers. For example, this could be the

edge coordinates, the chain code of the boundary of an object, or the

coordinates of mapped pixels in a cluster. This string of numbers is
input to an appropriate pattern recogniser which classifies the input

— 54 —

pattern - this is known as pattern recognition.

We can view the process of pattern recognition as the
classification or the parsing process of the patterns that have so far
been created. It can be divided into two main areas - statistical

(decision-making) and syntactic (linguistic). However, a third category
exists which is a hybrid between both methods. Hybrid methods are the
first step towards an attempt to create a unifying theory in pattern
recognition. Because of the size of the subject, each of these areas

will only be briefly described. See [74] and [103] for further
information.

2.7.1 Statistical Pattern Recognition

In statistical pattern recognition, the measurements taken from N
features can be thought to represent an N dimensional vector space,

whose coordinates correspond to the measurements taken. Two major
decision making processes exist - clustering analysis and fuzzy set
reasoning. As mentioned above, clusters are formed by mapping the
feature of each pixel, e.g. grey-level, texture etc. into feature space.
After all pixels have been processed, several clusters may typically
exist, each cluster being composed of pixels that have a common feature.
The concept of cluster analysis is to partition the clusters such that
each pixel in the cluster can be assigned an appropriate code which is
unique to that cluster and then re-mapped back into image space, hence
producing a segmented image. However, problems can occur. For

instance, consider Figure 2.9. The partitioning of these clusters
ranges from "easy" to "difficult". In general. Figure 2.9a is the

exception rather than the rule.

- 55 -

•îiv

%«

(a)

. ' %

(c)

(b)

m -

C. *% *
‘C'"'

(e)

(d)

#

*'
' \

%

(g)

(f)

Figure 2.9 Examples of clusters

— 56 —

The problem that exists is that we do not know how many clusters

there are. For instance, how many distinct varieties of hand printed
2's are there? or how many different types of clouds can one observe in

satellite photographs? The common problem to these questions is
vagueness which has lead to a variety of cluster separation techniques.
The first step is to define some measure, albeit arbitrary, of the
similarity between two samples. From inspection of Figure 2.9a, an

initial choice would be a measure of distance. However, this assumes

that numerical difference is directly proportional to perceptual
difference in the human perceptual system. This is an assumption which
is almost certainly untrue; however, no other alternative has been found
that can directly solve all such problems.

One of the most common distance measures is the nearest neighbour

method [53]. This measures the distance (d^) between the nearest
neighbours of two clusters in a multi-dimensional feature space. If
this falls below a certain threshold the two clusters are merged else
they are designated as being separate. This step-by-step merging is
continued until no further action can be taken. Another approach is the
farthest neighbour method that measures the distance between the two

farthest neighbours (d^^). These two approaches consider the two
extreme cases. A natural compromise is the average distance (d^^^).

Fuzzy set reasoning removes the probabilistic approach that has

dominated pattern recognition and employs fuzzy set elements. This
gives more realistic results when there is no a priori knowledge and

therefore probabilities cannot be calculated. This is too long a topic

to be covered well in the space available here. See [74] for a fuller

discussion.

2.7.2 Syntactic Pattern Recognition

- 57 -

Syntactic pattern recognition (often termed structural recognition)
aims to describe an image by a recursive description of a complex
pattern in terms of simpler patterns based on the "physical" shaping of
the scene. For example, consider a cow in a field with a car - this is

described as a complex scene. However, the image can be partitioned
into three simpler parts: a cow, a car and a field. Information can be

included in the description, e.g. the car is near the cow. This in turn

can be described in terms of its primitives such as the cow has four
legs and a tail, the car has four wheels and the field is green. The
scene is thus partitioned into much simpler elements.

This approach has been applied to the industrial inspection of
PCB's [16]. Images are not always conveniently represented by strings;

however, certain pictorial patterns such as PCB images can be made to
fit the string model. Local features can be decomposed into a small
number of unique primitives, e.g. corners and lines. A structural
description of the primitives and the relationships between them can be
determined to form a string grammar. Given a set of primitives
describing common defects, one can use an automatic test procedure to

locate them by searching the string describing the PCB under test for
all occurrences of the defective primitives. For example, consider

Figure 2.10 where the pattern is
abadadadabca

To detect the fault, one could look for all occurrences of the pattern
bca. Cheng [14] has described a VLSI based architecture to match

patterns and strings.

2.7.3 Hybrid Methods of Pattern Recognition

The above approaches basically rely on images which are free of

noise and distortions. In reality, the presence of noise will change

the input pattern and hence the grammar. The final result is that the

- 58 -

Figure 2.10 Illustration of a string grammar to
detect faults in a PCB

input pattern is generated by more than one pattern grammar and
ambiguity occurs. In this case, stochastic languages are employed for
pattern recognition and Bayes ' decision rule can be used for
recognition.

2.8 EXTENSION TO THREE DIMENSIONS

The ability to extend to three dimensions is an attractive
proposition for industrial automation purposes. For instance, a biscuit
or a disc is relatively straightforward to recognise because the
required data can easily be extracted from a two-dimensional view.
However, a 3-D knowledge of objects is often necessary, for instance, in

the automated assembly of components in a car plant. Understanding
depth from a 2-D image is crucial to the problem of image understanding.

Information in the x and y directions is trivial to obtain but the

need to extract information from the third dimension (z) is required in

order to form a model of the object. The relationship between 3-D

points in the world coordinate system and the corresponding 2-D points

in the image plane is essentially a perspective transformation. When

this transform is known, given the x,y and z coordinates in the world
coordinate system, we can find the corresponding 2-D coordinates of x'

- 59 -

and z' in the image plane. Conversely, given the x' and z' coordinates
in the image plane, one can then determine the corresponding ray which
all points satisfying this transform must lie.

Several approaches have been successfully used. Wu, Wang and
Bajcsy [129] employed a stereo view from two cameras to obtain 3-D

spatial data of a real object on a turntable. Spatial information was
obtained by first calibrating the camera and then taking four pairs of
images of the object by rotating the turntable. For each step, stereo
matching and the determination of the 3-D coordinates of the point was
carried out by use of an appropriate transform. Depth measurement was
found to be better than 1% at a distance of 1.5m.

Another approach was to use a single camera and project patterns
onto the objects. Various patterns have been tried including spots,
parallel lines, grids, concentric circles and spirals. By incorporating
a priori knowledge about the nature of the projected pattern, one can
measure the deviations of the pattern and fit this to a polynomial

equation. From this, the x,y and z coordinates can be derived. Oshima
and Shirai [86] used this 3-D information for the general description of
a scene. Spots were projected onto the scene which were then grouped
into planes and the planes were then merged. The regions were then
classed into plane, curved or undefined. Curved regions were then

merged to other curved or undefined regions in an attempt to fit a
quadratic surface to them. The scene was finally described in terms of

the properties of regions and relations between regions.

Shading has been successfully used for extracting 3-dimensional
information from a scene [104]. Shading can be described as the

variation of grey-level across a region. If the region of an object

represents a uniformly reflective surface, this variation must be due to

the changes in slope of the reflective surface to the source of

— 60 —

illumination and the viewer. Therefore, grey-level variations impose
constraints on the 3-dimensional shape of the surface. In order to
avoid ambiguous information, several pictures of the same scene under
different conditions of illumination are generally used.

Texture has also been used to derive 3-dimensional information
[83]. Smooth variations in texture (texture gradients) can give clues
to local surface shape. For instance, consider looking along the side
of a brick wall. The bricks near to the eye appear large while the
bricks at the end of the wall appear small and more closely spaced.

This gives a strong sense of the orientation of the wall which can be

thought of as a change in texture. There are three main causes of
texture gradients (1) variations in distance, (2) variations in surface
orientation and (3) by variations in the physical texture itself;
however, normally the physical texture is assumed to be constant. An
example of a typical 3-D problem is the automatic inspection and

assembly of light bulb filaments [73]. This requires that the (x,y,z)

coordinates of the two spikes of the filament holder to be returned in
order for a mechanical arm to thread the filament.

2.9 OPTICAL IMAGE PROCESSING

A potentially powerful approach to image processing is optical

processing. It is appealing because of the enormous data rate it can
hope to achieve, all points in a scene (typically the equivalent of over
one million pixels [41]) being processed simultaneously. However,
optical processing does have its disadvantages. It is often not as
accurate as digital processing and the purely optical processor is

restricted in the generality of algorithms that it can perform. The

advocates of optical processing have reacted to this in two different

ways:

- 61 -

1. Using it for problems with immense input data, e.g. analysing
kilometers of 16mm-motion picture film [41].

2. Broadening the generality by combining optics with electronics,
i.e. a hybrid arrangement.

One problem with optical processing is that the output from an optical
processor is usually related to its input by a linear processing
function. However, many functions desirable from a recognition or
object location point of view are necessarily non-linear.

Non-linearities can be introduced by combining optics and electronics
(see point 2 above) [41].

A purely optical application is template matching [70]. Here, the
input image is first processed by a simple lens. At a plane one focal
length behind the lens, all light emanating from the image with the same

spatial frequency appears a set distance from the system's optical axis.

This distance is directly proportional to the spatial frequency; the
lens thus performs a spatial Fourier transform on the image. These
frequency components are matched with those of the reference pattern
stored in a filter at that plane, the matching process in the focal
plane being one of multiplication. The filtered light is then
retransformed by a second lens to give the correlation output in the

output plane. (It is well known [33] that multiplication in the Fourier
domain is equivalent to a convolution with the transform filter in the

spatial domain.)

Although conceptually elegant, it is a somewhat inflexible scheme
and difficult in practice as it is susceptible to differences in scale,

rotation and out of plane orientation between the reference and input

images. Such systems also require a spatial light modulator which
currently costs around £10,000 [70]; however, a market is emerging which

will hopefully reduce the current high cost and provide solutions to

- 62 -

many problems that require such enormous data rates.

Though successful in terms of computation, the type of optical
processing described above embody a highly inflexible algorithm and
therefore its use is liable to be restricted. For example, it is
difficult to see how to make a system perform median filtering or other

useful operations. For these reasons we shall ignore optical systems in
the remainder of this thesis, though this form of computation will
undoubtedly become increasingly widespread in the future.

2.10 CONCLUSIONS

This chapter has looked at a varied set of methods and techniques
that are commonly associated with image processing, image analysis and
pattern recognition. In real-world problems where objects need to be
recognised, and faults need to be detected, procedures for examining

local information are important. Apart from being computationally
efficient they must also be robust. Methods such as the Fourier
transform do not provide the best means of extracting local information;

however, they do find use where rotation and comparison on a size
independent basis is required, but the fact that floating point
arithmetic is necessary limits its practical uses.

Real-world problems generally involve all three image pattern
recognition topics in one form or another. However, the majority of
this work seems to have been concentrated on the image analysis and
feature recognition techniques. This includes topics such as edge
detection, thinning, and template matching. A particularly useful tool

is the Hough transform as it is an efficient method for the recognition

of general shapes. Being resistant to noise and discontinuities in the

edges of objects, it is in many ways an optimal choice. Thinning is
computationally expensive and template matching tends to be practical

— 63 —

only with small neighbourhoods and binary images. Classification
schemes such as clustering tend to be of less interest as a priori
knowledge can usually be incorporated into a scene without the need for
complex pattern classification methods. However, classification is
clearly important at the final stage of inspection where defects are
being analysed and categorised. Although this can make the algorithm

less general, speed is more important than generality for industrial
recognition purposes.

Three-dimensional work has increased over the last few years so
that depth can be obtained from a 2-D image and a 3-D model constructed,
thus facilitating 3-D object recognition. However, recognition is only
the first step in an inspection algorithm. The inspection of 3-D
objects from depth information is currently an important research topic.

Optical processing has been discussed and is attractive because of
the enormous amount of parallelism involved. However, a purely optical
approach is not as flexible as the digital approach. To increase the
flexibility, some researchers have developed hybrid systems consisting
of optics and electronics, but these are still at the research stage
though they will undoubtably become popular in the future.

We have seen in this chapter that certain techniques such as
thinning are useful although they are too computationally intensive for
an industrial environment without parallel hardware. The next chapter

considers two industrial algorithms, based on some of the techniques
cited in this chapter as being useful for such applications. The

execution time of these algorithms is crucial in order to meet

industrial recognition speeds. In order to achieve this, a programmable
high-speed processor has had to be developed - this is described in
Chapter 5. This processor is later used in Chapter 8 to develop a

cost-effective multiprocessor architecture, suitable for increased

— 64 —

execution speed of sequential and parallel algorithms. Using this

architecture, it should thus be possible to apply computationally
expensive algorithms such as thinning and similar processes to
industrial recognition tasks, and should therefore not be immediately
discarded as being too computationally expensive.

For the moment, we shall concentrate on developing the following
two industrial recognition algorithms for a single processor system;
however, they will be implemented on the architecture developed in
Chapter 8.

- 65 -

CHAPTER 3
THE DEVELOPMENT OF REAL-TIME INSPECTION ALGORITHMS

"The secret of science is to ask the right question, and
it is the choice of problem more than anything else that
marks the man of genius in the scientific world."

in C.P. Snow A postscript to Science and Government
(Oxford: Oxford UP, 1962)

3.1 INTRODUCTION

This chapter describes two real-time industrial recognition
algorithms. These extract information from a digitised image of a
manufactured product and scrutinises the information in order to detect
whether the product is defective. Both algorithms apply the same
general technique for extracting information from these two rather
different products. The ability to manipulate the data in real-time is
emphasised as this leads onto the topic of program optimisation

techniques. A breakdown of execution times for both algorithms on a
series of images is given. This allows us to locate bottlenecks within
the algorithm; methods for eliminating these will then be discussed.

Execution times for both algorithms running on SIP (see Chapter 5) are

also given. This will show that bit-slice processors are capable of
forming the basis of cost-effective, real-time recognition systems.

- 66 -

3.2 THE NEED FOR INDUSTRIAL RECOGNITION SYSTEMS

There is currently much interest in the field of industrial
recognition systems. These are systems that analyse and scrutinise
moving products on a conveyor belt, the data originating from a video or
line scan camera - they are hence geared towards quality control. The

possibility of a manufactured product being located, scrutinised for
defects and rejected on a pass/fail inspection basis is appealing to a
manufacturer as it has several advantages over human inspection:

1. In many areas, quality control is only carried out on a sampling
basis. Frequently, 100% inspection is required. The rate of which
inspection can take place is usually dictated by the line speed. At
typical production rates of about 5-10 products per second [25], and
with the possibility that several inspection tasks may need to be
carried out per product, it is generally not possible for the human
eye to assimilate the amount of information needed in the time
available. Small defects thus go undetected. However, a vision
system should be able to achieve 100% inspection in the available

time.

2. A human cannot 'measure' the features of an object, e.g. the length
or the amount of chocolate coating, to the same degree of accuracy
as a vision system. With a high accuracy vision system, statistical
information can be analysed and fed back to the production equipment

in order to ensure product uniformity and efficient use of
production tools and materials.

3. It is often necessary to have continuous inspection of products over

periods of seven days or more. Because of the tedious nature of
product recognition, 30 minutes is probably the limit for reliable
human control. A vision system does not tire or suffer from the

boredom which is often the cause of human error in this kind of

- 67 -

situation.

4. Machine inspection can be performed in unfavourable environments,
e.g. in the presence of excessive noise, heat or a fat-laden
atmosphere.

Because quality control is highly repetitive, one would assume that a
computer based system of some kind would be highly suited for this task.
Vision systems have been successfully employed
commercially [2],[16],[29] and have proved their effectiveness.

One of the main problems with industrial recognition is the need to
scrutinise the product in real-time, i.e. to complete the task in the
time it takes for the product to pass by. Typical product rates range
between 5-7 products per second meaning image acquisition and analysis
must be carried out in 150-200ms. Sequential processors are usually too
slow to process the amount of information in the required time whereas
parallel processors are expensive and generally not suited for image
analysis because of the high degree of sequentialism often incorporated
in inspection algorithms (Sections 3.3 and 3.4).

Because of the large amount of processing that may be required, it
is often necessary to develop dedicated hardware or general purpose
(programmable) high speed hardware. Dedicated hardware (hardware

accelerators) usually executes those parts of an algorithm that
constitute the bottleneck. This has the advantage that it is very high
speed and can often process the information well within the constraints

of the application. On the other hand, it has a fixed purpose and can
only be used for the application it was developed for. This may be

suitable for the majority of cases where only one product is being

manufactured, but for a manufacturer that produces a number of different

products, programmable high-speed hardware may be more advantageous.
The same hardware can then be employed throughout the factory, it being

- 68 -

only necessary to change the software for the product in question.
However, this option is usually more expensive and will obviously

require a detailed analysis before investment. It may only be

advantageous for a long term investment or if many systems are required.

Cost is often the determining factor for acquiring vision systems

for automated quality control. Those currently available with tailored
software cost more than £40,000 (e.g. the CRSIOOO workstation,

MegaVision by Prostab, etc.) which is generally affordable only by large

manufacturers. Experience in this research group is that an affordable

cost would be rather less than £10,000 (excluding software) [25] - such

a system is described in Chapters 5 and 6. In fact, as Davies notes
with regard to the food industry, "above this figure, the rather low

profit margins characteristic of foodproduct manufacture might be eroded
excessively" [25]. In many cases it may not be necessary to invest in

special purpose hardware if the execution time of the algorithm can be

improved by using readily available resources. For instance, it may

only be necessary to invest in a faster processor if the algorithm shows

significant improvement after various real-time techniques have been

applied. These techniques are discussed in Section 3.5.

Sections 3.3 and 3.4 discuss two real-time analysis algorithms.

The first detects and scrutinises 0-rings while the second detects and

scrutinises a rectangular chocolate covered biscuit. The rationale
behind these choices is that the first algorithm represents a small

machine part problem while the second represents a rather difficult type

of application in the food industry, which is currently a real problem.

The operation common to both algorithms is the Hough transform as

described in Section 2.6.4. This was chosen for two reasons: (1) it is

insensitive to noise - a necessary requirement for industrial

environments where conditions are electrically noisy; and (2) it still

works with defective shapes or, in this case, defective products. This

- 69 -

allows us to form a model template of the shape hence simplifying
inspection of the product without loss in throughput. The presentation

of both algorithms is in the form of a top-down approach. First, the

product and types of defects that occur will be described. An outline

of the procedure for detecting the faults is then given. A more

detailed description of the algorithm and reasons for adopting the

approaches will then be given followed by run-time results and timings.
In reality, these algorithms would run on the high-speed processor SIP

(Chapter 5) in order to achieve the necessary speeds - times for this

will also be given. The first of the two inspection algorithms will now
be described.

3.3 THE 0-RING ALGORITHM

An 0-ring is a round rubber ring of a known radius. The aim of the

0-ring algorithm is to locate the centres of multiple 0-rings in an

image. By locating the centre we have (a) shown that an 0-ring (or
other circular-like object) exists in the image and (b) obtained enough

information to test for defects, i.e. because we know the location of

the centre, we know where to expect the edges of the ring. 0-rings are
formed by pouring a hot rubber solution into a mould. The most common

fault that arises is when the ring is cooled too quickly - brittle

sections can occur which makes the ring vulnerable to snapping if used

under stressful conditions. These brittle sections of the ring are
detected by matt black shadings on the surface of the ring. As the ring

itself is normally a semi-glossy black, 8-bit digitisation is not

accurate enough to detect the differences. However, by demonstrating

that the centres of the 0-rings can be found, all the necessary

information preparatory to detecting the brittle sections is available.

(Oddly, deformed and broken 0-rings are extremely rare.) In order to

show the robustness of the algorithm, the eight images used contain

- 70 -

random scenes of 0-rings. Overlapping rings and additional non-circular

objects are included in some images so as to obscure parts of the ring;

however, there will usually be several rings in a row (depending on the

manufacture's method of producing 0-rings), separated from each other on

the conveyor belt. Overlapping rings and rings obscured by other

objects are therefore detected as defects.

To limit the amount of processing that needs to be carried out in
order to achieve real-time recognition, it is often necessary for a

priori knowledge of the product to be incorporated into the algorithm
(Section 3.5.1). For this reason, it is justifiable to assume (in this
case) that the radius of the 0-ring is 22 pixels in all cases. (Note

that the scale is close to 1 pixel per mm - this was chosen for

convenience as it allows us to compare measurements taken on a
one-to-one basis.) The Hough transform technique is used in order to

locate the centres. This technique is described by Kimme et. al. [63]
and was recently applied to biscuit inspection for locating the centre

of a circular biscuit [27]. Here, the algorithm has been extended to
locate multiple centres in an image. The algorithm strategy follows in

the next section.

- 71 -

3.3.1 Algorithm Strategy

The algorithm is partitioned into three sections

1. Find all possible centres.

2. Deduce 'true' centres from the above list.

3. Detect faults.

Finding the centres of the rings by the Hough transform method leaves
Hough space with large peaks at the centres of the rings (see below).

Figure 3.1 represents Hough space at the centre of one of the rings in
test image 3 after application of the Hough transform procedure.
Locating the highest peak in each cluster gives us (to a first

approximation) the centre of the ring. However, a problem occurs when

trying to distinguish between similar values within different clusters,
i.e. how do we cope with the situation when there is a value of 18 in

ring 2 and a value of 18 in ring 3?. As we can see from Figure 3.2, the
peak value of 18 represents the centre of ring 2 which is the required

point but the value of 18 in ring 3 is not the centre because there is a

higher value point adjoining it (value of 24) which is the required

point.

This can be solved by making a list of the values of all possible

centre points above a given threshold and sorting the list. The highest
peak in the sorted list will be, by definition, the likeliest centre of

one of the rings. Working down the list (highest to lowest count), if

the next point exceeds a threshold distance from any of the centres

previously found (initially the position of the highest value in the

list) then it too is considered the likeliest centre of one of the rings

because, since the list is sorted, this position will represent the

highest peak in one of the rings.

- 72 -

Figure 3.1 Hough space for 0-ring 1

(a)

(b)

Figure 3.2 Hough spaces for (a) O-ring 2 and (b) 0-ring 3

- 73 -

In some applications, we may assume that the centres found will
suffice as the required centre points. However, the maximum peak
corresponding to the centre may also contain contributions from other

overlapping rings, nearby arbitrary non-circular objects and the effects

of noise. Therefore, this may not necessarily be the exact centre of

the ring. The effects of these contributing factors can be minimised by

trying to estimate the position of the underlying mode in each cluster,

considering the centre found in the previous step as being a good

approximation. To achieve this the median value over a region of a few

points either side of this point has been found to be effective as an
estimate of the mode value. Knowing the centre, inspection can now take

place. (Note that in the cases depicted in Figures 3.1 and 3.2, the

highest number in each ring (shown in a box) was calculated as the
mode.) Each of these steps will now be described in detail. Specific

points about each step will be discussed following the algorithm.

3.3.2 Finding the Centres of the 0-rings

The centres of the 0-rings are found by application of the Hough

transform for locating the centres of circular objects. From all edge
points on the ring, the centre point is calculated by the method

shown in Figure 3.3a. The point in Hough space corresponding to (x^,y^)

is then incremented. As a result, large peaks (counts) will exist in

Hough space at the positions of the centres of the rings. As can be

seen from Figure 3.3b, the calculation of the centre point requires the

X and y gradients of the edge. The most common technique for acquiring
this information is by the use of a differential edge detector.

An alternative to finding the centre by the above method would be

to threshold the image and find the centre of the ring by averaging the

X and y values (x and y being the coordinates of those pixels detected

as being part of the ring). However, shadows or a defective ring such

— 74 —

dy
dx

(a)

dx = radius *

grad = /(dx^+dy^)
dy = radius * g^

(b)

Figure 3.3 Calculation of the centre on an O-ring

as that depicted in Figure 3.9h(5) would produce gun inaccurate centre.
A similar technique could instead be applied to the edge points

determined by thresholding the magnitude of the gradient produced by an
edge detector. However, shadows may affect the situation by making
edges slightly thicker on one side than on the other; this would again

produce an inaccurate centre.

The main problem now is deciding which edge detector to use,

bearing in mind that the it must be economic with regard to computation

yet maintain a fair degree of accuracy. The edge detector developed by

Hueckel [59] allows the removal of most of the local noise but it is

complex and computationally expensive (typically 521 operations per

pixel). The Roberts' cross operator requires the minimum number of

operations per pixel; however, like the Prewitt operator, it is only

accurate to 5-10° [1], depending on the angle, i.e. its accuracy changes

- 75 -

with angle. On the other hand, the Sobel operator has been shown to be

accurate to [64], for all angles. In fact, experimentation found
that the Sobel gave the most prominent peaks at the centres of the
rings. The form of the algorithm used by Davies^ is outlined below.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

PROCEDURE find_centres;
BEGIN
y:=0;
REPEAT x:=0;
REPEAT

{ find possible centres of 0-rings }
{ set image scan }

dx
dy
dd

= (P8+Pl*2+P2) - (P4+P5*2+P6
= (P6+P7*2+P8) - (P2+P3*2+P4
= dx*dx+dy*dy

IF dd > thresh THEN
BEGIN
dd := SQRT(dd)
x_temp := x; y_temp := y;
X := X - radius_of_Oring*dx DIV dd;
y := y - radius of Oring*dy DIV dd;
QO ;= 00 + 1 ; “ “
X := x_temp; y := y_temp;

END;
X ;= x+1;

UNTIL x=128; y := y+1;
UNTIL y=128;

END;

find Sobel - dx }
find Sobel - dy }
Calculate Gradient^ }
Thresh is 150x150 }
then an edge }
Calculate Gradient }
save X and y }
find centre }
inc. Hough space }
restore x and y }

do x }
do y }

Figure 3.4 Finding the centres of 0-rings

Lines 1 to 7 are self-explanatory (note that the accumulator, Q-space is
initially set to zero). Line 8 finds the value of the gradient squared
at that point in the image (since the actual value of the gradient is

not needed here, a less compute intensive approach is to calculate the

value of the gradient only when an edge element is found to

exist - determined by line 10). As this involves two multiplications

for every point in the image and and a square root calculation for every

edge point - a relatively time consuming combination - Davies used the

approximation

/(x2+y2) - MAX(dx,dy,(dx+dy)*7 DIV 10)

 ̂ Reproduced with kind permission of Dr. E.R. Davies

- 76 -

where dx and dy are the absolute values of the x and y gradients
calculated from the Sobel and '7 DIV 10' is an approximation to

1//2, i.e. considering the pixel as an octagon rather than the

square digitised approximation. The threshold at line 10 was set at

150x150 - this gave reasonable results for the majority of reasonably

well lit scenes. This algorithm is interesting in the fact that there

are no floating point or trigonometric calculations. This is important

and shall be discussed later in Section 3.5 when we consider program
optimsation and efficiency. The next step is now to locate the highest

peak in each cluster. Note that the work described above is based on

the Davies centre location algorithm. However, this was only designed
to locate one product per image.

3.3.3 Locating the True Centres

When the above task is complete, a cluster of accumulated points

will exist around the centre of each ring. This will consist of a
maximum peak at the centre and smaller, yet similar sized values

surrounding the peak. This can be seen in Figure 3.1.

In order to sort all possible centres so the highest peak in each
cluster can be determined, the values and positions of all candidate

centre points must be found. These can be obtained from the positions

and values of those points over a fixed threshold in Hough space. A
threshold of six was found adequate to locate the centres of about 15

0-rings. This can of course be adjusted to suit the environment and the

requi rements.

Once this is achieved, we can sort on the values of the peaks. The

sorting algorithm used was the quicksort algorithm developed by Hoare

[56]. This is a recursive sorting algorithm that has an average

conputing time of OCnlog^n) and a worst case computing time of 0(n2).

- 77 -

This can be compared favourably with the bubble sort which has a

computing time of 0(nZ). The algorithm is given in Figure 3.5.

The array 'peaks' is the list of all candidate centre points. The
procedure 'swap' in lines 9 and 11 merely interchange the x, y and peak

values. The quicksort procedure is called from the main program with
the values

quick_sort (peaks, 1, peak_count) ;

where 'peak_count' is the number of candidate centre points found.

1 PROCEDURE quick sort(VAR peaks :ARRAY OF PEAKS; m,n :INTEGER);
2 BEGIN
3 IF m < n THEN
4 BEGIN
5 i := m; j := n+1; k := peaks[m].value;
6 REPEAT
7 REPEAT i := i+1 UNTIL (peaks[i].value>=k) OR (i=n);
8 REPEAT j := j-1 UNTIL (peaks[j:j.value<=k) OR (j=m) ;
9 IF i < j THEN swap(i,j);
10 UNTIL i>=j;
11 swap(m, j) ;
12 quick_sort(peaks,m,j-1);
13 quick sort(peaks,j+l,n);
14 END;
15 END;

Figure 3.5 Quicksort algorithm to sort peak heights

The highest peak (top of the sorted list) is now entered into the
'found' list (a list of coordinates of the highest peak in each cluster)

and is used as a reference point in order to locate all other peaks.

The position of each point found in 'peaks' is compared with the

positions of those in the 'found' list (initially the highest peak from
the sorted list). If it exceeds a threshold then it is considered to be

the highest value at the centre of one of the rings (the required point)

and entered into the 'found' list. In essence, the threshold determines

the closeness two centres can be located due to overlapping rings before

they are considered a single ring. The distance must be large enough to

- 78 -

overcome the spreading of peak points in Hough space due to noisy images

or other objects in an image contributing to the peak value, yet small

enough to distinguish between two centres close to each other. A
distance of 5 pixels has been found to give good results. The algorithm

is given in Figure 3.6. Note that 'peak_count' is the position in the

array of the highest peak in the scene deduced using the Quicksort.

1 PROCEDURE deduce centres;
2 VAR ”
3 search, i, temp :INTEGER;
4 peak_exists :BOOLEAN;
6 BEGIN
7 true peak_count := 1; { 1st element in list is a centre }
8 found[l].xx := peaks[peak_count].XX;
9 foundilj.yy := peaks[peak count].yy;
10
11 FOR search := peak_count DOWNTO 1 DO
12 BEGIN
13 X := peaks[search].XX; y := peaks[search].yy;
14 peak exists := TRUE;
15 FOR T ;= 1 TO true_peak_count DO
16 BEGIN
17 { Pythagoras's theorem }
18
19 temp := (x-found[i].xx)*(x-found[i].xx) +
20 (y-found[i].yy)*(y-found[i].yy);
21
22 IF temp <= dist_thresh_squared THEN peak_exists := FALSE;
23 END;
24
25 IF peak_exists THEN
26 BEGIN
27 true peak_count := true_peak_count+l;
28 found[true_peak_count].XX := x;
29 found[true_peak_count].yy := y ;
30 END;
31 END;
32 END;

Figure 3.6 Algorithm to deduce 'true'
centres from peak heights

At the end, 'true_peak_count' is obviously the number of 0-rings of

radius 22 pixels in the scene. This may appear to be an inefficient way

of deciphering between local and distant peaks; however, there are

typically only 50-60 peaks in an image (however, this is dependent on

- 79 -

various factors such as the lighting conditions and the number of rings

involved) making this section moderately fast (see timings in
Section 3.3.5). The location of each peak in the cluster is now known

(all points in the 'found' array) and it is only necessary to apply a

median at each peak (as previously mentioned) in order to smooth out the
effects of noise etc.

3.3.4 Detecting Defects in an O-ring

Now that all the centres of the 0-rings have been found, it is
necessary to detect faults in each O-ring. As we have previously
mentioned, these faults may not be detected (because of the accuracy of

data acquisition) or the faults never occur (in the case of broken

0-rings). However, by showing that these faults can be detected, the

principles used in this section can be applied to circular products
where these faults do occur.

The method used for determining faults was the radial histogram
approach [27]. This has several advantages, namely that the 'true'

radius can be measured accurately and faults are easily detected. The

method basically accumulates the intensity of all pixels in a given

radius band as shown in Figure 3.7; however, as one might expect, the
number of pixels in each band increases as the radius increases. The

histogram must therefore be normalised by dividing each accumulation by

the number of pixels in each radius band. It has been found [27] that

accumulation of pixels with a histogram base of r̂ rather than r allows

the radius to be measured more accurately. (Also, r would otherwise

have to be derived from r̂ which involves a square root computation.

This is undesirable for real-time work.) In this case, the area of the

histogram extended four pixels beyond the outer edge of the ring. This

allows us to measure accurately both the inner and outer radius and

defects such as those in ring 2 in Figure 3.9h.

- 80 -

Figure 3.7 Accumulating pixels in a radius bcuid

The radial histograms of the normalised intensity values (y-axis)
vs. r^ (x-axis) for all five rings are given in Figures 3.8a to 3.8e.
Figure 3.8a depicts the histogram of a 'perfect' O-ring (ring 1). In
order to check for defects, a model of the histogram representing a

'perfect' O-ring is stored, and a correlation is undertaken for each

ring's radial histogram encountered.) Figure 3.8b (ring 2) shows that
the 'dip' in the curve only extends to half of its true value. This

indicates that half of the ring is missing. This is useful as it allows
us to measure accurately the proportion of ring that is missing.

Figures 3.8c (ring 3) and 3.8d (ring 4) indicates defects at both low

and high radii. Further inspection reveals that these fall below the

true value indicating a dark patch (note that both graphs are almost

identical.)

Unfortunately, this method shows that analysis of overlapping rings

is difficult to achieve as this method does not allow us to detect

whether the ring is defective or is overlapped with another ring.

However, these rings will usually be separated in an industrial

environment. Overlapping rings will therefore be detected as faulty.

— 81 —

no

120

160
no

120

100

80
60
40
20

0 75 150 225 300 375 450 525 GOO 675 7500

(a) (b)

160 160
140

120 120

100 100

150
2 2

(d)(c)

160
no

120

100 --

(e)
Figure 3.8 Radial histograms of the 0-rings depicted in Figure 3.9h

- 82 -

Figure 3.8e (ring 5) shows that the graph "wobbles" from its true

position at a high radius which indicates a defect. This defect can be
further analysed by noting that the values fall below the true values of
~160 which indicates a dark patch, i.e. a spurious section of ring.

We stated in Section 3.3 that brittle points (represented by dark

patches on the O-ring) could not generally be detected with 8-bit
digitisation. However, if some means could be found for achieving this,

it would be represented on the graph by the dip falling below the true
value of 40 (in these examples). The radii of the inner and outer ring

can be derived from the graphs by taking an average of the radii at the

where the graph has a fairly uniform gradient, i.e. points a,b and c,d

in Figure 3.8a. This allows us to measure the thickness of the ring.
These radii were calculated at 18.4+0.3mm for the inner radius (on a

scale close to 1 pixel per mm) and 21.7+0.3mm for the outer radius.

This implies that the thickness of the ring is 3.3+0.3mm. The thickness
of the ring as measured by a micrometer was 3.45+0.04mm which shows that

measurements can be derived accurately by using the radial histogram
approach.

3.3.5 Results and Timings for the O-ring Algorithm

Figure 3.8f gives a graph of the percentage of an O-ring visible

vs. the peak value of the centre derived from Hough space for

Figure 3.9a. Since the accuracy in determining the centre is dependent
on the number of visible edge elements of the ring, this allows us to

find the minimum amount of ring required to locate the centre. As one

can see from the graph, the centre can still be found quite accurately

(within ~1 pixel) for only 25% of the ring showing. In order to

determine the maximum number of rings that may be detected by their

centres, Figure 3.8g depicts the graph of the lowest value of the centre

derived from Hough space vs. the number of 0-rings in the image. With a

- 83 -

100
90
80
70
60
50

1
40

•5Î 30
20

6 10
&p

0

A

.s

18 ■■
17
16
15 -•
14 --
13 --
12 -■

11 --

10 --

9 --
'ë 8 -
B.

-I H 10 11 12 13 14 value of centre
Figure 3.8f Graph of % of O-ring visible vs value of

centre in Hough space

H h ■ H 1-------1-------h10 11 12 13 -4--- 1---1---1---1--15 16 17 18 19 20
No. 0-rings

Figure 3.8g Graph of the lowest value of centre vs,
number of 0-rings in the image

- 84 -

threshold of six, the centres of 19 rings were found before the

algorithm failed to locate all centres (c.f. Figure 3.9g which depicts

17 0-rings). Note that this is dependent on the number of pixels

visible on the ring and hence on the spatial distribution of the rings.
The value of the peak is also determined to some degree by the lighting

conditions. Clearly, there are countless possible combinations of rings
and lighting conditions - this investigation merely serves as an example
to highlight the robustness of the algorithm.

The algorithm has been found to work in the majority of cases with
14 0-rings; however, in practice, these limitations will be rather
academic, since most images will only contain one O-ring. Table 3.1

represents a breakdown of execution times for each part of the algorithm
on a set of eight images - the results are given in Figures 3.9a to 3.9h
(note that the centre is indicated by a white dot). Some images also
contain additional artifacts that obscure the ring in order to highlight

the robustness of the algorithm. Again, this is a rather academic
situation hence a radial histogram was only carried out on Figure 3.9h

as this represents the majority of possible defects (However, this
principle can easily be applied to the images in Figures 3.9a to 3.9g.)

All timings are derived from a PDP-11/73 processor operating on a
128x128 image and are stated in milliseconds. Fetching of the data from

Hough space has been omitted as in all cases it was found to

be 315+3 ms. The radial histogram (fault detector) took 270ms per

O-ring. The total execution time below excludes the radial histogram as

this is dependent on the number of rings in the image; however, there

will usually only be one ring in view of the camera so the first set of

figures in the list probably gives the most realistic view of the

performance (i.e. 2595+270=2865ms).

- 85 -

igure Finding Sorting Deducing Median Total Algorithm
3.9 centres centres centres operation execution time

(ms) (ms) (ms) (ms) (ms)
a 2274 4 1 2 2595
b 2561 16 17 20 2929
c 2386 24 13 7 2745
d 2478 28 23 18 2862
e 2398 28 19 11 2772
f 2473 32 29 18 2868
g 2650 47 60 31 3106
h 2605 29 24 16 2991

Table 3.1 Breakdown of execution times of the O-ring
algorithm on images 3.9a-3.9h

The basic accuracy of the centre determined using the above method
is ~+0.5 pixel [25]. This error must also be combined with ~+0.5 pixel
error arising from the inaccuracy in edge location; however, averaging

over all edge points is in principle able to reduce the overall error to

well within half a pixel. On the other hand, it should be noted that
the accuracy is in practice limited by what is meaningful considering
the precision of the product.

As we can see from the times, the application of the Sobel and the
calculation of the centre typically represent 86% of the total execution

time. Chapter 5 describes a high-speed sequential processor - this has

been shown to give in the region of 25-30 times speed improvement over
the PDP-11/73 processor used above. The implementation of the O-ring

algorithm on SIP (Chapter 5) shows that the execution time is

approximately 140-150ms (including I/O of 50ms) which corresponds to ~7

0-rings/sec (this could still be further optimised by the use of

suitable lighting conditions). This is within the time constraints

imposed by industrial recognition requirements. The O-ring algorithm

written in SIP's native code is given in Appendix B. This is a typical

example of a parallel/sequential algorithm. Chapter 8 investigates this

further in an attempt to apply it to a multiprocessor system.

— 86 —

I

TJ

fO o

Figure 3.9 Exanples of 0-rings

- 87 -

<4-1

0) en

Figure 3.9 Examples of 0-rings

- 88 -

3.4 THE RECTANGULAR BISCUIT ALGORITHM

This section describes an inspection algorithm for the scrutiny of
rectangular chocolate covered sandwich biscuits. In general, foodstuffs

are difficult to inspect because of the wide range of variations that

can occur for a single product: a foodstuff inspection algorithm must
therefore be especially robust.

The possible defects that can occur for the biscuit are:

1. Chocolate dripping over the sides.

2. Too little chocolate covering.

3. Incorrect shape.

Fault three arises when one of the slabs of biscuit slips (Figure 3.10b)
hence producing an incorrectly shaped (or sized) biscuit. (Note that

the slabs are of a light colour. This condition will be used later on
for the detection of show-through, i.e. lack of chocolate.) Examples of

these products are shown in Figures 3.10a to 3.10g. Because an O-ring

is circular, its shape (relative to the x and y axis) is independent of
orientation whereas a rectangular biscuit is dependent on the

orientation. The main problem lies in determining the orientation of

the biscuit before analysis can proceed. This is a topic that

frequently occurs in the examination of non-circular objects.

3.4.1 Previous Work on Object Orientation

Similar work has been carried out by Brook and Purll [12] for

on-line image acquisition and analysis of rectangular objects in a

factory environment. Their technique was to determine the orientation

of the object by detecting the end-most points in each of the four

directions. The corner positions are then used to determine the

- 89 -

;Q T3

(0 u

Figure 3.10 Examples of Biscuits

- 90 -

iw

(Ü Cn

Figure 3.10 Examples of Biscuits

- 91 -

orientation by trigonometry. This is shown in Figure 3.11. Bolles and

Cain [11] inspected metal door hinges. These were essentially
rectangular in shape with several holes and metal extrusions. The scene

was complicated by overlapping hinges. The orientation of each hinge

was determined by the positions of the corners, metal extrusions and
relative positions of the holes. The whole inspection algorithm took
between 8-25 seconds using a combination of a PDP-11/34 and a VAX 11/780

on an image size of 240x240. The large differences in execution times

were because the algorithm used the features of the objects to determine

the orientation and therefore the time was dependent on the number of

features that were visible and not obscured by other hinges.

The first method is unsuitable because, if the edge of the next
biscuit on the production line enters the field of view of the camera,
the corners would be incorrectly determined giving a false result. The

technique also relies on a thresholded image. In a typical factory

environment dirt marks on the belt, stray bits of chocolate, an
uncovered product (no chocolate) or noise would also lead to incorrect

results. The second method is unsuitable because the chocolate biscuit
contains no visible features such as holes or extrusions. Corners were

detected by moving a jointed pair chords around the boundary and

comparing the angle between the chords; however, this method was found

unsuitable for rounded corners - inspection of Figures 3.10a to 3.10g

shows that these products have rounded corners.

Fan and Tsai investigated the inspection of Chinese seal

prints [38]. In order to determine the orientation of the print they

'drew' vertical lines through the print and determined the orientation

by measuring the angle between each pair of lines and the edge of the

print by trigonometry. This was averaged over the whole of the seal

edge as shown in Figure 3.12. Several lines had to be drawn as breaks

in the print were common. This method again required a thresholded

- 92 -

Lcos©WsinO

Figure 3.11 Determining the orientation by trigonometry

Lj_2 h-i Lj L._̂ ̂ L.+2

Figure 3.12 Determining the orientation by averaging
over the seal edge

- 93 -

image and, bearing in mind the biscuit may be bare of chocolate in

places, these areas would not be detected and would therefore fail. One

solution would be to use back lighting (lighting beneath the conveyor
belt, either by making the conveyor translucent or by using the crack

between two adjacent conveyors) to highlight the edges of the biscuit.

However, back lighting will not permit the surface texture of the
biscuit to be detected - a necessity for surface scrutiny, e.g. to

detect (in this case) whether the biscuit is sufficiently covered with

chocolate.

The option of finding the corners of the biscuit and determining
the orientation by trigonometry sounds appealing but these algorithms

operating on grey level images [66],[88] have been found to be
computationally expensive (~10s to ~40s on a PDP-11/73 operating on a

128x128 image) and are hence inadequate for real-time operation without

the use of special purpose hardware. Chain coding the object and
finding the corners as described in Section 4.4.3 could be used but this

requires either a thresholded image or edge detection followed by

thinning, both of which have disadvantages as previously noted. In

general, chain coding is also sensitive to noise and may therefore prove
to be unreliable under factory conditions; however, see Chapter 4 for an

improved version.

The method we finally adopted was that developed by Dudani and
Luk [34] which used the Hough transform method as described in
Section 2.6.4. This method has the advantage that dirt marks on the

belt and partial sections of other biscuits in the field of view of the

camera do not effect the determination of the orientation of the

biscuit - a necessary requirement for a factory environment.

- 94 -

Once the object orientation has been found, some workers have

normalised the object by rotating it until the base is parallel with the
x-axis before further analysis took place. This includes the work by

Fan and Tsai on the inspection of square Chinese seal prints. This

involved normalisation of the square print by rotation before analysis.

The rotation scheme used in this case was that developed by Hsieh and Fu
which was originally used for the normalisation of IC chips.

Roths te in's Code was used by Weiman for the rotation of images by

shearing and stretching [126]. This had the advantage that it avoided

trigometric calculations and only relied on addition, subtraction and
division. This algorithm can also be parallelised and has been

implemented on CLIP4 by Clarke and Ip [17]. Both of these methods
appear suitable for real-time analysis but practice has shown that

distortion of the image occurs for large angles.

Since these methods are either time consuming or inaccurate, it was
decided not to normalise the object by orientation. Inspection would

therefore have to take place at the angle the object is orientated.
This may appear to impose an additional overhead to the run-time
execution of the algorithm but this is not the case as shown by the

timings in Section 3.4.9.

The algorithm is partitioned into two main sections: (1) determine

model template of the biscuit; (2) detect faults using the template as a
reference. The template is determined by finding the orientation of the
biscuit by application of the Sobel operator and the Hough transform.

From this, each side can be individually located since the perpendicular

sides can be identified by their orientation and the parallel sides by

the sign of their Sobel x-gradients. (One could consider basing the

partitioning on only the Sobel sign of the Sobel x and y gradients;

however, this will fail if there is more than one product in the scene,

hence making the algorithm less robust).

- 95 -

The model template of the biscuit is then deduced by applying the

least squares fit method to the edge points on each side of the biscuit
and hence deducing the corners. Since the least squares fit method fits
the best line to a set of points, spurious chocolate overflow and

underflow will have little effect in contributing to the points on the

side. The overall algorithm strategy is given in the next section.

3.4.2 Algorithm Strategy

The algorithm is partitioned into seven sections.

1. Locate biscuit and determine orientation.

2. Determine if biscuit is rectangular in shape.

3. Locate each side individually and hence determine corner points.
This essentially fits a 'best fit' rectangle to the biscuit.

4. Determine if biscuit is the correct length and width.

5. Check for sufficient chocolate covering on the biscuit (within the

rectangle defined in step 3).

6. Check for overflowing chocolate (outside the rectangle defined in
step 3).

7. Reject biscuit if necessary.

All fault detection processing is confined to the area of the template.

Each step is now discussed in detail.

3.4.3 Biscuit Orientation

As mentioned before, the method used for determining the

orientation of the biscuit was that developed by Dudani and Luk. This

used the Hough transform by accumulating the edge points with their

- 96 -

- 3 0 ’

Figure 3.13a Orientation of the biscuit

Q.

- 30°

Angles
60

Figure 3.13b Peaks in Hough space reveal the most common
angles in the scene

— 97 —

angles (determined from the Sobel operator), the idea being that peaks

(large numbers of edge points with a specific angle) will occur at the
most frequently occurring angles in the image, this being the

orientations of both pairs of sides of the biscuit. Therefore, a

biscuit orientated at -30° (standard cartesian x-y convention) as in

Figure 3.13a., would produce peaks at -30°and 60° in Hough space as
shown in Figure 3.13b. This method has the advantage that, if a biscuit

is partially in the image orientated at a different angle to the biscuit

under inspection, then it will produce low peaks and will not be
detected; however, two peaks will still result for partially occluded

biscuits, as long as there are enough edge elements to contribute to the

accumulation. If a biscuit is partially in the image and orientated at
the same angle as the biscuit under inspection (Figure 3.16b), then this

will add to the accumulation - this problem is dealt with later. If

multiple peaks are detected (implying the presence of several biscuits),
each may be individually inspected by determining which pair of peaks

are ~90° apart. As in many practical situations, the camera is normally

adjusted so only one product will ever be allowed to be present in the
image. This algorithm is therefore not suited for inspecting multiple

biscuits.

The algorithm is as follows. First, the image is scanned

sequentially (left to right, top to bottom). At each point, the x and y

Sobel gradients are calculated. If the estimated gradient magnitude is

greater than a fixed threshold, then an edge is taken to exist. At this

point the angle of orientation (determined from the x and y gradients)

is calculated. This, along with the (x,yj coordinates and the sign of

the x-gradient are stored in an array. The algorithm is given in Figure

3.14.

- 98 -

The threshold 'thrl' is chosen such that the value satisfies an

edge. A value of 180 was found to give good results with Figures 3.10a

to 3.10g. The function 'sobelangle' calculates the angle of the edge
from the x and y gradients (dx and dy) in the usual way. The function

'sign' is TRUE if the sign of dx is positive else it is FALSE (this is
required later on).

1 PROCEDURE find_angles;
2 VAR dx, dy, dxplusdy :INTEGER;
3
4 BEGIN
5 count:=0; y;=0;
6 REPEAT x:=0;
7 REPEAT
8 dx := (P8+Pl*2+P2) - (P4+p 5*2+P6); { find Sobel - dx }
9 dy ;= (P6+P7*2+P8) - (P2+P3*2+P4); { find Sobel - dy }
10 dxplusdy := ABS(dx) + ABS(dy)
11 IF dxplusdy > thrl THEN { an edge element }
12 BEGIN
13 Q0:=255; { Set flag in Q-space }
14 edge[count].XX := x; { save x,y,angle & sign }
15 edge[count].yy := y;
16 edge[count].theta := sobelangle(dx,dy);
17 edge[count].sign := sign(dx);
18 count ;= count + 1;
19 END; x:=x+l
20 UNTIL x=128; y:=y+l { do x }
21 UNTIL y=128; { do y }
22 END;

Figure 3.14 Finding the angles of the edge
points of the biscuit

The next step is to scan the array 'edge' and group all angles such
that, for every angle found, a counter is incremented in Hough space

corresponding to that angle. The algorithm is given in Figure 3.15.
Note that here. Hough space here is one-dimensional (as opposed to

two-dimensional for the centre finding algorithm). A simple linear

smoothing algorithm was then applied to 'hough_space' in order to smooth

the effects of noise.

- 99 -

1 PROCEDURE group_angles;
2 VAR i :INTEGER;
3
4 FOR i := 1 TO count DO
5 BEGIN
6 hough__space[edge[i].theta] := hough_space[edge[i].theta] + 1
7 END;

Figure 3.15 Hough transform to determine the
orientation of the biscuit

3.4.4 Determining the Peak Angles in the Image

The next step is to locate the peaks - this will determine the
orientations of the sides of the biscuit. First suggestions might
indicate that a fixed threshold would suffice but practice has found
that this was inadequate, particularly if another section of biscuit

entered the field of view of the camera or the image was noisy. It was

therefore necessary to develop an automatic thresholding algorithm.

This was accomplished by setting the threshold to a limit that exceeded
the normal bounds. A scan along the array 'hough_space' is then carried
out to see if two peaks (above the threshold) occurred. (Here, we are
assuming that the object is rectangular so only two peaks will

occur.) If less than two peaks were found then the threshold is

decremented and the process is repeated. If more than two peaks are

found at the same threshold or the threshold goes below a minimum, then

the object is assumed not to be rectangular. This may appear a time

consuming process but in practice, less than three iterations are

generally needed (c.f. timings in Section 3.4.9). When two peaks are

found, a simple calculation will reveal if they correspond to

perpendicular lines before further analysis proceeds. This method has

been found to detect angles with an error of ±5°. This large range (the

Sobel from which the angles were derived is accurate to ~%^) is because

the biscuit has ragged edges. Thus, a fair degree of tolerance must be

— 100 —

taken into account.

The next step is to locate the points in each line individually in
order to apply a least squares fit to the points.

3.4.5 Least Squares Fit Matching to the Edge Points

Two main problems occur for trying to fit a series of biscuit edge
points to a line;

1. If the chocolate has insufficient chocolate coating, those parts
uncovered will be detected as edges whose angles may coincide with
those of the true edges (Figure 3.16a).

2. If the next product is partially visible in the scene and orientated
at the same angle or a product defect is present that has edge
points orientated at the same angle as an edge (Figure 3.16b), this

too will give misleading results.

Applying a least squares fit to the points in either case will give
a false result. The first problem is essentially to remove those points
of the biscuit not associated with a true edge. An example of this is

given in Figure 3.10h. From experiment, it was found that these false

edges either form a closed loop or they are small. Successive

application of the algorithm in Figure 3.17 three times removes all

internal points not related to the edge of the biscuit.

The second problem in eliminating the 'false' points with the same

angle on the edge of the biscuit (Figure 3.16b) requires more attention.

For instance, if we applied a least squares fit to these points, the

line will obviously be incorrect because of these false points, i.e. the

pairs of points 1 and 2, and 3 and 4 in Figure 3.16b are considered to

belong the same line because they have the same orientation and sign of

- 101 -

Figure 3.16a Edge points revealed on an uncovered chocolate biscuit.
These have the same orientation as the 'true' edge points,

Figure 3.16b Edge points revealed on a biscuit with chocolate overflow.
This is complicated by the fact that another biscuit with
the same orientation is entering the field of view of the
camera

- 102 -

the Sobel gradient. This can be solved as follows.

1 { Remove middle bits }
2
3 PROCEDURE remove ;
4 VAR i, cnt :INTEGER;
5
6 BEGIN
7 FOR i := 1 TO count DO { count is no. of edge points detected }
8 BEGIN
8 x:=edge[i].xx; y:=edge[i].yy;
10 cnt:=Q1+Q2+Q3+Q4+Q5+Q6+Q7+Q8;
11 IF cnt < 255*4 THEN Q0:=0; { < 4 pixels in Q-space set? }
12 END;
13 END;

Figure 3.17 Removing points not associated with
the boundary of the biscuit

The first step is to isolate all four sides of the biscuit. The

perpendicular edges are easily separated by partitioning the edges based
on their angles (Section 3.4.4). This leaves us with two separate pairs
of parallel edges. Each edge can now be isolated by considering each

point based on the sign of its Sobel gradient (Figure 3.14); however,
this will also include those points not relevant to the edge. The next

step is to remove these points. We can note that these false points

only occur at the ends of a line 'drawn' between both points, i.e. at
the end points in the arrays which hold the (x,y) coordinates of all the

points in that line. Therefore, if we check the angle between both end

points against the correct angle derived from Section 3.4.4, this will
show whether either point is a false point. If either is false, then

they are both eliminated from the array. This process is repeated until

a correct angle is found. (Note that, since we cannot detect which

point is the 'false' point without further computation, both points must

be eliminated.) In practice, this has found to produce good results as,

despite the removal of 'good' points, there are generally enough points

available to produce a good straight line fit to the edges. The

— 103 —

algorithm for this is given in Figure 3.18.

1 { Remove incorrect end points }
2
3 PROCEDURE remove_end_points;
4 VAR i, tmp, temp_angle :INTEGER;
5 goon :BOOLEAN;
6
7 BEGIN
8 i:=l; goon:=TRUE;
9 REPEAT { point count = no edge points in line }
10 tmp:=point count+l-i; { locatTon in array of end of line }
11
12 { temp_angle = angle between both end points }
13 temp_angle;=angle(xarray[tmp],yarray[tmp],xarray[i],yarray[i]);
14 IF NOT inside_range(temp_angle) THEN remove_it(tmp,i) ELSE
15 goon:=FALSE;
16 UNTIL NOT goon;
17 END;

Figure 3.18 Removing points not associated with current edge

' remove_it' in line 14 removes the end points from the array.
' inside_range' also in line 14 merely checks the angle between both

points.

Having done this, we can now apply the least squares fit method in

order to fit the best line to these points. If we consider that dĵ is

the vertical error distance between the point at arid the
proposed best-fit line (Figure 3.19), then the least squares fit method

fits the line by minimising

d^2 + d^2 + _, + d^2

i.e. the sum of the squares of the vertical errors [101].

Consider the equation of the line

y = bx + a

If we have a set of points (x^,y^), (X2,y2) • • • (x̂ ^̂ ŷ)̂ ̂ this can be

written in matrix form [101] as

— 104 —

Figure 3.19 Least-squares fit to a set of experimental points. A line
is found such that the distance (d) between the line and
the points is minimised

y=
yi 1 Xg

M=

i

v=

where b and a are the required values, i.e. the gradient and intercept

of the line respectively. These values are obtained by the formula

V = y

where is the transpose of M and is the inverse of the product
of the transpose and the original matrix. In all cases this produces a

2x2 matrix. However, rather than multiply all elements out, further

analysis reveals that a significant amount of simplification can be

incorporated into the program thus reducing the amount of processing

considerably. The algorithm is given below in Figure 3.20. Note that

the procedure is called with the number of points to be fitted (nopts).

- 105 -

=mtin[2,2]/determinant ;
=mtm[1,1]/determinant;
=-mtm[2,1]/determinant;
=-mtm[1,2 3/dete rminant;

1 { Least squares fit to a set of points.
2 The X and y coordinates of the line to be fitted are assumed to
3 be in two arrays labeled 'xarray' and 'yarray'. Thus
4 (xarray[l],yarray[l]) is equivalent to (x,y) of the first point.

6 PROCEDURE least_squares_fit(nopts :INTEGER);
7 BEGIN
8 { 2x2 matrix mtm = M M, a & b are defined in the main program }
9
10 a:=0; b:=0; mtm[l,l]:=0; mtm[l,2]:=0; mtm[2,l]:=0; mtm[2,2];=0;
11 FOR i:= 1 TO nopts DO mtm[2,l] :=mtm[2,l] + xarray[i];
12 FOR i:= 1 TO nopts DO mtm[2,2] :=mtm[2,2] + xarray[i]*xarray[i] ;
13 mtm[l,l] := nopts;
14 mtmi 1,2] := mtm[2,l]
15 determinant := mtm[l,l]*mtm[2,2]-mtm[l,2]*mtm[2,l] ;
16 .
17 { 2x2 matrix mtm_inverse = (M M) }
18
19 mtm_inverse [1,1]
20 mtm_inverse[2,2]
21 mtm_inverse[l,2]
22 mtm inverse[2,1]
23
24 FOR i := 1 TO nopts DO
25 a;=a+(mtminverse[l,l]+mtminverse[l,2]*xarray[i])*yarray[i];
26
27 FOR i := 1 TO nopts DO
38 b:=b+(mtminverse[2,l]+mtminverse[2,2]*xarray[i])*yarray[i];
29
30 END;

Figure 3.20 Least-squares fit to a set of points

The equation of the line is thus

y = bx + a
where a and b are determined in lines 24 and 27 respectively.

3.4.6 Finding the Corners and Size of the Biscuit

After the least squares fit to every line we will have four lines

represented by the equations:

y = b^x + a. (1)
y = b«x + a^ (2)
y = bgX + a^ (3)
y = b^x + a^ (4)

where lines (1) and (2) are parallel to each other (as are (3) and (4)),

- 106 -

i.e. bl~b2 and b3~b4 and lines (1),(3), (1),(4), (2),(3) and (2),(4) are

perpendicular to each other. The corners of the biscuit are now found
by considering that the position of one of the corners is the point

where two perpendicular edges of the biscuit meet. For example,

consider the two perpendicular lines (1) and (3), the position of the
first corner of the biscuit can be found by rearranging the equations
for (1) and (3) such that x and y in (1) equals x and y in (3), thus

X = (ag-a^)/(b^-bg)

and

y = ((a^/t^)-(ag/t)^)) / (1/t^-l/b^)

where â ̂and bĵ , are determined from the least squares fit for the
appropriate line. The length and width of the biscuit can then

determined by Pythagoras's theorem from the coordinates of the biscuit.

3.4.7 Determining the Amount of Chocolate Coating

In order to determine the amount of chocolate coating on the
biscuit, a simple suitably chosen threshold will suffice within the

biscuit in order to distinguish between those parts of the biscuit that

have been covered by chocolate and those parts that have not.
Therefore, by tracking across the biscuit applying the threshold (all

areas within the model template from the last step) and accumulating the

number of pixels over a threshold, a comparison between this value and
the area scanned will produce a percentage of the biscuit not covered

with chocolate. This figure is compared with an acceptable figure (1%

in this case) to determine if the biscuit should be rejected.

3.4.8 Determining the Amount of Chocolate Overflow

This step is basically the opposite of the last step. Here, a

threshold (intensity of the chocolate) is applied to a small area

- 107 -

outside the model template. A percentage of the biscuit outside the

template is compared against an acceptable value (0.5% in this case) in

order to determine whether there is significant chocolate overflow. The

run-time output and execution times follow in the next section.

3.4.9 Run-time Results and Timings

Below are the run-time results for the test images, Figures 3.10a

to 3.10g. The resultant images are given in Figures 3.21a to 3.21g.
The white outline surrounding the biscuit defines the template from

which we will work. Note how extrusions and lack of chocolate are

ignored. The white shading signifies both uncovered areas of biscuit

(within the template) and excess chocolate (outside the template). Each

set of results is accompanied with a PASS/FAIL label.

Following this are the timings for each part of the algorithm in

milliseconds (Table 3.2). All times are derived from a PDP-11/73
processor operating on a 128x128 image. The times for SIP (Chapter 5)

are also given. It should be noted that the thresholds in the algorithm
can be altered for optimum inspection. The thresholds chosen here were

determined experimentally and gave good results. Note that

determination of the size of the biscuit has been omitted as in all

cases the time taken was 1ms. The initialisation procedure took 2ms.

’ig Sobel GroupsSmooth Determine Least Chocolate Chocolate Total
!.21 angles angles Squares coating overflow time

(ms) (ms) (ms) (ms) (ms) (ms) (ms)

a 1268 26 15 288 146 52 1798
b 1325 31 15 374 158 59 1965
c 1338 32 5 373 212 55 2018
d 1288 28 2 312 147 51 1831
e 1301 29 10 320 156 54 1855
f 1300 28 5 316 151 52 1855
9 1293 28 7 308 145 52 1836

Table 3.2 Breakdown of execution times of the rectangular
biscuit algorithm on seven different images

- 108 -

T>

U

Figure 3.21 Result of the Biscuit Algorithm

- 109 -

tr*

Figure 3.21 Result of the Biscuit Algorithm

- 110 -

(a) Orientation of biscuit sides
Length of sides
Biscuit show through
Chocolate overflow
Biscuit PASSED inspection.

-27° and 78°
98 97 39 40
0.31%
0.16%

PASS
PASS
PASS

(b) Orientation of biscuit sides
Length of sides
Biscuit show through
Chocolate overflow
Biscuit FAILED inspection.

-47° and 64°
109 109 39 39 FAIL
0.47% PASS
0.11% PASS

c) Orientation of biscuit sides
Length of sides
Biscuit show through
Chocolate overflow
Biscuit FAILED inspection.

-35° and 77°
101 101 40 37 FAIL
34.1% FAIL
0.0% PASS

(d) Orientation of biscuit sides
Length of sides
Biscuit show through
Chocolate overflow
Biscuit FAILED inspection.

-23° and 82°
97 96 39 41 PASS
13.1% FAIL
0.0% PASS

(e) Orientation of biscuit sides
Length of sides
Biscuit show through
Chocolate overflow
Biscuit FAILED inspection.

-28° and 77°
98 98 43 42 FAIL
0.16% PASS
0.48% FAIL

(f) Orientation of biscuit sides
Length of sides
Biscuit show through
Chocolate overflow
Biscuit FAILED inspection.

-25° and 81°
100 97 41 42 PASS
0.64% PASS
0.50% FAIL

(g) Orientation of biscuit sides
Length of sides
Biscuit show through
Chocolate overflow
Biscuit FAILED inspection.

-25° and 76°
97 98 38 38
0.29%
1.4%

PASS
PASS
FAIL

- Ill -

From Table 3.2, it is interesting to note that in the initial pass over

the image, the Sobel procedure constitutes ~70% of the total processing
time. This algorithm was implemented on SIP using a lookup table for

the determination of the angles. The whole algorithm showed a 30 times

speed improvement over the PDP-11/73 timings. This represents a

processing rate of 8-9 biscuits per second, including I/O.

3.5 PROGRAM OPTIMISATION

Conventional algorithms may require several passes over an image in
order to extract the information required. These algorithms usually

involve parallel algorithms such as a Sobel, threshold and filters which

are time consuming when 128x128 and a 256x256 images are used.

Real-time industrial algorithms extract features and measurements from a

known product. This product may typically occupy 30% of the image
space. ^If it is just required to locate the edge elements to determine
the necessary information then this may typically represent less than 5%

of the image space.

By locating the object and limiting the bounds of the image to only
the space occupied by the object, then a significant amount of redundant

information can be eliminated hence increasing the performance of the
algorithm. Alternatively, if the majority of the information required

can be derived from the edge elements (as in the two algorithms

described) then the data set can be reduced to only a small set of

values (typically less than 1000 for a 128x128 image). The overall
effect of this is that the execution time of the algorithm can be

significantly decreased.

Below is a list of several points that can help in improving the

execution time of an algorithm.

- 112 -

1. Floating point calculations may be present in the algorithm. These

should occur only when necessary. Integers should otherwise be used
at all times.

2. Trigometric and frequently occurring calculations can often be

stored in a lookup table. Thus, the time to do the calculation is
in effect the access time of the memory.

3. Limit the area of processing to the area occupied by the object.

4. Only apply an edge detector where necessary - see Section 3.5.1 for
a fuller explanation.

5. Incorporate maximum information about the object into the algorithm.
For instance, we assumed that the biscuit (Section 3.5) was
rectangular hence eliminating the need to determine the features.

6. Writing critical parts of the algorithm in machine code. This is a
debatable point as the execution time of an algorithm written in a

high level language often depends on the quality of the code

generated by the complier.

3.5.1 A Priori Knowledge for Industrial Recognition

In industrial recognition, we have the advantage that we know what

the product should 'look' like and the conditions in which it appears,

i.e. the reflectance of the product and background illumination etc. We
can therefore take advantage of this knowledge in order to improve the

performance of an algorithm. For instance, if we know that the majority

of edge elements lie between two distinct grey-level values because of

the lighting conditions set up, then, rather than calculate a Sobel for

every point in the image, it is only necessary to calculate a Sobel for

those elements that lie between the two previously mentioned values.

— 113 —

Thus, the number of Sobel calculations can be dramatically reduced, i.e.

y:=0;
REPEAT x:=0;
REPEAT
IF (PO > min_thresh) AND (PO < max thresh) THEN
CALCULATE_SOBEL ;
X := x+1;

UNTIL x=128; y:=y+l
UNTIL y=128; { Do for a 128x128 image }

Table 3.3 shows the percentage decrease in execution time for both the

Sobel procedure and the overall execution times applied to the
rectangular biscuit algorithm over all seven images.

% decrease in time % decrease in time
for Sobel operation for overall algorithm

(ms) (ms)

37 26
54 44
20 10
53 40
47 32
54 27
48 33

Table 3.3 Table of the reduction in execution time for
the Sobel operation and the whole algorithm
after program optimisation

From the above figures, we can see that a median of 48% reduction in
execution time for the Sobel operation can be achieved resulting in a
median of a decrease in program execution time of 32%. (Note that the

median seems to be a better measure of the "typical" execution time than

the average in this case, as the median represents where the bulk of the
execution times lie.) Therefore, we can conclude that an important

factor in real-time industrial processing is to detect and eliminate as

much redundant information as possible by incorporating maximal a priori

knowledge of the scene into the algorithm, hence only processing those

parts that are necessary to extract the required information.

- 114 -

3.5.2 Eliminating Bottlenecks using Hardware Accelerators

In such algorithms as those described above, there usually exists a

bottleneck that predominates over the execution time of the algorithm.

If we consider the 0-ring algorithm, we can see that the initial pass of

applying a Sobel represents ~70% of the total execution time. Analysis

of the procedure that contains the Sobel calculation shows that 90-95%

of the time is spent calculating the Sobel, i.e. the Hough calculation

only accounts for 5-10% of the execution time of the procedure. This

would suggest that the Sobel calculation should be carried out in

hardware. The sections of an algorithm that should be executed in
hardware can be determined by a C*T test (Section 7.5.2), but software

optimisation should also be considered. As a typical example, a recent
industrial analysis algorithm developed at RHBNC initially took over a
minute but was reduced to ~2s (running on a PDP-11/34 with a 128x128

image) after software optimisation [29]. Further increase in

performance was gained by upgrading the processor to a PDP-11/73.

3.6 SUMMARY

This chapter has looked at two inspection algorithms that adopt
different forms of the Hough transform. These algorithms were different

in the sense that one inspected 0-rings whose orientation was

independent of the x and y axis whereas the other inspected a
rectangular product which was orientation dependent. This showed the

usefulness of the Hough transform in two different applications.

Although these programs have only been applied to one product, they can

be applied to similar products, e.g. circular chocolate covered biscuits

or rectangular machine parts. Only minor alterations would be necessary

to the programs, i.e. changing of thresholds, etc. but the principle

methods for detection and scrutiny would remain the same. (With minor

alterations to the rectangular biscuit algorithm, e.g. looking for three

- 115 -

peaks in Hough space for triangular products, different straight-lined
shaped products can be inspected.)

An investigation of the concepts of real-time algorithms showed
that, by extracting only relevant information and hence reducing the

data set of the image, this allowed real-time execution times to be
accomplished on special hardware (Chapter 5). A priori knowledge

improved the performance dramatically and helped in eliminating

redundant steps. Analysis of the timings of both algorithms showed that

the initial phase of locating the object and applying the Hough

transform represented more than 60-80% of the total execution time but

was significantly reduced after software optimisation. Overall,

important aims in devising inspection algorithms include accuracy,
robustness, speed and low cost implementation (Chapter 5). These

algorithms fulfil all of these requirements.

Application of a parallel algorithm to pre-process an image may
constitute ~70% of the total execution time on a sequential processor.

This is an important fact that is typical of many image processing

algorithms (c.f. algorithms above, [29]) and will be discussed in detail
in Chapters 4 and 8. We will now look at the sequential implementation

of both algorithms. This will allow us to investigate the validity of

parallel and sequential processors in industrial inspection.

- 116 -

CHAPTER 4

SEQUENTIAL IMPLEMENTATION OF INSPECTION TASKS

"Christ! What are patterns for?"

Patterns in the Complete Poetical Works of Amy Lowell

4.1 INTRODUCTION

Chapter 3 described two inspection algorithms that exhibited both
parallel and sequential tasks (Section 2.2). For maximum efficiency, it

is important to try to match the task to the architecture of the

machine, i.e. sequential tasks should be performed on a sequential
machine and parallel tasks on a parallel machine. Also, it is generally

easier to implement a sequential algorithm on a sequential machine than

it is on a parallel machine and vice-versa.

When relating to industrial inspection other factors such as cost
must also be considered. A discussion of these points is undertaken

which leads to an investigation into algorithms suitable for sequential
implementation. The chain code is cited as being amongst the most

useful. The main disadvantage of the chain code is that it is generally

restricted to binary images and susceptible to noise degradation. This

method is extended to the grey scale case and a novel method for

improving the robustness of measurements taken from the chain code in

noisy images using the Hough transform is described. This is applied to

- 117 -

the biscuit algorithm described in Section 3.4 and the O-ring algorithm

described in Section 3.3. First, let us discuss the possibility of
improving the speed of a parallel algorithm by using sequential
processes.

4.2 SEQUENTIAL ALGORITHMS IN INDUSTRIAL INSPECTION

A significant amount of information required by an inspection task

is contained at the edges of the object, e.g. derivation of the centre
points of an O-ring (Section 3.3) and the orientation of the edges of

the biscuit (Section 3.4). Edges typically represent ~5% of the total

image space. Analysis of the algorithms in Chapter 3 shows that the
pre-processing stage entails applying a Sobel edge detector to every

point in the image, making ~95% of the processing redundant. A more

efficient method would be to apply the Sobel to only the edge
points - this suggests tracking around the border of an object. This
concept displays certain advantages over the parallel approach - in

particular, computation time is reduced and information is localised.
Thus, information such as perimeter, area, height etc., can be easily

derived - this would be otherwise difficult to achieve on a parallel

processor.

There are many other reasons for implementing an inspection

algorithm sequentially. Often, if appropriate techniques are used and

the algorithm is optimised along the lines given in Section 3.5, a

sequential processor can achieve a lower algorithm execution time than a

parallel processor. Considering that the cost of a sequential processor
is often much less than a parallel processor, it would appear that a

sequential processor is a more cost-effective solution for industrial

recognition. A comparison with a parallel machine should only be made

with an optimally programmed sequential machine. One should not justify

the additional cost of hardware for a parallel processor when compared

- 118 -

to a non-optimally programmed sequential machine [107]. However, there

are algorithms that are inherently parallel such as thinning (here we
take the view that thinning is more appropriate for implementation an a

parallel machine that a sequential machine). For this reason.

Chapters 5 and 6 investigate a dual-processor architecture.

From this discussion, it appears that sequential processors are

more applicable to industrial inspection than parallel processors. It
would also appear that localising an object by tracking around its

boundary and extracting measurements has many advantages over other

techniques. However, the usefulness of these methods depends on the

accuracy and the robustness required. This is discussed next.

4.3 BOUNDARY EXTRACTION ALGORITHMS

Various algorithms have been developed for extracting or using the
boundary of an object and deriving some measurement (e.g. area), or
finding a measure of shape description [49]. One such method is that of
the Fourier descriptors. Here, a tracking routine is used to track

around the boundary of an object; commonly, rather than representing the

edge elements on the standard x-y plane, they are represented on a
complex plane as in Figure 4.1. Thus, for each boundary point

encountered, a complex number is obtained. At the end of the trace, the

discrete Fourier transform (DFT) is calculated from the list of these
points which is referred to as the Fourier descriptor (FD). Since the

DFT is reversible, no shape information in principle is gained or lost.

Because manipulations occur in the frequency domain, it turns out

that dependence on size and orientation can be eliminated. For this

reason, Fourier descriptors have found their use in optical character

recognition (OCR) [69] and more generally in object recognition such as

the identification of three-dimensional aircraft [99]. In OCR, the

- 119 -

jy

X X X X X X XX X X X X
X X X X X X
X X
X X
X X X X

* ' * * x X X X X

Figure 4.1 Complex plane representation of a boundary

boundary of the character is tracked and its FD is calculated. As Lai,
Ching and Suen pointed out, when two closed curves vAiich differ only in
position, orientation and size with analagous starting points are

transformed, they have identical FD's. However, because the Fourier
transform is computationally expensive, this approach is undesirable for

real-time industrial inspection.

Probably the most popular boundary extraction routine is the chain
code [45] (most others are merely variations on this theme [47]). This

has the ability to extract measurements such as the perimeter and area
of an object while tracking. This makes it highly attractive for

industrial inspection since these features are often required. The
chain code has been successfully employed for automatic chocolate

decoration [19] using such measurements. Here, the aim was to determine

which chocolate was currently in view of the camera and to apply the

appropriate chocolate decoration. This involved calculation of the

area, perimeter, centre of gravity and location of the corners. As each

chocolate was dark and the background was light (and surface information
was not required), a simple threshold sufficed for locating the

chocolate and determining its shape.

— 120 —

An interesting point to note is a comparison between the FD's and

the chain code when applied to OCR [69]. This showed that the Fourier

Descriptors achieved a recognition success rate 81.74% while the chain

code achieved a 93.74% success rate to the degree of approximation they
took.

4.3.1 Problems with Boundary Extraction Algorithms

The main problem with boundary tracking routines is that they

require a binary image. In the past, two approaches have been used to
achieve this. The first is to threshold the image. This is a common

technique to employ as it is probably the least computationally
expensive of pre-processing routines. However, this is not always

convenient; for instance, consider Figure 3.10c. A straight threshold

would mean that those edges not covered with chocolate will go

undetected. Another problem is that if an incorrect threshold is
applied, this may produce meandering boundaries which do not represent

the true boundary. This makes the chain code sensitive to noise.

The second approach is to apply an edge detector e.g. a Sobel, and

to threshold the gradient magnitude in order to produce a binary image

of the edges. Since this usually produces an edge of 2-3 pixels wide, a
common technique is to thin the edges before tracking. However, both of

these are time consuming operations without the use of a parallel

processor as they are essentially parallel operations. Also, (and

probably more important), it is necessary to apply both operations to

the whole image which would again mean a significant amount of redundant

processing.

It is clear that the chain code has strong possibilities for

reducing the execution time of an algorithm relative to those methods

just discussed and is investigated in the next section. Subsequent

— 121 —

sections extend these ideas and implement them on both industrial

algorithms presented in Chapter 3. Results follow each implementation.
First, let us discuss the chain code.

4.4 THE CHAIN CODE

The chain code was originally developed by Freeman [45]. The
purpose of the chain code was to be able to represent an arbitrary

geometric shape by a set of numbers suitable for computer analysis.
Freeman drew up three points that a coding scheme for line structures
should achieve:

1. It must faithfully preserve the information of interest.

2. It must permit compact storage and be convenient for display.

3. It must facilitate any required processing.

Representing a boundary by the chain code has many advantages, for
instance, the object can be rotated, expanded, shrunk and smoothed by

manipulation of the code. Structural features can also be derived such

as the area, perimeter and the location of straight lines and corners.

The main advantage is that it has a significant speed improvement over
other methods both in the derivation and the analysis. In order to

clarify these points, let us first discuss how the chain code is

derived.

4.4.1 Derivation of the Chain Code

The first step for deriving the chain code is to initially locate

the object. If we consider the simple case of chain coding an object in

a binary image, finding the object is simply a case of searching for the
first pixel (edge point) with a value designated as being part of the

object.

- 122 -

3 2 1

4 0

5 6 7

Figure 4.2 One of eight possible directions in a 3x3
window that represents the chain code

On encountering the first edge point of an object, the chain code
follows a tracking process. In the case of a quantised binary image, at
the first encountered edge point there is only one of eight possible

directions that the next position could be as shown in Figure 4.2. The
chain code chooses the next position by searching for the new edge
element that is in the most counter-clockwise point: the code

corresponding to this new edge element is then stored and the position

in the image is adjusted to the position of the new edge element. This
is repeated until the original position has been reached moving in the

same direction (in the case of a closed contour) or no further edge

elements exist (in the case of an open contour). Figure 4.3 depicts an
exairple of how the chain code is derived starting at point A. (Note

that problems occur at junctions caused by the intersection of two

lines. However, we are not concerned with these problems as they do not

occur with circular or rectangular shapes.)

The outline of the object can be reconstructed by scanning the code

sequentially and adjusting the x,y coordinates as appropriate. A useful

feature of the chain code is that, since all positions are relative to

each other, only the starting coordinate need be changed in order to

shift the shape in any direction. Another advantage is that only three

bits (eight possible values) are necessary to store the required

information per edge element.

- 123 -

AXXX xxxxxX XX XXxxxxxxx

Chain code: 07000076454444443211

Figure 4.3 Boundary of an object and its chain code

Figure 4.4 Finding the area under a curve

- 124 -

Now that we have mentioned how the chain code is derived, two

topics relevant to the chain code will now be dealt with. These are

measurement and feature extraction, both of which play an important role
in industrial inspection.

4.4.2 Perimeter and Area of a Shape

The perimeter of a shape is approximated by the number of even

numbers in the code plus /2 times the number of odd digits. This is

a typical example of a measurement that would otherwise be difficult to
extract any other way (see Section 4.6 for an application of this
method).

If a shape is closed and simply connected (which is usually the

case), its integral represents the area enclosed by the chain. If the

shape is not connected, then the integral represents the area enclosed

by the chain with the x axis. (A simple test for closure is to perform
a path reduction test [46]. If the curve vanishes then it is closed
else it is open and the residue (often termed the closure) is the

minimum distance between the two end points.) Note that the digits in

the chain code can be arbitrarily rearranged without changing the length

of the curve or the minimum distance between the end points in the case
of a non-connected curve. The convention used here is that the area is

positive when enclosed in a clockwise sense and negative if it is
enclosed in a counter-clockwise sense. As an example of finding the

area under a shape, consider the simple example of the code

10127
the diagram of which is given in Figure 4.4. The following procedure
was suggested by Freeman [45] to determine the area of an arbitrary

shape. First, a modifier B is defined to represent the change in

distance of the curve from the x-axis. This in effect gives the value

of the leading edge of the particular vertical column. Thus, in our

- 125 -

example, the area (A) is initially zero and the modifier B is set equal

to two. The initial slope of '1' increases the area by the amount of

the first vertical column to 2^ and the modifier to change to three.

The next slope of '0' causes no change in the modifier since it is

running parallel to the x-axis but increases the area by the amount of
the modifier to 5^. The next step of slope '1' increases the area by

the value of the modifier plus h to nine and the value of the modifier

to four. The slope of '2' gives no change in the area but increases the

modifier to five. The slope of increases the area by the modifier

minus ^ (to 13̂ i) and decreases the modifier to four. This leaves us

with a total area of 13̂ ̂square units. This procedure can be summed up
by developing a set of rules for all eight slopes. These are summed up
in Table 4.1.

Slope Change in Change
Area modifie]

0 +B +0
1 +B+% +1
2 +0 +1
3 —B—^ +1
4 -B +0
5 —B+^ -1
6 +0 -1
7 +B—^ -1

Table 4.1 Table for automatic calculation of the area under
a chain coded figure

Thus the area of an arbitrary object, whether closed or open can be
determined by simple manipulation of the chain code. Other measurements

such as the location of the centre of gravity, the width and height of

an object can also be derived quite simply. These will not be discussed

here but can be readily found in literature on the subject of chain

codes [46], [47]. One advantage with the chain code is that these

measurements can be calculated as the code is being derived making it an

attractive proposition for real-time calculation of measurements of

- 126 -

objects involving a minimal amount of hardware.

We will now discuss how to extract features from the chain code.

This method (in general terms) derives a measurement of curvature and

has been applied for locating corners in an object. This topic is

covered with a view to implementing the algorithms described in
Chapter 3.

4.4.3 Finding Corners in a Shape

One of the more useful possibilities that has emerged from the
chain code is the ability to measure curvature of line figures with a
view to detecting the presence of corners. The basic technique was

developed by Freeman and Davis [48] who observed the behaviour of a line

segment of length s being moved around the figure as shown in

Figure 4.5. The angular differences d̂ ̂ between successive segment

positions are used as a smoothed measure of local curvature along the
chain. Thus, if the curvature only deviated slightly from zero (d^~0)

across a sequence of t positions, then this would indicate a straight

line of length s+t. However, if the deviation was non-zero but constant

across t positions then this would indicate a curve of length s+t of

uniform curvature.

Freeman and Davis went on to define a corner as being the

concatenation of two straight lines at an angle as in Figure 4.6a or two

straight lines joined by a curve as depicted Figure 4.6b. Thus,

applying a straight line segment of length s across Figure 4.6a, we will

get a d. of approximately zero along both lines for p<B and p>B+s (where
p is the position of the leading point of the line segment) and a

nonzero d. for the sections p>B and p<B+s. This nonzero condition lasts

for s+1 positions for sharp corners and m+s positions for cases such as

those in Figure 4.6b where m is the number of nodes in the curve,

- 127 -

29

25

20

15 14

s = 5

Figure 4.5 Line segment scanned around
a chain coded figure

A

(a)

A
p

(b)

Figure 4.6 Illustration of the effect of a line-segment
at (a) sharp corners and (b) rounded corners

- 128 -

i.e. between B and D (note m=l for the concatenation of two straight

lines). The value m gives us a measure of the curvature. Thus, in
general, Freeman and Davis characterised a corner by the concatenation

of three distinct regions, two of which have a d^ of zero and one which
has a nonzero d^.

In practice, the length of the line must be large enough to avoid

noise such as that produced by quantisation that causes "wobble" of the
line segment yet small enough to detect corners close to each other. A
length between 5-13, depending on the closeness of the curves has been

found [48] to be suitable for detecting corners of greater than 30°.

Although this may appear to be quite large. Freeman commented that
corners of less than 30° are not likely to be of great interest anyway.

The general problem with the chain code is that it requires a
binary image which is not always easily achieved. The next section
attempts to generalise the chain code to the grey scale case. By doing

this, we will hopefully show that the chain code can be usefully used in

an industrial environment and can gain a significant speed improvement
over the methods used in Chapter 3, while retaining the speed and

robustness necessary for industrial analysis.

4.5 BOUNDARY EXTRACTION FROM A GREY SCALE IMAGE

Extracting information from a grey scale image is crucial to the
success of an industrial inspection algorithm. Assuming a binary image

greatly limits the applications because (1) it is not always accurately
achieved and (2) information content in the image is reduced,

e.g. information on surface texture is removed. It is for these reasons

that the chain code has been restricted to relatively simple tasks where

binary images suffice. Here, we attempt to show how the chain coded
boundary of an object can be extracted from a grey scale image with

- 129 -

little computational effort, and show how it can be applied to more
complex inspection tasks such as those in Chapter 3.

From the explanation of the chain code (Section 4.4), each element

in the 3x3 window is examined to see if it belongs to the boundary of an
object. If instead we took every element in the 3x3 window as the

centre of another 3x3 window, and applied an edge detector (the Sobel

was used in the actual implementation) to each position, and thresholded
the magnitude of the gradient (the threshold defining an edge point), a

binary edge image will be produced, only in the region of interest.

(The first edge point is found by applying the Sobel and thresholding
the magnitude of the gradient.) Since the edge is extracted

sequentially, this eliminates the need to apply an edge detector to the
whole image. In fact, analysis shows that the time to extract the edges
is reduced by a factor ~5. However, simultaneously with the edge

extraction process, the edge is chain coded. From Table 4.2, this adds

very little time (~20ms) to the total execution time.

One disadvantage with the chain code is that it is susceptible to

noise; however, because a thresholded magnitude is applied to the result

of the Sobel, the effects of noise are greatly minimised. One advantage
with the chain code is that the perimeter and area can be derived

simultaneously with the derivation of the code. Therefore, since we

expect a product to be of a certain size (~280 pixels for the chocolate
biscuit), anything below a perimeter value of 50 and above 400 can be

ignored and the scan continued. (Note that these are purely arbitrary

values and are dependent on the application.) This produces an
effective way of ignoring partial or broken products entering the field

of view of the camera.

— 130 —

We shall now consider the implementation of these techniques on the
chocolate biscuit algorithm (Section 3.4). The results derived from

this are then compared with the original results given in Section 3.4.9.

4.6 SEQUENTIAL IMPLEMENTATION OF THE CHOCOLATE BISCUIT ALGORITHM

Referring back to Section 3.4, the reason for determining the

orientation of each edge of the biscuit was to isolate the edge points

belonging to each line of the rectangular biscuit. The least squares

method was then applied to each group of edge points which determined a

template for the biscuit, and the corners were then located. One may
note that the isolation of each line is trivial if we just consider the
sign of the x and y gradients; however, if more than one (or partial)

product exists in the image, this method would no longer work. This is
not the case with the tracking method since only one object is being

scrutinised at any one time. In this case, a comparison of the sign of

X and y gradients will suffice; however, the aim of this exercise is to
extract the same information, i.e. we must determine the orientation of
the biscuit. (The orientation is in fact useful in some areas of

industrial recognition where it is necessary for a robot arm to pick up

the object.) This will then provide a more realistic result since both

algorithms will only differ in their implementation.

4.6.1 Finding the Corners of the Biscuit

After chain coding the biscuit using the algorithm in Section 4.5,

the obvious solution for finding the corners of the biscuit is to apply

the corner finding algorithm described in Section 4.4.3. However, this

was found unsuitable for rounded corners (such as those in the test

images 3.10a to 3.10g); therefore, some other technique had to be
developed. The method used was similar to that described in the

original algorithm, i.e. finding the most prominent angles in the scene,

- 131 -

only here we are localising the information to the biscuit.

This highlights one of the advantages for using the chain code.

Because information is local to the object, one can in principle have a

number of products in the scene and scrutinise each one in turn. Thus

for each product, an accurate measurement can be made of (in this case)
the most prominent angles of the boundary of the product. In the

previous algorithm where the most prominent angles in the whole image
were taken into consideration, multiple peaks would exist when many

products were present. Thus, that method is only suitable when only one
complete product is present.

The main problem now is to extract the most prominent angles in the
object. Having done this, we can isolate each line, and then apply the

least squares fit as before (Section 3.4.5) to the edge points of each

line. In order to do this, a novel approach of applying the Hough
transform in conjunction with chain code was used. This is described in

the next section.

4.6.2 Application of the Hough Transform to the Chain Code

As we have seen in Chapter 3, the Hough transform is a useful
method for improving the robustness of an algorithm. In order to find

the most prominent angles in the biscuit, we can apply the Hough

transform and a technique similar to that described in Section 4.4.3,

i.e. to move a line segment along the boundary (Figure 4.5) of the
biscuit. However, instead of measuring the deviations between angles as

is commonly done to detect corners, we can instead accumulate (in the

Hough array) the angles the line segment (Is) makes with the x axis for

every position in the code, i.e.

hough [angle_of_ls] := hough [angle_of_ls] + 1;

- 132 -

Thus, peaks in the Hough array will occur for the most frequently

occurring angles in the biscuit, i.e. the sides. It was found that a
line segment of length 10 was found satisfactory for both the long and

shorter sides, and a threshold of 12 was applied to the Hough array to

eliminate spurious angles produced from stray chocolate such as shown in
Figures 3.10e, 3.10f and 3.10g.

Having done this, we can now isolate each line as before based on

their angles and sign of their Sobel x and y gradient components. This
is then followed by the least squares method and scrutiny, all of these

being the same as before. The results of this are given in the next

section. In effect, these steps replace the first three steps for the
biscuit algorithm, i.e. the Sobel and the grouping, smoothing and
determination of the angles.

4.6.3 Results

The timings given in Table 4.2 are the result of applying the above
algorithm on the same test images as the previous algorithm
(Figures 3.10a to 3.10g). All timings are in milliseconds and are

derived from the same system, i.e. a PDP-11/73 operating on a 128x128
frame store. Note that the initialisation procedure in all cases took

8ms. Also note that chain coding and the edge detection occur in the

same routine; however, the time spent in each routine is given. The
times for the whole algorithm (including least squares fit, etc.) are

given in the last column. All angles derived were within +6° of the

actual orientation as measured manually. This shows that little or no

accuracy has been lost. It is worth noting that the Sobel operator is

accurate to [64]. The discrepancy in the results is caused by the

irregular sides of the biscuit. Besides, a result of ±6° is far more

accurate than required in order to inspect the biscuit.

- 133 -

Chain Locating Angles Total Whole
Coding in Biscuit Time Algorithm
(ms) (ms) (ms) (ms)
21 209 498 1163
20 214 501 1328
19 205 488 1292
20 209 498 1197
20 221 517 1244
21 216 510 1193
20 217 510 1191

Fig Sobel on
3.21 Edges

(ms)

a 260
b 259
c 256
d 261
e 268
f 265
g 265

Table 4.2 Breakdown of execution times for determining
the orientation of the rectangular biscuit
using the chain code

Comparing these results with those in Table 3.2, we can see that the
edge detection process has been reduced by a factor ~5 (from ~1300ms).

The overall reduction in execution time for the determination of the

angles of the biscuit amounts to a factor ~2.7 (from ~1340ms) hence
producing an overall reduction in execution time for the whole algorithm
by a factor ~1.6 (from ~1900ms). This shows that, by implementing the

algorithm sequentially, a significant gain in performance can be
achieved with very little loss in accuracy of the results.

4.6.4 Discussion

Chapter 5 describes a high-speed sequential processor specifically

designed for algorithms such as this. This has shown to give 25 times
increase in execution time over a PDP-11/73 which would reduce the

execution time of the algorithm to ~50ms (or ~100ms including

I/O) - this is equivalent to ten biscuits per second. Note that this is
a similar result after program optimisation has been carried out on the
original algorithm in Section 3.5. However, after optimisation of the

sequential version by applying similar techniques, an average reduction

of 20% in the determination of the angles was achieved. It is

interesting to note that the final figure relating the total execution

- 134 -

time of the sequential version of the algorithm after optimisation is

less than the edge detect stage of the original algorithm. Since this

is well within the limits of industrial inspection constraints, this

brings doubt to whether a parallel processor in such an industrial

environment would be more cost-effective, especially since it would be

extremely difficult (if not impossible) to implement the algorithms

given in Chapter 3 on a parallel processor. After all, even if it could

achieve a greater throughput, the actual processing is ultimately

limited to the product speed which is typically only 5-10 products per

second in this particular case or for most lines less than 30
products/sec.

However, there are cases when a parallel processor will have a far
greater throughput for those parts of the algorithm that can be executed
in parallel rather than implementing them on a sequential
processor - for example, algorithms where the whole image (rather than
just parts of the image) need to be analysed. Such a case is in the

segmentation of satellite images where the whole image is of interest.

However, it is rare that an algorithm can be fully parallelised and this

generally leads to the parallel implementation of an inherently

sequential task. This in turn produces a significant decrease in
performance of the parallel processor. It is for this reason that a
dual-processor configuration consisting of a parallel processor and a

sequential processor may appear to be an optimum solution. This is

discussed in the Chapters 5 and 6.

4.7 SEQUENTIAL IMPLEMENTATION OF THE 0-RING ALGORITHM

Referring back to Section 3.3 when we discussed the inspection of

0-rings - in order to locate the centre of the ring, it was necessary to

apply a Sobel to every point in the image and, for every edge point

encountered, a candidate centre point was calculated which was recorded

- 135 -

in Hough space. Peaks in Hough space indicated the centres of the
rings.

A similar technique can be applied to the 0-ring algorithm by

adopting the chain code as before. The 0-ring is tracked using the same

method as the chocolate biscuit, but this time the possible candidate
centre points are calculated at every point during the tracking

operation described in Section 4.5. The calculation of the centre point

requires very little additional effort as the Sobel x and y gradient
components are already available. The accuracy of the centre points was
found to be +1 pixel from the results in the original algorithm on

certain pictures (see Section 4.8) and a speed improvement of 4-5 was

recorded for the calculation of the centre points. From the timings in
Chapter 3, a single 0-ring took 2595ms on a PDP-11/73 using a 128x128

frame store. With the sequential version on a single 0-ring, this was
reduced to 520ms. Thus, including the radial histogram to check for

defects (270ms) and, this comes to 790ms, i.e. a reduction of a factor

~3.6. Implementation on SIP (Chapter 5) shows a factor of 25-30
reduction, hence producing a throughput of ~13 0-rings/sec.

4.8 LIMITATIONS OF SEQUENTIAL ALGORITHMS

Although the sequential implementations of the algorithms given in

Chapter 3 give a significant reduction in their respective total

execution times they do have their limitations. The main disadvantage
is that, in the case of the 0-rings, the algorithm will fail for more

that two crossed 0-rings. The reason for this lies in the fact that the
tracking routine will begin to track the next overlapping ring at the

intersection of the rings and fail to track the whole ring. Thus, only

part of the ring is tracked which makes the algorithm susceptible to

noise.

- 136 -

This allows us to make a distinction between the case of when one
should consider using either a sequential or a parallel algorithm. A
sequential task should be considered when objects will not be overlapped

or touching, although they may only be partially visible as previously

discussed. This should provide a large reduction in execution time of
an algorithm over a parallel method and hence a higher inspection

product rate. However, if complex scenes are likely to exist such as

several overlapping, touching or partially visible objects - a common
occurrence in tasks such as sorting - a parallel method should be chosen
as this analyses the whole scene.

4.9 SUMMARY

The chain code has previously been restricted to binary images
which have been produced by a simple threshold. However, this may not
detect all edges (in the case of the inspection of the biscuits) which

limits the applications. Alternative methods (e.g. edge detect followed

by a thin) are generally computationally expensive and are more suited
to a parallel processor. The problem here is that a parallel processor

cannot efficiently execute the sequential tasks that are generally

present in many algorithms.

In this chapter we have shown how the boundary of an object can be

extracted sequentially from a grey scale image and how its chain code
can be derived. This was applied to the chocolate biscuit algorithm
from Section 3.4 and to the 0-ring algorithm from Section 3.3. Those

parts implemented by the chain code for the appropriate procedure showed
a factor 4-5 reduction in execution time over the original times in

Chapter 3. A novel method for maintaining robustness in the

measurements by applying the Hough transform was used in the biscuit

algorithm which showed little loss in accuracy over the original

results. The final execution times of these algorithms when implemented

- 137 -

on SIP brings doubt to whether a parallel processor is a cost-effective
solution for industrial inspection.

However, we cited that a parallel processor will achieve, in some

cases, a far greater throughput than could ever be achieved by a
sequential processor, although it is rare that an algorithm can be fully

parallelised without some ad hoc implementation of a sequential

algorithm. We also concluded that sequential algorithms were only
useful for scenes where only non-overlapping products are likely to

occur. Where overlapping or touching objects were present, a parallel

algorithm, i.e. one that analyses the whole image, should be used. For
these reasons, a dual-processor configuration consisting of a parallel
and a sequential processor was proposed. The next chapter (Chapter 5),

describes a high-speed sequential processor (SIP) suitable for such a
system. Chapter 6 describes the parallel processor (LAP) and the

implementation of the system.

— 138 —

CHAPTER 5
A HIGH-SPEED SEQUENTIAL IMAGE PROCESSOR

"I have yet to see a problem, however complicated

which, when you looked at it in the right way, did
not become still more complicated"

New Scientist 25 September 1969

5.1 INTRODUCTION

As we have discussed before (Chapters 3 and 4) many image
processing algorithms exhibit a high degree of both sequentialism and
parallelism. For this reason, a system composed of a sequential
processor and a parallel processor would appear to be an efficient

solution for the execution of such algorithms. This chapter describes a

high-speed sequential image processor (SIP) along with its accompanying
assembler. A full description of the parallel processor and the
implementation of the system is described in Chapter 6.

If such a system is to be useful in an industrial environment, each

processor must be capable of executing many tasks in real-time while

remaining affordable. For this reason, a bit-slice architecture was

chosen as the basis for both processors. This typically achieves a

higher instruction throughput than conventional microprocessors and

allows greater flexibility in the design of an instruction set.

- 139 -

Microcode optimisation is also discussed and how it can be applied to
SIP'S microcode.

This parallel/sequential processor configuration aims to achieve a
high performance image processing system at low cost. First, let us
discuss more fully the reasons for such a configuration.

5.2 REASONS FOR A PAEW^LEL/SEQUENTIAL ARCHITECTURE

Many image processing algorithms often contain both parallel and
sequential tasks. For instance, an algorithm might locate the edges of
an object in an image, determine a shape description model from the

edges and extract measurements such as the perimeter, area, etc. This
may involve the operations Sobel, threshold, chain code and manipulation

of the chain code. Sobel and threshold are essentially parallel tasks

(Section 2.2), while the chain code is a sequential task. It can be
shown that sequential tasks executed on a typical parallel machine

normally take longer to execute than on a sequential machine and

vice-versa (Section 7.12). Therefore, unless an algorithm can be fully
parallelised or sequentialised, optimum performance cannot be expected.

For this reason, a parallel/sequential processor configuration
would appear to be a suitable solution for executing these types of

algorithms - the parallel processor would execute the parallel tasks
while the sequential processor would operate on the output of the

parallel processor and execute the sequential tasks. Much work has been

done on matching an image processing architecture with the task [13],

but the concept of a general purpose image processing computer is still
not clear. The rest of this chapter is dedicated to a detailed

description of the sequential processor and its assembler. The parallel

processor is described fully in Chapter 6 along with a discussion of the

efficiencies and inefficiencies of the system. First, as an

- 140 -

introduction, let us discuss the basic architectural foundation of both
processors - microcode.

5.3 MICROPROGRAMMING

Microcoding was first introduced in the 1950's by Professor Wilkes
when he delivered a paper entitled "The Best Way to Design an Automatic

Calculating Machine" [78]. A microprogrammed system usually consists of

a number of functional elements such as a microprogram memory, a program
sequencer, a processor and memory for local data storage such as

depicted in Figure 5.1. Each individual bit (or group of bits) output
from the program memory controls a functional part of the circuit.
Here, two bits select whether the output of the program memory,

processor or data RAM will be enabled onto the data bus; another bit
controls the read/write line of the memory (such that it will go low on

the second half of the clock cycle), and a group of bits designate the
desired instruction for the bit-slice processors, etc.

A bit-slice processor is essentially a 'vertical' slice of a
microprocessor. Probably the most common bit-slice processor is the

AMD 2901 (see system in Figure 5.1). This is a 4-bit cascadable device
that consists of an internal register file (of which two registers can

be accessed simultaneously), a Q-register (for intermediate results), an

ALU capable of executing eight arithmetic and eight boolean operations
and a shifter that can optionally shift data entered from the output of

the ALU. I/O capability is provided by a data input port (D) and a data

output port (Y). Bit-slice processors are often used as building blocks
for high performance systems that require speeds greater than that of

conventional microprocessors. Because they are basic building blocks

with limited functionality, they are cheap, fast and can be configured

to form n-bit systems (where n is divisible by 4 for the 2901). Recent

advances in bit-slice processors have produced a 16-bit version of the

- 141 -

D LOCAL
DATARAM

Q
OE A

4x2901
bF=0 ^n'oh"'8

012 3 Istrobe

OE

1 2 3 4
PROGRAM MEMORY

(256x32)

Figure 5.1 NPL prototype bit-slice processor

— 142 —

2901 appropriately called the 29C101 and several 32-bit bit-slices such
as IDT's 49C404 which offer greater functionality.

A micro-instruction is a coherent grouping of bits output from the
program memory that execute a desired function every clock cycle by

controlling the functional elements in the system, e.g. a bit-slice

processor. A machine instruction is typically represented by several
micro-instructions. To illustrate this concept, let us take an example
of a machine instruction to move memory location 20 to memory location

54 in the design depicted in Figure 5.1. The instruction is carried out

by first setting the address of the local memory to 20 then writing the

output of the memory to the Q-register in the 2901's. The address of

the local memory is then changed to 54 and the contents of the
Q-register are written into the local memory. The order of execution of

micro-instructions would be:

1. Load the memory address register (MAR) with location 20. This is
done by putting the number '20' into the data field (RAM 4) and

enabling this onto the data bus by selecting the data to originate
from RAM 4. By setting the 'load' bit in the microword, the

contents of the data bus, i.e. 20, will be clocked in. The program
control is set to increment, i.e. go to the next micro-instruction.

2. The contents of the memory are enabled onto the D-bus of the 2901 by

setting the data to originate from the memory. The 2901 instruction

is set to 'write external data into Q-reg' so the data from the
memory (location 20) will now be written into the Q-register. The

PC is set to increment.

3. The memory address register is loaded with location 54 by following
the procedure as in step 1 except substituting location 54 for 20.

PC is set to increment.

- 143

4. The contents of the Q-register are written into the memory (now

pointing at address 54) by setting the 2901 instruction to output

the contents of the Q-register onto the data bus (Y). The microcode

bit controlling the write line for the memory is set high so the

contents of the data bus is written into memory on the second half
of the clock cycle. The PC is again set to increment.

Note that in all cases the PC was set to increment. An alternative
would be to select the 'load' pin of the PC to go low (by selecting the

'1' from the l-of-8 select - the output is inverted). The PC would then

be loaded with the contents of the data bus. This is mainly used for

branch instructions where control of the program is passed to a location
in the program memory other than to the next sequential location.

Typical machines that are capable of being microprogrammed
are: Digital's VAX family, IBM 7950, IBM System/360 ILLIAC IV
(Section 7.6.1) and the CDC STAR 100 [55].

On each clock cycle, a micro-instruction (often known as a

microword) is produced at the output of the program memory. The term
given to this level of programming is microprogramming or microcoding.
Two possible forms of microcoding exist: horizontal and vertical. These

will be discussed next.

5.3.1 Horizontal and Vertical Microcoding

Two methods exist for microcoding: horizontal and vertical.
Horizontal microcoding is when each bit output from the microcode memory

is assigned to one particular device. The outcome of this is that
maximum parallelism can be achieved (i.e. all devices may be activated

simultaneously); however, a wide microword is likely to exist if there

are many devices in the system. On the other hand, vertical microcoding

allows a bit or several bits to be shared among the devices: additional

— 144 —

instruction bits are therefore required in order to select which device

will be enabled. The advantage of this is that the microcode width is
reduced (and hence the amount of microcode memory); however, several

lines of code may be required in order to activate all devices

sequentially. Thus, when optimising a microcoded design, it is

important to minimise the width and length of the microcode. The

desirable approach is to share fields where parallelism is not required.

5.4 USE OF BIT-SLICE ARCHITECTURES FOR IMAGE PROCESSING

To investigate the possibility of a high-speed, microcoded
bit-slice sequential processor for use in image processing, a test

module was designed and constructed at the National Physical Laboratory
(NPL) as part of the work for this thesis. The architecture in fact is
the design depicted in Figure 5.1. This was used to study how image

processing algorithms would perform on a bit-slice architecture. The

results and ideas obtained were later used in the design and development
a more sophisticated sequential image processor called SIP. It was

found using the test module that there are several advantages of
designing a microcoded machine for use in image processing:

1. They are typically many times faster than conventional

microprocessors. This is because conventional microprocessors

generally contain a high degree of functionality while bit-slice
processors are basic boolean-elements that only perform a small,
simple set of instructions. Bit-slice processors are thus suited to

image processing where many of the functions traditionally
associated with conventional microprocessors (such as the existence

of several data types and internal address calculations) are rarely,

if never used.

- 145

2. Since the programmer has direct control over the individual

functional units in the system (processors, memories, etc.), it is
possible to operate on any of the units in a single cycle, allowing

several instructions to be executed simultaneously. This will be
discussed more fully in Section 5.8 when we examine microcode
optimisation.

3. Because the programmer has direct functional control of the system,
it is possible for a microcoded machine to emulate a range of other

machines. It is also possible for the instruction to be customised.

However, microcoding also has its disadvantages:

1. In order to write microcode, the programmer must have a detailed
knowledge of the hardware, i.e. bus routes, control signals, etc.
In general, this information is not easy to transfer from person to

person which makes it notoriously difficult to use.

2. One of the advantages of microcoding is that several instructions
may be executed simultaneously as cited above. However, this must

also be included amongst the disadvantages as detection of these
instructions in a program is often very difficult. Section 5.8

discusses this point in more detail.

Allowing the programmer to define the instruction set is highly

advantageous for image processing; for instance, a frequently occurring
image processing routine that requires several lines of code in Pascal

can be optimised into a single machine-level instruction. An example of
such an instruction is APPLY...END to sequentially scan over an image

(Section 5.5.2). Customised instructions such as this have been fully

exploited in the design of a picture processing language (PPL)

(Section 6.2.1).

- 146 -

Machines that have achieved success with bit-slice designs for
image processing are: Logica's DIPOD (Section 7.8.1) and its in-house

language FIFTH that translates high-level constructs to microcode, WARP
(Section 7.9) and the ILLIAC IV (Section 7.6.1). Many of today's

microprocessors including Motorola's 68030 are also internally

microcoded. The opcode is fetched and decoded into a series of
microcode operations. The microcode controls the internal registers and
buses, etc. within the microprocessor.

As a consequence of the fetch and decode scheme in a
microprocessor, several machine cycles are usually required to execute
an instruction. By adopting the Harvard architecture (Section 7.2) such

that separate instruction and data buses are maintained and using
techniques such as pipelining (Section 7.2.1), it is possible to achieve

a rate of one instruction per cycle. Pipelining allows an instruction

fetch and an instruction execute to take place simultaneously. The
concepts discussed so far have been applied in the design of a
high-speed sequential processor for real-time image processing. This

will be described next.

5.5 A SEQUENTIAL IMAGE PROCESSOR - SIP

SIP is a 16-bit high-speed microcoded sequential image processor
that exhibits a high degree of internal parallelism. The basic
functional units are: 4 AMD 29203 bit-slice processors, a high-speed
multiplier, 4K microwords of local data RAM, 2 128x128 image planes

(designated P and Q), a program memory, a pipeline, a program sequencer

and an image processing interface as depicted in Figure 5.2. Both image

planes are memory mapped onto the VMEbus for high speed access by other

devices. The overall control is from a host PDP-11/73 and a Qbus to
VMEbus convertor. The downloading of microcode to the program memory is

via eight VME mapped registers as depicted in Figure 5.3. The

- 147 -

L O C A L

R A M

I M A G E
P L A N E

I M A G E
P L A N E

PROGRAM
SEQUENCER

IMAGE
PROCESS ING
I NTE R FAC E

M U L T I P L I E R

H I G H S P E E D

V M E bu s

PROGRAM
MEMOR Y

BIT-SLICE
PROCESSOR S

4 x 2 9 2 0 3

Figure 5.2 Schematic diagram of SIP
— 148 —

architecture is partitioned into four sections: the processor section,

the image processing section, the program section and the I/O section,
all of which are independently controlled by the 79-bit microcode shown

in Figure 5.4. Each section will now be described in more detail under
its respective heading.

5.5.1 The Processor Section

The microcode format for SIP's processor section is given in detail
in Figure 5.5. At the core of the processor section (Figure 5.6) are 4

AMD 29203 bit-slice processors (BSPs). These are similar to the
AMD 2901's (Section 5.3) except they have additional functional support

for arithmetic orientated operations and enhanced I/O capabilities.

The BSPs are three-ported devices that perform arithmetic
operations (add, subtract, divide, etc.) and boolean functions (AND, OR,

etc.) on data presented at the inputs of the internal ALU. The data
entered to the ALU can be entered externally via the DA and DB ports,
internally from a 16x16 internal register file, or from a combination of
both, this being determined by the operand source field (ALUOPER) as

shown in Figure 5.5 and Table 5.1. The register select field (RSF)
determines which register(s) will be accessed in the current
micro-instruction. To the programmer, the register file appears as 16

registers labelled R0-R15.

The ALU executes the function determined by the 'ALUFUNC' field in

the microword. The result is output onto the Y-bus (after conditionally
shifting the data in either direction) and optionally written back into

the internal register file at the address determined by the BREG (Bq-B^)

if the output enable of the BSPs is enabled.

- 149 -

Control/Status Register

MICROCODE 1

MICROCODE 2

MICROCODE 3

MICROCODE 4

MICROCODE 5

MICROCODE 6

MICROCODE 7

Bit 7 6 5 4 3 2 1 0

Strobe
/Done

CSRCLK Select
Planel

Select
?lane2

:SR to
Pipe

Select
PC/CSR

CLK
HI/IX)

R/H

Figure 5.3 Programmers model of SIP and the
control/status bits in the CSR

- 150 -

Select A
reg

Select B
reg

29203 Instructions Ig - I

MICROCODE 1

^8 EA OEB Cn XMULT ÏMÜLT OEP WRPICl WRPIC2 L.RAM

MICROCODE 2

LOCAL RAM CNTRL X-REG CNTRL Y-REG CNTRL XKOFF
REG

COND. CODE
SELECT

MICROCODE 3

DATA D o - D 15
MICROCODE 4

PC OE OE OE OE OE OE OE OE Y TO Y TCOEYM DONE
INSTRUCTION DATA OFF RAM PICl XREG YREG P2A P2B A B

MICROCODE 5

TREQUESl"—
VMEbus

RELEASE'"
VMEbus

REAÜ/WKITI
TO VMEbus

: ENABLE ■
STROBES DSO DSI

CLOCK^VME
ADDRESS

MICROCODE 6

X-offset value Y-offset value

MICROCODE 7

Figure 5.4 Full microword format for SIP

151 -

R s F

ALUFUNC

EA OEB Cn XMUL YMUL OEP
■* aluoper ►

Figure 5.5 Processor microfield

E A •o OEB ALU OPERAND R ALU OPERAND S

L L L RAM Output A RAM Output B
L L H RAM Output A “ 0-3L H X RAM Output A Q Register
H L L “ ^0-3 RAM Output B
H L H “ ^0-3 DBQ-3H H X “ ^0-3 Q Register

Table 5.1 ALU operand sources for the 29203

Data present on the Y-bus can also be written into the internal
register file through the Y port at the address determined by BREG if

the output enable is disabled. Thus, for instance, two registers (or

any combination of register and external data) can be operated on,

output onto the Y-bus and written back to a register in a single cycle,

i.e.
RO ;= RO + Rl

- 152 -

The data could also be written into the image planes or local memory on
the same cycle if required, e.g.

RO := PC := RO + r2

During a register-read operation (determined by RSF), the register

contents are output through the DA and DB ports (see Table 5.1),

allowing external units to access two registers simultaneously. This
facility has been used on SIP with the multiplier as depicted in

Figure 5.6 - the outputs of the DA and DB ports of the 29203's are

connected to the inputs of the multiplier. Thus, any two arbitrary

registers can be output through the ports, clocked into the multiplier
by enabling XMUL and YMUL and multiplied in a single cycle. The result
can be either written back into the register file or operated on (by
enabling OEP) before being written back on the next cycle.

As mentioned before, the Am29203's have enhanced functionality
support for arithmetic operations such as normalisation, binary-BCD

conversion and multiply and divide. (Note that SIP runs at 8MHz because
of the time it takes the 29203's to execute the divide instruction.

However, it has been found that SIP will run at lOMHz if the divide

instruction is not required - see Chapter 9 for a list of enhancements
that could be made to SIP.) In addition to this, they can support a

three address architecture, i.e. they are able to support functions such

as
RO := Rl + R2

in a single clock cycle.

The local memory consists of 4Kwords (1 word = 16 bits) of

high-speed static RAM, this being used to hold variables, arrays and

lookup tables, etc. The I/O ports are connected to the Y-bus via a

buffer enabling output from the ALU, the multiplier or the image planes

to be written directly into the RAM as depicted in Figure 5.6. The
address supplied to the RAM is in the form of two 8-bit up/down

- 153 -

■ xmul

■vmul

^16

Ybus

ToiDA

To __CCunit —
To DB —

A ;rx

y tea

16 '16

A DA DB B
y=oy«0 4x29203
ôëÿ

A..... . Y Cp ËÂ OEB Iq-B

ytob 16 Ybus

oe — oegin oe
>

• oeram
■To DA

I/O U/D
LOCAL d 12 e0d / Qn DRAM r /e ts es r ^
enable R/W <

. local . ram cntrl

elk

elk
I ram

To Ybus oedata

oe
PIPELINE

Figure 5.6 The Processor section of SIP
- 154 -

counters. These have the facility to be loaded from the Y-bus, count

up, count down or hold (no change), this being determined by the 'Local

Ram cntrl' field in Figure 5.6. The ability to increment and decrement
independently of the processor is useful for such operations as

accessing an array of elements sequentially. Because the local memory

has common data I/O pins, memory accesses require three cycles; however,
after each access, the counters may be simultaneously incremented (or

decremented) to the next location. This means that if two or more

instructions (or cycles - whichever is the smaller) are needed after
each access, then fetching data from the RAM can be done concurrently
with a processor instruction. This can make the RAM appear as having
zero access time.

Since the counters supplying the address to the Local Ram can be
loaded with the contents of the Y-bus, a register from the BSPs can be
designated as an index variable to the memory thus allowing keyed access

into the RAM, i.e. the location in the RAM is determined by a
calculation. This is described in detail in Section 5.7.

5.5.2 The Image Processing Interface.

SIP was originally designed to operate on a 256x256 image; however,
because the price of 64Kxl static rams at the time was high (~£100
each), the cost of 16 64Kxl RAMS (two image planes) could not be
justified. SIP was therefore designed to operate on a 128x128 image

plane with the facilities for upgrading included. To the programmer,
SIP has three registers for its image processing interface: an

X-register, a Y-register and an offset register. The effect of the

(X,Y) coordinates is shown in Figure 5.7a with the layout of the 5x5

window available into the image plane in Figure 5.7b. The offset

register allows any pixel within a 5x5 window (P0-P24 or Q0-Q24 - the

same address is applied to both the P and Q image planes) to be accessed

- 155 -

(0.0) (127.0)

(0.127) (127.127)

X - REGISTER

Y-REGISTER

OFFSET REGISTER

(a)

16 15 14 13 12

17 4 3 2 11

18 5 0 1 10

19 6 7 8 9

20 21 22 23 24

(b)

To
DB

IMAGE
Q PLANE ^0- 13

R/W
oepici

wrpici .elk

oep2a-
Tô
DÊ

<
ôë

-

ôë
Toep2b

Q
IMAGE
PLANE Aq-

132
R/W

wrpic2 elk

14

oexreg^
ToYbus '7 oeyreg^

ToYbus < -

X-TRANS
*0-4

'5-11

Y-TRANS
*0-4

A5-II

C) ybus
Xreg_ en A

dkxreg

Yreg_
a t

»01x

' 5

OFFSET regën A
yreg

Figure 5.7 The image processing section "01 y
elk elkoffreg

by writing the corresponding element number into the offset register.
So, for instance, to access P23 the number 23 would be written into the
offset register.

A translation (lookup) table exists between the X, Y and offset

registers and the image planes, depicted in Figure 5.7c as X-TRANS and

Y-TRANS [29]. This translates the values of these three registers into
absolute image coordinates for rapid access into the image space within
the 5x5 window. Note that a 5x5 window was chosen as a suitable
tradeoff between the cost of the RAMS required for the translation table
and (from experience obtained earlier) the advantages to be gained from

using a larger window, e.g. 7x7. As mentioned before, SIP was
originally designed to operate on a 256x256 image. A 7x7 window in this
case would have required four 16Kx4 (45ns access time) static rams which
would have significantly increased the cost of the system at the time of
designing. As the system had to be cost-effective, it was decided that

a 7x7 window could not be justified.

Sox Six clkxreg S,y clkyreg clkoffreg

SO 51
L L
L H
H L
H H

Clear
Load
Count down
Count up

wrpici wrpic2 oepici oep2a oep2b oexreg oeyreg

Figure 5.8 Microword format for the image
processing section

The microcode format for the image processing section is given in
Figure 5.8. Access to the three registers is via the X, Y and offset
control fields. As an example, consider the following instructions:

X:=34; Y:=23

- 157 -

The corresponding microcode instructions would be:

1. Load X-field with the code for 'LOAD' and enable 34 onto the data
bus.

2. Load Y-field with the code for 'LOAD' and enable 23 onto the data
bus.

Each of these instructions is executed in a single cycle (125ns).
Because SIP is a sequential processor, rapid access to any part of the

image space is essential for high-speed manipulation of the image: this
can be done in two ways. If the pixel lies within the 5x5 window then

two cycles are required to fetch the data: the first cycle sets up the

address to the image planes by writing to the offset register where the
data is available on the next cycle. If the pixel lies outside the 5x5
window, it is necessary to change the X and Y registers. Directly

changing X or Y requires two cycles to produce the required data at the
output of the image planes (as before) or three cycles if both X and Y
are changed. However, it is possible for single cycle accesses to occur

within the 5x5 window, or two cycle accesses if both X and Y are
changed - this is discussed more fully in Section 5.6. The consequence
of this is that a pixel can be fetched, operated on by the processor and

written back into the image plane in a single cycle. Thus, the

instruction
P0:=(P0+R1)*2

can be executed in a single cycle.

To relieve the programmer of having to increment X and Y at the end

of a row or column, SIP has a highly efficient auto-scan facility. For

instance, in Pascal the instructions to scan an image would be:

- 158 -

y:=0;
REPEAT x:=0;
REPEAT

picture function

UNTIL x=128; y:=y+l
UNTIL y=128;

However, SIP uses the instructions:

APPLY

picture function
END

This scans the image sequentially left to right, top to bottom while
still allowing the X and Y registers to be manipulated. With
optimisation (Section 5.8), zero cycle overhead can be achieved by the

scanner, i.e. the code appears as though it were continuous. This

clearly shows the advantage of designing a microcoded machine. The
instruction set is described more fully in Appendix A along with the

addressing modes available.

5.5.3 The Program Section

The program section consists of 4Kx80 bits of high speed static
RAM, a pipeline and an AMD 2910A program sequencer as depicted in

Figure 5.9. The program sequencer incorporates 16 powerful functions
which are listed in Table 5.2. By code optimisation, it is possible to

make instructions such as JSR and RTS appear to take zero cycles - this

is discussed more fully in Section 5.8. One of the main deficiencies

with a pipeline is that branches take two cycles to execute on a single

level pipeline, i.e. one to execute the instruction (this sets the

condition code register) and the second to test the condition code

- 159 -

To SIP

Ybus '79
elk

'12

PIPE LINE

i/o

4Kx79 p r o g r a m MEMORY

R/W
elk

-0
- 1-zero
;Sv¥-end_sean“dtaek“bus_grant

x6

0-15
VMEbusselectlogic ■VME

R/Weeselect

oe

0-3
PROGRAM
SEQUENCER

CC

Figure 5.9 Program section of SIP

I3-I0 Function

0 Jump to location zero
1 Conditional JSR Ybus
2 N/A to SIP
3 Conditional jump Ybus
4 Push address & conditional load counter
5 Conditional JSR via register/pipeline
6 N/A to SIP
7 Conditional jump via register/pipeline
8 Repeat loop until counter=0
9 Repeat pipeline until counter=0
10 Conditional RTS
11 Conditional jump pipeline and pop
12 Load counter and continue
13 Test end of loop
14 Continue (NOP)
15 Three-way branch

Table 5.2 Program sequencer (AM2910A) instructions

— 160 —

register. As the number of pipelines increase, the number of cycles

will be increased linearly. Because of the anticipated large amount of

branching (common to many sequential programs), SIP was designed as a
single level pipeline machine.

5.5.4 The I/O Interface.

SIP is based on the VMEbus (Section 5.9) which is capable of
supporting devices commonly known as masters and slaves. A master has
the capability of gaining control of the VMEbus and hence any device on

the bus, i.e. another master or slave. A slave is a device that cannot
control the bus and can only be accessed and controlled by another

master, e.g. a frame store. SIP has the necessary control logic defined
in its VMEfield depicted in Figure 5.10a for becoming a bus master and
controlling the VMEbus.

SIP'S I/O field (VMEfield) contains seven microcode bits to control
the interaction between SIP and the VMEbus via an intelligent Field
Programmable Logic Sequencer (FPLS), designed by A.I.C. Johnstone of

this research group. The bits depicted in Figure 5.10a correspond to
the necessary control signals as defined by the VMEbus protocol [80].

The image plane address bits from SIP (16-bits) go to the low-order

VMEbus address lines (A0-A15) while SIP's internal data bus (the Y-bus)
go to the VMEbus data lines (D0-D15) via the usual bus interface
transceivers (Figure 5.10b). This enables a memory-mapped frame store
on the VMEbus appear as though it was local to SIP. When reading from

the VMEbus, data appearing on SIP's internal data bus is made available

to SIP's functional units, e.g. processor, image planes, etc. By making

maximum use of SIP's internal parallelism and by configuring the image
addressing to be in auto-scan mode (Section 5.5.2), rapid sequential

accesses can occur from the VMEbus simultaneously with on board
processing. With careful programming and an optimised program, an image

- 161 -

REQUEST RELEASE READ/WRIlï ENABLE DSO- DSl* CLOCK VMEVMEbus VMEbus lO VMEbus STROBES ADDRESS

Figure 5.10a Microword field for SIP's interaction with
the VMEbus

r r
e eq j
l i
Microcode
Control

F P L S
<

VMEbus Control
1 i 1 i 1 1 —

-elk

d a b b b drllM From SIP's Image address planes

enablestrobes

TO VMEbus

I

si d d P s s:
oe G«

V A dim

r16

Ybus

'16

R/H (csr) BBSY"

B G-
dim

To VMEbus
VME Aq-

A15

elk

G*
dim

B

siprw ' '--- -

cI
k

« Îf

05 én
M> EAR

VME Do-D̂ 5 ToVME Aig-Ag

Figure 5.10b SIP's VMEbus control circuitry

— 162 —

can be grabbed and input from an external source, e.g. a frame store,

simultaneously with the processing of a previously stored image. This

eliminates the I/o bottleneck previously associated with bus-based
sequential processors.

Since the VMEbus has a 24-bit address space (via the Pi connector),
an additional 8 bits are supplied from the external address register

(EAR) as depicted in Figure 5.10b. This must be loaded with the correct

8-bits to form bits A16-A23 of the VMEbus address space. The bus grant
and data acknowledge signals are directly connected to SIP's condition
code register so, for instance, to read a location from the VMEbus the
following steps would be:

1. Load external address register with the required A16-A23 VME address

bits.

2. Set the VMEbus A0-A15 address bits using SIP's X and Y registers.

3. Request bus by setting REQ* to low.

4. REPEAT nothing or some_processing UNTIL bus_grant=TRUE.

5. Set DSO*, DSl* to their appropriate values, Enable_strobes* to low

and the SIPRW line to high (read).

6. REPEAT nothing or some_processing UNTIL data_acknowledge=TRUE.

7. Write data into image plane or process data.

8. Optionally increment SIP's image address lines and goto step 5 or

9. Release bus by setting REL* to low.

By making maximum use of SIP's internal parallelism, VMEbus accesses can

take three cycles (375ns) for high-speed peripherals.

- 163

5.6 PIPELINING THE PIXEL FETCH

A feature of SIP is that it contains four independent sections,
thus providing the capability of instruction parallelism. This can lead

to a dramatic reduction in execution time and code length of a program.

This is particularly noticed when image accesses are pipelined because

image processing operations require frequent access to the image planes.

There are usually two operations required for fetching a pixel

1. Load offset into the offset register from the data bus.

2. System accesses pixel on the next cycle.

However, it is possible to achieve both steps in a single cycle. During
step 1 (above), one can note that as the offset register is being

loaded, the processor section is idle, and while the processor section
in step 2 is active, the offset register for the image planes is idle.

It is therefore possible to pipeline the fetch such that, as one pixel

is being processed, the next one is being fetched. Thus, only one cycle
is required to access any pixel within the 5x5 window as opposed to two;

however, the next pixel to be fetched must be known (Section 5.8.1).

The X and Y registers also work on the same principle, i.e. altering X
or Y can be done concurrently with the processing of the previous pixel.
This means that the majority of instructions in the instruction set

(Appendix A) take one machine cycle (125ns) to execute.

5.7 SIP'S ASSEMBLY LANGUAGE

In order to translate an intelligible form of code into microcode,

an assembler was written for SIP. One of the features of a microcoded

machine is that it can emulate a variety of other machines. The
instruction set was designed around the PDP-11 'Macro-11' instruction

set with several enhancements for image processing. Since Macro-11 was

— 164 —

familiar in the laboratory, the amount of learning involved in
programming SIP was minimised.

The assembler consists of three parts: the intermediate code
generator, the translator and the loader. It was written in the form of

a P-code language where the source code is compiled to an intermediate

code before being translated into microcode, this being necessary for
efficient code optimisation (Section 5.8). Each of these parts will now
be described.

5.7.1 The Assembler and Intermediate Code Generator

The aim of the assembler is to convert assembler mnemonics into an
intermediate code suitable for the translator to convert into microcode
(Section 5.7.2). Instructions can have either one or two operands, i.e.

MNEMONIC source, destination

e.g. ADD #4,R0 - equivalent to R0:=R0+4

ADD R5,R9 - equivalent to R9:=R9+R5

or
MNEMONIC destination

e.g. INC R7 - equivalent to R7:=R7+1
BRA label - equivalent to goto label

(The instruction set is described more fully in Appendix A.) The
intermediate code is in the form of a mnemonic representing which of the

functional unit(s) (e.g. processor, image plane, etc.) is to be
accessed, followed by either one or two operands required by the

translator for the corresponding functional unit fields in the

microword. Before we consider the intermediate code, it is necessary to

describe the six addressing modes available. These are: data, register,

- 165 -

image, xy, indexed and memory mode.

1. Data mode (D) - this is equivalent to immediate addressing on a

conventional microprocessor and is indicated by a hash (#) before
the operand. The # indicates that the following data should be
taken literally, e.g.

MOV #4,R0

states that the number '4' is to be written to register RO.

2. Register mode (R) - this is when a register in the bit-slice
processors is to be accessed, e.g.

ADD R5,R7

states that the contents of register R5 are to be added to register
R7 and written back to R7.

3. P and Q mode (P) or (Q) - this is when either the P or the Q image

planes are to be accessed, e.g.
MOV P0,R5

indicates that element PC (see window layout in Figure 5.7b) is to
be written to register R5. Any element within the 5x5 window can be
accessed in this way in both P and Q spaces, e.g.

MOV R4,P1

ADD 023,Rl
The first example states that R4 is to be written to element Pi.

The second states that the contents of element Q23 are to be added

to register Rl.

4. X and Y mode (X) or (Y) - this is when the X and Y registers are

accessed, e.g.

MOV X,R3

MOV R4,Y
The first instruction indicates that the value of the X-register is
to be written to R3. The second instruction indicates that the

- 166 -

contents of r 4 are to be written to the Y register.

5. Indexed mode (I) - this is when the contents of the register

indicated in brackets are taken as an address into the local memory,
e.g.

MOV (R0),R1

If RO contained the number 20, then location 20 in the local memory
would be written to register Rl. This could alternatively be
written as

MOV 20,Rl

(see memory mode below (6)). However, this is inflexible since it

does not allow manipulation of the address, i.e. 20 is a constant
whereas RO in the preceding example is variable. The source and
destination of the operands in all modes can be interchanged, e.g.

MOV R5,(R13)

If Rl3 contained the number 56 then the contents of R5 would be

written into location 56 in the local memory.

6. Memory mode (M) - this is the default mode. If none of the above
modes are encountered then it is assumed that the name or number of
the operand is a memory location, e.g.

INC ros
MOV jim,R4

MOV tom,bill
In the first example, if ros was allocated location 1234 in local
memory by the assembler then location 1234 would be incremented. In

the second example, if jim was assigned to location 34 in the local

memory, then the contents of location 34 would be written to

register R4. This could alternatively be written as

MOV 34,R4
In the last example, if tom was allocated location 999 and bill was
allocated location 67 then location 999 would be written to location

- 167 -

67. By preceding the variable with a hash (#), the allocated
location of the variable will be used, e.g.

MOV #ros,R4

If ros was allocated location 67 then the number 67 would be written

to R4 and not the contents of location 67. This facility is useful
for array indexing, for example, to index into an array called NAME
the corresponding set of instructions would be:

MOV #name, RO ; base location of array
ADD Rl,RO ; Rl is the index value
MOV (R0),r 0 ; contents of RO is memory

; location #name+Rl
this is equivalent to

RO:=name[Rl]

It is not good practice to designate memory locations as absolute
numbers. To avoid this problem the construct VAR is available. This is

similar to the Pascal VAR in that it enables single variables or arrays
to be represented as absolute memory locations, e.g.

VAR jim, i, j, symbol

This defines the variables: jim, i, j and symbol and are all allocated
1 word (it is not possible to define byte locations) in the local

memory. VAR also has the facility for defining arrays, e.g.

VAR arr:400, name:5

This example defines an array 'arr' of size 400 words and an array
'name' of size 5 words. (Note that only one-dimensional arrays are
allowed.) The mixing of integers and arrays in the declarations is

allowed, e.g.
VAR jim, i, arr:400, j, symbol, name:5

All variables and arrays are assigned memory locations in the order in

which they are defined; therefore, the locations assigned to the

variables in the last example are:

- 168 -

jim - 0
i - 1
arr - 2
j - 402
symbol - 403
name - 404

Variables may be declared anywhere within the program, hence enabling

them to be declared at the beginning of subroutines - this can make the
code easier to read.

The assembler translates the intermediate user code into a form

'OPCODE' I model | (mode2) | datai | (data2) |

where model (and mode2 for a two operand instruction) are the modes for
the operand (D,X,P,I, etc.) as described above and datai (and optionally
data2) are the necessary values of model and mode2 respectively. This

is best explained with an example. Table 5.3 below shows the previous

examples translated into their intermediate code:

Intermediate
Opcode code

MOV #4,R0 MOVDR 4 0
ADD R5,R7 ADDRR 5 7
MOV P0,R5 MOVPR 0 5
MOV 023,RO MOVQR 23 0
MOV X,R3 MOVXR 3
MOV R4,Y MOVRY 4
MOV (R0),R1 MOVIR 0 1
INC jim INCM 20
MOV jim,R6 MOVMR 20 6
MOV 20, Rl MOVMR 20 1

Table 5.3 Example of translating assembler
mnemonics into intermediate code

(N.B. The INC instruction assumes that jim was assigned to location 20

in the local memory.)

- 169 -

The assembler takes three passes to complete the intermediate code
generation:

(I) Mnemonics are converted into the above intermediate code style.

Full syntactic error checking is carried out here to eliminate the

most common errors such as the misspelling of opcodes and use of

undefined identifiers, etc. All variables and arrays declared in
the VAR construct are allocated space in the local memory where

error checking for multiple declaration of variables and memory
overflow is checked.

(II) Identifiers are substituted for real numbers and pseudo high-level

instructions (see Appendix A) are expanded. All label names and
label values are read into a table for PASS-III. Full error

checking is enabled for missing delimeters and multiple declaration

of labels.

Ill) The operands for the branch instructions are substituted for
absolute locations. Full error checking for undefined labels is

also carried out - this is the final phase of error checking. This
step is needed after PASS-II because labels referred to by operands

in PASS-II may not have been defined because of forward referencing.

In other words, all the labels have to be known before absolute

locations can be calculated and inserted.

5.7.2 The Translator

The translator is basically a large database of predefined routines

that translate the intermediate code into microcode. At this stage, it

is assumed that all error checking has been carried out and the program

is assumed to be correct. (As in all programs, the order of

instructions is determined by the programmer and it is beyond the

- 170 -

assembler's capability to check for an illogical sequence.)

Each line of the intermediate code is read. A number representing
the value of the intermediate mnemonic is determined by the use of a
translator table. This number is then used as an index to call a

routine representing the correct micro-instruction(s) for that
instruction. The operands associated with the intermediate mnemonic are

passed to the routine and written into the appropriate microcode field.
For example, consider the mnemonic

MOV #4,R7

this is translated into the intermediate opcode
MOVDR 4 7

This is then read by the translator where the intermediate code 'MOVDR'
is translated into its corresponding position in the table, in this case

'9'. This number is then used as an index into a large database of
routines where, in this case, it corresponds to a routine appropriately
named "MOVDR". The operands '4' and '7' are passed to this routine

where the correct sequence of micro-instructions is generated with '4'
written into the data field and '7' written into the B-register field.

The microcode is then written to disk.

5.7.3 The Loader

The function of the loader is to load the code from disk to SIP and
run the program. The advantage of having a separate loader is that code

can be transported to different machines, it being only necessary to

write a loader for each new machine. Once the code has been downloaded

to SIP, it is not necessary to load the program again in order to run

it. SIP has a 'RUN/HALT' flag in its CSR (Figure 5.3) which executes

the code resident in its program memory. It is only necessary to load

new code (a) after a power failure or (b) when a new program needs to be

downloaded.

- 171 -

The assembler and the translator generate non-optimised code (note

that here we are dealing with time-optimisation). As we discussed in

Section 5.5, SIP's architecture exhibits a high degree of internal

parallelism thus enabling several instructions to be executed

simultaneously. The ability to detect the presence of the instructions
that can be merged leads us onto the concept of microcode optimisation.
This is discussed next.

5.8 MICROCODE OPTIMISATION

Generally speaking, a microprogram is said to be optimal if there
are no other functionally equivalent microprograms that can be run on
the same machine which require a smaller number of clock cycles. It is

generally accepted that hand-coded optimisation (often termed
compaction) produces more optimal code (fewer cycles to execute) than
machine optimisation. The need to compare the differences between human
and machine compaction drove Fisher et al. [22] to investigate how well

a machine can produce optimal code.

There are two methods of compacting a program: local and global
compaction. Local compaction is the ability to detect parallelism in
straight-line program segments, whereas global compaction encompasses
the analysis of microprograms that include iterations and conditionals.

For example, if a variable is assigned within a loop then, assuming it
is not used elsewhere within the loop, it can be taken outside without

altering the logic of the sequence of instructions; this means that a
cycle is saved within the execution of the loop. Fisher considered the

optimisation of a floating point divide routine. Global compaction
compared quite favorably with hand-compacted code; the average execution

time being 16.4 and 16.1 cycles respectively. The initialisation code

for the routine took 14 cycles in both cases. Similar results were

achieved when tested with a floating point add; however, local

- 172 -

compaction required some 60% additional cycles in both cases. These

results provided evidence that automated global compaction is feasible
and can be competitive with hand-compacted code.

To fully optimise a microprogram, it is necessary to exploit every

possible occurrence of concurrently executable micro-instructions. This

is a difficult task since, even though two operations may be found to be
concurrently executable by a parallelism detection technique, they may

not be concurrently executed because of resource contention. This adds

an extra degree of difficulty to the problem of optimising microcode.
By defining a graph model of a microprogram showing the earliest and

latest events at which a micro-instruction could occur and by defining a

resource requirement matrix, Tsuchiya and Gonzalez [122] showed
acceptable results for many microprograms.

Ramamoorthy and Tsuchiya defined a high-level language SIMPL
(Single Identity Microprogramming) for microprogramming [98]. This
detected and merged concurrent micro-operations. Various techniques

were used such as detection of parallel processable microstreams,

optimisation of concurrent micro-instructions and minimisation of
micro-instruction sequences. Probably a more ambitious task was the
work done by Malik and Lewi [22]. This concerned the development of a
machine independent language, VMPL, that allowed micro-instructions to

be expressed as declarations within a program. In other words, a
program written in VMPL is a specification for a target machine. In

order to execute a microprogram written in VMPL on the target machine,
the program is first translated into an intermediate code and then

compiled into microcode. An optimisation scheme developed by Lewi [22]

was used to optimise the intermediate code produced.

- 173 -

To optimise SIP's microcode, it is necessary to locate the earliest

and latest times that microoperations can occur without resource
contention. This will now be discussed.

5.8.1 Optimising SIP's microcode

The main purpose of optimising SIP's microcode is to reduce the
execution time of an algorithm (see Section 6.4 for the results). In

order to achieve this, we need to detect as much instruction parallelism

(simultaneous execution of multiple instructions) as possible. This
differs from the parallelism offered by the parallel language Occam (the

transputer's native language) in two different ways: (1) the parallelism
is explicitly stated in Occam, whereas here it is implicitly stated, and
(2) parallelism occurs at the task (procedural) level in Occam while

here it occurs at the instruction level.

The major reduction in execution time by optimising the code
generated by the assembler is from the parallelism associated with the

simultaneous processor instruction execution of a pixel with a pixel
fetch (Section 5.6). In order for this operation to occur, we need to

locate the next pixel to be operated on so we can merge the two

instructions. This is easily detected by looking ahead in the
intermediate code. When a pixel mnemonic is encountered (conveniently

indicated by a P in the 4th or 5th column of the pseudo-microcode

opcode), the program "looks ahead" until either a pixel mnemonic or a
branch instruction occurs. If a pixel mnemonic occurs then the pixel

fetch of the second instruction can be merged with the ALU function of

the first instruction. If a branch is encountered first then no merging

can occur since optimisation is incapable of detecting the sequence of

instructions a program will execute after a branch. These constraints

may appear too restrictive but analysis of many image processing

algorithms shows that a series of pixel reads followed by a pixel write

- 174 -

frequently occurs (c.f. the Sobel v^ere there are 12 reads followed by a
write).

A second reduction in execution time (although only slight) can be

gained from the ability to merge Jump-to-subroutine (JSR) and

Return-from-subroutine (RTS) instructions. If an instruction previous
to a JSR instruction does not make use of the data bus or 'useful' use

of the program counter, then the JSR instruction may be merged with the

previous instruction. This generally occurs for instructions such as
register-to-register and memory-register accesses but not for
data-to-register or data-memory type instructions, e.g.

MOV RO,Rl
JSR label

may be merged as the MOV instruction does not make use of the data bus
whereas

MOV #4,R0
JSR label

cannot be merged because they both use the data bus. RTS may also be
merged in a similar manner if the PCcntrl field before the RTS is set to
continue (default state). With efficient writing of code, jumping and

returning from subroutines can effectively occur in zero cycles.

Multiply can also result in zero cycles. For example, if a 'MUL'

instruction is encountered, then it is necessary to back track through

the previously encountered section of code looking for the earliest time
the required registers can be used, i.e. when they were last used as a

destination. When this situation occurs, the registers used as operands
in the MUL instruction may be loaded into the multiplier simultaneously

with that instruction. This would eliminate the need for the MUL

instruction as the two registers will have been multiplied (the

multiplier multiplies the contents of its input registers on every cycle

of the system clock) by the time the result is required. Thus,

- 175 -

multiplication in this case appears as requiring zero cycles.

Another major reduction in a program's execution time is by the use
of registers rather than local memory. Register accesses only require a

single cycle whereas local memory usually requires about 2-3 cycles.

Thus, by transferring the required memory locations to be operated on to
registers just after a JSR instruction manipulating them and re-storing

them to their respective locations just before the RTS instruction, the
execution time of an algorithm can be dramatically reduced. This will

also assure that JSR and RTS instructions can be merged.

These are just a few examples of possible optimisations that are
carried out on SIP's code. As with many optimisers, the degree that a
program can be optimised relies heavily on the programmer for efficient

layout of code. Chapter 6 examines the decrease in program execution

time that is normally gained from optimisation of SIP's code.

5.9 THE VMEBUS

SIP is based on the public domain VMEbus [80]. This was chosen for

several reasons:

1. It has a high bus bandwidth of 24Mbytes/sec

2. It is a true multiprocessor bus and is thus capable of supporting an
arbitrary number of processors up to the limit of the number of

backplane slots. SIP can therefore communicate with peripherals
such as frame stores, external memory and disk drives - this opens

up the commercial market for image processing systems.

3. The array processor LAP-II (Section 6.2.2) is based on the VMEbus.

As described in Section 5.5.4, SIP has 7 bits in the VMEfield (VMEF) in
its microcode. This allows SIP to communicate with a wide range of

- 176 -

peripherals.

5.10 SUMMARY

This chapter has described, in detail, a high-speed sequential
processor (SIP). The assembler for SIP was also described which

included a brief insight into microcode optimisation. SIP was built to
investigate the possibility of being combined with a parallel processor.

The next chapter (Chapter 6) introduces the Linear Array Processor (LAP)

and highlights the performance abilities of both SIP and the LAP vdien
applied to image processing. This will permit us to study whether such
a combination of processors has a greater cost-speed tradeoff than other

designs.

- 177 -

CHAPTER 6

RESULTS AND THE FUTURE

"To study, to finish, to publish."
Benjamin Franklin 1706-1790

6.1 INTRODUCTION

In Chapter 5 we stated that SIP and a parallel processor (the LAP)
were initially designed to be combined as part of a multiprocessing
system for image processing. This chapter describes the Linear Array
Processor (LAP) and its associated compiler, PPL. A discussion on
factors that affect machine performance leads on to an analysis of SIP

and the LAP. These results along with the machine's corresponding costs

will be compared with a variety of similar machines commercially
available. An analysis of the performance of the system when both

processors are combined is undertaken which will show the feasibility of

this kind of configuration. However, first we will describe the Linear

Array Processor.

6.2 THE LINEAR ARRAY PROCESSOR

The Linear Array Processor (LAP) was developed at the National

Physical Laboratory by Plummer [93] and is classed as a SIMD machine

(Section 7.4). Like SIP, the LAP is a microcoded bit-slice processor.

- 178 -

The object of the design was to increase data throughput by parallelism

in order to achieve execution times typically in the order of 100 times
faster than conventional computers, while minimising the cost by using
cost-effective bit-slice processors (AMD 2901). The architecture [94]

(Figure 6.1) is essentially a linear array of 256 1-bit processing
elements (each PE has 256 bits of local memory), operating on all pixels

in a line of a 256x256 image simultaneously. The program memory of the

LAP is 16k X 24 bits. Because each processor is a 1-bit processing
element, the LAP is a bit-serial machine (Section 7.10), i.e. the pixels
are operated on one bit at a time rather than a byte at a time as in

SIP. Bit-serial devices are discussed in more detail in Chapter 7.

Because a line of an image must be loaded into an array processor
before it can be operated on, a data bottleneck can often arise. The

LAP is capable of loading a line of data while the previous line is
being processed. However, a slight bottleneck can still exist if the
loading of a line takes longer than the time spent processing each line.
For ease of programming, the PPL high-level language and associated
compiler was developed at the NPL. The compiler translates high-level

code to the LAP'S microcode. This will now be described.

6.2.1 The PPL Compiler

The PPL (Picture Processing Language) language allows image
processing commands to be expressed in simple one-line commands and to

translate these commands into microcode for the LAP. The user interface

is via the PPL prompt where commands are entered. Programs stored
on disk are run by typing the name of the program. (A program can also

call other PPL programs - see later.) The body of a PPL program lies

within the construct

a p p l y end

- 179 -

I N P U T

2 5 6
L A Y E R S

O U T P U T

8 - B I T 2 5 6 - B I T
R A M

P R O G R A M
M E M O R Y

B O O L E A N

P R O C E S S O R

C O N TR O L

Figure 6.1 Architecture of the Linear Array Processor (LAP)

— 180 —

This is similar to SIP's apply— end construct (historically it was the

other way around) in that it scans over the whole image space. However,
while SIP scans the image a pixel at a time (left to right, top to

bottom), the LAP scans the image a line at at time (top to bottom). As

an example, the following code sets the image to a constant value of 255
(white)

apply 255 end

(It should be noted that one-line commands such as this can by typed in
following the PPL prompt for rapid development of picture processing
routines.) An element within a 3x3 window is accessed by a number
enclosed within square brackets, for example

apply [0] + 127 end

adds the number 127 to every element (PO) in the image. Note that in
the previous two examples there was no need to assign the element to a
value. The statement

apply [0] := [0] + 127 end

has a similar effect. This is because PPL is a stack orientated
compiler, so the last number on the stack from the evaluation of a

function is taken to be the value of the centre element ([0]) unless

otherwise indicated. Thus, the statement

apply
if [0] > 200 then 255 else
if [0] < 50 then 0 else
127

end

scans the image setting the element [0] to either 0, 255 or 127,

depending on the value of [0] from the original image. The PPL language

contains familiar high-level constructs such as

— 181 —

if « « « theri ... else ...
A := operand
for i := 1 step s until N do

Thus, to threshold an image at 127, the code would be:

apply if [0] > 127 then 255 else 0 end

The ability to temporarily save and store images during execution
of a program is essential if the same image is to be operated on by
several different operations. PPL achieves this by the commands 'get'

and 'put'. Below is an example involving these commands. Although this
program has no particular function, it illustrates the concept of saving
and storing images in PPL. Note that the instruction "param" allows
parameters to be entered via the call of the program from the PPL
prompt. Thus, at the PPL prompt, if the command 'TEST(IOO)' was called,
then T in the program below would be set equal to 100. A PPL program

can also call other PPL programs stored on disk. These are called by

their names (in upper case letters) with appropriate parameters. In
this case the programs called are SOBEL which applies a Sobel edge
detect over the image and TH(param) which thresholds the image on the

value param.

param T; { get number from terminal }
put GRIG; { store image with name GRIG }
SGBEL; { apply a SGBEL of the image }
put TEMP; { store image with name TEMP }
get GRIG; { GET image with name GRIG }
TH(T); { threshold it at T }

apply
[0] := [0] AND TEMP; { threshold AND sobelled image }

end

This is fairly self-explanatory. By 'GETting' an image, the new image

becomes the current image. By 'PUTting' an image, the current image is

stored while remaining the current image.

- 182 -

We previously concluded that a microcoded machine appeared suitable
for image processing because it allows application specific commands or
functions to be defined and optimised in the language. PPL has several

commands that allow frequently used image processing commands to be

expressed in a single line, when they would usually be expressed in

several lines of code each. Below are examples of these and their
equivalent Pascal codes:

N := sum K = 0:8 of [K]

N := max K = 0:8 of [K]

N := min K = 0:8 of [K]

N :=P0+P1+P2+P3+P4+P5+P6+P7+P8
IF PO>Pl- THEN max :=P0 ELSE max:=Pl;
IF P2>max THEN max:=P2
IF P3>max THEN max :=P3
IF P4>max THEN max:=P4
IF P5>max THEN max:=P5
IF P6>max THEN max:=P6
IF P7>max THEN max :=P7
IF P8>max THEN max:=P8
Ditto, substituting the > with a <

and max with min

e.g.
apply sum K = 0:8 of [K]) / 9 end

The above example averages the pixels in the 3x3 window by summing the
centre pixel and the surrounding pixels and dividing by 9. The

equivalent code in Pascal is

y:=0; { Setup scan for a 128x128 image }
REPEAT x:=0;
REPEAT
Q0:=(P0+P1+P2+P3+P4+p 5+P6+P7+P8) DIV 9; {average of a 3x3 window}
x:=x+l

UNTIL x=128; y:=y+l { increment scan counters }
UNTIL y=128;

The LAP-1 was built in 1980/81. With the advent of VLSI and the

availability of semi-custom gate arrays in recent years, the possibility
arises of optimising the performance of the LAP-I. The next section

describes the LAP-II which is an enhancement of the LAP-I.

183 -

6.2.2 LAP-II

The LAP-I was designed with cost-effective boolean devices;
however, the LAP-II has been designed to take advantage of recent

technological developments. The following enhancements have been made:

i) The AM2901 processors have been replaced by semi-custom integrated

circuits. Because the processors are custom designed, they have
been optimised for the LAP architecture. Each individual chip now

has eight processing elements (c.f. four per chip in the LAP-I), an

activity bit for control of instruction execution and a larger
amount of memory (32Kxl per PE). As a further enhancement, it is
possible for a global test to be executed throughout the PE's such
that they ALL execute the same function if the result in ALL PE's is
TRUE.

ii) A program sequencer has been added that enables branches and loops
to be executed efficiently.

iii) While the LAP-I was based on its own private bus, the LAP-II is

based on the VMEbus. This allows VMEbus based products such as SIP
to communicate with the LAP-II.

We will now discuss machine performance. This will enable us to examine
SIP and the LAP from a performance point of view.

6.3 MACHINE PERFORMANCE

One often needs to know whether a machine is suited to an

application, e.g. its cost must be within a given budget while being

able to execute a program within a given time constraint. A method of
achieving this is to run the program on several machines and measure the

various execution times. A cost-speed choice can then be made to

determine which machine is best suited to the application. However,

- 184 -

this method is often not practicable and one usually has to rely on

figures that manufacturers state as being a measure of their machine's
performance. A problem with measuring the performance of a machine is

that there is no standard definition of "measure". One of the most

common practices among manufacturers is to state the performance in

terms of MIPS (millions of instructions per second) or MFLOPS (millions
of floating point instructions per second); however, this often bears

little resemblance to how well a machine will execute a user's program.

Another alternative to represent the performance of a machine is to
state the execution times of several "typical" algorithms. This is, in
many ways, a more suitable method as it allows us to relate a real set
of results to an application; however, the problem that arises here is
that "typical" will ultimately be area/application dependent. For

instance, with regard to image processing, "typical" operations may

represent operations that access a pixel and its neighbours within a 3x3
(or larger) window. Thus, frequent array accesses may be the most
common denominator in the program and hence the most predominant factor
in the execution time of the program. On the other hand, "typical"
operations in a scientific environment may involve many millions of

floating point operations. This would constitute a different kind of

"typical" program to the image processing programs.

No attempt here is undertaken to define a machine's "measure of

performance"; however, we will choose the last of the above methods of
assessing the performance of SIP and the LAP, i.e. finding the execution

times of several "typical" algorithms. Since we are mainly concerned

with the image processing area, we have chosen a set of algorithms to
analyse the performance of SIP and the LAP that contain operations that

we have found common in image processing. These include point-point

(pixel-pixel) operations, operations that involve a pixel and its

neighbours in a 3x3 window, and algorithms that have been found

- 185 -

advantageous to industrial inspection, e.g. the Hough transform,

thinning, etc. However, because this is not a complete representation

of image processing operations, one must treat these results carefully.
First let us consider, from a hardware point of view, what main factors
influence the performance of a machine.

6.3.1 Machine Architecture and Machine Performance

The following five factors contribute to machine performance:

1. Type of technology (TTL, ECL, GaAs, etc.).

2. Number of processors.

3. Bit efficiency.

4. Orthogonality.

5. Addressing capability.

The type of technology used is an important factor in governing a
machine's performance. ECL static RAMS can achieve access times in the

region of 6ns while recent developments in the TTL range achieve access
times down to 15ns. Thus, the faster the components, the faster the
processor clock frequency, up to the maximum limit allowed for that

processor. An interesting point to note is that, in a recent set of
results published by Billig and Cronk [10], they showed that their
benchmarks (from comparing various LSI-11/23 configurations (with and

without floating point) with an Intel iSBC-86 (again with and without
floating point) and Motorola's M68000 (running at 8MHz)) showed no

relationship whatever to the processor clock frequencies. As time goes

on, improvements in technology may well slow down so much, that a more

concentrated effort into architectures will need to be undertaken. Some

architectural features that affect machine performance will now be

— 186 —

discussed.

Obviously the number of processors in a machine will affect the
performance of the machine. However, the topology of the system (the

way the processors are connected together) is very important and usually

has to "match" a task to achieve optimum performance. This is discussed

more fully in Chapter 7 where a series of machines are reviewed and
discussed.

The next point to note is the concept of bit efficiency. This
allows a computer to execute an algorithm using fewer instruction bits,

and is therefore a measure of its functionality. Bit efficiency is a
function of the number of words in an instruction word and the number of

operations performed for each instruction. A computer with a long

instruction word may therefore be more bit efficient than a computer
with a small instruction word, if the computer can do an equal number of

operations with far fewer instructions. The benefits of bit efficiency
are small program size, high execution rates and fewer memory references

to fetch program instructions.

Orthogonality measures the ability of a computer to address
different types the same way, independent of the data type it
references. A possible problem with non-orthogonal computers is that
they usually have difficulty addressing particular data types.

Therefore, they may take several operations to perform a function on a
particular data type that could otherwise be executed in a similar

amount of time. This problem would cause a decrease in the performance

of the machine.

The addressing capability of a computer determines how it accesses

external devices. An architecture with good addressing capability uses

the same instructions to address a processor register, an I/O device,

main memory etc. There is also no distinction between data and address

- 187 -

locations. Often a processor has separate data and address registers,
e.g. the 68000 series. In this case, when manipulating an index into an
array, it is necessary (e.g. in some instructions with the 68000) to

manipulate a data register and transfer it to an address register to

form the index before the data can be retrieved. This requires

additional lines of code and hence reduces total system performance.

Now that we have determined some of the factors that affect machine
performance, and problems that can arise during "measuring" the
performance, we shall now present the results from SIP and the LAP. As

discussed before, these are based on operations and algorithms that we
have frequently used and that we have found common in many inspection
algorithms.

6.4 PROGRAM RESULTS

Since SIP and the LAP have been designed specifically for image
processing, a suite of "typical" image processing algorithms has been
used (as described in Section 6.3) to demonstrate the processing

capability of the processors. Note that this is not an exhaustive set
of algorithms but merely demonstrates the machine's performance in these
situations. All programs have been written in the machine's own

language.

Strictly speaking, a direct comparison between SIP or the LAP and

the PDP-11/73 should not be made since SIP and the LAP are special
purpose image processing processors whereas the PDP-11/73 is general

purpose; however, it does demonstrate the advantages of special purpose

hardware and bit-slice designs over commercial processors. Also, no

1 Note that the PDPll/73 has a floating point unit and 8Kbytes of cache

— 188 —

direct comparison should be made between the LAP and SIP since SIP was

specifically designed to execute the algorithms the LAP was incapable of
executing. Nevertheless, a comparison is made by comparing the ratio
(LAP/SIP) of the execution times of the same algorithms executed on both

machines. This will show if a bit-serial parallel processor has a

significant performance improvement over a bit-parallel serial

processor. The results for the three machines (SIP, PDP-11/73 :, and the
LAP) are given in Table 6.1.

As explained in Section 5.8.1, it is possible for SIP to execute

several instructions concurrently. For this reason, SIP has been run

with non-optimised code (noc) and optimised code (oc). This allows us
to observe the performance increase caused by code optimisation. All

times are given in milliseconds (ms) and exclude I/O (add 30ms onto the
times for SIP for input and output and ~ls for the LAP). As mentioned
in Chapters 3 and 5, SIP and the PDP-11/73 both operate on a 128x128

image; however, the LAP operates on a 256x256 image. The times given

for SIP and the PDP-11/73 are therefore the times taken to operate on a
128x128 image plane multiplied by four. All programs were executed on

the same image to ensure no biasing for data dependent operations.
Those entries entered as a double asterix (**) mean that the machine was
incapable of executing the algorithm for some architectural reason.

The next table of results (Table 6.2) shows the performance

increase due to code optimisation for SIP both in terms of program
execution time and code reduction. The following table (Table 6.3)

shows the ratio between SIP and the LAP, SIP and the PDP-11/73 processor

and SIP and a 68000 processor running at 8MHz. A double asterix (**)
indicates that there were so few lines of code or that optimisation

produced so little change in code length (usually because of many

branches in the algorithm) that there was no significant increase in

performance. All times are given in milliseconds.

- 189 -

Algorithm SIP (noc) SIP (oc) LAP PDP-11/73(ms) (ms) (ms) (ms)-------- ------ ---------
Sobel 372 224 37.4 4304Threshold 63 45 6 1168Complement 35 26 5.7 984Edge 372 264 36 4900Binary Smooth 424 237 16.6 3760Mean (3x3) 258 258 18.7 3056Expand/Shrink 263 117 11 2424Robert Cross 178 134 14 1692Median (3x3)^ 2000 1780 166 46428Intensity
Histogram 88 64 ** 2756(a) Centre Find^ 184 164 ** 4816
(b) Centre Smooth 0.44 0.44 ** 8
(c) Draw Circle 588 588 ** 7976
Thin 3
3-iterations 1280 1180 'k'k 25900
5-iterations 2760 1884 ** 42846

Table 6.1 Table of the execution times for
SIP, the LAP and the PDP-11/73

1 Note that the median is also useful for such algorithms as corner
finding [88], etc. as well as noise removal. It is therefore thought
important enough to be included.

2 These steps represent the first three steps of the 0-ring algorithm,
i.e. it involves the Hough transform. The Hough transform has
previously been cited as being useful for industrial inspection and
has therefore been included.

3 The thinning algorithm used was that by Davies and Plummer [23]. This
is a parallel algorithm that requires a continuous full scan over the
image, applying the algorithm until no change in the image occurs. In
this case, two images were used - one took 3 iterations and the other
took 5 iterations.

- 190 -

Algorithm Reduction in Code reduction
execution time (%) (%)

Sobel 40 48Threshold 29 21
Complement 26 12Simple edge
detector 29 25

Binary Smooth 44 32
Mean (3x3) ** 'k'k

Expand/Shrink 56 36
Robert Cross 25 19
Intensity
Histogram 27 8

a) Centre Finder 11
b) Centre Smooth ** 25 (for all
c) Draw Circle **

Median filter (3x3) 11 32
Thin 3
3-iterations 8 15
5-iterations 32 15

Table 6.2 Table of the reduction in execution time and
code length after optimisation of SIP's code

Algorithm LAP/SIP PDP/SIP 68000/SIP

Sobel 0.16 20 13
Threshold 0.13 26 13
Complement 0.22 38 14
Edge 0.14 19 13
Mean (3x3) 0.07 12 14
Expand/Shrink 0.09 21 15
Robert Cross 0.10 13 13
Median (3x3) 0.09 26 16

Table 6.3 Table of the ratios of the average execution
times for SIP, the LAP and the 68000

— 191 —

6.5 ANALYSIS OF THE RESULTS

Inspection of Table 6.2 shows that optimised code achieves an

average of 30% speed reduction over non-optimised code with a

corresponding average of 30% reduction in code size (note that these two

figures are not directly related to each other). From Table 6.3, the

LAP has (on average) only a factor 8 speed improvement over SIP when SIP

uses optimised code whereas SIP has, on average, an algorithm execution
speed of 25-30 over the PDP-11/73.

6.5.1 Performance against other machines

The performance of SIP has also been compared against a variety of
other machines. The results in Table 6.3 show that SIP has an average
factor of 14 speed improvement over the 68000 processor. (Note that all

times are based on a 68000 processor running at 8MHz operating on a

128x128 image.) These results give a fairly realistic figure of

performance as the algorithms involve both single point and 3x3 kernel

operations.

Probably the most realistic comparison is comparing SIP's results
with those published by Logica [97] for DIPOD (Section 7.8.1). DIPOD is

similar to SIP in that it is based on a bit-slice architecture; however,
their similarities extend beyond the basic architecture. DIPOD and SIP

are both based on the AMD 29203 bit-slice processor running at the same
clock frequency (8MHz). This demonstrates an important point in that

the performance must now be governed by the architecture and not by the

type of processor used or the clock frequency. Below are the results

published by Logica against those achieved by SIP. Unfortunately, these
are the only figures currently available for DIPOD. The Sobel is based

on a 128x128 image plane.

- 192 -

1. Sobel: DIPOD - 85ms SIP - 55ms

2. Naive List reversal (30 entries): DiPOD - 200jus SIP - 29/js

This shows that a machine's performance has a strong dependency on its

architecture. Another point to note is that the cost of a single SIP is
around £620 (one off) whereas a single DIPOD node (a DIPOD system is

from many nodes) costs around £30,000 (commercially). Comparing

the price/performance ratio one can see that, even assuming a commercial

price of £2000 for SIP, SIP would be a more advantageous solution (see
also Chapter 8). Based on the same cost analysis, the LAP costs about
£9000 commercially.

6.6 A PARALLEL/SEQUENTIAL CONFIGURATION

In Section 5.2 we showed that many image processing algorithms
include both sequential and parallel processes. Thus, a parallel
algorithm (e.g. a Sobel) executing on a sequential machine (SIP), is

inefficient relative to the same algorithm executing on a parallel
machine (LAP). Also, a sequential algorithm executing on a parallel

machine is inefficient when compared with the same algorithm executing

on a sequential machine. Because many image processing algorithms
include both sequential and parallel processes, it seems clear that
either processor executing an algorithm consisting of both parallel and

sequential processes will be inefficient in one way or another.

This leads on to the possibility of combining both SIP and the LAP

so the LAP would execute the parallel processes and SIP would execute

the sequential processes. An example of this might be:

- 193 -

(1) Find the edges of the object by application of a Sobel.

(2) Threshold the image.

(3) Chain code the image.

(4) Extract measurements from the chain code.

The above algorithm could be partitioned into two parts: the LAP could

execute parts (1) and (2) while SIP could execute parts (3) and (4).
Both SIP and the LAP would have their program code (microcode) loaded

into their respective program memories by an external host. SIP would
load the image into the LAP, run the LAP, then fetch the resultant image
and load it into one of its image planes for further processing.

Unfortunately, the LAP-II is as yet unfinished and its performance is

unknown, though it is estimated that it will have a speed improvement of
approximately two over the LAP-I. The following analysis is based on

the results derived from the LAP-I.

In order to execute the above algorithm on the LAP-I, SIP is
required to load the data (the image) into the LAP, run the LAP, then

fetch the result (65,536 pixels). This is likely to cause a data
bottleneck, particularly if parallel and sequential tasks are scattered
throughout the algorithm. For example, considering the example above,

SIP takes 25 cycles per pixel to apply a Sobel and 5 cycles per pixel

for the threshold. Therefore, 30 cycles are needed for every pixel in

the image. This will lead to an execution time of

256 * 256 * 30 SIP clock cycles.

on a 256x256 image. However, the LAP takes 1172 cycles for the Sobel

and 210 cycles for the threshold (per line) therefore, the total time to

execute the parallel part of the algorithm will be

256 * 1382 LAP clock cycles

- 194 -

which is ~5-6 times faster that SIP. (Note that both the LAP and SIP

operate at the same clock frequency of 8MHz: hence a direct comparison
can readily be made.) However, the additional overhead of transferring
data from the LAP means an additional

(256 * 256 * 3) + (256 * 256 * 3)

(to LAP) (from LAP)

SIP clock cycles will be needed (assuming three cycles per pixel VME
read and write). This means that a Sobel and threshold on a SIP/LAP
configuration is in fact executed in

(256 * 1382) + (256 * 256 * 3 * 2) clock cycles

Thus, about 53% of the total time to execute the parallel task is spent
transferring data. This reduces the efficiency of the system to only a
factor 2.6 greater than SIP as a stand-alone processor. Note that the

LAP was originally designed to accept data directly from a line-scan
camera, although this was never implemented. In this case, the first
data transfer can be eliminated (since data need not now be transferred

to the LAP); thus, the percentage of time spent transferring data is
reduced to 35.7%, producing a SIP/LAP ratio of 3.6.

If parallel and sequential tasks are scattered throughout the

algorithm, then SIP will need to transfer data more frequently
throughout the algorithm. This will eventually cause a much larger data
bottleneck in the system. However, as we mentioned in Chapter 4, there

will be cases where a parallel processor will greatly enhance the

performance of a system (here, we have taken rather trivial examples).

For instance, there will be cases when there will be several parallel

tasks and few sequential tasks. In this case, a parallel/sequential

processor configuration may greatly reduce the execution time of an

algorithm by several factors compared with the situation where the

- 195 -

algorit±im is implemented on a single sequential processor. This

requires a more detailed investigation; however, as the LAP-II is as yet
unfinished and the performance is unknown, any further calculation will
be rather speculative. For this reason, this study will not be

continued here. The above calculations only serve to give a brief

insight into possible timings and how the system would operate.

Another point worth mentioning is the problem that occurs when
programming two different bit-slice architectures (particularly a
sequential and parallel processor) when configured as a complete system.
Since SIP and the LAP have different microcode formats and have, as a

result, acquired different languages, they will have to be programmed
accordingly - this is a situation to be avoided.

6.6.1 Conclusions

The initial results of a system composed of SIP (sequential
processor) and the LAP (parallel processor) show that a bottleneck is
likely to occur because of SIP having to transfer data to and from the
LAP. Another problem is the need to program these machines in different
languages when implementing a complete system. Because each machine has

a different microword format, programming is made more difficult. An
alternative is to have a common language and the parallel and sequential

tasks are partitioned by the programmer. However, because the microword

format for each machine is hardware dependent, knowledge of the hardware
for each machine must be incorporated into the language. As the number

of hardware modules increases (and hence different microword formats),

this situation will become undesirable.

Chapter 8 investigates various configurations using multiple SIPs.

This has the advantage that, because each processor has the same

architecture and microword format and each processor executes the same

196 -

program, the simplicity of programming is maintained while the
processing power is increased as the number of processors increases.

6.7 SUMMARY

This chapter has discussed the problems concerned with the problem
of measuring machine performance. A MIPS figure is frequently quoted as

a measure of machine performance; however, this figure often bears
little relation to the execution time of a program. For this reason, it
was decided to represent the performances of SIP and the LAP by stating

the execution times of several image processing algorithms. These

contained operations that we found frequent in image processing. A
comparison against conventional processors and processors of a similar
nature was also undertaken. Optimisation of SIP's code has shown that a
30% reduction in code size and a 30% decrease in execution time could on
average be obtained. Comparing these results with those obtained for

DIPOD which has many similarities to SIP, it was found that the

architecture of the system plays a crucial role in the performance of a

machine.

Initial results of a multiprocessor configuration composed of the
SIP and the LAP show that this was likely to incur a bottleneck because
of the data transfer to and from the LAP; however, because the

performance of the LAP-II is as yet unclear, this area of investigation

is incomplete. The next chapter reviews a variety of architectures that
have been proposed and employed for use in image processing. These tend

to be SIMD (parallel) machines for reasons that were summarised in
Chapter 1. From the results gained here and an analysis of other
architectures. Chapter 8 describes a variety of configurations composed

of multiple SIPs (sequential processors) and analyses the performance of

each configuration. This entails an analysis of processor bottlenecks.

- 197

CHAPTER 7

ARCHITECTURES

"...why they are as they are, and not otherwise"
Mysterium Cosmographicum Preface

7.1 INTRODUCTION

This chapter presents a study of computer architectures and

techniques that have been adopted to eliminate some of the classic

problems associated with the traditional von Neumann architecture. An
attempt to clarify the question "what is a computer architecture?" is

undertaken which leads to the classification of architectures. Criteria
for choosing an architecture are discussed which highlight some of the
pitfalls that can be avoided by measuring specific features of a

proposed architecture. This includes optimisation of an architecture

for a particular problem with regard to cost-speed tradeoffs.

A varied set of architectures that have been used for image
processing are reviewed. Particular idiosyncratic features that have

been employed in the architecture are highlighted including reasons why

these features were implemented. These thoughts are applied to image

processing where a high degree of both sequentialism and parallelism is

frequently required. The conclusions from this chapter are applied to a
hybrid architecture (Chapter 8) that attempts to execute both sequential

— 198 —

and parallel processes efficiently. However, first let us discuss the
common source of inefficiency in most microprocessors.

7.2 ARCHITECTURES

With few exceptions, modern computers still employ the original von
Neumann architecture as depicted in Figure 7.1. It consists of a single
processing unit and a single memory for both instructions and data. No

distinction is made between data and instructions, enabling data to be

interpreted as instructions and instructions as data. The problem with
this approach is that only one location in memory can be accessed at any
one time: hence instructions have to be fetched and decoded before the

data can be fetched. Several machine cycles are therefore needed to
implement each instruction and this is highly inefficient; for example,
consider a typical nonpipelined von Neumann processor that takes five

machine cycles to execute an instruction. (Note that more cycles may be
needed for some instructions. Also, each processor has a different
instruction fetch/decode/execute scheme. This example merely serves as
a typical sequence a processor will follow to implement a short

instruction.)

Cycle 1 - Fetch instruction
Cycle 2 - Decode instruction
Cycle 3 - Fetch data
Cycle 4 - Execute instruction
Cycle 5 - Store result

If L operations (here L=5) are required for each instruction and T is
the time required to execute each operation (usually the period of one

clock cycle), then the total time taken (t) is

t = L*T
The maximum instruction execution rate (r) is therefore

r = 1/(L*T)
We can immediately see that this is highly inefficient because the

- 199 -

PROGRAM AND PROGRAM
DATA MEMORY COUNTER

CENTRAL PROCESSING UNIT

Figure 7.1 The traditional von Neumann processor. Program
and data are held in the same memory

P ROG RAM

COUNTER

PROGRAM MEMORY DATA MEMORY

CENTRAL PROCESSING UNIT

Figure 7.2 The Harvard architecture. Program and data
are held in separate memory blocks

— 200 —

actual processor execution circuitry (used in cycle 4) is active for
only 1/L of the total time.

Suprisingly, the majority of today's processors including the
MC68020, the DEC J-11, the Intel 8086 and 80286 and machines like the
VAX family, still employ the von Neumann architecture. Processors such
as the 80286 rely heavily on internal pipelining (see Section 7.2.1) to

eliminate the inefficiency factor 1/L while the MC68020 also employs
on-chip cache for further efficiency.

The Harvard architecture depicted in Figure 7.2. was developed in
the 1940's by Howard Aiken (inventor of the Mark I calculator) of
Harvard University [128]. This diverts from the classic von Neumann
architecture in that it maintains separate program and data spaces

allowing the instruction and data fetch to take place concurrently,
hence reducing the number of cycles needed to execute each instruction.
It has been adopted by processors such as the LM32900, NS32532 and Texas
instrument's TMS32010 to achieve maximum instruction throughput of one
instruction/cycle. More recently. Motorola's 68030 has adopted the
Harvard architecture internally and is predicted to achieve a

significant performance increase over the von Neumann 68020.
Externally, the 68030 employs the von Neumann architecture with
instructions and data sharing common memory but internally, the 68030

features two 256 byte caches - one for the instructions and one for the
data. (Cache is a small amount of "fast" memory that often eliminates
the need for the processor to fetch every instruction from "slow"

external memory. This has the advantage of increasing the program

execution speed.)

As an example, consider the von Neumann machine above that took

five cycles to execute an instruction. The Harvard architecture in a

similar setup fetches the data in cycle 1 concurrently with the

- 201 -

instruction fetch. Cycle 3 is now eliminated making the maximum
instruction execution rate, r as

r = 1/T*(L-1)

which is a performance improvement over the von Neumann processor of
L/(L-1)

This is not a large improvement if the processor takes a large number of

cycles to execute each instruction. Therefore, for processors that take

a large (>3) number of cycles to execute each instruction, the
advantages of the Harvard architecture are not realised, e.g. for a von
Neumann processor that takes five cycles to execute, adopting the

Harvard architecture will mean that the processor circuitry will only be

active 25% of the time, which is not a great difference. (Note that
this assumes a register-memory operation. Memory-memory operations will
obviously take longer.)

This inefficiency has led computer architects to try to reduce the
number of cycles needed for each instruction in order to improve
performance. One approach which has been adopted in both von Neumann

and Harvard processors is the technique known as pipelining

(Section 7.2.1). This can improve a von Neumann processor's instruction
rate to a maximum of one instruction every two cycles or to a single

cycle when the Harvard architecture is employed.

Some of the differences between the von Neumann and Harvard
architectures are not immediately obvious. Since instructions and data

share the same memory space in the von Neumann architecture, the

instructions and data must have lengths that are equal to or are factors

of each other. With the Harvard architecture, program and data spaces
are separate, enabling instruction and data lengths to be of whatever

size is appropriate. The same also applies to the various registers in

the processor. For instance, the program counter must be of sufficient

length to address only the instruction memory, the size of the data

— 202 —

memory being determined by other factors.

In this chapter, we mentioned a technique known as pipelining.
This will now be discussed.

7.2.1 Pipelining

The fundamental property of a pipeline is that it can decompose a
process into dedicated subprocesses as long as the subprocesses are
independent of each other. Dasgupta [22] described a pipelined system
not as an architecture but as an architectural style. An architectural
style is a feature which is exhibited by an architecture.

Processors such as the 80286 and the LM32900 incorporate a pipeline
to obtain simultaneous instruction fetch and execute. For example, in
the 3-level pipeline of the LM32900 (Harvard architecture), as an
instruction is being executed, the next one is being decoded and the one

after that is being fetched. This is depicted in Figure 7.3. In many
cases, a maximum throughput of one instruction/cycle can be achieved.

Fetch

Decode

Execute

Ti Ï2 Tj Tg Tg

Figure 7.3 A 3-level pipeline producing a rate of 1 instruction
per cycle. The numbers in the boxes represent an
instruction at time Tn

- 203 -

Ideally, one would require a pipeline for every independent

operation to be performed. However, a serious disadvantage of this is
that the processor assumes that the next instruction required for
processing is the next one in sequence in the program memory. This is

not true in the case of a branch. If a branch is encountered at the

execution unit, the instruction in the decoder and the instruction being

fetched in the same time interval will be wrong, as control is now being

passed to a different part of the program. In this case, the
instructions being decoded and fetched have to be discarded and the
pipeline must be filled with the new instructions before correct
operation can resume. Thus, if a program has a large number of

unconditional or conditional branches and the number of pipelines is
excessive, the performance of a pipelined processor can degrade rapidly.
(The same applies to the start of a program - the pipeline must be
filled before the initial result is delivered.) Therefore, the time to

perform a series of operations in a pipelined system is

t = [S + L]*T
where S*T is the initial start-up time required to set up the pipeline.

The pipeline thus has a maximum instruction rate of

r = 1/T
which is a factor L increase in performance over the original von
Neumann architecture. As we shall see later, for image processing where

a large amount of data has to be processed, computer architects have
traditionally adopted the Harvard approach and replicated the processor

section for maximum throughput.

The next section explores what is meant by the term 'computer
Q ■ j - 00-̂ 2̂'0 ̂ grid how the way we view an architecture can influence the

design of a computer system.

- 204 -

7.3 WHAT IS AN ARCHITECTURE?

What constitutes a computer architecture has been a point of some
debate in computer science. The crux of the problem lies in the complex

nature of computers. A convenient way of representing a complex system

is by the use of hierarchy. For instance, a computer consists of a
processor, memory, control unit and I/O unit. The processor may contain

a pipeline, ALU and register file; the memory may contain local data and

dual-port memory; and the I/O section may consist of a bus and serial
interfaces.

Dasgupta [22] noticed that an architecture can be viewed in
different ways. The machine language programmer views a machine from a
logical structure and functional capability point of view. He does not
need to know the details of the machine's physical components, the
logical structure of their interconnections or the nature of the

information flow between components, all of which are necessary

knowledge for the hardware designer. These two views (known as 'levels'
in this context) have been termed exoarchitecture and endoarchitecture

respectively [22]. Exoarchitecture is in effect an abstraction of
endoarchitecture. One can view the relationship between exoarchitecture
and endoarchitecture as a means of "hiding" information.

These two levels will often suffice for a complete abstract

specification of a computer system; however, there is a third level that
becomes discernible in systems with a writeable control store. This is
termed microarchitecture. Many aspects of microarchitecture will also

be a part of endoarchitecture (ALU's, local memory, etc.) but
endoarchitecture may not include details of the microprogram control

unit which are essential knowledge for the microprogrammer. Using such

systems, the microprogrammer may create new endoarchitectures and hence

new exoarchitectures. We can thus view an endoarchitecture as the

- 205 -

result of implementing a particular microprogram on a microprogrammable
machine.

We can therefore conclude that an architecture is an abstraction of

the hardware that can be viewed from different levels: at each level
(starting from the system as one component and working down), the

information revealed becomes more detailed. The next section introduces

classification of architectures. Two classifications are presented
followed by a discussion.

7.4 CLASSIFICATIONS OF ARCHITECTURES

Flynn [40] based his classification of architectures, not on the
structure of the machines but on how the machines relate their data to
the instructions being processed. By doing this he produced four
classes of machines:

1. SISD - single instruction stream/single data stream. This is the
typical von Neumann serial computer (Section 7.2) where there is
only one stream of instructions. Examples are: CDC6600

(nonpipelined), CDC7600 (pipelined), AMDAHL 470V/6, PDP-11, VAX,

68000, SIP (Chapter 5), etc.

2. SIMD - single instruction stream /multiple data stream. This is a
computer that distributes the same instruction from a single stream

to many processors all operating on different data. This class of

machine includes most types of array processors, e.g. the ILLIAC IV,

ICL DAP, CLIP4 and the LAP (Chapter 5).

3. MISD - multiple instruction stream/single data stream. These

systems usually consist of special streaming organisations, e.g. a
pipelined processor system. Here, a processor processes the data

then passes it on to the next processor for further processing, etc.

— 206 —

Thus, the data is pipelined between processors.

4. MIMD - multiple instruction stream/multiple data stream. As its

name asserts, multiple instructions are operating on multiple data
streams. An example of this is DIPOD (Section 7.8.1), the

Connection Machine (Section 7.8.3) and the Pyramid architecture
(Section 7.8.4).

Shore [107] on the other hand, based his classification on how the

computer was organised into its constituent parts. From this he
produced six different types of organisation as follows;

1. Machine I - is the conventional von Neumann architecture with a

single processor unit, a single control unit and a single
instruction and data memory unit. This class includes both the
pipelined scalar computer, e.g. CDC 7600, and the pipelined vector

computer, e.g. CRAY-1.

2. Machine II - is similar to machine I except that the data is fetched
as a bit-slice rather than a word-slice and the data is performed on

in a bit-serial like fashion, e.g. STARAN and the ICL DAP. The main
difference between Machine I and Machine II is that Machine I

processes its data; word serial, bit parallel while Machine II

processes its data: word parallel, bit-serial.

3. Machine III - is a combination of both Machines I and II. Known as
an orthogonal computer, the data memory is organised as a two

dimensional array which may be read as either words or bit slices
and thus contains both a horizontal and vertical processing unit.

It has the advantages of both Machine I and Machines II resulting in

a higher throughput; however, the cost is increased significantly

since the arithmetic hardware of Machines I and II is needed.
Complications also arise because of the need for dual-ported memory.

- 207 -

An example of such a machine is the Sanders Associates OMEN-60
series.

4. Machine IV - this machine is obtained by replicating the processor

section and data memory of Machine I. All instructions are issued
from a single control unit. There is no communication between the

PE s except through the control unit which tends to limit the

applicability of the machine, but addition of further PE's is fairly
simple. An example is the PEPE [55].

5. Machine V - similar to Machine IV except the PE's are connected to
their nearest neighbours. This means that a PE can access its own

memory and data from its neighbours. Most array processors
(Section 7.6) are examples of machine V.

6. Machine VI - this is called a logic-in-memory array (LIMA) and is an
alternative approach of distributing the processor logic throughout
the memory. Machine VI ranges from simple associative memories to

complex associative processors. The NRL AP is a typical example of

a LIMA machine [107].

By comparing Shore's classification with Flynn's (and ignoring the
awkward case of the pipelined vector computer), Hockney and Jesshope

[55] noticed that Machines II to V are subdivisions of Flynn's SIMD
machine while Machine I is equivalent to the SISD machine. Hence,
Flynn's classification is rather too broad. Shore's classification

allows us to draw a finer line between the parallel and sequential

computer. It is often stated that Machine II is a SIMD machine and
Machine I is not. In fact, they are both SIMD machines because Machine

I processes multiple-bit streams a word-slice at a time, whereas Machine

II processes multiple-word streams a bit-slice at a time. If a line

between sequential and parallel processors does exist, it will probably

— 208 —

be between Machines III and IV and not between Machines I and II as one
would expect [107].

As we can see, either taxonomy does not cover all possible cases.
For instance, a pipelined vector computer falls into the same category

as a nonpipelined scalar computer. More recent attempts include a

nomenclature [8] that aims to bring out the diversity in parallel

processor designs such as the incorporation of different levels of
parallelism.

7.5 CRITERIA FOR CHOOSING AN ARCHITECTURE

With all of these architectures and architectural styles at his
disposal, the designer has to have solid criteria for selecting between

them. The choice will ultimately depend on the application and the
factors involved. Quite often, it is necessary to optimise a system

either on a cost-speed basis or on a performance basis. We will now

examine both of these approaches below.

7.5.1 Optimising an Architecture on a Performance Basis

The most useful method for optimising an architecture on a
performance basis is to measure the degree to which the processing

hardware is being usefully kept busy. An incorrect design could cause
processing power to be used inefficiently. For instance, it is often

implied that if a parallel processor can be programmed for an

application, then a throughput higher than a sequential processor will

result. This is not always the case, especially if the parallel
processor consisting of N processors was writing to a single data word

from memory. This would result in one useful processor and N-1 idle

processors. The sequential processor in this case would be more

suitable for the application since it can perform a single operation

- 209 -

using less processor hardware. However, a parallel processor will

usually be superior to a sequential processor when the application can

be fully parallelised and the execution time must be much less than that
possible by an optimally programmed sequential processor.

7.5.2 Optimising an Architecture on a Cost-Speed Basis

Optimising an architecture on a cost-speed (cost of hardware-speed
in software) basis will here be taken to mean distinguishing between

those parts of a system that should be implemented in hardware and those
that should be implemented in software, taking into account cost and
speed factors. One extreme situation is when algorithms are too slow

for the application; another is when the total cost to implement the

algorithm in hardware is too great.

Suppose now that we are considering whether to implement a given
algorithmic function in hardware to make it run faster. We need to
obtain guidelines to decide whether the hardware can be justified. As
an example, consider using hardware accelerator modules to speed up the
0-ring algorithm presented in Chapter 3. The times (in milliseconds)

are derived from those given in Section 3.3.5; with the absence of

actual costs of the hardware modules, notional costs will be used for

this example.

For each task in the algorithm, the procedure adopted by Davies and

Johnstone [29] was to tabulate the execution time in software (t) and

the corresponding hardware implementation cost (c). From this a
cost—time ratio (c/t) can be derived for each task (Table 7.1). This

figure gives us the cost per unit time, e.g. pounds/mi H i second.

— 210 —

task time cost c/t ratio
* 1 ■

(ms) (£) (£/ms)

1. Find Centres 2500 5200 2.12. Sort List 30 2000 66.73. Find Centres 20 1500 75.04. Median filter 20 2000 100.05. Radial Histogram 270 2500 9.3
2840 ' 13200

Table 7.1 Breakdown of the 0-ring algorithm and
its c/t ratio for each task

It is fairly clear that those tasks which should be implemented first

are those with a low c/t ratio, since this helps to give low cost
complete with high speed. On the other hand, those parts with
particularly high c/t ratios (the threshold depends on the application)

may quickly be eliminated for the purpose of hardware implementation. A
high c/t ratio may arise either because the task is performed quite fast
initially or because the circuitry required is relatively expensive for

the functionality it achieves (or else because of a combination of these

factors).

Next, it is necessary to find where best to stop implementing these

tasks in hardware. We now define C,T as being the running totals of the
c and t figures down the list (Table 7.2): the aim will be to minimise
the cost-speed tradeoff product, C*T. According to this criterion, the

best tradeoff in this case arises when all tasks are implemented in
hardware. In spite of optimising a cost-speed tradeoff for a system in

this way, it may nonetheless be necessary to tailor a system for a

specific speed or cost constraint. In this case, those parts of the

(C,T) list down to the specific cost or speed limit should be

inplemented. For example, consider the system above with a £10,000

budget. Those parts up to (and including) the £9700 row should be

- 211 -

implemented in hardware, implying an 0-ring execution time of 80ms,

task time cost C T C*T (xlO^)(ms) (£) £ (ms) £-ms

2000 20001 2850 2 5.71 2500 5200 7200 350 2.55 270 2500 9700 80 0.82 30 2000 11700 50 0.63 20 1500 13200 30 0.44 20 2000 15200 10 0.2

Table 7.2 C*T table for the 0-ring algorithm

We shall now discuss the use of the 13IMD machine in
processing. Following this, architectures that have been employed in
image processing will be reviewed.

7.6 SIMD MACHINES FOR IMAGE PROCESSING

A large volume of data processing is needed for image processing
but because of the constraints of technology at the time, designers have
resorted to the use of multiple processors for increased data

throughput. Combining multiple processors on a single bus usually

incurs major drawbacks:

1. The data bus can become saturated for as few as ten processors,
hence producing a data bottleneck. The onset of this bottleneck is
governed by the bandwidth of the bus, and in any case is highly data

dependent.

1 An initial cost of £2000 has been included to cover the cost of the
basic system, e.g. host computer, backplanes, power supply, etc.

2 lOms has been added to the original times in Table 7.1. This implies
that if all tasks were implemented in hardware, the algorithm would
execute in 10ms.

- 212 -

2. Partitioning and scheduling of tasks into subtasks with similar

execution times is difficult and is sometimes impossible. This can
lead to processors lying idle if its task is finished early, making
inefficient use of processing power.

3. Because of this, expansion to an arbitrary number of processors and

maintaining efficient use of processing power is generally
difficult.

The bus organisation for interprocessor communication is thus unsuited

for image processing where the problems are varied and, at times,

unpredictable. Ideally, one would like a performance increase
proportional to the number of processors in the system. Computer
architects have traditionally gone for the SIMD array processor approach
for increased data throughput. This has the particular advantage that
the data format (i.e. the image) maps onto the processor array. This

suggests that the performance of the machine will rise linearly with the

number of processors. However, Minsky's conjecture [40] states that the
gain in performance for a SIMD machine is roughly proportional to log^N

and not N as one would hope. This was interpreted as being due

predominantly to the way a SIMD processor executes its branch
instructions, although this must inevitably be data dependent.

In general, array processors consist of an NxN array of processors
(usually referred to as processing elements (PE's)), each with its own
local memory as depicted in Figure 7.4. A central controller broadcasts

instructions to all PE's simultaneously: hence all PE's execute their
instructions in lockstep. Each processor is usually connected to either

its four or its eight nearest neighbours. When used in image

processing, each PE often represents a single pixel in the image. The
pixel is loaded into the PE's local memory, operated on, then
transferred either back to local memory for further processing or to an

— 213 —

PE

PE

DM

DM

DM

PEDM

PE

DMPE

DM

DM

PE

PE

DMPE

MASTER

Figure 7.4 Typical representation of a SIMD machine consisting
on an NxN array of P.E's, each with its own local
memory and receiving the same instructions

I/O device such as a frame store. Following the notations of

Section 7.2, the instruction throughput is now

r = N/(L*T)
where N is the number of processors in the system. For the majority of

array processors, L=l, i.e. the Harvard approach has been adopted with a
pipelined instruction fetch. Thus, the maximum instruction rate for an

array processor is N/T. This has a performance increase of N over the

- 214 -

single processor Harvard approach and N*L over the von Neumann approach.

A main difference between SIMD array processors is the size of the

array and the amount of memory available to each PE. The following
sections review several machines that have emerged as having the most

prominent effect in image processing. Most of these machines tend to be

in the form of the SIMD array. However, by showing specific
architectural idiosyncracies for each machine, and the reasons why these

were implemented and how they relate to image processing, we can then

build on this work. This is done in Chapter 8. Many of these machines
are now old; however, with the advent of VLSI, the possibility of
fabricating a large number of processors on a single chip to produce

larger arrays has become a reality. These machines will also be
reviewed.

7.6.1 The ILLIAC IV

The ILLIAC IV [37] was said to be a failure in its time
(circa. 1970) because it cost four times as much as the contract figure

and did not come within a factor 10 of its original proposed
performance: nevertheless, it had a profound and lasting influence on

architectures. The architecture was too advanced for the technology at
the time; however, what emerged from the experience was the significant
advancement and finally the introduction of ECL chips and specialist CAD
tools to cope with the 15-layer circuit boards that were required in the

PE section [6].

The basic layout was a square array of 8x8 PE's (each PE was a

64-bit PE) and a control unit (CU). The original specification was an

array of 16x16 PE's, each with 2Kx64 RAM (120ns access time) for local
data storage. A system clock cycle time of 40ns gave it an estimated

peak processing rate of IGFlops/s. The system was to be composed of 4

- 215 -

8x8 quadrants; however, only one quadrant was ever built and the clock

cycle time was eventually increased to 80ns, only ever producing a peak

rate of 50Mflop/s (one floating point operation every 240ns) and a
typical rate of 15Mflops/s. This still compares favourably with the

CDC7600 which had a peak processing rate of lOMFlops/s and a typical
processing rate of 5MFlops/s.

Although the ILLIAC IV was essentially a 64-bit machine, its most

common mode was for 32-bit floating point arithmetic. It was capable of
performing 64-bit and 32-bit floating point operations but in the 32-bit
mode, two floating point operations could occur concurrently in each PE.
It was thus capable of performing 32-bit arithmetic on vectors of length
128. Each PE had an enable/disable bit which controlled the instruction
execution of that PE, and 4 64-bit registers: A (accumulator), B

(operand register), R (multiplicand and data routing register) and S
(general purpose). The PE section was developed so that arrays of PE's

could be partitioned into subprocessors of 64x1, 32x2 or 8x8 under
software control.

The main purpose of the CU depicted in Figure 7.5 was to control
and decode instruction streams and to generate and broadcast those

instructions that were common to all processors. One of the most
prominent features of the ILLIAC IV was the instruction fetch/execute
sequence. Each instruction is 32-bits in length and is used either by

the CU (for simple single operations) or by the PE array (for more

complex operations). Initially, each instruction entered the
instruction buffer. As the control advanced, each instruction was sent
to the advanced instruction station (ADVAST) unit where it was decoded

from a repertoire of 260 operational instructions into a set of

microsequences chosen from the 720 micro-instructions available. If it

was an instruction local to the CU then it was executed: otherwise, in

the case of a PE instruction, ADVAST constructed the necessary address

- 216 -

NSTRUCTION
REGISTER

Control signals
b r o a d c a s t

DATA

INSTRUCTION
buffer

NSTR UCTION
STAT ION (FINST)

OUE U E

ARITHMETIC

ACCUMULATOR
REG ISTERS

and
UNIT

CU

Common data
Bus to all PEs

Figure 7.5 The ILLIAC IV Control unit

- 217 -

or data operands and stacked them in a FIFO queue (FINQ).

PE instructions were taken from FINQ and sent to the final
instruction station (FINST) which controlled the broadcast of address
and data, and held the PE instruction during execution. The advantage

of the PE instruction queue is that it permitted overlap between CU and

PE instructions. The amount of overlap obviously depended on the
distribution of PE to CU instructions but, as with all overlap

strategies, careful attention by the programmer could result in a
considerable speedup of program execution.

Data could also be routed anywhere in the circuit by using multiple
instructions; however, it was found that routing data more than two
processors away was rare, the most common routing distance being one.
Many image processing algorithms have been successfully implemented on
the ILLIAC IV including Landstat data analysis (clustering and

classification of the data). Synthetic Aperture Radar (this used range
and azimuth correlation, transposition of 64x64 subarrays and texture).

Fast Fourier Transform (FFT) and Linear Programming Image Enhancement.

One of the startling differences between the ILLIAC IV and other
array processors was that the majority of array processors are

bit-serial whereas the ILLIAC IV was a 64 bit-parallel machine.

7.6.2 The ICL DAP

As with most array processors, the ILLIAC IV and the ICL DAP have
many similarities, namely a square array of PE's, each one accepting

control from a common broadcast unit. However, one main difference is

that the DAP is a bit-serial machine while (as mentioned above) the

ILLIAC IV was a bit-parallel machine. The DAP consists of a 64x64 array

made up on 256 boards, each board containing a 4x4 array of PE's. The

whole 64x64 array is controlled by an ICL 2900 host mainframe which

- 218 -

M c u
registers

8x64 Bits
DAP

To/from2900 C olum n h ighw ay ' 'access

c o n tro l

m o d i f i e r

INSTRUCTION
60x32
Bitso>

64 X 64
DAP

PROCESSOR INSTRUCTION
COUNTERARRAY

Figure 7.6 The major components of the DAP

- 219 -

consequently makes the system too expensive for the types of image
processing applications considered here.

The major components are depicted in Figure 7.6. The host accesses
the DAP via the control and column highway; thus, each 64-bit 2900 word

is equal to one row across the DAP memory. Each PE has 4Kbits of
memory, this being mapped into the 2900 host's memory (2Mbytes of the
host memory are thus available to the DAP). The column highway also
provides a path between the array and the MCU registers vdiich are used
for data/instruction modification. The row highway has one bit for each
row of the array and is used exclusively for transmitting data in the

orthogonal direction between the array and the MCU registers. Although
each PE in the original DAP (1974) was made up of five chips, the latest

DAP contains eight PE's per chip.

One bit
to/from
mcu

highways

Carry/route

neighbours

FromFrom self
E I neighbours

-W

1-bit
full adder

Output
multiplexer

Input
multiplexer

4K X Ibit

Figure 7.7 A DAP processing element
- 220 -

A schematic diagram of a single DAP PE is shown in Figure 7.7. The
PE s are arranged so they are all connected to their four nearest
neighbours: N, S, E and W. Each has three registers: A, Q and C. The

programmable activity enable register (the A reg) prevents certain store

instructions from writing into the store unless this bit is set. This

has the effect of selectively enabling/disabling each PE. The Q

register represents the accumulator and the C register acts as the carry

store. A feature of the DAP (as with many array processors [55]) is

that it may be configured as a bit-serial machine or a bit-parallel

machine. To act as a bit-parallel machine, the carry bit (C reg) is
propagated (rippled) down the PE's in that row. Thus, 64 64-bit words
may be processed in parallel. Since four positions of carry are

guaranteed in a single clock cycle [55], several cycles are required in
order to process n/4-bit (n>4) words. However, it can be shown [55]

that maximum processing occurs when the bit-parallelism is 1, i.e. pure

bit-serial, but peaks again when it is four. Data is controlled by a
selective row and column control which enables individual bits of data

to be sent to specific PE's.

The performance of the DAP is enhanced by its ability to fetch two
instructions per cycle. This is because a DAP instruction is 32-bits in

length while the ICL 2900 (the DAP's host) data bus is 64-bits in

length. Thus, the instruction throughput in DO loops is one per cycle,
or 1.5 instructions per cycle if the instructions have to be fetched

from main memory.

The DAP is essentially a bit-serial machine. The advantages and

disadvantages of bit-serial machines are discussed in Section 7.10 but a

point worth noting here is that in general, a bit-serial machine's

performance decreases as the arithmetic precision increases. However,

Reddaway [55] showed that the DAP gives acceptable results for precision

as high as 32-bit floating point arithmetic (about 2OMflops/s), this

- 221 -

being due to the high data memory bandwidth, it being 4-6 times faster
than a CRAY-1.

7.6.3 The GOODYEAR MPP

The Goodyear Massively Parallel Processor (MPP) [95] was originally

designed to process LANDSAT-D satellite images in real-time. In order

to do this, a processing rate of greater than 1000 million

operations/second is required. The estimated performance is 2-4 Gflops

for 8-12 bit integers or 200-400 Mflops for 32-bit floating point
arithmetic.

The MPP is modelled on the DAP architecture, the main difference

being that it has a 128x128 array of PEs and that the I/O system is

configured differently. Whereas the DAP used the 2900 for I/O, each row

in the MPP array acts as a 128-bit shift register thus enabling data to

flow left to right across the columns of the array. Each MPP PE has

iKbit of RAM for local use and six registers (A,B,C,P,G,S).

The main addition is the provision of a programmable shift register

S. This was added to improve the multiplication time which is

implemented using shifts and adds. Each PE in the MPP has a cycle time

of 100ns, half that of the DAP, yet it can perform 32-bit floating point

multiplication 16 times faster. The figure one would expect,

considering the array size (4 times larger) and clock cycle time, is 8.

The additional factor of two is due to the programmable shift register

in each PE. The data connections to a single MPP PE are shown in

Figure 7.8 where each PE is connected to its four neighbouring PE's.

This layout is typical of most SIMD machines. Another major difference

between the DAP and the MPP is that the MPP does not have selective row
I

or column broadcast facilities.

222 -

Memory - 1 Kbit

I/O data

Data to
adjacent PE

to
PE

Data to
adjacent PE

PE
I/O dataout

Data to
adjacent PE

Figure 7.8 Connections to an MPP PE

The MPP is currently being inplemented in CMOS VLSI but, even

though half of the PE logic is required by the programmable shift

register, it is still possible to incorporate eight PE's per chip

(c.f. 5 chips/PE on the original DAP and eight PE's per chip on the

latest version).

We shall now review SIMD machines that have been specifically

developed for image processing use.

7.6.4 CLIP4

The Cellular Logic Image Processor (CLIP4) has a 96x96 array of

processing elements controlled by a single broadcast unit. Each

integrated circuit (the CLIP4B chip) contains eight PE's controlled by a

4-phase clock running at iMHz, each with 32 bits of RAM. Unlike the

ILLIAC IV and the DAP, CLIP4 was specifically tailored for image

processing, so each PE has direct access to its eight neighbouring PE's

rather than only four. A PE section of the CLIP4 is shown in

- 223 -

DATAINPUT DATAOUTPUT ENABLE 0

ncectsel
neighbourselect

INTEKCONNf-CTION
INPUTS

INTERCONNECTION

Æ >input 8
fromneighbour

OUTPUT

SI
(CARRY)

INPUT
GATING

0 LOAD CLOCK

Figure 7.9 A CLIP4 PE

Figure 7.10 Data storage in the CLIP4 array

- 224 -

Figure 7.9. CLIP4 uses 35 1-bit planes for its storage: an A-plane,

B-plane, C-plane and 32 D-planes. Any number up to 32 bits in length

can be represented by using the D-planes as storage. However, instead

of representing a word by stacking the bits horizontally as in a

conventional processor, the bits are stacked vertically such that DO

represents the least significant bit and D31 represents the most

significant bit. To access a number, the same coordinate is applied to

every D-plane and the number is accessed vertically as shown in
Figure 7.10.

7.6.5 CLIP4S and CLIP7

CLIP4 [52] was designed to operate on a 96x96 image with

1 PE/pixel. Many applications require a 512x512 image but the

realisation of 262,144 PE's cannot be justified because of the enormous

cost. For this reason, CLIP4S was designed to adopt a one-dimensional

scan concept. A small array of 2048 PE's (using the CLIP4B chip)

organised as a 512x4 array is effectively moved to every 512x4 sub-area

of the image and performs the same function on each sub-area.

Communication between sub-areas is via edge registers while each PE has

had its local memory increased to 64 bits (c.f. 32-bits per PE in the

CLIP4). The performance is estimated at about 140 times less than that

of CLIP4.

Part of the reason for building CLIP4S was to test some of the

ideas for CLIP7 [42]. Although essentially the same in that a small

array of processors is scanned over a large image, CLIP7 consists of a

linear array of 256x1 processors. It is designed to scan over an input

image of 256x256 pixels, each pixel capable of having 256 grey levels

(CLIP4 only had 64 grey levels). The main difference between CLIP7 and

CLIP4S is that each processor is 16-bits wide (as opposed to 1-bit wide)

and has a much greater degree of autonomy. CLIP7 is still in the

- 225 -

development stage and should now be nearing completion; but with so many

factors affecting performance, it is impossible at this stage to do more

than state that "the typical performance expected of the CLIP? system

over its 256x256 pixel data images is similar to that achieved by CLIP4
over 96x96 pixels" [Fountain 42].

7.6.6 The GRID Chip

One of the latest developments for realising the benefits of VLSI

and employing parallelism on a large scale in the image processing area

is the GEC Rectangular Image and Data (GRID) chip [124]. The concept is

the same as the array processors described above in that a master

controller broadcasts the same instruction to every PE in the array and
each PE executes the same instruction in lockstep. Previous machines

such as CLIP and the DAP have demonstrated that very high throughputs

could be obtained using a high degree of processor parallelism.

However, because of the limitations of MSI logic with which these

machines were built, they required cabinets of electronics to hold the

large numbers of PE's needed.

The GRID chip has been designed with 64 PE's, arranged as an 8x8

array on a single chip with a 150ns cycle time. The PE's were designed

as bit-serial processors consisting of a one-bit ALU and a one-bit

communication path. Each PE also includes a 32x1 bit register file and

various I/O paths. Two other communication paths exist: the X-bus and

the Y-bus. These allow the PE addressing circuitry to selectively

broadcast data to every PE on every row and column - this is useful for

matrix transpositions.

As with the CLIP, GRID has access to its eight nearest neighbours

in its local 3x3 neighbourhood via the nearest neighbour select

circuitry (NNS). A complete 64x64 PE array can be mounted on 16 cards

- 226

(each card has a 16x16 array of PEs) and can achieve a throughput in the

order of 10^ instructions/second. See Section 7.12 for the
implementation of image processing algorithms on GRID.

7.6.7 Linear Array Processors

Linear array processors are similar to NxN arrays described above

except that they consist of a one-dimensional array of processors (Nxl).
In this case, a linear array can be regarded as a compression of a

two-dimensional array of processors, all processors in the

one-dimensional array executing their instructions in lockstep. A

linear array of 256 PE's can process a line of image data at a time
while accepting common instructions from a master controller. Linear

arrays have the ability to manipulate symbolic information which is of a

similar form and are hence useful for such operations as linear database

searching, matching and correlation of unusual data items.

Fountain [43] has proposed a 256x1 processor array with a processor

of 32-bit complexity. The CLIP7 [42] array processor is based along

these lines with each processor having a 16-bit word length. Here, each

processor also has a greater degree of autonomy. Plummer of the

National Physical Laboratory (NPL) has developed the "Linear Array
Processor" (Chapter 6) which is a bit-serial processor composed of a

256x1 array of cost-effective, readily available 1-bit processors. The

outcome of this is that the cost is kept low while the processing power

is maintained because of the advantages bit-serial processors have to

offer. The LAP is therefore efficient for picture point-picture point

processing but, as with most bit-serial devices, suffers when high

precision numbers are required.

- 227 -

SLAP [39] is a 512x1 scan line array processor based on CMOS VLSI

technology. Each chip contains four PE's, each PE having an ALU, 32

registers, an instruction decoder and a high-speed video shift register

for video data. Input to the shift register is via an 8-bit input bus,

the output of which feeds the ALU and register file in each PE. The ALU

produces 16-24 results which are available to both PE's connected to it

in the linear array. All processing occurs in lockstep as in a SIMD

machine. In real-time mode, video data is shifted through the array by

the shift registers, then latched in after a line has been loaded,

independently of the processor. Thus, processing can be carried out on

one line while the next line is being loaded.

Space precludes further descriptions of LAPs; however, more exist
and can be readily found in the literature [35].

7.7 PIPELINED ARRAY PROCESSORS

Another concept frequently used is in operations where the same

instruction has to be executed on all data. This differs from the

previous types of array processors in that several ALU's are pipelined

as depicted in Figure 7.11. Each ALU in the chain is loaded with a

specific instruction. Data is entered into the first ALU (ALUl) on

every clock cycle. Simultaneously, the output of every ALU in the chain

is sent to the next ALU. This process is repeated for all ALU's in the

chain. The advantage of this is that complex instructions that consist

of N internal steps can be executed in a single cycle with N processors.

Thus, in Figure 7.11, the operation ((A*B)/C-4)*56 is executed in a

single cycle; however, one must ensure that the data appears at the

right place at the right time, i.e. at ALU2 in Figure 7.11, C must

appear at the input on the following clock cycle data was entered into

ALUl. One could also consider that each processor could contain a part

of an algorithm - this is discussed more fully in Section 8.2.

- 228 -

DATA IN
A B

(AXB)

(AXB)/C

56

kAXB)/C -4)X56

ALU 4

ALU 3

ALUM

ALU 2

elk DATA OUT

Figure 7.11 An ALU pipelined system

7.8 MIMD MACHINES

NIMD (Multiple Instruction, Multiple Data) machines are classed as
multiprocessor machines. Each processor in the system operates on a

different set of data with a set of instructions (tasks). The problem

with MIMD machines is finding the optimum processor connection topology

for the application. In the simplest case, each processor runs the same

program on a different set of data. In a more complex form, each

processor executes a different task on a different set of data.

However, complications arise here vdien scheduling of tasks needs to be

carried out effectively. Inefficient scheduling could mean that many

tasks lie idle Wiile waiting for other tasks to complete. Various MIMD

architectures have been proposed for use in image processing, several of

which will be discussed here.

- 229 -

7.8.1 DIPOD

DIPOD (Dedicated Image Processing Device) [97] is a high-speed

microcoded bit-slice MIMD system. DIPOD was designed for image

processing algorithms which can be expressed as a group of tasks and

performed in parallel and pipelined stages. The system consists of 15

FENS (each FEN (FIFTH Execution Node) is a microcoded bit-slice

processor) loosely coupled over a high-bandwidth, packet organised bus

where each processor on the bus works independently on its own task.

The architecture of a single FEN is shown in Figure 7.12. The
functional modules are accessed via three buses: A, B and Y. The code

is downloaded over the Y-bus which is controlled by a 68000 host running
UNIX.

The bit-slice approach was chosen because is shows a significant

speed improvement over conventional microprocessors. The hardware
multiplier (MAC) is independently controlled by the microcode;

therefore, a significant degree of internal parallelism can occur when

performing MAC operations in data-independent operations. For instance,

the Sobel operator involves a '*2' operation so the data fetch from

memory and the MAC operation can be performed simultaneously.

This approach to parallelism differs from the systolic array

approach of WARP (Section 7.9) in that each processor executes different

instructions on different sets of data whereas WARP executes the same

instructions on different sets of data, although in both cases, each

processor is autonomous. (Autonomous is here taken to mean the ability

of a processor to execute its own instructions on its own set of data,

independently of other processors.) The advantage of the MIMD approach

over the SIMD approach is the ability to handle sequential operations.

Each FEN in the system is a sequential processor executing a sequential

task. DIPOD gains its speed from partitioning an algorithm into several

- 230

01 POD SYSTEM BUS

BIT-SLICE
PR
0
C E S S1
N
G

RS23PORT

16-bit
Paralle

Interface

DMA

EXECUTION
CONTROL
MODULE

I
Ijunit
I

68000 CPU
BIT-SLICE^
monitor

C A C H E

RX TXBUF BUF
BUS
MASTER
OPTION

HALT

RUh/

16-BIT
ALU

M U L T I P L Y
ACCUMULATE

3
C M BANK 0 BANK 1O EM M DA TAMO OR MEM ORY
N Y

STACK
SEQU­
ENCER

24-BIT ADR
GENERATOR

U
N

P
R
0

M
E

1 G M
T

R O
A R

M Y

"T
I M M
I E O
I M D
I O U

3x 16-bit
Data buses

tasks.

Figure 7.12 Schematic diagram of a DIPOD FEN

Bit-slice processors are not known for their ease in programming so

for this reason, a language FIFTH (as mentioned in Chapter 5) has been

developed which allows an algorithm development environment to be

implemented in \diich modifications can be easily made. (Note that the

language is called FIFTH as it represents a fifth generation

language.) As with many microcoded machines, all instructions are

translated into short sequences of bit-slice microcode. Parallelism is

stated explicitly in the code and is downloaded to the FEN's. Typical

- 231 -

execution rates are given in Section 6.5.1.

The architecture of a FEN has a close relation to SIP's

architecture and a DIPOD system is similar to that of multiple-SIPs.
This configuration is discussed more fully in Chapter 8.

7.8.2 The Transputer

The T800 transputer is a 32-bit, VLSI reduced instruction set
processor with an on-board 64-bit floating point unit. The main

advantage the transputer has over other processors is that it has four

independent 20 Mbits/s serial links that allow it to communicate with

its four neighbouring transputers, independently of the processor.

These in turn can communicate with their four neighbours and so on.

This appears highly advantageous as I/O between processors is generally

the main source of the data bottleneck in a multiprocessor system.

(However, unless the amount of processing and communication is evenly

balanced, I/O may still be a problem.) In order to allow parallelism to

be exploited, a parallel language Occam was developed in conjunction

with the transputer.

Often, it is difficult to partition an image processing algorithm

into independent tasks. Thus, although the transputer appears to be an

optimum solution for parallel processing, it still does not solve the

problem of matching the task to the architecture. One solution would be

to partition the image such that each transputer executes the same

program independently of the others on its section of image - this is

analysed more fully in Chapter 8. However, a point worth mentioning is

that the transputer is a device that is used more at the implementation

level rather than at the architectural level, i.e. it is a useful PE to

use with which to implement architectures rather than an architecture

per se.

- 232 -

7.8.3 The Hype rcube

The hypercube scheme [105] (sometimes referred to as the n-cube or

the cosmic cube) has a powerful interconnection feature that allows any

number, N (N=2) of processors (nodes), to be connected together. These

are organised so that the maximum number of nodes a signal has to pass

to reach any other node is n, where n is the dimension of the cube.

An example of a hypercube is the "Thinking Machines' Connection

Machine" (TMCM). This has a large array of 1-bit PEs each with a single

ALU, 16 registers and 4-Kbytes of external memory. Each PE operates by

reading two bits from external memory and one flag, combining them

according to a specified operation and then producing a two-bit result.

This is then written to external memory producing a total execution time
of 3 clock cycles.

The problem with the topology of the hyper cube is that the fan-out
from the microprocessor needs to be n. Thus, with increasing number of

nodes, the hardware becomes increasingly complex. Pease [90] suggested

a switching network where every pair of processors is connected to a

two-state switch. The switch can either be set as "straight through"

enabling the signal to pass directly opposite or "crossed" enabling the

signal to cross over to a similar switch. Figure 7.13 depicts this

concept for a 4-dimensional cube (16 processors). If the cube is of

n-dimensions then the nesting level of the switches is n. The final

output is fed back into the destination processor. This layout is

called the "indirect" binary n-cube because the nodes are not connected

according to the topology of the binary n-cube.

Another feature of the n-cube is that, unlike the tree or

shuffle-exchange structures [52], no node in the n-cube plays a

particular role; thus, the n-cube can adopt to many topologies easily.

Pease also suggested the switching control system shown in Figure 7.14.

- 233 -

n

-c a-
- ■ d b — 'XI

Figure 7.13 The indirect binary 4-cube array and the switch
node (a) direct connection and (b) crossed
connection

- 234 -

The roaster controller broadcasts the same message to every switch
controller in the network. Each switch controller then interprets the
same command into a set of micro-instructions which controls the switch
nodes in its column. By programming each switch controller, each
message broadcast by the master controller can be interpreted
differently. Thus, the n-cube can be configured as a two-dimensional
array with 2^ processors for use in image processing, the main advantage
being that it is totally configured by software. Exanples of n-cubes
are the Connection machine, Intel's iPSC Cosmic Cube and Floating Point
Systems T-series.

M a s t e r

C O N T R O L L E R

G L O B A L Commands

SWI T CH
C O N T R O L L E RS WI T C H

C O N T R O L L E R

o—
o—

To

m icroprocessors

o—
S W I T C H N O D E S

Figure 7.14 Switching control system for the indirect
binary cube

- 235 -

Fountain [43] suggested a two-level N-cube architecture for

tracking purposes. This problem is efficiently carried out with the

binary n-cube because image data can easily be rescaled by a factor of

two in very few operations. The scene consists of an object whose range

is changing through a series of images. This example requires the use

of low-level image processing, data shifting and symbolic processing.

The architecture chosen for this problem is depicted in Figure 7.15.

The array of elements on the lower layer are a two-dimensional array of

bit-serial processors. Each 4x4 array communicates with the upper layer

which is connected in the form of an n-cube consisting of 8-bit

processors. Thus, low-level image processing is achieved in the lower

array while rescaling and symbolic processing is carried out in the

upper layer. Because of the reduction in the data set, positional

remapping is carried out much more effectively in the n-cube than within

the original data.

7.8.4 The Pyramid Architecture

The pyramid architecture [43], [120] is suited to algorithms of the

type where, at each stage, the algorithm becomes increasingly more

complex. A typical example might be that of a 5-level pyramid

(Figure 7.16). The size of the array and the complexity of the

processor at each stage are highlighted below, including a brief example

of the complexity of algorithm involved. This particular example is one

of scene analysis.

1. 256x256 1-bit find edges
2. 64x64 8-bit fit edges to line segments
3. 16x16 16-bit 2-D objects
4. 4x4 32—bit 3-D objects
5. 1 VAX relationships

Although many machines exist using the pyramid topology [120], space

does not permit more to be said on this interesting development.

- 236 -

64x64 N - C U B E

8— bit Processor^

1-bit processors

Figure 7.15 A two-level N-cube architecture

1-bit

VAX

32-bit

16-bit

8-bit

Figure 7.16 Pyramid architecture consisting of different
levels of processor complexity

- 237 -

7.9 WARP - A SYSTOLIC ARRAY PROCESSOR

There are many ways of increasing the performance of a machine

without having to resort to a large number of processors operating in

parallel. The main disadvantage with the SIMD approach is that

sequential operations are highly inefficient. A systolic system

consists of a set of interconnected cells (processors), each capable of
performing some simple operation [67]. Data flows from memory in a

rhythmic fashion, passing through many cells before it returns to

memory. In principle, a systolic system is easy to implement because of

its regularity and it is easy to reconfigure because of its modularity.

Pipelining is a simple example of a systolic architecture.

WARP [3] is a high-performance systolic array computer consisting

of a systolic linear array of 10 or more identical cells. Each cell is

an independent, lOMflop, 32-bit floating point programmable horizontal
microcoded engine capable of a high degree of internal parallelism. It

has its own program memory and microsequencer enabling each processor to

execute the same program independently. The WARP system itself consists

of an interface unit, the WARP array of cells and a host as depicted in

Figure 7.17. Since each cell is executing the same program on different

sets of data, all the cell's programs may be out of phase with each

other in data dependent operations. Communication problems therefore

arise if a cell receiving data from its neighbour is not ready to accept

the data. This is solved by having a 128 word queue between each cell.

What makes WARP unique is its high I/O bandwidth. Data flows on

the X and Y bus while addresses and control signals flow on the address

(ADR) bus as shown in Figure 7.17. Because the majority of programs

implemented on a systolic array need to communicate intensively, WARP

has been designed to transfer 20 million words (80 Mbytes) between cells

per second. It operates on a 200ns clock cycle and is capable of I/O

- 238

H O S T

r

AD R i n t e r f a c e

UNIT

cell
1

cell ^2^2 — cell
2 n-1

cell
n

W A R P P R O C E S S O R A R R A Y

Figure 7.17 An overview of the Warp machine

(often the bottleneck in multiprocessor systems) at a rate of
lOMbytes/sec because of the simplicity of the linear interconnection

structure between the WARP cells.

To the programmer, WARP looks like an array of sequential
processors. An array of WARP processors is capable of operating in one
of two modes: pipelined mode and parallel mode.

1. Pipelined mode: each processor constitutes a stage in the pipeline.
As data is processed by one processor, it is passed on to the next
for further processing. Repetitive computation can thus be
decomposed into a number of identical pipelined stages. As an
exaitple, coitplex matrix multiplication has been inplemented on WARP

using an 8-stage WARP pipeline.

2. Parallel mode: the data is partitioned among the processors and each
processor executes the same function on data resident in its local
memory. This description will be expanded in Chapter 8.

- 239 -

In both modes, the cells execute the same program in the same time slot.

This differs from the conventional SIMD approach where all processors

execute the same instruction in the same time step; however, since each

WARP cell operates independently, the execution time of the cells may

become skewed for data dependent operations, i.e. mainly because of

branching. A WARP cell contains its own microprogram memory (of which

the microword is 112 bits wide) and its own program sequencer. This

makes such instructions as branching more efficient than with the SIMD

approach since the SIMD approach achieves branching by masking. The

execution time of the branches for a SIMD machine is the summation of

the execution time of each branch, with local program control on each

cell, different cells may follow different branches; hence the execution

time is the maximum execution time of the different branches.

The microcode in WARP is completely horizontal, giving the user

complete control over the amount of parallelism needed in the program.

Because each component in WARP is controlled by a dedicated field in the

microword, scheduling is made easier, since there is no interference in

the schedule of different components caused by conflicts in the

micro-instruction field assignment. The internal data bandwidth is

often a bottleneck in systolic array architectures. For this reason, a

crossbar switch has been implemented between the functional modules of

the WARP array. As an example of the performance of WARP, a 10-cell

WARP can execute a 1024-point complex FFT at a rate of one FFT every

600/vs. It is worth noting that a 70-cell version of WARP is currently

being implemented in VLSI.

7.10 BIT-SERIAL MACHINES

Because of the large number of processors needed for parallel

processors in image processing, the view of having a 32-bit processor

per pixel for a 256x256 image size is still unrealistic. Because most

- 240 -

array processors have a large number of processors, they usually inherit

the bit-serial architecture. Instead of processing a word horizontally

(bit-parallel) as with a conventional processor, the words are processed

vertically (bit-serial). The advantage of this is that the processors

only need to be simple 1-bit wide processors; however, several machine

cycles are required in order to process a multi-bit word, e.g. an 8-bit

pixel value. With the emergence of VLSI, one can now consider

incorporating several 1-bit processors onto a chip. The outcome of this

is that bit-serial devices process data at a higher rate though they

will be less efficient when floating point calculations need to be done.

Since image processing is largely concerned with 8-bit pixel data,

it would appear that a bit-serial device is in many ways an optimum
choice. This goes some way in explaining its wide use, e.g. CLIP4, DAP,
MPP. etc.

7.11 HYBRID ARCHITECTURES

As we have seen in the previous sections, the SIMD architecture is

mainly suited to pixel-parallel tasks^ where only short-range

interactions between pixels need be considered. On the other hand, a

MIMD architecture is more suited to tasks that require access to any

part of the image. Thus, SIMD is well suited for the early stages of an

algorithm where pre-processing an image (e.g. histogramming, smoothing,

filtering, etc.) needs to be carried out, whereas MIMD is more suited

for the later stages such as those that deal with lines, contours,

regions and image descriptions [113].

We have already seen that multiprocessor machines tend to be

1 Here we mean that all pixels in an image can be processed in parallel

- 241 -

application driven. An example of this was the pyramid structure [120],

Vflien applied to image-understanding, the machine topology matches the

character of the data and the flow of the task up the pyramid.

Siegel et. al. [113] are currently involved in the design of PASM

(Partitionable SIMD/MIMD). This is being developed to meet the needs of

both the low-level and the high-level tasks commonly found in image
processing.

7.11.1 PASM - Partitionable SIMD/MIMD

PASM differs from the SIMD and MIMD approaches described in

previous sections in that it can dynamically configure itself to operate

in either SIMD or MIMD mode, thus adopting the configuration most suited

for the current task (c.f. the mesh and pyramid topologies where the
configuration is fixed).

A schematic diagram of the PASM prototype is given in Figure 7.18.

It consists of a system control unit, a memory management system, four

microcontrollers (MC's), 16 PE's, 16 memory banks and a switching

network in order to connect the processors to the memories. (The final

version is expected to consist of 1024 PE's and 32 MC's.) As its name

asserts, PASM is partitionable and can hence appear as a number of

independent machines. Figure 7.18 shows PASM partitioned into four

sub-systems, each with its own MC.

The interconnection network (the network that connects the PE's to

the memories) is similar to that described by Pease (Section 7.8.3) in

that it adopts a switch-based arrangement as in Figure 7.13; however,

the switches in the PASM network can also be set to 'broadcast', where

either the upper or the lower input connection is connected to both the

upper and the lower output. In order for a PE to communicate with a

memory, it must initially set up a path by configuring the switches.

- 242 -

S y ^ tn i i Cr«*iiirol ü t i i t mn«#

M ic .c M ir rw M ic r o M ic r o
C 'o n l r o l i r r C o n t r o l l e r C o n t r o l l e r C o n t r o l l e r

O I 2 3

♦ i

P E P E P E P E
0 4 8 12

TII L.

rTi m i
P E P E P E P E

1 S 9 13
P E PI-: P E P E
2 fl to 14

m TTTI
1 ...t . t J

P E P E P E P E
3 7 11 I S

t }T t » ..

K x tr x S l»K C C u l ic I n t c r - P K N e t w o r k

t o P E
0 .1 .2 .3

M e m o r y

t o P K
4 .S .8 .7

M e m o r y

8,0.10.11

M e m o r y

Unit

t o P E
1 2 .1 3 .1 4 .1 S

M e m o r y

M e m o r y M n n a R c m e n t S y n te m

Figure 7.18 Schematic diagram of PASM showing the arrangement
between the Microcontrollers, PE's, memories and
the interconnection nétwork

This is achieved by sending a routing address, R (bit i in R sets switch

i to either straight or crossed) and a broadcast tag, B. If bit i in B

is '0' then no broadcast is performed and the switch is set either to

straight or to crossed, depending on the state of bit i in R. However,

if bit i in B is '1' then a broadcast is performed, the upper or lower

input being broadcast, depending again on the state of bit i in R. When

a connection is made, the PE can communicate freely along the connected

path with the memory until the connection is released by the PE (note

that all this happens transparently to the user). An interesting point

to note is the design consideration in adopting a hardware switch based

system. This was chosen rather than a packet based system because of

the ease of implementation and the anticipated large "conflict-free”

- 243 -

data transfers.

The strength of PASM comes from its ability to dynamically change

between SIMD and MIMD mode during execution of a task. For instance,

consider the following example such as the Pascal-type expression

IF <parallel-expression> THEN
<blockl>

ELSE

<block2>

where the parallel-expression is an expression that depends on a
variable in each PE, and either blockl or block2 (which may be several

instructions or procedures) are executed, depending on the result of the

parallel-expression. Here, the parallel-expression can be evaluated in

parallel (SIMD mode, i.e. in each PE simultaneously), so the result will

be true in some PE's and false in others. In a SIMD machine, branching

is achieved by masking thus: blockl must be executed with the

appropriate PE's disabled, then block2 must be executed, enabling and

disabling the appropriate PE's. However, PASM can avoid this

inefficiency by 'jumping' to MIMD mode. In MIMD mode, each PE executes

either blockl or block2 (depending on the result from the previous

operation) independently of each processor and then returning to SIMD

mode. Thus, the execution time of the above expression is the greater

of the blockl time and the block2 time rather than their sum.

Each PE's memory is divided into two sections: MIMD space and SIMD

space. In MIMD mode, each PE operates as though it were a normal

von-Neumann computer, fetching data and instructions from MIMD space in

its own memory. Data from other PE's can be accessed via the

interconnection network by setting the source and broadcast tags as

described before, all of which takes place asynchronously under DMA

control. A transfer to SIMD mode is initiated by executing a

- 244 -

"jump-to-subroutine" to an address in SIMD instruction space. This

indicates that instructions are now to come from the MC rather than from

the local memory. A request is made to the MC for an instruction, and

the MC waits until all PE's in its partition are requesting before an

instruction is sent. This is indicated by the result of ANDing all the

request signals (if multiple MC's are used then the request signals from

all MC's are further ANDed). All PE's then latch in the same

instruction at the same time; however, each executes it independently.

A new instruction is only issued when all PE's are requesting again.

(While in SIMD mode, instruction latching and switch setting take place

synchronously.) A return to MIMD mode is indicated by executing a

"return-from-subroutine" instruction.

The only difference between SIMD mode and MIMD mode is that the PE

program counter points to SIMD space in SIMD mode and MIMD space in MIMD

mode. While in SIMD mode, the program counter merely serves to indicate

that the PE is in SIMD mode; its actual value is irrelevant (as the

instructions are now coming from the MC) as long as it accesses SIMD

instruction space.

With this flexibility, PASM can emulate a variety of architectures

including ring, mesh, pyramid and tree. With (for example) the mesh

topology, each processor is physically hardwired to its neighbouring

processors whereas PASM only has one outgoing link per processor. PASM

thus has to communicate with each neighbour in turn and will therefore

emulate different topologies with varying degrees of efficiency (and

clearly sometimes with poor efficiency). One particular aspect of

emulating a machine is the ease with which it can calculate the address

of its neighbours. This is trivial for ring and mesh type topologies

but is often more difficult for the pyramid topology; however, since the

16-PE prototype PASM is still in the preliminary stages of construction,

the usefulness of this configuration in practical situations is as yet

- 245 -

undetermined.

Although the concept of a SIMD/MIMD architecture appears to have

distinct advantages, the benefits of such systems are not realised

without efficient ways of programming them. Indeed, the high degree of

flexibility of PASM necessarily leaves many choices for the programmer

and hence makes it quite difficult to program optimally. APLISP (A

Parallel Language for Image and Speech Processing) is being developed

for use on PASM [108]. The syntax of APLISP is similar to Pascal but

for a few additions to the language specifically suited to image

processing, e.g. the type BYTE to represent a pixel. Most current

parallel systems [108] attempt to parallelise programs written in serial

languages automatically or require users to structure their algorithms

based on knowledge of the system architecture. APLISP allows the

programmer to express parallelism in a natural way, independent of the

machine's architecture. The compiler is given some information as to

which operations in the program can be executed in parallel. APLISP

follows the philosophy "the expression of parallelism in the language

should be problem orientated rather than machine orientated" [108].

There are three possible ways of distributing the data in PASM;

1. A subarray per PE. Here, the image is divided into N subimages,

each of n '̂xN^.

2. A row per PE, i.e. PE i gets row i.

3. A column per PE, i.e. PE i gets column i.

Various algorithms have been proposed for suitable implementation on

PASM including contour extraction [112], image correlation [111], image

coding [110] and contextual classification [109]. Applications cited

for PASM include remote sensing and the inspection of printed circuit

boards [112]. The ability of PASM to execute these algorithms

— 246 —

efficiently is essential. This aspect is discussed in more detail in

Chapter 8 when we consider the implementation of the 0-ring algorithm on
a series of multiprocessor architectures.

7.12 A COMPARISON OF SEQUENTIAL vs PARALLEL MACHINES

Many algorithms exhibit a high degree of both parallelism and

sequentialism. For this reason, no individual algorithm is likely to be

executed efficiently (efficiently being defined in this context as the

proportion of processors that are processing information usefully) on

one particular machine. In other words, a SIMD machine consisting of N

processors executing a sequential algorithm will have N-1 idle

processors, while a sequential machine executing a parallel algorithm

will have to process the whole image (which may include a lot of

redundant information) in order to achieve its goal. As the performance

of PASM is unknown (though some simulation results have recently been

published [114]), we will only discuss results that are available.

However, since PASM appears to offer the ability to execute both

parallel and sequential tasks efficiently in a multiprocessing

environment, this may offer an effective solution to this problem.

Daniel Slotnick, father of the ILLIAC IV, states that parallelism
is a very special case and that only certain computations can be

usefully carried out by a parallel machine [37]. With regard to image

processing, parallel computers are often employed as pre-processors

except in special applications where the whole algorithm can be

parallelised. We saw in Chapter 6 that a parallel and a sequential

processor on a bus based system is impractical as it introduces a data

bottleneck, while the PASM approach tackles the problem "head on". We

therefore require a simpler more cost-effective solution that could be

used in industrial applications. More will be said about this later.

- 247 -

In a recent study, several segmentation algorithms which exhibited

a high degree of sequentialism and parallelism were studied on the GRID

parallel processor [124]. GRID is of a similar nature to most SIMD

array processors in the way it organises its data and instructions.

This is a useful study because, as we saw in Chapter 2, segmentation

techniques are probably the most widely used routines in image pattern

recognition. The algorithms described below were implemented on a 64x64

array of GRID processors working on a 128x128 image size.

7.12.1 Bartliff's Algorithm

This algorithm consists of applying a combination of a

Marr-Hildreth operator [75] and the Sobel operator [33] to an image.

Because this algorithm is fairly complex, the details will be omitted

here for space reasons; however, the following table of results lists

the operations involved in the algorithm and the execution times for

each operation as implemented on GRID. Note that all of the operations

are parallel in nature except the chain code routine.

1. Sobel 0.5ms
2. Marr-Hildreth (width 4) 30ms
3. Two multiplications 0.8ms
4. Three thresholds 20/ys
5. Sort 30ms
6. Interpolation 20ms
7. Thinning 20ms
8. Chain Coding 10s

The whole of the algorithm took 10.1s, the most prominent time being the

Chain Code which took 10s.

7.12.2 Nevatia-Babu Algorithm

This algorithm uses a mask matching approach to edge detection

(Section 2.5.2). It consists of applying six different 5x5 masks (each

one corresponding to a different edge orientation of an ideal edge) to

- 248 -

every point in the image. The one that gives the highest response is

chosen as the result. The result is a list of magnitudes and directions

for each pixel. The edges are then thinned as a post-processing stage.
The time to execute the whole algorithm was 20ms.

7.12.3 Merge

This algorithm was based on that described by Gupta and Wintz

[124]. It involves dividing the image into elementary regions and then

merging statistically similar regions into homogeneous 'blobs'. When a

point is reached such that the blob will not merge with an elementary

region, a new blob is started. This algorithm involves a large amount

of communication over large parts of the image and is probably better
suited to a sequential machine. The only part of the algorithm which

could be parallelised was the initial stage where the statistics of the

elementary regions were calculated. The algorithm took 7.46s, being

reduced to 4.92s when the initial part was parallelised.

7.12.4 Conclus ions

The Nevatia-Babu algorithm is a typical example of how a parallel

machine will significantly improve the execution time of a program.

However, examination of the Bartliff program shows that out of the 10.1s

taken to execute the algorithm, IDs was spent in the chain code routine

which accounts for 99% of the total execution time. This is a typical

example of an inherently sequential process being implemented on a SIMD

machine, and thus renders the SIMD approach useless for sequential image

processing tasks. For this reason, SIMD machines have mainly been

applied to low-level image processing tasks such as edge detection,

thresholding and to tasks that exhibit a high degree of parallelism.

Analysis of many common image processing algorithms (typically those in

Chapters 2 and 3) show that many consist of both parallel and sequential

- 249 -

parts suggesting that the SIMD machines mentioned will do poorly for

"typical" tasks. One of the main disadvantages is that each processor

only has access to its local neighbours. If each processor had access

to the whole image, this would dramatically improve the performance of

the machine. However, with several thousand processors in such systems,

this is impractical. Chapter 8 investigates this idea for a small set
of processors.

Reconfigurable machines such as PASM can dynamically configure
themselves to operate in either SIMD or MIMD mode, the configuration

chosen being the one better suited to meet the needs of the current

task. This appears to be an optimum approach; however, the performance
of PASM is as yet unknown and optimal methods of programming this kind

of flexible architecture are still in their early stages.

7.13 SUMMARY

The von Neumann architecture suffers from many deficiencies, most

of which have been overcome by the use the Harvard architecture and

pipelining. Both of these techniques are aimed at achieving the

ultimate performance of one instruction/cycle. For a further increase

in performance, computer architects have replicated the processor

section for increased data throughput while maintaining the single

instruction unit for global instruction broadcasts (a SIMD machine). A

single instruction unit simplifies processor control, eliminating such

problems as interprocessor communication, task scheduling and data

bottlenecks - all traditionally associated with MIMD machines. This

allows maximum instruction and data throughput to be achieved. The

processor organisation is usually in the form of a linear or 2-D array

of processors.

- 250 -

Image processing would appear to be an ideal application for a SIMD

machine since the processor organisation can be mapped directly onto the

data representation, i.e. the image. However, with image sizes

typically of 256x256 pixels, matching a single 16-bit processor to every

pixel is still unrealistic. Only now, with machines like the CLIP7, are

16-bit processors being used for the 1 processor/pixel concept.

However, with this complexity, only a linear array is currently

implemented using 16-bit processors. For this reason, SIMD processors

have usually been designed as bit-serial processors. Processors like

the DAP (1974) had 5 chips/PE, while current VLSI-based schemes, such as

GRID, show that 64 PE's (eight in the case of the new DAP and the MPP)

can be incorporated onto a single chip. Unfortunately, GEC (the

designers of the GRID chip) are still suffering from problems which

suggests that the number of PE's on a single chip may be approaching the
limit achievable using traditional methods of production.

Analysis of sequential tasks executing on a SIMD machine shows that

the performance of the machine rapidly deteriorates. Bearing in mind

that a criterion for choosing an architecture was to measure the degree

to which the processing hardware is being usefully kept busy

(Section 7.5.1), the SIMD approach fails drastically because, by

definition of a serial task, only one processor is usefully being

employed. From this, we can draw the conclusion that a sequential

processor is more useful executing programs that exhibit both sequential

and parallel tasks than a SIMD machine is, mainly because the processor

is fully utilised. In other words, a SIMD machine is not cost-effective

unless the task can be fully parallelised. We may wonder therefore, if

the SIMD architecture is the correct approach to take. Obviously in

some situations it will be but, in general, we have found that many

algorithms cannot be fully parallelised.

- 251

The ultimate question at this stage must be "where do we go from

here?". The above arguments for a sequential machine suggest that we

should concentrate on developing the fastest possible sequential

processors and combine them in some way so as to maintain high

performance levels for the execution of both sequential and parallel

tasks, while still satisfying the criterion laid down in Section 7.5.1.

Such machines as the systolic array of WARP and the reconfigurable

approach of PASM have been proposed which attempt to achieve this goal.

In both cases, each processor in the array is a high speed sequential

processor. With respect to WARP, each processor is able to communicate

with its two neighbours, while in PASM, any processor can communicate

with any other processor's memory via a switching network. The main

difference between these methods and the SIMD approach is that each

processor executes the same program but not in lockstep with its

neighbours (however, when PASM is in SIMD mode, instruction latching
takes place synchronously). Interprocessor communication obviously

arises in data dependent operations. WARP uses a queue for such cases

while PASM uses interrupts.

WARP aims to achieve the processing power of a MIMD machine without

the problems associated with MIMD architectures (scheduling of tasks and

communication, etc.); it also aims to maintain the simplicity of SIMD in

that every processor executes the same program. This appears to be an

optimal solution (PASM requires SIMD and MIMD tasks to be partitioned
into separate processors). With the advent of VLSI, one would expect

that the processing power of WARP could be reduced from a whole board to

a few chips. Processors such as the 68030, although powerful in their

own right, cannot deliver the necessary performance per processor or

have the required flexibility. However, microcoded processors can

achieve speeds far beyond those of conventional processors and yet

remain a cost-effective and flexible solution.

- 252 -

The next question to raise is "how can an architecture like this

help us in image processing?". Probably the most effective method of

maintaining the performance of a parallel processor, yet still executing

sequential tasks efficiently is by partitioning the image into equal

areas and allocating each processor to an area as in PASM. This will

undoubtably involve communication between processors: if the areas are

small then the communication factor may dominate the execution time of

the task. Hence, the problem remains of finding an efficient means of

communicating between processors. We cited that the transputer appears

to be an effective solution.

Unlike WARP which is a linear array of independent sequential
processors, the next chapter (Chapter 8) investigates the application of

a two-dimensional array of independent sequential processors and

attempts to tackle the problem of interprocessor communication. This
architecture is applied to one of the image inspection algorithms

introduced in Chapter 3 that exhibits both parallel and sequential

tasks.

- 253 -

CHAPTER 8
DEVELOPMENT OF A MULTI-SEQUENTIAL ARCHITECTURE

"You can't invent a design. You recognise it, in the

fourth dimension. That is, with your blood and your

bones, as well as with your eyes."

David Herbert Lawrence 1885-1930

8.1 INTRODUCTION

The aim of this chapter is to present a series of investigations
into a number of multiprocessor architectures that are similar in nature

but are essentially different in their interprocessor communication

arrangement. These architectures are similar to that of WARP

(Section 7.9) in that they are composed of multiple sequential

processors, but the concept has been extended to the two-dimensional

case. A novel method for minimising data bottlenecks usually associated
with interprocessor communication is derived with little increase in

circuit complexity. This entails an analysis of the architecture to

determine the source of data bottlenecks. A discussion on the practical

use of each system is undertaken and examines the expected performance

relative to other machines of a similar topology.

- 254 -

8.2 REASONS FOR A HYBRID ARCHITECTURE

Many inspection algorithms consist of parallel and sequential tasks
(c.f. Chapter 3). As we discussed in Chapter 5, a typical inspection

algorithm might scrutinise an object by applying a Sobel, thinning the

edges, chain coding the resultant image and manipulating the chain code.

The first two steps would be executed more efficiently on a parallel

processor whereas the third and fourth steps would be executed more

efficiently on a sequential processor.

In Chapter 5 we described a bit-slice sequential processor (SIP)
that was capable of executing the inspection algorithms presented in

Chapter 3 in real-time. Chapter 6 proposed a dual-processor system

composed of a sequential processor (SIP) and a parallel processor (the

LAP); however, the initial results showed that this was likely to incur

a large data bottleneck. This configuration was also limited in its

expansion capabilities. Ideally, we require a system whose performance
increases linearly with the number of processors for both parallel and

sequential tasks.

We may recall that the processors in a SIMD machine execute the

same instructions in lockstep and that this proved to be inadequate for
sequential operations, while the MIMD machine executes different

instructions on different sets of data. This increases the complexity

of the system and large data bottlenecks are likely to occur without

algorithms to make optimum use of the processors and their

interprocessor communication arrangement. We showed that the approach

of WARP in Chapter 7 appeared in some ways to be an efficient solution

for use in image processing. This contained the same arrangement as a

MIMD machine in that each processor is autonomous, while maintaining the

simplicity of a SIMD machine in that each processor executes the same

instructions. This can be thought of as a hybrid architecture between a

- 255 -

SIMD and a MIMD machine.

Because many image processing algorithms contain a high degree of

both parallelism and sequentialism, a hybrid architecture is necessary

in order to execute both parts efficiently. Machines such as DIPOD

(Section 7.8.1) and PASM (Section 7.11.1) can adopt a SIMD/MIMD approach

and appears highly suitable. However, as we shall see, without the

right communication arrangement, a system can incur data bottlenecks

that dramatically reduce the performance of the system to a less

efficient level than intended. This chapter investigates several

processor configurations each composed of multiple SIPs. An important

point to note is that these configurations are aimed at the industrial

inspection area that require a higher level of performance than can be
achieved by a single processor. Although the concept of PASM and WARP

display similarities to these systems, their costs are unknown to this
research group. However, one suspects that they will cost appreciably

more than the systems described in this chapter with an equivalent

number of processors, and in any case they will be too expensive for

certain industrial applications. Indeed, as we mentioned in Chapter 7,

a single DIPOD processor has a similar performance to SIP, yet costs

around £30,000.

Throughout this chapter we shall use the 0-ring algorithm presented

in Chapter 3 to examine the performance of each proposed topology. This

was chosen as it is considered a "difficult" algorithm to execute
efficiently on a machine because of its inherently high degree of

sequentialism and parallelism. First, we must determine what we should

parallelise in the system.

8.2.1 Exploiting Instruction and Data Parallelism

Three options for distributing the processors are immediately

- 256 -

obvious :

1. Partitioning the algorithm into data independent tasks so each

processor executes its allocated task(s) in parallel with the other
processors on its own data.

2. Pipelining the processors so each processor executes its allocated

task(s) in parallel. This is a special case of option 1. Here,

each processor operates on the output of another processor. The

tasks may therefore be data dependent.

3. Partitioning the image into equal areas so each processor executes

the same task(s) on a different part of the image.

These three possibilities are interesting in the sense that they provide

three very different ways of parallelising a problem. In options one

and two the instructions are parallelised while in the third case, the

data is parallelised. Parallelising the tasks as in option 1 is of

little use to us since the majority of image processing algorithms

cannot be partitioned effectively except by pipelining (option 2). For

instance, in the O-ring algorithm which involved the tasks: Sobel, Hough

transform, sort, list manipulation and radial histogram, the tasks must

be executed in a sequential order. Another point worth mentioning is

that with this method, the number of processors applied to a problem is

limited by the number of tasks in the algorithm. Ideally, we require a

system that can be expanded to any desired degree.

Option 2 suggests parallelising the tasks by the use of pipelining.

Consider a three-level pipeline as in Figure 8.1 where each processor

represents a task from the algorithm described above. As processor 1

operates on the input image, processor 2 operates on the result from
processor 1, and processor 3 operates on the result from processor 2.

Hence, the time to execute the algorithm is the time of the slowest

- 257 -

SOBEL CHAIN CODE
AND

MEASUREMENT
THIN

Processor 1 Processor 2 Processor 3

Figure 8.1 A three-level pipeline of processors. The
time to execute the algorithm is the time
of the slowest processor in the chain

processor in the chain. This method has the advantage that any
algorithm consisting of several tasks may be parallelised in this way;

however, it gives rise to several constraints:

1. To gain the benefits of a pipeline, an image must be constantly
input. This occurs in industrial inspection applications where the

same algorithm is applied to each frame of data coming off the

camera. If only a single image was input, or images were input

intermittently, then the time for it to travel through the pipeline

is equal to the total time taken by each processor to execute its

task, plus the communication overhead. This would violate the

criterion given in Section 7.5.1 for inefficient use of processing

power as only one processor would be active at any point in time.

2. To achieve maximum throughput, each processor must take the same

amount of time to execute its task. If at one stage in the pipeline

a processor's task takes a longer time to execute than the others,

there would be idle processors and again, the criterion in

Section 7.5.1 would be violated (c.f. initial parts of the

algorithms in Chapter 3 which take "70% of the total processing

time). Alternatively, several tasks could be combined so their

- 258 -

combined execution time equals the execution time of the longest

task. However, because the tasks may be data dependent, the
execution times are generally not known until run time.

3. Expansion is again limited by the number of tasks available in the
algorithm.

Points 1 and 2 have arisen because of the idle processor criterion in

Section 7.5.1. However, this is ultimately application dependent; for

instance, consider point 2 where two processors may be involved and,

because of the structure of the algorithm, one processor is idle 50% of

the time. One could argue that this is inefficient; however, if the

algorithm must execute within a given time constraint and a single

processor is incapable of achieving this, then two processors would need

to be adopted. If the cost of two processors is within the budget
available, then this would satisfy the requirements of the application

and hence be cost-effective.

The third option of partitioning the image into equal areas and
allocating each processor to an area initially appears sound for the

following reasons:

1. Since each processor executes the same instructions, partitioning

the algorithm is no longer a burden to the programmer.

2. The criterion given in Section 7.5.1 is satisfied since all

processors are automatically (on average) kept busy.

From these two statements, it is clear that we should investigate this
third option. From the above, we can conclude that if N processors are

used on an LxL image then each processor should operate on an area (A)

of:

A = L2/N
where L is generally 128, 256 or 512 and N is 1, 4, 16, 256, etc.

- 259 -

Having decided that the image is to be partitioned, we now need to

decide on how to arrange the processors, i.e. determine the topology of
the system.

8.2.2 Matching the Task to the Architecture

The ability of the proposed architecture to handle both sequential

and parallel tasks efficiently is essential. In the last section, we

determined that the data (i.e. the image) should be distributed between

the processors. Let us assume at this stage that each processor only

holds the part of the image it needs to access, i.e. if four processors

are used then each processor's image memory only contains a quadrant of

the image (this is in fact one means by which PASM can distribute its

data). Parallel tasks are straightforward in that no communication

outside a processor's own area is required. (Note that problems will

occur at the borders of the section of image when a 3x3 (or larger)

window is used. Throughout this section, we shall assume that the

borders are also available so interprocessor communication is not

necessary for this reason.) However, sequential tasks, which are

usually data dependent, may need to access any part of the image
(c.f. the centre finding algorithm in Chapter 3) or another processor's

results. This means that some form of interprocessor communication is

necessary - this is where the data bottleneck usually occurs.

8.2.3 Simulation

In this chapter, all configurations are simulated on a PDP-11/73

processor using the Pascal language, operating on Figures 3.9a-3.9h

(128x128 images). (Note that these are indicated on the graphs in

Figures 8.3,8.7 and 8.9.) However, in reality a high speed sequential

processor such as SIP would be used in the system. This will offer a

factor in the region of "27 times speed improvement over the PDP-11/73

— 260 —

(Chapter 6). Note that it was necessary to simulate a SIP-based system

on the PDP-11/73 as it would have been difficult and time consuming to
program in SIP's native language. All times and costs referred to
throughout this chapter are thus targeted at SIP.

There are two important points to note about the simulation study.

First, the PDP-11/73 and SIP have entirely different architectures
namely, the PDP-11 has has a von Neumann architecture while SIP has a

Harvard architecture. However, the PDP-11 is found to execute the

majority of its instructions from cache (the PDP-11/73 has an 8Kbyte
cache), and these accesses are comparably fast relative to frame store

(data) accesses. Thus, the PDP-11/73 turns out to perform much as it

would if it had a Harvard architecture (more will be said about this
later). Second, there is the problem of emulating N processors on a

single processor. In these simulations, a task (in effect a Pascal

procedure) is presented with the data appropriate to one of the

processors, and the time to execute this procedure is taken. This

process is repeated N times, once for each processor. Thus, if a

procedure is executed in time T^ by processor i, then the time for the

task to execute on N processors is given by:

T = MAX(Ti,T2,...,T̂)

Because the following configurations involve buses (used for

interprocessor communication) some means of measuring the communication

time is required. Here, a processor's memory is represented as an array

in the program; thus, the time it takes to transfer data from one

processor to another is taken as the time it takes to transfer an array

of data to another array. This is justified, as the time for a SIP

processor to access data on another SIP processor (based on the VMEbus)

is the same as the time it takes a SIP processor to access data from its

on-board memory, i.e. three clock cycles (Chapter 5). (Note that the

— 261 —

time to distribute an image to the other processors in the system is

included in the simulation in order to obtain a realistic measure of
performance in a real situation.)

The following sections investigate various topologies that attempt

to solve the interprocessor communication problem and, although a
topology may appear satisfactory, only rigorous analysis will show if it

suffers from bottlenecks. The first of these configurations highlights

this problem and also shows the problems that occur for a pipelined
system where tasks have to be explicitly partitioned.

8.3 CONFIGURATION 1 - THE MASTER/SLAVE ARRANGEMENT

Analysis of the timings from the algorithms given in Chapter 3 show

that the parallel tasks consume "70% of the total execution time on a

single sequential processor. One could therefore consider reducing the

execution time of the parallel tasks while maintaining the execution

time of the sequential tasks. Because a parallel task requires no

communication outside its own area, it is not unreasonable to suggest

having multiple sequential processors (called slaves) to execute the

parallel tasks. Each slave need only contain and operate on its

allocated part of the image as shown by the shaded quadrant in
Figure 8.2, depicting a four processor configuration. A single

sequential processor (called the master) would then fetch the data from

the slaves and execute the sequential tasks. (It is assumed here that

the master and slaves are connected by a common bus and the master

accesses the slaves through dual-port RAM.)

This configuration will have the effect of distributing the

computation of the parallel tasks evenly over a number of processors.

(Note that this is a pipelined system, i.e. as the slaves are operating
on one image, the master could (in principle) be operating on the

- 262 -

M A S T E R
P R O C E S S O R

SLAVE

SLAVE

SLAVE

SLAVE

Figure 8.2 A 1-Mas te r/4-Slave arrangement. The slaves
only operate on their allocated section of
image (indicated by the shaded square)

previous result from the slaves.) Thus, for an algorithm \diose parallel

tasks execute in time T^ and whose sequential tasks execute in time T^,

the time to execute an algorithm T^^^ on a single processor system, is

?tOt - Tp + ?S

Therefore, for the Master/Slave configuration

— 263 —

'tot = T p ^ + T3 + TSC

where is the communication overhead between the master and the

slaves. Thus, for a large number of slaves, the execution time of the
algorithm will be

TtOt ^ ^3 + T33

Therefore, as N increases, T^^ is likely to have a more prominent effect
on the total execution time of the algorithm. However, there will be an

N for which there exists an optimum cost-speed tradeoff where addition

of more processors produces little change in execution time, hence
reducing its cost-effectiveness.

This topology is similar to PASM (Section 7.11); however, whereas
SIMD tasks are executed by the master in PASM and MIMD tasks by the

slaves; here, SIMD tasks are executed by the slaves and MIMD tasks are

executed by the master. In PASM interprocessor communication occurs

during MIMD tasks - this is discussed more fully in Section 8.4. We

chose this method for hardware simplicity. The rest of this section is

devoted to analysing the Master/Slave configuration in order to

determine the optimum number of slaves that should exist in the system,

and quantifying the values of T^, T^ and T^^. First, let us consider

the implementation of the O-ring algorithm on the system.

8.3.1 The O-ring Algorithm and the Master/Slave Arrangement

The algorithms below represent the O-ring algorithm for a single

processor (algorithm 1) and the modified version for the Master/Slave

configuration (algorithm 2). (See Chapter 3 for a detailed explanation

of the O-ring algorithm.)

- 264 -

1. For the whole image in P-space, apply a Sobel operator.

2. For each edge point, obtain a candidate centre point and
mark in Q-space.

3. After completion of the whole image, get the (x,y)
coordinates and value of those points greater than a fixed
threshold (peaks). These are the possible centres of the0-rings.

4. Sort list into a decreasing order based on the values of
the peaks.

5. Starting with the highest value peak, determine the centres
of the rings, ignoring any points within a fixed distance
of each other.

6. For each centre found, apply a filter in Q-space to
eliminate noise.

7. Put true centre in a "Centre found" list.

The O-ring algorithm for a single processor system

1. Let each slave apply a Sobel to its part of the image in
P-space.

2. For each ed^e found, obtain a candidate centre position and
put the (x,y) coordinates into an array.

3. On completion of all slaves, the master gathers the (x,y)
data from each slave and reforms Q-space.

4. The reformed image is now scanned and the coordinates of
those points with a value greater than a fixed threshold
(peaks) are stored. These are the possible centres of the
0-rings.

5. Sort list into a decreasing order based on the values of
the peaks.

6. Starting with the highest value, determine the centres of
the rings, ignoring any points within a fixed distance of
each other.

7. For each centre found, apply a filter in Q-space to
eliminate noise.

8. Put true centre in a "Centre found" list.

The O-ring algorithm for the Master/Slave configuration

- 265 -

The modified version of the algorithm highlights three major properties
of the system:

1. Parallel tasks and sequential tasks must be explicitly partitioned
for the master and slaves to serve their purpose.

2. Although no parallel tasks exist after the data has been fetched by

the master, if any did exist, they would either have to be executed

by the master, or the data would have to be redistributed to the

slaves before processing could continue. This leads on to point
three.

3. A data bottleneck may occur when the master either fetches data from
the slaves or redistributes its data to all the slaves.

The Master/Slave configuration is therefore best suited to an algorithm

that exhibits either entirely parallel tasks or one composed of entirely

parallel tasks followed by entirely sequential tasks. What we now need

to determine is the optimum number of slaves that should exist in the

system for optimum performance.

8.3.2 Analysis of the Master/Slave Arrangement

Figure 8.3a shows a graph of the square root of the number of

slaves (y-axis)i against the time taken for both the master (A lines)

and the slaves (B lines) to execute the modified version of the O-ring

algorithm (x-axis) on Figures 3.9a to 3.9h. As discussed before, the

algorithm was simulated with 1, 4, 16, 64 and 256 slave processors.

(Note that the times here relate to a PDP-11/73 processor. These are

1 Because of the non-linear nature of the number of slaves involved,
the square root of the number of slaves produced a visually clearer
graph than if the y-axis represented the number of slaves directly,
i.e. it has no special significance except for presentation.

— 266 —

>

N -

Vi

1]

10

9

8

5

4
3

3

1

3

Execution time (ms)
Figure 8.3a Master(A)/Slave(B) execution times of the 0-rings

algorithm for 1,4,16,64 and 256 &LAVE PROcassoR-S

ISO 300 430 600 730 900 1050 1300 1350 1500 1650 1800 1350 2100 2250 2400 2550 2700 2850 3000 3150 3300 3450 36000

Execution time (ms)

Figure 8.3b Graph of the execution times of the Master/Slave
configuration on eight images of test data for
1,4,16,64 and 256 SU\\/£

- 267 -

scaled for the C*T analysis next for a SIP configuration.)

The optimum number of slaves can be determined by both a measure of

performance and a C*T analysis along the guidelines described in

Section 7.5.2. As we mentioned in Section 8.2.1, for optimum efficiency

in a pipelined system, all processors should take a similar amount of

time to execute their task so to avoid idle processors. In relation to

the Master/Slave configuration, this is when the time for the slaves to

execute their task is equal to the time the master takes to execute its

task, plus the communication overhead, i.e.

\ o t = Tp/N = ?S + ^SC

From inspection of Figure 8.3a, we can see that the most reasonable

choice of slaves is four, i.e. where the lines intersect; however, from

inspection of the graph, it is clear that the master (A lines) is a

bottleneck in the system because of the spread of the lines.

The C*Ti test is depicted in Table 8.1. All times are averaged

over all eight images used. C*T (normalised) gives us a 'figure of

merit' of the performance of the system. This is the ratio between the

average execution time of a 1-Mas te r/N-Slave configuration and the

average execution time of the algorithm on a 1-Mas te r/l-slave

configuration. Thus, this figure will be unity when the performance

increases linearly with the number of processors and greater than unity

if the performance degrades as the number of processors increases. The

magnitude of the number gives us some indication of the degree of

performance degradation with respect to the cost of the system as the

number of slaves increases.

1 The cost of a single processor (SIP) is assumed to be £620 based on
July 1987 prices.

— 268 —

Number of
slaves

Cost C (£)
(master+slaves)

Time T
(ms)

C*T
xlOO

C*T
(normal:

Q: 620 105 **** ****
1 1240 117 1.45 1.004 3100 53 1.64 1.1316 10,540 36 3.79 2.6164 40,300 31 12.50 8.62256 159,340 28 46.20 31.86

Table 8.1 Cost-Time breakdown of the Master/Slave
configuratiion for 1,4,16,64 and 256
slave processors

Strangely, Table 8.1 shows that a 1-Master/l-Slave configuration

actually impedes the execution time of the algorithm over a single

processor (one processor executing both the sequential and parallel

tasks). This is because of the communication overhead, i.e. T^>T^ and

T^>T^. In order to improve the speed of the algorithm with this

architecture, we must adopt a l-Master/4-Slave configuration. This

gives us an approximately linear increase in speed with the number of

slaves. However, this linear variation soon deteriorates indicating a

bottleneck. The C*T figures show a corresponding deterioration. One

can therefore conclude from this analysis that the O-ring algorithm is

only suited to a 4-slave or a 16-slave configuration or intermediate

numbers of slaves: here and elsewhere, this will tend to mean dividing

the image in powers of two, but not necessarily powers of four.

Clearly, it will probably be unsuitable for many other algorithms.

Table 8.2 shows the performance improvement factor of the execution

time of the algorithm on the Master/Slave configuration relative to a

1-Master/l-slave system. Also shown is the percentage of the total

1 Note that this is merely provided for comparison purposes

- 269 -

I

execution time (t.e.t.) of the algorithm spent communicating (T

Number of Performance Tsc
slaves increase (% of t.e.t.)

1 1.00 13
4 2.21 30

16 3.25 48
64 3.77 56

256 4.18 60

Table 8.2 Table of the performance increase and
the communication bottleneck for the
Master/Slave configuration

As we can see from Table 8.2, for a 256 processor configuration, 60% of

the time is spent in transferring the data. Figure 8.3b shows the graph

of the total time taken to execute the algorithm - this allows us to

view the processing times of each complete system.

From the results given in Table 8.1, it is possible to derive a

mathematical model of the system. Referring back to our previous

equation of the system, i.e.

we can now quantify T^, T^ and T^^. For 256 processors (N=256),

T^Q^=28ms which can be approximated to T^ + T^^ since T^/N is negligible

when N=256. Thus, subtracting this from the time for one processor to

execute the algorithm (i.e. both sequential and parallel parts), we

calculate the value of T^ to be 89ms. Therefore,

Tfot - 89/N + 2 8 - Tq (3/N+1)

where Tg-30ms. Thus,

T + T - 30ms. s sc

From the results in Table 8.2, we can calculate that

Tgc -16ms.

- 270 -

Therefore, the master processor spends about half of its time

communicating, and this is not very efficient. We can calculate the

theoretical values and compare these results. Assume that the time to

access all pixels in an image plane is equal to 1 time unit. The tasks

for the master can be divided into the following:

1. The Master clears Q-space.

2. It then loads the image into the slaves. (The slaves are then
started.)

3. The results from the slaves are fetched and Q-space (Hough space) is
formed.

4. Q-space is scanned to locate the centres.
5. Processing continues.

Points 1, 2 and 4 add up to the equivalent of three image plane

accesses, i.e. three time units. Points 3 and 5, from the timings given

in Chapter 3, add up to the equivalent (in time) of a single time unit.

Thus, the Master takes approximately four time units to execute its

tasks. Now assume that there are N slaves in the system. The tasks for

the slaves can be divided into:

1. Each slave operates on its section of image applying a Sobel.

2. For each edge point, the centre is calculated.

3. These centre points are written into a RAM.

Here, application of a Sobel is equivalent to 12 image plane accesses.

Thus, each slave takes 12/N time units. (Note that we must also

consider the time to write the edge points to the RAM; however, since

this is of the order of 100 points, it is considered negligible relative

to a single time unit.) Thus, the time for the Master and Slaves to

execute the algorithm (in time units) is

4 + 12/N = 4(l+3/N)

- 271 -

The actual value of a time unit on a SIP processor (in this simulation)
is 7ms. Thus, the above equation becomes

7*4(l+3/N) = 28(l+3/N)

The equation we derived from the simulation results (when we assumed SIP

was 27 times faster than a PDP-11/73) was 30(l+3/N). This close

agreement between the model and the observed timings shows that we have

a good understanding of the process involved in running this algorithm,

and lends support to the statement made earlier that the PDP-11/73 is

here acting as if it had a Harvard architecture: it goes some way to
justifying performing a simulation.

We can carry on with the analysis and calculate the (theoretically)
most cost-effective system which is when d(C*T)/dN=0, i.e.

d(CQ(l+N)*TQ(l+3/N))/dN = 0

thus,

1-3/N2 = 0 i.e. N = 1.73

Hence, in this case, the optimal number of slaves is two. The

above figures suggest that we should investigate methods for reducing

T - this is discussed in Section 8.4.sc

8.3.3 Topologies Related to the Master/Slave Configuration

This configuration of processors has been used by DIPOD

(Section 7.8.1) for shape classification. The algorithm consisted of a

Sobel followed by tracing, segmentation, data manipulation and

classification. The topology of the algorithm mapped well on to the

Master/Slave configuration: the slaves executed the Sobel while the

master executed the sequential operations. Although no analysis has

been carried out on DIPOD, the above investigation suggests that the

- 272 -

usefulness of this configuration is application dependent.

In order to improve the performance of the system, three further

configurations have been investigated called ARCH-1, ARCH-2 and ARCH-3
respectively. The first of these will now be described.

8.4 CONFIGURATION 2 - ARCH-1

In order to eliminate the master from the Master/Slave

configuration, it is necessary for the slaves to execute the sequential

tasks. This means that each slave must have access to the results from

all other processors. The total execution time of an algorithm would
now become

A o t =

where T^ is a constant which is the sum of the communication time (T^^)

and the execution times of those tasks that are independent of the

number of processors in the system (T^^), i.e. the reformation of

Q-space and the sort task in the case of the O-ring algorithm.

Therefore, for a large number of processors

A o t ^ = ^sc + ^pi

This section aims to minimise T^^ and determine (1) the optimum number

of processors that should exist in the system, (2) T^^ as a proportion

of the total execution time of the algorithm and (3) the performance

ratio where

^N ^ "^one-processor^N-processors

Ideally, if N processors are used we should achieve a decrease in

execution time of an algorithm by a factor N (i.e. Pj^=N).

- 273 -

As we mentioned before, each processor must have access to all

results derived by the other processors, whether in the form of part of

an image or data, e.g. a list of edge coordinates. This may appear to

be a complex task without avoiding memory contention (and hence a data

bottleneck), i.e. if several processors access the same memory on the

same processor at the same time, but can in fact be solved quite simply
as follows.

Rather than each processor having access to only part of an image,

each holds the whole image. This immediately solves the problem of

image memory contention; however, each processor still only operates on

its designated area of image as depicted in Figure 8.4 for a four

processor configuration. This may appear not to be cost-effective, for

instance, if 256 processors are used on a 128x128 image then each

processor would only operate on an 8x8 area of the image. Thus, for

operations that do not access data outside a processor's allocated area,

only 0.4% of the memory would actually be used. However, one must also

consider that memory is becoming increasingly cheap and, if

interprocessor communication was necessary, the extra cost and board

space required by the additional communication logic would be similar to

that of the required memory. Logic is therefore kept to a minimum which

is appealing from both a hardware and software point of view.

At some point during a program a processor may need to access

another processor's memory, e.g. if four processors are each operating

on a quadrant of an image and the next stage requires that a processor

access the results from another processor, then interprocessor

communication must occur. (Note that intermediate results (e.g. a

subimage) can be held locally in each processor, and data need not be

transferred unless another processor requires that data. In the case of

the O-ring algorithm, data is in the form of a series of (x,y)

coordinates, thus eliminating the need to transfer the whole Sobelled

- 274 -

Figure 8.4 Each processor holds the whole image plane but
only operates on its allocated part of the image

Figure 8.5 ARCH-1 - each processor is only connected
to its four nearest neighbours

- 275 -

image.)

PASM (Section 7.10.1) has two ways of dealing with the

interprocessor communication problem [112]. The first (and more

restricted method) is in the case of object inspection. If the size of

the object is known, then a subimage size twice the largest dimension of

the object is chosen. This ensures that the object will be totally

enclosed in the subimage area in at least one processor. External

references to other parts of the image (and hence interprocessor

communication) need not occur; however, this has the disadvantage that

it is necessary to perform image processing computations four times for

each pixel. Also, the maximum size of an object that is likely to occur
must be known.

The second and less restrictive method that PASM can employ is by

the use of semaphore flags. We may recall that PASM accesses another

processor's memory by setting up the switching network [113] by the use

of a routing tag and a broadcast tag. The network is set up by the

requesting processor using these tags in order to access the processor's

memory which contains the required subimage. The requesting processor

then checks a "memory locked" flag belonging to the processor. This is

set if another processor is already accessing that memory. If the flag

is set, then the requesting processor waits until it is reset, else it

sets the flag to indicate it is accessing the memory and fetches the

data. When it has finished, it resets the flag so other processors can

access that memory. This appears to be an efficient means of

interprocessor communication; however, the hardware is made more complex

as an additional two VME-standard boards are required per processor for

the communication logic [113]. As this kind of programming is still at

the research stage, we have investigated a different route that requires

less complex hardware. Two alternatives for interconnecting the

processors have been investigated:

- 276 -

1. Every processor is connected to its four nearest neighbours as
depicted in Figure 8.5.

2. Each processor is connected to every other processor (maximally
connected).

The next section investigates the first option in that each processor is
connected to its four nearest processors.

8.4.1 Sharing the Data in the System

Let us assume that each processor has a memory scheme such that it

has access to a byte-wide, dual-port memory on each of its four

neighbours, and that each processor is able to transmit a data byte to

each of these memories simultaneously. This is depicted in Figure 8.6
where the main data bus of each processor is connected to the input of

the dual-port memories on its neighbouring four processors, and also to

the outputs of its four local dual-port memories.

In order to transfer the data throughout the system, each processor

must transmit its data to its four neighbours; hence each processor will

receive data from its four neighbours. This received data is then

re-transmitted to its four neighbours, avoiding transmitting data

received from processor i back to processor i. After application of

this step /N/2 times, all processors will have received the data

initially transmitted by every processor. It is therefore clear that,

as the number of processors in the system increases, the time to

transmit the data (T^^) throughout the system will also increase. In

order to investigate this further, we will now consider the

implementation of the 0-ring algorithm on this configuration.

- 277 -

D Q

On

Figure 8.6 Each processor has access to a dual-port memory
on each of its four neighbouring processors and
also its four local dual-port memories

- 278 -

8.4.2 The 0-ring Algorithm and ARCH-1

The modified version of the 0-ring algorithm for ARCH-1 is given
below.

1. Each processor applies a Sobel to its allocated part of the
image in P-space.

2. For each edge found, obtain a candidate centre position and put
the (x,y) coordinates into an array.

3. The array in each processor is distributed to all other
processors as described above.

4. Q-space is now formed by reading the coordinates from the array
and adding one to that point in Q-space.

5. The reformed image is now scanned only in the processor's area
and the coordinates of those points with a value greater than a
fixed threshold (peaks) are stored locally on each processor.
These are the possible centres of the 0-rings in that
processor's image area.

6. Sort list into a decreasing order based on the values of the
peaks.

7. Starting with the highest value, determine the centres of the
rings, ignoring any points within a fixed distance of each
other.

8. For each centre found, apply a filter in Q-space to eliminate
noise.

9. Put true centre in a "Centre found" list.
10. Redistribute "Centre found" list in order to determine those

centres that lie on the border of two processors.

The 0-ring algorithm for ARCH-1

The graph of the execution time of the algorithm is depicted in

Figure 8.7. Ideally, we expect a performance ratio (P^) of 4.0 for a

4-processor configuration (an average execution time of 105ms).

However, the average execution time is 36ms producing a P^ of three.

Further analysis reveals that a P^ of 7.5 (average execution time of

14ms) exists with a 16-processor configuration and a P^ of 11.6 (average
execution time of 9ms) exists with a 64-processor configuration. Not

- 279 -

18

17

16

15 --

14 --

13 --

12 - -

11 - -

10 - -

9

8

7

6 - -

5 --

4 --

3 --

2 - -

1 --

0

CL

0 4---
100 200 300 400 500 600 700 800 900 1000 1100 1200

Execution time (ms)

Figure 8.7 Graph of the execution times of the 0-ring algorithm
with ARCH-1 using 1,4,16,64 and 256 processors,
operating on eight images of test data

— 280 —

surprisingly, with a 256 processor configuration, the performance of the

system degrades dramatically. This implies that the processors are

spending more time transmitting the data than processing it. Table 8.3

depicts a C*T analysis for this configuration.

Number of
processors

Cost C (£) Time T
(ms)

C*T
xlOO

C*T
(normalised)

1 620 105 0.65 1.00
4 2480 36 0.89 1.37

16 9920 14 1.39 2.14
64 39,680 9 3.58 5.51

256 158,720 25 39.68 61.00

Table 8.3 Cost-Time
1,4,16,64

breakdown for ARCH-
and 256 processors

-1 for

Table 8.4 represents T^^ as a percentage of the total execution time

(t.e.t.) of the algorithm.

Number of Tsc
processors (% of t.e.t.)

4 13.8
16 36.7
64 67.8

256 85.3

Table 8.4 Table of the proportion of time spent
in interprocessor communication for
ARCH-1 for 4,16,64 and 256 processors

Both of the above tables suggest that the optimum number of processors

for this configuration is 16 since little is gained by adopting a

64-processor configuration with this algorithm. One can see that ARCH-1

represents an improvement in terms of the execution time over the

Master/Slave configuration, even though the amount of time spent

communicating increases as N increases. This is because T^^ has now

been distributed over the N processors.

- 281 -

For optimum efficiency, the data transfer must be explicitly stated

in the algorithm (although details about the transfer can be hidden from

the user). One advantage of this configuration is that expansion of the

processors is straightforward as only four links are involved. As
before, we can derive a mathematical model. Here,

?tot = Tp/N + Ts/N +

where the symbols represent their meaning as defined before. This
produces the model

Ttot - 100/N + 10

for configurations composed of up to 64 processors. Comparing this with

our previous equation of 89/N+28, we can see that ARCH-1 is in fact

faster for all realisable N; however, the model breaks down for 256

processors. A more complex model is therefore required as T^^ is a

function both of N and of the amount of data to be transferred. The

discrepancy can be explained by a term in arising from interprocessor

communication. However, as stated earlier, the above model will suffice

for up to 64 processors. From this and Table 8.3 and 8.4, we can deduce

that T_ is -5.5ms and T . is -4.5ms. sc pi

8.4.3 Topologies Related to ARCH-1

The topology of the above system maps well onto the transputer.

The transputer is a RISC processor with four independent serial links.

Unlike SIP, the transputer can transmit and receive data from all four

links simultaneously, independent of the processor. However, in spite

of the immediate attraction of the transputer, the above analysis shows

that a data bottleneck will exist with a large number of

transputers: further investigation of this problem is beyond the scope

of this thesis.

- 282 -

The following sections investigate two architectures to attempt to

ameliorate the problem of explicit communication and performance
degradation for a larger number of processors.

8.5 CONFIGURATION 3 - ARCH-2

This configuration is based on the idea that all processors should
have access to the same required information without memory contention.

Here, each processor transmits its data (whether in the form of a result

or a pixel value) to all other processors simultaneously. The next
section proposes a solution to this problem.

8.5.1 Improving the Communication Bottleneck

In order to allow each processor transmit its data to all other

processors without memory contention, we shall apply the same principle

as that in Section 8.4.1 in that each processor has access to a

dual-port RAM on-board a processor and each executes the same task.

However, in this case each processor has access to a RAM on all

processors in the system, via a set of data buses. Clearly, for a large

system this approach would break down, but in what follows, we pursue

the idea in order to see how practical it is for moderate-sized systems,

and at what stage it actually breaks down.

If we consider that every processor has access to two image planes,

a data RAM (for local storage such as arrays) and N-1 Communication RAMs

(CRAMS) - one CRAM (C^) for each processor as depicted in Figure 8.8a
for a 4-processor configuration. Here, each processor's CPU (P) outputs

data onto the bus which is simultaneously received by all N-1 CRAMs

connected to the bus. (Note that a CRAM must be at least the size of

the section of image that the processor operates on.) Thus, for a

parallel task (e.g. a Sobel), a processor's portion of an image can

- 283 -

C2

C4C3C2

C4

C3 C4

C2 Cl C3

PROC-4PROC-3

PROC-2PROC-1

Figure 8.8a ARCH-2 - each processor can transmit its data to
all other processors simultaneously via the CRAMs

essentially be transferred to all other processors simultaneously.

Typically, when a processor is required to read data from the CRAMs, it

will cycle through its on-board CRAM, either storing the results or

manipulating the data directly (each processor either reads or writes

data since each is executing the same task). Because only one processor

can write to a CRAM and only one processor can read from it at any

particular moment in time, the logic for the communication circuitry is

- 284 -

greatly simplified (Section 8.5.2). The time to execute an algorithm
will therefore be

?tot = Tp/N + Ts/N + K

as before. Thus, ideally, for a large N

T - T ^tot -̂K

However, in the end, this equation will break down because of savings

that have to be made because the number of buses rises as ~N^.

8.5.2 Avoiding Memory Conflicts

If we consider that tasks can be partitioned into either 'write
tasks' and 'read tasks', memory contention and deadlocks at the CRAMs

will never occur. Partitioning the tasks in this way, may appear to be

a severe constraint; however, experience shows that many algorithms

(c.f. algorithms in Chapter 3) can naturally be partitioned in this way

(see Section 8.5.3): this will become clearer later.

Figure 8.8b represents the control logic for one of the CRAMs.

During a 'write task', data to be transmitted (here from processor i) is

enabled onto the CD bus with the appropriate control signals, so all

other processors receive the data. (Note that just processor j (which

also has N-1 CRAMs on-board attached to N-1 processors) is depicted but

in fact is replicated N-1 times.)

Control of the multiplexor and the buffering is controlled by the

receiving processor (here processor j). Each processor sets its CCNTRL

bit in its microword low throughout the execution of a 'write to CRAM

task' enabling external processors to write data into the CRAMs. This

would then be set high during a 'read from CRAM task', enabling the

local processor to read from the CRAMs. The advantage of this is that

- 285 -

PROCESSOR i

CD

OEcntrl

TO
OTHER
PROCS

CCNTRL

Address, r/wcounter

multiplex r set

Address r/w

C RAM

OE

PROCESSOR i

CPU

Figure 8.8b Dual-ported logic for the CRAM. Only one CRAM
is depicted here; however, processor j has N-1
CRAMS on board and each processor is replicated
N times

partitioning the tasks and code generation from a compiler is made
easier. (Note that the same task is executed in the same processor in

the same time slot, yet the processors still remain autonomous in the

execution of each task; thus, at any one time, all CCNTRL bits in the

system will be high or low as appropriate.) Logic is also kept to a

minimum because only external processors require access to the 'D' port

of the CRAM and local processors only require access to the 'Q' port.

Another iirportant point to note is that one of the control lines

supplies the clock to a counter vdiich supplies the address to the CRAM

during a 'write task'. This minimises the number of wires for the links

as data will usually (it is reasonable to assume) be written

sequentially. All counters are cleared by the local processor at the

start of a 'write task'. (Note that the CRAM is in effect acting as a

large FIFO. This is needed as (at the time of writing) there appear to

- 286 -

be no FIFOs commercially available of the size required, i.e. 8Kx8.)

To avoid memory contention, the same task must start in all

processors at the same time, i.e. the processors must be synchronised at

the task level (a SIMD machine is synchronised at the instruction

level) - this is dealt with in the next section.

8.5.3 Synchronising the Processors

All processors must be synchronised in order for communication to

take place without memory contention. This is done by allocating each

task a time slot so the tasks are initiated in all processors

simultaneously. After the completion of every task (each processor is

executing the same task independently), each processor sets a flag and

waits until all other processors have finished their respective tasks

(detected by all flags being set). The next task is only invoked when

all processors have completed their respective tasks. If the processors

were not synchronised, a processor with little processing in a write

task may finish before the others. If the second task involves fetching

the data from the CRAMs (a read task) and the tasks were not

synchronised, the second task will be initiated and the processor may

attempt to fetch non-existent data, since the other processors have not

finished the previous task. WARP adopts a queue and efficient

compilation of code to solve this problem while PASM involves

interrupts. However, by allocating time slots to each task, hardware

and software are kept to a minimum with little loss in efficiency. This

is because:

1. If a parallel task is being executed (e.g. a Sobel) then all

processors will take approximately the same amount of time.

- 287 -

2. If a sequential task is being executed (which often takes a small

amount of time relative to a parallel task), then the time lag

between processors finishing will be relatively small anyway.

The hardware for synchronising the processors is relatively

straightforward. As each processor completes its respective task, it

sets a flag (in effect a microcode bit). All flags from all processors

are logically ANDed where the output is available at each processor's

condition code register. Thus, on completion of the task, the processor

sets its flag and executes the following loop:

REPEAT UNTIL all_flags_set=TRUE

Thus, the next task is only invoked when all flags have been set. The

next section modifies the 0-ring algorithm for this configuration.

8.5.4 The 0-ring Algorithm and ARCH-2

Below is the 0-ring algorithm modified to be implemented on ARCH-2.

Note that the tasks are easily partitioned into 'read' and 'write'

tasks. Figure 8.9 depicts the graph of the execution times for this

configuration.

- 288 -

1. Each processor applies a Sobel to its allocated section of
image in P-space. This not only writes it locally but also to
all its associated CRAMs on all other processors.

2. Q-space is reformed in each processor by reading each processor
by reading the data from all of the local CRAMs. Thus, in a
4-processor system, processor one will read data from the CRAMs
associated with processors two, three and four.

3. Each processor now scans the reformed image (each has its own
copy); however, the area scanned is limited to the processors's
allocated area of image. The coordinates of those points with
a value greater than a fixed threshold (peaks) are stored
locally on each processor. These are the possible centres of
the 0-rings in the processor's image area.

4. Each processor sorts its list of peak values into a decreasing
order.

5. Starting with the highest value, determine the centres of the
rings, ignoring any points within a fixed distance of each
other.

6. For each centre found, apply a filter in Q-space to eliminate
noise.

7. Put true centre in a "Centre found" list.

8. Redistribute "Centre found" list in order to determine those
centres that lie on the border between two processors.
Executed in time T; however, this is usually negligible.

The 0-ring algorithm for ARCH-2

From inspection of the Table 8.5, a system with more than 16

processors is unlikely to be cost-effective. In order to quantify these

results, a C*T test is carried out below. The extra CRAMs needed for

each processor have now been taken into consideration - these are

assumed to cost £4.00 each, this being the current cost of a 1 off 8Kx8
memory chip (July 1987), which is expected to be adequate for our

purposes. The cost of the buses (ribbon cable) has been omitted since

this is minimal compared with the rest of the system (£10 for 30m of

10-way cable - July 1987). (Here we take the view that ribbon cable

will suffice for (realistically) 64 processors, since the output from

each processor is buffered.) The additional cost of the components for

the bus logic has now been included. These increase as and are

- 289 -

16

15 --

14 "

13 --

12 - -

11 - -

10 - -

9 --

8 - -

7 --

6

5 --

4 --

3 +

2 - -

1 - -

0

444

a.

H f-
0 100 200 300 400 500 600 700 800 900 1000 1100

Execution time (ms)

Figure 8.9 Graph of the execution times of the 0-ring algorithm
with ARCH-2, using 1,4,16,64 and 256 processors,
operating on eight images of test data

- 290 -

assumed to cost £18, this being the cost of two 8-bit counters (£12) and
eight 6-bit buffers (£6). (Note that it is more economical to implement
the multiplexor using buffers.)

Cost: C (£) Time T C*T C*T
(ms) xlOO (normalised)---------- ----- ' ' — ■ -1

620 105 0.65 1.00
2756 33 0.91 1.40

15,440 12 1.85 2.85
132,416 6 7.94 12.21

1,660,160 5 83.00 127.70

Number of
processors

1
4

16
64

256

Table 8.5 Cost-Time breakdown for ARCH-2 for
1,4,16,64 and 256 processors

From Table 8.5, we can see that we achieve a of 3.2 for a 4-processor

configuration, a of 8.8 for a 16-processor configuration and a of

17.5 for a 64-processor configuration. We can see that the

cost-effectiveness is dramatically reduced when we adopt a 64-processor

system. This is because of the cost of the large amount of CRAM (and

associated logic), this cost being more than the cost of the processor.

However, when we compare this with Table 8.1 (for the Master/Slave

configuration), this shows that ARCH-2 appears to be better solution for

all cases except the last, involving 256 processors. Comparing the

figures with those in Table 8.3, one can see that ARCH-2 achieves a

lower execution time at the expense of cost. Thus, the decision on

whether one should choose ARCH-1 or ARCH-2 will ultimately depend of the

application. ARCH-1 should be chosen when cost is the predominant

factor while ARCH-2 should be chosen where speed is the predominant

factor. The main advantage with 'ARCH-2' is that communication between

processors can be made transparent to the user.

1 This ignores such factors as reduction in price for bulk quantities
and manufacturing costs, etc.

- 291 -

Table 8.6 depicts the percentage of the total execution time

(t.e.t.) the processors spend reading the data from the CRAMs. This is

independent of the number of processors and is entirely dependent on the

data. Thus, as the number of processors increases, this will have a

more prominent effect on the total execution time of the algorithm.

Number of Tsc
processors (% of t.e.t.)

4 2.6
16 7.2
64 14.5

256 17.6

Table 8.6 Table of the proportion of time spent
in interprocessor communication for
ARCH-2 for 4,16,64 and 256 processors

This shows that ARCH-2 spends less time transferring data than ARCH-1;

hence, achieving a faster algorithm execution time. The reason for the

decrease in T^^ is because ARCH-1 requires several steps to transfer the

data to all processors in the system while ARCH-2 transfers the data to

each processor simultaneously.

We now have enough information to derive a model as before. We may

recall that

?tot =

Thus, for a large N, (T + T)/N will be negligible; therefore, fromP S
Tables 8.5 and 8.6 we can deduce

Ttot ^ 5

where T is the sum of the time it takes to read the CRAMs (0.8ms) and K
the times of those tasks that are independent of the number of

processors in the system (4.4ms). This compares favourably with ARCH-1

since the amount of time spent communicating has decreased from 5.5ms to

0.8ms. As a further step in the analysis procedure, it is interesting

- 292 -

oo
U4

1800

1 /00

1J00
1?00
1100

900
800
700 --
GOO
500
<00
300 ■-
200

TIME (ms)

Figure 8.10 Graph of the cost of an N processor configuration (C)
vs. execution time of the O-ring algorithm on that
system (T). The numbers ringed indicate the numbers
of processors at various points on the graph

to draw the graph of C vs. T for all three architectures (Figure 8.10).

(Note that the number of processors corresponding to each point is

marked on the graph.) Inspection of the graph shows that ARCH-2 will,

in general, will execute the 0-ring algorithm faster than the other

architectures, simulated with the same number of processors. However, a

64-processor ARCH-2 costing £132,416 has little speed iitç>rovement over a

64-processor ARCH-1 (£39,680), although the cost has trebled. Thus, for

64-processors, one should consider ARCH-1. For 16 processors, the costs

vary relatively little; thus, in this case, ARCH-2 could probably be

justified. The Master/Slave configuration appears not to be beneficial

- 293 -

in any way.

8.5.5 The Practicality of ARCH-2

This configuration will obviously serve our purposes in that all

parallel and sequential tasks will execute on a configuration of N

processors with little programming burden, the results being acceptable

up to 16 processors. However, as a consequence, the amount of memory

required increases as for N processors. This probably makes this

kind of configuration only viable for 16 processors (240 CRAMs). This

is also determined by the fanout of the buffer chips and the amount of

cabling required for interconnecting each processor. If a processor

transmits a byte (8-bits) and the number of bits required to control the
CRAM is two (clock address counter and read/write strobe), then 10 wires

will be required for each link (see Figure 8.8b). Therefore, for a

system composed of N processors, the total amount of wire in the system

will be N*(N-1)*10. Thus, a system composed of 16 processors will

require 2400 wires, which is not too excessive.

8.5.6 Topologies Related to ARCH-2

ARCH-2 is similar in concept to the Heidelberg POLYP system [7] in

that it is a multi-bus configuration. POLYP is based on the same

concept as ARCH-2 in that any processor can access any other processor's

data. A schematic diagram of the POLYP system is given in Figure 8.11.

Here, if a processor (a 68000 processor in the actual implementation) is

required to access another processor's memory, a bus grant is made to

the bus arbitration logic. This allocates one of the buses (a POLYBUS)

to the requesting processor. Communication between two processors can

then proceed until the bus is released by the processor.

- 294 -

P R O C E S S O R S
S WI T C H

Figure 8.11 Schematic diagram of the POLYP system

Although the concept is the same, there are several important
differences in the implementation. The first of these is that, vrtiereas

ARCH-2 has one bus per processor, POLYP can have any number of buses,

independent of the number of processors. The performance of POLYP thus

increases as the number of buses increases, up to a mciximum of one bus

per processor. However, a POLYP processor consists (typically) of five

boards vdiereas an ARCH-2 processor consists of two boards (including

CRAM) up to a 16-processor configuration. Therefore, a tradeoff between

the number of boards per processor and the number of buses per processor

exists. For a large number of processors (~100), the POLYP system would

probably be a more cost-effective (and realistic) solution; however, for

a small processor system (~16), ARCH-2 may be more cost-effective.

An important point to note is that POLYP and PASM are 68000

processor based systems. As we saw in Chapter 6, a SIP based processor

can achieve "14 times speed improvement over a 68000 running at 8MHz.
Therefore, a large number of processors may be needed in a POLYP system

to achieve coitparable performance to a 16-processor ARCH—2 system.

(From the figures given in [7], over 100 POLYP processors are needed to

- 295 -

achieve the equivalent performance of a 16-processor ARCH-2

configuration.) Since we aim to achieve a cost-effective system, we

assume here that a POLYP (like PASM) system would be inherently
expensive for the performance level required.

The next section improves on ARCH-2, aiming to develop an

interprocessor communication arrangement such that the system's

performance will increase linearly as the number of processors is

increased for parallel tasks; it is also capable of executing sequential
tasks quite efficiently.

8.6 CONFIGURATION 4 - ARCH-3

A more complex design based on the results of the above analysis

shows that a data bottleneck still exists in the system because of

Task-2 in the algorithm. An improvement on this architecture is

presented in Figure 8.12 for a 4-processor configuration. It consists

of Image RAM (IRAM) physically partitioned into N individual chips for

an N processor system, so each processor in the system has unique 'write

only' access to only one of the chips. This corresponds to its

allocated section of image; however, the N chips appear as a contiguous

block of memory to the local processor. For example, if four processors

were operating on a 128x128 image, the image would be partitioned into

four 4Kx8 memory chips (Figure 8.12). Each section of image (except the

section being written to by the local processor, e.g. IRAM4 in

Figure 8.12) is either written to by an external processor or read from

by the local processor. The control section is organised in a similar

way to the CRAMs in that a multiplexor is controlled by the local

processor. This way, all processors have access to their sections of

image without contention. (Note that problems will occur at the borders

of an image. Here, we will assume that the borders are available

without memory contention (Section 8.2.2)).

- 296 -

PR oc 1

PROC 2

PROG 3

nP a m
1
<%r

m

Q j

D
Irami O

Iram 3 0

Irammux

Iram 2
Q

Q |ram4

C P U

OPiT(\ 6«S

T T L
cram
mux

Data

LOCf\t~ A00(165:6
PROC ij-

Figure 8.1% ARCH-3 - Each processor has access to a section of
the physically partitioned image ram and a CRAM on
board each processor

Here, tasks are again partitioned into read tasks and write tasks

as in ARCH-2. This ensures that the local ALU (Figure 8,12) will never

read one of the other IRAMs while they are being written to; thus memory

contention and deadlocks are avoided. ARŒ-3 also contains CRAMs as

before for non-image data (e.g. a list of edge coordinates).

As a processor writes to its allocated IRAM (e.g. IRAM4 for PR0C4

as in Figure 8.12), it simultaneously writes to its equivalent section

of IRAM on all other processors. However, the main difference between

ARCH-3 and ARCH-2 is that the need to read the CRAMs in order to reform

the image (as \diat would have to be done using ARCH-2) is now

eliminated, since a processor's section of image is transferred to all

other processor's IRAM simultaneously. Thus, the processing time

decreases linearly with the number of processors for parallel tasks.

- 297 -

e.g. a threshold, Sobel, etc. (Note that no additional wires on the bus

are necessary because, since each processor is executing the same task,

a bit from the microcode local to that processor can be chosen to select

either the CRAM or the IRAM (the same address is supplied to both).)

This configuration does not benefit the 0-ring algorithm because

the source of the bottleneck is at the CRAM level and not the IRAM

level. For this reason, it has been omitted from the graph; however,

for algorithms with many parallel operations (Sobel, threshold, etc.), a

significant increase in performance can be gained as the need to fetch

the image from the CRAM is now eliminated. Thus, one could consider

adopting a 4 or 16 processor ARCH-3 configuration if there is an

anticipated large number of parallel tasks to be executed. (To

calculate the cost of an ARCH-3 system, add E4*N*(N-1) (for buffers) to

the cost of an ARCH-2 system.) However, sequential tasks can still be

executed quite efficiently (relative to a SIMD machine) for

(practically) up to 16 processors, thus offering distinct advantages

over a SIMD machine.

8.7 CONCLUSIONS

The choice between the configurations is ultimately application

dependent. For industrial inspection,>a 4/16-processor ARCH-1 system

may be desired for practical reasons as this is more easily configurable

and will consume less power. For more complex tasks such as industrial

3-D inspection where a higher throughput is required, ARCH-2 or ARCH-3

may be chosen with up to 16 processors - the choice depending on the

cost and the execution time required- ARCH-2 is more economical than

ARCH-3 as it does not require the partitioning of the IRAMs; however,

ARCH-3 with 16 processors gives a greater throughput for parallel

operations. ARCH-2 and ARCH-3 thus have distinct advantages over a SIMD

machine because sequential tasks can still be executed quite efficiently

- 298 -

(although a bottleneck does exist), and yet remain comparable in cost.

Both PASM and POLYP appear too expensive to achieve a comparable

performance of a 16-processor ARCH-2/3 configuration; however, this area

of investigation is incomplete since no costs or performance figures for

either system seem to be available. They may well prove to be more

cost-effective if a large number of processors (>100) are involved.

8.8 SUMMARY

This chapter has investigated the idea of configuring several

autonomous sequential processors capable of executing both parallel and

sequential tasks with little programmer burden. A simulation of various

multiprocessor topologies was undertaken which, although a topology

intuitively appeared sound, in fact incurred data bottlenecks. From an

analysis of the source of the bottlenecks, successive attempts to reduce

the bottleneck were carried out by adopting a configuration based on the

results of the previous configuration. This eventually led to ARCH-2

and ARCH-3. Both of these incurred a bottleneck which was acceptable up

to 64 processors (although practically, a 16-processor version would

probably be the limit). During the analysis of each architecture, a C*T

test aided us in our decisions along with a simulation of the

architecture for 4, 16, 64 and 256 processor configurations using the

0-ring algorithm.

Whether ARCH-1, ARCH-2 or ARCH-3 should be chosen will ultimately

depend on the application, the cost and the execution time required.

The bit-slice processor SIP was used merely to provide a fast and

cost-effective means of investigation. Machines like PASM and POLYP,

although powerful in their own right, are likely to be too costly for

industrial inspection.

- 299 -

Apart from designing elaborate multiprocessor architectures, one

should also consider optimising the processors themselves. By upgrading

the processors and decreasing the access time of the memory chips, a

significant speed up in performance can be obtained without changing the

architecture. This could provide a basis for a 'standard' architecture

while relying on technology for further performance.

- 300 -

CHAPTER 9

CONCLUSIONS AND SUGGESTIONS FOR FURTHER WORK

"It isn't that they can't see the solution.

It is that they can't see the problem"

The Point of a Pin in The Scandal of Father Brown
(London: Cassell, 1935)

9.1 INTRODUCTION

The first part of this chapter reviews the inspection algorithms

given in Chapter 3. Following this is a study of the SIP machine and

the Linear Array Processor (LAP) which were developed to be part of a

multiprocessing system. Subsequent sections summarise the results

derived from both of these machines (including the results from the

implementation of the above algorithms) and how they relate to the

industrial inspection area. An overview of the experimental work

carried out on a series of multiprocessor configurations is also given.

The final part of this chapter describes current limitations and makes

suggestions for future work.

9.2 INDUSTRIAL INSPECTION ALGORITHMS

Chapter 3 described two industrial inspection algorithms, one to

inspect 0-rings (circular objects) and the other to inspect chocolate

- 301 -

biscuits (rectangular objects). Both of these algorithms took of the

order of a few seconds to execute on a PDP-11/73 operating on a 128x128

image. Although both algorithms employed different inspection methods,

the same fundamental technique was used for deriving the initial

measurements (calculating the centre in the case of the 0-ring, and

determining the orientation of the biscuit) namely, the Hough transform.

This provided a robust, accurate and inherently fast method for

extracting information from an image. The general conclusion is that

the Hough transform is well suited for industrial inspection purposes.

Both of these algorithms contained a high degree of internal

sequentialism and parallelism; hence, it is difficult to execute either

efficiently on most machines. It is generally accepted that it is

easier to implement a parallel algorithm sequentially than it is to

implement a sequential algorithm in parallel. Also, the cost of a

sequential processor is generally much less than that of a parallel

processor. One would therefore expect that the sequential

implementation of a parallel algorithm on a sequential machine would

produce a highly cost-effective solution.

In order to investigate this further. Chapter 4 adapted the chain

code (which is generally restricted to binary images) to the grey-scale

case. This involved the introduction of a novel method, again using the

Hough transform, for improving results derived from the chain code when

applied to noisy images. When this was applied to the edge extraction

task in both algorithms in Chapter 3 (which are essentially parallel

tasks), it was found that a reduction in execution time of the order of

5 times was obtained for extracting the edges and all relevant

information. This produced an overall reduction in execution time for

the whole algorithm of the order of 2-3 times. This showed that a

definite speed improvement could be obtained by implementing an

algorithm sequentially on a sequential processor, while incurring little

- 302 -

loss in accuracy, and led to the question of whether a parallel

processor is appropriate for industrial inspection. Ultimately,

inspection algorithms have to run in real time, this being governed by

the line speed, but this compares to "large" pixel rates of the order

10^/second and not "huge" rates of the order lof/second.

9.3 SIP - A BIT-SLICE IMAGE PROCESSOR AND THE LAP

Chapter 5 described a high-speed, microcoded bit-slice Sequential

Image Processor - hence the acronym SIP. This was designed with two
objectives in mind;

1. To design a processor based system capable of efficient execution of
frequently used image processing functions. The hardware was

designed with an image processing interface and the flexibility to

execute several instructions concurrently.

2. To design a processor as a cost-effective solution for use in

industrial inspection, i.e. capable of achieving inspection at

typical industrial product rates while remaining affordable.

Essentially, it was a processor designed to execute algorithms such as

those described in Chapter 3 at rates of 5-10 products/second. However,

it was also designed to be combined with a parallel processor, namely

the LAP described in Chapter 6, for inclusion in part of a

multiprocessor system.

The final design was based around the AMD 29203 bit-slice

processor. This was combined with a dedicated multiplier chip and a

pipelined image plane, enabling the majority of instructions to be

executed in a single cycle (125ns). Performance figures showed that SIP

achieved a gain in performance of 25-30 times when compared with a

PDP-11/73 for certain types of image processing algorithms.

- 303

Implementation of the algorithms described in Chapter 3 on SIP showed

that SIP executed these algorithms in ~130ms - including I/O. This

corresponds to the inspection of 7-8 products/second - a speed which is

suitable for many industrial inspection applications - and shows that

bit-slice designs can provide cost-effective solutions for automated

industrial inspection systems. Indeed, it is noteworthy that industrial

processes rarely work at rates exceeding 30 products/sec.

As mentioned before, SIP was also designed to be combined with the
Linear Array Processor (LAP) - the LAP would execute the parallel tasks

of an algorithm while SIP would execute the sequential tasks. Such a

configuration seems to be highly attractive for situations where an

algorithm consists of many parallel tasks and sequential tasks, and

where a single sequential processor is incapable of executing the

algorithm at a suitable rate. Initial estimated results showed that a

quite large bottleneck was likely to occur for many image processing

algorithms because SIP was required to transfer the data to and from the

LAP; however, these results were deduced from LAP-I performance data

while the actual implementation was to occur with the LAP-II. The

LAP-II has a superior performance to the LAP-I; however, because the

detailed performance of the LAP-II is as yet unknown, this investigation

could not be completed.

As mentioned before, SIP was designed to execute several

instructions concurrently. Performance figures showed that a 30%

reduction in code with a corresponding 30% reduction in execution time

was achieved with many of the routines in Chapter 6. This gave a

favourable SIP/LAP ratio of execution times of about eight.

9.4 MULTIPROCESSOR ARCHITECTURES

Chapter 7 reviewed a series of multiprocessor architectures. This

- 304 -

attempted to show that the systolic array approach appeared to be

beneficial for image processing while the SIMD and MIMD approaches were

inadequate for typical algorithms. (Typical algorithms are here assumed

to include both parallel and sequential tasks.) The systolic array

approach maintained the processing power of MIMD by having autonomous

processors (hence allowing execution of sequential algorithms), while

maintaining the simplicity of SIMD in that each processor executes the

same instructions. Machines such as DIPOD, PASM and POLYP could adopt

this approach, although these were cited as being rather too expensive

for our purposes. A notable example was that of DIPOD where a single

processor costs of the order of £30,000. However, their architectures

enabled us to highlight some important points about multiprocessor

systems. Indeed, when several hundred processors are to be configured

together, these systems may become more feasible than say, several

hundred SIPs.

Chapter 8 extended this idea of combining sequential processors

together, in an attempt to investigate several multiprocessor

configurations, and capable of executing "typical" algorithms. At each

stage of the process, an analysis of the architecture with the 0-ring
algorithm (chosen as a typical algorithm) using 4, 16, 64 and 256

processors was carried out. This allowed us to locate the bottlenecks

in the system and to carry out further analysis. Note that these

architectures were simulated on a PDP-11/73 which has an entirely

different architecture to that of SIP. However, analysis of the

simulation results at each stage enabled us to model the results and

show that the models and the theoretical values gave very good

agreement, indicating that the simulations were in fact quite realistic.

- 305 -

Two main architectures were derived: ARCH-1 and ARCH-2. ARCH-1 was

based on the philosophy "every processor is connected to its four

nearest processors" while ARCH-2 was based on the idea that "every

processor is connected to every other processor". Dual-port RAMS were

used in ARCH-1 for interprocessor communication while ARCH-2 used

Communication RAMs (CRAMs). Here, each processor in an N processor

ARCH-2 configuration had write-only access to a CRAM on each of the

other N-1 processors. After transmitting the data (image or non-image

data), each processor read its local CRAMs to obtain the results from

the other processors. Partitioning tasks into read and write tasks

eliminated memory contention and deadlock.

ARCH-2 achieved a higher execution rate than ARCH-1 at the expense
of cost and flexibility; however, many parallel tasks would have caused

quite a large bottleneck because of the large amount of data that would

have to be read from the CRAMs. This would have been particularly

severe if there were a large number of processors involved, since the

time to read the data from the CRAMs is independent of the number of

processors in the system, and constant for a particular image. In order

to improve on this, ARCH-2 was modified to produce ARCH-3. ARCH-3

contained both CRAMs (for non-image data) and an I RAM (Image RAM) for

image data. Here, the I RAM was partitioned into N chips for an N

processor system; however, the I RAM appeared as a single image plane to

the local processor. As a processor wrote to its section of image, it

simultaneously transferred it to its equivalent section on all other N-1

processors, hence eliminating the need to read the CRAMs to reform an

image. This meant that for ARCH-3, the processing rate could, in the

case of parallel tasks, increase linearly as the number of processors

was increased, and in addition the system was also capable of executing

sequential tasks quite efficiently. Since tasks were again partitioned

into read tasks and write tasks, memory contention at the CRAMs and the

- 306

IRAM did not occur. However, in all ARCH configurations, a large

bottleneck occurred at 64 processors, which made a 64 processor system

non-cost-effective. The reason for this was because the source of the
bottleneck was at the CRAM level rather than the IRAM level for the
0-ring algorithm.

Because the results from a sequential process may be random (e.g. a

list of edge coordinates), they must be written to the Communication RAM

(CRAM). Therefore, a read from a CRAM will always be invoked whenever a

sequential process is executed; thus, a linear increase in performance

as the number of processors is increased for sequential tasks cannot be

achieved with the present configurations. A decision on whether ARCH-1,

ARCH-2 or ARCH-3 should be used ultimately depends on the application

and the predominant influence over the system, i.e. speed or cost. A

graph of the cost of these architectures against the execution times

enabled us to draw the following conclusion: for 4 processors, ARCH-2

should be chosen; for 16 processors, ARCH-1 should be chosen. However,

if parallel tasks are to be common (e.g. Sobel), one could consider

adopting a 16 processor, ARCH-3 configuration.

9.5 SUGGESTIONS FOR FURTHER WORK

SIP has shown that a bit-slice architecture provides a means of

producing a high-speed, cost-effective machine suitable for industrial

inspection purposes. During the development of SIP, various possible

enhancements emerged which are to be incorporated on the next

version - SIP-II. These reflect the technological changes and the

reduction in cost of many of the components used, and the experience

gained since the development of SIP. The basic architecture

(interconnections between the components) would remain the same except

for the following changes:

- 307 -

1. A more powerful bit-slice. Either the Texas's 16-bit SN74AS888 or
IDT's 49C404 32 bit-slice processor.

2. A more sophisticated program sequencer able to support interrupts

will be used (as opposed to the AMD 2910A currently used in SIP).

3. A clock generator and microcycle length controller, hence producing
a variable system clock.

4. 256x256 image planes as standard.

5. 32k or 64k (words) of RAM.

6. A shortened microword width achieved by a combination of horizontal
and vertical microcoding.

7. Provision for the user to define mnemonics and the corresponding

microcode instructions relatively easily.

8. Capability of doubling as a frame store, capable of data

acquisition, display and manipulation. This will allow SIP to

operate on incoming data from the video signal hence achieving true

real-time processing.

9. A private interconnect bus for communication with other SIP-IIs.

Although the above features sound very attractive, an important aspect

of a commercial product is board space and cost. The prototype of SIP

involved a relatively large amount of miscellaneous logic. It should be

possible to reduce board space significantly on the current version by

the use of programmable logic devices such as PALs, etc. However,

additional functionality as described in the above list would increase

the board space and cost. It is estimated that SIP-II will occupy the

same amount of board space as SIP-I with an increase in cost of about

30% and a 30-40% corresponding increase in performance. This will give

— 308 —

an approximate cost of about £1000 (1-off cost-price) for SIP-II and

shows the suitability of bit-slice architectures and programmable logic
in high-speed image processing systems.

When multiple SIPs are to be configured in relation to the four

configurations investigated, SIP-II would be particularly suited for

single processor based systems and adequate when configured with 4 and

16 processors. When more processors are to be configured together,

processors such as the transputer may offer a more cost-effective

solution than multiple SIPs, and we are currently investigating this

possibility.

We have shown that autonomous sequential processors in a system can
decrease the execution time of an algorithm and perform parallel and

sequential tasks quite efficiently. However, under the present

conditions, a large data bottleneck is produced for a large number of

processors during sequential tasks. One should therefore concentrate on

developing more efficient methods for interprocessor communication in

order to reduce this bottleneck. The CRAM may not be the most efficient

method of communicating non-image data.

9.6 CONCLUSIONS

The main aim of this thesis was to produce a cost-effective

bit-slice processor that, when combined with a particular type of

parallel processor (namely the LAP), would achieve a throughput suitable

for real-time industrial inspection at a fraction of the cost of

equivalent multiprocessor systems. Several industrial inspection

algorithms were to be implemented in order to analyse the system more

fully. The Hough transform was cited as a useful method for use in

industrial inspection, and was well suited for such a configuration.

Unfortunately, because of delays with the LAP—II being built at the NPL,

— 309 —

it has not proved possible to make a full implementation of the target

system. However, it has been shown that SIP is capable of real-time

execution of industrial algorithms (namely those in Chapter 3) as a
stand-alone processor.

After an attempt to combine multiple, autonomous sequential

processors all executing the same algorithm, it was shown that

architectures along the guidelines of "every processor has access to the

same required information at all times, yet remains autonomous" are

quite practicable and appear suitable for many image processing

algorithms. However, much work has yet to be carried out in this area.

This thesis serves to provide some initial results for four

configurations that have been investigated; an important conclusion is
that the configuration of processors of each architecture investigated

is application dependent. Ideally, one would like to build 16 SIP-II's

and combine them in order to investigate these architectures more

fully - this should be the next step. However, in the present work,

these architectures had to be simulated on a PDP-11/73 and the results

were encouraging for small numbers of processors.

At this point it is clear that there are no general purpose

architectures for which the performance increases linearly with the

number of processors for all algorithms. We have therefore sought to

find an architecture that is efficient and cost-effective at the lower

end of the cost scale, using modest numbers of processors.

— 310 —

ACKNCWLEDGEMENTS

I am indebted to my supervisor Dr. Roy Davies for his constant

encouragement, guidance and perseverance. Next, I would like to express

my gratitude to the National Physical Laboratory for sponsoring the

project, in particular Dr. Piers Plummer of the NPL for his valuable

advice and assistance throughout the project. I am also grateful to

Mr. Adrian Johnstone for his helpful suggestions on hardware early on in

the project and for looking at the final draft. Finally, I would like

to express my gratitude to Rosalind Singer for her help in bringing the

whole thesis together.

— 311 —

Glossary

ARCH-1 - a configuration where each processor is connected to its four

nearest neighbours.

ARCH-2 - a configuration where each processor is connected to all other

processors via a bus.

ARCH-3 - another configuration where each processor is connected to all

other processors via a bus (however, this differs from ARCH-3

in its internal organisation).

CRAM - a RAM which is used for interprocessor communication of data

in the case of ARCH-3 and data and image in the case of ARCH-2.

IRAM - an Image RAM which is used for interprocessor communication

of image data in the case of ARCH-3.

LAP - a microcoded bit-slice parallel processor.

Master/Slave - a configuration consisting of N+1 sequential processors,

N of which operate on a section of the image executing a

parallel task (slaves) while one (master) executes the

sequential tasks.

P/Q space - two 128x128 image planes identified by the letters P

and Q.

Parallel task - an operation which, in principle, can be applied to

each pixel simultaneously.

- 312 -

Sequential task - an operation which is carried out pixel by pixel, and

the result for each pixel depends on the results from

previous pixels.

SIP - a microcoded bit-slice sequential processor.

- execution time of a sequential task simulated on a sequential

machine.

Tp - execution time of a parallel task simulated on a sequential

machine.

- sum of the execution times of the sequential tasks and the

parallel tasks simulated on a sequential machine.

T - time to transfer data from one processor to another along a sc
private bus.

- 313 -

REFERENCES

1. Abdou, I.E. and Pratt, W.K. (1979)
"Quantitative Design and Evaluation of Enchancement/Thresholding
Edge Detectors"
Proc. IEEE, Vol. 67, No. 5, May 1979, pp. 753-763

2. Agin, G.J. (1980)
"Computer Vision Systems for Industrial Inspection and Assembly"
IEEE Computer, May 1980, pp. 11-20

3. Annaratone, M. et. al., (1986)
"WARP Architecture and Implementation"
IEEE Computer, 1986, pp. 346-356

4. Arvind, D.K., Robinson, I.N. and Parker, I.N. (1983)
A VLSI Chip for Real-Time Image Processing"
Proc. IEEE Int. Symposium in Circ. and Sys., May 1983, pp.405-408

5. Ballard, D.H. (1981)
"Generalizing the Hough Transform to detect Arbitrary Shapes"
Pattern Recognition Vol. 13, No. 2, 1981, pp. 111-122

6. Barnes, G.H. et. al. (1968)
"The ILLIAC IV Computer"
IEEE Trans. Comput., C-17, No. 8, Aug. 1968, pp. 746-757

7. Bartels, P.H., Manner, R., Shoemaker, R.L., Paplanus, S. and
Graham, A. (1986)
"Computer Configurations for the Processing of Diagnostic Imagery
Histpathology""
Evaluation of Multicomputers for Image Processing, ed. Uhr et. al. ,
Academic Press, U.K., 1986, pp. 239-278

8. Basu, A. (1987)
"Parallel Processing Systems; A Nomenclature Based on Their
Characteristics"
lEE Proceedings, Vol. 134, Pt. E, No. 3, May 1987, pp.143-147

9. Batchelor, B.G. and Cotter, S.M. (1984)
"Inspecting complex parts and assemblies"
Proc. 4th Int. Conf. Robot Vision and Sensory Controls, ed. A. Pugh,
pp. 447-468

10. Billig, R and Cronk, R. (1986)
"A System/Architecture Approach to Microcomputer Benchmarking"
Digital Information Sheet, 1986

- 314 -

11. Bolles, R.C. and Cain, R.A. (1983)
Recognising and Locating Partially Visible Objects: The

Local-Feature-Focus Method"
Robot Vision, ed. A. Pugh, IFS Publications, U.K., 1983

12. Brook, R.A. and Purll, D.J. (1979)
"On-Line Image Acquisition and Analysis for Automatic Product
Inspection"
Inst. Phys. Conf. Ser., No. 44, Chapter 4, 1979, pp. 137-150

13. Cantoni, V. and Levialdi, S. (1982)
"Matching the Task to an Image Processing Architecture"
Proc. 6th Int. Conf. on Pattern Recognition, Munich, Vol. 1, 1982,
pp. 254-257

14. Cheng, H.D. and Fu, K.S. (1987)
"VLSI Architectures for String Matching and Pattern Matching"
Pattern Recognition Vol. 20, No. 1, 1987, pp. 125-141

15. Chin, R.T. (1982)
"Automated Visual Inspection Techniques and Applications: A
Bibliography"
Pattern Recognition Vol. 15, No. 4, 1982, pp. 343-357

16. Chin, R.T. and Harlow, C.A. (1982)
"Automated Visual Inspection: A Survey"
IEEE Trans. Patt. Anal. Mach. Intell., Vol 4, No. 6, Nov. 1982,
pp. 557-573

17. Clarke, K.A. and Ip, H. H-S. (1982)
"A Parallel Implementation of Geometric Transformations"
University College London, Internal Report 82/5, 1982

18. Courtney, J.W., Magee, M.J. and Aggarwal, J.K. (1984)
"Robot Guidance using Computer Vision"
Pattern Recognition Vol. 17, No. 6, 1984, pp. 585-592

19. Cronshaw, A.J. (1982)
"Automatic Chocolate Decoration by Robot Vision"
Robot Vision, ed. A. Pugh, IFS Publications, New York, 1982

20. Danielsson, P-E. (1981)
"Getting the Median Faster"
Computer Graphics and Image Processing, Vol. 17, 1981, 71-78

21. Dasgupta, S. and Tartar, J. (1976)
"The Identification of Maximal Parallelism in Straight Line
Programs"
IEEE Trans. Comput., C-25, No. 10, Oct. 1976, pp. 986-992

- 315 -

22. Dasgupta, S. (1984)
"The Design and Description of Computer Architectures"
John Wiley & Sons, U.S.A., 1984

23. Davies, E.R. and Plummer, A.P. (1981)
"Thinning Algorithms: A Critique and a New Methodology"
Pattern Recognition Vol. 14, No. 1, 1981, pp. 53-63

24. Davies, E.R. (1983)
"Image Processing - its Milieu, its nature, and Constraints on the
Design of Special Arcitectures ofr its Implementation"
Computer Structures for Image Processing, ed. M.J.B. Duff, Academic
Press, 1983, Chap. 5, pp. 57-76

25. Davies, E.R. (1984)
"Design of Cost-Effective Systems for the Inspection of Certain Food
Products during Manufacture"
Proc. 4th Int. Conf. Robot Vision and Sensory Controls, ed. A. Pugh,
pp. 437-446, 1984

26. Davies, E.R. (1984)
"Circularity - A New Principle Underlying the Design of Accurate
Edge Orientation Operators"
Image and Vision Computing, Vol. 2, No. 3, Aug. 1984, pp. 134-142

27. Davies, E.R. (1985)
"Radial histograms as an aid in the inspection of circular objects"
IEE Proceedings, Vol. 132, Pt. D, No. 4, July 1985

28. Davies, E.R. (1986)
"Constraints of the Design of Template Masks for Edge Detection"
Pattern Recognition Letters, No. 4, 1986, pp. 111-120

29. Davies, E.R. and Johnstone, A.I.C. (1986)
"Engineering Trade-offs in the Design of a Real-time System for the
Visual Inspection of Small Products"
Proc. IMechE Conf. on UK Research in Advanced Manufacture, 1986,
pp. 15-22

30. Davis, L.S. and Rosenfeld, A. (1978)
"Noise Cleaning by Iterated Local Averaging"
IEEE Trans. Systems, Man, Cybernetics, Vol. 8, No. 9, Sept. 1978,
pp. 705-711

31. Deutsch E.S. (1972)
"Thinning Algorithms on Rectangular, Hexagonal, and Triangular
Arrays"
Comm. ACM, Vol. 15, No. 9, Sept. 1972, pp. 827-837

— 316 —

32. Duda, R.O. and Hart, P.E. (1972)
"Use of the Hough Transformation To Detect Lines and Curves in
Pictures"
Comm. ACM, Vol. 15, No. 1, Jan. 1972, pp. 11-15

33. Duda, R.O. and Hart, P.E. (1973)
"Pattern Classification and Scene Analysis"
Wiley, 1973, p. 271

34. Dudani, S. and Luk, A. (1978)
"Locating Straight-Line Edge Segments On Outdoor Scenes"
Pattern Recognition Vol. 10, 1978, pp. 145-157

35. Duff, M.J.B. (1982)
"Special Hardware for Pattern Processing"
Proc. 6th Int. Conf. on Pattern Recognition, Munich, Vol. 1, 1982,
pp. 368-379

36. Elliott, C.J. (1986)
"High Speed Image Processing for Fingerprint Recognition"
Smiths Assoc. Tech. Report presented at Proc. 2nd Int. Conf. on
Image Processing, 1986

37. Falk, H. (1976)
"Reaching for a Gigaflop"
IEEE Spectrum, Vol. 13, Part 10, 1976, pp. 65-70

38. Fan, T-J. and Tsai, W-H. (1984)
"Automatic Chinese Seal Identification"
Computer Vision, Graphics, Image Processing, Vol. 25, 1984,
pp. 311-330

39. Fisher, A.L. (1986)
"Scan Line Array Processors for Image Computatuion"
IEEE Trans. Patt. Anal. Mach. Intell., Vol 3, No. 5, Aug. 1986,
pp. 338-345

40. Flynn, M.J. (1972)
"Some Computer Organizations and Their Effectivness"
IEEE Trans. Comput., C-21, No. 9, Sept. 1972, pp. 948-960

41. Forster, K.D., Lohmann, A.W., Weigelt, G. (1982)
"Optical Processing - Recent Developments and Future Trends"
Proc. 6th Int. Conf. on Pattern Recognition, Munich, Vol. 1, 1982,
pp. 57-65

42. Fountain, T.J. (1983)
"The Development of the CLIP7 Image Processing System"
Pattern Recognition Letters, No. 1, 1983, pp. 331-339

- 317 -

43. Fountain, T.J. (1986)
Array Architectures for Iconic and Symbolic Image Processing"
Proc. 8th Int. Conf. on Pattern Recognition, 1986, 24-33

44. Fountain, T.J. (1987)
"The ICL DAP Programme"
Processor Arrays: Architectures and Applications, Academic Press,
1987, pp. 43-48

45. Freeman, H. (1961)
"On the Encoding of Arbitrary Geometric Configurations"
IEEE Trans. Comput., C-10, June 1961, pp. 260-268

46. Freeman, H. (1961)
"Techniques for the Digital Computer Analysis of Chain-Encoded
Arbitrary Plane Curves"
Proc. National Electronic Conference, Part. 17, 1961, pp. 421-432

47. Freeman, H. (1974)
"Computer Processing of Line-Drawing Images"
Computing Surveys, vol. 8, No. 1, March 1974, pp. 57-97

48. Freeman, H. and Davis, L.S. (1977)
"A Corner-Finding Algorithm for Chain-Coded Curves"
IEEE Trans. Comput., C-26, No. 3, March 1977, pp. 297-303

49. Freeman, H. (1978)
"Shape Description Via the Use of Critical Points"
Pattern Recognition Vol. 10, 1978, pp. 159-166

50. Frei, W. and Chen, C.C. (1977)
"Fast Boundary Detection: A Generalisation and a New Algorithm"
IEEE Trans. Comput., C-26, No. 10, 1977, pp. 988-998

51. Fu, K.S. and Mui, J.K. (1981)
"A Survey on Image Segmentation"
Pattern Recognition Vol. 13, 1981, pp. 3-16

52. Fu, K.S. and Ichikawa, T. (1982)
"Special Computer Architectures for Pattern Processing"
CRC Press, Florida, 1982.

53. Hall, E.H. (1979)
"Computer Image Processing and Recognition"
Academic Press, New York, 1979

54. Hilditch, C.J. (1983)
"Comparison of Thinning Algorithms on a Parallel Processor
Image and Vision Computing, Vol. 1, No. 3, Aug. 1983, pp. 115-132

- 318 -

55. Hockney, R.W. and Jesshope, C.R. (1981)
"Parallel Computers"
Adam Hilger Ltd. (lOP), Bristol, 1981

56. Horowitz, E. and Sahni, S. (1984)
"Fundamentals of Data Structures in Pascal"
Pitman, London, 1984, pp. 338-341

57. Hough, P.V.C. (1962)
"Method and Means for Recognizing Complex Patterns"
Patent No. 3,069,654, 1962

58. Hueckel, M.H. (1971)
"An Operator Which Locates Edges in Digitized Pictures"
J.ACM, Vol. 18, No. 1, Jan. 1971, pp. 113-125

59. Hueckel, M.H. (1973)
"A Local Visual Operator Which Recognises Edges and Lines"
J.ACM, Vol. 20, No. 4, Oct. 1973, pp. 634-647

60. Isenor, D.K. and Zaky, S.G. (1986)
"Fingerprint Identification using graph matching"
Pattern Recognition Vol. 19, No. 2, 1986, pp. 113-122

61. Jarvis, J.F. (1980)
"A Method for Automating the Visual Inspection of Printed Wiring
Boards"
IEEE Trans. Patt. Anal. Mach. Intell., Vol 2, No. 1, Jan. 1980,
pp. 77-82

62. Kaufmann, P., Medioni, G. and Nevatia, R. (1984)
"Visual Inspection Using Linear Features"
Pattern Recognition Vol. 17, No. 5, 1984, pp. 485-491

63. Kimme C., Ballard, D. and Sklansky, J. (1975)
"Finding Circles by an Array of Accumulators"
Comm. ACM, Vol. 18, No. 2, Feb. 1975, pp. 120-122

64. Kittler, J. (1983)
"On the Accuracy of the Sobel Edge Detector"
Image and Vision Computing, Vol. 1, No. 1, Feb. 1983, pp. 37-42

65. Kirsch, R.A. (1971)
"Computer Determination of the Constituent Structure of Biological
Images"
Computers and Biomed. Res., Vol. 4, 1971, pp. 315-328

66. Kitchen, L. and Rosenfeld, A. (1982)
"Grey-level Corner Detection"
Pattern Recognition Letters, No. 1, 1982, pp. 95-102

- 319 -

67. Kung, H.T. (1982)
"Why Systolic Architectures"
IEEE Computer, Jan. 1982, pp. 37-45

68. Kushnir, M., Abe, K. and Matsumoto, K. (1983)
"An Application of the Hough Transform to the Recognition of Printed
Hebrew Characters"
Pattern Recognition Vol. 16, No. 2, 1983, pp. 183-191

69. Lai, M.T.Y. and Suen, C.Y. (1981)
"Automatic Recognition of Characters by Fourier Descriptors and
Boundary Line Encodings"
Pattern Recognition Vol. 14, 1981, pp. 383-393

70. Laycock, L.C. (1987)
"Optical Computers for Image Processing"
Physics Bulletin, Vol. 38, No. 11, Nov. 1987, pp. 408-409

71. Lee, C.C. (1983)
"Elimination of Redundant Operations for a Fast Sobel Operator"
IEEE Trans. Systems, Man, Cybernetics, Vol. 13, No. 3, March/April
1983, pp. 242-245

72. Lev, A., Zucker, S.W. and Rosenfeld, A. (1977)
"Iterative Enhancement of Noisy Images"
IEEE Trans. Systems, Man, Cybernetics, Vol. 7, No. 6, July 1977,
pp. 435-442

73. Lin, W.C. and Chan, C-F. (1975)
"Feasibility Study of Automatic Assembly and Inspection of Light
Bulb Filaments"
Proc. IEEE, Vol. 63, No. 10, Oct. 1975, pp. 1437-1445

74. Mantas, J. (1987)
"Methodologies in Pattern Recognition and Image Analysis-A Brief
Survey"
Pattern Recognition, Vol. 20, No. 1, 1987, pp. 1-6

75. Marr, D. and Hildreth, E. (1980)
"Theory of Edge Detection"
Proc. Roy. Soc. Lond. B, Vol. 207, 1980, pp. 187-217

76. Martelli, A. (1976)
"An Application of Heuristic Search Methods to Edge and Contour
Detection"
Comm. ACM, Vol. 19, No. 2, Feb. 1976, pp. 73-83

77. McQueen, M.P.C. (1981)
"A Generalization of Template Matching for Recognition of Real
Objects"
Pattern Recognition Vol. 13, No. 2, 1981, pp. 139-145

- 320 -

78. Mick, J. and Brick, J. (1980)
"Bit-slice Microprocessor Design"
McGraw-Hill, New York, 1980

79. Montanari, U. (1969)
"Continuous Skeletons from Digitized Images"
J.ACM, Vol. 16, No. 4, Jan. 1969, pp. 534-549

80. Motorola (1985)
"VMEbus Specification Manual - Revision C"
Motorola, MVMEBS/D2, Feb. 1985.

81. Murase, H. and Wakahra, T. (1986)
"Online Hand-Sketched Figure Recognition"
Pattern Recognition Vol. 19, No. 2, 1986, pp. 147-160

82. Naccache, N.J. and Shinghal, R. (1984)
"SPTA: A Proposed Algorithm for Thinning Binary Pictures"
IEEE Trans. Systems, Man, Cybernetics, Vol. 14, No. 3, May/June
1984, pp. 409-418

83. Nevatia, R. (1982)
"Machine Perception"
Prentice-Hall, U.S.A., 1982.

84. Nixon. M. (1985)
"Application of the Hough Transform to Correct for Linear Variation
of Background Illumination in Images"
Pattern Recognition Letters, No. 3, May 1985, pp. 191-194

85. Oda, M., Womack, B.F., and Tsubouchi, K. (1971)
"A Pattern Recognising Study of Palm Reading"
IEEE Trans. Systems, Man, Cybernetics, April 1971, pp. 171-175

86. Oshima, M. and Shirai, Y. (1979)
"A Scene Description Method Using Three-Dimensional Information"
Pattern Recognition Vol. 11, 1979, pp. 9-17

87. Paler, K. and Kittler, J. (1983)
"Greylevel Edge Thinning: A New Method"
Pattern Recognition Letters, No. 1, 1983, pp. 409-416

88. Paler, K., Foglein, Illingworth, J. and Kittler, J. (1984)
"Local Ordered Grey Levels as an Aid to Corner Detection"
Pattern Recognition Vol. 17, No. 5, 1984, pp. 535-543

89. Panda, D.P. and Rosenfeld, A. (1978)
"Image Segmentation by Pixel Classification in (Grey Level,Edge
Value) Space"
IEEE Trans. Comput., C-27, No. 9, Sept. 1978, pp. 875-879

— 321 —

90. Pease III, M.C., (1977)
"The Indirect Binary n-Cube Microprocessor Array"
IEEE Trans. Comput., C-26, No. 5, May 1977, pp. 458-473

91. Pen-Shu, Y. and Antoy, S. and Litcher, A. and Rosenfeld, A. (1987)
Address Location on Envelopes"
Pattern Recognition Vol. 20, No. 2, 1987, pp. 213-227

92. Pfaltz, J.L. and Rosenfeld, A. (1967)
"Computer Representation of Planar Regions by Their Skeletons"
Comm. ACM, Vol. 10, No. 2, Feb. 1967, pp. 22-33

93. Plummer, A.P.M. (1982)
"The NPL Linear Array Processor"
NPL Internal Report, ITC h 23, 1982

94. Plummer, A.P.N. (1982)
"The NPL Linear Array Processor: technical details"
NPL Internal Report, ITC h 24, 1982

95. Potter, J.L. (1983)
"Image Processing on the Massively Parallel Processor"
IEEE Computer, Jan. 1983, pp. 62-67

96. Prewitt, J.M.S. (1970)
"Object Enhancement and Extraction"
Picture Processing and Psychopictorics, Academic Press, 1970,
pp. 75-149

97. Pritchard, S., Cohen, D. and Sleigh, A.C. (1986)
"DIPOD: An Advanced Multiptocessor System for Image Analysis"
Proc. 2nd Int. Conf. on Image Processing, 1986, pp. 134-138

98. Ramamoorthy, C.V. and Tsuchiya, M. (1974)
"A High-level Language for Horizontal Microprogramming"
IEEE Trans. Comput., C-23, No. 8, Aug. 1974, pp. 791-801

99. Richard, C.W. and Hooshang, H. (1974)
"Identification of Three-Dimensional Objects Using Fourier
Descriptors of the Boundary Curve"
IEEE Trans. Systems, Man, Cybernetics, Vol. 4, No. 4, July 1974,
pp. 371-378

100. Roberts, L.G. (1965)
"Machine Perception of Three-dimensional Solids"
Electro-optical Information Processing, MIT Press, Chap. 9, 1965,
pp. 159-197

- 322 -

101. Rorres, C. and Anton, H. (1984)
"Least Squares Fitting to Data"
Applications of Linear Algebra, Wiley^ and Sons, Chap. 15, 1984,
pp. 195-205

102. Rosenfeld A. (1970)
"Connectivity in Digital Pictures"
J.ACM, Vol. 17, No. 1, Jan. 1970, pp. 146-160

103. Rosenfeld, A. (1981)
"Image Pattern Recognition"
Proc. IEEE, Vol. 69, No. 5, May 1981, pp. 596-605

104. Rosenfeld, A. and Kak, A.C. (1982)
"Digital Picture Processing"
Academic Press, New York, 1982

105. Seitz, C.L. (1985)
"The Cosmic Cube"
Comm. ACM, Vol. 28, No. 1, Jan. 1985, pp. 22-33

106. Shapiro, S.D. (1980)
"Use of the Hough Transform for Image Data Compression"
Pattern Recognition Vol. 12, 1980, pp. 333-337

107. Shore, J.E. (1973)
"Second Thoughts on Parallel Processing"
Computer and Electronic Engineering, Vol. 1, 1973, pp. 95-109

108. Siegel, H.J., Siegel, L.J. and Mueller, P.T.Jr (1980)
"A Parallel Language for Image and Speech Processing"
Proc. IEEE Comp. Socs. Fourth International Computer Software and
Applications Conference, Oct. 1980, pp. 476-483

109. Siegel, H.J. and Swain, P.H. (1981)
"Contextual Classification on PASM"
IEEE Comp. Soc. Conf. on Pattern Recognition and Image Processing,
August 1981, pp. 320-325

110. Siegel, H.J., Siegel, L.J., Mudge, T.N. and Deip, E.J. (1982)
"Image Coding Using the Multiprocessor System PASM"
IEEE Comp. Soc. Conf. on Pattern Recognition and Image Processing,
June 1982, pp. 200-205

111. Siegel, L.J., Siegel, H.J. and Feather, A.E. (1982)
"Parallel Approaches to Image Correlation"
IEEE Trans. Comput., C-31, No. 3, Mar. 1982, pp. 208-218

- 323 -

112. Siegel, H.J., Tuomenoksa, D.L., Adams III, G.B. and Mitchell,
O.R. (1983)
"A Parallel Algorithm for Contour Extraction: Advantages and
Architectural Implications"
Proc. IEEE Comp. Soc. Conf. on Computer Vision and Pattern
Regognition, June 1983, pp. 336-344

113. Siegel, H.J. and Kuehn, J.T. (1986)
"Multifunction Processing with PASM"
Intermediate-Level Image Processing, ed. M.J.B. Duff, Academic
Press, 1986, Chap. 13, pp. 209-229

114. Siegel, H.J. and Kuehn, J.T. (1986)
"Simulation Based Performance Measures for SIMD/MIMD processing"
Evaluation of Multicomputers for Image Processing, ed. Uhr et. al. ,
Academic Press, U.K., 1986, pp. 139-158

115. Silberberg, T.M., Davis, L. and Harwood, D. (1984)
"An iterative Hough Procedure for Three-Dimensional Object
Recognition"
Pattern Recognition Vol. 17, No. 6, 1984, pp. 621-629

116. Sklansky, J. (1978)
"On the Hough Technique for Curve Detection"
IEEE Trans. Comput., C-27, No. 10, Oct. 1978, pp. 923-926

117. Smith, R.W. (1987)
"Computer Processing of Line Images: A Survey"
Pattern Recognition, Vol. 20, No. 1, 1987, pp. 7-15

118. Stefanelli, R. and Rosenfeld, A. (1971)
"Some Parallel Thinning Algorithms for Digital Pictures"
J.ACM, Vol. 18, No. 2, April 1971, pp. 255-264

119. Stentiford, F.W.M. and Mortimer, R.G. (1983)
"Some New Heuristics for Thinning Binary Handprinted Characters for
OCR"
IEEE Trans. Systems, Man, Cybernetics, Vol. 13, No. 1, Jan/Feb 1983,
pp. 81-84

120. Tanimoto, S.L. (1986)
"Architectural Issues for Intermediate-Level Vision"
Intermediate-Level Image Processing, ed. M.J.B. Duff, Academic
Press, 1986, Chap. 1, pp. 3-17

121. Toshifumi, T. and Huang, T.S.(1987)
"Motion Stereo for Navigation of Autonomous Vehicles in Man-made
Environments"
Pattern Recognition Vol. 20, No. 1, 1987, pp. 105-114

- 324

122. Tsuchiya, M. and Gonzalez, M.J. (1974)
Approach to Optimisation of Horizontal Microprograms"

Micro 7-PPS. 7th Annual Workshop on Microprogramming Preprints,
1974, pp. 85-90

123. Wahl, P.M. and Biland, H.P. (1986)
"Decomposition of Polyhedral Scenes in Hough Space"
Proc. 8th Int. Conf. on Pattern Recognition, 1986, 78-84

124. Ward, C.G. (1986)
"A Comparison of Parallel Implementations of Image Segmentation
Techniques"
Proc. 2nd Int. Conf. on Image Processing, 1986, pp. 102-106

125. Wechsler, H. and Sklansky, J. (1977)
"Finding the Rib Cage in Chest Radiographs"
Pattern Recognition Vol. 9, 1977, pp. 21-30

126. Weiman, C.F.R. (1976)
"Highly Parallal Digitized Geometric Transformations Without Matrix
Multiplication"
Proc. Int. Conf. on Parallel Processing, pp. 1-10

127. Williams, T. (1987)
"Optics and Neural Nets: Trying to Model the Human Brain"
Special Report on Advanced Supercomputers, Computer Design, March 1
1987, pp. 47-62

128. Willis, N. (1986)
"Architectural Considerations"
Computer Architecture and Communications, Paradigm, 1986,
pp. 134-135

129. Wu, C.K., Wang, D.Q. and Bajcsy, R.K. (1984)
"Acquiring 3d Spatial Data of a Real Object"
Computer Vision, Graphics, Image Processing, Vol. 28, 1984,
pp. 126-133

130. Zhang, T.Y. and Suen, C.Y. (1984)
"A Fast Parallel Algorithm for Thinning Digital Patterns"
Comm. ACM, Vol. 27, No. 3, March. 1984, pp. 236-238

- 325 -

Addressing Modes

APPENDIX A

INSTRUCTION SET FOR SIP

data (D)
Rx register (R)
Px/Qx picture (P/Q)
X/Y x/y mode (X/Y)
(Rx) indexed (I)

name/number memory (M)

Program instructions

BEGIN
HALT
ENDPROG
VAR
; text

always start a program with this
stops the program at this point
last statement in program
declare variables/arrays
comment

Processor instructions

CLR dest clear location dest
INC dest increment location
DEC dest decrement location
SHL dest arithmetic shift left location
SHR dest arithmetic shift right location
NOT dest invert location
NEG dest negate (RO:=-RO) location
MOV srCfdest move src to dest
ADD srCfdest dest:=dest+src
SUB srCfdest dest:=dest-src
CMP srCfdest src-dest
BIC srCfdest dest:=NOT source AND dest
BIT srCfdest src AND dest
BIS srCfdest dest:=src OR dest
AND srCfdest dest:=src AND dest

- 326 -

PC instructions

BRA dest
BEQ dest
BLT dest
BLE dest
IFEQ destl,dest2
IFLT destl,dest2
JSR dest
JSREQ dest
JSRLT dest
JSUBEQ destl,dest2
JSUBLT destl,dest2
RETURN
RETEQ
RETLT
REPEAT
UNTILLT
UNTILEQ
UNTILF
REPLOOP register
ENDLOOP

branch unconditionally to dest
branch 'if equal' to dest
branch 'if less than' to dest
branch 'if less than or equal' to dest
if equal then goto destl else goto dest2
'if less than' then goto destl else goto dest2
jump to subroutine dest
jump to subroutine if equal
jump to subroutine 'if less than'
'if equal' JSR destl else JSR dest2
'if less than' then JSR destl else JSR dest2
return unconditionally from subroutine
return 'if equal' from subroutine
return 'if less than' from subroutine
repeat the following code
until 'less than'
until equal
until false
repeat loop 'contents of reg' times (max=4096)
end of repeat loop

Picture functions
APPLY apply to every point in the image

END

PGET P
POUT P
OUT Rx

Example Program

end apply

get an image from VMEbus into P(Q)-space
send P(Q) to VMEbus for display
output register to the VMEbus at location Rx-1

As an example here is a program to threshold an image with 127

BEGIN ; always start with this
PGET P ; get a picture into P-space

APPLY ; apply over the picture
CMP #127,PO ; 127-PO
IFLT SET255,SET0 ; if P0<127 then set255 ELSE setO

SET255: MOV #255,PO ; set PO to 255
BRA GOON ; goto goon

SETO: MOV #0,P0 ; set PO to 0
GOON: END ; carry on until finished picture

POUT P ; Display thresholded picture (p-space
HALT
ENDPROG ; END

- 327 -

The microcode consists of five parts MCI, MC2, MC3, MC4 and MC5. These
correspond to

MCI - processor instructions
MC2 - picture and local memory functions and condition code select
MC3 - data (for the data bus)
MC4 - Program counter instructions, output enables, and 'done bit'
MC5 - vme access + datapro

This is at a primitive stage; however, tailor made instructions can be

defined by entering into the program:

MCI(rama,ramb,source,alufunc,dest,cn)
MC2(wrpicl,wrpic2,wrglbl,xcom,yxom,gcom,oeg,eng,clkoff reg,ccsel)
MC3(data) ^
MC4(pc_instruction,output enables,done) ^
MC5(req,rel,rw,vsen,type,clkextad,datapro)

with the appropriate values for rama, ramb, etc. To assemble a program,

execute the following instructions:

ASSEM input_fi1ename (default is .MAC)
TRANS output_filename (default is .SIP)
DLOAD filename (download code to SIP)

Two qualifiers (L & N) can be added to ASSEM, i.e. ASSEM filename/L/N.

1. L - produces a listing file of all three passes of ASSEM, including

error messages signified by " error message".

2. N - produces the length of the corresponding microcode instruction.

- 328 -

APPENDIX B

IMPLEMENTATION OF THE 0-RING ALGORITHM W SIP

GRAB:

VAR peaks:3000, found:80
VAR xmm, ymm
VAR oldnum, old:100

BEGIN
PGRAB
PGET P
JSR INIT
JSR DOT
JSR GETLST
JSR DEDUCE
JSR WIPE
JSR CROSS
BRA GRAB .

Grab picture
Get picture into P-space
Initialise arrays
Find possible centres
Get list
Deduce true centres
Wipe old crosses
Put new crosses on the image
Loop forever 11

INIT: MOV #21,RO
MOV #7,R1
MOV #0,R2
MOV #0,R10
RETURN

Radius = 21
Peak at centre - defines circle
R2 is PEAK_COUNT
Rio is the number of rings found

I I

DOT: APPLY
MOV #0,00
END

APPLY
MOV Pl,R6
SHL R6
ADD P8,R6
ADD P2,R6
MOV P5,R7
SHL R7
ADD P4,R7
ADD P6,R7
SUB R7,R6

CMP #0,R6
BLE NONEG
NEG R6

; Wipe Q space to zero

; Setup scan
; Do a Sobel

; R6=(P8+2*Pl+P2

; R7=(P4+2*P5+P6)
; R6:=R6-R7

- 329

SHR R6
SHR R6
NEG R6
BRA CONT

NONEG: SHR R6
SHR R6

CONT: MOV P7,R7
SHL R7
ADD P6,R7
ADD P8,R7
MOV P3,R8
SHL R8
ADD P2,R8
ADD P4,R8
SUB R8,R7
MOV R6,R8
CMP #0,R8
BLE L00P3
NEG R8

L00P3: MOV R7,R9
CMP #0,R9
BLE L00P4
NEG R9

L00P4: CMP R8,R9
BLT BIG9
MOV R8,R9

BIG9: CMP R9,#150
BLT ENDDOT
CMP #0,P0
MOV X,R3
MOV Y,R4

MUL R0,R6
MOV R6,R13
MOV R9,R14
JSR DIVIDE
MOV R13,R6

CONTI: MOV R3,R5
SUB R6,R5

MUL R0,R7
MOV R7,R13
MOV R9,R14
,JSR DIVIDE
MOV R13,R7
MOV R4,R8
SUB R7,R8

MOV r 5,X
MOV R8,Y
INC QO
MOV R3,X
MOV R4,Y

ENDDOT: END
RETURN

; R7=(P6+2*P7+P8

; R8=(P2+2*P3+P4)
; R7 HOLDS DY

; R8=ABS(DX)

; R9 = ABS(DY)

; IS DD>THR?
; IF YES THEN END ELSE
; SET ADDRESS BACK TO PO
; SAVE X & Y

; DX:=RADIUS*DX

; R9 IS DD

DX:=DX/DD
R3 and R5 now holds X
R5:=X-DX NEW X 11II

DY:=radius*DY

; DY:=DY/DD
; USE R8 AS A TEMP REGISTER
; R8:=Y-DY NEW Y ! ! ! !

; X :=R5
; Y:=R8 new X and Y
; now increment Hough space Q0:=Q0+1

- 330 -

GETLST; APPLY
CMP Q0,R1 f IS QO>THRESHOLD
BLT ENDLST
MOV #peaks,Rl5 f peaks[0]
MOV R2,R14
SHL R14
ADD R14,R15
MOV X,R14 t Save X and Y
MOV R14,(R15)
INC R15
MOV Y,R14
MOV R14,(R15)
INC R2 t Bump peak count

ENDLST; END
DEC R2 r One over actual value
RETURN

DEDUCE: MOV R2,R11
SHL Rll
MOV #peaks,Rl5
ADD R11,R15
MOV (R15),R13 r Rl3 and Rl4 at peak position
INC R15
MOV (R15),R14
MOV #found,Rl5
MOV R13,(R15)
INC R15
MOV R14,(R15) ! First centre found and stored

G00N2: MOV #peaks,Rl5
MOV R2,R14
SHL R14
ADD R14,R15 t peaks[peak count]
MOV (R15),R3 t XX
INC R15
MOV (R15),R4 t YY
MOV #1,R5) Peak exists := TRUE

MOV R3,X 7 GET QO value from (xx,yy)
MOV R4,Y
MOV 00,RO

MOV #0,R6 t R6 is temp variable for loop (i
GOONl: MOV #found,Rl5

MOV R6,R7 7 R7 is R6
SHL R7
ADD R7,R15
MOV (R15),R8
MOV R8,R7 7 peaks X value
INC R15
MOV (R15),R9
MOV R9,Rll ; peaks y value
SUB R3,R8
SUB R4,R9
MUL R8,R8
MUL R9,R9
ADD R8,R9
CMP #40,R9
BLT SKP3

- 331 -

NOCH:
SKP3:

NOSTRE:

WIPE;

NXTIT:

PLOT:

MOV R7,X
MOV Rll,Y
CMP RO,QO
BLT NOCH

MOV R6,R14
SHL R14
MOV #found,Rl5
ADD R14,R15
MOV R3,(R15)
INC R15
MOV R4,(R15)
MOV #0,R5
INC R6
CMP R6,R10
BLE GOONl

CMP #0,R5
BEQ NOSTRE
INC RIO
MOV R10,R14
SHL R14
MOV #found,Rl5
ADD R14,R15
MOV R3,(R15)
INC R15
MOV R4,(R15)
DEC R2
CMP #0,R2
BLE G00N2
RETURN

MOV oldnum,Rl3
MOV #0,R4
MOV #old,Rl5
SHL R4
ADD R4,R15
MOV (R15),R0
INC R15
MOV (R15),R1
MOV #0,R3
OUT RO
INC R4
CMP R4,R13
BLE NXTIT
RETURN

MOV Rio,oldnum
MOV #0,R13
MOV #found,Rl
MOV R13,R2
SHL R2
ADD R2,Rl
MOV (R1),R14
INC Rl
MOV (R1),R15

CLR R2
CLR R3

; Get QO value

Peak exists := FALSE

Wipe old centres

; apply a median filter at each one

; R2 = SIGMY
; R3 = SIGMYY

- 332 -

MOV R14,R4
MOV R15,R5

MOV R5,R6
MOV R5,R7 ; MAKE A COPY FOR LATER
SUB #8,R5 ; R5=YM-8
ADD #8,R6 ; R6=YM+8

AGAINl; MOV R4,X
MOV R5,Y
ADD 00,R2
MOV Y,R5
INC R5
CMP R5,R6
BLE AGAINl

MOV R14,R4 ; R4 IS XM
MOV R7,R5
SUB #8,R5 ; R5 IS YM-8
SHR R2 ; SIGMY/2

AGAIN2 : CMP R2,R3 ; WHILE SIGMYY<=SIGMY/2
BLT ENDBIT
MOV R4,X
MOV R5,Y
ADD Q0,R3
MOV Y,R5
INC R5
MOV Y,YMM
CMP R5,R6
BLE AGAIN2

ENDBIT: CLR RO ; RO = SIGMX
CLR Rl ; Rl = SIGMXX
MOV R14,R2 ; R2 IS XM
MOV R2,R3
MOV R2,R4 ; MAKE A COPY FOR LATER
MOV YMM,R5 ; R5 = YMM
SUB #8,R2 ; R2 IS XM-8
ADD #8,R3 ; R3 IS XM+8

AGAIN3: MOV R2,X
MOV R5,Y
ADD QO,RO
MOV X,R2
MOV Y,R5
INC R2
CMP R2,R3
BLE AGAIN3

MOV R14,R2
SUB #8,R2 ; R2 IS XM-8
SHR RO ; R0=SIGMY/2

AGAIN4 : CMP RO,Rl ; WHILE SIGMYY<=SIGMY/2
BLT END4
MOV R2,X
MOV R5,Y
ADD Q0,R1
MOV X,R2
INC R2

- 333 -

END4

LLPl

LLP2

ENDCNT:

FILLl:
DIVIT;

MOV X,XMM
MOV Y,R5
CMP R2,R3
BLE AGAIN4

MOV XMM,RO
MOV YMM,R1
SUB #2,R0
MOV #old,R2
SHL R13
ADD R13,R2
MOV (R2),R4
MOV R4,R11
INC R2
MOV (R2),R5
MOV R5,R12
SHR R13
SUB R0,R4
SUB Rl,R5
CMP #0,R4
BLE LLPl
NEG R4
CMP #0,R5
BLE LLP2
NEG R5
CMP #2,R4
BLT RPLACE
CMP #2,R5
BLT RPLACE

MOV Rll,RO
MOV R12,R1

MOV Rl,(R2)
DEC R2
MOV R0,(R2)
MOV #255,R3
OUT RO
INC R13
CMP R13,R10
BLE PLOT
RETURN

MOV R14,R12
CMP #0,R14
BLE POSDIV
NEG Rl4
CMP #0,R13
BLE FILLl
MOV R13,R15
NEG R15
BRA DIVIT
MOV R13,R15
MVDVQ
CLR R15
DVRR
CMP #0,R15
BEQ RESLT
CMP #0,R15

; Get old coordinates into R2 and R5
; Get X position

; Restore Rl3
; Find difference

; R4 ;= ABS (R4)

; R5 := ABS (R5)

; Save new position

; Draw dot, directly accessing VFSl

; SAVE R14

; 0=ABS(R13)

; DO DIVISION HERE

BLT RESLT

- 334 -

TESTQ:

INCQ:

RESLT:

TRYIT:

TRYNEG:

ENDMIN:
ENDDIV:

GETQ
BLT INCQ
QSUBl
ADD R14,R15
BRA RESLT
QPLUSl
SUB R14,R15
CMP #0,R13
BLE TRYNEG
CMP #0,R12
BLE TRYIT
QTOR
NEG R15
BRA ENDDIV
QTOR
NEG Rl3
NEG R15
BRA ENDDIV
CMP #0,R12
BLE ENDMIN
QTOR
NEG R13
BRA ENDDIV
QTOR
MOV R12,R14
RETURN
ENDPROG

ANSWER NOW IN Rl3
RESTORE R14

- 335 -

