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Abstract

This work is concerned with the design and development of real-time 
algorithms for industrial inspection applications. Rather than 

implement algorithms in dedicated hardware, microprogrammable machines 

were considered essential in order to maintain flexibility.

After a survey of image pattern recognition where algorithms 
applicable to real-time use are cited, this thesis presents industrial 
inspection algorithms that locate and scrutinise actual manufactured 

products. These are fast and robust - a necessary requirement in 
industrial envi ronments.

The National Physical Laboratory have developed a Linear Array 
Processor (LAP) specifically designed for industrial recognition work. 
As with most array processors, the LAP has a greater performance than 

conventional processors, yet is strictly limited to parallel algorithms 
for optimum performance. It was therefore necessary to incorporate 
sequentialism into the design of a multiprocessor system. A microcoded 
bit-slice Sequential Image Processor (SIP) has been designed and built 
at RHBNC in conjunction with the NPL. This was primarily intended as a 
post-processor for the LAP based on the VMEbus but in fact has proved 

its usefulness as a stand-alone processor. This is described along with 
an assembler written for SIP which translates assembly language 

mnemonics to microcode.

This work, which includes a review of current architectures, leads 

to the specification of a hybrid (SIMD/MIMD) architecture consisting of 
multiple autonomous sequential processors. This involves an analysis of 

various configurations and entails an investigation of the source of 

bottlenecks within each design. Such systems require a significant 

amount of interprocessor communication: methods for achieving this are 

discussed, some of which have only become practical with the decrease in
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cost of electronic components. This eventually leads to a system for 
which algorithm execution speed increases approximately linearly with 

the number of processors. The algorithms described in earlier chapters 
are examined on the system and the practicalities of such a design are 
analysed in detail.

Overall, this thesis has arrived at designs of programmable 
real-time inspection systems, and has obtained guidelines which will 
help with the implementation of future inspection systems.
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CHAPTER 1 

INTRODÜCTIF

"Where there is no vision the people will perish:..."
Proverbs 29:18

1.1 INTRODUCTION

Thirty years ago computers were bulky contraptions that were 
applied to problems where large amounts of repetitive number crunching 
was involved. The concept of trying to make computers "see" was 
developed in the fifties when applications such as fingerprint 
recognition [36], [60], character recognition [68],[69],[81],[91], robot 

guidance and assembly [17],[18],[2], and industrial inspection 
[2],[14],[16],[9] were cited as the main areas for vision machines. 
Numerous "vision algorithms" suitable for computer representation were 
developed but it quickly came to light that the current generation of 
computers were too slow for practical use. Special computer 

architectures were developed in an attempt to reduce the execution time 

of these algorithms, many of which are currently still employed. 
However, these tend to be only suited for specific classes of 

algorithms. A concentrated effort has been applied to solving this 

problem but the solutions generally tend to be ad hoc. Probably more 

important is that, while algorithmic development is at a fairly advanced 

stage, architecture development has lagged behind the technology.
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This thesis is concerned with the problems associated with machine 
vision with particular emphasis on the problems of industrial 
inspection. Electronic components are cheaper and faster than several 

years ago. This means that one can take advantage of some of the 
remarkable technological developments that have emerged in the last few 
years to produce affordable automated inspection systems. First, let us 

discuss some of the problems associated with machine vision in general.

1.2 THE PROBLEM WITH ROBOT VISION

"Humans are not logical". This familiar Vulcan proverb illuminates 
one of the issues frustrating computer scientists. While computers 
out-perform the human brain in solving certain classes of mathematical 

and logical problems, they appear inadequate for other tasks that humans 
can do instantly such as pattern recognition. Even supercomputers with 

subnanosecond gate delays get bogged down on true real-time vision 
tasks.

The reason for this lies in the enormous amount of computation

involved. The human eye has the equivalent resolution of a computer 
4 4image of about 10 xlO picture elements (pixels) [53]. Humans can 

recognise a variety of objects in a room in a matter of milliseconds. 
For a computer to achieve the same capabilities, a single processor 

working at over lO^^MHz would be required based on these figures. 
Today's processors run at speeds in the region of 25MHz meaning that 

several million orders of magnitude speed up is required to achieve true 
real-time pattern recognition on the same tasks.

A study into how the brain works reveals that the response time of 

the neuron is in the millisecond range [127]. It would therefore appear 

that faster processors are not the solution if they are to achieve the 

same tasks that humans can do. Making computers faster would only mean
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that they would excel at the tasks on which today's computers already 
perform well, and it would only come a small fraction closer to 
defeating the problems associated with real-time pattern recognition. 
So how can we achieve it? The answer is vital for our future as an 
industrial nation - not least in the area of automated inspection to be 
covered in later chapters of this thesis.

1.3 ACHIEVING REAL-TIME PATTERN RECOGNITION

The answer almost certainly lies in the neural-net model based on 
the interconnection pattern of neurons observed in the brain. The 
hallmark of the neural-net is massive parallelism and high 

interconnectivity between a large number of relatively slow and simple 
processors (neurons) [127]. The general consensus that is emerging is 
that the information stored in a neural processor is distributed among 
the various nodes and their connections rather than being at discrete 
spatial memory locations as in the computer representation of an image. 
When a neuron receives a message, it immediately transmits it to the 

other neurons connected to it.

The obvious approach would therefore be to design a computer 
architecture with a large number of autonomous processors and high 
connectivity. However, such designs are generally expensive and often 
introduce data bottlenecks because of processor autonomy and their 
connectivity arrangements. As with any multiprocessor system, efficient 

use of processing resources is important. The computational load in the 
human brain is evenly distributed between communication and decision 

making so, at any given time, a substantial fraction of the decision 

making units are performing meaningful computation [127]. This is not 

always the case with autonomous machines and tends to be program 

specific. Architectures designed to eliminate data bottlenecks and 

obtain 100% utilisation of the available processing resources have
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nonautonomous processors and only have local connectivity between
neighbouring processors (see Chapter 7). They thus only contain
information local to a specific part of the image and are hence 
inadequate for certain classes of pattern recognition algorithms that 

would otherwise be beneficial to the solution of a problem.

1.3.1 Programming Problems

The problems with both of the above approaches is the programming 
problem. Autonomous processors can invoke data bottlenecks if 
processors frequently need to access shared memory. Where one processor 

takes longer to run, others may lie idle making inefficient use of 
processing power and resources. Both of these problems occur through 
inefficient partitioning of an algorithm. For efficient use of
processing power and resources, an algorithm must be partitionable into 
N independent processes for N processors. In general, this is not
possible. Nonautonomous processors share the same amount of processing 
and programming is made easier; however, sequential algorithms cannot be 
executed efficiently as they require processor autonomy and access to 
global information. This has meant that ad hoc implementations of 
algorithms have been typical in past work.

1.4 THE PROBLEMS WITH COMPUTERS

Computers lend themselves to solving problems that by nature are 
structured in such a way that they use algorithms having many short 
steps. Humans do not recognise scenes by sequential steps but rather by 
a process of global associations [127], processing all the received data 

simultaneously. To expect a computer to be able to approximate this 
process in step-by-step algorithms seems unrealistic. Recognising 

objects in an image is thus inherently difficult for a computer. For 

instance, take the example of locating a blue mini in a car park with a
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given registration number, bearing in mind that a computer has to 
approach this problem in a sequential manner.

Complications initially arise for the recognition of the 
registration number - for instance, broken or occluded letters present a 

problem. A much wider problem exists when it is required to recognise 
the car. The most obvious approach is to store a picture of the car in 
the computer's memory then, for every car encountered, match it with the 
stored picture on a point-by-point basis. However, various factors need 
to be considered. Many pictures would have to be stored in order to 

take into account all possible different lighting conditions and the 
different orientations of the car. In fact, the number of pictures to 
be stored would be exceptionally large. Also, since the car cannot be 
guaranteed to be in the same position in the image, each stored picture 
would have to be applied to every point in the image until a match was 
found. This would clearly take such an enormous amount of time that 

this approach has limited practical applications. However, the same 
sort of problems arise for relatively "simple" tasks such as those 
associated with industrial inspection where an object has to be undergo 
detailed scrutiny in typically one-tenth of a second.

1.5 SO WHERE DO WE GO FROM HERE?

It is postulated that the human brain has about 10^^ neurons and 
each neuron may be connected to up to 10,000 other neurons [127]. Such 
a system is beyond the scope of this thesis; however, by applying the 
same principles as the neural-net architecture on a smaller scale in 
that the information is fairly evenly distributed among the processors 

and each processor has access contention free access to the same 

information when required, this would solve many of the problems 
associated with today's architectures, i.e. efficient use of processing 

resources and execution of parallel and sequential algorithms.

—  16 —



Current vision systems are usually employed as inspection machines 
for recognising and inspecting one particular product. More complex 
systems involved in the mechanical assembly of machinery involves 

recognition of several, well defined objects. However, because of the 
cost involved and the amount of processing time permitted by industrial 
requirements, these machines have not progressed greatly and are limited 
to simple tasks involving two dimensional data. If such machines could 
be made to execute complex pattern recognition tasks in real-time while 
remaining cost-effective and without the burden of having to match the 

algorithm to the architecture, one could consider developing practical 
inspection systems that could perform more complex intelligent vision 
tasks such as gauging three-dimensional products in real-time. The 
recognition stage alone for 3-D inspection currently takes several 
minutes on today's processors. Such systems could in principle be made 
much more flexible and robust.

1.6 THE AIM OF THIS THESIS

The need to achieve real-time recognition is evident from the last 
two sections. Achieving greater processing power would mean that 
computers could perform more complex decisions on the basis of visual 

inspection. This work attempts to develop the interprocessor 
communication problem with the aim of eliminating data bottlenecks 
traditionally associated with multiprocessor systems while maintaining 
processor autonomy. However, the cost of such a system must also be 
considered. A bit-slice processor called SIP (Chapter 5) is described 
which offers a cost effective solution for high speed processing. This 
processor is used to investigate the communication problem and 

architectures based on the neural-net model, i.e. the information is 
evenly distributed among the processors and each processor has 

contention free access to the same information when required. This
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represents a radical departure from traditional digital computer 
architectures.

Such systems are not beneficial unless they are accompanied by
efficient, robust and reliable algorithms. This means that they should 
be tolerant to effects such as noise and incomplete data. Algorithms 
suitable for these purposes are cited, discussed and it is shown how 
they may be implemented with minimum programming effort on the SIP
system. This thesis emphasises the industrial vision area as this is 

currently a practically useful application for vision systems.

1.7 OVERVIEW OF FOLLOWING CHAPTERS

The work is divided into three sections. Part 1 (Chapters 2-4) is
concerned with the concepts of designing efficient and robust algorithms 

suitable for industrial applications. Part 2 (Chapters 5-6) is 
concerned with the execution of such algorithms in real-time and the 
design and development of a high speed, low cost bit-slice processor is 
described. The concept of combining a parallel processor with a 
sequential processor is proposed and an investigation into its 
feasibility is undertaken. Part 3 (Chapters 7-8) is concerned with an 

investigation into architectures that have been developed for image 
processing. This work, building on the results from Part 1 and Part 2 
arrives at an architecture that reduces processor bottlenecks 
traditionally associated with interprocessor communication: its study 

entails an investigation of the origins of data bottlenecks.

Chapter 2 - Reviews current and past work in the fields of image 

processing, image analysis and pattern recognition. An 
attempt to highlight the topics relevant to real-time work 
and robustness is undertaken and shows how they can be 

applied to real-world problems.
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Chapter 3 - Describes two industrial algorithms. These are "typical" 
algorithms in that they both contain sequential and parallel 

processes. This is emphasised as the results from these 
algorithms are used later in the thesis.

Chapter 4 - Describes the sequential implementation of the industrial 
algorithms given in Chapter 3. These results are compared 

and a discussion on the usefulness of sequential and 

parallel processors in an industrial environment is 
undertaken. This attempts to highlight the areas where 
these processors would be suited, bearing in mind the 
applications and the cost-effectiveness in each case.

Chapter 5 - Introduces the idea of microcode and microcoded processors 
A low cost, high-speed processor is described along with an 
accompanying assembler.

Chapter 6 - Describes the Linear Array Processor (LAP) and is used to 
investigate a parallel/sequential processor architecture in 
conjunction with SIP (Chapter 5). This arrangement is 

necessary in order to execute general purpose algorithms 
(algorithms consisting of parallel and sequential tasks) 
efficiently. Machine performance is also discussed 
particularly in relation to SIP and the LAP.

Chapter 7 - Reviews current architectures that have been used for image 

pattern recognition. Methods that have been used to achieve 
a higher instruction throughput in the past are discussed. 

Current trends towards architectures for image processing 

are highlighted: included is a discussion of the usefulness 

for general purpose applications. Tradeoffs are discussed
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with regard to speed and cost.

Chapter 8 - Discusses the design of a novel architecture that attempts
to reduce data bottlenecks commonly associated with multiple 

autonomous processor architectures. The methodology for 

reducing the bottlenecks is discussed and proposes a system 
which increases performance approximately linearly as N 
increases. This is based on the neural-net model described 

above.

Chapter 9 - Concludes the thesis. Conclusions and suggestions for 
future work are proposed.

With this wide scope ranging over the whole of vision and real-time 
cost-effective architectures, a fair amount of review material is 
required: this is provided in Chapters 2 and 7. The remaining chapters 
(Chapters 3,4,5,6 and 8) all describe new work. Below is a map showing 
how the chapters are "linked" together. This provides an overall view 

of this thesis.

Chap 2
IP/IA/PR
review

Chap 3/4
Inspection
algorithms

S/W

Chap 5 Chap 6 
SIP

H/W

INDUSTRIAL INSPECTION
"systems

Chap 8 Chap 7

LAP Multiple SIP Architecture 
configuration review 
investigation

GENERAL PURPOSE I.P 
ARCHITECTURES

AFFORDABLE
SYSTEMS

HIGH PERFORMANCE IMAGE 
INSPECTION SYSTEMS

THE FUTURE
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CHAPTER 2
THE REPRESENTATIF OF REAL-TIME ALGORITHMS

"Experience is the name everyone gives to their mistakes"
Lady Windermere's Fan

2.1 INTRODUCTION

Image recognition has several applications in the real-world 
including document processing (reading of printed or hand written 
characters), industrial automation (inspection of products and robotic 
assembly), medicine and biology (blood cell counting, tumour detection) 
and remote sensing (environmental monitoring, metrology) [103].

The general goal of a pattern processor is to generate descriptions 
of images and relate those descriptions to models characterising classes 
of images. A pattern processor can be partitioned into three basic 
parts - a preprocessor, an image analyser and a pattern recogniser, the 

associated algorithms of which are better known under the general term 
image pattern recognition. Operations which fall into the class of 
image processing (preprocessing) transform an image into a modified 
output image which can be described as an improved or otherwise modified 

version of the input image. Image analysis is the area studying image 

descriptions which are expressed by relationships between the features 

of the image. Segmentation techniques fall into this category. Pattern
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recognition is primarily concerned with the description and
classification of measurements taken from the image analysis section.

In any application area, the stages in the analysis process are 
similar. An image is initially preprocessed, for example, to 

standardize the grey-level, to remove noise or to deblur it.
Segmentation often follows to partition the image into regions; the 
result is then passed to the pattern processor to analyse these regions 
and determine the properties of the image. If we have a model that 
describes these properties then we can recognise the image as belonging 
to a certain class - hence recognition is performed.

This chapter reviews some of the areas that have been developed and 
used successfully in image processing, image analysis and pattern 
recognition. However, there also exists a class of operations that 
locates and recognises specific features of an image, e.g. the centres 
of circles. Strictly speaking, this comes under the heading of image 
analysis; however, it deserves special attention as it is particularly 

relevant to industrial applications and will be discussed under the 
separate heading of "shape analysis and feature extraction". Throughout 
this chapter, those areas particularly relevant to industrial 
applications are emphasised and will be discussed in detail. Clearly
for space, not all topics can be covered. However, an attempt is made
to highlight those topics from the field of image pattern recognition 

that are particularly relevant for real-world problems, and short 
discussions follow many of the sections in order to cite the practical 
usefulness of these operations. First, let us consider the three basic 

types of operations that constitute the entire range of picture 
processing functions.
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2.2 SEQUENTIAL AND PARALLEL FUNCTIONS

Picture processing operations fall into three categories:

1. Single point operations - every point in the resultant image plane 

P' is a function of its equivalent point in P. These are restricted 
to the most primitive class of operations such as thresholding and 
grey-scale modification as they are not dependent on the semantic 
content of the image.

2. Neighbourhood operations - every point in P' is a function of its 
equivalent point in P and its neighbours. This is probably the most 
common type of operation as it is context dependent. Examples are 
edge detectors, smoothing algorithms and thinning operations.

3. Distant neighbour operations - every point in P' is the result of 
its equivalent point in P and any or all of the points in P. An 
example is the Fourier transform. Because of the amount of 

computation frequently required by these types of operations, they 

are not suited to real-time image analysis tasks.

The second and third classes of operation are usually classed as 
parallel functions, i.e. a point in the original image and its 
neighbours are used to yield a result for the equivalent point in a new 
image. Because the order in which all the points in the image are 

accessed is immaterial, they can be considered as being operated on in 
parallel. In other words, the same operation can be applied to all 
pixels simultaneously. Conversely, sequential functions depend at each 

stage on the result from previous operations. Therefore, as a result is 
evaluated, it is written back into the current location in the original 

image. In this case the order of evaluation is important.
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2.3 GREY LEVEL VS BINARY PROCESSING

All operations described above can be applied to both grey-level 
and binary pictures. Grey-level pictures allow any point in an image to 

be one of (usually) 256 different levels (zero representing black and 
255 representing white) while binary images only consist of two values, 
which may be represented as one and zero. The choice of whether 
grey-level or binary images are used is application dependent. For 
instance, textural information processing is not usually carried out for 
binary images while chain coding and thinning are generally restricted 
to binary images (except see [87] and Chapter 4). Environmental 
conditions must also be considered, for instance, thresholding an image 
to extract edges where edges are not clearly defined from the background 
is nontrivial; however, when lighting and other conditions can be 
controlled, processing can be often kept to a minimum by thresholding.

A traditional pattern processing machine consists of a 
preprocessor, an image analyser and a pattern recogniser. A pattern 
processing operation will usually fall into one of the above three 
categories. However, image processing and pattern recognition are 
fields that developed rather separately [74] and therefore there are 
some areas that cover both topics. For instance, image processing 
includes not only coding, filtering and enhancement but also analysis 
and recognition of images. On the other hand, pattern recognition 
consists not only of feature extraction and classification but also 
preprocessing of patterns. For example, consider optical character 
recognition (OCR). The characters generally have to be preprocessed 
before analysis can proceed; however, preprocessing consists of 

segmenting and thinning the characters - operations that come under the 

heading of image analysis.
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The algorithms related to the fields of image processing, image 
analysis, feature extraction and pattern recognition will now be 

discussed under their respective headings. Particular emphasis will be 

placed on the use of each topic in industrial inspection, where the 
performance of an algorithm is critical.

2.4 IMAGE PROCESSING

An image can be seriously degraded by effects such as illumination 

(shadows), reflectivity (glints), noise (general camera interference) 
and blur. Image processing (or preprocessing) is frequently concerned 
with the transformation of images such that the output image is an 
improved or otherwise modified version of the input image. This is
important if we want to classify pixels based on their grey-level
values. In this section we will discuss several preprocessing

operations that can be applied in order to improve the quality of an 
image from the four most frequently occurring picture degradation 
effects: nonuniform lighting, low contrast, blurred, and noisy images.

2.4.1 Grey-level Correction

The brightness of a point in a scene (f) is effected by several 
factors including the illumination (i) and the reflectivity (r).
However, it is often the case that i varies slowly across an image 

producing a nonuniformly lit scene. We can write the effects of this in 

the form f(x,y)=i(x,y)*r(x,y). By rewriting this in the additive form 
log(f)=log(i)+log(r), using high emphasis spatial frequency filtering 

and then taking the antilog, the effects of i can be reduced.

2.4.2 Grey-scale Transformations

A low contrast image is often the result of low lighting
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conditions. We can increase the contrast by adjusting the grey-levels 
by an appropriate transform which can be expressed in the form z'=h(z) 

where z' and z are the new and old grey-levels respectively. If we 
consider that a range of pixel intensities that occur frequently lies in 

a range R while the rest lie outside R (which is the case in low 

contrast images), then we can stretch R and compress the rest of the 
scale such that the full bandwidth of the grey-scale range is used.

2.4.3 Sharpening

Blurring can often arise from an incorrectly focussed camera or 
through the effects of motion. The outcome of this is that high spatial 
frequencies are weakened more than the low ones. Sharpening is the 
process of emphasising the high spatial frequencies by filtering; 

however, this cannot be done indiscriminately since noise is usually 

stronger than the image signal at high frequencies. A simple way of 
sharpening the image (to a first approximation) is to apply the 
Laplacian operator:

V V  = (9"f/9x2) + (92f/9y2)

and subtract a multiple of this from the blurred image. This can be 
explained in the following way. The Laplacian is proportional to f-f' 
where f is the original image and f' is the blurred version. Now in f', 

high spatial frequencies have been weakened more than low ones. Hence, 

when we subtract f' from f, the low frequencies in f are more or less 
cancelled out while the high ones remain relatively intact. Thus, when 

we add a multiple of f-f' to f, we are boosting the high frequencies 

while leaving the low ones relatively unaffected.

-  26 -



2.4.4 Smoothing

Perhaps the most frequently occurring source of image degradation
is the presence of noise. If the noise can be distinguished from the
signal then it becomes easy to remove. An example of this is isolated 

dots in a binary image, commonly referred to as "salt-and-pepper" noise. 
An ideal image will not, by definition, contain noise, so application of 

a simple operation, e.g. the elimination of a white point if it is
surrounded by black points (and vice-versa) will often suffice.
Grey-level smoothing can be carried out by replacing each pixel with the 
average of its neighbours. The generalised cases of both operations are 
given below.

nn nn
F' = 1 ^^/(x+i,y+j) Grey level case

n i=-nn i.-nn
nn nn

if ^/(x+i,y+j) < T Binary casefo i:
P' =< j=-nn i=-nn

otherwise

where x and y are the (x,y) coordinates at that point in the image, n is 
the number of pixels in the NxN window, nn is (N-l)/2 and T is an 

arbitrary threshold, depending on the level of smoothing required. 
However, this strategy for smoothing grey-level images is well-known to 
have the effect of blurring the edges. This is undesirable as it masks 
much of the information at the edges - contrary to the reason for 
applying the preprocessing operations in the first place. To avoid 
this, several schemes have been considered, two of which have been 
proposed by Rosenfeld [102].

1. Average each pixel only with those neighbours vdiose grey-levels are 
closest to that of the pixel.
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2. Perform edge detection^ at every point in the image. If an edge is 

present then average only in the direction along the edge or only 
with those neighbours on the same side of the edge as the current 
point.

These methods are known under the heading of selective averaging. 
We give weights to the neighbours, chosen in such a way that neighbours 

belonging to the same region as the given pixel have high weights. Both 
of these schemes can be iterated if desired to increase the degree of 
smoothing. The disadvantage with these techniques is that they are 
computationally expensive. However, in a later paper, Davis and 

Rosenfeld [30] produced a technique called the K-nearest neighbour 
method which produced a trade-off in computation and enhancement power 

with both schemes mentioned above.

Another alternative for noise removal is to apply a median filter,
i.e. replace each point with the median intensity value of its 
neighbours. This has the advantage that the edges are not blurred 
although again, this is computationally expensive (but see [20] for a 

slightly improved version).

2.4.5 Advantages and Disadvantages of Image Processing

Application of such steps as the median filter and selective 

averaging are, in general, computationally expensive, making them less 

appealing for real-time work. Ultimately, the need to preprocess an 

image depends on the amount of control over the lighting of the scene. 
For instance, inspection of industrial objects is often carried out

 ̂As edge detection falls into the class of image analysis topics, this 
is a case where an image analysis topic falls into the class of image 
processing.
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under controllable lighting conditions. Thus, in the majority of cases, 
the effects described above can be avoided by suitably adjusting the 

lighting and hence eliminating the need to preprocess the image. This 
is highly advantageous as the overall execution time of the algorithm 
will be reduced.

Preprocessing an image has other advantages that are not 
immediately obvious. For instance, when thresholding an image, edges of 

objects can become broken because of an incorrectly chosen threshold. 
Thus, operations such as tracking algorithms will fail to track around 
the complete edge. Smoothing an image can often join up the breaks. 
However, the disadvantage with this is that if the object in question is 

to be analysed for defects, these breaks may actually be real defects 
and could go unnoticed.

2.4.6 Brief Summary

This section has discussed several image processing algorithms. 

These transform images into other images such that the output image is a 

modified version of the input. The result of this stage is usually 
passed to the image analysis stage where the pixels can then be 
classified. Because the majority of image analysis operations classify 
pixels on their grey-level values, one must be careful when applying 

preprocessing algorithms as they change the grey-level values.

2.5 IMAGE ANALYSIS

Image analysis is the area studying image descriptions which are 

expressed in the form of relationships between, and properties of, image 

parts. This section discusses some of the types of operations that fall 

into the class of image analysis operations.
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2.5.1 Segmentation of Images

Probably one of the most important classes of techniques used in 
image analysis is that of segmentation. This can be described as the 
division of an image into regions of homogeneity based on the properties 

associated with each pixel, such as the local texture or the gradient. 

Segmentation is a critical component in the pattern processing stage 
because errors here might propagate to the feature extraction and 

classification stages. It is important to note that if an image can be 
classified, segmentation is the first stage at which a description or 
classification can be attempted.

Segmentation techniques can be categorised into three 
classes: (1) edge detection, (2) thresholding and clustering, and 
(3) region extraction. Two basic points arise that are common to all 
three classes:

1. Every point must be in a region - this means that the segmentation 

algorithm must process all points in an image.

2. Regions must be contiguous.

Segmentation algorithms have historically been somewhat ad hoc [51]. 
There are no general algorithms for all images because a two-dimensional 
image can represent an effectively infinite number of possibilities. To 

build a general image understanding system, the computer would require a 
vast amount of knowledge. For this reason, a priori contextual 
knowledge is usually incorporated into segmentation algorithms. For 

example, take the famous image of a dalmatian dog. Without a priori 

knowledge this appears to be noise to many human observers. However, 
given the knowledge that a dalmation dog is present in the picture, the 

dog becomes instantly recognisable.
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Most segmentation algorithms are based either on the concepts of 

discontinuity (e.g. edge detection), or similarity (e.g. thresholding). 
The next few sections look at the case of discontinuity. The case of 
similarity follows in Section 2.5.3.

2.5.2 Edge Detectors

Edge detection techniques are important because, in many cases, 
most of the useful information in an image lies at the boundaries 
between different regions. (This would therefore appear an appropriate 
subject to cover with regard to industrial inspection.) Since high 

spatial frequencies are associated with sharp changes in intensity, one 
can extract the edges by performing high-pass filtering, i.e. take the 
Fourier transform of the image, multiply this by a linear spatial 
frequency filter and take the inverse transform. The main disadvantage 
with this approach is that much of the localised edge information is 
lost.

The class of edge detectors that extract local information from the 
edge points fall into two categories - parallel and sequential edge 
detectors. Parallel edge detectors are those whose operations can, in 
principle, be applied to every point in the image simultaneously while 

sequential edge detectors depend on the results of previous operations. 

Both of these will be covered. We will first describe the two types of 
edge detector that exist for the parallel case: the differential 
gradient and the template match edge detectors.

2.5.2.1 Differential Gradient Edge Detectors -

Most of the edge detection techniques examine the grey-level 

intensity changes within a local neighbourhood. The differential 
gradient edge detectors determine the magnitude and direction of the

-  31 -



intensity gradient at each point by calculating the x and y derivatives. 
A high magnitude results where there is an abrupt change in grey-level 
(an edge) and a low magnitude where there is little change in grey-level
(no edge). (A threshold is usually applied to the magnitude to suppress

the effects of noise.) This method has the particular advantage that, 
since the directions of the edges are readily available, only edges with 

a preferential direction, e.g. horizontal, may be detected. The 
simplest case of an edge detector is

~ /(x+l,y) - f(x,y) = A f(x,y)
9x ^

~ /(x,y+l) - f(x,y) = A f(x,y)
9y ^

thus, the magnitude of the gradient is approximately

|V/(x,y)l ~ /([A^/(x,y)]2 + [ A ^(x,y)]2)

and the direction is given by

0 = tan"^[A^(x,y)/A^f(x,y) ]

where f(x,y) is the intensity value of the pixel at the current 
position (x,y). The information derived from these values can then be 
analysed to give some insight into the properties of the image; for 

example, if we accumulated all edge points with their corresponding 

angles, large accumulations would correspond to the most prominent 
angles in the scene [34].

Another well known edge detector is the Robert's cross operator 

[100]. This estimates the derivatives diagonally and is equivalent to a 
linear fit over a 2x2 neighbourhood, i.e.
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\  = /(x,y) - /(x+l,y+l)
2̂ = f(x+l,y) - f(x,y+l) 

again, the magnitude is given by 
M = /[A^2 + Ag:]

Note that the calculation of the magnitude (as with many others) tends 

to be computationally expensive, involving two multiplications and a 
square root calculation. A simpler approximation is 

M = IAJ + IA2I

This is not as accurate but is adequate for many purposes. An 
alternative to the gradient estimates within a 2x2 window is the maximum 
difference operator [53]. This finds the maximum and minimum values 
within the four-pixel group and subtracts the minimum from the maximum. 
However, this tends to be very sensitive to noise and could give 

misleading results.

The above approaches all use 2x2 windows. These are the least 
computationally expensive but because the window is relatively small, 
they require that there be distinct changes in intensity between two 
adjacent points. Thus, only very sharp edges with high contrast between 
the surfaces which form the edges will be detected while ill-defined 

edges (edges formed by a gradual change in intensity across the edge) 
will not be detected. The result is therefore quite susceptible to 

noise. An alternative is to use a 3x3 neighbourhood. Examples of such 
edge detectors are Prewitt [96], Frei-Chen [50] and the Sobel [33], 

which are known as the "fast edge detection operators". These masks are 

given in Figures 2.1a to 2.1c, the differences being the weights 

assigned to the elements in the 3x3 window. The Prewitt mask smooths 
the gradient (average of both sides of the window) while the Frei-Chen 

mask is based on "isotropic weighting functions". This is intuitively 

better as the weightings reflect that the corner neighbours within the
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Figure 2.1a Prewitt Masks

-1 0 1 \ / I n/2 1
-v/2 0 v/2 0 0 0
-1 0 1 / V - 1  -v/2 -1

Figure 2.1b Frei-Chen Masks

-1 0 n / 1 2 1
-2 0 2 0 0 0
-1 0 1/ 1-1 -2 -1

Figure 2.1c Sobel Masks

3x3 window are /2 further from the centre pixel than the other 
neighbours. The Sobel operator depicted in Figure 2.1c organises its 

neighbourhood pixel weightings such that it reflects the proportion of a 

circle which is present within the neighbour [26].

More complex edge detectors such as the Marr-Hildreth [75] 

"difference of gaussian" and that developed by Hueckel [58],[59] use 
larger masks. Hueckel's edge detector used a 52 element mask which is 

arranged such that it approximates a disk-like shape as shown in 

Figure 2.2. This has the advantage that it removes most of the local 

noise; however, the disadvantage with both of these is that they are 
computationally expensive and therefore less suited for industrial 
inspection requirements.
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1 2 3 4

5 6 7 8 9 10

11 12 13 14 15 16 17 18

19 20 21 22 23 24 25 26

27 28 29 30 31 3 2 33 34

35 3 6 37 3 8 3 9 40 41 42

4 3 44 4 5 46 4 7 48

49 5 0 51 5 2

Figure 2.2 Heuckel's mask

2.5.2.2 Tenplate Match Edge Detectors -

Another approach to edge detection employs template matching masks. 
The edges are found by applying a series of masks (each of which 
represents an ideal edge) to every point in the image. (In general, 
eight masks are used, one for each of the eight main compass 
directions.) The angle is determined from the template which gives the 

maximum response. Examples of teirplate masks are: Prewitt [96], Kirsch 

[65], and the "3-level" and "5-level" Robinson masks [28]. Two of the 
eight possible compass directions for these are given in Figures 2.3a to 
2.3d.

The main disadvantage with the teitç)late matching approach is that 

it is not as accurate as the differential edge approach, either for 

estimating magnitudes or for determining orientations. Also, it is 

computationally quite expensive since all eight masks have to be applied 
to every point in the image.
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-1 -2

Figure 2.3a Prewitt Masks

Figure 2.3b Kirsch Masks

-1 0 / 0 1
-1 0 1 -1 0
-1 0 1 1 - 1 -1

Figure 2.3c 3-level Robinson masks

- 1 0 I ^ 1
- 2 0 2 - 1 0
- 1 0 1 I - 2 - 1

Figure 2.3d 5-level Robinson masks

The masks for many differential gradient and template matching 

operators appeared to be ad-hoc and Davies attempted to overcome this 
problem in each case [26],[28].
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2.5.2.3 Analysis of Parallel Edge Detectors -

Abdou and Pratt [1] investigated the probabilities of "true edge" 
and "false edge" detection for the 2x2 differential gradient operators, 
the 3x3 differential gradient operators and the template match 

operators. Not surprisingly, they showed that the 3x3 operators

detected more "true edges" than the 2x2 operators. However, their 
results also revealed that the Prewitt operator was better for detecting 
vertical edges than the Sobel, but the Sobel was better for detecting 

diagonal edges. With regard to the template operators, they showed that 
the 3-level and 5-level Robinson operators exhibited almost identical 
performance while being superior to the Kirsch operator. Finally, they 

also showed that the Sobel and Prewitt operators performed slightly
better than the 3-level and 5-level template masks.

Lee [71] developed a method for improving the execution time of the 
Sobel operator at the expense of storage. By retaining the results from 
the previous line, a factor two speedup could be achieved. In a 

discussion on the detailed implementation of circular operators, Davies 
[26] showed that the Sobel operator is near optimal. It is known 
[26],[53] that a circle (rather than a 3x3 digitised approximation) will
give the maximum response to any image processing algorithm. However,
whether the circle should be drawn within the 3x3 region as depicted in 
Figure 2.4a or outside as in Figure 2.4b is a relevant question. Davies 

investigated how the angular accuracy of circular differential gradient 

operators depends on the radius of the circular neighbourhood. The 
problem with Figure 2.4b is that the pixels outside the 3x3 

neighbourhood must also be included. This is obviously undesirable as 

it adds to the computation time and makes life very awkward in general. 

Davies went on to show that the most accurate version, lies somewhere 

between the two cases but lies much closer to the former case 

(Figure 2.4a) than the latter (Figure 2.4b).
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(a) (b)
Figure 2.4 3x3 windows for the circular operators

2.5.2.4 Sequential Edge Detectors -

All the above algorithms are classed as parallel edge detectors.
Thus, edge classification is based only on the grey level values of a
points' neighbours. For sequential edge detectors, the result at a 

point is contingent upon the results of previous operations [76]. This 
class of edge detectors are of less interest to us as they tend to be 
computationally expensive and will not be discussed any further.

So far, we have discussed the segmentation of a scene by 
classifying pixels as edge/non-edge. Quite often, it is necessary to 
differentiate between several regions, for instance, when distinguishing 
between regions in a satellite image, we may want to classify pixels 
according to their texture. In this case, we need to cluster the

pixels, classify them and assign them values in the original picture.

This is discussed next.

2.5.3 Thresholding and Clustering

Each pixel in an image generally has one or more features 
associated with it. The "first-order" features are grey level and 

spatial coordinates \diile its "higher order" features includes such 

items as gradient and texture. These features can be mapped to a point
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in feature space. (Feature space is a high dimensional space Wiere each 

point is represented by a vector of features, the dimensionality being 
equivalent to the number of features recognised.) Clusters in feature 

space therefore arise from subpopulations of the pixels in the original 

image space. By separating the clusters in n-dimensions such that 
feature space is partitioned into a number of mutually exclusive and 
contiguous regions, the points in feature space can be mapped back to 

the original spatial domain to produce a segmented picture. We now give 
some examples of this.

The most widely used and simplest technique of clustering is that 
of thresholding. The features in this case are based only on the 
grey-level intensity of the pixels. Clusters are formed which represent 
dark (generally objects) and light (generally background) regions. By 

classifying the clusters as object and background respectively and
assigning them the appropriate label in the original image, objects 

become easily distinguished from the background in high contrast images. 
There are a number of schemes for separating the clusters in this case, 
most of which are based on the grey-level histogram for determining the 

threshold. A dark object on a white background will produce a well 
defined bimodal histogram (Figure 2.5b). The threshold is chosen at the 
valley of the two peaks such that the clusters are partitioned. The

results are then mapped back to the original image, to produce the

segmented image. This has many disadvantages, the main one being that
high contrast images are needed between the "object" and the 
"background" and noise should be low - neither condition being 

accurately achievable in practice, particularly in an industrial 

environment. Low contrast images have the effect of merging the 

clusters together, hence making separation difficult.
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Mapping an image into several different regions is basically a 
multidimensional extension to the concept of thresholding, i.e. several 
clusters are formed from a single feature. However, as the number of 

regions grows, it becomes increasingly difficult to partition the 

clusters using just one feature. We may therefore have to take into 
account multiple features (as in the case of multispectral images such 
as LANDSAT) in order to resolve the problem. As an example, consider 
the case of a dark object on a light background, i.e. a high contrast 
image. If we chose our feature as being based on the mean grey-level 
then the mean grey levels of the object will fall into the category Sq 
and those of the background will fall into the category S^. A  straight 
threshold in this case will often suffice to segment the image as 
before.

Grey-level values

\ /I Object J / Background {

X 9I Boundary

Figure 2.5a Clustering of pixels based on 
edge and grey-level values

Now consider the case that the edges of the objects are blurred. 

The grey-level values of the pixels at the edges will typically fall 

between Sq and S^, hence leaving them undefined and separation of the
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clusters difficult. Panda and Rosenfeld [89] considered a 
two-dimensional feature space based on the values of the grey-level 
pixels and the magnitude of the gradients to solve this problem. 
Although the mean grey levels of the pixels at the edges will be 
undefined, the magnitudes of the gradient at these points will be high. 
Thus, by use of the two-dimensional feature space previously described, 
a map will be produced as in Figure 2.5a where the boundary points have 
a high edge value and fall between the regions Sq and and the areas 
away from the edges fall distinctly into either region. This is a sort 

of trimodal histogram in two dimensions. In cases vdiere the edge 
elements also become undefined, it may be necessary to adopt three or 
more features.

(b) (c)

Figure 2.5 Segmenting an image based on bimodal and 
unimodal histograms

Various methods can be used to separate the clusters in this case. 
One such method is to choose the original bimodal histogram based on the 

grey-level values and choose a threshold as depicted in Figure 2.5b. 

Alternatively, one could consider, a unimodal histogram based on the edge 

magnitudes and base the threshold on the mode as shown in 

Figure 2.5c - this corresponds to those points on the borders between 
object and background. The separation of clusters will be discussed in
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more detail later in Section 2.7.1. First, we shall look at another 

form of segmentation based on similarity but which is different from the 
above method for reasons that will be explained.

2.5.4 Region Extraction

Two methods formally exist for extracting regions - region growing 

and region dividing. Region growing is effectively a bottom-up process 

where the region starts from a single point and "grows" by grouping all 
neighbouring points that possess a similar property, e.g. its grey-level 
value. On the other hand, region dividing (top-down process) initially 
treats the whole image as one region and decomposes it into regions that 
are again similar in nature. These two methods are similar to 
clustering discussed in the last section apart from the constraint that 

points within a cluster must be contiguous within an image plane as well 
as similar in properties. These approaches to recognition are less 

attractive because regions that have been segmented in this way may
proceed too far and miss edges that are significant. As edges are
generally more important than regions (especially for extracting 
dimensional measurements so frequently used in industrial inspection), 

edge detection techniques are more often used.

Edge detection is often a prerequisite for shape analysis and
feature recognition. These are both used for the recognition and the 

inspection of objects. This is particularly important in industrial
applications where it may be required to locate an object, recognise it 

and then scrutinise it for defects. The next section discusses several 

shape analysis and feature recognition techniques that have been 
developed which are advantageous for object recognition.
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2.6 SHAPE ANALYSIS AND FEATURE RECOGNITION

Shape analysis is important for object recognition. After the 
edges of an object have been found (whether by thresholding or edge 
detection) it is usually necessary to examine the edges in order to get 
some sort of shape description, following which it can be recognised.

Techniques for shape analysis can be classed into information 

preserving and non-preserving techniques. Such methods are the 

transform schemes, spatial techniques and global shape analysis 
techniques. The two problems that frequently occur are dependency on 
scale and orientation. Common spatial techniques, i.e. working in the 
image space domain, are the boundary encoding schemes, the most popular 
of which is that developed by Freeman [45] known as the chain code. A 

shape analysis scheme using the chain code has been developed [49] and 
has been successfully employed in an industrial environment [19]. The 
transform schemes include the Hough transform - this is discussed in 
Section 2.6.4. Another approach uses the Fourier boundary descriptors 
[99]. This is easily implemented but lacks the ability to extract local 
information which is crucial for industrial inspection where small 

defects may need to be located. However, they are useful in object 
recognition as described in Chapter 4.

So far, we have only been concerned with the boundary of an object. 
An alternative approach is to examine its medial axis by thinning. This 
can often have distinct advantages over boundary algorithms which will 

be discussed in the next section.

2.6.1 Binary Thinning Algorithms

Other terms commonly associated with thinning are "skeletonisation" 

and "symmetric axis transformation". In general, thinning is restricted 

to binary images where the boundary of the shape to be thinned is
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clearly defined; however, there have been attempts to thin grey-scale 
images (Section 2.6.3). For the moment, we will assume that the images 
are in a binary format. The purpose of thinning is to thin an object 
many pixels wide down to just a single pixel wide. There are several 
advantages to be gained from doing this:

1. The large reduction of volume of data resulting from thinning 

produces a significant improvement in the storage efficiency. This 

is particularly important for real-time applications as a 
significant amount of redundant information is removed. The 
processing time involved in analysis is (in principle) thus 
decreased.

2. It plays a particularly important role in optical character 
recognition (OCR) where, to some extent, thinning provides a 
unification of character shapes by reducing the effects of various 
types of fonts. It also helps in extracting the fundamental 
features of letters.

3. Thinning is a prerequisite for many shape analysis routines such as 
the chain code or Fourier descriptors as discussed in Chapter 4.

As all the critical information is contained within the skeleton for 
some industrial uses, thinning results in the elimination of a lot of 
redundant information. This makes it appealing for industrial use, 

particularly in OCR and post-edge detection techniques. Various 

techniques of thinning have been developed, all of which rely on the 
steady erosion of the boundaries while maintaining connectivity of the 

shape. The basic idea is to iteratively delete edge points while 

ensuring that (1) end points are not removed, (2) connectedness is 

maintained and (3) excessive erosion leading to eventual skeleton bias 

is not caused. One of the general problems that occurs in thinning is 

the need for a consistent definition of connectedness when a rectangular
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tessellation is used. For instance, consider the box below:

1 0 
0 1

Here, the I's represent an object and the O's represent the background. 

The natural interpretation of this is that the I's represent a diagonal 

line of a skeleton bisecting two background areas. However, there is no 
reason why this should not be interpreted as the background bisecting 

the object and hence producing a discontinuity in the object. In other
words, connectivity is not defined rigorously and consistently. This is 
known as the crossing paradox and has been discussed in detail by 

Rosenfeld [102]. There are two main types of connectedness that exist 

for rectangular tessellations - 4-connectivity and 8-connectivity. When 
an object is 4-connected, only the horizontal and vertical edge elements 

are allowed to be connected, while 8-connectivity allows the diagonals 
to also be connected. Thus, allowing the background to be 4-connected 
and the object 8-connected solves the paradox as the background 

diagonals cannot now be connected.

Thinning algorithms differ in the way they conduct their tests to
meet the criteria, although there is usually a partial commonality 
between the approaches. As Davies and Plummer [23] pointed out, most 
authors give no standards for skeleton precision, and leave the 
definition of a skeleton undefined. For example,

1. Montanari [79] propagates wavefronts from the inside of the edge of 
the figure. The skeleton in this case is defined as the locus of 

the intersections of wavefronts from opposite sides.

2. Rosenfeld [92] defines a skeleton as being the shape formed from the

centres of maximal discs placed within the object. From the

skeleton, the original object can be reconstructed by retaining the

radii of the maximal discs and simply re-drawing them.
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A recent approach is that described by Zhang and Suen [130]. This 
consisted of only two subiterations - the first subiteration deleted the 
centre point from a 3x3 window if
(a) 3 < B(Pq ) < 6
(b) A(Pq )=1

(c) P3 *Pi*Py= 0

(d) Pi*P7*Pg=0

vhere A.(Pq ) is the number of 01 patterns in the ordered set 

^l'^2'^3'^4***^8 B(Pg) is the number of non-zero neighbours in the
set P^,P2 ,P2 ,P^...Pg as shown in Figure 2.6. The second iteration is 
the same except for

(c) P2*P^*Pg=0
(d) P3*P^*Pg=0

4 3 2

5 0 1

6 7 8

Figure 2.6 3x3 thinning window

The first sub-iteration removes the south-east boundary points while the 
second removes the north-west boundary points that do not contribute to 

the ideal skeleton. Condition (a) ensures that the end points of the 

skeleton are preserved and diagonal elements with a thickness of two 
will not disappear \diile condition (b) prevents the deletion of those 

points that lie between the end points of a skeleton line. Both of 

these conditions are shown in Figure 2.7. These steps are repeated 
until there is no further change. Naccache and Shinghal [82] reviewed 

14 different thinning algorithms, the majority of which were similar to 

that just described. They found that the disadvantage with most of them
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was the lack of reconstructability from the skeleton. They went on to 
derive a fast method of thinning that achieved reconstructability.

 0---0--- 0 p— -Q— 01 I I I I
I I I  I

■0 0 0 0 0

1 0

0 0 0 0 0 0 0 0 0

Figure 2.7 Preventing the deletion of end points

The problems with the majority of thinning algorithms is that no 
two skeletons are always identical for every possible shape. In attempt 
to set standards for the precision with which they could be performed, 
Davies and Plummer approached the subject systematically. Their method 
initially propagated the distance function throughout the shape. (The 
8-connected definition of connectedness was chosen as this allowed the 
propagation function to be carried out more rapidly.) The second step 
was to mark all local maxima of the distance function points with the 
constraint that these must not be removed in the next step. The 
original figure was then "slimmed", i.e. thinned but with the constraint 
that those points marked in the last section were to remain. The steps 
were repeated until there was no change.

Although this may appear to be a computational burden on the 
algorithm, Davies and Plummer noted that the slim algorithm used could 
be a simple one as little care needs to be taken over the end-points, 
this being the main source of complexity in conventional thinning 
algorithms. Their definition of a skeleton is useful because strict 
connectivity is maintained, unlike the definition by Rosenfeld. An 
optional step proposed by Davies was the "purge" step that eliminated 
noise spurs. A decision on whether a point is noise is highly 
subjective and is inherently data and problem dependent. However, all
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the relevant information is retained in the final skeleton so one can 
interpret those points with a distance function of (say) unity as noise. 
Stentiford and Mortimer [119] applied heuristics to avoid such effects 

as spurious tails and distortions with good results.

2.6.2 Disadvantages of Binary Thinning Algorithms

The binary thinning approach has some severe disadvantages. First, 
a simple threshold to achieve a binary image where edges are clearly 

distinguished from the background is by no means realistic. As Smith 
pointed out [117], thinning is frequently used in OCR but variations in 
paper colour and shade, print quality, contrast and lighting introduce 
severe difficulties in thresholding black and white images. This is 
particularly true for paper that contains lines, text and pictures, all 

with different levels of contrast, e.g. text printed in shaded boxes. 
When such cases arise, it rapidly becomes impossible to threshold 
effectively.

Unfortunately, even fast thinning algorithms run too slowly to be 
of any practical use without the use of parallel hardware. As shown by 
Naccache and Shinghal, a GDC 170-825 computer required 15-30 minutes to 

thin a page consisting of 60 lines with 80 characters per line and an 
average character size of 23x17 pixels. A visual inspection task that 
employs both thinning and template edge detection is described by 
Kaufmann, Medioni and Nevatia [62]. Their algorithm inspected PCB's 

designed for watches. The object of the algorithm was to detect broken 
PCB's and missing components. The steps consisted of edge detection, 

edge thinning, thresholding and approximation of edges by line segments. 

Although no times were given, this demonstrates a practical example of 

three of the techniques discussed so far (although one suspects that 

from previous attempts of thinning, this algorithm would probably take a 
relatively long time to execute).
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2.6.3 Grey-scale Thinning Algorithms

As mentioned above, achieving a suitable threshold is often 
impossible. The aim of thinning a grey-scale image is to retain the 

connectivity of the original image while producing a result which is not 

determined wholly by the original outline of the image but which is 
sensitive to grey-level values and lies along darker ridges in the 
image. Thus, well-defined edges are no longer mandatory. One could 

suggest applying an edge detector and thresholding the magnitudes to
produce a binary image, i.e. thresholding the edges. However, Paler and
Kittler [87] stated that this had several disadvantages, namely that 
thresholding removes information concerning the position of the maximum 
of the edge magnitude and the methods are very sensitive to noise. 
Instead, they chose a method whereby, for each edge pixel found, two 

neighbouring pixels with an angle nearest to the perpendicular to the 
edge direction of the edge pixel were found. These angles were compared 
with the edge pixel and if they were both within a predefined angular 

tolerance, the edge magnitudes of the edge pixel and both neighbours 
were compared. If the magnitude of the edge pixel was less than either 
of the two neighbours then it was set to zero. The process was

continued until all edge pixels had been processed.

Another technique was that described by Hilditch [54]. Here, a 

binary image is thinned in the usual way, i.e. by any of the methods 
described in the Section 2.6.1, except that the deletion of a point was 
also governed by the value of the equivalent point in the grey-level 

image. This method was generalised to the grey-scale picture; however, 

this required a definition of connectedness. The most common definition 
is that two pixels in a grey-level image are connected if there is a 

path joining them that contains no pixels lighter than both of them. A 

pixel is set equal to the lightest of its neighbours if it does not 
disconnect any of its neighbours. This condition proved to have been
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too "strong" and a definition of the "strength" of connectedness had to 
be derived.

Another alternative to the above method is as follows [54]. 
Suppose that in the binary case {N^} is the set of neighbours 
(4- or 8-connected) which must have a value one and {Nq } is the set of 
neighbours that must have a value zero. The grey-level equivalent is 

that {N^} is the set of neighbours which must have a value greater than 

or equal to that of the pixel under consideration and {Nq } is the set of 
neighbours which must have a lower value. If these requirements are 
both satisfied then the pixel is thinned by setting its value to the 
darkest of the set of neighbours {Nq }.

As an epilogue to the thinning section, a novel application for

thinning is that of palm reading [85]. Palms are in fact a better means
of identification than fingerprints but the method is less practical. 
However, under controlled conditions it would be possible to detect the 
presence of the life, head, heart and fate line (as these are the most 
prominent lines on the palm), thin them to a single pixel width, then
chain code the thinned lines for further analysis.

2.6.4 The Hough Transform

We shall now discuss the Hough transform. As we will see, this is
a very useful transform as it can still work without a complete set of
data. This is particularly useful where robust algorithms such as those 
employed in industrial recognition systems are required.

The classic Hough transform technique was originally developed by

P.V.C Hough [57]. It constitutes a class of procedure for extracting 

analytically defined shapes. For example, consider the task of 

detecting collinear points, i.e. straight lines, in a grey-level image. 
The equation of a straight line is given by
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y = ax + b

which has slope of a and intercept b. This can be transformed into 
Hough space by rearranging the equation into a form 

b = -xa + y

Hough space being represented by the parameters a and b. This means 
that a point in x-y space is mapped into a line in Hough space with a 

slope of -X and an intercept y. The Hough transform accumulates lines 

in an accumulator array (conveniently represented by a two dimensional 
array) with slopes and intercepts corresponding to the (x,y) coordinates 
of the points. Thus, collinear points in image space correspond to 
lines in Hough space that intersect at exactly one location and peak 
locations in Hough space give the position and orientation of the line 
in image space.

Generally, Hough space can have any one of a number of 
parameterisations, the parameters being chosen on the information 
required from the image. Points in x-y space are accumulated in Hough 
space and the information required is derived either from the 

relationships between the accumulated points or the values of the peak 
heights. The advantage of this is that global information about the 
image can be read directly from Hough space when it would be difficult 
to obtain from the image in other ways. Another advantage is that it is 

reversible, so by applying the inverse function to the points in Hough 
space, the original image can in principle be reproduced. The two main 
advantages of the transform that make it suitable for industrial use 

are:

1. It is insensitive to noise. A suitable threshold for detecting high 

count cells (representing the geometric properties of the object) 

will eliminate cells with low counts arising from noise.
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2. The transform will work even when the boundary is disconnected 

because of noise or occlusions. This is generally not true for 
other strategies which track edge elements, and makes it 
particularly useful for industrial analysis applications where 
objects may be overlapped or occluded.

In effect, each point "votes" on where a line exists and the accumulator 
"adds up the evidence". Hence, very little deterioration in performance 

need occur if some points on the boundary of an object are missing. 
This explains why the Hough transform is particularly robust.

Kimme et. al. [63] applied the transform for finding circles by 
using three parameters: two for the circle and one for the radius. This 
has been extended for finding parabolas (four parameters) and ellipses 
(five parameters) [116]. In a later paper, Sklansky applied these 
techniques for detecting the rib cage in chest radiographs [125]. When 
a rib is viewed on from an angle, the dorsal and ventral portions of the 
ribs appear parabolic. The Hough transform in this case was useful 
because, even if parts of the rib were occluded because of an 

overlapping tumour or a damaged rib, the model outline could still be 
determined. Further analysis revealed whether the rib was normal. 
Ballard [5] generalised the Hough transform for detecting arbitrary 
(analytic and nonanalytic) shapes.

The Hough transform has been applied to various practical 
applications such as optical character recognition (OCR) to recognise 
printed Hebrew characters [68]. All the characters in the Hebrew 

alphabet are composed of straight lines allowing the number of classes 
of characters to be significantly reduced. Other applications include 

3-dimensional object recognition [115], data compression [106], 

determining the orientation of rectangular objects (Section 3.4), 

decomposition of polyhedral scenes [123] and locating straight-line edge
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segments in outdoor scenes [34]. Probably one of the more interesting 

applications of the Hough transform is to correct for linear variation 
of background illumination in images [84]. The linear brightness 
distribution may be characterised by

f{x,y) = m X = m̂  V + cA y

Application of the Hough transform means choosing an appropriate 
parameter space for m^, m^ and c. An accumulator array contains the 
count of those points matching the variation defined by that particular 
m^, m^ and c. Searching through the image space for the maximum value 
gives us the most likely brightness variation. Thus, determination of 

these areas makes feasible their suppression thereby restoring the 
image.

2.6.5 Template Matching

Another approach that is frequently used in industrial inspection 

is template matching. Here, a template of the pattern to be matched is 
compared with the current pattern in the image on a pixel-by-pixel 

basis. The percentage of right/wrong matches gives the degree of fit. 
If a large pattern exists then naturally, using a large template is 
computationally expensive. Alternatively, a small template can be used 
but several applications of different templates may be needed in order 

to match the feature. The disadvantage with template matching is that 
it is sensitive to variations in the lighting, reflectivity of the 

material, size and orientation of the object. In this case, a 
cross-correlation scheme is often employed in order to maximise some 

measure of the degree of match between the pattern and picture.
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The template matching scheme has found its uses where these effects 
are generally not important, e.g. in industrial applications where the 
conditions can be controlled. They are often employed in binary images; 
for instance, a series of templates recognises removable points in 

binary thinning algorithms. A classic example is in the case of PCB 

track inspection [16] v^ere the image can be suitably thresholded. 
Here, four templates are used (one for each 90° orientation) that 
represent "nicks" along the edges. These are depicted in Figure 2.8. 
Another exanple of locating PCB defects involves the use of a series of 
5x5 templates [61] that describes the normal track of a perfect PCB. If 
this did not match then a fault locator algorithm was executed. A 

similar approach has also been applied to detect the defective portions 
of an IC mask [16]. Other applications include cosmetic inspection of 
jars, bottles, cans and correct labeling of drugs etc. [2]. Because of 
its triviality and easy implementation, template matching has been 
widely used in many applications, although these are very specific uses 
and always restricted to a 3x3 or at most a 5x5 neighbourhood for 
real-time work.

Figure 2.8 Templates for detecting 'nicks' on a PCB

2.7 PATTERN RECOGNITION

Image and feature analysis algorithms describe the features of the 
image as a parsable string of numbers. For example, this could be the 

edge coordinates, the chain code of the boundary of an object, or the 

coordinates of mapped pixels in a cluster. This string of numbers is 
input to an appropriate pattern recogniser which classifies the input

—  54 —



pattern - this is known as pattern recognition.

We can view the process of pattern recognition as the 
classification or the parsing process of the patterns that have so far 
been created. It can be divided into two main areas - statistical 

(decision-making) and syntactic (linguistic). However, a third category 
exists which is a hybrid between both methods. Hybrid methods are the 
first step towards an attempt to create a unifying theory in pattern 
recognition. Because of the size of the subject, each of these areas 

will only be briefly described. See [74] and [103] for further 
information.

2.7.1 Statistical Pattern Recognition

In statistical pattern recognition, the measurements taken from N 
features can be thought to represent an N dimensional vector space, 

whose coordinates correspond to the measurements taken. Two major 
decision making processes exist - clustering analysis and fuzzy set 
reasoning. As mentioned above, clusters are formed by mapping the 
feature of each pixel, e.g. grey-level, texture etc. into feature space. 
After all pixels have been processed, several clusters may typically 
exist, each cluster being composed of pixels that have a common feature. 
The concept of cluster analysis is to partition the clusters such that 
each pixel in the cluster can be assigned an appropriate code which is 
unique to that cluster and then re-mapped back into image space, hence 
producing a segmented image. However, problems can occur. For 

instance, consider Figure 2.9. The partitioning of these clusters 
ranges from "easy" to "difficult". In general. Figure 2.9a is the 

exception rather than the rule.
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Figure 2.9 Examples of clusters
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The problem that exists is that we do not know how many clusters 

there are. For instance, how many distinct varieties of hand printed 
2's are there? or how many different types of clouds can one observe in 

satellite photographs? The common problem to these questions is 
vagueness which has lead to a variety of cluster separation techniques. 
The first step is to define some measure, albeit arbitrary, of the 
similarity between two samples. From inspection of Figure 2.9a, an 

initial choice would be a measure of distance. However, this assumes 

that numerical difference is directly proportional to perceptual 
difference in the human perceptual system. This is an assumption which 
is almost certainly untrue; however, no other alternative has been found 
that can directly solve all such problems.

One of the most common distance measures is the nearest neighbour 

method [53]. This measures the distance (d^) between the nearest 
neighbours of two clusters in a multi-dimensional feature space. If 
this falls below a certain threshold the two clusters are merged else 
they are designated as being separate. This step-by-step merging is 
continued until no further action can be taken. Another approach is the 
farthest neighbour method that measures the distance between the two 

farthest neighbours (d^^). These two approaches consider the two 
extreme cases. A natural compromise is the average distance (d^^^).

Fuzzy set reasoning removes the probabilistic approach that has 

dominated pattern recognition and employs fuzzy set elements. This 
gives more realistic results when there is no a priori knowledge and 

therefore probabilities cannot be calculated. This is too long a topic 

to be covered well in the space available here. See [74] for a fuller 

discussion.

2.7.2 Syntactic Pattern Recognition
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Syntactic pattern recognition (often termed structural recognition) 
aims to describe an image by a recursive description of a complex 
pattern in terms of simpler patterns based on the "physical" shaping of
the scene. For example, consider a cow in a field with a car - this is

described as a complex scene. However, the image can be partitioned 
into three simpler parts: a cow, a car and a field. Information can be 

included in the description, e.g. the car is near the cow. This in turn 

can be described in terms of its primitives such as the cow has four 
legs and a tail, the car has four wheels and the field is green. The 
scene is thus partitioned into much simpler elements.

This approach has been applied to the industrial inspection of 
PCB's [16]. Images are not always conveniently represented by strings; 

however, certain pictorial patterns such as PCB images can be made to 
fit the string model. Local features can be decomposed into a small 
number of unique primitives, e.g. corners and lines. A structural 
description of the primitives and the relationships between them can be 
determined to form a string grammar. Given a set of primitives 
describing common defects, one can use an automatic test procedure to 

locate them by searching the string describing the PCB under test for 
all occurrences of the defective primitives. For example, consider

Figure 2.10 where the pattern is 
abadadadabca

To detect the fault, one could look for all occurrences of the pattern 
bca. Cheng [14] has described a VLSI based architecture to match 

patterns and strings.

2.7.3 Hybrid Methods of Pattern Recognition

The above approaches basically rely on images which are free of 

noise and distortions. In reality, the presence of noise will change 

the input pattern and hence the grammar. The final result is that the
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Figure 2.10 Illustration of a string grammar to 
detect faults in a PCB

input pattern is generated by more than one pattern grammar and 
ambiguity occurs. In this case, stochastic languages are employed for 
pattern recognition and Bayes ' decision rule can be used for 
recognition.

2.8 EXTENSION TO THREE DIMENSIONS

The ability to extend to three dimensions is an attractive 
proposition for industrial automation purposes. For instance, a biscuit 
or a disc is relatively straightforward to recognise because the 
required data can easily be extracted from a two-dimensional view. 
However, a 3-D knowledge of objects is often necessary, for instance, in 

the automated assembly of components in a car plant. Understanding 
depth from a 2-D image is crucial to the problem of image understanding.

Information in the x and y directions is trivial to obtain but the 

need to extract information from the third dimension (z) is required in 

order to form a model of the object. The relationship between 3-D 

points in the world coordinate system and the corresponding 2-D points 

in the image plane is essentially a perspective transformation. When 

this transform is known, given the x,y and z coordinates in the world 
coordinate system, we can find the corresponding 2-D coordinates of x'
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and z' in the image plane. Conversely, given the x' and z' coordinates 
in the image plane, one can then determine the corresponding ray which 
all points satisfying this transform must lie.

Several approaches have been successfully used. Wu, Wang and 
Bajcsy [129] employed a stereo view from two cameras to obtain 3-D 

spatial data of a real object on a turntable. Spatial information was 
obtained by first calibrating the camera and then taking four pairs of 
images of the object by rotating the turntable. For each step, stereo 
matching and the determination of the 3-D coordinates of the point was 
carried out by use of an appropriate transform. Depth measurement was 
found to be better than 1% at a distance of 1.5m.

Another approach was to use a single camera and project patterns 
onto the objects. Various patterns have been tried including spots, 
parallel lines, grids, concentric circles and spirals. By incorporating 
a priori knowledge about the nature of the projected pattern, one can 
measure the deviations of the pattern and fit this to a polynomial 

equation. From this, the x,y and z coordinates can be derived. Oshima 
and Shirai [86] used this 3-D information for the general description of 
a scene. Spots were projected onto the scene which were then grouped 
into planes and the planes were then merged. The regions were then 
classed into plane, curved or undefined. Curved regions were then 

merged to other curved or undefined regions in an attempt to fit a 
quadratic surface to them. The scene was finally described in terms of 

the properties of regions and relations between regions.

Shading has been successfully used for extracting 3-dimensional 
information from a scene [104]. Shading can be described as the 

variation of grey-level across a region. If the region of an object 

represents a uniformly reflective surface, this variation must be due to 

the changes in slope of the reflective surface to the source of
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illumination and the viewer. Therefore, grey-level variations impose 
constraints on the 3-dimensional shape of the surface. In order to 
avoid ambiguous information, several pictures of the same scene under 
different conditions of illumination are generally used.

Texture has also been used to derive 3-dimensional information 
[83]. Smooth variations in texture (texture gradients) can give clues 
to local surface shape. For instance, consider looking along the side 
of a brick wall. The bricks near to the eye appear large while the 
bricks at the end of the wall appear small and more closely spaced. 

This gives a strong sense of the orientation of the wall which can be 

thought of as a change in texture. There are three main causes of 
texture gradients (1) variations in distance, (2) variations in surface 
orientation and (3) by variations in the physical texture itself; 
however, normally the physical texture is assumed to be constant. An 
example of a typical 3-D problem is the automatic inspection and 

assembly of light bulb filaments [73]. This requires that the (x,y,z) 

coordinates of the two spikes of the filament holder to be returned in 
order for a mechanical arm to thread the filament.

2.9 OPTICAL IMAGE PROCESSING

A potentially powerful approach to image processing is optical 

processing. It is appealing because of the enormous data rate it can 
hope to achieve, all points in a scene (typically the equivalent of over 
one million pixels [41]) being processed simultaneously. However, 
optical processing does have its disadvantages. It is often not as 
accurate as digital processing and the purely optical processor is 

restricted in the generality of algorithms that it can perform. The 

advocates of optical processing have reacted to this in two different 

ways:
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1. Using it for problems with immense input data, e.g. analysing 
kilometers of 16mm-motion picture film [41].

2. Broadening the generality by combining optics with electronics,
i.e. a hybrid arrangement.

One problem with optical processing is that the output from an optical 
processor is usually related to its input by a linear processing 
function. However, many functions desirable from a recognition or 
object location point of view are necessarily non-linear. 

Non-linearities can be introduced by combining optics and electronics 
(see point 2 above) [41].

A purely optical application is template matching [70]. Here, the 
input image is first processed by a simple lens. At a plane one focal 
length behind the lens, all light emanating from the image with the same 

spatial frequency appears a set distance from the system's optical axis. 

This distance is directly proportional to the spatial frequency; the 
lens thus performs a spatial Fourier transform on the image. These 
frequency components are matched with those of the reference pattern 
stored in a filter at that plane, the matching process in the focal 
plane being one of multiplication. The filtered light is then 
retransformed by a second lens to give the correlation output in the 

output plane. (It is well known [33] that multiplication in the Fourier 
domain is equivalent to a convolution with the transform filter in the 

spatial domain.)

Although conceptually elegant, it is a somewhat inflexible scheme 
and difficult in practice as it is susceptible to differences in scale, 

rotation and out of plane orientation between the reference and input 

images. Such systems also require a spatial light modulator which 
currently costs around £10,000 [70]; however, a market is emerging which 

will hopefully reduce the current high cost and provide solutions to

-  62 -



many problems that require such enormous data rates.

Though successful in terms of computation, the type of optical 
processing described above embody a highly inflexible algorithm and 
therefore its use is liable to be restricted. For example, it is 
difficult to see how to make a system perform median filtering or other 

useful operations. For these reasons we shall ignore optical systems in 
the remainder of this thesis, though this form of computation will 
undoubtedly become increasingly widespread in the future.

2.10 CONCLUSIONS

This chapter has looked at a varied set of methods and techniques 
that are commonly associated with image processing, image analysis and 
pattern recognition. In real-world problems where objects need to be 
recognised, and faults need to be detected, procedures for examining 

local information are important. Apart from being computationally 
efficient they must also be robust. Methods such as the Fourier 
transform do not provide the best means of extracting local information; 

however, they do find use where rotation and comparison on a size 
independent basis is required, but the fact that floating point 
arithmetic is necessary limits its practical uses.

Real-world problems generally involve all three image pattern 
recognition topics in one form or another. However, the majority of 
this work seems to have been concentrated on the image analysis and 
feature recognition techniques. This includes topics such as edge 
detection, thinning, and template matching. A particularly useful tool 

is the Hough transform as it is an efficient method for the recognition 

of general shapes. Being resistant to noise and discontinuities in the 

edges of objects, it is in many ways an optimal choice. Thinning is 
computationally expensive and template matching tends to be practical
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only with small neighbourhoods and binary images. Classification 
schemes such as clustering tend to be of less interest as a priori
knowledge can usually be incorporated into a scene without the need for 
complex pattern classification methods. However, classification is 
clearly important at the final stage of inspection where defects are 
being analysed and categorised. Although this can make the algorithm

less general, speed is more important than generality for industrial
recognition purposes.

Three-dimensional work has increased over the last few years so
that depth can be obtained from a 2-D image and a 3-D model constructed, 
thus facilitating 3-D object recognition. However, recognition is only 
the first step in an inspection algorithm. The inspection of 3-D 
objects from depth information is currently an important research topic.

Optical processing has been discussed and is attractive because of 
the enormous amount of parallelism involved. However, a purely optical 
approach is not as flexible as the digital approach. To increase the 
flexibility, some researchers have developed hybrid systems consisting 
of optics and electronics, but these are still at the research stage 
though they will undoubtably become popular in the future.

We have seen in this chapter that certain techniques such as 
thinning are useful although they are too computationally intensive for 
an industrial environment without parallel hardware. The next chapter 

considers two industrial algorithms, based on some of the techniques 
cited in this chapter as being useful for such applications. The 

execution time of these algorithms is crucial in order to meet 

industrial recognition speeds. In order to achieve this, a programmable 
high-speed processor has had to be developed - this is described in 
Chapter 5. This processor is later used in Chapter 8 to develop a 

cost-effective multiprocessor architecture, suitable for increased
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execution speed of sequential and parallel algorithms. Using this 

architecture, it should thus be possible to apply computationally 
expensive algorithms such as thinning and similar processes to 
industrial recognition tasks, and should therefore not be immediately 
discarded as being too computationally expensive.

For the moment, we shall concentrate on developing the following 
two industrial recognition algorithms for a single processor system; 
however, they will be implemented on the architecture developed in 
Chapter 8.
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CHAPTER 3
THE DEVELOPMENT OF REAL-TIME INSPECTION ALGORITHMS

"The secret of science is to ask the right question, and 
it is the choice of problem more than anything else that 
marks the man of genius in the scientific world."

in C.P. Snow A postscript to Science and Government 
(Oxford: Oxford UP, 1962)

3.1 INTRODUCTION

This chapter describes two real-time industrial recognition 
algorithms. These extract information from a digitised image of a 
manufactured product and scrutinises the information in order to detect 
whether the product is defective. Both algorithms apply the same 
general technique for extracting information from these two rather 
different products. The ability to manipulate the data in real-time is 
emphasised as this leads onto the topic of program optimisation 

techniques. A breakdown of execution times for both algorithms on a 
series of images is given. This allows us to locate bottlenecks within 
the algorithm; methods for eliminating these will then be discussed. 

Execution times for both algorithms running on SIP (see Chapter 5) are 

also given. This will show that bit-slice processors are capable of 
forming the basis of cost-effective, real-time recognition systems.
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3.2 THE NEED FOR INDUSTRIAL RECOGNITION SYSTEMS

There is currently much interest in the field of industrial 
recognition systems. These are systems that analyse and scrutinise 
moving products on a conveyor belt, the data originating from a video or 
line scan camera - they are hence geared towards quality control. The 

possibility of a manufactured product being located, scrutinised for 
defects and rejected on a pass/fail inspection basis is appealing to a 
manufacturer as it has several advantages over human inspection:

1. In many areas, quality control is only carried out on a sampling
basis. Frequently, 100% inspection is required. The rate of which 
inspection can take place is usually dictated by the line speed. At 
typical production rates of about 5-10 products per second [25], and
with the possibility that several inspection tasks may need to be
carried out per product, it is generally not possible for the human 
eye to assimilate the amount of information needed in the time 
available. Small defects thus go undetected. However, a vision 
system should be able to achieve 100% inspection in the available 

time.

2. A human cannot 'measure' the features of an object, e.g. the length 
or the amount of chocolate coating, to the same degree of accuracy 
as a vision system. With a high accuracy vision system, statistical 
information can be analysed and fed back to the production equipment 

in order to ensure product uniformity and efficient use of 
production tools and materials.

3. It is often necessary to have continuous inspection of products over 

periods of seven days or more. Because of the tedious nature of 
product recognition, 30 minutes is probably the limit for reliable 
human control. A vision system does not tire or suffer from the 

boredom which is often the cause of human error in this kind of

-  67 -



situation.

4. Machine inspection can be performed in unfavourable environments, 
e.g. in the presence of excessive noise, heat or a fat-laden 
atmosphere.

Because quality control is highly repetitive, one would assume that a 
computer based system of some kind would be highly suited for this task. 
Vision systems have been successfully employed
commercially [2],[16],[29] and have proved their effectiveness.

One of the main problems with industrial recognition is the need to 
scrutinise the product in real-time, i.e. to complete the task in the 
time it takes for the product to pass by. Typical product rates range 
between 5-7 products per second meaning image acquisition and analysis 
must be carried out in 150-200ms. Sequential processors are usually too 
slow to process the amount of information in the required time whereas 
parallel processors are expensive and generally not suited for image 
analysis because of the high degree of sequentialism often incorporated 
in inspection algorithms (Sections 3.3 and 3.4).

Because of the large amount of processing that may be required, it 
is often necessary to develop dedicated hardware or general purpose 
(programmable) high speed hardware. Dedicated hardware (hardware 

accelerators) usually executes those parts of an algorithm that 
constitute the bottleneck. This has the advantage that it is very high 
speed and can often process the information well within the constraints 

of the application. On the other hand, it has a fixed purpose and can 
only be used for the application it was developed for. This may be 

suitable for the majority of cases where only one product is being 

manufactured, but for a manufacturer that produces a number of different 

products, programmable high-speed hardware may be more advantageous. 
The same hardware can then be employed throughout the factory, it being
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only necessary to change the software for the product in question. 
However, this option is usually more expensive and will obviously 

require a detailed analysis before investment. It may only be 

advantageous for a long term investment or if many systems are required.

Cost is often the determining factor for acquiring vision systems 

for automated quality control. Those currently available with tailored 
software cost more than £40,000 (e.g. the CRSIOOO workstation,

MegaVision by Prostab, etc.) which is generally affordable only by large 

manufacturers. Experience in this research group is that an affordable 

cost would be rather less than £10,000 (excluding software) [25] - such 

a system is described in Chapters 5 and 6. In fact, as Davies notes 
with regard to the food industry, "above this figure, the rather low 

profit margins characteristic of foodproduct manufacture might be eroded 
excessively" [25]. In many cases it may not be necessary to invest in 

special purpose hardware if the execution time of the algorithm can be 

improved by using readily available resources. For instance, it may 

only be necessary to invest in a faster processor if the algorithm shows 

significant improvement after various real-time techniques have been 

applied. These techniques are discussed in Section 3.5.

Sections 3.3 and 3.4 discuss two real-time analysis algorithms. 

The first detects and scrutinises 0-rings while the second detects and 

scrutinises a rectangular chocolate covered biscuit. The rationale 
behind these choices is that the first algorithm represents a small 

machine part problem while the second represents a rather difficult type 

of application in the food industry, which is currently a real problem. 

The operation common to both algorithms is the Hough transform as 

described in Section 2.6.4. This was chosen for two reasons: (1) it is 

insensitive to noise - a necessary requirement for industrial 

environments where conditions are electrically noisy; and (2) it still 

works with defective shapes or, in this case, defective products. This
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allows us to form a model template of the shape hence simplifying 
inspection of the product without loss in throughput. The presentation 

of both algorithms is in the form of a top-down approach. First, the 

product and types of defects that occur will be described. An outline 

of the procedure for detecting the faults is then given. A more 

detailed description of the algorithm and reasons for adopting the 

approaches will then be given followed by run-time results and timings. 
In reality, these algorithms would run on the high-speed processor SIP 

(Chapter 5) in order to achieve the necessary speeds - times for this 

will also be given. The first of the two inspection algorithms will now 
be described.

3.3 THE 0-RING ALGORITHM

An 0-ring is a round rubber ring of a known radius. The aim of the 

0-ring algorithm is to locate the centres of multiple 0-rings in an 

image. By locating the centre we have (a) shown that an 0-ring (or 
other circular-like object) exists in the image and (b) obtained enough 

information to test for defects, i.e. because we know the location of 

the centre, we know where to expect the edges of the ring. 0-rings are 
formed by pouring a hot rubber solution into a mould. The most common 

fault that arises is when the ring is cooled too quickly - brittle 

sections can occur which makes the ring vulnerable to snapping if used 

under stressful conditions. These brittle sections of the ring are
detected by matt black shadings on the surface of the ring. As the ring

itself is normally a semi-glossy black, 8-bit digitisation is not 

accurate enough to detect the differences. However, by demonstrating 

that the centres of the 0-rings can be found, all the necessary 

information preparatory to detecting the brittle sections is available. 

(Oddly, deformed and broken 0-rings are extremely rare.) In order to

show the robustness of the algorithm, the eight images used contain
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random scenes of 0-rings. Overlapping rings and additional non-circular 

objects are included in some images so as to obscure parts of the ring; 

however, there will usually be several rings in a row (depending on the 

manufacture's method of producing 0-rings), separated from each other on 

the conveyor belt. Overlapping rings and rings obscured by other 

objects are therefore detected as defects.

To limit the amount of processing that needs to be carried out in 
order to achieve real-time recognition, it is often necessary for a 

priori knowledge of the product to be incorporated into the algorithm 
(Section 3.5.1). For this reason, it is justifiable to assume (in this 
case) that the radius of the 0-ring is 22 pixels in all cases. (Note 

that the scale is close to 1 pixel per mm - this was chosen for 

convenience as it allows us to compare measurements taken on a 
one-to-one basis.) The Hough transform technique is used in order to 

locate the centres. This technique is described by Kimme et. al. [63] 
and was recently applied to biscuit inspection for locating the centre 

of a circular biscuit [27]. Here, the algorithm has been extended to 
locate multiple centres in an image. The algorithm strategy follows in 

the next section.
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3.3.1 Algorithm Strategy

The algorithm is partitioned into three sections

1. Find all possible centres.

2. Deduce 'true' centres from the above list.

3. Detect faults.

Finding the centres of the rings by the Hough transform method leaves 
Hough space with large peaks at the centres of the rings (see below). 

Figure 3.1 represents Hough space at the centre of one of the rings in 
test image 3 after application of the Hough transform procedure. 
Locating the highest peak in each cluster gives us (to a first 

approximation) the centre of the ring. However, a problem occurs when 

trying to distinguish between similar values within different clusters, 
i.e. how do we cope with the situation when there is a value of 18 in 

ring 2 and a value of 18 in ring 3?. As we can see from Figure 3.2, the 
peak value of 18 represents the centre of ring 2 which is the required 

point but the value of 18 in ring 3 is not the centre because there is a 

higher value point adjoining it (value of 24) which is the required 

point.

This can be solved by making a list of the values of all possible 

centre points above a given threshold and sorting the list. The highest 
peak in the sorted list will be, by definition, the likeliest centre of 

one of the rings. Working down the list (highest to lowest count), if 

the next point exceeds a threshold distance from any of the centres 

previously found (initially the position of the highest value in the 

list) then it too is considered the likeliest centre of one of the rings 

because, since the list is sorted, this position will represent the 

highest peak in one of the rings.
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Figure 3.1 Hough space for 0-ring 1

(a)

(b)

Figure 3.2 Hough spaces for (a) O-ring 2 and (b) 0-ring 3
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In some applications, we may assume that the centres found will 
suffice as the required centre points. However, the maximum peak 
corresponding to the centre may also contain contributions from other 

overlapping rings, nearby arbitrary non-circular objects and the effects 

of noise. Therefore, this may not necessarily be the exact centre of 

the ring. The effects of these contributing factors can be minimised by 

trying to estimate the position of the underlying mode in each cluster, 

considering the centre found in the previous step as being a good 

approximation. To achieve this the median value over a region of a few 

points either side of this point has been found to be effective as an 
estimate of the mode value. Knowing the centre, inspection can now take 

place. (Note that in the cases depicted in Figures 3.1 and 3.2, the 

highest number in each ring (shown in a box) was calculated as the 
mode.) Each of these steps will now be described in detail. Specific 

points about each step will be discussed following the algorithm.

3.3.2 Finding the Centres of the 0-rings

The centres of the 0-rings are found by application of the Hough 

transform for locating the centres of circular objects. From all edge 
points on the ring, the centre point is calculated by the method

shown in Figure 3.3a. The point in Hough space corresponding to (x^,y^) 

is then incremented. As a result, large peaks (counts) will exist in 

Hough space at the positions of the centres of the rings. As can be 

seen from Figure 3.3b, the calculation of the centre point requires the 

X and y gradients of the edge. The most common technique for acquiring 
this information is by the use of a differential edge detector.

An alternative to finding the centre by the above method would be 

to threshold the image and find the centre of the ring by averaging the 

X and y values (x and y being the coordinates of those pixels detected 

as being part of the ring). However, shadows or a defective ring such
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dy
dx

(a)

dx = radius *

grad = /(dx^+dy^)
dy = radius * g^

(b)

Figure 3.3 Calculation of the centre on an O-ring

as that depicted in Figure 3.9h(5) would produce gun inaccurate centre. 
A similar technique could instead be applied to the edge points 

determined by thresholding the magnitude of the gradient produced by an 
edge detector. However, shadows may affect the situation by making 
edges slightly thicker on one side than on the other; this would again 

produce an inaccurate centre.

The main problem now is deciding which edge detector to use, 

bearing in mind that the it must be economic with regard to computation 

yet maintain a fair degree of accuracy. The edge detector developed by 

Hueckel [59] allows the removal of most of the local noise but it is 

complex and computationally expensive (typically 521 operations per 

pixel). The Roberts' cross operator requires the minimum number of 

operations per pixel; however, like the Prewitt operator, it is only 

accurate to 5-10° [1], depending on the angle, i.e. its accuracy changes
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with angle. On the other hand, the Sobel operator has been shown to be 

accurate to [64], for all angles. In fact, experimentation found
that the Sobel gave the most prominent peaks at the centres of the 
rings. The form of the algorithm used by Davies^ is outlined below.

1
2
3
4
5
6
7
8
9
10 
11 
12
13
14
15
16
17
18
19
20 
21 
22

PROCEDURE find_centres; 
BEGIN 
y:=0;
REPEAT x:=0;
REPEAT

{ find possible centres of 0-rings } 
{ set image scan }

dx
dy
dd

= (P8+Pl*2+P2) - (P4+P5*2+P6 
= (P6+P7*2+P8) - (P2+P3*2+P4 
= dx*dx+dy*dy

IF dd > thresh THEN 
BEGIN 
dd := SQRT(dd) 
x_temp := x; y_temp := y;
X := X - radius_of_Oring*dx DIV dd; 
y := y - radius of Oring*dy DIV dd; 
QO ;= 00 + 1 ;  “ “
X := x_temp; y := y_temp;

END;
X ;= x+1;

UNTIL x=128; y := y+1;
UNTIL y=128;

END;

find Sobel - dx } 
find Sobel - dy } 
Calculate Gradient^ }
Thresh is 150x150 } 
then an edge } 
Calculate Gradient } 
save X and y } 
find centre }
inc. Hough space } 
restore x and y }

do x } 
do y }

Figure 3.4 Finding the centres of 0-rings

Lines 1 to 7 are self-explanatory (note that the accumulator, Q-space is 
initially set to zero). Line 8 finds the value of the gradient squared 
at that point in the image (since the actual value of the gradient is 

not needed here, a less compute intensive approach is to calculate the 

value of the gradient only when an edge element is found to 

exist - determined by line 10). As this involves two multiplications 

for every point in the image and and a square root calculation for every 

edge point - a relatively time consuming combination - Davies used the 

approximation

/(x2+y2) - MAX(dx,dy,(dx+dy)*7 DIV 10)

 ̂ Reproduced with kind permission of Dr. E.R. Davies
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where dx and dy are the absolute values of the x and y gradients 
calculated from the Sobel and '7 DIV 10' is an approximation to 

1//2, i.e. considering the pixel as an octagon rather than the 

square digitised approximation. The threshold at line 10 was set at 

150x150 - this gave reasonable results for the majority of reasonably 

well lit scenes. This algorithm is interesting in the fact that there 

are no floating point or trigonometric calculations. This is important 

and shall be discussed later in Section 3.5 when we consider program 
optimsation and efficiency. The next step is now to locate the highest 

peak in each cluster. Note that the work described above is based on 

the Davies centre location algorithm. However, this was only designed 
to locate one product per image.

3.3.3 Locating the True Centres

When the above task is complete, a cluster of accumulated points 

will exist around the centre of each ring. This will consist of a 
maximum peak at the centre and smaller, yet similar sized values 

surrounding the peak. This can be seen in Figure 3.1.

In order to sort all possible centres so the highest peak in each 
cluster can be determined, the values and positions of all candidate 

centre points must be found. These can be obtained from the positions 

and values of those points over a fixed threshold in Hough space. A 
threshold of six was found adequate to locate the centres of about 15 

0-rings. This can of course be adjusted to suit the environment and the 

requi rements.

Once this is achieved, we can sort on the values of the peaks. The 

sorting algorithm used was the quicksort algorithm developed by Hoare 

[56]. This is a recursive sorting algorithm that has an average 

conputing time of OCnlog^n) and a worst case computing time of 0(n2).
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This can be compared favourably with the bubble sort which has a 

computing time of 0(nZ). The algorithm is given in Figure 3.5.

The array 'peaks' is the list of all candidate centre points. The 
procedure 'swap' in lines 9 and 11 merely interchange the x, y and peak 

values. The quicksort procedure is called from the main program with 
the values

quick_sort ( peaks, 1, peak_count ) ; 

where 'peak_count' is the number of candidate centre points found.

1 PROCEDURE quick sort(VAR peaks :ARRAY OF PEAKS; m,n :INTEGER);
2 BEGIN
3 IF m < n THEN
4 BEGIN
5 i := m; j := n+1; k := peaks[m].value;
6 REPEAT
7 REPEAT i := i+1 UNTIL (peaks[i ].value>=k) OR (i=n);
8 REPEAT j := j-1 UNTIL (peaks[j:j.value<=k) OR (j=m) ;
9 IF i < j THEN swap(i,j);
10 UNTIL i>=j;
11 swap(m, j ) ;
12 quick_sort(peaks,m,j-1);
13 quick sort(peaks,j+l,n);
14 END;
15 END;

Figure 3.5 Quicksort algorithm to sort peak heights

The highest peak (top of the sorted list) is now entered into the 
'found' list (a list of coordinates of the highest peak in each cluster) 

and is used as a reference point in order to locate all other peaks. 

The position of each point found in 'peaks' is compared with the 

positions of those in the 'found' list (initially the highest peak from 
the sorted list). If it exceeds a threshold then it is considered to be 

the highest value at the centre of one of the rings (the required point) 

and entered into the 'found' list. In essence, the threshold determines 

the closeness two centres can be located due to overlapping rings before 

they are considered a single ring. The distance must be large enough to
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overcome the spreading of peak points in Hough space due to noisy images 

or other objects in an image contributing to the peak value, yet small 

enough to distinguish between two centres close to each other. A 
distance of 5 pixels has been found to give good results. The algorithm 

is given in Figure 3.6. Note that 'peak_count' is the position in the 

array of the highest peak in the scene deduced using the Quicksort.

1 PROCEDURE deduce centres;
2 VAR ”
3 search, i, temp :INTEGER;
4 peak_exists :BOOLEAN;
6 BEGIN
7 true peak_count := 1; { 1st element in list is a centre }
8 found[l].xx := peaks[peak_count].XX;
9 foundilj.yy := peaks[peak count].yy;
10
11 FOR search := peak_count DOWNTO 1 DO
12 BEGIN
13 X := peaks[search].XX; y := peaks[search].yy;
14 peak exists := TRUE;
15 FOR T ;= 1 TO true_peak_count DO
16 BEGIN
17 { Pythagoras's theorem }
18
19 temp := (x-found[i].xx)*(x-found[i].xx) +
20 (y-found[i].yy)*(y-found[i].yy);
21
22 IF temp <= dist_thresh_squared THEN peak_exists := FALSE;
23 END;
24
25 IF peak_exists THEN
26 BEGIN
27 true peak_count := true_peak_count+l;
28 found[true_peak_count].XX := x;
29 found[true_peak_count].yy := y ;
30 END;
31 END;
32 END;

Figure 3.6 Algorithm to deduce 'true'
centres from peak heights

At the end, 'true_peak_count' is obviously the number of 0-rings of 

radius 22 pixels in the scene. This may appear to be an inefficient way 

of deciphering between local and distant peaks; however, there are 

typically only 50-60 peaks in an image (however, this is dependent on
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various factors such as the lighting conditions and the number of rings 

involved) making this section moderately fast (see timings in 
Section 3.3.5). The location of each peak in the cluster is now known 

(all points in the 'found' array) and it is only necessary to apply a 

median at each peak (as previously mentioned) in order to smooth out the 
effects of noise etc.

3.3.4 Detecting Defects in an O-ring

Now that all the centres of the 0-rings have been found, it is 
necessary to detect faults in each O-ring. As we have previously 
mentioned, these faults may not be detected (because of the accuracy of 

data acquisition) or the faults never occur (in the case of broken 

0-rings). However, by showing that these faults can be detected, the 

principles used in this section can be applied to circular products 
where these faults do occur.

The method used for determining faults was the radial histogram 
approach [27]. This has several advantages, namely that the 'true' 

radius can be measured accurately and faults are easily detected. The 

method basically accumulates the intensity of all pixels in a given 

radius band as shown in Figure 3.7; however, as one might expect, the 
number of pixels in each band increases as the radius increases. The 

histogram must therefore be normalised by dividing each accumulation by 

the number of pixels in each radius band. It has been found [27] that 

accumulation of pixels with a histogram base of r̂  rather than r allows 

the radius to be measured more accurately. (Also, r would otherwise 

have to be derived from r̂  which involves a square root computation. 

This is undesirable for real-time work.) In this case, the area of the 

histogram extended four pixels beyond the outer edge of the ring. This 

allows us to measure accurately both the inner and outer radius and 

defects such as those in ring 2 in Figure 3.9h.
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Figure 3.7 Accumulating pixels in a radius bcuid

The radial histograms of the normalised intensity values (y-axis) 
vs. r^ (x-axis) for all five rings are given in Figures 3.8a to 3.8e. 
Figure 3.8a depicts the histogram of a 'perfect' O-ring (ring 1). In 
order to check for defects, a model of the histogram representing a 

'perfect' O-ring is stored, and a correlation is undertaken for each 

ring's radial histogram encountered.) Figure 3.8b (ring 2) shows that 
the 'dip' in the curve only extends to half of its true value. This 

indicates that half of the ring is missing. This is useful as it allows
us to measure accurately the proportion of ring that is missing.

Figures 3.8c (ring 3) and 3.8d (ring 4) indicates defects at both low 

and high radii. Further inspection reveals that these fall below the 

true value indicating a dark patch (note that both graphs are almost 

identical.)

Unfortunately, this method shows that analysis of overlapping rings

is difficult to achieve as this method does not allow us to detect

whether the ring is defective or is overlapped with another ring. 

However, these rings will usually be separated in an industrial 

environment. Overlapping rings will therefore be detected as faulty.
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Figure 3.8 Radial histograms of the 0-rings depicted in Figure 3.9h
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Figure 3.8e (ring 5) shows that the graph "wobbles" from its true 

position at a high radius which indicates a defect. This defect can be 
further analysed by noting that the values fall below the true values of 
~160 which indicates a dark patch, i.e. a spurious section of ring.

We stated in Section 3.3 that brittle points (represented by dark 

patches on the O-ring) could not generally be detected with 8-bit 
digitisation. However, if some means could be found for achieving this, 

it would be represented on the graph by the dip falling below the true 
value of 40 (in these examples). The radii of the inner and outer ring 

can be derived from the graphs by taking an average of the radii at the 

where the graph has a fairly uniform gradient, i.e. points a,b and c,d 

in Figure 3.8a. This allows us to measure the thickness of the ring. 
These radii were calculated at 18.4+0.3mm for the inner radius (on a 

scale close to 1 pixel per mm) and 21.7+0.3mm for the outer radius. 

This implies that the thickness of the ring is 3.3+0.3mm. The thickness 
of the ring as measured by a micrometer was 3.45+0.04mm which shows that 

measurements can be derived accurately by using the radial histogram 
approach.

3.3.5 Results and Timings for the O-ring Algorithm

Figure 3.8f gives a graph of the percentage of an O-ring visible 

vs. the peak value of the centre derived from Hough space for 

Figure 3.9a. Since the accuracy in determining the centre is dependent 
on the number of visible edge elements of the ring, this allows us to 

find the minimum amount of ring required to locate the centre. As one 

can see from the graph, the centre can still be found quite accurately 

(within ~1 pixel) for only 25% of the ring showing. In order to 

determine the maximum number of rings that may be detected by their 

centres, Figure 3.8g depicts the graph of the lowest value of the centre 

derived from Hough space vs. the number of 0-rings in the image. With a
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threshold of six, the centres of 19 rings were found before the 

algorithm failed to locate all centres (c.f. Figure 3.9g which depicts 

17 0-rings). Note that this is dependent on the number of pixels 

visible on the ring and hence on the spatial distribution of the rings. 
The value of the peak is also determined to some degree by the lighting 

conditions. Clearly, there are countless possible combinations of rings 
and lighting conditions - this investigation merely serves as an example 
to highlight the robustness of the algorithm.

The algorithm has been found to work in the majority of cases with
14 0-rings; however, in practice, these limitations will be rather
academic, since most images will only contain one O-ring. Table 3.1 

represents a breakdown of execution times for each part of the algorithm 
on a set of eight images - the results are given in Figures 3.9a to 3.9h
(note that the centre is indicated by a white dot). Some images also
contain additional artifacts that obscure the ring in order to highlight 

the robustness of the algorithm. Again, this is a rather academic 
situation hence a radial histogram was only carried out on Figure 3.9h 

as this represents the majority of possible defects (However, this
principle can easily be applied to the images in Figures 3.9a to 3.9g.)

All timings are derived from a PDP-11/73 processor operating on a 
128x128 image and are stated in milliseconds. Fetching of the data from 

Hough space has been omitted as in all cases it was found to 

be 315+3 ms. The radial histogram (fault detector) took 270ms per 

O-ring. The total execution time below excludes the radial histogram as 

this is dependent on the number of rings in the image; however, there

will usually only be one ring in view of the camera so the first set of

figures in the list probably gives the most realistic view of the

performance (i.e. 2595+270=2865ms).
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igure Finding Sorting Deducing Median Total Algorithm
3.9 centres centres centres operation execution time

(ms) (ms) (ms) (ms) (ms)
a 2274 4 1 2 2595
b 2561 16 17 20 2929
c 2386 24 13 7 2745
d 2478 28 23 18 2862
e 2398 28 19 11 2772
f 2473 32 29 18 2868
g 2650 47 60 31 3106
h 2605 29 24 16 2991

Table 3.1 Breakdown of execution times of the O-ring 
algorithm on images 3.9a-3.9h

The basic accuracy of the centre determined using the above method 
is ~+0.5 pixel [25]. This error must also be combined with ~+0.5 pixel 
error arising from the inaccuracy in edge location; however, averaging 

over all edge points is in principle able to reduce the overall error to 

well within half a pixel. On the other hand, it should be noted that 
the accuracy is in practice limited by what is meaningful considering 
the precision of the product.

As we can see from the times, the application of the Sobel and the 
calculation of the centre typically represent 86% of the total execution 

time. Chapter 5 describes a high-speed sequential processor - this has 

been shown to give in the region of 25-30 times speed improvement over 
the PDP-11/73 processor used above. The implementation of the O-ring 

algorithm on SIP (Chapter 5) shows that the execution time is 

approximately 140-150ms (including I/O of 50ms) which corresponds to ~7 

0-rings/sec (this could still be further optimised by the use of 

suitable lighting conditions). This is within the time constraints 

imposed by industrial recognition requirements. The O-ring algorithm 

written in SIP's native code is given in Appendix B. This is a typical 

example of a parallel/sequential algorithm. Chapter 8 investigates this 

further in an attempt to apply it to a multiprocessor system.
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3.4 THE RECTANGULAR BISCUIT ALGORITHM

This section describes an inspection algorithm for the scrutiny of 
rectangular chocolate covered sandwich biscuits. In general, foodstuffs 

are difficult to inspect because of the wide range of variations that 

can occur for a single product: a foodstuff inspection algorithm must 
therefore be especially robust.

The possible defects that can occur for the biscuit are:

1. Chocolate dripping over the sides.

2. Too little chocolate covering.

3. Incorrect shape.

Fault three arises when one of the slabs of biscuit slips (Figure 3.10b) 
hence producing an incorrectly shaped (or sized) biscuit. (Note that 

the slabs are of a light colour. This condition will be used later on 
for the detection of show-through, i.e. lack of chocolate.) Examples of 

these products are shown in Figures 3.10a to 3.10g. Because an O-ring 

is circular, its shape (relative to the x and y axis) is independent of 
orientation whereas a rectangular biscuit is dependent on the 

orientation. The main problem lies in determining the orientation of 

the biscuit before analysis can proceed. This is a topic that 

frequently occurs in the examination of non-circular objects.

3.4.1 Previous Work on Object Orientation

Similar work has been carried out by Brook and Purll [12] for 

on-line image acquisition and analysis of rectangular objects in a 

factory environment. Their technique was to determine the orientation 

of the object by detecting the end-most points in each of the four 

directions. The corner positions are then used to determine the
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orientation by trigonometry. This is shown in Figure 3.11. Bolles and 

Cain [11] inspected metal door hinges. These were essentially 
rectangular in shape with several holes and metal extrusions. The scene 

was complicated by overlapping hinges. The orientation of each hinge 

was determined by the positions of the corners, metal extrusions and 
relative positions of the holes. The whole inspection algorithm took 
between 8-25 seconds using a combination of a PDP-11/34 and a VAX 11/780 

on an image size of 240x240. The large differences in execution times 

were because the algorithm used the features of the objects to determine 

the orientation and therefore the time was dependent on the number of 

features that were visible and not obscured by other hinges.

The first method is unsuitable because, if the edge of the next 
biscuit on the production line enters the field of view of the camera,
the corners would be incorrectly determined giving a false result. The

technique also relies on a thresholded image. In a typical factory 

environment dirt marks on the belt, stray bits of chocolate, an
uncovered product (no chocolate) or noise would also lead to incorrect 

results. The second method is unsuitable because the chocolate biscuit 
contains no visible features such as holes or extrusions. Corners were 

detected by moving a jointed pair chords around the boundary and

comparing the angle between the chords; however, this method was found 

unsuitable for rounded corners - inspection of Figures 3.10a to 3.10g 

shows that these products have rounded corners.

Fan and Tsai investigated the inspection of Chinese seal 

prints [38]. In order to determine the orientation of the print they 

'drew' vertical lines through the print and determined the orientation

by measuring the angle between each pair of lines and the edge of the

print by trigonometry. This was averaged over the whole of the seal 

edge as shown in Figure 3.12. Several lines had to be drawn as breaks

in the print were common. This method again required a thresholded

- 92 -



Lcos©WsinO
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Figure 3.12 Determining the orientation by averaging 
over the seal edge
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image and, bearing in mind the biscuit may be bare of chocolate in 

places, these areas would not be detected and would therefore fail. One 

solution would be to use back lighting (lighting beneath the conveyor 
belt, either by making the conveyor translucent or by using the crack 

between two adjacent conveyors) to highlight the edges of the biscuit. 

However, back lighting will not permit the surface texture of the 
biscuit to be detected - a necessity for surface scrutiny, e.g. to 

detect (in this case) whether the biscuit is sufficiently covered with 

chocolate.

The option of finding the corners of the biscuit and determining 
the orientation by trigonometry sounds appealing but these algorithms 

operating on grey level images [66],[88] have been found to be 
computationally expensive (~10s to ~40s on a PDP-11/73 operating on a 

128x128 image) and are hence inadequate for real-time operation without 

the use of special purpose hardware. Chain coding the object and 
finding the corners as described in Section 4.4.3 could be used but this 

requires either a thresholded image or edge detection followed by 

thinning, both of which have disadvantages as previously noted. In 

general, chain coding is also sensitive to noise and may therefore prove 
to be unreliable under factory conditions; however, see Chapter 4 for an 

improved version.

The method we finally adopted was that developed by Dudani and 
Luk [34] which used the Hough transform method as described in 
Section 2.6.4. This method has the advantage that dirt marks on the 

belt and partial sections of other biscuits in the field of view of the 

camera do not effect the determination of the orientation of the 

biscuit - a necessary requirement for a factory environment.
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Once the object orientation has been found, some workers have 

normalised the object by rotating it until the base is parallel with the 
x-axis before further analysis took place. This includes the work by 

Fan and Tsai on the inspection of square Chinese seal prints. This 

involved normalisation of the square print by rotation before analysis. 

The rotation scheme used in this case was that developed by Hsieh and Fu 
which was originally used for the normalisation of IC chips. 

Roths te in's Code was used by Weiman for the rotation of images by 

shearing and stretching [126]. This had the advantage that it avoided 

trigometric calculations and only relied on addition, subtraction and 
division. This algorithm can also be parallelised and has been 

implemented on CLIP4 by Clarke and Ip [17]. Both of these methods 
appear suitable for real-time analysis but practice has shown that 

distortion of the image occurs for large angles.

Since these methods are either time consuming or inaccurate, it was 
decided not to normalise the object by orientation. Inspection would 

therefore have to take place at the angle the object is orientated.
This may appear to impose an additional overhead to the run-time
execution of the algorithm but this is not the case as shown by the 

timings in Section 3.4.9.

The algorithm is partitioned into two main sections: (1) determine 

model template of the biscuit; (2) detect faults using the template as a 
reference. The template is determined by finding the orientation of the 
biscuit by application of the Sobel operator and the Hough transform. 

From this, each side can be individually located since the perpendicular 

sides can be identified by their orientation and the parallel sides by 

the sign of their Sobel x-gradients. (One could consider basing the

partitioning on only the Sobel sign of the Sobel x and y gradients;

however, this will fail if there is more than one product in the scene, 

hence making the algorithm less robust).
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The model template of the biscuit is then deduced by applying the 

least squares fit method to the edge points on each side of the biscuit 
and hence deducing the corners. Since the least squares fit method fits 
the best line to a set of points, spurious chocolate overflow and 

underflow will have little effect in contributing to the points on the 

side. The overall algorithm strategy is given in the next section.

3.4.2 Algorithm Strategy

The algorithm is partitioned into seven sections.

1. Locate biscuit and determine orientation.

2. Determine if biscuit is rectangular in shape.

3. Locate each side individually and hence determine corner points. 
This essentially fits a 'best fit' rectangle to the biscuit.

4. Determine if biscuit is the correct length and width.

5. Check for sufficient chocolate covering on the biscuit (within the 

rectangle defined in step 3).

6. Check for overflowing chocolate (outside the rectangle defined in 
step 3).

7. Reject biscuit if necessary.

All fault detection processing is confined to the area of the template. 

Each step is now discussed in detail.

3.4.3 Biscuit Orientation

As mentioned before, the method used for determining the 

orientation of the biscuit was that developed by Dudani and Luk. This 

used the Hough transform by accumulating the edge points with their
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Figure 3.13b Peaks in Hough space reveal the most common 
angles in the scene
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angles (determined from the Sobel operator), the idea being that peaks 

(large numbers of edge points with a specific angle) will occur at the 
most frequently occurring angles in the image, this being the 

orientations of both pairs of sides of the biscuit. Therefore, a 

biscuit orientated at -30° (standard cartesian x-y convention) as in 

Figure 3.13a., would produce peaks at -30°and 60° in Hough space as
shown in Figure 3.13b. This method has the advantage that, if a biscuit 

is partially in the image orientated at a different angle to the biscuit 

under inspection, then it will produce low peaks and will not be 
detected; however, two peaks will still result for partially occluded 

biscuits, as long as there are enough edge elements to contribute to the 

accumulation. If a biscuit is partially in the image and orientated at 
the same angle as the biscuit under inspection (Figure 3.16b), then this 

will add to the accumulation - this problem is dealt with later. If 

multiple peaks are detected (implying the presence of several biscuits), 
each may be individually inspected by determining which pair of peaks 

are ~90° apart. As in many practical situations, the camera is normally 

adjusted so only one product will ever be allowed to be present in the 
image. This algorithm is therefore not suited for inspecting multiple 

biscuits.

The algorithm is as follows. First, the image is scanned 

sequentially (left to right, top to bottom). At each point, the x and y 

Sobel gradients are calculated. If the estimated gradient magnitude is 

greater than a fixed threshold, then an edge is taken to exist. At this 

point the angle of orientation (determined from the x and y gradients) 

is calculated. This, along with the (x,yj coordinates and the sign of 

the x-gradient are stored in an array. The algorithm is given in Figure 

3.14.
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The threshold 'thrl' is chosen such that the value satisfies an 

edge. A  value of 180 was found to give good results with Figures 3.10a 

to 3.10g. The function 'sobelangle' calculates the angle of the edge 
from the x and y gradients (dx and dy) in the usual way. The function 

'sign' is TRUE if the sign of dx is positive else it is FALSE (this is 
required later on).

1 PROCEDURE find_angles;
2 VAR dx, dy, dxplusdy :INTEGER;
3
4 BEGIN
5 count:=0; y;=0;
6 REPEAT x:=0;
7 REPEAT
8 dx := (P8+Pl*2+P2) - (P4+p 5*2+P6); { find Sobel - dx }
9 dy ;= (P6+P7*2+P8) - (P2+P3*2+P4); { find Sobel - dy }
10 dxplusdy := ABS(dx) + ABS(dy)
11 IF dxplusdy > thrl THEN { an edge element }
12 BEGIN
13 Q0:=255; { Set flag in Q-space }
14 edge[count].XX := x; { save x,y,angle & sign }
15 edge[count].yy := y;
16 edge[count].theta := sobelangle(dx,dy);
17 edge[count].sign := sign(dx);
18 count ;= count + 1;
19 END; x:=x+l
20 UNTIL x=128; y:=y+l { do x }
21 UNTIL y=128; { do y }
22 END;

Figure 3.14 Finding the angles of the edge 
points of the biscuit

The next step is to scan the array 'edge' and group all angles such 
that, for every angle found, a counter is incremented in Hough space 

corresponding to that angle. The algorithm is given in Figure 3.15. 
Note that here. Hough space here is one-dimensional (as opposed to 

two-dimensional for the centre finding algorithm). A simple linear 

smoothing algorithm was then applied to 'hough_space' in order to smooth 

the effects of noise.
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1 PROCEDURE group_angles;
2 VAR i :INTEGER;
3
4 FOR i := 1 TO count DO
5 BEGIN
6 hough__space[edge[i].theta] := hough_space[edge[i].theta] + 1
7 END;

Figure 3.15 Hough transform to determine the 
orientation of the biscuit

3.4.4 Determining the Peak Angles in the Image

The next step is to locate the peaks - this will determine the 
orientations of the sides of the biscuit. First suggestions might 
indicate that a fixed threshold would suffice but practice has found 
that this was inadequate, particularly if another section of biscuit 

entered the field of view of the camera or the image was noisy. It was 

therefore necessary to develop an automatic thresholding algorithm. 

This was accomplished by setting the threshold to a limit that exceeded 
the normal bounds. A scan along the array 'hough_space' is then carried 
out to see if two peaks (above the threshold) occurred. (Here, we are 
assuming that the object is rectangular so only two peaks will 

occur.) If less than two peaks were found then the threshold is

decremented and the process is repeated. If more than two peaks are

found at the same threshold or the threshold goes below a minimum, then 

the object is assumed not to be rectangular. This may appear a time 

consuming process but in practice, less than three iterations are 

generally needed (c.f. timings in Section 3.4.9). When two peaks are 

found, a simple calculation will reveal if they correspond to 

perpendicular lines before further analysis proceeds. This method has 

been found to detect angles with an error of ±5°. This large range (the 

Sobel from which the angles were derived is accurate to ~%^) is because

the biscuit has ragged edges. Thus, a fair degree of tolerance must be
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taken into account.

The next step is to locate the points in each line individually in 
order to apply a least squares fit to the points.

3.4.5 Least Squares Fit Matching to the Edge Points

Two main problems occur for trying to fit a series of biscuit edge 
points to a line;

1. If the chocolate has insufficient chocolate coating, those parts 
uncovered will be detected as edges whose angles may coincide with 
those of the true edges (Figure 3.16a).

2. If the next product is partially visible in the scene and orientated 
at the same angle or a product defect is present that has edge 
points orientated at the same angle as an edge (Figure 3.16b), this 

too will give misleading results.

Applying a least squares fit to the points in either case will give 
a false result. The first problem is essentially to remove those points 
of the biscuit not associated with a true edge. An example of this is 

given in Figure 3.10h. From experiment, it was found that these false 

edges either form a closed loop or they are small. Successive 

application of the algorithm in Figure 3.17 three times removes all 

internal points not related to the edge of the biscuit.

The second problem in eliminating the 'false' points with the same 

angle on the edge of the biscuit (Figure 3.16b) requires more attention. 

For instance, if we applied a least squares fit to these points, the 

line will obviously be incorrect because of these false points, i.e. the 

pairs of points 1 and 2, and 3 and 4 in Figure 3.16b are considered to 

belong the same line because they have the same orientation and sign of
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Figure 3.16a Edge points revealed on an uncovered chocolate biscuit.
These have the same orientation as the 'true' edge points,

Figure 3.16b Edge points revealed on a biscuit with chocolate overflow.
This is complicated by the fact that another biscuit with 
the same orientation is entering the field of view of the 
camera
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the Sobel gradient. This can be solved as follows.

1 { Remove middle bits }
2
3 PROCEDURE remove ;
4 VAR i, cnt :INTEGER;
5
6 BEGIN
7 FOR i := 1 TO count DO { count is no. of edge points detected }
8 BEGIN
8 x:=edge[i].xx; y:=edge[i].yy;
10 cnt:=Q1+Q2+Q3+Q4+Q5+Q6+Q7+Q8;
11 IF cnt < 255*4 THEN Q0:=0; { < 4 pixels in Q-space set? }
12 END;
13 END;

Figure 3.17 Removing points not associated with 
the boundary of the biscuit

The first step is to isolate all four sides of the biscuit. The 

perpendicular edges are easily separated by partitioning the edges based 
on their angles (Section 3.4.4). This leaves us with two separate pairs 
of parallel edges. Each edge can now be isolated by considering each 

point based on the sign of its Sobel gradient (Figure 3.14); however, 
this will also include those points not relevant to the edge. The next 

step is to remove these points. We can note that these false points 

only occur at the ends of a line 'drawn' between both points, i.e. at 
the end points in the arrays which hold the (x,y) coordinates of all the 

points in that line. Therefore, if we check the angle between both end 

points against the correct angle derived from Section 3.4.4, this will 
show whether either point is a false point. If either is false, then 

they are both eliminated from the array. This process is repeated until 

a correct angle is found. (Note that, since we cannot detect which 

point is the 'false' point without further computation, both points must 

be eliminated.) In practice, this has found to produce good results as, 

despite the removal of 'good' points, there are generally enough points 

available to produce a good straight line fit to the edges. The
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algorithm for this is given in Figure 3.18.

1 { Remove incorrect end points }
2
3 PROCEDURE remove_end_points;
4 VAR i, tmp, temp_angle :INTEGER;
5 goon :BOOLEAN;
6
7 BEGIN
8 i:=l; goon:=TRUE;
9 REPEAT { point count = no edge points in line }
10 tmp:=point count+l-i; { locatTon in array of end of line }
11
12 { temp_angle = angle between both end points }
13 temp_angle;=angle(xarray[tmp],yarray[tmp],xarray[i],yarray[i]);
14 IF NOT inside_range(temp_angle) THEN remove_it(tmp,i) ELSE
15 goon:=FALSE;
16 UNTIL NOT goon;
17 END;

Figure 3.18 Removing points not associated with current edge

' remove_it' in line 14 removes the end points from the array. 
' inside_range' also in line 14 merely checks the angle between both 

points.

Having done this, we can now apply the least squares fit method in

order to fit the best line to these points. If we consider that dĵ  is

the vertical error distance between the point at arid the
proposed best-fit line (Figure 3.19), then the least squares fit method 

fits the line by minimising

d^2 + d^2 + _, + d^2

i.e. the sum of the squares of the vertical errors [101].

Consider the equation of the line

y = bx + a

If we have a set of points (x^,y^), (X2,y2) • • • (x̂ ^̂ ŷ )̂ ̂ this can be

written in matrix form [101] as
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Figure 3.19 Least-squares fit to a set of experimental points. A  line 
is found such that the distance (d) between the line and 
the points is minimised

y=
yi 1 Xg

M=

i

v=

where b and a are the required values, i.e. the gradient and intercept 

of the line respectively. These values are obtained by the formula

V = y

where is the transpose of M and is the inverse of the product
of the transpose and the original matrix. In all cases this produces a 

2x2 matrix. However, rather than multiply all elements out, further 

analysis reveals that a significant amount of simplification can be 

incorporated into the program thus reducing the amount of processing 

considerably. The algorithm is given below in Figure 3.20. Note that 

the procedure is called with the number of points to be fitted (nopts).
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=mtin[ 2,2 ]/determinant ; 
=mtm[1,1]/determinant; 
=-mtm[2,1]/determinant; 
=-mtm[1,2 3/dete rminant;

1 { Least squares fit to a set of points.
2 The X and y coordinates of the line to be fitted are assumed to
3 be in two arrays labeled 'xarray' and 'yarray'. Thus
4 (xarray[l],yarray[l]) is equivalent to (x,y) of the first point.

6 PROCEDURE least_squares_fit(nopts :INTEGER);
7 BEGIN
8 { 2x2 matrix mtm = M M, a & b are defined in the main program }
9
10 a:=0; b:=0; mtm[l,l]:=0; mtm[l,2]:=0; mtm[2,l]:=0; mtm[2,2];=0;
11 FOR i:= 1 TO nopts DO mtm[2,l] :=mtm[2,l] + xarray[i];
12 FOR i:= 1 TO nopts DO mtm[2,2] :=mtm[2,2] + xarray[ i]*xarray[ i] ;
13 mtm[l,l] := nopts;
14 mtmi 1,2] := mtm[2,l]
15 determinant := mtm[l,l]*mtm[2,2]-mtm[l,2]*mtm[2,l] ;
16 .
17 { 2x2 matrix mtm_inverse = (M M) }
18
19 mtm_inverse [1,1]
20 mtm_inverse[2,2]
21 mtm_inverse[l,2]
22 mtm inverse[2,1]
23
24 FOR i := 1 TO nopts DO
25 a;=a+(mtminverse[l,l]+mtminverse[l,2]*xarray[i])*yarray[i];
26
27 FOR i := 1 TO nopts DO
38 b:=b+(mtminverse[2,l]+mtminverse[2,2]*xarray[i])*yarray[i];
29
30 END;

Figure 3.20 Least-squares fit to a set of points

The equation of the line is thus 

y = bx + a
where a and b are determined in lines 24 and 27 respectively.

3.4.6 Finding the Corners and Size of the Biscuit

After the least squares fit to every line we will have four lines 

represented by the equations:

y = b^x + a. (1)
y = b«x + a^ (2)
y = bgX + a^ (3)
y = b^x + a^ (4)

where lines (1) and (2) are parallel to each other (as are (3) and (4)),
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i.e. bl~b2 and b3~b4 and lines (1),(3), (1),(4), (2),(3) and (2),(4) are 

perpendicular to each other. The corners of the biscuit are now found 
by considering that the position of one of the corners is the point 

where two perpendicular edges of the biscuit meet. For example, 

consider the two perpendicular lines (1) and (3), the position of the 
first corner of the biscuit can be found by rearranging the equations 
for (1) and (3) such that x and y in (1) equals x and y in (3), thus

X = (ag-a^)/(b^-bg)

and

y = ((a^/t^)-(ag/t)^)) / (1/t^-l/b^)

where â  ̂and bĵ , are determined from the least squares fit for the 
appropriate line. The length and width of the biscuit can then 

determined by Pythagoras's theorem from the coordinates of the biscuit.

3.4.7 Determining the Amount of Chocolate Coating

In order to determine the amount of chocolate coating on the 
biscuit, a simple suitably chosen threshold will suffice within the 

biscuit in order to distinguish between those parts of the biscuit that 

have been covered by chocolate and those parts that have not. 
Therefore, by tracking across the biscuit applying the threshold (all 

areas within the model template from the last step) and accumulating the 

number of pixels over a threshold, a comparison between this value and 
the area scanned will produce a percentage of the biscuit not covered 

with chocolate. This figure is compared with an acceptable figure (1% 

in this case) to determine if the biscuit should be rejected.

3.4.8 Determining the Amount of Chocolate Overflow

This step is basically the opposite of the last step. Here, a 

threshold (intensity of the chocolate) is applied to a small area
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outside the model template. A percentage of the biscuit outside the 

template is compared against an acceptable value (0.5% in this case) in 

order to determine whether there is significant chocolate overflow. The 

run-time output and execution times follow in the next section.

3.4.9 Run-time Results and Timings

Below are the run-time results for the test images, Figures 3.10a

to 3.10g. The resultant images are given in Figures 3.21a to 3.21g. 
The white outline surrounding the biscuit defines the template from 

which we will work. Note how extrusions and lack of chocolate are 

ignored. The white shading signifies both uncovered areas of biscuit 

(within the template) and excess chocolate (outside the template). Each 

set of results is accompanied with a PASS/FAIL label.

Following this are the timings for each part of the algorithm in 

milliseconds (Table 3.2). All times are derived from a PDP-11/73
processor operating on a 128x128 image. The times for SIP (Chapter 5)

are also given. It should be noted that the thresholds in the algorithm 
can be altered for optimum inspection. The thresholds chosen here were 

determined experimentally and gave good results. Note that

determination of the size of the biscuit has been omitted as in all

cases the time taken was 1ms. The initialisation procedure took 2ms.

’ig Sobel GroupsSmooth Determine Least Chocolate Chocolate Total
!.21 angles angles Squares coating overflow time

(ms) (ms) (ms) (ms) (ms) (ms) (ms)

a 1268 26 15 288 146 52 1798
b 1325 31 15 374 158 59 1965
c 1338 32 5 373 212 55 2018
d 1288 28 2 312 147 51 1831
e 1301 29 10 320 156 54 1855
f 1300 28 5 316 151 52 1855
9 1293 28 7 308 145 52 1836

Table 3.2 Breakdown of execution times of the rectangular 
biscuit algorithm on seven different images
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Figure 3.21 Result of the Biscuit Algorithm

- 109 -



tr*

Figure 3.21 Result of the Biscuit Algorithm
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(a) Orientation of biscuit sides 
Length of sides 
Biscuit show through 
Chocolate overflow 
Biscuit PASSED inspection.

-27° and 78° 
98 97 39 40 
0.31%
0.16%

PASS
PASS
PASS

(b) Orientation of biscuit sides 
Length of sides 
Biscuit show through 
Chocolate overflow 
Biscuit FAILED inspection.

-47° and 64°
109 109 39 39 FAIL 
0.47% PASS
0.11% PASS

c) Orientation of biscuit sides 
Length of sides 
Biscuit show through 
Chocolate overflow 
Biscuit FAILED inspection.

-35° and 77°
101 101 40 37 FAIL 
34.1% FAIL
0.0% PASS

(d) Orientation of biscuit sides 
Length of sides 
Biscuit show through 
Chocolate overflow 
Biscuit FAILED inspection.

-23° and 82°
97 96 39 41 PASS 
13.1% FAIL
0.0% PASS

(e) Orientation of biscuit sides 
Length of sides 
Biscuit show through 
Chocolate overflow 
Biscuit FAILED inspection.

-28° and 77°
98 98 43 42 FAIL 
0.16% PASS
0.48% FAIL

(f) Orientation of biscuit sides 
Length of sides 
Biscuit show through 
Chocolate overflow 
Biscuit FAILED inspection.

-25° and 81°
100 97 41 42 PASS 
0.64% PASS
0.50% FAIL

(g) Orientation of biscuit sides 
Length of sides 
Biscuit show through 
Chocolate overflow 
Biscuit FAILED inspection.

-25° and 76° 
97 98 38 38
0.29%
1.4%

PASS
PASS
FAIL
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From Table 3.2, it is interesting to note that in the initial pass over 

the image, the Sobel procedure constitutes ~70% of the total processing 
time. This algorithm was implemented on SIP using a lookup table for 

the determination of the angles. The whole algorithm showed a 30 times 

speed improvement over the PDP-11/73 timings. This represents a 

processing rate of 8-9 biscuits per second, including I/O.

3.5 PROGRAM OPTIMISATION

Conventional algorithms may require several passes over an image in 
order to extract the information required. These algorithms usually 

involve parallel algorithms such as a Sobel, threshold and filters which 

are time consuming when 128x128 and a 256x256 images are used.

Real-time industrial algorithms extract features and measurements from a

known product. This product may typically occupy 30% of the image 
space. ^If it is just required to locate the edge elements to determine 
the necessary information then this may typically represent less than 5% 

of the image space.

By locating the object and limiting the bounds of the image to only 
the space occupied by the object, then a significant amount of redundant 

information can be eliminated hence increasing the performance of the 
algorithm. Alternatively, if the majority of the information required 

can be derived from the edge elements (as in the two algorithms

described) then the data set can be reduced to only a small set of 

values (typically less than 1000 for a 128x128 image). The overall 
effect of this is that the execution time of the algorithm can be

significantly decreased.

Below is a list of several points that can help in improving the 

execution time of an algorithm.

- 112 -



1. Floating point calculations may be present in the algorithm. These 

should occur only when necessary. Integers should otherwise be used 
at all times.

2. Trigometric and frequently occurring calculations can often be 

stored in a lookup table. Thus, the time to do the calculation is 
in effect the access time of the memory.

3. Limit the area of processing to the area occupied by the object.

4. Only apply an edge detector where necessary - see Section 3.5.1 for 
a fuller explanation.

5. Incorporate maximum information about the object into the algorithm. 
For instance, we assumed that the biscuit (Section 3.5) was 
rectangular hence eliminating the need to determine the features.

6. Writing critical parts of the algorithm in machine code. This is a 
debatable point as the execution time of an algorithm written in a 

high level language often depends on the quality of the code 

generated by the complier.

3.5.1 A Priori Knowledge for Industrial Recognition

In industrial recognition, we have the advantage that we know what 

the product should 'look' like and the conditions in which it appears,

i.e. the reflectance of the product and background illumination etc. We 
can therefore take advantage of this knowledge in order to improve the 

performance of an algorithm. For instance, if we know that the majority 

of edge elements lie between two distinct grey-level values because of 

the lighting conditions set up, then, rather than calculate a Sobel for 

every point in the image, it is only necessary to calculate a Sobel for 

those elements that lie between the two previously mentioned values.
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Thus, the number of Sobel calculations can be dramatically reduced, i.e. 

y:=0;
REPEAT x:=0;
REPEAT
IF (PO > min_thresh) AND (PO < max thresh) THEN 
CALCULATE_SOBEL ;
X := x+1;

UNTIL x=128; y:=y+l 
UNTIL y=128; { Do for a 128x128 image }

Table 3.3 shows the percentage decrease in execution time for both the 

Sobel procedure and the overall execution times applied to the 
rectangular biscuit algorithm over all seven images.

% decrease in time % decrease in time
for Sobel operation for overall algorithm

(ms) (ms)

37 26
54 44
20 10
53 40
47 32
54 27
48 33

Table 3.3 Table of the reduction in execution time for 
the Sobel operation and the whole algorithm 
after program optimisation

From the above figures, we can see that a median of 48% reduction in 
execution time for the Sobel operation can be achieved resulting in a 
median of a decrease in program execution time of 32%. (Note that the 

median seems to be a better measure of the "typical" execution time than 

the average in this case, as the median represents where the bulk of the 
execution times lie.) Therefore, we can conclude that an important 

factor in real-time industrial processing is to detect and eliminate as 

much redundant information as possible by incorporating maximal a priori 

knowledge of the scene into the algorithm, hence only processing those 

parts that are necessary to extract the required information.
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3.5.2 Eliminating Bottlenecks using Hardware Accelerators

In such algorithms as those described above, there usually exists a 

bottleneck that predominates over the execution time of the algorithm. 

If we consider the 0-ring algorithm, we can see that the initial pass of 

applying a Sobel represents ~70% of the total execution time. Analysis 

of the procedure that contains the Sobel calculation shows that 90-95% 

of the time is spent calculating the Sobel, i.e. the Hough calculation 

only accounts for 5-10% of the execution time of the procedure. This 

would suggest that the Sobel calculation should be carried out in 

hardware. The sections of an algorithm that should be executed in 
hardware can be determined by a C*T test (Section 7.5.2), but software 

optimisation should also be considered. As a typical example, a recent 
industrial analysis algorithm developed at RHBNC initially took over a 
minute but was reduced to ~2s (running on a PDP-11/34 with a 128x128 

image) after software optimisation [29]. Further increase in 

performance was gained by upgrading the processor to a PDP-11/73.

3.6 SUMMARY

This chapter has looked at two inspection algorithms that adopt 
different forms of the Hough transform. These algorithms were different 

in the sense that one inspected 0-rings whose orientation was 

independent of the x and y axis whereas the other inspected a 
rectangular product which was orientation dependent. This showed the 

usefulness of the Hough transform in two different applications. 

Although these programs have only been applied to one product, they can 

be applied to similar products, e.g. circular chocolate covered biscuits 

or rectangular machine parts. Only minor alterations would be necessary 

to the programs, i.e. changing of thresholds, etc. but the principle 

methods for detection and scrutiny would remain the same. (With minor 

alterations to the rectangular biscuit algorithm, e.g. looking for three
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peaks in Hough space for triangular products, different straight-lined 
shaped products can be inspected.)

An investigation of the concepts of real-time algorithms showed 
that, by extracting only relevant information and hence reducing the 

data set of the image, this allowed real-time execution times to be 
accomplished on special hardware (Chapter 5). A priori knowledge 

improved the performance dramatically and helped in eliminating 

redundant steps. Analysis of the timings of both algorithms showed that 

the initial phase of locating the object and applying the Hough 

transform represented more than 60-80% of the total execution time but 

was significantly reduced after software optimisation. Overall, 

important aims in devising inspection algorithms include accuracy, 
robustness, speed and low cost implementation (Chapter 5). These 

algorithms fulfil all of these requirements.

Application of a parallel algorithm to pre-process an image may 
constitute ~70% of the total execution time on a sequential processor. 

This is an important fact that is typical of many image processing 

algorithms (c.f. algorithms above, [29]) and will be discussed in detail 
in Chapters 4 and 8. We will now look at the sequential implementation 

of both algorithms. This will allow us to investigate the validity of 

parallel and sequential processors in industrial inspection.
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CHAPTER 4

SEQUENTIAL IMPLEMENTATION OF INSPECTION TASKS 

"Christ! What are patterns for?"

Patterns in the Complete Poetical Works of Amy Lowell

4.1 INTRODUCTION

Chapter 3 described two inspection algorithms that exhibited both 
parallel and sequential tasks (Section 2.2). For maximum efficiency, it 

is important to try to match the task to the architecture of the 

machine, i.e. sequential tasks should be performed on a sequential 
machine and parallel tasks on a parallel machine. Also, it is generally 

easier to implement a sequential algorithm on a sequential machine than 

it is on a parallel machine and vice-versa.

When relating to industrial inspection other factors such as cost 
must also be considered. A discussion of these points is undertaken 

which leads to an investigation into algorithms suitable for sequential 
implementation. The chain code is cited as being amongst the most 

useful. The main disadvantage of the chain code is that it is generally 

restricted to binary images and susceptible to noise degradation. This 

method is extended to the grey scale case and a novel method for 

improving the robustness of measurements taken from the chain code in 

noisy images using the Hough transform is described. This is applied to
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the biscuit algorithm described in Section 3.4 and the O-ring algorithm 

described in Section 3.3. First, let us discuss the possibility of 
improving the speed of a parallel algorithm by using sequential 
processes.

4.2 SEQUENTIAL ALGORITHMS IN INDUSTRIAL INSPECTION

A significant amount of information required by an inspection task 

is contained at the edges of the object, e.g. derivation of the centre 
points of an O-ring (Section 3.3) and the orientation of the edges of 

the biscuit (Section 3.4). Edges typically represent ~5% of the total 

image space. Analysis of the algorithms in Chapter 3 shows that the 
pre-processing stage entails applying a Sobel edge detector to every 

point in the image, making ~95% of the processing redundant. A more 

efficient method would be to apply the Sobel to only the edge 
points - this suggests tracking around the border of an object. This 
concept displays certain advantages over the parallel approach - in 

particular, computation time is reduced and information is localised. 
Thus, information such as perimeter, area, height etc., can be easily 

derived - this would be otherwise difficult to achieve on a parallel 

processor.

There are many other reasons for implementing an inspection 

algorithm sequentially. Often, if appropriate techniques are used and 

the algorithm is optimised along the lines given in Section 3.5, a 

sequential processor can achieve a lower algorithm execution time than a 

parallel processor. Considering that the cost of a sequential processor 
is often much less than a parallel processor, it would appear that a 

sequential processor is a more cost-effective solution for industrial 

recognition. A comparison with a parallel machine should only be made 

with an optimally programmed sequential machine. One should not justify 

the additional cost of hardware for a parallel processor when compared
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to a non-optimally programmed sequential machine [107]. However, there 

are algorithms that are inherently parallel such as thinning (here we 
take the view that thinning is more appropriate for implementation an a 

parallel machine that a sequential machine). For this reason. 

Chapters 5 and 6 investigate a dual-processor architecture.

From this discussion, it appears that sequential processors are 

more applicable to industrial inspection than parallel processors. It 
would also appear that localising an object by tracking around its 

boundary and extracting measurements has many advantages over other 

techniques. However, the usefulness of these methods depends on the 

accuracy and the robustness required. This is discussed next.

4.3 BOUNDARY EXTRACTION ALGORITHMS

Various algorithms have been developed for extracting or using the 
boundary of an object and deriving some measurement (e.g. area), or 
finding a measure of shape description [49]. One such method is that of 
the Fourier descriptors. Here, a tracking routine is used to track 

around the boundary of an object; commonly, rather than representing the 

edge elements on the standard x-y plane, they are represented on a 
complex plane as in Figure 4.1. Thus, for each boundary point 

encountered, a complex number is obtained. At the end of the trace, the 

discrete Fourier transform (DFT) is calculated from the list of these 
points which is referred to as the Fourier descriptor (FD). Since the 

DFT is reversible, no shape information in principle is gained or lost.

Because manipulations occur in the frequency domain, it turns out 

that dependence on size and orientation can be eliminated. For this 

reason, Fourier descriptors have found their use in optical character 

recognition (OCR) [69] and more generally in object recognition such as 

the identification of three-dimensional aircraft [99]. In OCR, the
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Figure 4.1 Complex plane representation of a boundary

boundary of the character is tracked and its FD is calculated. As Lai, 
Ching and Suen pointed out, when two closed curves vAiich differ only in 
position, orientation and size with analagous starting points are 

transformed, they have identical FD's. However, because the Fourier 
transform is computationally expensive, this approach is undesirable for 

real-time industrial inspection.

Probably the most popular boundary extraction routine is the chain 
code [45] (most others are merely variations on this theme [47]). This 

has the ability to extract measurements such as the perimeter and area 
of an object while tracking. This makes it highly attractive for 

industrial inspection since these features are often required. The 
chain code has been successfully employed for automatic chocolate 

decoration [19] using such measurements. Here, the aim was to determine 

which chocolate was currently in view of the camera and to apply the 

appropriate chocolate decoration. This involved calculation of the 

area, perimeter, centre of gravity and location of the corners. As each 

chocolate was dark and the background was light (and surface information 
was not required), a simple threshold sufficed for locating the 

chocolate and determining its shape.
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An interesting point to note is a comparison between the FD's and 

the chain code when applied to OCR [69]. This showed that the Fourier 

Descriptors achieved a recognition success rate 81.74% while the chain 

code achieved a 93.74% success rate to the degree of approximation they 
took.

4.3.1 Problems with Boundary Extraction Algorithms

The main problem with boundary tracking routines is that they 

require a binary image. In the past, two approaches have been used to 
achieve this. The first is to threshold the image. This is a common

technique to employ as it is probably the least computationally
expensive of pre-processing routines. However, this is not always 

convenient; for instance, consider Figure 3.10c. A straight threshold 

would mean that those edges not covered with chocolate will go 

undetected. Another problem is that if an incorrect threshold is 
applied, this may produce meandering boundaries which do not represent 

the true boundary. This makes the chain code sensitive to noise.

The second approach is to apply an edge detector e.g. a Sobel, and 

to threshold the gradient magnitude in order to produce a binary image

of the edges. Since this usually produces an edge of 2-3 pixels wide, a
common technique is to thin the edges before tracking. However, both of 

these are time consuming operations without the use of a parallel 

processor as they are essentially parallel operations. Also, (and

probably more important), it is necessary to apply both operations to 

the whole image which would again mean a significant amount of redundant 

processing.

It is clear that the chain code has strong possibilities for 

reducing the execution time of an algorithm relative to those methods

just discussed and is investigated in the next section. Subsequent
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sections extend these ideas and implement them on both industrial 

algorithms presented in Chapter 3. Results follow each implementation. 
First, let us discuss the chain code.

4.4 THE CHAIN CODE

The chain code was originally developed by Freeman [45]. The 
purpose of the chain code was to be able to represent an arbitrary 

geometric shape by a set of numbers suitable for computer analysis. 
Freeman drew up three points that a coding scheme for line structures 
should achieve:

1. It must faithfully preserve the information of interest.

2. It must permit compact storage and be convenient for display.

3. It must facilitate any required processing.

Representing a boundary by the chain code has many advantages, for 
instance, the object can be rotated, expanded, shrunk and smoothed by 

manipulation of the code. Structural features can also be derived such 

as the area, perimeter and the location of straight lines and corners. 

The main advantage is that it has a significant speed improvement over 
other methods both in the derivation and the analysis. In order to 

clarify these points, let us first discuss how the chain code is 

derived.

4.4.1 Derivation of the Chain Code

The first step for deriving the chain code is to initially locate 

the object. If we consider the simple case of chain coding an object in 

a binary image, finding the object is simply a case of searching for the 
first pixel (edge point) with a value designated as being part of the 

object.
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Figure 4.2 One of eight possible directions in a 3x3 
window that represents the chain code

On encountering the first edge point of an object, the chain code 
follows a tracking process. In the case of a quantised binary image, at 
the first encountered edge point there is only one of eight possible 

directions that the next position could be as shown in Figure 4.2. The 
chain code chooses the next position by searching for the new edge 
element that is in the most counter-clockwise point: the code 

corresponding to this new edge element is then stored and the position 

in the image is adjusted to the position of the new edge element. This 
is repeated until the original position has been reached moving in the 

same direction (in the case of a closed contour) or no further edge 

elements exist (in the case of an open contour). Figure 4.3 depicts an 
exairple of how the chain code is derived starting at point A. (Note 

that problems occur at junctions caused by the intersection of two 

lines. However, we are not concerned with these problems as they do not 

occur with circular or rectangular shapes.)

The outline of the object can be reconstructed by scanning the code 

sequentially and adjusting the x,y coordinates as appropriate. A  useful 

feature of the chain code is that, since all positions are relative to 

each other, only the starting coordinate need be changed in order to 

shift the shape in any direction. Another advantage is that only three 

bits (eight possible values) are necessary to store the required 

information per edge element.
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AXXX xxxxxX XX XXxxxxxxx

Chain code: 07000076454444443211

Figure 4.3 Boundary of an object and its chain code

Figure 4.4 Finding the area under a curve
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Now that we have mentioned how the chain code is derived, two 

topics relevant to the chain code will now be dealt with. These are 

measurement and feature extraction, both of which play an important role 
in industrial inspection.

4.4.2 Perimeter and Area of a Shape

The perimeter of a shape is approximated by the number of even 

numbers in the code plus /2 times the number of odd digits. This is 

a typical example of a measurement that would otherwise be difficult to 
extract any other way (see Section 4.6 for an application of this 
method).

If a shape is closed and simply connected (which is usually the 

case), its integral represents the area enclosed by the chain. If the 

shape is not connected, then the integral represents the area enclosed 

by the chain with the x axis. (A simple test for closure is to perform 
a path reduction test [46]. If the curve vanishes then it is closed 
else it is open and the residue (often termed the closure) is the

minimum distance between the two end points.) Note that the digits in

the chain code can be arbitrarily rearranged without changing the length 

of the curve or the minimum distance between the end points in the case 
of a non-connected curve. The convention used here is that the area is 

positive when enclosed in a clockwise sense and negative if it is 
enclosed in a counter-clockwise sense. As an example of finding the 

area under a shape, consider the simple example of the code 

10127
the diagram of which is given in Figure 4.4. The following procedure 
was suggested by Freeman [45] to determine the area of an arbitrary 

shape. First, a modifier B is defined to represent the change in

distance of the curve from the x-axis. This in effect gives the value

of the leading edge of the particular vertical column. Thus, in our
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example, the area (A) is initially zero and the modifier B is set equal 

to two. The initial slope of '1' increases the area by the amount of 

the first vertical column to 2^ and the modifier to change to three. 

The next slope of '0' causes no change in the modifier since it is 

running parallel to the x-axis but increases the area by the amount of 
the modifier to 5^. The next step of slope '1' increases the area by 

the value of the modifier plus h to nine and the value of the modifier 

to four. The slope of '2' gives no change in the area but increases the 

modifier to five. The slope of increases the area by the modifier 

minus ^ (to 13̂ i) and decreases the modifier to four. This leaves us

with a total area of 13̂  ̂square units. This procedure can be summed up 
by developing a set of rules for all eight slopes. These are summed up 
in Table 4.1.

Slope Change in Change
Area modifie]

0 +B +0
1 +B+% +1
2 +0 +1
3 —B—^ +1
4 -B +0
5 —B+^ -1
6 +0 -1
7 +B—^ -1

Table 4.1 Table for automatic calculation of the area under 
a chain coded figure

Thus the area of an arbitrary object, whether closed or open can be 
determined by simple manipulation of the chain code. Other measurements 

such as the location of the centre of gravity, the width and height of 

an object can also be derived quite simply. These will not be discussed 

here but can be readily found in literature on the subject of chain 

codes [46], [47]. One advantage with the chain code is that these 

measurements can be calculated as the code is being derived making it an 

attractive proposition for real-time calculation of measurements of
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objects involving a minimal amount of hardware.

We will now discuss how to extract features from the chain code. 

This method (in general terms) derives a measurement of curvature and 

has been applied for locating corners in an object. This topic is 

covered with a view to implementing the algorithms described in 
Chapter 3.

4.4.3 Finding Corners in a Shape

One of the more useful possibilities that has emerged from the 
chain code is the ability to measure curvature of line figures with a 
view to detecting the presence of corners. The basic technique was 

developed by Freeman and Davis [48] who observed the behaviour of a line 

segment of length s being moved around the figure as shown in 

Figure 4.5. The angular differences d̂  ̂ between successive segment 

positions are used as a smoothed measure of local curvature along the 
chain. Thus, if the curvature only deviated slightly from zero (d^~0) 

across a sequence of t positions, then this would indicate a straight 

line of length s+t. However, if the deviation was non-zero but constant 

across t positions then this would indicate a curve of length s+t of 

uniform curvature.

Freeman and Davis went on to define a corner as being the 

concatenation of two straight lines at an angle as in Figure 4.6a or two 

straight lines joined by a curve as depicted Figure 4.6b. Thus, 

applying a straight line segment of length s across Figure 4.6a, we will 

get a d. of approximately zero along both lines for p<B and p>B+s (where 
p is the position of the leading point of the line segment) and a 

nonzero d. for the sections p>B and p<B+s. This nonzero condition lasts 

for s+1 positions for sharp corners and m+s positions for cases such as 

those in Figure 4.6b where m is the number of nodes in the curve,
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Figure 4.5 Line segment scanned around 
a chain coded figure
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Figure 4.6 Illustration of the effect of a line-segment 
at (a) sharp corners and (b) rounded corners
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i.e. between B and D (note m=l for the concatenation of two straight 

lines). The value m gives us a measure of the curvature. Thus, in 
general, Freeman and Davis characterised a corner by the concatenation 

of three distinct regions, two of which have a d^ of zero and one which 
has a nonzero d^.

In practice, the length of the line must be large enough to avoid 

noise such as that produced by quantisation that causes "wobble" of the 
line segment yet small enough to detect corners close to each other. A 
length between 5-13, depending on the closeness of the curves has been 

found [48] to be suitable for detecting corners of greater than 30°. 

Although this may appear to be quite large. Freeman commented that 
corners of less than 30° are not likely to be of great interest anyway.

The general problem with the chain code is that it requires a 
binary image which is not always easily achieved. The next section 
attempts to generalise the chain code to the grey scale case. By doing 

this, we will hopefully show that the chain code can be usefully used in 

an industrial environment and can gain a significant speed improvement 
over the methods used in Chapter 3, while retaining the speed and 

robustness necessary for industrial analysis.

4.5 BOUNDARY EXTRACTION FROM A GREY SCALE IMAGE

Extracting information from a grey scale image is crucial to the 
success of an industrial inspection algorithm. Assuming a binary image 

greatly limits the applications because (1) it is not always accurately 
achieved and (2) information content in the image is reduced, 

e.g. information on surface texture is removed. It is for these reasons 

that the chain code has been restricted to relatively simple tasks where 

binary images suffice. Here, we attempt to show how the chain coded 
boundary of an object can be extracted from a grey scale image with
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little computational effort, and show how it can be applied to more 
complex inspection tasks such as those in Chapter 3.

From the explanation of the chain code (Section 4.4), each element 

in the 3x3 window is examined to see if it belongs to the boundary of an 
object. If instead we took every element in the 3x3 window as the 

centre of another 3x3 window, and applied an edge detector (the Sobel 

was used in the actual implementation) to each position, and thresholded 
the magnitude of the gradient (the threshold defining an edge point), a 

binary edge image will be produced, only in the region of interest. 

(The first edge point is found by applying the Sobel and thresholding 
the magnitude of the gradient.) Since the edge is extracted

sequentially, this eliminates the need to apply an edge detector to the
whole image. In fact, analysis shows that the time to extract the edges 
is reduced by a factor ~5. However, simultaneously with the edge 

extraction process, the edge is chain coded. From Table 4.2, this adds 

very little time (~20ms) to the total execution time.

One disadvantage with the chain code is that it is susceptible to 

noise; however, because a thresholded magnitude is applied to the result 

of the Sobel, the effects of noise are greatly minimised. One advantage 
with the chain code is that the perimeter and area can be derived

simultaneously with the derivation of the code. Therefore, since we

expect a product to be of a certain size (~280 pixels for the chocolate 
biscuit), anything below a perimeter value of 50 and above 400 can be 

ignored and the scan continued. (Note that these are purely arbitrary 

values and are dependent on the application.) This produces an 
effective way of ignoring partial or broken products entering the field 

of view of the camera.
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We shall now consider the implementation of these techniques on the 
chocolate biscuit algorithm (Section 3.4). The results derived from 

this are then compared with the original results given in Section 3.4.9.

4.6 SEQUENTIAL IMPLEMENTATION OF THE CHOCOLATE BISCUIT ALGORITHM

Referring back to Section 3.4, the reason for determining the 

orientation of each edge of the biscuit was to isolate the edge points

belonging to each line of the rectangular biscuit. The least squares

method was then applied to each group of edge points which determined a

template for the biscuit, and the corners were then located. One may
note that the isolation of each line is trivial if we just consider the 
sign of the x and y gradients; however, if more than one (or partial) 

product exists in the image, this method would no longer work. This is 
not the case with the tracking method since only one object is being 

scrutinised at any one time. In this case, a comparison of the sign of

X and y gradients will suffice; however, the aim of this exercise is to
extract the same information, i.e. we must determine the orientation of
the biscuit. (The orientation is in fact useful in some areas of

industrial recognition where it is necessary for a robot arm to pick up

the object.) This will then provide a more realistic result since both

algorithms will only differ in their implementation.

4.6.1 Finding the Corners of the Biscuit

After chain coding the biscuit using the algorithm in Section 4.5, 

the obvious solution for finding the corners of the biscuit is to apply 

the corner finding algorithm described in Section 4.4.3. However, this 

was found unsuitable for rounded corners (such as those in the test 

images 3.10a to 3.10g); therefore, some other technique had to be
developed. The method used was similar to that described in the

original algorithm, i.e. finding the most prominent angles in the scene,
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only here we are localising the information to the biscuit.

This highlights one of the advantages for using the chain code. 

Because information is local to the object, one can in principle have a 

number of products in the scene and scrutinise each one in turn. Thus 

for each product, an accurate measurement can be made of (in this case) 
the most prominent angles of the boundary of the product. In the

previous algorithm where the most prominent angles in the whole image 
were taken into consideration, multiple peaks would exist when many 

products were present. Thus, that method is only suitable when only one 
complete product is present.

The main problem now is to extract the most prominent angles in the 
object. Having done this, we can isolate each line, and then apply the 

least squares fit as before (Section 3.4.5) to the edge points of each 

line. In order to do this, a novel approach of applying the Hough 
transform in conjunction with chain code was used. This is described in 

the next section.

4.6.2 Application of the Hough Transform to the Chain Code

As we have seen in Chapter 3, the Hough transform is a useful 
method for improving the robustness of an algorithm. In order to find 

the most prominent angles in the biscuit, we can apply the Hough 

transform and a technique similar to that described in Section 4.4.3, 

i.e. to move a line segment along the boundary (Figure 4.5) of the
biscuit. However, instead of measuring the deviations between angles as 

is commonly done to detect corners, we can instead accumulate (in the

Hough array) the angles the line segment (Is) makes with the x axis for 

every position in the code, i.e.

hough [angle_of_ls] := hough [ angle_of_ls ] + 1;
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Thus, peaks in the Hough array will occur for the most frequently 

occurring angles in the biscuit, i.e. the sides. It was found that a 
line segment of length 10 was found satisfactory for both the long and 

shorter sides, and a threshold of 12 was applied to the Hough array to 

eliminate spurious angles produced from stray chocolate such as shown in 
Figures 3.10e, 3.10f and 3.10g.

Having done this, we can now isolate each line as before based on 

their angles and sign of their Sobel x and y gradient components. This 
is then followed by the least squares method and scrutiny, all of these 

being the same as before. The results of this are given in the next 

section. In effect, these steps replace the first three steps for the 
biscuit algorithm, i.e. the Sobel and the grouping, smoothing and 
determination of the angles.

4.6.3 Results

The timings given in Table 4.2 are the result of applying the above 
algorithm on the same test images as the previous algorithm 
(Figures 3.10a to 3.10g). All timings are in milliseconds and are 

derived from the same system, i.e. a PDP-11/73 operating on a 128x128 
frame store. Note that the initialisation procedure in all cases took 

8ms. Also note that chain coding and the edge detection occur in the 

same routine; however, the time spent in each routine is given. The 
times for the whole algorithm (including least squares fit, etc.) are 

given in the last column. All angles derived were within +6° of the 

actual orientation as measured manually. This shows that little or no 

accuracy has been lost. It is worth noting that the Sobel operator is 

accurate to [64]. The discrepancy in the results is caused by the

irregular sides of the biscuit. Besides, a result of ±6° is far more 

accurate than required in order to inspect the biscuit.
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Chain Locating Angles Total Whole
Coding in Biscuit Time Algorithm
(ms) (ms) (ms) (ms)
21 209 498 1163
20 214 501 1328
19 205 488 1292
20 209 498 1197
20 221 517 1244
21 216 510 1193
20 217 510 1191

Fig Sobel on
3.21 Edges

(ms)

a 260
b 259
c 256
d 261
e 268
f 265
g 265

Table 4.2 Breakdown of execution times for determining 
the orientation of the rectangular biscuit 
using the chain code

Comparing these results with those in Table 3.2, we can see that the 
edge detection process has been reduced by a factor ~5 (from ~1300ms). 

The overall reduction in execution time for the determination of the 

angles of the biscuit amounts to a factor ~2.7 (from ~1340ms) hence 
producing an overall reduction in execution time for the whole algorithm 
by a factor ~1.6 (from ~1900ms). This shows that, by implementing the 

algorithm sequentially, a significant gain in performance can be 
achieved with very little loss in accuracy of the results.

4.6.4 Discussion

Chapter 5 describes a high-speed sequential processor specifically 

designed for algorithms such as this. This has shown to give 25 times 
increase in execution time over a PDP-11/73 which would reduce the 

execution time of the algorithm to ~50ms (or ~100ms including 

I/O) - this is equivalent to ten biscuits per second. Note that this is 
a similar result after program optimisation has been carried out on the 
original algorithm in Section 3.5. However, after optimisation of the 

sequential version by applying similar techniques, an average reduction 

of 20% in the determination of the angles was achieved. It is 

interesting to note that the final figure relating the total execution
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time of the sequential version of the algorithm after optimisation is 

less than the edge detect stage of the original algorithm. Since this 

is well within the limits of industrial inspection constraints, this 

brings doubt to whether a parallel processor in such an industrial 

environment would be more cost-effective, especially since it would be 

extremely difficult (if not impossible) to implement the algorithms 

given in Chapter 3 on a parallel processor. After all, even if it could 

achieve a greater throughput, the actual processing is ultimately 

limited to the product speed which is typically only 5-10 products per 

second in this particular case or for most lines less than 30 
products/sec.

However, there are cases when a parallel processor will have a far 
greater throughput for those parts of the algorithm that can be executed 
in parallel rather than implementing them on a sequential 
processor - for example, algorithms where the whole image (rather than 
just parts of the image) need to be analysed. Such a case is in the 

segmentation of satellite images where the whole image is of interest. 

However, it is rare that an algorithm can be fully parallelised and this 

generally leads to the parallel implementation of an inherently 

sequential task. This in turn produces a significant decrease in 
performance of the parallel processor. It is for this reason that a 
dual-processor configuration consisting of a parallel processor and a 

sequential processor may appear to be an optimum solution. This is 

discussed in the Chapters 5 and 6.

4.7 SEQUENTIAL IMPLEMENTATION OF THE 0-RING ALGORITHM

Referring back to Section 3.3 when we discussed the inspection of 

0-rings - in order to locate the centre of the ring, it was necessary to 

apply a Sobel to every point in the image and, for every edge point 

encountered, a candidate centre point was calculated which was recorded
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in Hough space. Peaks in Hough space indicated the centres of the 
rings.

A similar technique can be applied to the 0-ring algorithm by 

adopting the chain code as before. The 0-ring is tracked using the same 

method as the chocolate biscuit, but this time the possible candidate 
centre points are calculated at every point during the tracking 

operation described in Section 4.5. The calculation of the centre point 

requires very little additional effort as the Sobel x and y gradient 
components are already available. The accuracy of the centre points was 
found to be +1 pixel from the results in the original algorithm on 

certain pictures (see Section 4.8) and a speed improvement of 4-5 was 

recorded for the calculation of the centre points. From the timings in 
Chapter 3, a single 0-ring took 2595ms on a PDP-11/73 using a 128x128 

frame store. With the sequential version on a single 0-ring, this was 
reduced to 520ms. Thus, including the radial histogram to check for 

defects (270ms) and, this comes to 790ms, i.e. a reduction of a factor 

~3.6. Implementation on SIP (Chapter 5) shows a factor of 25-30 
reduction, hence producing a throughput of ~13 0-rings/sec.

4.8 LIMITATIONS OF SEQUENTIAL ALGORITHMS

Although the sequential implementations of the algorithms given in 

Chapter 3 give a significant reduction in their respective total 

execution times they do have their limitations. The main disadvantage 
is that, in the case of the 0-rings, the algorithm will fail for more 

that two crossed 0-rings. The reason for this lies in the fact that the 
tracking routine will begin to track the next overlapping ring at the 

intersection of the rings and fail to track the whole ring. Thus, only 

part of the ring is tracked which makes the algorithm susceptible to 

noise.
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This allows us to make a distinction between the case of when one 
should consider using either a sequential or a parallel algorithm. A 
sequential task should be considered when objects will not be overlapped 

or touching, although they may only be partially visible as previously 

discussed. This should provide a large reduction in execution time of
an algorithm over a parallel method and hence a higher inspection

product rate. However, if complex scenes are likely to exist such as

several overlapping, touching or partially visible objects - a common 
occurrence in tasks such as sorting - a parallel method should be chosen 
as this analyses the whole scene.

4.9 SUMMARY

The chain code has previously been restricted to binary images 
which have been produced by a simple threshold. However, this may not 
detect all edges (in the case of the inspection of the biscuits) which 

limits the applications. Alternative methods (e.g. edge detect followed 

by a thin) are generally computationally expensive and are more suited 
to a parallel processor. The problem here is that a parallel processor 

cannot efficiently execute the sequential tasks that are generally 

present in many algorithms.

In this chapter we have shown how the boundary of an object can be 

extracted sequentially from a grey scale image and how its chain code 
can be derived. This was applied to the chocolate biscuit algorithm
from Section 3.4 and to the 0-ring algorithm from Section 3.3. Those 

parts implemented by the chain code for the appropriate procedure showed 
a factor 4-5 reduction in execution time over the original times in 

Chapter 3. A novel method for maintaining robustness in the 

measurements by applying the Hough transform was used in the biscuit 

algorithm which showed little loss in accuracy over the original 

results. The final execution times of these algorithms when implemented
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on SIP brings doubt to whether a parallel processor is a cost-effective 
solution for industrial inspection.

However, we cited that a parallel processor will achieve, in some 

cases, a far greater throughput than could ever be achieved by a 
sequential processor, although it is rare that an algorithm can be fully 

parallelised without some ad hoc implementation of a sequential 

algorithm. We also concluded that sequential algorithms were only 
useful for scenes where only non-overlapping products are likely to 

occur. Where overlapping or touching objects were present, a parallel 

algorithm, i.e. one that analyses the whole image, should be used. For 
these reasons, a dual-processor configuration consisting of a parallel 
and a sequential processor was proposed. The next chapter (Chapter 5), 

describes a high-speed sequential processor (SIP) suitable for such a 
system. Chapter 6 describes the parallel processor (LAP) and the 

implementation of the system.
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CHAPTER 5
A HIGH-SPEED SEQUENTIAL IMAGE PROCESSOR

"I have yet to see a problem, however complicated 

which, when you looked at it in the right way, did 
not become still more complicated"

New Scientist 25 September 1969

5.1 INTRODUCTION

As we have discussed before (Chapters 3 and 4) many image 
processing algorithms exhibit a high degree of both sequentialism and 
parallelism. For this reason, a system composed of a sequential 
processor and a parallel processor would appear to be an efficient 

solution for the execution of such algorithms. This chapter describes a 

high-speed sequential image processor (SIP) along with its accompanying 
assembler. A full description of the parallel processor and the 
implementation of the system is described in Chapter 6.

If such a system is to be useful in an industrial environment, each 

processor must be capable of executing many tasks in real-time while 

remaining affordable. For this reason, a bit-slice architecture was 

chosen as the basis for both processors. This typically achieves a 

higher instruction throughput than conventional microprocessors and 

allows greater flexibility in the design of an instruction set.
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Microcode optimisation is also discussed and how it can be applied to 
SIP'S microcode.

This parallel/sequential processor configuration aims to achieve a 
high performance image processing system at low cost. First, let us 
discuss more fully the reasons for such a configuration.

5.2 REASONS FOR A PAEW^LEL/SEQUENTIAL ARCHITECTURE

Many image processing algorithms often contain both parallel and 
sequential tasks. For instance, an algorithm might locate the edges of 
an object in an image, determine a shape description model from the 

edges and extract measurements such as the perimeter, area, etc. This 
may involve the operations Sobel, threshold, chain code and manipulation 

of the chain code. Sobel and threshold are essentially parallel tasks 

(Section 2.2), while the chain code is a sequential task. It can be 
shown that sequential tasks executed on a typical parallel machine 

normally take longer to execute than on a sequential machine and 

vice-versa (Section 7.12). Therefore, unless an algorithm can be fully 
parallelised or sequentialised, optimum performance cannot be expected.

For this reason, a parallel/sequential processor configuration
would appear to be a suitable solution for executing these types of

algorithms - the parallel processor would execute the parallel tasks 
while the sequential processor would operate on the output of the

parallel processor and execute the sequential tasks. Much work has been 

done on matching an image processing architecture with the task [13], 

but the concept of a general purpose image processing computer is still 
not clear. The rest of this chapter is dedicated to a detailed

description of the sequential processor and its assembler. The parallel 

processor is described fully in Chapter 6 along with a discussion of the 

efficiencies and inefficiencies of the system. First, as an
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introduction, let us discuss the basic architectural foundation of both 
processors - microcode.

5.3 MICROPROGRAMMING

Microcoding was first introduced in the 1950's by Professor Wilkes 
when he delivered a paper entitled "The Best Way to Design an Automatic 

Calculating Machine" [78]. A microprogrammed system usually consists of 

a number of functional elements such as a microprogram memory, a program
sequencer, a processor and memory for local data storage such as

depicted in Figure 5.1. Each individual bit (or group of bits) output 
from the program memory controls a functional part of the circuit.
Here, two bits select whether the output of the program memory, 

processor or data RAM will be enabled onto the data bus; another bit 
controls the read/write line of the memory (such that it will go low on 

the second half of the clock cycle), and a group of bits designate the
desired instruction for the bit-slice processors, etc.

A bit-slice processor is essentially a 'vertical' slice of a 
microprocessor. Probably the most common bit-slice processor is the 

AMD 2901 (see system in Figure 5.1). This is a 4-bit cascadable device 
that consists of an internal register file (of which two registers can 

be accessed simultaneously), a Q-register (for intermediate results), an 

ALU capable of executing eight arithmetic and eight boolean operations 
and a shifter that can optionally shift data entered from the output of 

the ALU. I/O capability is provided by a data input port (D) and a data 

output port (Y). Bit-slice processors are often used as building blocks 
for high performance systems that require speeds greater than that of 

conventional microprocessors. Because they are basic building blocks 

with limited functionality, they are cheap, fast and can be configured 

to form n-bit systems (where n is divisible by 4 for the 2901). Recent 

advances in bit-slice processors have produced a 16-bit version of the
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Figure 5.1 NPL prototype bit-slice processor
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2901 appropriately called the 29C101 and several 32-bit bit-slices such 
as IDT's 49C404 which offer greater functionality.

A  micro-instruction is a coherent grouping of bits output from the 
program memory that execute a desired function every clock cycle by 

controlling the functional elements in the system, e.g. a bit-slice 

processor. A machine instruction is typically represented by several 
micro-instructions. To illustrate this concept, let us take an example 
of a machine instruction to move memory location 20 to memory location 

54 in the design depicted in Figure 5.1. The instruction is carried out 

by first setting the address of the local memory to 20 then writing the 

output of the memory to the Q-register in the 2901's. The address of

the local memory is then changed to 54 and the contents of the
Q-register are written into the local memory. The order of execution of

micro-instructions would be:

1. Load the memory address register (MAR) with location 20. This is 
done by putting the number '20' into the data field (RAM 4) and 

enabling this onto the data bus by selecting the data to originate 
from RAM 4. By setting the 'load' bit in the microword, the 

contents of the data bus, i.e. 20, will be clocked in. The program 
control is set to increment, i.e. go to the next micro-instruction.

2. The contents of the memory are enabled onto the D-bus of the 2901 by

setting the data to originate from the memory. The 2901 instruction 

is set to 'write external data into Q-reg' so the data from the
memory (location 20) will now be written into the Q-register. The

PC is set to increment.

3. The memory address register is loaded with location 54 by following 
the procedure as in step 1 except substituting location 54 for 20. 

PC is set to increment.
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4. The contents of the Q-register are written into the memory (now 

pointing at address 54) by setting the 2901 instruction to output 

the contents of the Q-register onto the data bus (Y). The microcode 

bit controlling the write line for the memory is set high so the 

contents of the data bus is written into memory on the second half 
of the clock cycle. The PC is again set to increment.

Note that in all cases the PC was set to increment. An alternative 
would be to select the 'load' pin of the PC to go low (by selecting the 

'1' from the l-of-8 select - the output is inverted). The PC would then 

be loaded with the contents of the data bus. This is mainly used for 

branch instructions where control of the program is passed to a location 
in the program memory other than to the next sequential location. 

Typical machines that are capable of being microprogrammed 
are: Digital's VAX family, IBM 7950, IBM System/360 ILLIAC IV 
(Section 7.6.1) and the CDC STAR 100 [55].

On each clock cycle, a micro-instruction (often known as a 

microword) is produced at the output of the program memory. The term 
given to this level of programming is microprogramming or microcoding. 
Two possible forms of microcoding exist: horizontal and vertical. These 

will be discussed next.

5.3.1 Horizontal and Vertical Microcoding

Two methods exist for microcoding: horizontal and vertical. 
Horizontal microcoding is when each bit output from the microcode memory 

is assigned to one particular device. The outcome of this is that 
maximum parallelism can be achieved (i.e. all devices may be activated 

simultaneously); however, a wide microword is likely to exist if there 

are many devices in the system. On the other hand, vertical microcoding 

allows a bit or several bits to be shared among the devices: additional
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instruction bits are therefore required in order to select which device 

will be enabled. The advantage of this is that the microcode width is 
reduced (and hence the amount of microcode memory); however, several 

lines of code may be required in order to activate all devices 

sequentially. Thus, when optimising a microcoded design, it is 

important to minimise the width and length of the microcode. The 

desirable approach is to share fields where parallelism is not required.

5.4 USE OF BIT-SLICE ARCHITECTURES FOR IMAGE PROCESSING

To investigate the possibility of a high-speed, microcoded 
bit-slice sequential processor for use in image processing, a test 

module was designed and constructed at the National Physical Laboratory 
(NPL) as part of the work for this thesis. The architecture in fact is 
the design depicted in Figure 5.1. This was used to study how image 

processing algorithms would perform on a bit-slice architecture. The 

results and ideas obtained were later used in the design and development 
a more sophisticated sequential image processor called SIP. It was 

found using the test module that there are several advantages of 
designing a microcoded machine for use in image processing:

1. They are typically many times faster than conventional 

microprocessors. This is because conventional microprocessors 

generally contain a high degree of functionality while bit-slice 
processors are basic boolean-elements that only perform a small, 
simple set of instructions. Bit-slice processors are thus suited to 

image processing where many of the functions traditionally 
associated with conventional microprocessors (such as the existence 

of several data types and internal address calculations) are rarely, 

if never used.
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2. Since the programmer has direct control over the individual 

functional units in the system (processors, memories, etc.), it is 
possible to operate on any of the units in a single cycle, allowing 

several instructions to be executed simultaneously. This will be 
discussed more fully in Section 5.8 when we examine microcode 
optimisation.

3. Because the programmer has direct functional control of the system, 
it is possible for a microcoded machine to emulate a range of other 

machines. It is also possible for the instruction to be customised.

However, microcoding also has its disadvantages:

1. In order to write microcode, the programmer must have a detailed 
knowledge of the hardware, i.e. bus routes, control signals, etc. 
In general, this information is not easy to transfer from person to 

person which makes it notoriously difficult to use.

2. One of the advantages of microcoding is that several instructions 
may be executed simultaneously as cited above. However, this must 

also be included amongst the disadvantages as detection of these 
instructions in a program is often very difficult. Section 5.8 

discusses this point in more detail.

Allowing the programmer to define the instruction set is highly 

advantageous for image processing; for instance, a frequently occurring 
image processing routine that requires several lines of code in Pascal 

can be optimised into a single machine-level instruction. An example of 
such an instruction is APPLY...END to sequentially scan over an image 

(Section 5.5.2). Customised instructions such as this have been fully 

exploited in the design of a picture processing language (PPL) 

(Section 6.2.1).
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Machines that have achieved success with bit-slice designs for 
image processing are: Logica's DIPOD (Section 7.8.1) and its in-house 

language FIFTH that translates high-level constructs to microcode, WARP 
(Section 7.9) and the ILLIAC IV (Section 7.6.1). Many of today's 

microprocessors including Motorola's 68030 are also internally 

microcoded. The opcode is fetched and decoded into a series of 
microcode operations. The microcode controls the internal registers and 
buses, etc. within the microprocessor.

As a consequence of the fetch and decode scheme in a 
microprocessor, several machine cycles are usually required to execute 
an instruction. By adopting the Harvard architecture (Section 7.2) such 

that separate instruction and data buses are maintained and using 
techniques such as pipelining (Section 7.2.1), it is possible to achieve 

a rate of one instruction per cycle. Pipelining allows an instruction 

fetch and an instruction execute to take place simultaneously. The
concepts discussed so far have been applied in the design of a
high-speed sequential processor for real-time image processing. This 

will be described next.

5.5 A SEQUENTIAL IMAGE PROCESSOR - SIP

SIP is a 16-bit high-speed microcoded sequential image processor 
that exhibits a high degree of internal parallelism. The basic 
functional units are: 4 AMD 29203 bit-slice processors, a high-speed 
multiplier, 4K microwords of local data RAM, 2 128x128 image planes 

(designated P and Q), a program memory, a pipeline, a program sequencer 

and an image processing interface as depicted in Figure 5.2. Both image 

planes are memory mapped onto the VMEbus for high speed access by other

devices. The overall control is from a host PDP-11/73 and a Qbus to
VMEbus convertor. The downloading of microcode to the program memory is 

via eight VME mapped registers as depicted in Figure 5.3. The
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Figure 5.2 Schematic diagram of SIP 
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architecture is partitioned into four sections: the processor section, 

the image processing section, the program section and the I/O section, 
all of which are independently controlled by the 79-bit microcode shown 

in Figure 5.4. Each section will now be described in more detail under 
its respective heading.

5.5.1 The Processor Section

The microcode format for SIP's processor section is given in detail 
in Figure 5.5. At the core of the processor section (Figure 5.6) are 4 

AMD 29203 bit-slice processors (BSPs). These are similar to the
AMD 2901's (Section 5.3) except they have additional functional support 

for arithmetic orientated operations and enhanced I/O capabilities.

The BSPs are three-ported devices that perform arithmetic 
operations (add, subtract, divide, etc.) and boolean functions (AND, OR, 

etc.) on data presented at the inputs of the internal ALU. The data 
entered to the ALU can be entered externally via the DA and DB ports,
internally from a 16x16 internal register file, or from a combination of
both, this being determined by the operand source field (ALUOPER) as 

shown in Figure 5.5 and Table 5.1. The register select field (RSF) 
determines which register(s) will be accessed in the current
micro-instruction. To the programmer, the register file appears as 16 

registers labelled R0-R15.

The ALU executes the function determined by the 'ALUFUNC' field in 

the microword. The result is output onto the Y-bus (after conditionally 
shifting the data in either direction) and optionally written back into 

the internal register file at the address determined by the BREG (Bq-B^) 

if the output enable of the BSPs is enabled.
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Figure 5.5 Processor microfield

E A •o OEB ALU OPERAND R ALU OPERAND S

L L L RAM Output A RAM Output B
L L H RAM Output A “ 0-3L H X RAM Output A Q Register
H L L “ ^0-3 RAM Output B
H L H “ ^0-3 DBQ-3H H X “ ^0-3 Q Register

Table 5.1 ALU operand sources for the 29203

Data present on the Y-bus can also be written into the internal
register file through the Y port at the address determined by BREG if

the output enable is disabled. Thus, for instance, two registers (or

any combination of register and external data) can be operated on,

output onto the Y-bus and written back to a register in a single cycle,

i.e.
RO ;= RO + Rl
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The data could also be written into the image planes or local memory on 
the same cycle if required, e.g.

RO := PC := RO + r2 

During a register-read operation (determined by RSF), the register 

contents are output through the DA and DB ports (see Table 5.1), 

allowing external units to access two registers simultaneously. This 
facility has been used on SIP with the multiplier as depicted in 

Figure 5.6 - the outputs of the DA and DB ports of the 29203's are 

connected to the inputs of the multiplier. Thus, any two arbitrary 

registers can be output through the ports, clocked into the multiplier 
by enabling XMUL and YMUL and multiplied in a single cycle. The result 
can be either written back into the register file or operated on (by 
enabling OEP) before being written back on the next cycle.

As mentioned before, the Am29203's have enhanced functionality 
support for arithmetic operations such as normalisation, binary-BCD 

conversion and multiply and divide. (Note that SIP runs at 8MHz because 
of the time it takes the 29203's to execute the divide instruction. 

However, it has been found that SIP will run at lOMHz if the divide

instruction is not required - see Chapter 9 for a list of enhancements
that could be made to SIP.) In addition to this, they can support a 

three address architecture, i.e. they are able to support functions such 

as
RO := Rl + R2 

in a single clock cycle.

The local memory consists of 4Kwords (1 word = 16 bits) of 

high-speed static RAM, this being used to hold variables, arrays and 

lookup tables, etc. The I/O ports are connected to the Y-bus via a 

buffer enabling output from the ALU, the multiplier or the image planes 

to be written directly into the RAM as depicted in Figure 5.6. The
address supplied to the RAM is in the form of two 8-bit up/down
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counters. These have the facility to be loaded from the Y-bus, count 

up, count down or hold (no change), this being determined by the 'Local 

Ram cntrl' field in Figure 5.6. The ability to increment and decrement 
independently of the processor is useful for such operations as 

accessing an array of elements sequentially. Because the local memory 

has common data I/O pins, memory accesses require three cycles; however, 
after each access, the counters may be simultaneously incremented (or 

decremented) to the next location. This means that if two or more 

instructions (or cycles - whichever is the smaller) are needed after 
each access, then fetching data from the RAM can be done concurrently 
with a processor instruction. This can make the RAM appear as having 
zero access time.

Since the counters supplying the address to the Local Ram can be 
loaded with the contents of the Y-bus, a register from the BSPs can be 
designated as an index variable to the memory thus allowing keyed access 

into the RAM, i.e. the location in the RAM is determined by a 
calculation. This is described in detail in Section 5.7.

5.5.2 The Image Processing Interface.

SIP was originally designed to operate on a 256x256 image; however, 
because the price of 64Kxl static rams at the time was high (~£100 
each), the cost of 16 64Kxl RAMS (two image planes) could not be 
justified. SIP was therefore designed to operate on a 128x128 image 

plane with the facilities for upgrading included. To the programmer, 
SIP has three registers for its image processing interface: an 

X-register, a Y-register and an offset register. The effect of the 

(X,Y) coordinates is shown in Figure 5.7a with the layout of the 5x5 

window available into the image plane in Figure 5.7b. The offset 

register allows any pixel within a 5x5 window (P0-P24 or Q0-Q24 - the 

same address is applied to both the P and Q image planes) to be accessed
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Tô
DÊ
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by writing the corresponding element number into the offset register.
So, for instance, to access P23 the number 23 would be written into the
offset register.

A translation (lookup) table exists between the X, Y and offset 

registers and the image planes, depicted in Figure 5.7c as X-TRANS and 

Y-TRANS [29]. This translates the values of these three registers into 
absolute image coordinates for rapid access into the image space within 
the 5x5 window. Note that a 5x5 window was chosen as a suitable
tradeoff between the cost of the RAMS required for the translation table 
and (from experience obtained earlier) the advantages to be gained from 

using a larger window, e.g. 7x7. As mentioned before, SIP was
originally designed to operate on a 256x256 image. A  7x7 window in this 
case would have required four 16Kx4 (45ns access time) static rams which 
would have significantly increased the cost of the system at the time of 
designing. As the system had to be cost-effective, it was decided that 

a 7x7 window could not be justified.

Sox Six clkxreg S,y clkyreg clkoffreg

SO 51 
L L 
L H 
H L 
H H

Clear
Load
Count down 
Count up

wrpici wrpic2 oepici oep2a oep2b oexreg oeyreg

Figure 5.8 Microword format for the image 
processing section

The microcode format for the image processing section is given in
Figure 5.8. Access to the three registers is via the X, Y and offset
control fields. As an example, consider the following instructions:

X:=34; Y:=23
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The corresponding microcode instructions would be:

1. Load X-field with the code for 'LOAD' and enable 34 onto the data
bus.

2. Load Y-field with the code for 'LOAD' and enable 23 onto the data
bus.

Each of these instructions is executed in a single cycle (125ns).
Because SIP is a sequential processor, rapid access to any part of the

image space is essential for high-speed manipulation of the image: this 
can be done in two ways. If the pixel lies within the 5x5 window then 

two cycles are required to fetch the data: the first cycle sets up the 

address to the image planes by writing to the offset register where the 
data is available on the next cycle. If the pixel lies outside the 5x5 
window, it is necessary to change the X and Y registers. Directly 

changing X or Y requires two cycles to produce the required data at the
output of the image planes (as before) or three cycles if both X and Y
are changed. However, it is possible for single cycle accesses to occur 

within the 5x5 window, or two cycle accesses if both X and Y are
changed - this is discussed more fully in Section 5.6. The consequence
of this is that a pixel can be fetched, operated on by the processor and

written back into the image plane in a single cycle. Thus, the

instruction
P0:=(P0+R1)*2 

can be executed in a single cycle.

To relieve the programmer of having to increment X and Y at the end

of a row or column, SIP has a highly efficient auto-scan facility. For

instance, in Pascal the instructions to scan an image would be:
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y:=0;
REPEAT x:=0; 
REPEAT

picture function

UNTIL x=128; y:=y+l 
UNTIL y=128;

However, SIP uses the instructions:

APPLY

picture function 
END

This scans the image sequentially left to right, top to bottom while 
still allowing the X and Y registers to be manipulated. With 
optimisation (Section 5.8), zero cycle overhead can be achieved by the 

scanner, i.e. the code appears as though it were continuous. This 

clearly shows the advantage of designing a microcoded machine. The 
instruction set is described more fully in Appendix A along with the 

addressing modes available.

5.5.3 The Program Section

The program section consists of 4Kx80 bits of high speed static 
RAM, a pipeline and an AMD 2910A program sequencer as depicted in 

Figure 5.9. The program sequencer incorporates 16 powerful functions 
which are listed in Table 5.2. By code optimisation, it is possible to 

make instructions such as JSR and RTS appear to take zero cycles - this 

is discussed more fully in Section 5.8. One of the main deficiencies 

with a pipeline is that branches take two cycles to execute on a single 

level pipeline, i.e. one to execute the instruction (this sets the 

condition code register) and the second to test the condition code
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I3-I0 Function

0 Jump to location zero
1 Conditional JSR Ybus
2 N/A to SIP
3 Conditional jump Ybus
4 Push address & conditional load counter
5 Conditional JSR via register/pipeline
6 N/A to SIP
7 Conditional jump via register/pipeline
8 Repeat loop until counter=0
9 Repeat pipeline until counter=0
10 Conditional RTS
11 Conditional jump pipeline and pop
12 Load counter and continue
13 Test end of loop
14 Continue (NOP)
15 Three-way branch

Table 5.2 Program sequencer (AM2910A) instructions
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register. As the number of pipelines increase, the number of cycles

will be increased linearly. Because of the anticipated large amount of

branching (common to many sequential programs), SIP was designed as a 
single level pipeline machine.

5.5.4 The I/O Interface.

SIP is based on the VMEbus (Section 5.9) which is capable of 
supporting devices commonly known as masters and slaves. A master has 
the capability of gaining control of the VMEbus and hence any device on 

the bus, i.e. another master or slave. A slave is a device that cannot 
control the bus and can only be accessed and controlled by another 

master, e.g. a frame store. SIP has the necessary control logic defined
in its VMEfield depicted in Figure 5.10a for becoming a bus master and
controlling the VMEbus.

SIP'S I/O field (VMEfield) contains seven microcode bits to control 
the interaction between SIP and the VMEbus via an intelligent Field 
Programmable Logic Sequencer (FPLS), designed by A.I.C. Johnstone of 

this research group. The bits depicted in Figure 5.10a correspond to 
the necessary control signals as defined by the VMEbus protocol [80]. 

The image plane address bits from SIP (16-bits) go to the low-order 

VMEbus address lines (A0-A15) while SIP's internal data bus (the Y-bus) 
go to the VMEbus data lines (D0-D15) via the usual bus interface 
transceivers (Figure 5.10b). This enables a memory-mapped frame store 
on the VMEbus appear as though it was local to SIP. When reading from 

the VMEbus, data appearing on SIP's internal data bus is made available 

to SIP's functional units, e.g. processor, image planes, etc. By making 

maximum use of SIP's internal parallelism and by configuring the image 
addressing to be in auto-scan mode (Section 5.5.2), rapid sequential 

accesses can occur from the VMEbus simultaneously with on board 
processing. With careful programming and an optimised program, an image
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can be grabbed and input from an external source, e.g. a frame store, 

simultaneously with the processing of a previously stored image. This 

eliminates the I/o bottleneck previously associated with bus-based 
sequential processors.

Since the VMEbus has a 24-bit address space (via the Pi connector), 
an additional 8 bits are supplied from the external address register

(EAR) as depicted in Figure 5.10b. This must be loaded with the correct 

8-bits to form bits A16-A23 of the VMEbus address space. The bus grant 
and data acknowledge signals are directly connected to SIP's condition 
code register so, for instance, to read a location from the VMEbus the 
following steps would be:

1. Load external address register with the required A16-A23 VME address 

bits.

2. Set the VMEbus A0-A15 address bits using SIP's X and Y registers.

3. Request bus by setting REQ* to low.

4. REPEAT nothing or some_processing UNTIL bus_grant=TRUE.

5. Set DSO*, DSl* to their appropriate values, Enable_strobes* to low 

and the SIPRW line to high (read).

6. REPEAT nothing or some_processing UNTIL data_acknowledge=TRUE.

7. Write data into image plane or process data.

8. Optionally increment SIP's image address lines and goto step 5 or

9. Release bus by setting REL* to low.

By making maximum use of SIP's internal parallelism, VMEbus accesses can 

take three cycles (375ns) for high-speed peripherals.
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5.6 PIPELINING THE PIXEL FETCH

A feature of SIP is that it contains four independent sections,
thus providing the capability of instruction parallelism. This can lead

to a dramatic reduction in execution time and code length of a program. 

This is particularly noticed when image accesses are pipelined because 

image processing operations require frequent access to the image planes. 

There are usually two operations required for fetching a pixel

1. Load offset into the offset register from the data bus.

2. System accesses pixel on the next cycle.

However, it is possible to achieve both steps in a single cycle. During 
step 1 (above), one can note that as the offset register is being

loaded, the processor section is idle, and while the processor section
in step 2 is active, the offset register for the image planes is idle. 

It is therefore possible to pipeline the fetch such that, as one pixel 

is being processed, the next one is being fetched. Thus, only one cycle 
is required to access any pixel within the 5x5 window as opposed to two; 

however, the next pixel to be fetched must be known (Section 5.8.1). 

The X and Y registers also work on the same principle, i.e. altering X 
or Y can be done concurrently with the processing of the previous pixel. 
This means that the majority of instructions in the instruction set 

(Appendix A) take one machine cycle (125ns) to execute.

5.7 SIP'S ASSEMBLY LANGUAGE

In order to translate an intelligible form of code into microcode, 

an assembler was written for SIP. One of the features of a microcoded 

machine is that it can emulate a variety of other machines. The 
instruction set was designed around the PDP-11 'Macro-11' instruction 

set with several enhancements for image processing. Since Macro-11 was
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familiar in the laboratory, the amount of learning involved in 
programming SIP was minimised.

The assembler consists of three parts: the intermediate code 
generator, the translator and the loader. It was written in the form of 

a P-code language where the source code is compiled to an intermediate 

code before being translated into microcode, this being necessary for 
efficient code optimisation (Section 5.8). Each of these parts will now 
be described.

5.7.1 The Assembler and Intermediate Code Generator

The aim of the assembler is to convert assembler mnemonics into an 
intermediate code suitable for the translator to convert into microcode 
(Section 5.7.2). Instructions can have either one or two operands, i.e.

MNEMONIC source, destination

e.g. ADD #4,R0 - equivalent to R0:=R0+4

ADD R5,R9 - equivalent to R9:=R9+R5

or
MNEMONIC destination

e.g. INC R7 - equivalent to R7:=R7+1
BRA label - equivalent to goto label

(The instruction set is described more fully in Appendix A. ) The 
intermediate code is in the form of a mnemonic representing which of the 

functional unit(s) (e.g. processor, image plane, etc.) is to be 
accessed, followed by either one or two operands required by the 

translator for the corresponding functional unit fields in the 

microword. Before we consider the intermediate code, it is necessary to 

describe the six addressing modes available. These are: data, register,
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image, xy, indexed and memory mode.

1. Data mode (D) - this is equivalent to immediate addressing on a

conventional microprocessor and is indicated by a hash (#) before
the operand. The # indicates that the following data should be
taken literally, e.g.

MOV #4,R0

states that the number '4' is to be written to register RO.

2. Register mode (R) - this is when a register in the bit-slice
processors is to be accessed, e.g.

ADD R5,R7

states that the contents of register R5 are to be added to register 
R7 and written back to R7.

3. P and Q mode (P) or (Q) - this is when either the P or the Q image 

planes are to be accessed, e.g.
MOV P0,R5

indicates that element PC (see window layout in Figure 5.7b) is to 
be written to register R5. Any element within the 5x5 window can be 
accessed in this way in both P and Q spaces, e.g.

MOV R4,P1 

ADD 023,Rl
The first example states that R4 is to be written to element Pi. 

The second states that the contents of element Q23 are to be added 

to register Rl.

4. X and Y mode (X) or (Y) - this is when the X and Y registers are 

accessed, e.g.

MOV X,R3 

MOV R4,Y
The first instruction indicates that the value of the X-register is 
to be written to R3. The second instruction indicates that the
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contents of r 4 are to be written to the Y register.

5. Indexed mode (I) - this is when the contents of the register

indicated in brackets are taken as an address into the local memory,
e.g.

MOV (R0),R1

If RO contained the number 20, then location 20 in the local memory 
would be written to register Rl. This could alternatively be 
written as

MOV 20,Rl

(see memory mode below (6)). However, this is inflexible since it 

does not allow manipulation of the address, i.e. 20 is a constant 
whereas RO in the preceding example is variable. The source and 
destination of the operands in all modes can be interchanged, e.g. 

MOV R5,(R13)

If Rl3 contained the number 56 then the contents of R5 would be

written into location 56 in the local memory.

6. Memory mode (M) - this is the default mode. If none of the above 
modes are encountered then it is assumed that the name or number of 
the operand is a memory location, e.g.

INC ros 
MOV jim,R4 

MOV tom,bill
In the first example, if ros was allocated location 1234 in local 
memory by the assembler then location 1234 would be incremented. In 

the second example, if jim was assigned to location 34 in the local 

memory, then the contents of location 34 would be written to 

register R4. This could alternatively be written as 

MOV 34,R4
In the last example, if tom was allocated location 999 and bill was
allocated location 67 then location 999 would be written to location
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67. By preceding the variable with a hash (#), the allocated 
location of the variable will be used, e.g.

MOV #ros,R4

If ros was allocated location 67 then the number 67 would be written 

to R4 and not the contents of location 67. This facility is useful 
for array indexing, for example, to index into an array called NAME 
the corresponding set of instructions would be:

MOV #name, RO ; base location of array
ADD Rl,RO ; Rl is the index value
MOV (R0),r 0 ; contents of RO is memory

; location #name+Rl
this is equivalent to 

RO:=name[Rl]

It is not good practice to designate memory locations as absolute 
numbers. To avoid this problem the construct VAR is available. This is 

similar to the Pascal VAR in that it enables single variables or arrays 
to be represented as absolute memory locations, e.g.

VAR jim, i, j, symbol 

This defines the variables: jim, i, j and symbol and are all allocated 
1 word (it is not possible to define byte locations) in the local 

memory. VAR also has the facility for defining arrays, e.g.

VAR arr:400, name:5 

This example defines an array 'arr' of size 400 words and an array 
'name' of size 5 words. (Note that only one-dimensional arrays are 
allowed.) The mixing of integers and arrays in the declarations is 

allowed, e.g.
VAR jim, i, arr:400, j, symbol, name:5 

All variables and arrays are assigned memory locations in the order in 

which they are defined; therefore, the locations assigned to the 

variables in the last example are:
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jim - 0
i - 1
arr - 2
j - 402
symbol - 403
name - 404

Variables may be declared anywhere within the program, hence enabling 

them to be declared at the beginning of subroutines - this can make the 
code easier to read.

The assembler translates the intermediate user code into a form

'OPCODE' I model | (mode2) | datai | (data2) |

where model (and mode2 for a two operand instruction) are the modes for 
the operand (D,X,P,I, etc.) as described above and datai (and optionally 
data2) are the necessary values of model and mode2 respectively. This 

is best explained with an example. Table 5.3 below shows the previous 

examples translated into their intermediate code:

Intermediate
Opcode code

MOV #4,R0 MOVDR 4 0
ADD R5,R7 ADDRR 5 7
MOV P0,R5 MOVPR 0 5
MOV 023,RO MOVQR 23 0
MOV X,R3 MOVXR 3
MOV R4,Y MOVRY 4
MOV (R0),R1 MOVIR 0 1
INC jim INCM 20
MOV jim,R6 MOVMR 20 6
MOV 20, Rl MOVMR 20 1

Table 5.3 Example of translating assembler 
mnemonics into intermediate code

(N.B. The INC instruction assumes that jim was assigned to location 20 

in the local memory.)
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The assembler takes three passes to complete the intermediate code 
generation:

(I) Mnemonics are converted into the above intermediate code style.

Full syntactic error checking is carried out here to eliminate the 

most common errors such as the misspelling of opcodes and use of 

undefined identifiers, etc. All variables and arrays declared in 
the VAR construct are allocated space in the local memory where 

error checking for multiple declaration of variables and memory 
overflow is checked.

(II) Identifiers are substituted for real numbers and pseudo high-level

instructions (see Appendix A) are expanded. All label names and 
label values are read into a table for PASS-III. Full error 

checking is enabled for missing delimeters and multiple declaration 

of labels.

Ill) The operands for the branch instructions are substituted for
absolute locations. Full error checking for undefined labels is 

also carried out - this is the final phase of error checking. This 
step is needed after PASS-II because labels referred to by operands 

in PASS-II may not have been defined because of forward referencing. 

In other words, all the labels have to be known before absolute 

locations can be calculated and inserted.

5.7.2 The Translator

The translator is basically a large database of predefined routines 

that translate the intermediate code into microcode. At this stage, it 

is assumed that all error checking has been carried out and the program 

is assumed to be correct. (As in all programs, the order of 

instructions is determined by the programmer and it is beyond the

- 170 -



assembler's capability to check for an illogical sequence.)

Each line of the intermediate code is read. A number representing 
the value of the intermediate mnemonic is determined by the use of a 
translator table. This number is then used as an index to call a 

routine representing the correct micro-instruction(s) for that 
instruction. The operands associated with the intermediate mnemonic are 

passed to the routine and written into the appropriate microcode field. 
For example, consider the mnemonic 

MOV #4,R7

this is translated into the intermediate opcode 
MOVDR 4 7

This is then read by the translator where the intermediate code 'MOVDR' 
is translated into its corresponding position in the table, in this case 

'9'. This number is then used as an index into a large database of 
routines where, in this case, it corresponds to a routine appropriately 
named "MOVDR". The operands '4' and '7' are passed to this routine

where the correct sequence of micro-instructions is generated with '4'
written into the data field and '7' written into the B-register field. 

The microcode is then written to disk.

5.7.3 The Loader

The function of the loader is to load the code from disk to SIP and 
run the program. The advantage of having a separate loader is that code 

can be transported to different machines, it being only necessary to 

write a loader for each new machine. Once the code has been downloaded 

to SIP, it is not necessary to load the program again in order to run

it. SIP has a 'RUN/HALT' flag in its CSR (Figure 5.3) which executes

the code resident in its program memory. It is only necessary to load 

new code (a) after a power failure or (b) when a new program needs to be 

downloaded.
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The assembler and the translator generate non-optimised code (note 

that here we are dealing with time-optimisation). As we discussed in 

Section 5.5, SIP's architecture exhibits a high degree of internal 

parallelism thus enabling several instructions to be executed 

simultaneously. The ability to detect the presence of the instructions 
that can be merged leads us onto the concept of microcode optimisation. 
This is discussed next.

5.8 MICROCODE OPTIMISATION

Generally speaking, a microprogram is said to be optimal if there 
are no other functionally equivalent microprograms that can be run on 
the same machine which require a smaller number of clock cycles. It is 

generally accepted that hand-coded optimisation (often termed 
compaction) produces more optimal code (fewer cycles to execute) than 
machine optimisation. The need to compare the differences between human 
and machine compaction drove Fisher et al. [22] to investigate how well 

a machine can produce optimal code.

There are two methods of compacting a program: local and global 
compaction. Local compaction is the ability to detect parallelism in 
straight-line program segments, whereas global compaction encompasses 
the analysis of microprograms that include iterations and conditionals. 

For example, if a variable is assigned within a loop then, assuming it 
is not used elsewhere within the loop, it can be taken outside without 

altering the logic of the sequence of instructions; this means that a 
cycle is saved within the execution of the loop. Fisher considered the 

optimisation of a floating point divide routine. Global compaction 
compared quite favorably with hand-compacted code; the average execution 

time being 16.4 and 16.1 cycles respectively. The initialisation code 

for the routine took 14 cycles in both cases. Similar results were 

achieved when tested with a floating point add; however, local
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compaction required some 60% additional cycles in both cases. These 

results provided evidence that automated global compaction is feasible 
and can be competitive with hand-compacted code.

To fully optimise a microprogram, it is necessary to exploit every 

possible occurrence of concurrently executable micro-instructions. This 

is a difficult task since, even though two operations may be found to be 
concurrently executable by a parallelism detection technique, they may 

not be concurrently executed because of resource contention. This adds 

an extra degree of difficulty to the problem of optimising microcode. 
By defining a graph model of a microprogram showing the earliest and 

latest events at which a micro-instruction could occur and by defining a 

resource requirement matrix, Tsuchiya and Gonzalez [122] showed 
acceptable results for many microprograms.

Ramamoorthy and Tsuchiya defined a high-level language SIMPL 
(Single Identity Microprogramming) for microprogramming [98]. This 
detected and merged concurrent micro-operations. Various techniques 

were used such as detection of parallel processable microstreams,

optimisation of concurrent micro-instructions and minimisation of
micro-instruction sequences. Probably a more ambitious task was the 
work done by Malik and Lewi [22]. This concerned the development of a 
machine independent language, VMPL, that allowed micro-instructions to 

be expressed as declarations within a program. In other words, a 
program written in VMPL is a specification for a target machine. In

order to execute a microprogram written in VMPL on the target machine, 
the program is first translated into an intermediate code and then

compiled into microcode. An optimisation scheme developed by Lewi [22] 

was used to optimise the intermediate code produced.
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To optimise SIP's microcode, it is necessary to locate the earliest 

and latest times that microoperations can occur without resource 
contention. This will now be discussed.

5.8.1 Optimising SIP's microcode

The main purpose of optimising SIP's microcode is to reduce the 
execution time of an algorithm (see Section 6.4 for the results). In 

order to achieve this, we need to detect as much instruction parallelism 

(simultaneous execution of multiple instructions) as possible. This 
differs from the parallelism offered by the parallel language Occam (the 

transputer's native language) in two different ways: (1) the parallelism 
is explicitly stated in Occam, whereas here it is implicitly stated, and
(2) parallelism occurs at the task (procedural) level in Occam while 

here it occurs at the instruction level.

The major reduction in execution time by optimising the code 
generated by the assembler is from the parallelism associated with the 

simultaneous processor instruction execution of a pixel with a pixel 
fetch (Section 5.6). In order for this operation to occur, we need to 

locate the next pixel to be operated on so we can merge the two 

instructions. This is easily detected by looking ahead in the 
intermediate code. When a pixel mnemonic is encountered (conveniently 

indicated by a P in the 4th or 5th column of the pseudo-microcode 

opcode), the program "looks ahead" until either a pixel mnemonic or a 
branch instruction occurs. If a pixel mnemonic occurs then the pixel 

fetch of the second instruction can be merged with the ALU function of 

the first instruction. If a branch is encountered first then no merging 

can occur since optimisation is incapable of detecting the sequence of 

instructions a program will execute after a branch. These constraints 

may appear too restrictive but analysis of many image processing 

algorithms shows that a series of pixel reads followed by a pixel write
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frequently occurs (c.f. the Sobel v^ere there are 12 reads followed by a 
write).

A second reduction in execution time (although only slight) can be

gained from the ability to merge Jump-to-subroutine (JSR) and

Return-from-subroutine (RTS) instructions. If an instruction previous
to a JSR instruction does not make use of the data bus or 'useful' use

of the program counter, then the JSR instruction may be merged with the

previous instruction. This generally occurs for instructions such as
register-to-register and memory-register accesses but not for
data-to-register or data-memory type instructions, e.g.

MOV RO,Rl 
JSR label

may be merged as the MOV instruction does not make use of the data bus 
whereas

MOV #4,R0 
JSR label

cannot be merged because they both use the data bus. RTS may also be 
merged in a similar manner if the PCcntrl field before the RTS is set to 
continue (default state). With efficient writing of code, jumping and 

returning from subroutines can effectively occur in zero cycles.

Multiply can also result in zero cycles. For example, if a 'MUL' 

instruction is encountered, then it is necessary to back track through 

the previously encountered section of code looking for the earliest time 
the required registers can be used, i.e. when they were last used as a 

destination. When this situation occurs, the registers used as operands 
in the MUL instruction may be loaded into the multiplier simultaneously 

with that instruction. This would eliminate the need for the MUL 

instruction as the two registers will have been multiplied (the 

multiplier multiplies the contents of its input registers on every cycle 

of the system clock) by the time the result is required. Thus,
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multiplication in this case appears as requiring zero cycles.

Another major reduction in a program's execution time is by the use 
of registers rather than local memory. Register accesses only require a 

single cycle whereas local memory usually requires about 2-3 cycles. 

Thus, by transferring the required memory locations to be operated on to 
registers just after a JSR instruction manipulating them and re-storing 

them to their respective locations just before the RTS instruction, the 
execution time of an algorithm can be dramatically reduced. This will 

also assure that JSR and RTS instructions can be merged.

These are just a few examples of possible optimisations that are 
carried out on SIP's code. As with many optimisers, the degree that a 
program can be optimised relies heavily on the programmer for efficient 

layout of code. Chapter 6 examines the decrease in program execution 

time that is normally gained from optimisation of SIP's code.

5.9 THE VMEBUS

SIP is based on the public domain VMEbus [80]. This was chosen for 

several reasons:

1. It has a high bus bandwidth of 24Mbytes/sec

2. It is a true multiprocessor bus and is thus capable of supporting an 
arbitrary number of processors up to the limit of the number of 

backplane slots. SIP can therefore communicate with peripherals 
such as frame stores, external memory and disk drives - this opens 

up the commercial market for image processing systems.

3. The array processor LAP-II (Section 6.2.2) is based on the VMEbus.

As described in Section 5.5.4, SIP has 7 bits in the VMEfield (VMEF) in 
its microcode. This allows SIP to communicate with a wide range of

- 176 -



peripherals.

5.10 SUMMARY

This chapter has described, in detail, a high-speed sequential 
processor (SIP). The assembler for SIP was also described which 

included a brief insight into microcode optimisation. SIP was built to 
investigate the possibility of being combined with a parallel processor. 

The next chapter (Chapter 6) introduces the Linear Array Processor (LAP) 

and highlights the performance abilities of both SIP and the LAP vdien 
applied to image processing. This will permit us to study whether such 
a combination of processors has a greater cost-speed tradeoff than other 

designs.
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CHAPTER 6 

RESULTS AND THE FUTURE

"To study, to finish, to publish."
Benjamin Franklin 1706-1790

6.1 INTRODUCTION

In Chapter 5 we stated that SIP and a parallel processor (the LAP)
were initially designed to be combined as part of a multiprocessing
system for image processing. This chapter describes the Linear Array 
Processor (LAP) and its associated compiler, PPL. A discussion on 
factors that affect machine performance leads on to an analysis of SIP 

and the LAP. These results along with the machine's corresponding costs 

will be compared with a variety of similar machines commercially 
available. An analysis of the performance of the system when both

processors are combined is undertaken which will show the feasibility of 

this kind of configuration. However, first we will describe the Linear 

Array Processor.

6.2 THE LINEAR ARRAY PROCESSOR

The Linear Array Processor (LAP) was developed at the National 

Physical Laboratory by Plummer [93] and is classed as a SIMD machine 

(Section 7.4). Like SIP, the LAP is a microcoded bit-slice processor.
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The object of the design was to increase data throughput by parallelism 

in order to achieve execution times typically in the order of 100 times 
faster than conventional computers, while minimising the cost by using 
cost-effective bit-slice processors (AMD 2901). The architecture [94] 

(Figure 6.1) is essentially a linear array of 256 1-bit processing 
elements (each PE has 256 bits of local memory), operating on all pixels 

in a line of a 256x256 image simultaneously. The program memory of the 

LAP is 16k X 24 bits. Because each processor is a 1-bit processing 
element, the LAP is a bit-serial machine (Section 7.10), i.e. the pixels 
are operated on one bit at a time rather than a byte at a time as in 

SIP. Bit-serial devices are discussed in more detail in Chapter 7.

Because a line of an image must be loaded into an array processor 
before it can be operated on, a data bottleneck can often arise. The 

LAP is capable of loading a line of data while the previous line is 
being processed. However, a slight bottleneck can still exist if the 
loading of a line takes longer than the time spent processing each line. 
For ease of programming, the PPL high-level language and associated 
compiler was developed at the NPL. The compiler translates high-level 

code to the LAP'S microcode. This will now be described.

6.2.1 The PPL Compiler

The PPL (Picture Processing Language) language allows image 
processing commands to be expressed in simple one-line commands and to 

translate these commands into microcode for the LAP. The user interface 

is via the PPL prompt where commands are entered. Programs stored
on disk are run by typing the name of the program. (A program can also 

call other PPL programs - see later.) The body of a PPL program lies 

within the construct

a p p l y  end

- 179 -



I N P U T

2 5 6
L A Y E R S

O U T P U T

8 - B I T 2 5 6 - B I T
R A M

P R O G R A M
M E M O R Y

B O O L E A N

P R O C E S S O R

C O N TR O L

Figure 6.1 Architecture of the Linear Array Processor (LAP)
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This is similar to SIP's apply— end construct (historically it was the 

other way around) in that it scans over the whole image space. However, 
while SIP scans the image a pixel at a time (left to right, top to 

bottom), the LAP scans the image a line at at time (top to bottom). As 

an example, the following code sets the image to a constant value of 255 
(white)

apply 255 end

(It should be noted that one-line commands such as this can by typed in 
following the PPL prompt for rapid development of picture processing 
routines.) An element within a 3x3 window is accessed by a number 
enclosed within square brackets, for example

apply [0] + 127 end

adds the number 127 to every element (PO) in the image. Note that in 
the previous two examples there was no need to assign the element to a 
value. The statement

apply [0] := [0] + 127 end

has a similar effect. This is because PPL is a stack orientated 
compiler, so the last number on the stack from the evaluation of a 

function is taken to be the value of the centre element ([0]) unless 

otherwise indicated. Thus, the statement

apply
if [0] > 200 then 255 else 
if [0] < 50 then 0 else 
127

end

scans the image setting the element [0] to either 0, 255 or 127,

depending on the value of [0] from the original image. The PPL language 

contains familiar high-level constructs such as
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if « « « theri ... else ...
A := operand
for i := 1 step s until N do 

Thus, to threshold an image at 127, the code would be: 

apply if [0] > 127 then 255 else 0 end

The ability to temporarily save and store images during execution 
of a program is essential if the same image is to be operated on by 
several different operations. PPL achieves this by the commands 'get' 

and 'put'. Below is an example involving these commands. Although this
program has no particular function, it illustrates the concept of saving 
and storing images in PPL. Note that the instruction "param" allows 
parameters to be entered via the call of the program from the PPL 
prompt. Thus, at the PPL prompt, if the command 'TEST(IOO)' was called, 
then T in the program below would be set equal to 100. A PPL program 

can also call other PPL programs stored on disk. These are called by 

their names (in upper case letters) with appropriate parameters. In
this case the programs called are SOBEL which applies a Sobel edge
detect over the image and TH(param) which thresholds the image on the

value param.

param T; { get number from terminal }
put GRIG; { store image with name GRIG }
SGBEL; { apply a SGBEL of the image }
put TEMP; { store image with name TEMP }
get GRIG; { GET image with name GRIG }
TH(T); { threshold it at T }

apply
[0] := [0] AND TEMP; { threshold AND sobelled image } 

end

This is fairly self-explanatory. By 'GETting' an image, the new image 

becomes the current image. By 'PUTting' an image, the current image is 

stored while remaining the current image.
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We previously concluded that a microcoded machine appeared suitable 
for image processing because it allows application specific commands or 
functions to be defined and optimised in the language. PPL has several

commands that allow frequently used image processing commands to be

expressed in a single line, when they would usually be expressed in

several lines of code each. Below are examples of these and their
equivalent Pascal codes:

N := sum K = 0:8 of [K] 

N := max K = 0:8 of [K]

N := min K = 0:8 of [K]

N :=P0+P1+P2+P3+P4+P5+P6+P7+P8
IF PO>Pl- THEN max :=P0 ELSE max:=Pl; 
IF P2>max THEN max:=P2 
IF P3>max THEN max :=P3 
IF P4>max THEN max:=P4 
IF P5>max THEN max:=P5 
IF P6>max THEN max:=P6 
IF P7>max THEN max :=P7 
IF P8>max THEN max:=P8
Ditto, substituting the > with a < 

and max with min

e.g.
apply sum K = 0:8 of [K ]) / 9 end

The above example averages the pixels in the 3x3 window by summing the 
centre pixel and the surrounding pixels and dividing by 9. The 

equivalent code in Pascal is

y:=0; { Setup scan for a 128x128 image }
REPEAT x:=0;
REPEAT
Q0:=(P0+P1+P2+P3+P4+p 5+P6+P7+P8) DIV 9; {average of a 3x3 window} 
x:=x+l

UNTIL x=128; y:=y+l { increment scan counters }
UNTIL y=128;

The LAP-1 was built in 1980/81. With the advent of VLSI and the 

availability of semi-custom gate arrays in recent years, the possibility 
arises of optimising the performance of the LAP-I. The next section 

describes the LAP-II which is an enhancement of the LAP-I.
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6.2.2 LAP-II

The LAP-I was designed with cost-effective boolean devices;
however, the LAP-II has been designed to take advantage of recent

technological developments. The following enhancements have been made:

i) The AM2901 processors have been replaced by semi-custom integrated 

circuits. Because the processors are custom designed, they have 
been optimised for the LAP architecture. Each individual chip now 

has eight processing elements (c.f. four per chip in the LAP-I), an 

activity bit for control of instruction execution and a larger
amount of memory (32Kxl per PE). As a further enhancement, it is 
possible for a global test to be executed throughout the PE's such 
that they ALL execute the same function if the result in ALL PE's is 
TRUE.

ii) A program sequencer has been added that enables branches and loops
to be executed efficiently.

iii) While the LAP-I was based on its own private bus, the LAP-II is 

based on the VMEbus. This allows VMEbus based products such as SIP 
to communicate with the LAP-II.

We will now discuss machine performance. This will enable us to examine 
SIP and the LAP from a performance point of view.

6.3 MACHINE PERFORMANCE

One often needs to know whether a machine is suited to an 

application, e.g. its cost must be within a given budget while being 

able to execute a program within a given time constraint. A method of 
achieving this is to run the program on several machines and measure the 

various execution times. A cost-speed choice can then be made to 

determine which machine is best suited to the application. However,
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this method is often not practicable and one usually has to rely on 

figures that manufacturers state as being a measure of their machine's 
performance. A problem with measuring the performance of a machine is 

that there is no standard definition of "measure". One of the most

common practices among manufacturers is to state the performance in 

terms of MIPS (millions of instructions per second) or MFLOPS (millions 
of floating point instructions per second); however, this often bears 

little resemblance to how well a machine will execute a user's program.

Another alternative to represent the performance of a machine is to 
state the execution times of several "typical" algorithms. This is, in 
many ways, a more suitable method as it allows us to relate a real set 
of results to an application; however, the problem that arises here is 
that "typical" will ultimately be area/application dependent. For 

instance, with regard to image processing, "typical" operations may 

represent operations that access a pixel and its neighbours within a 3x3 
(or larger) window. Thus, frequent array accesses may be the most
common denominator in the program and hence the most predominant factor 
in the execution time of the program. On the other hand, "typical" 
operations in a scientific environment may involve many millions of 

floating point operations. This would constitute a different kind of

"typical" program to the image processing programs.

No attempt here is undertaken to define a machine's "measure of 

performance"; however, we will choose the last of the above methods of 
assessing the performance of SIP and the LAP, i.e. finding the execution 

times of several "typical" algorithms. Since we are mainly concerned 

with the image processing area, we have chosen a set of algorithms to 
analyse the performance of SIP and the LAP that contain operations that 

we have found common in image processing. These include point-point 

(pixel-pixel) operations, operations that involve a pixel and its 

neighbours in a 3x3 window, and algorithms that have been found
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advantageous to industrial inspection, e.g. the Hough transform, 

thinning, etc. However, because this is not a complete representation 

of image processing operations, one must treat these results carefully. 
First let us consider, from a hardware point of view, what main factors 
influence the performance of a machine.

6.3.1 Machine Architecture and Machine Performance

The following five factors contribute to machine performance:

1. Type of technology (TTL, ECL, GaAs, etc.).

2. Number of processors.

3. Bit efficiency.

4. Orthogonality.

5. Addressing capability.

The type of technology used is an important factor in governing a 
machine's performance. ECL static RAMS can achieve access times in the 

region of 6ns while recent developments in the TTL range achieve access 
times down to 15ns. Thus, the faster the components, the faster the 
processor clock frequency, up to the maximum limit allowed for that 

processor. An interesting point to note is that, in a recent set of 
results published by Billig and Cronk [10], they showed that their 
benchmarks (from comparing various LSI-11/23 configurations (with and 

without floating point) with an Intel iSBC-86 (again with and without 
floating point) and Motorola's M68000 (running at 8MHz)) showed no 

relationship whatever to the processor clock frequencies. As time goes 

on, improvements in technology may well slow down so much, that a more 

concentrated effort into architectures will need to be undertaken. Some 

architectural features that affect machine performance will now be
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discussed.

Obviously the number of processors in a machine will affect the 
performance of the machine. However, the topology of the system (the 

way the processors are connected together) is very important and usually 

has to "match" a task to achieve optimum performance. This is discussed 

more fully in Chapter 7 where a series of machines are reviewed and 
discussed.

The next point to note is the concept of bit efficiency. This 
allows a computer to execute an algorithm using fewer instruction bits, 

and is therefore a measure of its functionality. Bit efficiency is a 
function of the number of words in an instruction word and the number of 

operations performed for each instruction. A computer with a long 

instruction word may therefore be more bit efficient than a computer 
with a small instruction word, if the computer can do an equal number of 

operations with far fewer instructions. The benefits of bit efficiency 
are small program size, high execution rates and fewer memory references 

to fetch program instructions.

Orthogonality measures the ability of a computer to address 
different types the same way, independent of the data type it 
references. A possible problem with non-orthogonal computers is that 
they usually have difficulty addressing particular data types. 

Therefore, they may take several operations to perform a function on a 
particular data type that could otherwise be executed in a similar 

amount of time. This problem would cause a decrease in the performance 

of the machine.

The addressing capability of a computer determines how it accesses 

external devices. An architecture with good addressing capability uses 

the same instructions to address a processor register, an I/O device, 

main memory etc. There is also no distinction between data and address
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locations. Often a processor has separate data and address registers, 
e.g. the 68000 series. In this case, when manipulating an index into an 
array, it is necessary (e.g. in some instructions with the 68000) to 

manipulate a data register and transfer it to an address register to 

form the index before the data can be retrieved. This requires 

additional lines of code and hence reduces total system performance.

Now that we have determined some of the factors that affect machine 
performance, and problems that can arise during "measuring" the 
performance, we shall now present the results from SIP and the LAP. As 

discussed before, these are based on operations and algorithms that we 
have frequently used and that we have found common in many inspection 
algorithms.

6.4 PROGRAM RESULTS

Since SIP and the LAP have been designed specifically for image 
processing, a suite of "typical" image processing algorithms has been 
used (as described in Section 6.3) to demonstrate the processing 

capability of the processors. Note that this is not an exhaustive set 
of algorithms but merely demonstrates the machine's performance in these 
situations. All programs have been written in the machine's own 

language.

Strictly speaking, a direct comparison between SIP or the LAP and 

the PDP-11/73 should not be made since SIP and the LAP are special 
purpose image processing processors whereas the PDP-11/73 is general 

purpose; however, it does demonstrate the advantages of special purpose 

hardware and bit-slice designs over commercial processors. Also, no

1 Note that the PDPll/73 has a floating point unit and 8Kbytes of cache
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direct comparison should be made between the LAP and SIP since SIP was 

specifically designed to execute the algorithms the LAP was incapable of 
executing. Nevertheless, a comparison is made by comparing the ratio 
(LAP/SIP) of the execution times of the same algorithms executed on both 

machines. This will show if a bit-serial parallel processor has a 

significant performance improvement over a bit-parallel serial 

processor. The results for the three machines (SIP, PDP-11/73 :, and the 
LAP) are given in Table 6.1.

As explained in Section 5.8.1, it is possible for SIP to execute

several instructions concurrently. For this reason, SIP has been run

with non-optimised code (noc) and optimised code (oc). This allows us 
to observe the performance increase caused by code optimisation. All 

times are given in milliseconds (ms) and exclude I/O (add 30ms onto the 
times for SIP for input and output and ~ls for the LAP). As mentioned 
in Chapters 3 and 5, SIP and the PDP-11/73 both operate on a 128x128 

image; however, the LAP operates on a 256x256 image. The times given 

for SIP and the PDP-11/73 are therefore the times taken to operate on a 
128x128 image plane multiplied by four. All programs were executed on 

the same image to ensure no biasing for data dependent operations. 
Those entries entered as a double asterix (**) mean that the machine was 
incapable of executing the algorithm for some architectural reason.

The next table of results (Table 6.2) shows the performance

increase due to code optimisation for SIP both in terms of program
execution time and code reduction. The following table (Table 6.3) 

shows the ratio between SIP and the LAP, SIP and the PDP-11/73 processor 

and SIP and a 68000 processor running at 8MHz. A double asterix (**) 
indicates that there were so few lines of code or that optimisation 

produced so little change in code length (usually because of many 

branches in the algorithm) that there was no significant increase in 

performance. All times are given in milliseconds.
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Algorithm SIP (noc) SIP (oc) LAP PDP-11/73(ms) (ms) (ms) (ms)-------- ------ ---------
Sobel 372 224 37.4 4304Threshold 63 45 6 1168Complement 35 26 5.7 984Edge 372 264 36 4900Binary Smooth 424 237 16.6 3760Mean (3x3) 258 258 18.7 3056Expand/Shrink 263 117 11 2424Robert Cross 178 134 14 1692Median (3x3)^ 2000 1780 166 46428Intensity
Histogram 88 64 ** 2756(a) Centre Find^ 184 164 ** 4816
(b) Centre Smooth 0.44 0.44 ** 8
(c) Draw Circle 588 588 ** 7976
Thin 3
3-iterations 1280 1180 'k'k 25900
5-iterations 2760 1884 ** 42846

Table 6.1 Table of the execution times for
SIP, the LAP and the PDP-11/73

1 Note that the median is also useful for such algorithms as corner 
finding [88], etc. as well as noise removal. It is therefore thought 
important enough to be included.

2 These steps represent the first three steps of the 0-ring algorithm,
i.e. it involves the Hough transform. The Hough transform has 
previously been cited as being useful for industrial inspection and 
has therefore been included.

3 The thinning algorithm used was that by Davies and Plummer [23]. This 
is a parallel algorithm that requires a continuous full scan over the 
image, applying the algorithm until no change in the image occurs. In 
this case, two images were used - one took 3 iterations and the other 
took 5 iterations.
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Algorithm Reduction in Code reduction
execution time (%) (%)

Sobel 40 48Threshold 29 21
Complement 26 12Simple edge 
detector 29 25

Binary Smooth 44 32
Mean (3x3) ** 'k'k

Expand/Shrink 56 36
Robert Cross 25 19
Intensity
Histogram 27 8

a) Centre Finder 11
b) Centre Smooth ** 25 (for all
c) Draw Circle **

Median filter (3x3 ) 11 32
Thin 3 
3-iterations 8 15
5-iterations 32 15

Table 6.2 Table of the reduction in execution time and 
code length after optimisation of SIP's code

Algorithm LAP/SIP PDP/SIP 68000/SIP

Sobel 0.16 20 13
Threshold 0.13 26 13
Complement 0.22 38 14
Edge 0.14 19 13
Mean (3x3) 0.07 12 14
Expand/Shrink 0.09 21 15
Robert Cross 0.10 13 13
Median (3x3) 0.09 26 16

Table 6.3 Table of the ratios of the average execution
times for SIP, the LAP and the 68000
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6.5 ANALYSIS OF THE RESULTS

Inspection of Table 6.2 shows that optimised code achieves an 

average of 30% speed reduction over non-optimised code with a

corresponding average of 30% reduction in code size (note that these two

figures are not directly related to each other). From Table 6.3, the

LAP has (on average) only a factor 8 speed improvement over SIP when SIP

uses optimised code whereas SIP has, on average, an algorithm execution 
speed of 25-30 over the PDP-11/73.

6.5.1 Performance against other machines

The performance of SIP has also been compared against a variety of 
other machines. The results in Table 6.3 show that SIP has an average 
factor of 14 speed improvement over the 68000 processor. (Note that all 

times are based on a 68000 processor running at 8MHz operating on a 

128x128 image.) These results give a fairly realistic figure of 

performance as the algorithms involve both single point and 3x3 kernel 

operations.

Probably the most realistic comparison is comparing SIP's results 
with those published by Logica [97] for DIPOD (Section 7.8.1). DIPOD is 

similar to SIP in that it is based on a bit-slice architecture; however, 
their similarities extend beyond the basic architecture. DIPOD and SIP 

are both based on the AMD 29203 bit-slice processor running at the same 
clock frequency (8MHz). This demonstrates an important point in that 

the performance must now be governed by the architecture and not by the 

type of processor used or the clock frequency. Below are the results 

published by Logica against those achieved by SIP. Unfortunately, these 
are the only figures currently available for DIPOD. The Sobel is based 

on a 128x128 image plane.
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1. Sobel: DIPOD - 85ms SIP - 55ms

2. Naive List reversal (30 entries): DiPOD - 200jus SIP - 29/js

This shows that a machine's performance has a strong dependency on its 

architecture. Another point to note is that the cost of a single SIP is
around £620 (one off) whereas a single DIPOD node (a DIPOD system is

from many nodes) costs around £30,000 (commercially). Comparing 

the price/performance ratio one can see that, even assuming a commercial 

price of £2000 for SIP, SIP would be a more advantageous solution (see 
also Chapter 8). Based on the same cost analysis, the LAP costs about 
£9000 commercially.

6.6 A PARALLEL/SEQUENTIAL CONFIGURATION

In Section 5.2 we showed that many image processing algorithms 
include both sequential and parallel processes. Thus, a parallel
algorithm (e.g. a Sobel) executing on a sequential machine (SIP), is 

inefficient relative to the same algorithm executing on a parallel 
machine (LAP). Also, a sequential algorithm executing on a parallel 

machine is inefficient when compared with the same algorithm executing 

on a sequential machine. Because many image processing algorithms 
include both sequential and parallel processes, it seems clear that
either processor executing an algorithm consisting of both parallel and 

sequential processes will be inefficient in one way or another.

This leads on to the possibility of combining both SIP and the LAP

so the LAP would execute the parallel processes and SIP would execute

the sequential processes. An example of this might be:
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(1) Find the edges of the object by application of a Sobel.

(2) Threshold the image.

(3) Chain code the image.

(4) Extract measurements from the chain code.

The above algorithm could be partitioned into two parts: the LAP could

execute parts (1) and (2) while SIP could execute parts (3) and (4).
Both SIP and the LAP would have their program code (microcode) loaded 

into their respective program memories by an external host. SIP would 
load the image into the LAP, run the LAP, then fetch the resultant image 
and load it into one of its image planes for further processing. 

Unfortunately, the LAP-II is as yet unfinished and its performance is 

unknown, though it is estimated that it will have a speed improvement of 
approximately two over the LAP-I. The following analysis is based on 

the results derived from the LAP-I.

In order to execute the above algorithm on the LAP-I, SIP is 
required to load the data (the image) into the LAP, run the LAP, then

fetch the result (65,536 pixels). This is likely to cause a data
bottleneck, particularly if parallel and sequential tasks are scattered 
throughout the algorithm. For example, considering the example above, 

SIP takes 25 cycles per pixel to apply a Sobel and 5 cycles per pixel 

for the threshold. Therefore, 30 cycles are needed for every pixel in 

the image. This will lead to an execution time of

256 * 256 * 30 SIP clock cycles.

on a 256x256 image. However, the LAP takes 1172 cycles for the Sobel 

and 210 cycles for the threshold (per line) therefore, the total time to 

execute the parallel part of the algorithm will be

256 * 1382 LAP clock cycles
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which is ~5-6 times faster that SIP. (Note that both the LAP and SIP 

operate at the same clock frequency of 8MHz: hence a direct comparison 
can readily be made.) However, the additional overhead of transferring 
data from the LAP means an additional

(256 * 256 * 3) + (256 * 256 * 3)

(to LAP) (from LAP)

SIP clock cycles will be needed (assuming three cycles per pixel VME 
read and write). This means that a Sobel and threshold on a SIP/LAP 
configuration is in fact executed in

(256 * 1382) + (256 * 256 * 3 * 2) clock cycles

Thus, about 53% of the total time to execute the parallel task is spent 
transferring data. This reduces the efficiency of the system to only a 
factor 2.6 greater than SIP as a stand-alone processor. Note that the 

LAP was originally designed to accept data directly from a line-scan 
camera, although this was never implemented. In this case, the first 
data transfer can be eliminated (since data need not now be transferred 

to the LAP); thus, the percentage of time spent transferring data is 
reduced to 35.7%, producing a SIP/LAP ratio of 3.6.

If parallel and sequential tasks are scattered throughout the 

algorithm, then SIP will need to transfer data more frequently 
throughout the algorithm. This will eventually cause a much larger data 
bottleneck in the system. However, as we mentioned in Chapter 4, there 

will be cases where a parallel processor will greatly enhance the 

performance of a system (here, we have taken rather trivial examples). 

For instance, there will be cases when there will be several parallel 

tasks and few sequential tasks. In this case, a parallel/sequential 

processor configuration may greatly reduce the execution time of an 

algorithm by several factors compared with the situation where the
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algorit±im is implemented on a single sequential processor. This 

requires a more detailed investigation; however, as the LAP-II is as yet 
unfinished and the performance is unknown, any further calculation will 
be rather speculative. For this reason, this study will not be 

continued here. The above calculations only serve to give a brief 

insight into possible timings and how the system would operate.

Another point worth mentioning is the problem that occurs when 
programming two different bit-slice architectures (particularly a 
sequential and parallel processor) when configured as a complete system. 
Since SIP and the LAP have different microcode formats and have, as a 

result, acquired different languages, they will have to be programmed 
accordingly - this is a situation to be avoided.

6.6.1 Conclusions

The initial results of a system composed of SIP (sequential 
processor) and the LAP (parallel processor) show that a bottleneck is 
likely to occur because of SIP having to transfer data to and from the 
LAP. Another problem is the need to program these machines in different 
languages when implementing a complete system. Because each machine has 

a different microword format, programming is made more difficult. An 
alternative is to have a common language and the parallel and sequential 

tasks are partitioned by the programmer. However, because the microword 

format for each machine is hardware dependent, knowledge of the hardware 
for each machine must be incorporated into the language. As the number 

of hardware modules increases (and hence different microword formats), 

this situation will become undesirable.

Chapter 8 investigates various configurations using multiple SIPs. 

This has the advantage that, because each processor has the same 

architecture and microword format and each processor executes the same
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program, the simplicity of programming is maintained while the 
processing power is increased as the number of processors increases.

6.7 SUMMARY

This chapter has discussed the problems concerned with the problem 
of measuring machine performance. A MIPS figure is frequently quoted as 

a measure of machine performance; however, this figure often bears 
little relation to the execution time of a program. For this reason, it 
was decided to represent the performances of SIP and the LAP by stating 

the execution times of several image processing algorithms. These 

contained operations that we found frequent in image processing. A 
comparison against conventional processors and processors of a similar 
nature was also undertaken. Optimisation of SIP's code has shown that a 
30% reduction in code size and a 30% decrease in execution time could on 
average be obtained. Comparing these results with those obtained for 

DIPOD which has many similarities to SIP, it was found that the 

architecture of the system plays a crucial role in the performance of a 

machine.

Initial results of a multiprocessor configuration composed of the 
SIP and the LAP show that this was likely to incur a bottleneck because 
of the data transfer to and from the LAP; however, because the 

performance of the LAP-II is as yet unclear, this area of investigation 

is incomplete. The next chapter reviews a variety of architectures that 
have been proposed and employed for use in image processing. These tend 

to be SIMD (parallel) machines for reasons that were summarised in 
Chapter 1. From the results gained here and an analysis of other 
architectures. Chapter 8 describes a variety of configurations composed 

of multiple SIPs (sequential processors) and analyses the performance of 

each configuration. This entails an analysis of processor bottlenecks.
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CHAPTER 7 

ARCHITECTURES

"...why they are as they are, and not otherwise"
Mysterium Cosmographicum Preface

7.1 INTRODUCTION

This chapter presents a study of computer architectures and 

techniques that have been adopted to eliminate some of the classic 

problems associated with the traditional von Neumann architecture. An 
attempt to clarify the question "what is a computer architecture?" is 

undertaken which leads to the classification of architectures. Criteria 
for choosing an architecture are discussed which highlight some of the 
pitfalls that can be avoided by measuring specific features of a 

proposed architecture. This includes optimisation of an architecture 

for a particular problem with regard to cost-speed tradeoffs.

A varied set of architectures that have been used for image 
processing are reviewed. Particular idiosyncratic features that have 

been employed in the architecture are highlighted including reasons why 

these features were implemented. These thoughts are applied to image 

processing where a high degree of both sequentialism and parallelism is 

frequently required. The conclusions from this chapter are applied to a 
hybrid architecture (Chapter 8) that attempts to execute both sequential
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and parallel processes efficiently. However, first let us discuss the 
common source of inefficiency in most microprocessors.

7.2 ARCHITECTURES

With few exceptions, modern computers still employ the original von 
Neumann architecture as depicted in Figure 7.1. It consists of a single 
processing unit and a single memory for both instructions and data. No 

distinction is made between data and instructions, enabling data to be 

interpreted as instructions and instructions as data. The problem with 
this approach is that only one location in memory can be accessed at any 
one time: hence instructions have to be fetched and decoded before the 

data can be fetched. Several machine cycles are therefore needed to 
implement each instruction and this is highly inefficient; for example, 
consider a typical nonpipelined von Neumann processor that takes five 

machine cycles to execute an instruction. (Note that more cycles may be 
needed for some instructions. Also, each processor has a different 
instruction fetch/decode/execute scheme. This example merely serves as 
a typical sequence a processor will follow to implement a short 

instruction.)

Cycle 1 - Fetch instruction 
Cycle 2 - Decode instruction 
Cycle 3 - Fetch data 
Cycle 4 - Execute instruction 
Cycle 5 - Store result

If L operations (here L=5) are required for each instruction and T is 
the time required to execute each operation (usually the period of one 

clock cycle), then the total time taken (t) is 

t = L*T
The maximum instruction execution rate (r) is therefore 

r = 1/(L*T)
We can immediately see that this is highly inefficient because the
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PROGRAM AND PROGRAM
DATA MEMORY COUNTER

CENTRAL PROCESSING UNIT

Figure 7.1 The traditional von Neumann processor. Program 
and data are held in the same memory

P ROG RAM  

COUNTER

PROGRAM MEMORY DATA MEMORY

CENTRAL PROCESSING UNIT

Figure 7.2 The Harvard architecture. Program and data 
are held in separate memory blocks
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actual processor execution circuitry (used in cycle 4) is active for 
only 1/L of the total time.

Suprisingly, the majority of today's processors including the 
MC68020, the DEC J-11, the Intel 8086 and 80286 and machines like the 
VAX family, still employ the von Neumann architecture. Processors such 
as the 80286 rely heavily on internal pipelining (see Section 7.2.1) to 

eliminate the inefficiency factor 1/L while the MC68020 also employs 
on-chip cache for further efficiency.

The Harvard architecture depicted in Figure 7.2. was developed in 
the 1940's by Howard Aiken (inventor of the Mark I calculator) of 
Harvard University [128]. This diverts from the classic von Neumann 
architecture in that it maintains separate program and data spaces 

allowing the instruction and data fetch to take place concurrently, 
hence reducing the number of cycles needed to execute each instruction. 
It has been adopted by processors such as the LM32900, NS32532 and Texas 
instrument's TMS32010 to achieve maximum instruction throughput of one 
instruction/cycle. More recently. Motorola's 68030 has adopted the 
Harvard architecture internally and is predicted to achieve a 

significant performance increase over the von Neumann 68020. 
Externally, the 68030 employs the von Neumann architecture with 
instructions and data sharing common memory but internally, the 68030 

features two 256 byte caches - one for the instructions and one for the 
data. (Cache is a small amount of "fast" memory that often eliminates 
the need for the processor to fetch every instruction from "slow" 

external memory. This has the advantage of increasing the program 

execution speed.)

As an example, consider the von Neumann machine above that took 

five cycles to execute an instruction. The Harvard architecture in a 

similar setup fetches the data in cycle 1 concurrently with the
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instruction fetch. Cycle 3 is now eliminated making the maximum 
instruction execution rate, r as 

r = 1/T*(L-1)

which is a performance improvement over the von Neumann processor of 
L/(L-1)

This is not a large improvement if the processor takes a large number of 

cycles to execute each instruction. Therefore, for processors that take 

a large (>3) number of cycles to execute each instruction, the 
advantages of the Harvard architecture are not realised, e.g. for a von 
Neumann processor that takes five cycles to execute, adopting the 

Harvard architecture will mean that the processor circuitry will only be 

active 25% of the time, which is not a great difference. (Note that 
this assumes a register-memory operation. Memory-memory operations will 
obviously take longer.)

This inefficiency has led computer architects to try to reduce the 
number of cycles needed for each instruction in order to improve 
performance. One approach which has been adopted in both von Neumann 

and Harvard processors is the technique known as pipelining 

(Section 7.2.1). This can improve a von Neumann processor's instruction 
rate to a maximum of one instruction every two cycles or to a single 

cycle when the Harvard architecture is employed.

Some of the differences between the von Neumann and Harvard 
architectures are not immediately obvious. Since instructions and data 

share the same memory space in the von Neumann architecture, the 

instructions and data must have lengths that are equal to or are factors 

of each other. With the Harvard architecture, program and data spaces 
are separate, enabling instruction and data lengths to be of whatever 

size is appropriate. The same also applies to the various registers in 

the processor. For instance, the program counter must be of sufficient 

length to address only the instruction memory, the size of the data

— 202 —



memory being determined by other factors.

In this chapter, we mentioned a technique known as pipelining. 
This will now be discussed.

7.2.1 Pipelining

The fundamental property of a pipeline is that it can decompose a 
process into dedicated subprocesses as long as the subprocesses are 
independent of each other. Dasgupta [22] described a pipelined system 
not as an architecture but as an architectural style. An architectural 
style is a feature which is exhibited by an architecture.

Processors such as the 80286 and the LM32900 incorporate a pipeline 
to obtain simultaneous instruction fetch and execute. For example, in 
the 3-level pipeline of the LM32900 (Harvard architecture), as an 
instruction is being executed, the next one is being decoded and the one 

after that is being fetched. This is depicted in Figure 7.3. In many 
cases, a maximum throughput of one instruction/cycle can be achieved.

Fetch

Decode

Execute

Ti Ï2 Tj Tg Tg

Figure 7.3 A 3-level pipeline producing a rate of 1 instruction 
per cycle. The numbers in the boxes represent an
instruction at time Tn
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Ideally, one would require a pipeline for every independent

operation to be performed. However, a serious disadvantage of this is
that the processor assumes that the next instruction required for 
processing is the next one in sequence in the program memory. This is 

not true in the case of a branch. If a branch is encountered at the 

execution unit, the instruction in the decoder and the instruction being 

fetched in the same time interval will be wrong, as control is now being

passed to a different part of the program. In this case, the
instructions being decoded and fetched have to be discarded and the
pipeline must be filled with the new instructions before correct
operation can resume. Thus, if a program has a large number of 

unconditional or conditional branches and the number of pipelines is 
excessive, the performance of a pipelined processor can degrade rapidly.
(The same applies to the start of a program - the pipeline must be
filled before the initial result is delivered.) Therefore, the time to 

perform a series of operations in a pipelined system is 

t = [ S + L ]*T
where S*T is the initial start-up time required to set up the pipeline. 

The pipeline thus has a maximum instruction rate of 

r = 1/T
which is a factor L increase in performance over the original von 
Neumann architecture. As we shall see later, for image processing where 

a large amount of data has to be processed, computer architects have 
traditionally adopted the Harvard approach and replicated the processor 

section for maximum throughput.

The next section explores what is meant by the term 'computer 
Q ■ j - 00-̂ 2̂'0  ̂ grid how the way we view an architecture can influence the

design of a computer system.
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7.3 WHAT IS AN ARCHITECTURE?

What constitutes a computer architecture has been a point of some 
debate in computer science. The crux of the problem lies in the complex 

nature of computers. A convenient way of representing a complex system 

is by the use of hierarchy. For instance, a computer consists of a 
processor, memory, control unit and I/O unit. The processor may contain 

a pipeline, ALU and register file; the memory may contain local data and 

dual-port memory; and the I/O section may consist of a bus and serial 
interfaces.

Dasgupta [22] noticed that an architecture can be viewed in 
different ways. The machine language programmer views a machine from a 
logical structure and functional capability point of view. He does not 
need to know the details of the machine's physical components, the 
logical structure of their interconnections or the nature of the 

information flow between components, all of which are necessary 

knowledge for the hardware designer. These two views (known as 'levels' 
in this context) have been termed exoarchitecture and endoarchitecture 

respectively [22]. Exoarchitecture is in effect an abstraction of 
endoarchitecture. One can view the relationship between exoarchitecture 
and endoarchitecture as a means of "hiding" information.

These two levels will often suffice for a complete abstract 

specification of a computer system; however, there is a third level that 
becomes discernible in systems with a writeable control store. This is 
termed microarchitecture. Many aspects of microarchitecture will also 

be a part of endoarchitecture (ALU's, local memory, etc.) but 
endoarchitecture may not include details of the microprogram control 

unit which are essential knowledge for the microprogrammer. Using such 

systems, the microprogrammer may create new endoarchitectures and hence 

new exoarchitectures. We can thus view an endoarchitecture as the
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result of implementing a particular microprogram on a microprogrammable 
machine.

We can therefore conclude that an architecture is an abstraction of 

the hardware that can be viewed from different levels: at each level 
(starting from the system as one component and working down), the 

information revealed becomes more detailed. The next section introduces 

classification of architectures. Two classifications are presented 
followed by a discussion.

7.4 CLASSIFICATIONS OF ARCHITECTURES

Flynn [40] based his classification of architectures, not on the 
structure of the machines but on how the machines relate their data to 
the instructions being processed. By doing this he produced four 
classes of machines:

1. SISD - single instruction stream/single data stream. This is the 
typical von Neumann serial computer (Section 7.2) where there is 
only one stream of instructions. Examples are: CDC6600 

(nonpipelined), CDC7600 (pipelined), AMDAHL 470V/6, PDP-11, VAX, 

68000, SIP (Chapter 5), etc.

2. SIMD - single instruction stream /multiple data stream. This is a 
computer that distributes the same instruction from a single stream 

to many processors all operating on different data. This class of 

machine includes most types of array processors, e.g. the ILLIAC IV, 

ICL DAP, CLIP4 and the LAP (Chapter 5).

3. MISD - multiple instruction stream/single data stream. These 

systems usually consist of special streaming organisations, e.g. a 
pipelined processor system. Here, a processor processes the data 

then passes it on to the next processor for further processing, etc.
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Thus, the data is pipelined between processors.

4. MIMD - multiple instruction stream/multiple data stream. As its 

name asserts, multiple instructions are operating on multiple data 
streams. An example of this is DIPOD (Section 7.8.1), the 

Connection Machine (Section 7.8.3) and the Pyramid architecture 
(Section 7.8.4).

Shore [107] on the other hand, based his classification on how the

computer was organised into its constituent parts. From this he
produced six different types of organisation as follows;

1. Machine I - is the conventional von Neumann architecture with a 

single processor unit, a single control unit and a single 
instruction and data memory unit. This class includes both the 
pipelined scalar computer, e.g. CDC 7600, and the pipelined vector 

computer, e.g. CRAY-1.

2. Machine II - is similar to machine I except that the data is fetched 
as a bit-slice rather than a word-slice and the data is performed on 

in a bit-serial like fashion, e.g. STARAN and the ICL DAP. The main 
difference between Machine I and Machine II is that Machine I 

processes its data; word serial, bit parallel while Machine II 

processes its data: word parallel, bit-serial.

3. Machine III - is a combination of both Machines I and II. Known as 
an orthogonal computer, the data memory is organised as a two 

dimensional array which may be read as either words or bit slices 
and thus contains both a horizontal and vertical processing unit. 

It has the advantages of both Machine I and Machines II resulting in 

a higher throughput; however, the cost is increased significantly 

since the arithmetic hardware of Machines I and II is needed. 
Complications also arise because of the need for dual-ported memory.
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An example of such a machine is the Sanders Associates OMEN-60 
series.

4. Machine IV - this machine is obtained by replicating the processor 

section and data memory of Machine I. All instructions are issued 
from a single control unit. There is no communication between the 

PE s except through the control unit which tends to limit the 

applicability of the machine, but addition of further PE's is fairly 
simple. An example is the PEPE [55].

5. Machine V - similar to Machine IV except the PE's are connected to 
their nearest neighbours. This means that a PE can access its own 

memory and data from its neighbours. Most array processors 
(Section 7.6) are examples of machine V.

6. Machine VI - this is called a logic-in-memory array (LIMA) and is an 
alternative approach of distributing the processor logic throughout 
the memory. Machine VI ranges from simple associative memories to 

complex associative processors. The NRL AP is a typical example of 

a LIMA machine [107].

By comparing Shore's classification with Flynn's (and ignoring the 
awkward case of the pipelined vector computer), Hockney and Jesshope 

[55] noticed that Machines II to V are subdivisions of Flynn's SIMD 
machine while Machine I is equivalent to the SISD machine. Hence, 
Flynn's classification is rather too broad. Shore's classification 

allows us to draw a finer line between the parallel and sequential 

computer. It is often stated that Machine II is a SIMD machine and 
Machine I is not. In fact, they are both SIMD machines because Machine

I processes multiple-bit streams a word-slice at a time, whereas Machine

II processes multiple-word streams a bit-slice at a time. If a line 

between sequential and parallel processors does exist, it will probably
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be between Machines III and IV and not between Machines I and II as one 
would expect [107].

As we can see, either taxonomy does not cover all possible cases. 
For instance, a pipelined vector computer falls into the same category 

as a nonpipelined scalar computer. More recent attempts include a 

nomenclature [8] that aims to bring out the diversity in parallel 

processor designs such as the incorporation of different levels of 
parallelism.

7.5 CRITERIA FOR CHOOSING AN ARCHITECTURE

With all of these architectures and architectural styles at his 
disposal, the designer has to have solid criteria for selecting between 

them. The choice will ultimately depend on the application and the 
factors involved. Quite often, it is necessary to optimise a system 

either on a cost-speed basis or on a performance basis. We will now 

examine both of these approaches below.

7.5.1 Optimising an Architecture on a Performance Basis

The most useful method for optimising an architecture on a 
performance basis is to measure the degree to which the processing 

hardware is being usefully kept busy. An incorrect design could cause 
processing power to be used inefficiently. For instance, it is often 

implied that if a parallel processor can be programmed for an

application, then a throughput higher than a sequential processor will 

result. This is not always the case, especially if the parallel
processor consisting of N processors was writing to a single data word

from memory. This would result in one useful processor and N-1 idle 

processors. The sequential processor in this case would be more

suitable for the application since it can perform a single operation
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using less processor hardware. However, a parallel processor will 

usually be superior to a sequential processor when the application can 

be fully parallelised and the execution time must be much less than that 
possible by an optimally programmed sequential processor.

7.5.2 Optimising an Architecture on a Cost-Speed Basis

Optimising an architecture on a cost-speed (cost of hardware-speed 
in software) basis will here be taken to mean distinguishing between 

those parts of a system that should be implemented in hardware and those 
that should be implemented in software, taking into account cost and 
speed factors. One extreme situation is when algorithms are too slow 

for the application; another is when the total cost to implement the 

algorithm in hardware is too great.

Suppose now that we are considering whether to implement a given
algorithmic function in hardware to make it run faster. We need to 
obtain guidelines to decide whether the hardware can be justified. As 
an example, consider using hardware accelerator modules to speed up the 
0-ring algorithm presented in Chapter 3. The times (in milliseconds) 

are derived from those given in Section 3.3.5; with the absence of 

actual costs of the hardware modules, notional costs will be used for 

this example.

For each task in the algorithm, the procedure adopted by Davies and 

Johnstone [29] was to tabulate the execution time in software (t) and 

the corresponding hardware implementation cost (c). From this a 
cost—time ratio (c/t) can be derived for each task (Table 7.1). This

figure gives us the cost per unit time, e.g. pounds/mi H i  second.
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task time cost c/t ratio
* 1 ■

(ms) (£) (£/ms)

1. Find Centres 2500 5200 2.12. Sort List 30 2000 66.73. Find Centres 20 1500 75.04. Median filter 20 2000 100.05. Radial Histogram 270 2500 9.3
2840 ' 13200

Table 7.1 Breakdown of the 0-ring algorithm and 
its c/t ratio for each task

It is fairly clear that those tasks which should be implemented first 

are those with a low c/t ratio, since this helps to give low cost 
complete with high speed. On the other hand, those parts with 
particularly high c/t ratios (the threshold depends on the application) 

may quickly be eliminated for the purpose of hardware implementation. A 
high c/t ratio may arise either because the task is performed quite fast 
initially or because the circuitry required is relatively expensive for 

the functionality it achieves (or else because of a combination of these 

factors).

Next, it is necessary to find where best to stop implementing these 

tasks in hardware. We now define C,T as being the running totals of the 
c and t figures down the list (Table 7.2): the aim will be to minimise 
the cost-speed tradeoff product, C*T. According to this criterion, the 

best tradeoff in this case arises when all tasks are implemented in 
hardware. In spite of optimising a cost-speed tradeoff for a system in 

this way, it may nonetheless be necessary to tailor a system for a 

specific speed or cost constraint. In this case, those parts of the 

(C,T) list down to the specific cost or speed limit should be 

inplemented. For example, consider the system above with a £10,000 

budget. Those parts up to (and including) the £9700 row should be
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implemented in hardware, implying an 0-ring execution time of 80ms,

task time cost C T C*T (xlO^)(ms) (£) £ (ms) £-ms

2000 20001 2850 2 5.71 2500 5200 7200 350 2.55 270 2500 9700 80 0.82 30 2000 11700 50 0.63 20 1500 13200 30 0.44 20 2000 15200 10 0.2

Table 7.2 C*T table for the 0-ring algorithm

We shall now discuss the use of the 13IMD machine in
processing. Following this, architectures that have been employed in 
image processing will be reviewed.

7.6 SIMD MACHINES FOR IMAGE PROCESSING

A large volume of data processing is needed for image processing 
but because of the constraints of technology at the time, designers have 
resorted to the use of multiple processors for increased data 

throughput. Combining multiple processors on a single bus usually 

incurs major drawbacks:

1. The data bus can become saturated for as few as ten processors, 
hence producing a data bottleneck. The onset of this bottleneck is 
governed by the bandwidth of the bus, and in any case is highly data 

dependent.

1 An initial cost of £2000 has been included to cover the cost of the 
basic system, e.g. host computer, backplanes, power supply, etc.

2 lOms has been added to the original times in Table 7.1. This implies 
that if all tasks were implemented in hardware, the algorithm would 
execute in 10ms.
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2. Partitioning and scheduling of tasks into subtasks with similar 

execution times is difficult and is sometimes impossible. This can 
lead to processors lying idle if its task is finished early, making 
inefficient use of processing power.

3. Because of this, expansion to an arbitrary number of processors and 

maintaining efficient use of processing power is generally 
difficult.

The bus organisation for interprocessor communication is thus unsuited 

for image processing where the problems are varied and, at times, 

unpredictable. Ideally, one would like a performance increase 
proportional to the number of processors in the system. Computer 
architects have traditionally gone for the SIMD array processor approach 
for increased data throughput. This has the particular advantage that 
the data format (i.e. the image) maps onto the processor array. This 

suggests that the performance of the machine will rise linearly with the 

number of processors. However, Minsky's conjecture [40] states that the 
gain in performance for a SIMD machine is roughly proportional to log^N 

and not N as one would hope. This was interpreted as being due 

predominantly to the way a SIMD processor executes its branch 
instructions, although this must inevitably be data dependent.

In general, array processors consist of an NxN array of processors 
(usually referred to as processing elements (PE's)), each with its own 
local memory as depicted in Figure 7.4. A central controller broadcasts 

instructions to all PE's simultaneously: hence all PE's execute their 
instructions in lockstep. Each processor is usually connected to either 

its four or its eight nearest neighbours. When used in image

processing, each PE often represents a single pixel in the image. The
pixel is loaded into the PE's local memory, operated on, then
transferred either back to local memory for further processing or to an
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Figure 7.4 Typical representation of a SIMD machine consisting 
on an NxN array of P.E's, each with its own local 
memory and receiving the same instructions

I/O device such as a frame store. Following the notations of 

Section 7.2, the instruction throughput is now 

r = N/(L*T)
where N is the number of processors in the system. For the majority of 

array processors, L=l, i.e. the Harvard approach has been adopted with a 
pipelined instruction fetch. Thus, the maximum instruction rate for an 

array processor is N/T. This has a performance increase of N over the
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single processor Harvard approach and N*L over the von Neumann approach.

A main difference between SIMD array processors is the size of the 

array and the amount of memory available to each PE. The following 
sections review several machines that have emerged as having the most

prominent effect in image processing. Most of these machines tend to be

in the form of the SIMD array. However, by showing specific
architectural idiosyncracies for each machine, and the reasons why these 

were implemented and how they relate to image processing, we can then 

build on this work. This is done in Chapter 8. Many of these machines 
are now old; however, with the advent of VLSI, the possibility of 
fabricating a large number of processors on a single chip to produce 

larger arrays has become a reality. These machines will also be 
reviewed.

7.6.1 The ILLIAC IV

The ILLIAC IV [37] was said to be a failure in its time 
(circa. 1970) because it cost four times as much as the contract figure 

and did not come within a factor 10 of its original proposed
performance: nevertheless, it had a profound and lasting influence on 

architectures. The architecture was too advanced for the technology at 
the time; however, what emerged from the experience was the significant 
advancement and finally the introduction of ECL chips and specialist CAD 
tools to cope with the 15-layer circuit boards that were required in the 

PE section [6].

The basic layout was a square array of 8x8 PE's (each PE was a 

64-bit PE) and a control unit (CU). The original specification was an 

array of 16x16 PE's, each with 2Kx64 RAM (120ns access time) for local 
data storage. A system clock cycle time of 40ns gave it an estimated 

peak processing rate of IGFlops/s. The system was to be composed of 4
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8x8 quadrants; however, only one quadrant was ever built and the clock 

cycle time was eventually increased to 80ns, only ever producing a peak 

rate of 50Mflop/s (one floating point operation every 240ns) and a 
typical rate of 15Mflops/s. This still compares favourably with the 

CDC7600 which had a peak processing rate of lOMFlops/s and a typical 
processing rate of 5MFlops/s.

Although the ILLIAC IV was essentially a 64-bit machine, its most 

common mode was for 32-bit floating point arithmetic. It was capable of 
performing 64-bit and 32-bit floating point operations but in the 32-bit 
mode, two floating point operations could occur concurrently in each PE. 
It was thus capable of performing 32-bit arithmetic on vectors of length 
128. Each PE had an enable/disable bit which controlled the instruction 
execution of that PE, and 4 64-bit registers: A (accumulator), B 

(operand register), R (multiplicand and data routing register) and S 
(general purpose). The PE section was developed so that arrays of PE's 

could be partitioned into subprocessors of 64x1, 32x2 or 8x8 under 
software control.

The main purpose of the CU depicted in Figure 7.5 was to control 
and decode instruction streams and to generate and broadcast those 

instructions that were common to all processors. One of the most 
prominent features of the ILLIAC IV was the instruction fetch/execute 
sequence. Each instruction is 32-bits in length and is used either by 

the CU (for simple single operations) or by the PE array (for more

complex operations). Initially, each instruction entered the 
instruction buffer. As the control advanced, each instruction was sent 
to the advanced instruction station (ADVAST) unit where it was decoded 

from a repertoire of 260 operational instructions into a set of

microsequences chosen from the 720 micro-instructions available. If it 

was an instruction local to the CU then it was executed: otherwise, in

the case of a PE instruction, ADVAST constructed the necessary address
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or data operands and stacked them in a FIFO queue (FINQ).

PE instructions were taken from FINQ and sent to the final
instruction station (FINST) which controlled the broadcast of address 
and data, and held the PE instruction during execution. The advantage 

of the PE instruction queue is that it permitted overlap between CU and 

PE instructions. The amount of overlap obviously depended on the 
distribution of PE to CU instructions but, as with all overlap 

strategies, careful attention by the programmer could result in a
considerable speedup of program execution.

Data could also be routed anywhere in the circuit by using multiple 
instructions; however, it was found that routing data more than two 
processors away was rare, the most common routing distance being one.
Many image processing algorithms have been successfully implemented on
the ILLIAC IV including Landstat data analysis (clustering and 

classification of the data). Synthetic Aperture Radar (this used range 
and azimuth correlation, transposition of 64x64 subarrays and texture). 

Fast Fourier Transform (FFT) and Linear Programming Image Enhancement.

One of the startling differences between the ILLIAC IV and other 
array processors was that the majority of array processors are 

bit-serial whereas the ILLIAC IV was a 64 bit-parallel machine.

7.6.2 The ICL DAP

As with most array processors, the ILLIAC IV and the ICL DAP have 
many similarities, namely a square array of PE's, each one accepting 

control from a common broadcast unit. However, one main difference is 

that the DAP is a bit-serial machine while (as mentioned above) the 

ILLIAC IV was a bit-parallel machine. The DAP consists of a 64x64 array 

made up on 256 boards, each board containing a 4x4 array of PE's. The 

whole 64x64 array is controlled by an ICL 2900 host mainframe which
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consequently makes the system too expensive for the types of image 
processing applications considered here.

The major components are depicted in Figure 7.6. The host accesses 
the DAP via the control and column highway; thus, each 64-bit 2900 word 

is equal to one row across the DAP memory. Each PE has 4Kbits of 
memory, this being mapped into the 2900 host's memory (2Mbytes of the 
host memory are thus available to the DAP). The column highway also 
provides a path between the array and the MCU registers vdiich are used 
for data/instruction modification. The row highway has one bit for each 
row of the array and is used exclusively for transmitting data in the 

orthogonal direction between the array and the MCU registers. Although 
each PE in the original DAP (1974) was made up of five chips, the latest 

DAP contains eight PE's per chip.

One bit 
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mcu
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Carry/route

neighbours

FromFrom self
E I neighbours
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1-bit 
full adder

Output
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Input
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Figure 7.7 A DAP processing element
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A schematic diagram of a single DAP PE is shown in Figure 7.7. The 
PE s are arranged so they are all connected to their four nearest 
neighbours: N, S, E and W. Each has three registers: A, Q and C. The 

programmable activity enable register (the A reg) prevents certain store 

instructions from writing into the store unless this bit is set. This 

has the effect of selectively enabling/disabling each PE. The Q 

register represents the accumulator and the C register acts as the carry 

store. A feature of the DAP (as with many array processors [55]) is 

that it may be configured as a bit-serial machine or a bit-parallel 

machine. To act as a bit-parallel machine, the carry bit (C reg) is 
propagated (rippled) down the PE's in that row. Thus, 64 64-bit words 
may be processed in parallel. Since four positions of carry are 

guaranteed in a single clock cycle [55], several cycles are required in 
order to process n/4-bit (n>4) words. However, it can be shown [55] 

that maximum processing occurs when the bit-parallelism is 1, i.e. pure 

bit-serial, but peaks again when it is four. Data is controlled by a 
selective row and column control which enables individual bits of data 

to be sent to specific PE's.

The performance of the DAP is enhanced by its ability to fetch two 
instructions per cycle. This is because a DAP instruction is 32-bits in 

length while the ICL 2900 (the DAP's host) data bus is 64-bits in 

length. Thus, the instruction throughput in DO loops is one per cycle, 
or 1.5 instructions per cycle if the instructions have to be fetched 

from main memory.

The DAP is essentially a bit-serial machine. The advantages and 

disadvantages of bit-serial machines are discussed in Section 7.10 but a 

point worth noting here is that in general, a bit-serial machine's 

performance decreases as the arithmetic precision increases. However, 

Reddaway [55] showed that the DAP gives acceptable results for precision 

as high as 32-bit floating point arithmetic (about 2OMflops/s), this
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being due to the high data memory bandwidth, it being 4-6 times faster 
than a CRAY-1.

7.6.3 The GOODYEAR MPP

The Goodyear Massively Parallel Processor (MPP) [95] was originally 

designed to process LANDSAT-D satellite images in real-time. In order 

to do this, a processing rate of greater than 1000 million 

operations/second is required. The estimated performance is 2-4 Gflops 

for 8-12 bit integers or 200-400 Mflops for 32-bit floating point
arithmetic.

The MPP is modelled on the DAP architecture, the main difference 

being that it has a 128x128 array of PEs and that the I/O system is 

configured differently. Whereas the DAP used the 2900 for I/O, each row 

in the MPP array acts as a 128-bit shift register thus enabling data to 

flow left to right across the columns of the array. Each MPP PE has 

iKbit of RAM for local use and six registers (A,B,C,P,G,S).

The main addition is the provision of a programmable shift register

S. This was added to improve the multiplication time which is

implemented using shifts and adds. Each PE in the MPP has a cycle time 

of 100ns, half that of the DAP, yet it can perform 32-bit floating point 

multiplication 16 times faster. The figure one would expect,

considering the array size (4 times larger) and clock cycle time, is 8. 

The additional factor of two is due to the programmable shift register

in each PE. The data connections to a single MPP PE are shown in

Figure 7.8 where each PE is connected to its four neighbouring PE's. 

This layout is typical of most SIMD machines. Another major difference 

between the DAP and the MPP is that the MPP does not have selective row
I

or column broadcast facilities.
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The MPP is currently being inplemented in CMOS VLSI but, even 

though half of the PE logic is required by the programmable shift 

register, it is still possible to incorporate eight PE's per chip 

(c.f. 5 chips/PE on the original DAP and eight PE's per chip on the 

latest version).

We shall now review SIMD machines that have been specifically 

developed for image processing use.

7.6.4 CLIP4

The Cellular Logic Image Processor (CLIP4) has a 96x96 array of 

processing elements controlled by a single broadcast unit. Each 

integrated circuit (the CLIP4B chip) contains eight PE's controlled by a 

4-phase clock running at iMHz, each with 32 bits of RAM. Unlike the 

ILLIAC IV and the DAP, CLIP4 was specifically tailored for image 

processing, so each PE has direct access to its eight neighbouring PE's 

rather than only four. A PE section of the CLIP4 is shown in
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Figure 7.9. CLIP4 uses 35 1-bit planes for its storage: an A-plane, 

B-plane, C-plane and 32 D-planes. Any number up to 32 bits in length 

can be represented by using the D-planes as storage. However, instead 

of representing a word by stacking the bits horizontally as in a 

conventional processor, the bits are stacked vertically such that DO 

represents the least significant bit and D31 represents the most 

significant bit. To access a number, the same coordinate is applied to 

every D-plane and the number is accessed vertically as shown in 
Figure 7.10.

7.6.5 CLIP4S and CLIP7

CLIP4 [52] was designed to operate on a 96x96 image with 

1 PE/pixel. Many applications require a 512x512 image but the 

realisation of 262,144 PE's cannot be justified because of the enormous 

cost. For this reason, CLIP4S was designed to adopt a one-dimensional 

scan concept. A small array of 2048 PE's (using the CLIP4B chip) 

organised as a 512x4 array is effectively moved to every 512x4 sub-area 

of the image and performs the same function on each sub-area. 

Communication between sub-areas is via edge registers while each PE has 

had its local memory increased to 64 bits (c.f. 32-bits per PE in the 

CLIP4). The performance is estimated at about 140 times less than that 

of CLIP4.

Part of the reason for building CLIP4S was to test some of the 

ideas for CLIP7 [42]. Although essentially the same in that a small 

array of processors is scanned over a large image, CLIP7 consists of a 

linear array of 256x1 processors. It is designed to scan over an input 

image of 256x256 pixels, each pixel capable of having 256 grey levels 

(CLIP4 only had 64 grey levels). The main difference between CLIP7 and 

CLIP4S is that each processor is 16-bits wide (as opposed to 1-bit wide) 

and has a much greater degree of autonomy. CLIP7 is still in the

- 225 -



development stage and should now be nearing completion; but with so many 

factors affecting performance, it is impossible at this stage to do more 

than state that "the typical performance expected of the CLIP? system 

over its 256x256 pixel data images is similar to that achieved by CLIP4 
over 96x96 pixels" [Fountain 42].

7.6.6 The GRID Chip

One of the latest developments for realising the benefits of VLSI 

and employing parallelism on a large scale in the image processing area 

is the GEC Rectangular Image and Data (GRID) chip [124]. The concept is 

the same as the array processors described above in that a master 

controller broadcasts the same instruction to every PE in the array and 
each PE executes the same instruction in lockstep. Previous machines 

such as CLIP and the DAP have demonstrated that very high throughputs 

could be obtained using a high degree of processor parallelism. 

However, because of the limitations of MSI logic with which these 

machines were built, they required cabinets of electronics to hold the 

large numbers of PE's needed.

The GRID chip has been designed with 64 PE's, arranged as an 8x8 

array on a single chip with a 150ns cycle time. The PE's were designed 

as bit-serial processors consisting of a one-bit ALU and a one-bit 

communication path. Each PE also includes a 32x1 bit register file and 

various I/O paths. Two other communication paths exist: the X-bus and 

the Y-bus. These allow the PE addressing circuitry to selectively 

broadcast data to every PE on every row and column - this is useful for 

matrix transpositions.

As with the CLIP, GRID has access to its eight nearest neighbours 

in its local 3x3 neighbourhood via the nearest neighbour select 

circuitry (NNS). A complete 64x64 PE array can be mounted on 16 cards
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(each card has a 16x16 array of PEs) and can achieve a throughput in the 

order of 10^ instructions/second. See Section 7.12 for the 
implementation of image processing algorithms on GRID.

7.6.7 Linear Array Processors

Linear array processors are similar to NxN arrays described above 

except that they consist of a one-dimensional array of processors (Nxl). 
In this case, a linear array can be regarded as a compression of a 

two-dimensional array of processors, all processors in the 

one-dimensional array executing their instructions in lockstep. A 

linear array of 256 PE's can process a line of image data at a time 
while accepting common instructions from a master controller. Linear 

arrays have the ability to manipulate symbolic information which is of a 

similar form and are hence useful for such operations as linear database 

searching, matching and correlation of unusual data items.

Fountain [43] has proposed a 256x1 processor array with a processor 

of 32-bit complexity. The CLIP7 [42] array processor is based along 

these lines with each processor having a 16-bit word length. Here, each 

processor also has a greater degree of autonomy. Plummer of the 

National Physical Laboratory (NPL) has developed the "Linear Array 
Processor" (Chapter 6) which is a bit-serial processor composed of a 

256x1 array of cost-effective, readily available 1-bit processors. The 

outcome of this is that the cost is kept low while the processing power 

is maintained because of the advantages bit-serial processors have to 

offer. The LAP is therefore efficient for picture point-picture point 

processing but, as with most bit-serial devices, suffers when high 

precision numbers are required.
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SLAP [39] is a 512x1 scan line array processor based on CMOS VLSI

technology. Each chip contains four PE's, each PE having an ALU, 32

registers, an instruction decoder and a high-speed video shift register 

for video data. Input to the shift register is via an 8-bit input bus, 

the output of which feeds the ALU and register file in each PE. The ALU

produces 16-24 results which are available to both PE's connected to it

in the linear array. All processing occurs in lockstep as in a SIMD 

machine. In real-time mode, video data is shifted through the array by 

the shift registers, then latched in after a line has been loaded, 

independently of the processor. Thus, processing can be carried out on 

one line while the next line is being loaded.

Space precludes further descriptions of LAPs; however, more exist 
and can be readily found in the literature [35].

7.7 PIPELINED ARRAY PROCESSORS

Another concept frequently used is in operations where the same 

instruction has to be executed on all data. This differs from the 

previous types of array processors in that several ALU's are pipelined 

as depicted in Figure 7.11. Each ALU in the chain is loaded with a 

specific instruction. Data is entered into the first ALU (ALUl) on 

every clock cycle. Simultaneously, the output of every ALU in the chain 

is sent to the next ALU. This process is repeated for all ALU's in the 

chain. The advantage of this is that complex instructions that consist 

of N internal steps can be executed in a single cycle with N processors. 

Thus, in Figure 7.11, the operation ((A*B)/C-4)*56 is executed in a 

single cycle; however, one must ensure that the data appears at the

right place at the right time, i.e. at ALU2 in Figure 7.11, C must

appear at the input on the following clock cycle data was entered into

ALUl. One could also consider that each processor could contain a part

of an algorithm - this is discussed more fully in Section 8.2.
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Figure 7.11 An ALU pipelined system

7.8 MIMD MACHINES

NIMD (Multiple Instruction, Multiple Data) machines are classed as 
multiprocessor machines. Each processor in the system operates on a 

different set of data with a set of instructions (tasks). The problem 

with MIMD machines is finding the optimum processor connection topology 

for the application. In the simplest case, each processor runs the same 

program on a different set of data. In a more complex form, each 

processor executes a different task on a different set of data. 

However, complications arise here vdien scheduling of tasks needs to be 

carried out effectively. Inefficient scheduling could mean that many 

tasks lie idle Wiile waiting for other tasks to complete. Various MIMD 

architectures have been proposed for use in image processing, several of 

which will be discussed here.
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7.8.1 DIPOD

DIPOD (Dedicated Image Processing Device) [97] is a high-speed

microcoded bit-slice MIMD system. DIPOD was designed for image

processing algorithms which can be expressed as a group of tasks and 

performed in parallel and pipelined stages. The system consists of 15 

FENS (each FEN (FIFTH Execution Node) is a microcoded bit-slice 

processor) loosely coupled over a high-bandwidth, packet organised bus 

where each processor on the bus works independently on its own task. 

The architecture of a single FEN is shown in Figure 7.12. The
functional modules are accessed via three buses: A, B and Y. The code

is downloaded over the Y-bus which is controlled by a 68000 host running
UNIX.

The bit-slice approach was chosen because is shows a significant 

speed improvement over conventional microprocessors. The hardware 
multiplier (MAC) is independently controlled by the microcode;

therefore, a significant degree of internal parallelism can occur when 

performing MAC operations in data-independent operations. For instance, 

the Sobel operator involves a '*2' operation so the data fetch from 

memory and the MAC operation can be performed simultaneously.

This approach to parallelism differs from the systolic array 

approach of WARP (Section 7.9) in that each processor executes different 

instructions on different sets of data whereas WARP executes the same 

instructions on different sets of data, although in both cases, each 

processor is autonomous. (Autonomous is here taken to mean the ability 

of a processor to execute its own instructions on its own set of data, 

independently of other processors.) The advantage of the MIMD approach 

over the SIMD approach is the ability to handle sequential operations.

Each FEN in the system is a sequential processor executing a sequential

task. DIPOD gains its speed from partitioning an algorithm into several
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Figure 7.12 Schematic diagram of a DIPOD FEN

Bit-slice processors are not known for their ease in programming so 

for this reason, a language FIFTH (as mentioned in Chapter 5) has been 

developed which allows an algorithm development environment to be 

implemented in \diich modifications can be easily made. (Note that the 

language is called FIFTH as it represents a fifth generation 

language.) As with many microcoded machines, all instructions are 

translated into short sequences of bit-slice microcode. Parallelism is 

stated explicitly in the code and is downloaded to the FEN's. Typical
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execution rates are given in Section 6.5.1.

The architecture of a FEN has a close relation to SIP's 

architecture and a DIPOD system is similar to that of multiple-SIPs. 
This configuration is discussed more fully in Chapter 8.

7.8.2 The Transputer

The T800 transputer is a 32-bit, VLSI reduced instruction set 
processor with an on-board 64-bit floating point unit. The main 

advantage the transputer has over other processors is that it has four 

independent 20 Mbits/s serial links that allow it to communicate with 

its four neighbouring transputers, independently of the processor. 

These in turn can communicate with their four neighbours and so on. 

This appears highly advantageous as I/O between processors is generally 

the main source of the data bottleneck in a multiprocessor system. 

(However, unless the amount of processing and communication is evenly 

balanced, I/O may still be a problem. ) In order to allow parallelism to 

be exploited, a parallel language Occam was developed in conjunction 

with the transputer.

Often, it is difficult to partition an image processing algorithm 

into independent tasks. Thus, although the transputer appears to be an 

optimum solution for parallel processing, it still does not solve the 

problem of matching the task to the architecture. One solution would be 

to partition the image such that each transputer executes the same 

program independently of the others on its section of image - this is 

analysed more fully in Chapter 8. However, a point worth mentioning is 

that the transputer is a device that is used more at the implementation 

level rather than at the architectural level, i.e. it is a useful PE to 

use with which to implement architectures rather than an architecture 

per se.
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7.8.3 The Hype rcube

The hypercube scheme [105] (sometimes referred to as the n-cube or 

the cosmic cube) has a powerful interconnection feature that allows any 

number, N (N=2 ) of processors (nodes), to be connected together. These 

are organised so that the maximum number of nodes a signal has to pass 

to reach any other node is n, where n is the dimension of the cube.

An example of a hypercube is the "Thinking Machines' Connection 

Machine" (TMCM). This has a large array of 1-bit PEs each with a single 

ALU, 16 registers and 4-Kbytes of external memory. Each PE operates by 

reading two bits from external memory and one flag, combining them 

according to a specified operation and then producing a two-bit result. 

This is then written to external memory producing a total execution time 
of 3 clock cycles.

The problem with the topology of the hyper cube is that the fan-out 
from the microprocessor needs to be n. Thus, with increasing number of 

nodes, the hardware becomes increasingly complex. Pease [90] suggested 

a switching network where every pair of processors is connected to a 

two-state switch. The switch can either be set as "straight through" 

enabling the signal to pass directly opposite or "crossed" enabling the 

signal to cross over to a similar switch. Figure 7.13 depicts this 

concept for a 4-dimensional cube (16 processors). If the cube is of 

n-dimensions then the nesting level of the switches is n. The final 

output is fed back into the destination processor. This layout is 

called the "indirect" binary n-cube because the nodes are not connected 

according to the topology of the binary n-cube.

Another feature of the n-cube is that, unlike the tree or 

shuffle-exchange structures [52], no node in the n-cube plays a 

particular role; thus, the n-cube can adopt to many topologies easily. 

Pease also suggested the switching control system shown in Figure 7.14.
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The roaster controller broadcasts the same message to every switch 
controller in the network. Each switch controller then interprets the 
same command into a set of micro-instructions which controls the switch 
nodes in its column. By programming each switch controller, each 
message broadcast by the master controller can be interpreted 
differently. Thus, the n-cube can be configured as a two-dimensional 
array with 2^ processors for use in image processing, the main advantage 
being that it is totally configured by software. Exanples of n-cubes 
are the Connection machine, Intel's iPSC Cosmic Cube and Floating Point 
Systems T-series.
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Figure 7.14 Switching control system for the indirect 
binary cube
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Fountain [43] suggested a two-level N-cube architecture for 

tracking purposes. This problem is efficiently carried out with the

binary n-cube because image data can easily be rescaled by a factor of

two in very few operations. The scene consists of an object whose range

is changing through a series of images. This example requires the use

of low-level image processing, data shifting and symbolic processing.

The architecture chosen for this problem is depicted in Figure 7.15. 

The array of elements on the lower layer are a two-dimensional array of 

bit-serial processors. Each 4x4 array communicates with the upper layer 

which is connected in the form of an n-cube consisting of 8-bit

processors. Thus, low-level image processing is achieved in the lower

array while rescaling and symbolic processing is carried out in the

upper layer. Because of the reduction in the data set, positional

remapping is carried out much more effectively in the n-cube than within

the original data.

7.8.4 The Pyramid Architecture

The pyramid architecture [43], [120] is suited to algorithms of the 

type where, at each stage, the algorithm becomes increasingly more 

complex. A typical example might be that of a 5-level pyramid

(Figure 7.16). The size of the array and the complexity of the

processor at each stage are highlighted below, including a brief example 

of the complexity of algorithm involved. This particular example is one 

of scene analysis.

1. 256x256 1-bit find edges
2. 64x64 8-bit fit edges to line segments
3. 16x16 16-bit 2-D objects
4. 4x4 32—bit 3-D objects
5. 1 VAX relationships

Although many machines exist using the pyramid topology [120], space 

does not permit more to be said on this interesting development.
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7.9 WARP - A SYSTOLIC ARRAY PROCESSOR

There are many ways of increasing the performance of a machine 

without having to resort to a large number of processors operating in 

parallel. The main disadvantage with the SIMD approach is that 

sequential operations are highly inefficient. A systolic system 

consists of a set of interconnected cells (processors), each capable of 
performing some simple operation [67]. Data flows from memory in a 

rhythmic fashion, passing through many cells before it returns to 

memory. In principle, a systolic system is easy to implement because of 

its regularity and it is easy to reconfigure because of its modularity. 

Pipelining is a simple example of a systolic architecture.

WARP [3] is a high-performance systolic array computer consisting

of a systolic linear array of 10 or more identical cells. Each cell is 

an independent, lOMflop, 32-bit floating point programmable horizontal 
microcoded engine capable of a high degree of internal parallelism. It 

has its own program memory and microsequencer enabling each processor to 

execute the same program independently. The WARP system itself consists 

of an interface unit, the WARP array of cells and a host as depicted in 

Figure 7.17. Since each cell is executing the same program on different 

sets of data, all the cell's programs may be out of phase with each 

other in data dependent operations. Communication problems therefore 

arise if a cell receiving data from its neighbour is not ready to accept

the data. This is solved by having a 128 word queue between each cell.

What makes WARP unique is its high I/O bandwidth. Data flows on 

the X and Y bus while addresses and control signals flow on the address 

(ADR) bus as shown in Figure 7.17. Because the majority of programs 

implemented on a systolic array need to communicate intensively, WARP 

has been designed to transfer 20 million words (80 Mbytes) between cells 

per second. It operates on a 200ns clock cycle and is capable of I/O
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Figure 7.17 An overview of the Warp machine

(often the bottleneck in multiprocessor systems) at a rate of
lOMbytes/sec because of the simplicity of the linear interconnection 

structure between the WARP cells.

To the programmer, WARP looks like an array of sequential
processors. An array of WARP processors is capable of operating in one
of two modes: pipelined mode and parallel mode.

1. Pipelined mode: each processor constitutes a stage in the pipeline.
As data is processed by one processor, it is passed on to the next
for further processing. Repetitive computation can thus be
decomposed into a number of identical pipelined stages. As an
exaitple, coitplex matrix multiplication has been inplemented on WARP 

using an 8-stage WARP pipeline.

2. Parallel mode: the data is partitioned among the processors and each 
processor executes the same function on data resident in its local 
memory. This description will be expanded in Chapter 8.
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In both modes, the cells execute the same program in the same time slot.

This differs from the conventional SIMD approach where all processors

execute the same instruction in the same time step; however, since each 

WARP cell operates independently, the execution time of the cells may 

become skewed for data dependent operations, i.e. mainly because of 

branching. A WARP cell contains its own microprogram memory (of which 

the microword is 112 bits wide) and its own program sequencer. This 

makes such instructions as branching more efficient than with the SIMD 

approach since the SIMD approach achieves branching by masking. The

execution time of the branches for a SIMD machine is the summation of 

the execution time of each branch, with local program control on each 

cell, different cells may follow different branches; hence the execution 

time is the maximum execution time of the different branches.

The microcode in WARP is completely horizontal, giving the user 

complete control over the amount of parallelism needed in the program. 

Because each component in WARP is controlled by a dedicated field in the 

microword, scheduling is made easier, since there is no interference in 

the schedule of different components caused by conflicts in the

micro-instruction field assignment. The internal data bandwidth is 

often a bottleneck in systolic array architectures. For this reason, a 

crossbar switch has been implemented between the functional modules of 

the WARP array. As an example of the performance of WARP, a 10-cell

WARP can execute a 1024-point complex FFT at a rate of one FFT every

600/vs. It is worth noting that a 70-cell version of WARP is currently

being implemented in VLSI.

7.10 BIT-SERIAL MACHINES

Because of the large number of processors needed for parallel

processors in image processing, the view of having a 32-bit processor 

per pixel for a 256x256 image size is still unrealistic. Because most
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array processors have a large number of processors, they usually inherit 

the bit-serial architecture. Instead of processing a word horizontally 

(bit-parallel) as with a conventional processor, the words are processed 

vertically (bit-serial). The advantage of this is that the processors 

only need to be simple 1-bit wide processors; however, several machine 

cycles are required in order to process a multi-bit word, e.g. an 8-bit 

pixel value. With the emergence of VLSI, one can now consider 

incorporating several 1-bit processors onto a chip. The outcome of this 

is that bit-serial devices process data at a higher rate though they 

will be less efficient when floating point calculations need to be done.

Since image processing is largely concerned with 8-bit pixel data, 

it would appear that a bit-serial device is in many ways an optimum 
choice. This goes some way in explaining its wide use, e.g. CLIP4, DAP, 
MPP. etc.

7.11 HYBRID ARCHITECTURES

As we have seen in the previous sections, the SIMD architecture is 

mainly suited to pixel-parallel tasks^ where only short-range 

interactions between pixels need be considered. On the other hand, a 

MIMD architecture is more suited to tasks that require access to any 

part of the image. Thus, SIMD is well suited for the early stages of an 

algorithm where pre-processing an image (e.g. histogramming, smoothing, 

filtering, etc.) needs to be carried out, whereas MIMD is more suited 

for the later stages such as those that deal with lines, contours, 

regions and image descriptions [113].

We have already seen that multiprocessor machines tend to be

1 Here we mean that all pixels in an image can be processed in parallel
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application driven. An example of this was the pyramid structure [120], 

Vflien applied to image-understanding, the machine topology matches the 

character of the data and the flow of the task up the pyramid. 

Siegel et. al. [113] are currently involved in the design of PASM 

(Partitionable SIMD/MIMD). This is being developed to meet the needs of 

both the low-level and the high-level tasks commonly found in image 
processing.

7.11.1 PASM - Partitionable SIMD/MIMD

PASM differs from the SIMD and MIMD approaches described in 

previous sections in that it can dynamically configure itself to operate 

in either SIMD or MIMD mode, thus adopting the configuration most suited 

for the current task (c.f. the mesh and pyramid topologies where the
configuration is fixed).

A schematic diagram of the PASM prototype is given in Figure 7.18. 

It consists of a system control unit, a memory management system, four 

microcontrollers (MC's), 16 PE's, 16 memory banks and a switching 

network in order to connect the processors to the memories. (The final 

version is expected to consist of 1024 PE's and 32 MC's.) As its name 

asserts, PASM is partitionable and can hence appear as a number of 

independent machines. Figure 7.18 shows PASM partitioned into four 

sub-systems, each with its own MC.

The interconnection network (the network that connects the PE's to 

the memories) is similar to that described by Pease (Section 7.8.3) in

that it adopts a switch-based arrangement as in Figure 7.13; however,

the switches in the PASM network can also be set to 'broadcast', where

either the upper or the lower input connection is connected to both the 

upper and the lower output. In order for a PE to communicate with a 

memory, it must initially set up a path by configuring the switches.
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between the Microcontrollers, PE's, memories and 
the interconnection nétwork

This is achieved by sending a routing address, R (bit i in R sets switch 

i to either straight or crossed) and a broadcast tag, B. If bit i in B 

is '0' then no broadcast is performed and the switch is set either to 

straight or to crossed, depending on the state of bit i in R. However, 

if bit i in B is '1' then a broadcast is performed, the upper or lower 

input being broadcast, depending again on the state of bit i in R. When 

a connection is made, the PE can communicate freely along the connected 

path with the memory until the connection is released by the PE (note 

that all this happens transparently to the user). An interesting point 

to note is the design consideration in adopting a hardware switch based 

system. This was chosen rather than a packet based system because of 

the ease of implementation and the anticipated large "conflict-free”
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data transfers.

The strength of PASM comes from its ability to dynamically change 

between SIMD and MIMD mode during execution of a task. For instance, 

consider the following example such as the Pascal-type expression

IF <parallel-expression> THEN 
<blockl>

ELSE

<block2>

where the parallel-expression is an expression that depends on a 
variable in each PE, and either blockl or block2 (which may be several 

instructions or procedures) are executed, depending on the result of the 

parallel-expression. Here, the parallel-expression can be evaluated in 

parallel (SIMD mode, i.e. in each PE simultaneously), so the result will 

be true in some PE's and false in others. In a SIMD machine, branching 

is achieved by masking thus: blockl must be executed with the 

appropriate PE's disabled, then block2 must be executed, enabling and 

disabling the appropriate PE's. However, PASM can avoid this 

inefficiency by 'jumping' to MIMD mode. In MIMD mode, each PE executes 

either blockl or block2 (depending on the result from the previous

operation) independently of each processor and then returning to SIMD 

mode. Thus, the execution time of the above expression is the greater

of the blockl time and the block2 time rather than their sum.

Each PE's memory is divided into two sections: MIMD space and SIMD 

space. In MIMD mode, each PE operates as though it were a normal 

von-Neumann computer, fetching data and instructions from MIMD space in 

its own memory. Data from other PE's can be accessed via the 

interconnection network by setting the source and broadcast tags as 

described before, all of which takes place asynchronously under DMA 

control. A transfer to SIMD mode is initiated by executing a
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"jump-to-subroutine" to an address in SIMD instruction space. This 

indicates that instructions are now to come from the MC rather than from 

the local memory. A request is made to the MC for an instruction, and 

the MC waits until all PE's in its partition are requesting before an 

instruction is sent. This is indicated by the result of ANDing all the 

request signals (if multiple MC's are used then the request signals from 

all MC's are further ANDed). All PE's then latch in the same 

instruction at the same time; however, each executes it independently. 

A  new instruction is only issued when all PE's are requesting again. 

(While in SIMD mode, instruction latching and switch setting take place 

synchronously.) A return to MIMD mode is indicated by executing a 

"return-from-subroutine" instruction.

The only difference between SIMD mode and MIMD mode is that the PE 

program counter points to SIMD space in SIMD mode and MIMD space in MIMD 

mode. While in SIMD mode, the program counter merely serves to indicate 

that the PE is in SIMD mode; its actual value is irrelevant (as the 

instructions are now coming from the MC) as long as it accesses SIMD 

instruction space.

With this flexibility, PASM can emulate a variety of architectures 

including ring, mesh, pyramid and tree. With (for example) the mesh 

topology, each processor is physically hardwired to its neighbouring 

processors whereas PASM only has one outgoing link per processor. PASM 

thus has to communicate with each neighbour in turn and will therefore 

emulate different topologies with varying degrees of efficiency (and 

clearly sometimes with poor efficiency). One particular aspect of 

emulating a machine is the ease with which it can calculate the address 

of its neighbours. This is trivial for ring and mesh type topologies 

but is often more difficult for the pyramid topology; however, since the 

16-PE prototype PASM is still in the preliminary stages of construction, 

the usefulness of this configuration in practical situations is as yet
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undetermined.

Although the concept of a SIMD/MIMD architecture appears to have 

distinct advantages, the benefits of such systems are not realised 

without efficient ways of programming them. Indeed, the high degree of 

flexibility of PASM necessarily leaves many choices for the programmer 

and hence makes it quite difficult to program optimally. APLISP (A 

Parallel Language for Image and Speech Processing) is being developed 

for use on PASM [108]. The syntax of APLISP is similar to Pascal but 

for a few additions to the language specifically suited to image 

processing, e.g. the type BYTE to represent a pixel. Most current 

parallel systems [108] attempt to parallelise programs written in serial 

languages automatically or require users to structure their algorithms 

based on knowledge of the system architecture. APLISP allows the 

programmer to express parallelism in a natural way, independent of the 

machine's architecture. The compiler is given some information as to

which operations in the program can be executed in parallel. APLISP 

follows the philosophy "the expression of parallelism in the language 

should be problem orientated rather than machine orientated" [108].

There are three possible ways of distributing the data in PASM;

1. A subarray per PE. Here, the image is divided into N subimages, 

each of n '̂xN^.

2. A row per PE, i.e. PE i gets row i.

3. A  column per PE, i.e. PE i gets column i.

Various algorithms have been proposed for suitable implementation on 

PASM including contour extraction [112], image correlation [111], image 

coding [110] and contextual classification [109]. Applications cited 

for PASM include remote sensing and the inspection of printed circuit 

boards [112]. The ability of PASM to execute these algorithms
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efficiently is essential. This aspect is discussed in more detail in 

Chapter 8 when we consider the implementation of the 0-ring algorithm on 
a series of multiprocessor architectures.

7.12 A  COMPARISON OF SEQUENTIAL vs PARALLEL MACHINES

Many algorithms exhibit a high degree of both parallelism and 

sequentialism. For this reason, no individual algorithm is likely to be 

executed efficiently (efficiently being defined in this context as the 

proportion of processors that are processing information usefully) on 

one particular machine. In other words, a SIMD machine consisting of N 

processors executing a sequential algorithm will have N-1 idle 

processors, while a sequential machine executing a parallel algorithm 

will have to process the whole image (which may include a lot of 

redundant information) in order to achieve its goal. As the performance 

of PASM is unknown (though some simulation results have recently been 

published [114]), we will only discuss results that are available. 

However, since PASM appears to offer the ability to execute both 

parallel and sequential tasks efficiently in a multiprocessing 

environment, this may offer an effective solution to this problem.

Daniel Slotnick, father of the ILLIAC IV, states that parallelism 
is a very special case and that only certain computations can be 

usefully carried out by a parallel machine [37]. With regard to image 

processing, parallel computers are often employed as pre-processors 

except in special applications where the whole algorithm can be 

parallelised. We saw in Chapter 6 that a parallel and a sequential 

processor on a bus based system is impractical as it introduces a data 

bottleneck, while the PASM approach tackles the problem "head on". We 

therefore require a simpler more cost-effective solution that could be 

used in industrial applications. More will be said about this later.
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In a recent study, several segmentation algorithms which exhibited 

a high degree of sequentialism and parallelism were studied on the GRID 

parallel processor [124]. GRID is of a similar nature to most SIMD 

array processors in the way it organises its data and instructions. 

This is a useful study because, as we saw in Chapter 2, segmentation 

techniques are probably the most widely used routines in image pattern 

recognition. The algorithms described below were implemented on a 64x64 

array of GRID processors working on a 128x128 image size.

7.12.1 Bartliff's Algorithm

This algorithm consists of applying a combination of a 

Marr-Hildreth operator [75] and the Sobel operator [33] to an image. 

Because this algorithm is fairly complex, the details will be omitted 

here for space reasons; however, the following table of results lists 

the operations involved in the algorithm and the execution times for 

each operation as implemented on GRID. Note that all of the operations 

are parallel in nature except the chain code routine.

1. Sobel 0.5ms
2. Marr-Hildreth (width 4) 30ms
3. Two multiplications 0.8ms
4. Three thresholds 20/ys
5. Sort 30ms
6. Interpolation 20ms
7. Thinning 20ms
8. Chain Coding 10s

The whole of the algorithm took 10.1s, the most prominent time being the 

Chain Code which took 10s.

7.12.2 Nevatia-Babu Algorithm

This algorithm uses a mask matching approach to edge detection 

(Section 2.5.2). It consists of applying six different 5x5 masks (each 

one corresponding to a different edge orientation of an ideal edge) to
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every point in the image. The one that gives the highest response is 

chosen as the result. The result is a list of magnitudes and directions

for each pixel. The edges are then thinned as a post-processing stage.
The time to execute the whole algorithm was 20ms.

7.12.3 Merge

This algorithm was based on that described by Gupta and Wintz 

[124]. It involves dividing the image into elementary regions and then 

merging statistically similar regions into homogeneous 'blobs'. When a 

point is reached such that the blob will not merge with an elementary 

region, a new blob is started. This algorithm involves a large amount 

of communication over large parts of the image and is probably better 
suited to a sequential machine. The only part of the algorithm which

could be parallelised was the initial stage where the statistics of the

elementary regions were calculated. The algorithm took 7.46s, being 

reduced to 4.92s when the initial part was parallelised.

7.12.4 Conclus ions

The Nevatia-Babu algorithm is a typical example of how a parallel 

machine will significantly improve the execution time of a program. 

However, examination of the Bartliff program shows that out of the 10.1s 

taken to execute the algorithm, IDs was spent in the chain code routine 

which accounts for 99% of the total execution time. This is a typical 

example of an inherently sequential process being implemented on a SIMD 

machine, and thus renders the SIMD approach useless for sequential image 

processing tasks. For this reason, SIMD machines have mainly been 

applied to low-level image processing tasks such as edge detection, 

thresholding and to tasks that exhibit a high degree of parallelism. 

Analysis of many common image processing algorithms (typically those in 

Chapters 2 and 3) show that many consist of both parallel and sequential
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parts suggesting that the SIMD machines mentioned will do poorly for 

"typical" tasks. One of the main disadvantages is that each processor 

only has access to its local neighbours. If each processor had access 

to the whole image, this would dramatically improve the performance of 

the machine. However, with several thousand processors in such systems, 

this is impractical. Chapter 8 investigates this idea for a small set 
of processors.

Reconfigurable machines such as PASM can dynamically configure 
themselves to operate in either SIMD or MIMD mode, the configuration 

chosen being the one better suited to meet the needs of the current 

task. This appears to be an optimum approach; however, the performance 
of PASM is as yet unknown and optimal methods of programming this kind 

of flexible architecture are still in their early stages.

7.13 SUMMARY

The von Neumann architecture suffers from many deficiencies, most 

of which have been overcome by the use the Harvard architecture and 

pipelining. Both of these techniques are aimed at achieving the 

ultimate performance of one instruction/cycle. For a further increase 

in performance, computer architects have replicated the processor 

section for increased data throughput while maintaining the single 

instruction unit for global instruction broadcasts (a SIMD machine). A 

single instruction unit simplifies processor control, eliminating such 

problems as interprocessor communication, task scheduling and data 

bottlenecks - all traditionally associated with MIMD machines. This 

allows maximum instruction and data throughput to be achieved. The 

processor organisation is usually in the form of a linear or 2-D array 

of processors.
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Image processing would appear to be an ideal application for a SIMD 

machine since the processor organisation can be mapped directly onto the 

data representation, i.e. the image. However, with image sizes 

typically of 256x256 pixels, matching a single 16-bit processor to every 

pixel is still unrealistic. Only now, with machines like the CLIP7, are 

16-bit processors being used for the 1 processor/pixel concept. 

However, with this complexity, only a linear array is currently 

implemented using 16-bit processors. For this reason, SIMD processors 

have usually been designed as bit-serial processors. Processors like 

the DAP (1974) had 5 chips/PE, while current VLSI-based schemes, such as 

GRID, show that 64 PE's (eight in the case of the new DAP and the MPP) 

can be incorporated onto a single chip. Unfortunately, GEC (the 

designers of the GRID chip) are still suffering from problems which 

suggests that the number of PE's on a single chip may be approaching the 
limit achievable using traditional methods of production.

Analysis of sequential tasks executing on a SIMD machine shows that 

the performance of the machine rapidly deteriorates. Bearing in mind 

that a criterion for choosing an architecture was to measure the degree 

to which the processing hardware is being usefully kept busy 

(Section 7.5.1), the SIMD approach fails drastically because, by 

definition of a serial task, only one processor is usefully being

employed. From this, we can draw the conclusion that a sequential

processor is more useful executing programs that exhibit both sequential 

and parallel tasks than a SIMD machine is, mainly because the processor 

is fully utilised. In other words, a SIMD machine is not cost-effective

unless the task can be fully parallelised. We may wonder therefore, if

the SIMD architecture is the correct approach to take. Obviously in 

some situations it will be but, in general, we have found that many 

algorithms cannot be fully parallelised.
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The ultimate question at this stage must be "where do we go from 

here?". The above arguments for a sequential machine suggest that we 

should concentrate on developing the fastest possible sequential 

processors and combine them in some way so as to maintain high 

performance levels for the execution of both sequential and parallel 

tasks, while still satisfying the criterion laid down in Section 7.5.1.

Such machines as the systolic array of WARP and the reconfigurable 

approach of PASM have been proposed which attempt to achieve this goal. 

In both cases, each processor in the array is a high speed sequential 

processor. With respect to WARP, each processor is able to communicate 

with its two neighbours, while in PASM, any processor can communicate 

with any other processor's memory via a switching network. The main 

difference between these methods and the SIMD approach is that each 

processor executes the same program but not in lockstep with its 

neighbours (however, when PASM is in SIMD mode, instruction latching 
takes place synchronously). Interprocessor communication obviously 

arises in data dependent operations. WARP uses a queue for such cases 

while PASM uses interrupts.

WARP aims to achieve the processing power of a MIMD machine without 

the problems associated with MIMD architectures (scheduling of tasks and 

communication, etc.); it also aims to maintain the simplicity of SIMD in 

that every processor executes the same program. This appears to be an 

optimal solution (PASM requires SIMD and MIMD tasks to be partitioned 
into separate processors). With the advent of VLSI, one would expect 

that the processing power of WARP could be reduced from a whole board to 

a few chips. Processors such as the 68030, although powerful in their 

own right, cannot deliver the necessary performance per processor or 

have the required flexibility. However, microcoded processors can 

achieve speeds far beyond those of conventional processors and yet 

remain a cost-effective and flexible solution.
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The next question to raise is "how can an architecture like this 

help us in image processing?". Probably the most effective method of 

maintaining the performance of a parallel processor, yet still executing 

sequential tasks efficiently is by partitioning the image into equal 

areas and allocating each processor to an area as in PASM. This will 

undoubtably involve communication between processors: if the areas are 

small then the communication factor may dominate the execution time of 

the task. Hence, the problem remains of finding an efficient means of 

communicating between processors. We cited that the transputer appears 

to be an effective solution.

Unlike WARP which is a linear array of independent sequential 
processors, the next chapter (Chapter 8) investigates the application of 

a two-dimensional array of independent sequential processors and 

attempts to tackle the problem of interprocessor communication. This 
architecture is applied to one of the image inspection algorithms 

introduced in Chapter 3 that exhibits both parallel and sequential 

tasks.
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CHAPTER 8
DEVELOPMENT OF A  MULTI-SEQUENTIAL ARCHITECTURE

"You can't invent a design. You recognise it, in the 

fourth dimension. That is, with your blood and your 

bones, as well as with your eyes."

David Herbert Lawrence 1885-1930

8.1 INTRODUCTION

The aim of this chapter is to present a series of investigations 
into a number of multiprocessor architectures that are similar in nature 

but are essentially different in their interprocessor communication 

arrangement. These architectures are similar to that of WARP 

(Section 7.9) in that they are composed of multiple sequential 

processors, but the concept has been extended to the two-dimensional 

case. A  novel method for minimising data bottlenecks usually associated 
with interprocessor communication is derived with little increase in 

circuit complexity. This entails an analysis of the architecture to 

determine the source of data bottlenecks. A discussion on the practical 

use of each system is undertaken and examines the expected performance 

relative to other machines of a similar topology.
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8.2 REASONS FOR A HYBRID ARCHITECTURE

Many inspection algorithms consist of parallel and sequential tasks 
(c.f. Chapter 3). As we discussed in Chapter 5, a typical inspection 

algorithm might scrutinise an object by applying a Sobel, thinning the 

edges, chain coding the resultant image and manipulating the chain code. 

The first two steps would be executed more efficiently on a parallel 

processor whereas the third and fourth steps would be executed more 

efficiently on a sequential processor.

In Chapter 5 we described a bit-slice sequential processor (SIP) 
that was capable of executing the inspection algorithms presented in 

Chapter 3 in real-time. Chapter 6 proposed a dual-processor system 

composed of a sequential processor (SIP) and a parallel processor (the 

LAP); however, the initial results showed that this was likely to incur 

a large data bottleneck. This configuration was also limited in its 

expansion capabilities. Ideally, we require a system whose performance 
increases linearly with the number of processors for both parallel and 

sequential tasks.

We may recall that the processors in a SIMD machine execute the 

same instructions in lockstep and that this proved to be inadequate for 
sequential operations, while the MIMD machine executes different 

instructions on different sets of data. This increases the complexity 

of the system and large data bottlenecks are likely to occur without 

algorithms to make optimum use of the processors and their 

interprocessor communication arrangement. We showed that the approach 

of WARP in Chapter 7 appeared in some ways to be an efficient solution 

for use in image processing. This contained the same arrangement as a 

MIMD machine in that each processor is autonomous, while maintaining the 

simplicity of a SIMD machine in that each processor executes the same 

instructions. This can be thought of as a hybrid architecture between a
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SIMD and a MIMD machine.

Because many image processing algorithms contain a high degree of 

both parallelism and sequentialism, a hybrid architecture is necessary 

in order to execute both parts efficiently. Machines such as DIPOD 

(Section 7.8.1) and PASM (Section 7.11.1) can adopt a SIMD/MIMD approach 

and appears highly suitable. However, as we shall see, without the 

right communication arrangement, a system can incur data bottlenecks 

that dramatically reduce the performance of the system to a less 

efficient level than intended. This chapter investigates several 

processor configurations each composed of multiple SIPs. An important 

point to note is that these configurations are aimed at the industrial 

inspection area that require a higher level of performance than can be 
achieved by a single processor. Although the concept of PASM and WARP 

display similarities to these systems, their costs are unknown to this 
research group. However, one suspects that they will cost appreciably 

more than the systems described in this chapter with an equivalent 

number of processors, and in any case they will be too expensive for 

certain industrial applications. Indeed, as we mentioned in Chapter 7, 

a single DIPOD processor has a similar performance to SIP, yet costs 

around £30,000.

Throughout this chapter we shall use the 0-ring algorithm presented 

in Chapter 3 to examine the performance of each proposed topology. This 

was chosen as it is considered a "difficult" algorithm to execute 
efficiently on a machine because of its inherently high degree of 

sequentialism and parallelism. First, we must determine what we should 

parallelise in the system.

8.2.1 Exploiting Instruction and Data Parallelism

Three options for distributing the processors are immediately
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obvious :

1. Partitioning the algorithm into data independent tasks so each

processor executes its allocated task(s) in parallel with the other
processors on its own data.

2. Pipelining the processors so each processor executes its allocated

task(s) in parallel. This is a special case of option 1. Here,

each processor operates on the output of another processor. The 

tasks may therefore be data dependent.

3. Partitioning the image into equal areas so each processor executes 

the same task(s) on a different part of the image.

These three possibilities are interesting in the sense that they provide 

three very different ways of parallelising a problem. In options one 

and two the instructions are parallelised while in the third case, the 

data is parallelised. Parallelising the tasks as in option 1 is of 

little use to us since the majority of image processing algorithms

cannot be partitioned effectively except by pipelining (option 2). For

instance, in the O-ring algorithm which involved the tasks: Sobel, Hough 

transform, sort, list manipulation and radial histogram, the tasks must 

be executed in a sequential order. Another point worth mentioning is 

that with this method, the number of processors applied to a problem is

limited by the number of tasks in the algorithm. Ideally, we require a

system that can be expanded to any desired degree.

Option 2 suggests parallelising the tasks by the use of pipelining. 

Consider a three-level pipeline as in Figure 8.1 where each processor 

represents a task from the algorithm described above. As processor 1 

operates on the input image, processor 2 operates on the result from 
processor 1, and processor 3 operates on the result from processor 2. 

Hence, the time to execute the algorithm is the time of the slowest
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SOBEL CHAIN CODE 
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MEASUREMENT
THIN

Processor 1 Processor 2 Processor 3

Figure 8.1 A three-level pipeline of processors. The 
time to execute the algorithm is the time 
of the slowest processor in the chain

processor in the chain. This method has the advantage that any
algorithm consisting of several tasks may be parallelised in this way;

however, it gives rise to several constraints:

1. To gain the benefits of a pipeline, an image must be constantly 
input. This occurs in industrial inspection applications where the 

same algorithm is applied to each frame of data coming off the 

camera. If only a single image was input, or images were input 

intermittently, then the time for it to travel through the pipeline 

is equal to the total time taken by each processor to execute its 

task, plus the communication overhead. This would violate the 

criterion given in Section 7.5.1 for inefficient use of processing 

power as only one processor would be active at any point in time.

2. To achieve maximum throughput, each processor must take the same 

amount of time to execute its task. If at one stage in the pipeline 

a processor's task takes a longer time to execute than the others, 

there would be idle processors and again, the criterion in 

Section 7.5.1 would be violated (c.f. initial parts of the 

algorithms in Chapter 3 which take "70% of the total processing 

time). Alternatively, several tasks could be combined so their
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combined execution time equals the execution time of the longest 

task. However, because the tasks may be data dependent, the 
execution times are generally not known until run time.

3. Expansion is again limited by the number of tasks available in the
algorithm.

Points 1 and 2 have arisen because of the idle processor criterion in 

Section 7.5.1. However, this is ultimately application dependent; for 

instance, consider point 2 where two processors may be involved and, 

because of the structure of the algorithm, one processor is idle 50% of 

the time. One could argue that this is inefficient; however, if the 

algorithm must execute within a given time constraint and a single

processor is incapable of achieving this, then two processors would need 

to be adopted. If the cost of two processors is within the budget
available, then this would satisfy the requirements of the application 

and hence be cost-effective.

The third option of partitioning the image into equal areas and 
allocating each processor to an area initially appears sound for the 

following reasons:

1. Since each processor executes the same instructions, partitioning 

the algorithm is no longer a burden to the programmer.

2. The criterion given in Section 7.5.1 is satisfied since all 

processors are automatically (on average) kept busy.

From these two statements, it is clear that we should investigate this 
third option. From the above, we can conclude that if N processors are 

used on an LxL image then each processor should operate on an area (A) 

of:

A = L2/N
where L is generally 128, 256 or 512 and N is 1, 4, 16, 256, etc.
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Having decided that the image is to be partitioned, we now need to 

decide on how to arrange the processors, i.e. determine the topology of 
the system.

8.2.2 Matching the Task to the Architecture

The ability of the proposed architecture to handle both sequential 

and parallel tasks efficiently is essential. In the last section, we 

determined that the data (i.e. the image) should be distributed between 

the processors. Let us assume at this stage that each processor only 

holds the part of the image it needs to access, i.e. if four processors 

are used then each processor's image memory only contains a quadrant of 

the image (this is in fact one means by which PASM can distribute its 

data). Parallel tasks are straightforward in that no communication 

outside a processor's own area is required. (Note that problems will 

occur at the borders of the section of image when a 3x3 (or larger) 

window is used. Throughout this section, we shall assume that the 

borders are also available so interprocessor communication is not 

necessary for this reason.) However, sequential tasks, which are 

usually data dependent, may need to access any part of the image 
(c.f. the centre finding algorithm in Chapter 3) or another processor's 

results. This means that some form of interprocessor communication is 

necessary - this is where the data bottleneck usually occurs.

8.2.3 Simulation

In this chapter, all configurations are simulated on a PDP-11/73 

processor using the Pascal language, operating on Figures 3.9a-3.9h 

(128x128 images). (Note that these are indicated on the graphs in 

Figures 8.3,8.7 and 8.9.) However, in reality a high speed sequential 

processor such as SIP would be used in the system. This will offer a 

factor in the region of "27 times speed improvement over the PDP-11/73
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(Chapter 6). Note that it was necessary to simulate a SIP-based system

on the PDP-11/73 as it would have been difficult and time consuming to
program in SIP's native language. All times and costs referred to
throughout this chapter are thus targeted at SIP.

There are two important points to note about the simulation study. 

First, the PDP-11/73 and SIP have entirely different architectures 
namely, the PDP-11 has has a von Neumann architecture while SIP has a 

Harvard architecture. However, the PDP-11 is found to execute the 

majority of its instructions from cache (the PDP-11/73 has an 8Kbyte 
cache), and these accesses are comparably fast relative to frame store 

(data) accesses. Thus, the PDP-11/73 turns out to perform much as it 

would if it had a Harvard architecture (more will be said about this
later). Second, there is the problem of emulating N processors on a

single processor. In these simulations, a task (in effect a Pascal 

procedure) is presented with the data appropriate to one of the 

processors, and the time to execute this procedure is taken. This 

process is repeated N times, once for each processor. Thus, if a

procedure is executed in time T^ by processor i, then the time for the

task to execute on N processors is given by:

T = MAX(Ti,T2,...,T̂ )

Because the following configurations involve buses (used for 

interprocessor communication) some means of measuring the communication 

time is required. Here, a processor's memory is represented as an array

in the program; thus, the time it takes to transfer data from one

processor to another is taken as the time it takes to transfer an array

of data to another array. This is justified, as the time for a SIP

processor to access data on another SIP processor (based on the VMEbus) 

is the same as the time it takes a SIP processor to access data from its 

on-board memory, i.e. three clock cycles (Chapter 5). (Note that the
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time to distribute an image to the other processors in the system is 

included in the simulation in order to obtain a realistic measure of 
performance in a real situation.)

The following sections investigate various topologies that attempt 

to solve the interprocessor communication problem and, although a 
topology may appear satisfactory, only rigorous analysis will show if it 

suffers from bottlenecks. The first of these configurations highlights 

this problem and also shows the problems that occur for a pipelined 
system where tasks have to be explicitly partitioned.

8.3 CONFIGURATION 1 - THE MASTER/SLAVE ARRANGEMENT

Analysis of the timings from the algorithms given in Chapter 3 show 

that the parallel tasks consume "70% of the total execution time on a 

single sequential processor. One could therefore consider reducing the 

execution time of the parallel tasks while maintaining the execution 

time of the sequential tasks. Because a parallel task requires no 

communication outside its own area, it is not unreasonable to suggest 

having multiple sequential processors (called slaves) to execute the 

parallel tasks. Each slave need only contain and operate on its

allocated part of the image as shown by the shaded quadrant in
Figure 8.2, depicting a four processor configuration. A single 

sequential processor (called the master) would then fetch the data from 

the slaves and execute the sequential tasks. (It is assumed here that 

the master and slaves are connected by a common bus and the master 

accesses the slaves through dual-port RAM.)

This configuration will have the effect of distributing the 

computation of the parallel tasks evenly over a number of processors.

(Note that this is a pipelined system, i.e. as the slaves are operating
on one image, the master could (in principle) be operating on the
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Figure 8.2 A  1-Mas te r/4-Slave arrangement. The slaves 
only operate on their allocated section of 
image (indicated by the shaded square)

previous result from the slaves.) Thus, for an algorithm \diose parallel 

tasks execute in time T^ and whose sequential tasks execute in time T^, 

the time to execute an algorithm T^^^ on a single processor system, is

?tOt - Tp + ?S

Therefore, for the Master/Slave configuration
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'tot = T p ^  + T3 + TSC

where is the communication overhead between the master and the 

slaves. Thus, for a large number of slaves, the execution time of the 
algorithm will be

TtOt ^ ^3 + T33

Therefore, as N increases, T^^ is likely to have a more prominent effect 
on the total execution time of the algorithm. However, there will be an 

N for which there exists an optimum cost-speed tradeoff where addition 

of more processors produces little change in execution time, hence 
reducing its cost-effectiveness.

This topology is similar to PASM (Section 7.11); however, whereas 
SIMD tasks are executed by the master in PASM and MIMD tasks by the 

slaves; here, SIMD tasks are executed by the slaves and MIMD tasks are 

executed by the master. In PASM interprocessor communication occurs 

during MIMD tasks - this is discussed more fully in Section 8.4. We 

chose this method for hardware simplicity. The rest of this section is 

devoted to analysing the Master/Slave configuration in order to 

determine the optimum number of slaves that should exist in the system, 

and quantifying the values of T^, T^ and T^^. First, let us consider 

the implementation of the O-ring algorithm on the system.

8.3.1 The O-ring Algorithm and the Master/Slave Arrangement

The algorithms below represent the O-ring algorithm for a single 

processor (algorithm 1) and the modified version for the Master/Slave 

configuration (algorithm 2). (See Chapter 3 for a detailed explanation 

of the O-ring algorithm.)
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1. For the whole image in P-space, apply a Sobel operator.

2. For each edge point, obtain a candidate centre point and 
mark in Q-space.

3. After completion of the whole image, get the (x,y) 
coordinates and value of those points greater than a fixed 
threshold (peaks). These are the possible centres of the0-rings.

4. Sort list into a decreasing order based on the values of 
the peaks.

5. Starting with the highest value peak, determine the centres 
of the rings, ignoring any points within a fixed distance 
of each other.

6. For each centre found, apply a filter in Q-space to 
eliminate noise.

7. Put true centre in a "Centre found" list.

The O-ring algorithm for a single processor system

1. Let each slave apply a Sobel to its part of the image in 
P-space.

2. For each ed^e found, obtain a candidate centre position and
put the (x,y) coordinates into an array.

3. On completion of all slaves, the master gathers the (x,y)
data from each slave and reforms Q-space.

4. The reformed image is now scanned and the coordinates of
those points with a value greater than a fixed threshold 
(peaks) are stored. These are the possible centres of the
0-rings.

5. Sort list into a decreasing order based on the values of
the peaks.

6. Starting with the highest value, determine the centres of
the rings, ignoring any points within a fixed distance of
each other.

7. For each centre found, apply a filter in Q-space to
eliminate noise.

8. Put true centre in a "Centre found" list.

The O-ring algorithm for the Master/Slave configuration
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The modified version of the algorithm highlights three major properties 
of the system:

1. Parallel tasks and sequential tasks must be explicitly partitioned 
for the master and slaves to serve their purpose.

2. Although no parallel tasks exist after the data has been fetched by 

the master, if any did exist, they would either have to be executed 

by the master, or the data would have to be redistributed to the 

slaves before processing could continue. This leads on to point 
three.

3. A  data bottleneck may occur when the master either fetches data from 
the slaves or redistributes its data to all the slaves.

The Master/Slave configuration is therefore best suited to an algorithm 

that exhibits either entirely parallel tasks or one composed of entirely 

parallel tasks followed by entirely sequential tasks. What we now need 

to determine is the optimum number of slaves that should exist in the 

system for optimum performance.

8.3.2 Analysis of the Master/Slave Arrangement

Figure 8.3a shows a graph of the square root of the number of 

slaves (y-axis)i against the time taken for both the master (A lines) 

and the slaves (B lines) to execute the modified version of the O-ring 

algorithm (x-axis) on Figures 3.9a to 3.9h. As discussed before, the 

algorithm was simulated with 1, 4, 16, 64 and 256 slave processors.

(Note that the times here relate to a PDP-11/73 processor. These are

1 Because of the non-linear nature of the number of slaves involved, 
the square root of the number of slaves produced a visually clearer 
graph than if the y-axis represented the number of slaves directly,
i.e. it has no special significance except for presentation.
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scaled for the C*T analysis next for a SIP configuration.)

The optimum number of slaves can be determined by both a measure of 

performance and a C*T analysis along the guidelines described in 

Section 7.5.2. As we mentioned in Section 8.2.1, for optimum efficiency 

in a pipelined system, all processors should take a similar amount of 

time to execute their task so to avoid idle processors. In relation to 

the Master/Slave configuration, this is when the time for the slaves to 

execute their task is equal to the time the master takes to execute its 

task, plus the communication overhead, i.e.

\ o t  = Tp/N = ?S + ^SC

From inspection of Figure 8.3a, we can see that the most reasonable 

choice of slaves is four, i.e. where the lines intersect; however, from 

inspection of the graph, it is clear that the master (A lines) is a 

bottleneck in the system because of the spread of the lines.

The C*Ti test is depicted in Table 8.1. All times are averaged 

over all eight images used. C*T (normalised) gives us a 'figure of

merit' of the performance of the system. This is the ratio between the

average execution time of a 1-Mas te r/N-Slave configuration and the

average execution time of the algorithm on a 1-Mas te r/l-slave

configuration. Thus, this figure will be unity when the performance 

increases linearly with the number of processors and greater than unity 

if the performance degrades as the number of processors increases. The 

magnitude of the number gives us some indication of the degree of 

performance degradation with respect to the cost of the system as the 

number of slaves increases.

1 The cost of a single processor (SIP) is assumed to be £620 based on 
July 1987 prices.
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Number of 
slaves

Cost C (£) 
(master+slaves)

Time T 
(ms)

C*T
xlOO

C*T
(normal:

Q: 620 105 **** ****
1 1240 117 1.45 1.004 3100 53 1.64 1.1316 10,540 36 3.79 2.6164 40,300 31 12.50 8.62256 159,340 28 46.20 31.86

Table 8.1 Cost-Time breakdown of the Master/Slave
configuratiion for 1,4,16,64 and 256
slave processors

Strangely, Table 8.1 shows that a 1-Master/l-Slave configuration 

actually impedes the execution time of the algorithm over a single 

processor (one processor executing both the sequential and parallel 

tasks). This is because of the communication overhead, i.e. T^>T^ and 

T^>T^. In order to improve the speed of the algorithm with this 

architecture, we must adopt a l-Master/4-Slave configuration. This 

gives us an approximately linear increase in speed with the number of 

slaves. However, this linear variation soon deteriorates indicating a 

bottleneck. The C*T figures show a corresponding deterioration. One 

can therefore conclude from this analysis that the O-ring algorithm is 

only suited to a 4-slave or a 16-slave configuration or intermediate 

numbers of slaves: here and elsewhere, this will tend to mean dividing 

the image in powers of two, but not necessarily powers of four. 

Clearly, it will probably be unsuitable for many other algorithms.

Table 8.2 shows the performance improvement factor of the execution 

time of the algorithm on the Master/Slave configuration relative to a

1-Master/l-slave system. Also shown is the percentage of the total

1 Note that this is merely provided for comparison purposes
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I

execution time (t.e.t.) of the algorithm spent communicating (T

Number of Performance Tsc
slaves increase (% of t.e.t.)

1 1.00 13
4 2.21 30

16 3.25 48
64 3.77 56

256 4.18 60

Table 8.2 Table of the performance increase and 
the communication bottleneck for the 
Master/Slave configuration

As we can see from Table 8.2, for a 256 processor configuration, 60% of 

the time is spent in transferring the data. Figure 8.3b shows the graph 

of the total time taken to execute the algorithm - this allows us to 

view the processing times of each complete system.

From the results given in Table 8.1, it is possible to derive a 

mathematical model of the system. Referring back to our previous 

equation of the system, i.e.

we can now quantify T^, T^ and T^^. For 256 processors (N=256), 

T^Q^=28ms which can be approximated to T^ + T^^ since T^/N is negligible 

when N=256. Thus, subtracting this from the time for one processor to 

execute the algorithm (i.e. both sequential and parallel parts), we 

calculate the value of T^ to be 89ms. Therefore,

Tfot - 89/N + 2 8  - Tq (3/N+1)

where Tg-30ms. Thus,

T + T - 30ms. s sc

From the results in Table 8.2, we can calculate that

Tgc -16ms.
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Therefore, the master processor spends about half of its time 

communicating, and this is not very efficient. We can calculate the 

theoretical values and compare these results. Assume that the time to

access all pixels in an image plane is equal to 1 time unit. The tasks

for the master can be divided into the following:

1. The Master clears Q-space.

2. It then loads the image into the slaves. (The slaves are then
started.)

3. The results from the slaves are fetched and Q-space (Hough space) is 
formed.

4. Q-space is scanned to locate the centres.
5. Processing continues.

Points 1, 2 and 4 add up to the equivalent of three image plane

accesses, i.e. three time units. Points 3 and 5, from the timings given 

in Chapter 3, add up to the equivalent (in time) of a single time unit.

Thus, the Master takes approximately four time units to execute its

tasks. Now assume that there are N slaves in the system. The tasks for 

the slaves can be divided into:

1. Each slave operates on its section of image applying a Sobel.

2. For each edge point, the centre is calculated.

3. These centre points are written into a RAM.

Here, application of a Sobel is equivalent to 12 image plane accesses. 

Thus, each slave takes 12/N time units. (Note that we must also 

consider the time to write the edge points to the RAM; however, since 

this is of the order of 100 points, it is considered negligible relative 

to a single time unit.) Thus, the time for the Master and Slaves to

execute the algorithm (in time units) is

4 + 12/N = 4(l+3/N)
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The actual value of a time unit on a SIP processor (in this simulation) 
is 7ms. Thus, the above equation becomes

7*4(l+3/N) = 28(l+3/N)

The equation we derived from the simulation results (when we assumed SIP 

was 27 times faster than a PDP-11/73) was 30(l+3/N). This close 

agreement between the model and the observed timings shows that we have 

a good understanding of the process involved in running this algorithm, 

and lends support to the statement made earlier that the PDP-11/73 is 

here acting as if it had a Harvard architecture: it goes some way to 
justifying performing a simulation.

We can carry on with the analysis and calculate the (theoretically) 
most cost-effective system which is when d(C*T)/dN=0, i.e.

d(CQ(l+N)*TQ(l+3/N))/dN = 0

thus,

1-3/N2 = 0 i.e. N = 1.73

Hence, in this case, the optimal number of slaves is two. The

above figures suggest that we should investigate methods for reducing

T  - this is discussed in Section 8.4.sc

8.3.3 Topologies Related to the Master/Slave Configuration

This configuration of processors has been used by DIPOD

(Section 7.8.1) for shape classification. The algorithm consisted of a 

Sobel followed by tracing, segmentation, data manipulation and 

classification. The topology of the algorithm mapped well on to the 

Master/Slave configuration: the slaves executed the Sobel while the

master executed the sequential operations. Although no analysis has 

been carried out on DIPOD, the above investigation suggests that the
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usefulness of this configuration is application dependent.

In order to improve the performance of the system, three further 

configurations have been investigated called ARCH-1, ARCH-2 and ARCH-3 
respectively. The first of these will now be described.

8.4 CONFIGURATION 2 - ARCH-1

In order to eliminate the master from the Master/Slave 

configuration, it is necessary for the slaves to execute the sequential 

tasks. This means that each slave must have access to the results from 

all other processors. The total execution time of an algorithm would 
now become

A o t  =

where T^ is a constant which is the sum of the communication time (T^^) 

and the execution times of those tasks that are independent of the 

number of processors in the system (T^^), i.e. the reformation of 

Q-space and the sort task in the case of the O-ring algorithm. 

Therefore, for a large number of processors

A o t  ^ = ^sc + ^pi

This section aims to minimise T^^ and determine (1) the optimum number

of processors that should exist in the system, (2) T^^ as a proportion

of the total execution time of the algorithm and (3) the performance 

ratio where

^N ^ "^one-processor^N-processors

Ideally, if N processors are used we should achieve a decrease in 

execution time of an algorithm by a factor N (i.e. Pj^=N).
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As we mentioned before, each processor must have access to all 

results derived by the other processors, whether in the form of part of 

an image or data, e.g. a list of edge coordinates. This may appear to 

be a complex task without avoiding memory contention (and hence a data 

bottleneck), i.e. if several processors access the same memory on the 

same processor at the same time, but can in fact be solved quite simply 
as follows.

Rather than each processor having access to only part of an image, 

each holds the whole image. This immediately solves the problem of 

image memory contention; however, each processor still only operates on 

its designated area of image as depicted in Figure 8.4 for a four 

processor configuration. This may appear not to be cost-effective, for 

instance, if 256 processors are used on a 128x128 image then each 

processor would only operate on an 8x8 area of the image. Thus, for 

operations that do not access data outside a processor's allocated area, 

only 0.4% of the memory would actually be used. However, one must also 

consider that memory is becoming increasingly cheap and, if 

interprocessor communication was necessary, the extra cost and board

space required by the additional communication logic would be similar to 

that of the required memory. Logic is therefore kept to a minimum which 

is appealing from both a hardware and software point of view.

At some point during a program a processor may need to access

another processor's memory, e.g. if four processors are each operating 

on a quadrant of an image and the next stage requires that a processor 

access the results from another processor, then interprocessor 

communication must occur. (Note that intermediate results (e.g. a

subimage) can be held locally in each processor, and data need not be

transferred unless another processor requires that data. In the case of 

the O-ring algorithm, data is in the form of a series of (x,y) 

coordinates, thus eliminating the need to transfer the whole Sobelled

- 274 -



Figure 8.4 Each processor holds the whole image plane but
only operates on its allocated part of the image

Figure 8.5 ARCH-1 - each processor is only connected 
to its four nearest neighbours
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image.)

PASM (Section 7.10.1) has two ways of dealing with the

interprocessor communication problem [112]. The first (and more 

restricted method) is in the case of object inspection. If the size of 

the object is known, then a subimage size twice the largest dimension of

the object is chosen. This ensures that the object will be totally

enclosed in the subimage area in at least one processor. External

references to other parts of the image (and hence interprocessor 

communication) need not occur; however, this has the disadvantage that 

it is necessary to perform image processing computations four times for 

each pixel. Also, the maximum size of an object that is likely to occur 
must be known.

The second and less restrictive method that PASM can employ is by 

the use of semaphore flags. We may recall that PASM accesses another 

processor's memory by setting up the switching network [113] by the use 

of a routing tag and a broadcast tag. The network is set up by the 

requesting processor using these tags in order to access the processor's 

memory which contains the required subimage. The requesting processor 

then checks a "memory locked" flag belonging to the processor. This is 

set if another processor is already accessing that memory. If the flag 

is set, then the requesting processor waits until it is reset, else it 

sets the flag to indicate it is accessing the memory and fetches the 

data. When it has finished, it resets the flag so other processors can 

access that memory. This appears to be an efficient means of 

interprocessor communication; however, the hardware is made more complex 

as an additional two VME-standard boards are required per processor for 

the communication logic [113]. As this kind of programming is still at 

the research stage, we have investigated a different route that requires 

less complex hardware. Two alternatives for interconnecting the 

processors have been investigated:
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1. Every processor is connected to its four nearest neighbours as 
depicted in Figure 8.5.

2. Each processor is connected to every other processor (maximally 
connected).

The next section investigates the first option in that each processor is 
connected to its four nearest processors.

8.4.1 Sharing the Data in the System

Let us assume that each processor has a memory scheme such that it 

has access to a byte-wide, dual-port memory on each of its four 

neighbours, and that each processor is able to transmit a data byte to 

each of these memories simultaneously. This is depicted in Figure 8.6 
where the main data bus of each processor is connected to the input of 

the dual-port memories on its neighbouring four processors, and also to 

the outputs of its four local dual-port memories.

In order to transfer the data throughout the system, each processor 

must transmit its data to its four neighbours; hence each processor will 

receive data from its four neighbours. This received data is then 

re-transmitted to its four neighbours, avoiding transmitting data 

received from processor i back to processor i. After application of 

this step /N/2 times, all processors will have received the data 

initially transmitted by every processor. It is therefore clear that, 

as the number of processors in the system increases, the time to 

transmit the data (T^^) throughout the system will also increase. In 

order to investigate this further, we will now consider the 

implementation of the 0-ring algorithm on this configuration.
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Figure 8.6 Each processor has access to a dual-port memory 
on each of its four neighbouring processors and 
also its four local dual-port memories

- 278 -



8.4.2 The 0-ring Algorithm and ARCH-1

The modified version of the 0-ring algorithm for ARCH-1 is given 
below.

1. Each processor applies a Sobel to its allocated part of the 
image in P-space.

2. For each edge found, obtain a candidate centre position and put 
the (x,y) coordinates into an array.

3. The array in each processor is distributed to all other 
processors as described above.

4. Q-space is now formed by reading the coordinates from the array 
and adding one to that point in Q-space.

5. The reformed image is now scanned only in the processor's area 
and the coordinates of those points with a value greater than a 
fixed threshold (peaks) are stored locally on each processor.
These are the possible centres of the 0-rings in that 
processor's image area.

6. Sort list into a decreasing order based on the values of the
peaks.

7. Starting with the highest value, determine the centres of the
rings, ignoring any points within a fixed distance of each
other.

8. For each centre found, apply a filter in Q-space to eliminate 
noise.

9. Put true centre in a "Centre found" list.
10. Redistribute "Centre found" list in order to determine those

centres that lie on the border of two processors.

The 0-ring algorithm for ARCH-1

The graph of the execution time of the algorithm is depicted in

Figure 8.7. Ideally, we expect a performance ratio (P^) of 4.0 for a

4-processor configuration (an average execution time of 105ms).

However, the average execution time is 36ms producing a P^ of three.

Further analysis reveals that a P^ of 7.5 (average execution time of

14ms) exists with a 16-processor configuration and a P^ of 11.6 (average
execution time of 9ms) exists with a 64-processor configuration. Not
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Figure 8.7 Graph of the execution times of the 0-ring algorithm 
with ARCH-1 using 1,4,16,64 and 256 processors, 
operating on eight images of test data
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surprisingly, with a 256 processor configuration, the performance of the 

system degrades dramatically. This implies that the processors are 

spending more time transmitting the data than processing it. Table 8.3 

depicts a C*T analysis for this configuration.

Number of 
processors

Cost C (£) Time T 
(ms)

C*T
xlOO

C*T
(normalised)

1 620 105 0.65 1.00
4 2480 36 0.89 1.37

16 9920 14 1.39 2.14
64 39,680 9 3.58 5.51

256 158,720 25 39.68 61.00

Table 8.3 Cost-Time 
1,4,16,64

breakdown for ARCH- 
and 256 processors

-1 for

Table 8.4 represents T^^ as a percentage of the total execution time 

(t.e.t.) of the algorithm.

Number of Tsc
processors (% of t.e.t.)

4 13.8
16 36.7
64 67.8

256 85.3

Table 8.4 Table of the proportion of time spent 
in interprocessor communication for 
ARCH-1 for 4,16,64 and 256 processors

Both of the above tables suggest that the optimum number of processors 

for this configuration is 16 since little is gained by adopting a 

64-processor configuration with this algorithm. One can see that ARCH-1 

represents an improvement in terms of the execution time over the 

Master/Slave configuration, even though the amount of time spent 

communicating increases as N increases. This is because T^^ has now 

been distributed over the N processors.
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For optimum efficiency, the data transfer must be explicitly stated 

in the algorithm (although details about the transfer can be hidden from 

the user). One advantage of this configuration is that expansion of the 

processors is straightforward as only four links are involved. As 
before, we can derive a mathematical model. Here,

?tot = Tp/N + Ts/N +

where the symbols represent their meaning as defined before. This 
produces the model

Ttot - 100/N + 10

for configurations composed of up to 64 processors. Comparing this with

our previous equation of 89/N+28, we can see that ARCH-1 is in fact

faster for all realisable N; however, the model breaks down for 256

processors. A more complex model is therefore required as T^^ is a

function both of N and of the amount of data to be transferred. The

discrepancy can be explained by a term in arising from interprocessor

communication. However, as stated earlier, the above model will suffice

for up to 64 processors. From this and Table 8.3 and 8.4, we can deduce

that T_ is -5.5ms and T . is -4.5ms. sc pi

8.4.3 Topologies Related to ARCH-1

The topology of the above system maps well onto the transputer. 

The transputer is a RISC processor with four independent serial links. 

Unlike SIP, the transputer can transmit and receive data from all four 

links simultaneously, independent of the processor. However, in spite 

of the immediate attraction of the transputer, the above analysis shows 

that a data bottleneck will exist with a large number of 

transputers: further investigation of this problem is beyond the scope 

of this thesis.
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The following sections investigate two architectures to attempt to 

ameliorate the problem of explicit communication and performance 
degradation for a larger number of processors.

8.5 CONFIGURATION 3 - ARCH-2

This configuration is based on the idea that all processors should 
have access to the same required information without memory contention. 

Here, each processor transmits its data (whether in the form of a result 

or a pixel value) to all other processors simultaneously. The next 
section proposes a solution to this problem.

8.5.1 Improving the Communication Bottleneck

In order to allow each processor transmit its data to all other 

processors without memory contention, we shall apply the same principle 

as that in Section 8.4.1 in that each processor has access to a 

dual-port RAM on-board a processor and each executes the same task. 

However, in this case each processor has access to a RAM on all

processors in the system, via a set of data buses. Clearly, for a large 

system this approach would break down, but in what follows, we pursue 

the idea in order to see how practical it is for moderate-sized systems, 

and at what stage it actually breaks down.

If we consider that every processor has access to two image planes, 

a data RAM (for local storage such as arrays) and N-1 Communication RAMs 

(CRAMS) - one CRAM (C^) for each processor as depicted in Figure 8.8a 
for a 4-processor configuration. Here, each processor's CPU (P) outputs 

data onto the bus which is simultaneously received by all N-1 CRAMs

connected to the bus. (Note that a CRAM must be at least the size of

the section of image that the processor operates on.) Thus, for a

parallel task (e.g. a Sobel), a processor's portion of an image can
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Figure 8.8a ARCH-2 - each processor can transmit its data to 
all other processors simultaneously via the CRAMs

essentially be transferred to all other processors simultaneously. 

Typically, when a processor is required to read data from the CRAMs, it 

will cycle through its on-board CRAM, either storing the results or 

manipulating the data directly (each processor either reads or writes 

data since each is executing the same task). Because only one processor 

can write to a CRAM and only one processor can read from it at any 

particular moment in time, the logic for the communication circuitry is
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greatly simplified (Section 8.5.2). The time to execute an algorithm 
will therefore be

?tot = Tp/N + Ts/N + K

as before. Thus, ideally, for a large N

T - T ^tot -̂K

However, in the end, this equation will break down because of savings 

that have to be made because the number of buses rises as ~N^.

8.5.2 Avoiding Memory Conflicts

If we consider that tasks can be partitioned into either 'write 
tasks' and 'read tasks', memory contention and deadlocks at the CRAMs 

will never occur. Partitioning the tasks in this way, may appear to be 

a severe constraint; however, experience shows that many algorithms 

(c.f. algorithms in Chapter 3) can naturally be partitioned in this way 

(see Section 8.5.3): this will become clearer later.

Figure 8.8b represents the control logic for one of the CRAMs. 

During a 'write task', data to be transmitted (here from processor i) is 

enabled onto the CD bus with the appropriate control signals, so all 

other processors receive the data. (Note that just processor j (which 

also has N-1 CRAMs on-board attached to N-1 processors) is depicted but 

in fact is replicated N-1 times.)

Control of the multiplexor and the buffering is controlled by the 

receiving processor (here processor j). Each processor sets its CCNTRL 

bit in its microword low throughout the execution of a 'write to CRAM 

task' enabling external processors to write data into the CRAMs. This 

would then be set high during a 'read from CRAM task', enabling the 

local processor to read from the CRAMs. The advantage of this is that
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Figure 8.8b Dual-ported logic for the CRAM. Only one CRAM 
is depicted here; however, processor j has N-1 
CRAMS on board and each processor is replicated 
N times

partitioning the tasks and code generation from a compiler is made 
easier. (Note that the same task is executed in the same processor in 

the same time slot, yet the processors still remain autonomous in the 

execution of each task; thus, at any one time, all CCNTRL bits in the 

system will be high or low as appropriate.) Logic is also kept to a 

minimum because only external processors require access to the 'D' port 

of the CRAM and local processors only require access to the 'Q' port. 

Another iirportant point to note is that one of the control lines 

supplies the clock to a counter vdiich supplies the address to the CRAM 

during a 'write task'. This minimises the number of wires for the links 

as data will usually (it is reasonable to assume) be written 

sequentially. All counters are cleared by the local processor at the 

start of a 'write task'. (Note that the CRAM is in effect acting as a 

large FIFO. This is needed as (at the time of writing) there appear to
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be no FIFOs commercially available of the size required, i.e. 8Kx8.)

To avoid memory contention, the same task must start in all 

processors at the same time, i.e. the processors must be synchronised at 

the task level (a SIMD machine is synchronised at the instruction 

level) - this is dealt with in the next section.

8.5.3 Synchronising the Processors

All processors must be synchronised in order for communication to 

take place without memory contention. This is done by allocating each 

task a time slot so the tasks are initiated in all processors 

simultaneously. After the completion of every task (each processor is 

executing the same task independently), each processor sets a flag and 

waits until all other processors have finished their respective tasks

(detected by all flags being set). The next task is only invoked when

all processors have completed their respective tasks. If the processors 

were not synchronised, a processor with little processing in a write

task may finish before the others. If the second task involves fetching

the data from the CRAMs (a read task) and the tasks were not

synchronised, the second task will be initiated and the processor may 

attempt to fetch non-existent data, since the other processors have not 

finished the previous task. WARP adopts a queue and efficient

compilation of code to solve this problem while PASM involves

interrupts. However, by allocating time slots to each task, hardware 

and software are kept to a minimum with little loss in efficiency. This 

is because:

1. If a parallel task is being executed (e.g. a Sobel) then all

processors will take approximately the same amount of time.
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2. If a sequential task is being executed (which often takes a small 

amount of time relative to a parallel task), then the time lag 

between processors finishing will be relatively small anyway.

The hardware for synchronising the processors is relatively 

straightforward. As each processor completes its respective task, it 

sets a flag (in effect a microcode bit). All flags from all processors 

are logically ANDed where the output is available at each processor's 

condition code register. Thus, on completion of the task, the processor 

sets its flag and executes the following loop:

REPEAT UNTIL all_flags_set=TRUE

Thus, the next task is only invoked when all flags have been set. The 

next section modifies the 0-ring algorithm for this configuration.

8.5.4 The 0-ring Algorithm and ARCH-2

Below is the 0-ring algorithm modified to be implemented on ARCH-2. 

Note that the tasks are easily partitioned into 'read' and 'write' 

tasks. Figure 8.9 depicts the graph of the execution times for this 

configuration.
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1. Each processor applies a Sobel to its allocated section of 
image in P-space. This not only writes it locally but also to 
all its associated CRAMs on all other processors.

2. Q-space is reformed in each processor by reading each processor 
by reading the data from all of the local CRAMs. Thus, in a 
4-processor system, processor one will read data from the CRAMs 
associated with processors two, three and four.

3. Each processor now scans the reformed image (each has its own 
copy); however, the area scanned is limited to the processors's 
allocated area of image. The coordinates of those points with 
a value greater than a fixed threshold (peaks) are stored 
locally on each processor. These are the possible centres of 
the 0-rings in the processor's image area.

4. Each processor sorts its list of peak values into a decreasing 
order.

5. Starting with the highest value, determine the centres of the
rings, ignoring any points within a fixed distance of each
other.

6. For each centre found, apply a filter in Q-space to eliminate 
noise.

7. Put true centre in a "Centre found" list.

8. Redistribute "Centre found" list in order to determine those
centres that lie on the border between two processors. 
Executed in time T; however, this is usually negligible.

The 0-ring algorithm for ARCH-2

From inspection of the Table 8.5, a system with more than 16 

processors is unlikely to be cost-effective. In order to quantify these 

results, a C*T test is carried out below. The extra CRAMs needed for 

each processor have now been taken into consideration - these are 

assumed to cost £4.00 each, this being the current cost of a 1 off 8Kx8 
memory chip (July 1987), which is expected to be adequate for our 

purposes. The cost of the buses (ribbon cable) has been omitted since 

this is minimal compared with the rest of the system (£10 for 30m of 

10-way cable - July 1987). (Here we take the view that ribbon cable 

will suffice for (realistically) 64 processors, since the output from 

each processor is buffered.) The additional cost of the components for 

the bus logic has now been included. These increase as and are
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Figure 8.9 Graph of the execution times of the 0-ring algorithm 
with ARCH-2, using 1,4,16,64 and 256 processors, 
operating on eight images of test data
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assumed to cost £18, this being the cost of two 8-bit counters (£12) and
eight 6-bit buffers (£6). (Note that it is more economical to implement 
the multiplexor using buffers.)

Cost: C (£) Time T C*T C*T
(ms) xlOO (normalised)---------- ----- ' ' — ■ -1

620 105 0.65 1.00
2756 33 0.91 1.40

15,440 12 1.85 2.85
132,416 6 7.94 12.21

1,660,160 5 83.00 127.70

Number of 
processors

1
4

16
64

256

Table 8.5 Cost-Time breakdown for ARCH-2 for 
1,4,16,64 and 256 processors

From Table 8.5, we can see that we achieve a of 3.2 for a 4-processor 

configuration, a of 8.8 for a 16-processor configuration and a of

17.5 for a 64-processor configuration. We can see that the 

cost-effectiveness is dramatically reduced when we adopt a 64-processor 

system. This is because of the cost of the large amount of CRAM (and 

associated logic), this cost being more than the cost of the processor. 

However, when we compare this with Table 8.1 (for the Master/Slave 

configuration), this shows that ARCH-2 appears to be better solution for 

all cases except the last, involving 256 processors. Comparing the 

figures with those in Table 8.3, one can see that ARCH-2 achieves a 

lower execution time at the expense of cost. Thus, the decision on 

whether one should choose ARCH-1 or ARCH-2 will ultimately depend of the 

application. ARCH-1 should be chosen when cost is the predominant 

factor while ARCH-2 should be chosen where speed is the predominant 

factor. The main advantage with 'ARCH-2' is that communication between 

processors can be made transparent to the user.

1 This ignores such factors as reduction in price for bulk quantities 
and manufacturing costs, etc.
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Table 8.6 depicts the percentage of the total execution time 

(t.e.t.) the processors spend reading the data from the CRAMs. This is 

independent of the number of processors and is entirely dependent on the 

data. Thus, as the number of processors increases, this will have a 

more prominent effect on the total execution time of the algorithm.

Number of Tsc
processors (% of t.e.t.)

4 2.6
16 7.2
64 14.5

256 17.6

Table 8.6 Table of the proportion of time spent 
in interprocessor communication for 
ARCH-2 for 4,16,64 and 256 processors

This shows that ARCH-2 spends less time transferring data than ARCH-1; 

hence, achieving a faster algorithm execution time. The reason for the 

decrease in T^^ is because ARCH-1 requires several steps to transfer the 

data to all processors in the system while ARCH-2 transfers the data to 

each processor simultaneously.

We now have enough information to derive a model as before. We may 

recall that

?tot =

Thus, for a large N, (T + T )/N will be negligible; therefore, fromP S
Tables 8.5 and 8.6 we can deduce 

Ttot ^ 5

where T is the sum of the time it takes to read the CRAMs (0.8ms) and K
the times of those tasks that are independent of the number of 

processors in the system (4.4ms). This compares favourably with ARCH-1 

since the amount of time spent communicating has decreased from 5.5ms to

0.8ms. As a further step in the analysis procedure, it is interesting
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Figure 8.10 Graph of the cost of an N processor configuration (C) 
vs. execution time of the O-ring algorithm on that 
system (T). The numbers ringed indicate the numbers 
of processors at various points on the graph

to draw the graph of C vs. T for all three architectures (Figure 8.10). 

(Note that the number of processors corresponding to each point is 

marked on the graph.) Inspection of the graph shows that ARCH-2 will, 

in general, will execute the 0-ring algorithm faster than the other 

architectures, simulated with the same number of processors. However, a 

64-processor ARCH-2 costing £132,416 has little speed iitç>rovement over a 

64-processor ARCH-1 (£39,680), although the cost has trebled. Thus, for 

64-processors, one should consider ARCH-1. For 16 processors, the costs 

vary relatively little; thus, in this case, ARCH-2 could probably be 

justified. The Master/Slave configuration appears not to be beneficial
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in any way.

8.5.5 The Practicality of ARCH-2

This configuration will obviously serve our purposes in that all 

parallel and sequential tasks will execute on a configuration of N 

processors with little programming burden, the results being acceptable 

up to 16 processors. However, as a consequence, the amount of memory 

required increases as for N processors. This probably makes this 

kind of configuration only viable for 16 processors (240 CRAMs). This 

is also determined by the fanout of the buffer chips and the amount of 

cabling required for interconnecting each processor. If a processor 

transmits a byte (8-bits) and the number of bits required to control the 
CRAM is two (clock address counter and read/write strobe), then 10 wires 

will be required for each link (see Figure 8.8b). Therefore, for a 

system composed of N processors, the total amount of wire in the system 

will be N*(N-1)*10. Thus, a system composed of 16 processors will 

require 2400 wires, which is not too excessive.

8.5.6 Topologies Related to ARCH-2

ARCH-2 is similar in concept to the Heidelberg POLYP system [7] in 

that it is a multi-bus configuration. POLYP is based on the same 

concept as ARCH-2 in that any processor can access any other processor's 

data. A  schematic diagram of the POLYP system is given in Figure 8.11. 

Here, if a processor (a 68000 processor in the actual implementation) is 

required to access another processor's memory, a bus grant is made to 

the bus arbitration logic. This allocates one of the buses (a POLYBUS) 

to the requesting processor. Communication between two processors can 

then proceed until the bus is released by the processor.
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Figure 8.11 Schematic diagram of the POLYP system

Although the concept is the same, there are several important 
differences in the implementation. The first of these is that, vrtiereas 

ARCH-2 has one bus per processor, POLYP can have any number of buses, 

independent of the number of processors. The performance of POLYP thus 

increases as the number of buses increases, up to a mciximum of one bus 

per processor. However, a POLYP processor consists (typically) of five 

boards vdiereas an ARCH-2 processor consists of two boards (including 

CRAM) up to a 16-processor configuration. Therefore, a tradeoff between 

the number of boards per processor and the number of buses per processor 

exists. For a large number of processors (~100), the POLYP system would 

probably be a more cost-effective (and realistic) solution; however, for 

a small processor system (~16), ARCH-2 may be more cost-effective.

An important point to note is that POLYP and PASM are 68000 

processor based systems. As we saw in Chapter 6, a SIP based processor 

can achieve "14 times speed improvement over a 68000 running at 8MHz. 
Therefore, a large number of processors may be needed in a POLYP system 

to achieve coitparable performance to a 16-processor ARCH—2 system. 

(From the figures given in [7], over 100 POLYP processors are needed to
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achieve the equivalent performance of a 16-processor ARCH-2

configuration. ) Since we aim to achieve a cost-effective system, we

assume here that a POLYP (like PASM) system would be inherently 
expensive for the performance level required.

The next section improves on ARCH-2, aiming to develop an 

interprocessor communication arrangement such that the system's

performance will increase linearly as the number of processors is

increased for parallel tasks; it is also capable of executing sequential 
tasks quite efficiently.

8.6 CONFIGURATION 4 - ARCH-3

A  more complex design based on the results of the above analysis 

shows that a data bottleneck still exists in the system because of 

Task-2 in the algorithm. An improvement on this architecture is 

presented in Figure 8.12 for a 4-processor configuration. It consists 

of Image RAM (IRAM) physically partitioned into N individual chips for 

an N processor system, so each processor in the system has unique 'write 

only' access to only one of the chips. This corresponds to its 

allocated section of image; however, the N chips appear as a contiguous 

block of memory to the local processor. For example, if four processors 

were operating on a 128x128 image, the image would be partitioned into 

four 4Kx8 memory chips (Figure 8.12). Each section of image (except the 

section being written to by the local processor, e.g. IRAM4 in 

Figure 8.12) is either written to by an external processor or read from 

by the local processor. The control section is organised in a similar 

way to the CRAMs in that a multiplexor is controlled by the local 

processor. This way, all processors have access to their sections of 

image without contention. (Note that problems will occur at the borders 

of an image. Here, we will assume that the borders are available 

without memory contention (Section 8.2.2)).
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Here, tasks are again partitioned into read tasks and write tasks 

as in ARCH-2. This ensures that the local ALU (Figure 8,12) will never 

read one of the other IRAMs while they are being written to; thus memory 

contention and deadlocks are avoided. ARŒ-3 also contains CRAMs as 

before for non-image data (e.g. a list of edge coordinates).

As a processor writes to its allocated IRAM (e.g. IRAM4 for PR0C4 

as in Figure 8.12), it simultaneously writes to its equivalent section 

of IRAM on all other processors. However, the main difference between 

ARCH-3 and ARCH-2 is that the need to read the CRAMs in order to reform 

the image (as \diat would have to be done using ARCH-2) is now 

eliminated, since a processor's section of image is transferred to all 

other processor's IRAM simultaneously. Thus, the processing time 

decreases linearly with the number of processors for parallel tasks.
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e.g. a threshold, Sobel, etc. (Note that no additional wires on the bus 

are necessary because, since each processor is executing the same task, 

a bit from the microcode local to that processor can be chosen to select 

either the CRAM or the IRAM (the same address is supplied to both).)

This configuration does not benefit the 0-ring algorithm because 

the source of the bottleneck is at the CRAM level and not the IRAM 

level. For this reason, it has been omitted from the graph; however, 

for algorithms with many parallel operations (Sobel, threshold, etc.), a 

significant increase in performance can be gained as the need to fetch 

the image from the CRAM is now eliminated. Thus, one could consider

adopting a 4 or 16 processor ARCH-3 configuration if there is an

anticipated large number of parallel tasks to be executed. (To 

calculate the cost of an ARCH-3 system, add E4*N*(N-1) (for buffers) to 

the cost of an ARCH-2 system.) However, sequential tasks can still be 

executed quite efficiently (relative to a SIMD machine) for 

(practically) up to 16 processors, thus offering distinct advantages 

over a SIMD machine.

8.7 CONCLUSIONS

The choice between the configurations is ultimately application 

dependent. For industrial inspection,>a 4/16-processor ARCH-1 system 

may be desired for practical reasons as this is more easily configurable 

and will consume less power. For more complex tasks such as industrial

3-D inspection where a higher throughput is required, ARCH-2 or ARCH-3

may be chosen with up to 16 processors - the choice depending on the 

cost and the execution time required- ARCH-2 is more economical than 

ARCH-3 as it does not require the partitioning of the IRAMs; however, 

ARCH-3 with 16 processors gives a greater throughput for parallel 

operations. ARCH-2 and ARCH-3 thus have distinct advantages over a SIMD 

machine because sequential tasks can still be executed quite efficiently
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(although a bottleneck does exist), and yet remain comparable in cost.

Both PASM and POLYP appear too expensive to achieve a comparable 

performance of a 16-processor ARCH-2/3 configuration; however, this area 

of investigation is incomplete since no costs or performance figures for 

either system seem to be available. They may well prove to be more 

cost-effective if a large number of processors (>100) are involved.

8.8 SUMMARY

This chapter has investigated the idea of configuring several 

autonomous sequential processors capable of executing both parallel and 

sequential tasks with little programmer burden. A simulation of various 

multiprocessor topologies was undertaken which, although a topology 

intuitively appeared sound, in fact incurred data bottlenecks. From an 

analysis of the source of the bottlenecks, successive attempts to reduce 

the bottleneck were carried out by adopting a configuration based on the 

results of the previous configuration. This eventually led to ARCH-2

and ARCH-3. Both of these incurred a bottleneck which was acceptable up

to 64 processors (although practically, a 16-processor version would 

probably be the limit). During the analysis of each architecture, a C*T

test aided us in our decisions along with a simulation of the

architecture for 4, 16, 64 and 256 processor configurations using the 

0-ring algorithm.

Whether ARCH-1, ARCH-2 or ARCH-3 should be chosen will ultimately 

depend on the application, the cost and the execution time required. 

The bit-slice processor SIP was used merely to provide a fast and 

cost-effective means of investigation. Machines like PASM and POLYP, 

although powerful in their own right, are likely to be too costly for 

industrial inspection.
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Apart from designing elaborate multiprocessor architectures, one 

should also consider optimising the processors themselves. By upgrading 

the processors and decreasing the access time of the memory chips, a 

significant speed up in performance can be obtained without changing the 

architecture. This could provide a basis for a 'standard' architecture 

while relying on technology for further performance.
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CHAPTER 9

CONCLUSIONS AND SUGGESTIONS FOR FURTHER WORK

"It isn't that they can't see the solution.

It is that they can't see the problem"

The Point of a Pin in The Scandal of Father Brown 
(London: Cassell, 1935)

9.1 INTRODUCTION

The first part of this chapter reviews the inspection algorithms 

given in Chapter 3. Following this is a study of the SIP machine and 

the Linear Array Processor (LAP) which were developed to be part of a 

multiprocessing system. Subsequent sections summarise the results 

derived from both of these machines (including the results from the 

implementation of the above algorithms) and how they relate to the 

industrial inspection area. An overview of the experimental work 

carried out on a series of multiprocessor configurations is also given. 

The final part of this chapter describes current limitations and makes 

suggestions for future work.

9.2 INDUSTRIAL INSPECTION ALGORITHMS

Chapter 3 described two industrial inspection algorithms, one to 

inspect 0-rings (circular objects) and the other to inspect chocolate
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biscuits (rectangular objects). Both of these algorithms took of the 

order of a few seconds to execute on a PDP-11/73 operating on a 128x128 

image. Although both algorithms employed different inspection methods, 

the same fundamental technique was used for deriving the initial 

measurements (calculating the centre in the case of the 0-ring, and 

determining the orientation of the biscuit) namely, the Hough transform. 

This provided a robust, accurate and inherently fast method for 

extracting information from an image. The general conclusion is that 

the Hough transform is well suited for industrial inspection purposes.

Both of these algorithms contained a high degree of internal 

sequentialism and parallelism; hence, it is difficult to execute either 

efficiently on most machines. It is generally accepted that it is 

easier to implement a parallel algorithm sequentially than it is to 

implement a sequential algorithm in parallel. Also, the cost of a 

sequential processor is generally much less than that of a parallel 

processor. One would therefore expect that the sequential 

implementation of a parallel algorithm on a sequential machine would 

produce a highly cost-effective solution.

In order to investigate this further. Chapter 4 adapted the chain 

code (which is generally restricted to binary images) to the grey-scale 

case. This involved the introduction of a novel method, again using the 

Hough transform, for improving results derived from the chain code when 

applied to noisy images. When this was applied to the edge extraction 

task in both algorithms in Chapter 3 (which are essentially parallel 

tasks), it was found that a reduction in execution time of the order of 

5 times was obtained for extracting the edges and all relevant 

information. This produced an overall reduction in execution time for 

the whole algorithm of the order of 2-3 times. This showed that a 

definite speed improvement could be obtained by implementing an 

algorithm sequentially on a sequential processor, while incurring little
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loss in accuracy, and led to the question of whether a parallel 

processor is appropriate for industrial inspection. Ultimately, 

inspection algorithms have to run in real time, this being governed by 

the line speed, but this compares to "large" pixel rates of the order 

10^/second and not "huge" rates of the order lof/second.

9.3 SIP - A BIT-SLICE IMAGE PROCESSOR AND THE LAP

Chapter 5 described a high-speed, microcoded bit-slice Sequential 

Image Processor - hence the acronym SIP. This was designed with two 
objectives in mind;

1. To design a processor based system capable of efficient execution of 
frequently used image processing functions. The hardware was 

designed with an image processing interface and the flexibility to 

execute several instructions concurrently.

2. To design a processor as a cost-effective solution for use in 

industrial inspection, i.e. capable of achieving inspection at 

typical industrial product rates while remaining affordable.

Essentially, it was a processor designed to execute algorithms such as 

those described in Chapter 3 at rates of 5-10 products/second. However, 

it was also designed to be combined with a parallel processor, namely 

the LAP described in Chapter 6, for inclusion in part of a 

multiprocessor system.

The final design was based around the AMD 29203 bit-slice 

processor. This was combined with a dedicated multiplier chip and a 

pipelined image plane, enabling the majority of instructions to be 

executed in a single cycle (125ns). Performance figures showed that SIP 

achieved a gain in performance of 25-30 times when compared with a 

PDP-11/73 for certain types of image processing algorithms.
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Implementation of the algorithms described in Chapter 3 on SIP showed 

that SIP executed these algorithms in ~130ms - including I/O. This 

corresponds to the inspection of 7-8 products/second - a speed which is 

suitable for many industrial inspection applications - and shows that 

bit-slice designs can provide cost-effective solutions for automated 

industrial inspection systems. Indeed, it is noteworthy that industrial 

processes rarely work at rates exceeding 30 products/sec.

As mentioned before, SIP was also designed to be combined with the 
Linear Array Processor (LAP) - the LAP would execute the parallel tasks 

of an algorithm while SIP would execute the sequential tasks. Such a 

configuration seems to be highly attractive for situations where an 

algorithm consists of many parallel tasks and sequential tasks, and 

where a single sequential processor is incapable of executing the 

algorithm at a suitable rate. Initial estimated results showed that a 

quite large bottleneck was likely to occur for many image processing 

algorithms because SIP was required to transfer the data to and from the 

LAP; however, these results were deduced from LAP-I performance data 

while the actual implementation was to occur with the LAP-II. The 

LAP-II has a superior performance to the LAP-I; however, because the 

detailed performance of the LAP-II is as yet unknown, this investigation 

could not be completed.

As mentioned before, SIP was designed to execute several 

instructions concurrently. Performance figures showed that a 30% 

reduction in code with a corresponding 30% reduction in execution time 

was achieved with many of the routines in Chapter 6. This gave a 

favourable SIP/LAP ratio of execution times of about eight.

9.4 MULTIPROCESSOR ARCHITECTURES

Chapter 7 reviewed a series of multiprocessor architectures. This
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attempted to show that the systolic array approach appeared to be 

beneficial for image processing while the SIMD and MIMD approaches were 

inadequate for typical algorithms. (Typical algorithms are here assumed 

to include both parallel and sequential tasks.) The systolic array 

approach maintained the processing power of MIMD by having autonomous 

processors (hence allowing execution of sequential algorithms), while 

maintaining the simplicity of SIMD in that each processor executes the 

same instructions. Machines such as DIPOD, PASM and POLYP could adopt 

this approach, although these were cited as being rather too expensive 

for our purposes. A notable example was that of DIPOD where a single 

processor costs of the order of £30,000. However, their architectures 

enabled us to highlight some important points about multiprocessor 

systems. Indeed, when several hundred processors are to be configured 

together, these systems may become more feasible than say, several 

hundred SIPs.

Chapter 8 extended this idea of combining sequential processors 

together, in an attempt to investigate several multiprocessor 

configurations, and capable of executing "typical" algorithms. At each 

stage of the process, an analysis of the architecture with the 0-ring 
algorithm (chosen as a typical algorithm) using 4, 16, 64 and 256

processors was carried out. This allowed us to locate the bottlenecks 

in the system and to carry out further analysis. Note that these 

architectures were simulated on a PDP-11/73 which has an entirely 

different architecture to that of SIP. However, analysis of the 

simulation results at each stage enabled us to model the results and 

show that the models and the theoretical values gave very good 

agreement, indicating that the simulations were in fact quite realistic.
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Two main architectures were derived: ARCH-1 and ARCH-2. ARCH-1 was 

based on the philosophy "every processor is connected to its four 

nearest processors" while ARCH-2 was based on the idea that "every 

processor is connected to every other processor". Dual-port RAMS were 

used in ARCH-1 for interprocessor communication while ARCH-2 used 

Communication RAMs (CRAMs). Here, each processor in an N processor

ARCH-2 configuration had write-only access to a CRAM on each of the 

other N-1 processors. After transmitting the data (image or non-image 

data), each processor read its local CRAMs to obtain the results from 

the other processors. Partitioning tasks into read and write tasks 

eliminated memory contention and deadlock.

ARCH-2 achieved a higher execution rate than ARCH-1 at the expense 
of cost and flexibility; however, many parallel tasks would have caused 

quite a large bottleneck because of the large amount of data that would 

have to be read from the CRAMs. This would have been particularly 

severe if there were a large number of processors involved, since the 

time to read the data from the CRAMs is independent of the number of 

processors in the system, and constant for a particular image. In order 

to improve on this, ARCH-2 was modified to produce ARCH-3. ARCH-3 

contained both CRAMs (for non-image data) and an I RAM (Image RAM) for 

image data. Here, the I RAM was partitioned into N chips for an N 

processor system; however, the I RAM appeared as a single image plane to

the local processor. As a processor wrote to its section of image, it

simultaneously transferred it to its equivalent section on all other N-1

processors, hence eliminating the need to read the CRAMs to reform an

image. This meant that for ARCH-3, the processing rate could, in the 

case of parallel tasks, increase linearly as the number of processors 

was increased, and in addition the system was also capable of executing 

sequential tasks quite efficiently. Since tasks were again partitioned 

into read tasks and write tasks, memory contention at the CRAMs and the
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IRAM did not occur. However, in all ARCH configurations, a large 

bottleneck occurred at 64 processors, which made a 64 processor system 

non-cost-effective. The reason for this was because the source of the 
bottleneck was at the CRAM level rather than the IRAM level for the 
0-ring algorithm.

Because the results from a sequential process may be random (e.g. a 

list of edge coordinates), they must be written to the Communication RAM 

(CRAM). Therefore, a read from a CRAM will always be invoked whenever a 

sequential process is executed; thus, a linear increase in performance 

as the number of processors is increased for sequential tasks cannot be 

achieved with the present configurations. A decision on whether ARCH-1, 

ARCH-2 or ARCH-3 should be used ultimately depends on the application 

and the predominant influence over the system, i.e. speed or cost. A 

graph of the cost of these architectures against the execution times 

enabled us to draw the following conclusion: for 4 processors, ARCH-2 

should be chosen; for 16 processors, ARCH-1 should be chosen. However, 

if parallel tasks are to be common (e.g. Sobel), one could consider 

adopting a 16 processor, ARCH-3 configuration.

9.5 SUGGESTIONS FOR FURTHER WORK

SIP has shown that a bit-slice architecture provides a means of 

producing a high-speed, cost-effective machine suitable for industrial 

inspection purposes. During the development of SIP, various possible 

enhancements emerged which are to be incorporated on the next 

version - SIP-II. These reflect the technological changes and the 

reduction in cost of many of the components used, and the experience 

gained since the development of SIP. The basic architecture 

(interconnections between the components) would remain the same except 

for the following changes:
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1. A  more powerful bit-slice. Either the Texas's 16-bit SN74AS888 or 
IDT's 49C404 32 bit-slice processor.

2. A  more sophisticated program sequencer able to support interrupts 

will be used (as opposed to the AMD 2910A currently used in SIP).

3. A  clock generator and microcycle length controller, hence producing 
a variable system clock.

4. 256x256 image planes as standard.

5. 32k or 64k (words) of RAM.

6. A  shortened microword width achieved by a combination of horizontal 
and vertical microcoding.

7. Provision for the user to define mnemonics and the corresponding 

microcode instructions relatively easily.

8. Capability of doubling as a frame store, capable of data 

acquisition, display and manipulation. This will allow SIP to 

operate on incoming data from the video signal hence achieving true 

real-time processing.

9. A private interconnect bus for communication with other SIP-IIs.

Although the above features sound very attractive, an important aspect 

of a commercial product is board space and cost. The prototype of SIP 

involved a relatively large amount of miscellaneous logic. It should be 

possible to reduce board space significantly on the current version by 

the use of programmable logic devices such as PALs, etc. However, 

additional functionality as described in the above list would increase 

the board space and cost. It is estimated that SIP-II will occupy the 

same amount of board space as SIP-I with an increase in cost of about 

30% and a 30-40% corresponding increase in performance. This will give
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an approximate cost of about £1000 (1-off cost-price) for SIP-II and 

shows the suitability of bit-slice architectures and programmable logic 
in high-speed image processing systems.

When multiple SIPs are to be configured in relation to the four 

configurations investigated, SIP-II would be particularly suited for 

single processor based systems and adequate when configured with 4 and 

16 processors. When more processors are to be configured together,

processors such as the transputer may offer a more cost-effective

solution than multiple SIPs, and we are currently investigating this 

possibility.

We have shown that autonomous sequential processors in a system can 
decrease the execution time of an algorithm and perform parallel and 

sequential tasks quite efficiently. However, under the present 

conditions, a large data bottleneck is produced for a large number of 

processors during sequential tasks. One should therefore concentrate on

developing more efficient methods for interprocessor communication in

order to reduce this bottleneck. The CRAM may not be the most efficient 

method of communicating non-image data.

9.6 CONCLUSIONS

The main aim of this thesis was to produce a cost-effective 

bit-slice processor that, when combined with a particular type of 

parallel processor (namely the LAP), would achieve a throughput suitable 

for real-time industrial inspection at a fraction of the cost of 

equivalent multiprocessor systems. Several industrial inspection 

algorithms were to be implemented in order to analyse the system more 

fully. The Hough transform was cited as a useful method for use in 

industrial inspection, and was well suited for such a configuration. 

Unfortunately, because of delays with the LAP—II being built at the NPL,
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it has not proved possible to make a full implementation of the target 

system. However, it has been shown that SIP is capable of real-time 

execution of industrial algorithms (namely those in Chapter 3) as a 
stand-alone processor.

After an attempt to combine multiple, autonomous sequential 

processors all executing the same algorithm, it was shown that 

architectures along the guidelines of "every processor has access to the 

same required information at all times, yet remains autonomous" are 

quite practicable and appear suitable for many image processing 

algorithms. However, much work has yet to be carried out in this area. 

This thesis serves to provide some initial results for four 

configurations that have been investigated; an important conclusion is 
that the configuration of processors of each architecture investigated 

is application dependent. Ideally, one would like to build 16 SIP-II's 

and combine them in order to investigate these architectures more 

fully - this should be the next step. However, in the present work, 

these architectures had to be simulated on a PDP-11/73 and the results 

were encouraging for small numbers of processors.

At this point it is clear that there are no general purpose 

architectures for which the performance increases linearly with the 

number of processors for all algorithms. We have therefore sought to 

find an architecture that is efficient and cost-effective at the lower 

end of the cost scale, using modest numbers of processors.

— 310 —



ACKNCWLEDGEMENTS

I am indebted to my supervisor Dr. Roy Davies for his constant 

encouragement, guidance and perseverance. Next, I would like to express 

my gratitude to the National Physical Laboratory for sponsoring the 

project, in particular Dr. Piers Plummer of the NPL for his valuable 

advice and assistance throughout the project. I am also grateful to 

Mr. Adrian Johnstone for his helpful suggestions on hardware early on in 

the project and for looking at the final draft. Finally, I would like 

to express my gratitude to Rosalind Singer for her help in bringing the 

whole thesis together.

— 311 —



Glossary

ARCH-1 - a configuration where each processor is connected to its four 

nearest neighbours.

ARCH-2 - a configuration where each processor is connected to all other 

processors via a bus.

ARCH-3 - another configuration where each processor is connected to all 

other processors via a bus (however, this differs from ARCH-3 

in its internal organisation).

CRAM - a RAM which is used for interprocessor communication of data 

in the case of ARCH-3 and data and image in the case of ARCH-2.

IRAM - an Image RAM which is used for interprocessor communication 

of image data in the case of ARCH-3.

LAP - a microcoded bit-slice parallel processor.

Master/Slave - a configuration consisting of N+1 sequential processors, 

N of which operate on a section of the image executing a 

parallel task (slaves) while one (master) executes the 

sequential tasks.

P/Q space - two 128x128 image planes identified by the letters P 

and Q.

Parallel task - an operation which, in principle, can be applied to 

each pixel simultaneously.
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Sequential task - an operation which is carried out pixel by pixel, and 

the result for each pixel depends on the results from 

previous pixels.

SIP - a microcoded bit-slice sequential processor.

- execution time of a sequential task simulated on a sequential 

machine.

Tp - execution time of a parallel task simulated on a sequential 

machine.

- sum of the execution times of the sequential tasks and the 

parallel tasks simulated on a sequential machine.

T - time to transfer data from one processor to another along a sc
private bus.
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Addressing Modes

APPENDIX A 

INSTRUCTION SET FOR SIP

# data (D)
Rx register (R)
Px/Qx picture (P/Q)
X/Y x/y mode (X/Y)
(Rx) indexed (I)

name/number memory (M)

Program instructions

BEGIN 
HALT 
ENDPROG 
VAR 
; text

always start a program with this 
stops the program at this point 
last statement in program 
declare variables/arrays 
comment

Processor instructions

CLR dest clear location dest
INC dest increment location
DEC dest decrement location
SHL dest arithmetic shift left location
SHR dest arithmetic shift right location
NOT dest invert location
NEG dest negate (RO:=-RO) location
MOV srCfdest move src to dest
ADD srCfdest dest:=dest+src
SUB srCfdest dest:=dest-src
CMP srCfdest src-dest
BIC srCfdest dest:=NOT source AND dest
BIT srCfdest src AND dest
BIS srCfdest dest:=src OR dest
AND srCfdest dest:=src AND dest
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PC instructions

BRA dest
BEQ dest
BLT dest
BLE dest
IFEQ destl,dest2
IFLT destl,dest2
JSR dest
JSREQ dest
JSRLT dest
JSUBEQ destl,dest2
JSUBLT destl,dest2
RETURN
RETEQ
RETLT
REPEAT
UNTILLT
UNTILEQ
UNTILF
REPLOOP register 
ENDLOOP

branch unconditionally to dest
branch 'if equal' to dest
branch 'if less than' to dest
branch 'if less than or equal' to dest
if equal then goto destl else goto dest2
'if less than' then goto destl else goto dest2
jump to subroutine dest
jump to subroutine if equal
jump to subroutine 'if less than'
'if equal' JSR destl else JSR dest2
'if less than' then JSR destl else JSR dest2
return unconditionally from subroutine
return 'if equal' from subroutine
return 'if less than' from subroutine
repeat the following code
until 'less than'
until equal
until false
repeat loop 'contents of reg' times (max=4096) 
end of repeat loop

Picture functions 
APPLY apply to every point in the image

END

PGET P 
POUT P 
OUT Rx

Example Program

end apply

get an image from VMEbus into P(Q)-space
send P(Q) to VMEbus for display
output register to the VMEbus at location Rx-1

As an example here is a program to threshold an image with 127

BEGIN ; always start with this
PGET P ; get a picture into P-space

APPLY ; apply over the picture
CMP #127,PO ; 127-PO
IFLT SET255,SET0 ; if P0<127 then set255 ELSE setO

SET255: MOV #255,PO ; set PO to 255
BRA GOON ; goto goon

SETO: MOV #0,P0 ; set PO to 0
GOON: END ; carry on until finished picture

POUT P ; Display thresholded picture (p-space
HALT
ENDPROG ; END
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The microcode consists of five parts MCI, MC2, MC3, MC4 and MC5. These 
correspond to

MCI - processor instructions
MC2 - picture and local memory functions and condition code select 
MC3 - data (for the data bus)
MC4 - Program counter instructions, output enables, and 'done bit' 
MC5 - vme access + datapro

This is at a primitive stage; however, tailor made instructions can be 

defined by entering into the program:

MCI(rama,ramb,source,alufunc,dest,cn)
MC2(wrpicl,wrpic2,wrglbl,xcom,yxom,gcom,oeg,eng,clkoff reg,ccsel)
MC3(data) ^
MC4(pc_instruction,output enables,done) ^
MC5(req,rel,rw,vsen,type,clkextad,datapro)

with the appropriate values for rama, ramb, etc. To assemble a program,

execute the following instructions:

ASSEM input_fi1ename (default is .MAC)
TRANS output_filename (default is .SIP)
DLOAD filename (download code to SIP)

Two qualifiers (L & N) can be added to ASSEM, i.e. ASSEM filename/L/N.

1. L - produces a listing file of all three passes of ASSEM, including 

error messages signified by " error message".

2. N - produces the length of the corresponding microcode instruction.
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APPENDIX B

IMPLEMENTATION OF THE 0-RING ALGORITHM W  SIP

GRAB:

VAR peaks:3000, found:80
VAR xmm, ymm
VAR oldnum, old:100

BEGIN 
PGRAB 
PGET P 
JSR INIT 
JSR DOT 
JSR GETLST 
JSR DEDUCE 
JSR WIPE 
JSR CROSS 
BRA GRAB .

Grab picture
Get picture into P-space 
Initialise arrays 
Find possible centres 
Get list
Deduce true centres
Wipe old crosses
Put new crosses on the image
Loop forever 11

INIT: MOV #21,RO 
MOV #7,R1 
MOV #0,R2 
MOV #0,R10 
RETURN

Radius = 21
Peak at centre - defines circle
R2 is PEAK_COUNT
Rio is the number of rings found

I I

DOT: APPLY 
MOV #0,00 
END

APPLY 
MOV Pl,R6 
SHL R6 
ADD P8,R6 
ADD P2,R6 
MOV P5,R7 
SHL R7 
ADD P4,R7 
ADD P6,R7 
SUB R7,R6

CMP #0,R6 
BLE NONEG 
NEG R6

; Wipe Q space to zero

; Setup scan 
; Do a Sobel

; R6=(P8+2*Pl+P2

; R7=(P4+2*P5+P6) 
; R6:=R6-R7
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SHR R6
SHR R6
NEG R6
BRA CONT

NONEG: SHR R6
SHR R6

CONT: MOV P7,R7
SHL R7
ADD P6,R7
ADD P8,R7
MOV P3,R8
SHL R8
ADD P2,R8
ADD P4,R8
SUB R8,R7
MOV R6,R8
CMP #0,R8
BLE L00P3
NEG R8

L00P3: MOV R7,R9
CMP #0,R9
BLE L00P4
NEG R9

L00P4: CMP R8,R9
BLT BIG9
MOV R8,R9

BIG9: CMP R9,#150
BLT ENDDOT
CMP #0,P0
MOV X,R3
MOV Y,R4

MUL R0,R6
MOV R6,R13
MOV R9,R14
JSR DIVIDE
MOV R13,R6

CONTI: MOV R3,R5
SUB R6,R5

MUL R0,R7
MOV R7,R13
MOV R9,R14
,JSR DIVIDE
MOV R13,R7
MOV R4,R8
SUB R7,R8

MOV r 5,X
MOV R8,Y
INC QO
MOV R3,X
MOV R4,Y

ENDDOT: END
RETURN

; R7=(P6+2*P7+P8

; R8=(P2+2*P3+P4) 
; R7 HOLDS DY

; R8=ABS(DX)

; R9 = ABS(DY)

; IS DD>THR?
; IF YES THEN END ELSE 
; SET ADDRESS BACK TO PO 
; SAVE X & Y

; DX:=RADIUS*DX 

; R9 IS DD

DX:=DX/DD
R3 and R5 now holds X 
R5:=X-DX NEW X 11II

DY:=radius*DY

; DY:=DY/DD
; USE R8 AS A TEMP REGISTER 
; R8:=Y-DY NEW Y ! ! ! !

; X :=R5
; Y:=R8 new X and Y 
; now increment Hough space Q0:=Q0+1
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GETLST; APPLY
CMP Q0,R1 f IS QO>THRESHOLD
BLT ENDLST
MOV #peaks,Rl5 f peaks[0]
MOV R2,R14
SHL R14
ADD R14,R15
MOV X,R14 t Save X and Y
MOV R14,(R15)
INC R15
MOV Y,R14
MOV R14,(R15)
INC R2 t Bump peak count

ENDLST; END
DEC R2 r One over actual value
RETURN

DEDUCE: MOV R2,R11
SHL Rll
MOV #peaks,Rl5
ADD R11,R15
MOV (R15),R13 r Rl3 and Rl4 at peak position
INC R15
MOV (R15),R14
MOV #found,Rl5
MOV R13,(R15)
INC R15
MOV R14,(R15) ! First centre found and stored

G00N2: MOV #peaks,Rl5
MOV R2,R14
SHL R14
ADD R14,R15 t peaks[peak count]
MOV (R15),R3 t XX
INC R15
MOV (R15),R4 t YY
MOV #1,R5 ) Peak exists := TRUE

MOV R3,X 7 GET QO value from (xx,yy)
MOV R4,Y
MOV 00,RO

MOV #0,R6 t R6 is temp variable for loop (i
GOONl: MOV #found,Rl5

MOV R6,R7 7 R7 is R6
SHL R7
ADD R7,R15
MOV (R15),R8
MOV R8,R7 7 peaks X value
INC R15
MOV (R15),R9
MOV R9,Rll ; peaks y value
SUB R3,R8
SUB R4,R9
MUL R8,R8
MUL R9,R9
ADD R8,R9
CMP #40,R9
BLT SKP3
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NOCH:
SKP3:

NOSTRE:

WIPE;

NXTIT:

PLOT:

MOV R7,X
MOV Rll,Y
CMP RO,QO
BLT NOCH

MOV R6,R14
SHL R14
MOV #found,Rl5
ADD R14,R15
MOV R3,(R15)
INC R15
MOV R4,(R15)
MOV #0,R5
INC R6
CMP R6,R10
BLE GOONl

CMP #0,R5
BEQ NOSTRE
INC RIO
MOV R10,R14
SHL R14
MOV #found,Rl5
ADD R14,R15
MOV R3,(R15)
INC R15
MOV R4,(R15)
DEC R2
CMP #0,R2
BLE G00N2
RETURN

MOV oldnum,Rl3
MOV #0,R4
MOV #old,Rl5
SHL R4
ADD R4,R15
MOV (R15),R0
INC R15
MOV (R15),R1
MOV #0,R3
OUT RO
INC R4
CMP R4,R13
BLE NXTIT
RETURN

MOV Rio,oldnum
MOV #0,R13
MOV #found,Rl
MOV R13,R2
SHL R2
ADD R2,Rl
MOV (R1),R14
INC Rl
MOV (R1),R15

CLR R2
CLR R3

; Get QO value

Peak exists := FALSE

Wipe old centres

; apply a median filter at each one

; R2 = SIGMY 
; R3 = SIGMYY
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MOV R14,R4
MOV R15,R5

MOV R5,R6
MOV R5,R7 ; MAKE A COPY FOR LATER
SUB #8,R5 ; R5=YM-8
ADD #8,R6 ; R6=YM+8

AGAINl; MOV R4,X
MOV R5,Y
ADD 00,R2
MOV Y,R5
INC R5
CMP R5,R6
BLE AGAINl

MOV R14,R4 ; R4 IS XM
MOV R7,R5
SUB #8,R5 ; R5 IS YM-8
SHR R2 ; SIGMY/2

AGAIN2 : CMP R2,R3 ; WHILE SIGMYY<=SIGMY/2
BLT ENDBIT
MOV R4,X
MOV R5,Y
ADD Q0,R3
MOV Y,R5
INC R5
MOV Y,YMM
CMP R5,R6
BLE AGAIN2

ENDBIT: CLR RO ; RO = SIGMX
CLR Rl ; Rl = SIGMXX
MOV R14,R2 ; R2 IS XM
MOV R2,R3
MOV R2,R4 ; MAKE A COPY FOR LATER
MOV YMM,R5 ; R5 = YMM
SUB #8,R2 ; R2 IS XM-8
ADD #8,R3 ; R3 IS XM+8

AGAIN3: MOV R2,X
MOV R5,Y
ADD QO,RO
MOV X,R2
MOV Y,R5
INC R2
CMP R2,R3
BLE AGAIN3

MOV R14,R2
SUB #8,R2 ; R2 IS XM-8
SHR RO ; R0=SIGMY/2

AGAIN4 : CMP RO,Rl ; WHILE SIGMYY<=SIGMY/2
BLT END4
MOV R2,X
MOV R5,Y
ADD Q0,R1
MOV X,R2
INC R2
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END4

LLPl

LLP2

ENDCNT:

FILLl:
DIVIT;

MOV X,XMM
MOV Y,R5
CMP R2,R3
BLE AGAIN4

MOV XMM,RO
MOV YMM,R1
SUB #2,R0
MOV #old,R2
SHL R13
ADD R13,R2
MOV (R2),R4
MOV R4,R11
INC R2
MOV (R2),R5
MOV R5,R12
SHR R13
SUB R0,R4
SUB Rl,R5
CMP #0,R4
BLE LLPl
NEG R4
CMP #0,R5
BLE LLP2
NEG R5
CMP #2,R4
BLT RPLACE
CMP #2,R5
BLT RPLACE

MOV Rll,RO
MOV R12,R1

MOV Rl,(R2)
DEC R2
MOV R0,(R2)
MOV #255,R3
OUT RO
INC R13
CMP R13,R10
BLE PLOT
RETURN

MOV R14,R12
CMP #0,R14
BLE POSDIV
NEG Rl4
CMP #0,R13
BLE FILLl
MOV R13,R15
NEG R15
BRA DIVIT
MOV R13,R15
MVDVQ
CLR R15
DVRR
CMP #0,R15
BEQ RESLT
CMP #0,R15

; Get old coordinates into R2 and R5 
; Get X position

; Restore Rl3 
; Find difference

; R4 ;= ABS (R4)

; R5 := ABS (R5)

; Save new position

; Draw dot, directly accessing VFSl

; SAVE R14

; 0=ABS(R13)

; DO DIVISION HERE

BLT RESLT
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TESTQ:

INCQ:

RESLT:

TRYIT:

TRYNEG:

ENDMIN:
ENDDIV:

GETQ 
BLT INCQ 
QSUBl
ADD R14,R15 
BRA RESLT 
QPLUSl 
SUB R14,R15 
CMP #0,R13 
BLE TRYNEG 
CMP #0,R12 
BLE TRYIT 
QTOR 
NEG R15 
BRA ENDDIV 
QTOR 
NEG Rl3 
NEG R15 
BRA ENDDIV 
CMP #0,R12 
BLE ENDMIN 
QTOR 
NEG R13 
BRA ENDDIV 
QTOR
MOV R12,R14
RETURN
ENDPROG

ANSWER NOW IN Rl3 
RESTORE R14
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