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Abstract

This work concerns the development and implementation of real-time
image processing algorithms. Such systems may be applied to industrial inspection
problems, which typically require basic operations to be performed on 256 x 256
pixel images in 20 to 100ms using systems costing less than about £20000.

Building such systems is difficult because conventional processors execut-
ing at around IMIPS with conventional algorithms are some 2 orders of magnitude
too slow. A solution to this is to use a closely coupled array processor such as
the DAP, or CLIP4 which is designed especially for image processing. However
such a space-parallel architecture imposes its own structure on the problem, and
this restricts the class of algorithms which may be efficiently executed to those
exhibiting similar space parallelism, i.e. so-called ‘parallel algorithms’.

This thesis examines an alternative approach which uses a mix of conven-
tional processors and high speed hardware processors. A special frame store has
been built for the acquisition and display of images stored in memory on a multi-
processor backplane. Also described are an interface to a host mini-computer,
a bus interface to the system and its use with some hardwired and microcoded
processors. This system is compared to a single computer operating with a frame
store optimised for image processing.

The basic software and hardware system described in this thesis has been

used in a factory environment for foodproduct inspection.
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Chapter 1

Introduction

1.1 The problem of robot vision

Robots are no longer the creatures of fantasy but are being installed on
production lines up and down the country. However, it is clear that the currently
available machines are a far cry from the free-roving creatures beloved of science
fiction writers. Typically, a paint spraying robot is merely a mimic device —
a human operator guides the arm around the lines of the workpiece whilst a
computer monitors the path, and subsequently retraces it automatically. If the
workpiece is misaligned or damaged, then the robot will continue slavishly painting
thin air. The missing element in current commercial systems is a satisfactory
vision system. Programming computers to recognise objects in an image is an
inherently difficult task, and is made more difficult by the enormous amounts of
data that must be processed.

A free-roving robot will need to be able to navigate itself and avoid
hazards. Consider the operations required in crossing the road. The robot is
being approached on two sides by massive objects which are possibly accelerating.
To cross safely, a gap between the cars must be recognised. This entails solving
simultaneous differential equations before the situation has altered so significantly
that the results are useless (that is in real time). This problem is dwarfed by the
task of identifying the cars and approximating their speed and direction, that is
obtaining the differential equations in the first place.

A simple way to identify the cars might be to store in the robot’s memory
some pictures of cars and make point to point comparisons between them and the
incoming visual data. It is axiomatic that a representative sample of cars will
need to be stored. It is reasonable to expect the robot to interpolate between

images, but extrapolation is much riskier and is likely to lead to erroneous results.
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Figure 1.1: Postcode characters

This glosses over exactly what ‘interpolation of images’ means. If a simple direct
comparison approach is used then the stored data set will need examples not only
of all the cars on the road, but also pictures of them at different orientations
and in different lighting conditions. Near infinite amounts of memory could be
consumed in this way, and even if such a database could be accumulated, the
search time would be immense.

To underline this, consider a much simpler problem. Figure 1.1 shows a
selection of characters generated from photographs of typewritten postcode char-
acters on envelopes. Each pattern comprises 256 dots arranged in a 16 by 16
matrix. Even with this restricted problem domain it is not possible to employ
a logical AND gate for recognition, because there are 2®® possible patterns con-
structable from 256 black-or-white dots. This is about 10™, and even at a search
rate of IMHz, 10™ seconds would be required for an exhaustive linear search.
Cosmologists disagree on the age of the Universe since the Big Bang, but most
estimates are around 2 x 10°'® years [Ber76], or 6 x 10™s, which is about 53 orders
of magnitude less than our search time. Clearly point to point comparison has

limited application.
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1.2 Classical pattern recognition

Any practical pattern recognition scheme will have to work with ex-
tremely compacted reference data. It may be possible to select representative
members of each class and use these as templates for comparison with incoming
data according to some matching criterion which is more relaxed than direct point
to point comparison. However, it will be difficult to find a comprehensive set of
templates in situations where large variations are expected in the classes, since
they will not be clustered around a limited number of class prototypes. This is
the case in almost all non-trivial applications.

Classical pattern recognition can be considered a two-part problem. Ini-
tially a feature detector extracts measurements from the image. These are then
applied to a discriminator which holds information concerning the various classes
and their feature distributions. Figure 1.2 shows an image comprising rip individ-
ual pixel brightness values which is reduced by the feature detector to n/ scalar
feature measurements. For a practical scheme, Up $>nj. The ny features trigger
a l-of-ric boolean class output at the discriminator.

The template matching approach described above is a special case in
which the features are the templates and the discriminator is the matching cri-
terion. In general the individual feature measurements define vectors in an N-
dimensional feature space, and the discriminator will be a surface in that space.
Obviously it is desirable for the discriminator to be linear (i.e. a hyperplane);
however, other functions often used are the minimum distance, nearest neighbour

(piecewise linear) and low order polynomial discriminators [DH73].

1.3 The pattern recognition hierarchy

It is difficult, and perhaps unwise, to present a taxonomy of pattern
recognition techniques. Nevertheless, a clear hierarchy can be discerned both
in terms of required processing power and the levels of abstraction provided by
various approaches.

In general, a vision system must first analyse the raw data into some
primitives and then synthesize a global description of the field of view. Typically

the following steps would be performed:
1. Raw image data is segmented into regions which share some characteristic.

2. Each region is investigated to extract some measurement such as colour.
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Figure 1.2: Classical pattern recognition machine
texture, shape etc.

3. Relationships between regions are established in terms of these measure-

ments.

4. The properties of objects in the field of view are inferred from the relations

between regions.

Processing levels above these might use stored contextual information to ‘under-
stand’ the image. A text reading machine provides a useful example of the above

process.

1. Regions can be extracted from a page of text by looking for connected dark
areas and in most cases these would correspond to individual characters,
although some characters such as i, j, % and punctuation symbols such as

the semicolon would require special consideration.

2. Each region would be analysed to count branch points and the lengths of
limbs. At this point the regions could be compared with known character

data, and most characters could be identified.

3. Relational properties of the characters based on the spacing of individual
characters could be used to identify separate word units and deal with non-

connected characters.
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Although the system should now be able to answer queries such as ‘is this word
in the text’, it does not in any sense understand the text, and cannot in fact
distinguish between nonsense and meaningful English. One can envisage a system
with a large stored knowledge base that could make comments on the grammatical
standard of the text. Whether such a machine comprehends the text is a question
outside the scope of this thesis.

The descriptions given above place far more emphasis on the measure-
ment of properties of parts of the image than the process of pattern recognition
as described in section 1.2. Useful information about the field of view is produced
even at the region segmentation level in the text reading machine, and it is rea-
sonable to assume that useful applications can be constructed without invoking

the full machinery of scene analysis.

1.4 N-tuple pattern recognition

In the classical pattern recognition system, it is possible for either the
feature extraction or discrimination parts to be trivial operations. An example of
trivial feature extraction is the technique of Bledsoe and Browning first reported in
the 1950’s [BB59], now known as n-tuple recognition, in which randomly selected
groups of n bits are used as the ‘features’. An n-tuple based recognition system
for characters of the type shown in Figure 1.1 has been programmed by the author

and can achieve a recognition rate of over 90% using 6-tuples and ten classes.

1.5 Structural pattern recognition

The case in which the discriminator is simple is interesting because it
describes many real life situations. For example a robot arm may need the co-
ordinates of the centre of a workpiece. This is a measurement rather than a
classification problem since the type of workpiece is already known. Similarly,
coated foodproducts such as fish fingers should show a uniform surface and any
defects in the covering will show up as areas of the underlying material. Many
industrial inspection problems may be formulated in this way where the presence
or magnitude of a feature is all that is required to identify faulty products. In
such cases the result appears directly from the feature extraction stage.

A more interesting situation occurs where the feature detection algorithm
exhibits considerable ‘intelligence’ of its own. Such algorithms make sequential

sets of measurements on an object which take different courses depending on the
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results. The text reading machine above might use such an algorithm to work its
way round an object counting branch points and measuring the lengths of limbs.
This kind of algorithm is referred to as structural since the form of the algorithm
will reflect the structure of the object being scanned. In its purest form, this
kind of algorithm contains a complete description of the object and in a sense
the algorithm ‘parses’ the object in much the same way as a compiler parses
text. The formal study of this kind of pattern recognition is termed syntactic
pattern recognition, and is concerned with the search for picture grammars that
adequately describe scene content.

This thesis is particularly concerned with the efficient implementation of
industrial inspection algorithms of the structural type that use image processing

techniques to bypass the classical pattern recognition stage.

1.6 The human paradigm and artificial intelli-

gence

Unfortunately, introspective analysis of our own capabilities does not
provide much information useful to the robot engineer. Many workers have at-
tempted to synthesize models of brain behaviour by implementing those models
as computer programs. Pre-eminent in the vision field has been the work of Marr
which follows an information transfer approach. Three principal representations

of the image data are used:

“(1) the primal sketch, which is concerned with making explicit prop-
erties of the two dimensional image, ... (2) the 2 1/2-D sketch, which
is a viewer-centered representation of the depth and orientation of the
visible surfaces ... ; and (3) the 3-D model representation, whose im-
portant features are that its coordinate system is object centered, that
it includes volumetric primitives (which make explicit the organisation
of the space occupied by an object and not just its visible surfaces),
and that primitives of various size are included, arranged in a modular,
hierarchical organisation.” [Mar82]

These models require prodigious amounts of processor time using con-
ventional sequential computers, but this is not surprising in view of the highly
parallel nature of the brain.

Apart from trying to model brain systems directly, many workers in the
artificial intelligence field have used heuristic techniques to program problems

which are combinatorially too large for normal analysis, such as chess and other
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game playing, question and answer systems, and expert systems. ‘Artificial in-
telligence’ is an unfortunate name for these techniques which perhaps promises
more than can be truly delivered — for some years the artificial intelligence com-
munity seems to have been in a jam tomorrow, never jam today’ situation, which
is possibly the result of overambitious targets.

Although artificial intelligence provides useful techniques for some pat-
tern recognition problems, technology constraints usually rule out the use of com-
plex heuristic methods for real time work and it may well be some time before
Marr’s work becomes directly usable in industrial environments. Therefore this
thesis concentrates on the efficient implementation of relatively simple algorithms.
Note that ‘simple’ and ‘trivial’ are not synonymous — many classical algorithms
(such as Hoare’s Quicksort) are both simple and elegant, but great insight was

required for their discovery.

1.7 Overview of following chapters

This work is concerned with the systematic design and implementation
of image processing algorithms. It falls into three parts: part 1 (Chapters 2-4)
is concerned with data representation and algorithm design for image processing;
part 2 (Chapters 5 and 6) looks at development systems for image processing
bearing in mind the needs of the programmer; and part 3 (Chapters 7-10) looks at
parallel and hardware implementation of algorithms in high speed multiprocessor
systems.

Chapter 2 looks at some fundamental properties of digital images and
their representations, concentrating on the use of hierarchical structures for in-
dustrial problems.

Chapter 3 discusses algorithm analysis and design, and the evaluation of
systems using standardised algorithms and image data. Throughput requirements
for industrial image processing are derived.

Chapter 4 gives some novel algorithms for the generation of quadtree
data structures from images, and their application to real time image processing.

Chapter 5 concerns the design of framestore hardware that allows a host
processor to efficiently access image data. Four frame stores designed by the
author are described along with utility and application software.

Chapter 6 examines the major trends in sequential processor design and
software systems to support image processing including PIPE, the software system

used for the applications work described in chapter 8.
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Chapter 7 reviews parallelism in hardware with a special emphasis on
parallel processors designed for image processing applications.

Chapter 8 looks at various parallel programming paradigms and the
programming constructs available in various languages.

Chapter 9 describes the design and implementation of a high speed mul-
tiprocessor system called IMP and its use in a realtime grey scale industrial in-
spection application.

Chapter 10 describes a full custom VLSI implementation of the Sobel
filter designed to form the heart of an IMP hardware processor.

Chapter 11 summarises the results of the previous chapters and looks

ahead to future work.
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Chapter 2

Image representations for real

time processing

“A picture is worth a thousand words.”

2.1 Introduction

Application of computers to real world problems requires that the nec-
essary processing be formulated as well defined algorithms, and that the physical
dimensions and concepts of problems be mapped to suitable internal representa-
tions. Choice of representation is intimately connected to algorithm performance.
This is because it is generally not possible to make all aspects of the data simulta-
neously explicit. Any collection of data in the computer has some kind of topology
in which information is implicitly carried. As a result, any representation imposes
its own order on the image.

The simplest example of this is the basic array representation of an image
in which spatial information is carried in the topology of the array. This implicit
information is expensive to retrieve: it is easy to find out what colour a pixel with
certain coordinates has, but to find the coordinates of all pixels of a certain colour
requires an exhaustive search of the whole structure. Similarly, the location of all
3 x 3 areas in the image with a certain distribution of pixel colours will require
quite complex processing, because the information is even more implicit. However
it is possible to envisage an image representation that directly enumerates all such
features. This might take the form of a simple list, or some complex hierarchical
structure.

The simplest image representation is an array, in which a one-to-one

relationship exists between points in the visual field and the stored data points.
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The discrete nature of digital representations may cause ambiguities and noise in
subsequent processing. The array representation is examined in some detail here
because it often forms the basis for more complex representations.

Early attempts to reduce storage and processing requirements in binary
systems generated representations such as chain code [Fre61] and skeletonisation
[Blu67].

There is a growing interest in ‘hierarchical’ tree structures for image
processing [TK80]. These may be generated by ‘bottom up’ processes which gen-
erate successively reduced resolution versions of an image, or ‘top down’ processes
which successively decompose an image into sub-images. Top down structures use
global information available at each level to subdivide the image, whereas bot-
tom up structures use the local properties of pixels to group them together. A
structure of particular interest is the quadtree [Sam84], which can be used to pro-
vide global information to inherently local image processing operations, allowing

increases in processing speed for certain classes of algorithm.

2.2 Information in images

Several types of information are present in an image. Most fundamen-
tally there is displacement in two dimensions, and simple identification is possible
using silhouette or ‘binary’ images. However there is also depth (i.e. displace-
ment in a third dimension) and colour/brightness information. Typically depth
information is less precise than X/Y position, and colour information is often

compressed into a monochrome image.

2.3 Digitisation

Digital systems require information to be presented in digital form, and
a continuum must be converted into a structure containing numbers. Most appli-
cations make use of a monochromatic representation where image data is stored
in a 2-dimensional array of values corresponding to sample brightnesses across the
image. Colour and depth information may be incorporated by storing colour and

depth values along with the brightness data.
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2.4 Spatial quantisation

The Spatial relationships in the image are represented by splitting the
visual plane into a number of picture elements or ‘pixels’. Through familiarity
with cartesian coordinates it is natural to make these pixels rectangular in shape,
but this is not necessarily the best tessellation available. By considering angles
at a point, it may be shown that squares, triangles and hexagons are the only
regular polygons capable of tiling the plane (the so called ‘regular tessellation’).
It can also be shown that there are only 8 ‘semi-regular’ tessellations which are
tilings using a mix of regular polygons but with all vertices congruent [CR61].

For image representation, the characteristics of a good tessellation are:

1. it should have a fine enough net to avoid losing important detail in the

quantisation noise and to avoid aliasing,

2. it should be regular and have as many axes of rotational symmetry as pos”

sible,

3. it should be able to describe primitive image properties without introducing

geometrical paradoxes.

2.4.1 Spatial resolution

Characteristic 1 is a property of the spatial resolution (i.e. pixel size)
and is not related to the actual tessellation. The 625 line PAL colour television
system used in the UK specifies a line time of 64/is of which 12.05/16 + 250ns is
blanking time used for flyback [IB71]. This leaves approximately 52/is of active
video time. The normal video bandwidth is 5.5MHz although many cameras are
capable of higher performance, say 6MHz.

According to the sampling theorem, in order to capture the full band-
width of a signal, samples must be taken at twice the maximum frequency in the
signal [GW87] — i.e. at 11MHz for broadcast video. Over the length of a 52/xs
display line, this corresponds to 572 pixels. This is an interesting result because
600 of the available 625 lines are used for display, which means that the spatial
resolution of broadcast video is much better in the Y direction (600 pixels in unit
length) than the X direction (572 pixels in 4/3 unit length). This is a result of
the bandwidth limiting imposed on the signal to reduce demand on broadcast

frequencies. If the sampling criterion is violated, aliasing can occur.
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2.5 Regularity

Regularity is important if features are to be invariant under translation.
If one part of the field of view is stored at higher resolution, then identical objects
in different parts of the image may map to different amounts of image memory.
There are cases where this is desirable, such as increasing horizontal resolution to
show vertical edge profiles in more detail. It is also desirable that features should
remain invariant under rotation. Any tessellation will introduce distortions in the
image, but multiple axes of rotational symmetry will help reduce inconsistencies
between representations of identical shapes at different angles to the coordinate

axces.

2.6 Geometrical paradoxes

2.6.1 The crossing paradox

In most cases, accurate representation is a property of resolution only,
but there is a deeper problem with rectangular tessellation. If four points are

arranged in a block:

then a natural interpretation is that the two ‘1’ points are parts of a connected line
bisecting two background areas shown as ‘O’s. However the black and white areas
are spatially congruent, and there is no reason why this should not be interpreted
as a discontinuity between two black areas. Thus connectivity is ill defined. This
is known as the crossing paradox and was first noted by Rosenfeld [Ros70]. A rule
often used to circumvent this problem is to require background connected areas
to show four-connected adjacency, and allow foreground areas eight connectivity.
This is equivalent to enlarging the size of each foreground dot in the analogue
image, so that it occupies a larger areca than one pixel as shown in Figure 2.1.
This obviously removes generality and symmetry from the representation, and
shows another problem with the rectangular tessellation: that the four and eight
connected points are different distances from the centre of a window, even though
they all border the centre.

The crossing paradox also affects the definition of crossing number, which
is a measure of the order of connectivity at a point. Within a 3 x 3 window, four

cases can be distinguished as shown in Figure 2.2.
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HI:

Figure 2,1: Connectivity of rectangular tessellation

XXX - X X - X - -

0 . X0 X .2 4 - -6 X
XXX X - X - X

isolated isolated end mid cross

Figure 2.2: Crossing number (rectangular tessellation)

Crossing number may be calculated as twice the number of lines or wider
bodies meeting at a point. Calculation for the hexagonal tessellation is straight-

forward, and some examples are shown in Figure 2.3.

The crossing number may be calculated by counting the number of
black/white transitions in the ring surrounding the central point. Let the pix-
els in the neighbouring ring be named pi,pz... pe giving the pixel numbering
scheme shown in Figure 2.4.

Here the crossing number formula is Pi XORp."-i.

In the rectangular case, the situation is complicated by the two level
hierarchy of points that exists within a window. The situation where three lines

meet in the vicinity of a 3 x 3 window can map to two different ‘types’ of window

X X - X X -
0 X0 X 2 - 4 - -6 X
X X X - X - X -
isolated isolated end mid cross

Figure 2.3: Crossing number (hexagonal tessellation)
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56

Figure 2.4: Hexagonal pixel numbering scheme

X - - - X-
-6 X X 4-
X - - - X
cross mid

Figure 2.5: Square tessellation crossing number

with different crossing numbers (Figure 2.5).
Using the connectivity criterion noted above, the two upper points in
the mid case are connected, and therefore generate only one transition in the

neighbouring ring of pixels. The formula for the rectangular case must be modified

to
4

Em -i XORp2i+i + 2( NOTp2i_i AND  AND NOTpj.+i)

t=1
The first term generates the crossing number defined over the four-

connected points, and the second adds in any isolated corner points [DP81].

2.6.2 Geometrical paradoxes in hierarchical representa-

tions

The rectangular tessellation can tessellate itselfin a regular fashion, that
is a square may be simply tiled with squares. An equilateral triangle can be tiled
with equilateral triangles, but the centre triangle will be upside down with respect
to the immediately enclosing triangle. A hexagon cannot be tiled with compléte
hexagons. These properties become important when considering the hierarchical
representations which will be discussed below. Problems arise with the hexagonal
tessellation and also to some extent the triangular tessellation when deciding

which level of a hierarchy a particular pixel belongs to.
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2.7 Choice of tessellation

The semi-regular tessellations violate the need for translational invari-
ance and it is clear that of the regular tessellations the hexagonal representation
is simplest for connectivity analysis in a non-hierarchical representation. How-
ever, nearly all image processing work is done using square or rectangular pixels.
Since the aspect ratio of a standard video picture is 4:3 [IB71] and since it eases
indexing if a square array is used in memory, many systems use pixels with a 4:3
aspect ratio so as to make maximum use of the available field of view. Therefore
an algorithm looking for circles in the image must look for ellipses in the memory
array by applying a 4/3 correction factor to all Euclidean distances in the Y axis.

This is an unfortunate state of affairs.

2.8 Distance information

Range finder devices may be used to detect distance information. It is
not necessary or desirable to extend the array representation to a third dimension
(which would require enormous amounts of storage) because occlusion of objects
gives rise to only one distance datum for each point in the visual plane. Hence
only one entry is required per pixel. Therefore distance information is stored as a
pixel attribute like colour or brightness, rather than as an extension to the spatial
digitisation scheme. If full scene representation is required (i.e. occlusion may
not be used to reduce storage requirements) a higher level description is normally

used.

2.9 Grey scale digitisation

Many early image processing systems operated on binary images only. In
this case the incoming analogue signal is converted into a series of black-or-white
pixels by a single comparator. The threshold is varied by changing the reference
voltage to the comparator.

Most applications require the use of a grey scale with at least 16 levels. It
is often convenient to work on 1 byte pixels, giving 256 possible grey levels. This
corresponds to a dynamic range of 48.2dB, which is in fact beyond the capabilities
of all but the most expensive video cameras.

Colour information is usually encoded separately for the red, green and

blue components which requires a tripling of the basic system. Since three times
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as much information is being stored, processing times will be three times longer,
all else being equal. In fact extra information is different in kind (the three
planes of colour information are not the same as a 24-bit grey scale), and this
will inevitably make algorithms more complex: thus processing times may be
even more extended. An alternative possibility is to store colour and luminance
information separately. A compact code might be to display one of eight colours

using three bits, and have a five-bit brightness code.

2.10 Simple structures for binary processing

There is a great deal of redundant information present in an image, and
in principle it should be possible to store only those parts of the picture that
are strictly relevant to the task in hand. As well as reducing storage space, this
will also allow more rapid searching and manipulation of the image as long as
the required features have been efficiently coded. If the structure is not directly
suitable then the conversion to a more appropriate form may impose unacceptable
overheads.

Inspection problems usually require objects to be found and then anal-
ysed. Only in scene analysis or other rather complex situations is the background
detail important. Several redundancy reducing techniques exploit this to remove
background data and areas of uniform intensity in the foreground. Two funda-
mental approaches may be followed: direct representation of edges from which
area information may be inferred {e.g. chain code, edge descriptors for shape ap-
proximation), or direct representation of areas from which edge information may

be constructed {e.g. intensity threshold regions, texture segmentation).

2.11 Data structures

Any assembly of data forms a data structure consisting of nodes which
store the data items, and pointers to other data items. The pointers may be
implicit in the structure, especially if the topology ofthe data structure is invariant
throughout its life, in which case a fixed mapping function is usually used to
recover data rather than following a chain of links. The simplest example is a two

dimensional array in which the mapping is

[column X column_dimension + row]
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1 2 3
1: EB43ZI
1 0 1 1 0 0
2: DH-HZI
2 1 0 0 1 0
3: EB-iaa
30 0 0 1 1
4: (221
( 4 0 1 0 0 0
5: EEI 5 0 0 0 0 0

Figure 2.6: Graph representations

If a fixed allocation of nodes is used then the data structure is static, but
if varying amounts of storage are required during execution, then the structure is
dynamic.

The array representation can be considered as a static data structure,
the form and storage requirements of which are fixed, in which only the data held
in the nodes varies. As a result, no pointer information need be held within the
structure, and a simple mapping is used to recover each pixel. On the other hand,
the chain code has a dynamic topology and invariant ‘data’ — since the object is
fully described by the pointers, no data field is required.

The most general data structure is the graph in which no restrictions are
placed on the layout of the links. A graph is consists of a finite, nonempty set of
vertices and a set of edges. If the edges are ordered pairs then the graph is said
to be directed. If the edges are unordered pairs (t.e. sets) then the graph is said
to be undirected. A graph may be represented in the form of a series of linked
lists or an adjacency matrix: an n x n bit table indicating which of the n possible
directed edges exist. These representations are shown in Figure 2.6.

A nondirected graph can be represented as n(n —1)/2 bits since the
adjacency matrix is symmetrical about the leading diagonal.

Since a graph is a general structure, it follows that any structure can fee
represented in linked or tabular form. Ifthere are n nodes in the graph and e links,
or edges, then the linked representation requires storage proportional to n + e, and
the adjacency table storage proportional to n*. All else being equal, the number
of edges in the structure dictates which representation will be the most efficient.
However, execution time of algorithms is also dependant on representation.

In many structures, a hierarchy of nodes exists, and this gives rise to

directed edges that point from one node to another. If there is a path along
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Figure 2.7: Tree structure

directed edges that links any two nodes in both directions the graph is said to be

cyclic. An interesting subclass of directed data structures are the trees.

2.11.1 Trees

A tree is an acyclic directed graph with exactly one node (called the root)
which has no edges entering it, and an arbitrary number of other nodes which have
exactly one edge entering them [AHU75]. The root has daughter nodes which are
themselves mother nodes to the nodes beneath them. At the top of the tree exist

nodes which have no siblings: these are called leaves (Figure 2.7).

Trees have been used in image processing for the hierarchical segmen-
tation of images. It is possible to have a tree which is built up using maximal
blocks (blobs) in the image, with the largest uniform block as the root and the
smaller blocks forming sibling nodes. However, such a general structure would
only produce a more complicated representation of the image than the array. A
more specialised tree structure that imposes some order on the image may speed

up some processes, given an algorithm tailored to that representation.

2.12 Bottom up and top down representations

Many different hierarchical representations have been used for vision
processing [TanSO]. They can be classified into two types: bottom up in which
regions in the image are identified, grown and linked into larger regions that
are again linked; and top down in which the image is decomposed by successive

passes into more and more detailed representations. These correspond to local
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root

Figure 2.8: Quadtree generation
I

processing building up a global understanding of the image, and global processing
that ‘homes in’ on specific local features of interest.

Note that although a particular representation may be most easily de-
scribed in terms of its top down or bottom up emphasis, it may be possible to
construct a top down representation using a bottom up algorithm. This will be

illustrated in Chapter 4 using quadtrees.

2.13 Quadtrees

Chain code removes redundancy from the image by simply discarding all
but edge information. An alternative approach is to encode an image on several
hierarchical levels containing varying levels of redundancy. A simple represen-
tation called the quadtree has received considerable interest. The quadtree is
unfortunately named since ‘quadtree’is really the generic name for all tree struc-
tures of order 4 (that is all mother nodes have 4 daughters), and these occur in
many areas apart from image decomposition.

The quadtree ofa2"x 2” binary image may be constructed as follows.

1. If the entire image is black then the root is a black leaf, and therefore this

is the only node in the tree.

2. If not, then create a mother node at the root, ascend one level in the tree
and subdivide the image into quadrants. For each quadrant, create a leaf if

it is uniform, otherwise create a mother node.

3. Subdivision of quadrants continues recursively until the entire image is

stored in the structure.

This process is shown in Figure 2.8.
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Note that at most only n-f 1 levels can exist in the tree. The bottom level
of the tree (level 0) contains leaves that correspond to individual pixels. Level n
of the tree maps to n X n pixel areas.

It would be possible to allocate adequate storage for a static representa-
tion of the tree. For each level n of the tree, there will be 2*” nodes. Hence the

total number of nodes iVp in a p level tree is:
iVp= 2%+ 20+ 20 f£o £2°NA+ 2P = 42" - 1)/3

hence for an image with P = 2” pixels, the maximal quadtree will require
4P/3 —1/3 nodes.

For a 128 x 128 pixel image, the largest possible tree would have 16384
leaves and 21845 nodes would be required. In this static representation, a straight-
forward mapping function could be used to access the nodes. Each node would
need one of three values: black leaf, white leaf and parent, which may be encoded
into 2 bits. Thus about 5.3K bytes of storage would be required, some of which
would not be used in any other than the worst case.

Another form of direct mapping that is useful in controlling some image
processing operations is to use multiple image planes to store (a) the original
image, (b) the depth of each pixel in the tree, and (c) the grey-value of each
pixel. Although requiring considerable memory space, this arrangement makes
available to a conventional raster scanning operation all relevant information from
the quadtree at each pixel without searching the tree.

The alternative is to use a full dynamic pointer storage scheme. On a
PDP-11 or other 16-bit computer, this might be implemented with one word to
each node. The bottom bit distinguishes between parent and leaf nodes. For a
parent node, the other 15 bits form the word address of the first of four consecu-
tively stored daughters. In a leaf node, the top 15 bits would contain grey scale
information. Although the binary quadtree would only require 1 bit, generalisa-
tion to grey scale and other ‘simplicity’ measures may make use of the extra bits.
In the worst case, this scheme requires more storage (21845 X 2 bytes) than the
static representation, but for many images with large uniform areas, and therefore

fewer nodes, less storage will be required.

2.13.1 Extension to grey scale

The quadtree may be generalised by applying a ‘simplicity’ criterion
other than simple uniformity. In particular, the strict uniformity measure is not

suitable for use in the grey scale case because noise and texture in the image will
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Figure 2.9: Q-image at threshold 16

allow very few truly uniform areas, that is regions of identical brightness. This
will give rise to very many nodes, and result in large quadtrees. If the simplicity
measure allows a range of pixel brightnesses to be present within a leaf region,
then the quadtree will become smaller, but fine detail will be lost.

The quadtree of a binary image contains all the information required to
reconstruct the original image, that is the image generated by deconstruction of
the quadtree (the Q-image) is the same as the source image (the S-image). The
grey scale quadtree does not contain all the information because of the smearing
out of pixel intensities, and the resulting Q-image will tend to have a blocky
appearance. Q-images with leaves spanning various brightness ranges are shown

in Figures 2.9 - 2.12.

2.13.2 Properties and applications of quadtrees

Hunter and Steiglitz [HS79a] describe various limits on the complexity
of the quadtree for polygonal figures and algorithms for the location of a point
within a polygon and the filling of polygons in time linear with the number of
nodes in the tree. These algorithms arise from cartographic work. A series of
papers by workers at the University of Maryland describe algorithms for smooth-
ing [RS81]; threshold selection [WHRS82]; connected component labelling [Sam81];

skeletonisation [Sam83]; and edge enhancement [Ran81].



Figure 2.10: Q-image at threshold 32

Figure 2.11: Q-image at threshold 64
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Figure 2.12: Q-image at threshold 128

2.13.3 Shift invariance

The quadtree is not a shift invariant structure. As a general rule, if a
given representation is data driven (like the chain code) then its overall form will
be independent of position. Only the coordinates of the leading link will need to
be updated as an object makes its way across the field of view. On the other hand
if a representation is coordinate driven, then positional information is imbedded
implicitly or explicitly in the structure itself, and movement of objects will cause
alteration of that structure. Of course even the basic array structure suffers
from this in that an array of pixels effectively describes how well an analogue
image matches the tessellation, and shifting of features will create quantisation
noise as those features come in and out of alignment with the tessellation [LTS82].
This problem is especially acute with the quadtree because the tessellation is of
variable resolution, and in some cases the ‘pixels’ (leaves) are very large. This
indicates that major corruption of the spatial relationships in the image may be
caused. This means that any subsequent region oriented processing will be dis-
rupted. Figures 2.13 - 2.20 show a rectangle at four positions within the image
plane and the corresponding Q-images. The Q-image does preserve edges because
busy regions of the image generate minimum size leaves, i.e. the original array
representation is preserved. Thus the quadtree can be regarded as an edge ori-
ented representation, even though at first sight it appears to be area oriented. The
area information encoded in the tree is only an imperfect measure of the busy-ness
of that part of the image within the limits set by the degree of matching to the

quadtree leaves. This information may be useful in controlling certain algorithms
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Figure 2.13: Rectangle 1

dynamically.

2.14 Metrics

Any representation imposes its own structure on the data. A ‘grain’ of
some sort will be superimposed on a continuum, and therefore distance measures
may be distorted. This is the case even for the array representation: the displayed
image is noticeably pixellated, and the set of equidistant points around a point
only approximates a circle. Both of these effects may be minimised by increas-
ing the resolution of the representation because the underlying geometry of the
representation is closely analagous to physical reality. Apart from the granular
nature of the array representation, Euclidean distance measures applied to array
coordinates will map to Euclidean measures of the coordinates in the original
image. However, linked data structures do not necessarily provide the original
geometrical relationships in an easily retrievable way, and other metrics may be
appropriate.

A metric is a function, d(,i/), that maps ordered pairs of coordinates

into positive distances. For all points P, Q and R the following must be satisfied:

1. d(xp,y0) > 0

2. di{xp™yq) = 0iff @ =y

3. d(xp,yQ) = d(yp,xq)

4. d{xp,ZR) < d{xp,zq) -f d{yqjZR) { The triangle inequality }



Figure 2.14: Rectangle 2

Figure 2.15: Rectangle 3
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Figure 2.16: Rectangle 4

Figure 2.17: Q-image of rectangle 1
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Figure 2.18: Q-image of rectangle 2

Figure 2.19: Q-image of rectangle 3
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Figure 2.20: Q-image of rectangle 4

The most common metric is Euclidean distance which corresponds to the everyday
measure of distance d£;(P,Q) = yj{xp —x0Y -f {yp —y¢Y

This can be used within a digitised image, but all the x and y coordinates
must be integers, and so a general circle cannot be drawn. An approximation can
be made by rounding the solutions of the circle equation to integers.

Two other metrics which are used in image processing are the City Block
distance dcg(P,Q) =\ xp —xq | + | i/p —t/q | and the Chessboard distance
de{P,Q) = max(|xp -xq |,\yp-yq |)

The chessboard metric has the property that the set of points distant Q
from a given point P yields a square centred at P with side length 20. Samet
[Sam79] has proposed the use of the chessboard distance for quadtree based work
and presents an algorithm for calculating it efficiently.

Within a structured representation of an image, two types of metrics
may be distinguished: those that relate directly to distances in the original image,
and those that describe the separation of nodes in the structure. For instance.
Figure 2.21 shows a quadtree where two leaves that are adjacent in the Q-image
are separated by 6 levels in the tree representation. This is another kind of ‘grain’
imposed on the data, and may cause gross inefficiencies in the retrieval of pixels
if inappropriate structures are applied to a problem. Samet [Sam82] describes
neighbour finding techniques for images represented by quadtrees, that is the

conversion of intra-image distances to intra-structure distances.
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root

Adjacent pixels A and B belong to widely spaced leaves A and B

Figure 2.21: Distances within a quadtree

2.15 Conclusions

Digitisation of the visual field has been described with particular empha-
sis on spatial quantisation. It has been shown that the hexagonal tessellation has
desirable properties, but noted that for hierarchical representations the rectan-
gular tessellation is probably preferable. Of the hierarchical representations, the
quadtree have been described along with some of the broader, and in some ways
problematic, implications of its use in image analysis. Algorithms for quadtree
generation and their uses in real time image processing will be described in Chap-

ter 4.
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Chapter 3

Algorithm analysis and design

“ ‘Begin at the beginning’, the King said gravely, ‘and go till you come
to the end; then stop’”

Lewis Carroll, ‘Alice’s adventures in Wonderland’ (1865)

3.1 Introduction

A procedure in the widest sense (not as a syntactic construct in pro-
gramming languages) is
“a finite sequence of well defined steps or operations, each of which

requires only a finite amount of memory or working storage and takes
a finite amount of time to complete” [GH77].

The definition of a true algorithm is essentially the same, but more precise in that

“...an algorithm must terminate in finite time for any input”.

Algorithms may be classified by function, i.e. what they do; by strategy, i.e.
how they do it; or by goodness, that is how well they do it. The goodness
measure varies according to application, but accuracy, execution time and memory
requirements for different inputs will be the main criteria.

A topic of universal interest in computing is the ‘benchmarking’or com-
parative testing of systems. Typically this is attempted by the adoption of bench-
mark algorithms which are run on the competing systems to give measures of
execution times. For these figures to be useful suitable algorithms must exercise
all parts of the system in a way which is consistent with actual usage.

In this chapter, benchmarking of image processing systems is considered

after a discussion of algorithm analysis and design.
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3.2 Algorithm analysis

In image processing it is often difficult to say whether an algorithm is
‘correct’— two different edge detection operators will usually give different output
images, and the assessment of which better defines the edge may be primarily
subjective. The rigour of image processing algorithm analysis would be improved
if universal measures of accuracy for fundamental operations could be agreed.
Davies [DP81,Dav84] has presented useful results in thinning and edge detection.

Assuming that the algorithm under study does actually present correct
answers to the problem, the most important aspects of its behaviour are the
amount of storage space required and the execution time. These may be charac-
terised for varying inputs as the space complexity and the time complexity of the
algorithm.

The first step in determining the space or time complexity of an algo-
rithm is to define an integer number called the size of the problem. In a tree
type problem the size might be the number of leaves or edges in the input data;
with an adaptive filtering problem the size might be the number of samples falling
within the range of values which trigger the filter. The asymptotic complexity of
an algorithm is the limiting behaviour as the size of the input increases, and this
ultimately limits the size of the problem solvable on a given system.

Both the worst case and the average complexity of an algorithm are of
interest. It may be that a particular algorithm performs well for most inputs, but
almost grinds to a halt with others. It would be useful to identify dangerous inputs
and filter them out. In general the worst case complexity is easier to calculate.

An upper bound on the number of basic instructions, performed by the
algorithm for a given size of problem n, is defined as the work function, f{n). If
fi{n) grows at or below the speed of a simple (finite length) polynomial in n then
the algorithm is said to be polynomial. If not then the algorithm is exponential.
In many cases this simple division is all that is required since most systems seem
to be capable of executing polynomial algorithms in a reasonable time, whereas
an exponential algorithm can be guaranteed to stall for all but the smallest of
problems. A simple example of this has already been seen in Section 1.1 where
the point to point comparison of all 16 x 16 binary patterns against a single
test pattern was shown to require around 10™ seconds on a fast processor. This
problem is exponential in the size of the image, since the number of images is 2”
where n is the number of points in the pattern.

A notation from limit theory is often used in algorithm analysis. A
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Figure 3.1; Behaviour of functions

function f{n) is said to be order g(n) for large n if

n-c» *

lim —r} = constant 0)

This is written f(n) = 0[*(n)]

If for some function /(n) and large n

n-cx) fi{n)
then /(n) = o[/i(n)]

These terms are spoken “big o” and “little o”. If /(n) is 0/g{n)] then
the two functions increase at similar rates as n —» o0o. If f(n) is *["'(n)] then g(n)
grows much more rapidly than /(n).

The ‘upper bound’ definition of the work function given will generate
the worst case behaviour. If some kind of average number of operations is used
instead, then the complexity of the average run will be formed.

Figure 3.1 shows the behaviour of several kinds of function for increasing
n. It will be seen that for small n, the constant of proportionality in the complexity
relation is important; for instance an algorithm which is 0/n"] is preferable to one
which is 0/n] if the constant of proportionality is 100 for n < 100. In fact even
an algorithm 0[2”]is better for n < 10.

Indiscriminant use of order relations in algorithm analysis can be mis-
leading when selecting algorithms for actual applications because the constants of

proportionality may dominate.
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3.3 Throughput requirements for industrial sys-

tems

The computational throughput required for a given application will de-

pend on three things:
1. the amount of processing required for each pixel,

2. the resolution ofthe input image, that is the number of pixels to be processed

in each frame,
3. the number of frames to be processed in each second.

In some applications the amount of time available for processing each frame is
limited only by the patience ofthe programmer. Images returned from outer space
can be subject to very long processing times. However the processing of weather
satellite images to provide cloud cover and wind speed observations must proceed
fairly rapidly because the data will be useless for forecasting within a day or so.
Although the weather forecasting must proceed in real time, it is a different order
oftime to industrial real time, where control information is typically required from
second to second. A particularly taxing situation occurs when 100% inspection
of a line is required.

In this case the production line must be completely mapped into images.
Figure 3.2 shows the simple case of a single camera covering the entire width of
the belt with a strip s metres deep. Typically a 50% image overlay will be required
to resolve registration problems and avoid splitting of objects between successive
frames. The belt is moving at speed v, and 1.5 v/s images will be required in
unit time. Belt speeds of above Ims“” are unusual due to slippage of products
on the conveyor when traversing bends at such speeds, and a figure of 0.5ms“”"
is far more typical [Gre84]. For the study described in Chapter 9, each image
subtended 0.12m on the belt which was moving at just over 0.4ms~". In this case
around 3.3 images a second would need to be processed for 100% coverage.

The amount of processing per frame is of course totally dictated by the
algorithm in use. Even the simplest operation such as a global threshold for a 128
X 128 image will require 16384 pixel-read, compare, pixel-write operations and a

corresponding number of coordinate counter updates.
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Figure 3.2: Conveyer belt coverage
3.4 Algorithm design

Formalising algorithm design is extremely difficult because of the intu-
itive and creative powers used in the design process.

Analysis of successful techniques can at best provide pointers to useful
strategies. However, the ad hoc construction of algorithms using intuition or badly
justified heuristics should be avoided.

The definition of an algorithm given earlier is rather wide ranging. On
most computers addition is part of the machine code instruction set and an ‘algo-
rithm ’to perform addition would be rather trivial — ‘ADD a TO b’. This is really
no more than a restatement of the problem and hardly qualifies for rigorous anal-
ysis. On the other hand, division is a fundamental instruction on some machines
and not others. In the absence of the relevant hardware, division can be quite
complicated to implement, especially in floating point.

This raises the question of what exactly the fundamental ‘unit’ of an
algorithm is and how to measure the operation rate of real systems. One has
a strong intuitive feeling that any normal computer can be programmed to ‘do
anything’, but that some machines require more detailed instructions than others.
In fact Codel’s Incompleteness Theorem [Cod62] show that there are problems
that cannot be proved or computed in any given formal system including that of
a digital computer. However this still leaves the problem of what constitutes an
elemental computation within the class of computations that are possible. This
study is the province of automata theory, and an effort to derive space and time
complexity for an algorithm from first principles might involve programming that
algorithm on a Turing machine [Tur36] or other low level automaton. Some higher

level models of computation than the pure Turing machine can be just as general
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[AHU75] but for practical purposes a real machine must be considered. The
constants of proportionaltity in an order relation are almost completely governed by
the actual implementation and in some cases even the form of the function itself.
Apart from these, it is undoubtedly true that an analysis from first principles
would be lengthy and error prone.

A secure approach would be to characterise each instruction of the real
machine in terms of a Turing machine, and treat the actual machine instructions
as macro calls to a library of Turing routines. In this case the Turing machine
is emulating the real machine, and a different set of macros will be required for
any other machine. Thus it is clear that when analysing from first principles,
only the general form of the relation may be discovered, and exact details of
the complexity of an algorithm will always be implementation dependant. Here
accuracy militates against generality.

An alternative and popular approach is to take a real or a paper archi-
tecture and use that as the standard machine. Reduced instruction set machines
(which are discussed in Chapter 6) are especially useful for this because a richly
featured architecture provides more opportunities for unexpected side effects and
can lead to the use of ‘short cuts’ which fail in unexpected ways. Knuth [Knu79]
designed a paper computer called MIX and used it to describe an encyclopediac
collection of algorithms. A more modern approach would to be to use one of the so
called algorithmic languages such as Algol-68 or Pascal. However these languages
all introduce semantic ambiguities to one degree or another because of failings in
their specification or implementation. Such details may well tie a program to a
given machine because of the lack of consistency across different compilers. Some
workers [AHU75] have used a subset of Algol-60 for control structures and simple
statements and described more complex actions in English. Whilst this can be
very useful for teaching, and for mapping out algorithms at the design stage, it is
hardly a rigorous means of communicating algorithms.

The work presented here is almost all implemented on PD P-11s in several
high and low level languages, and as a result this provides the implementation
model. Although this is unsatisfactory for the reasons already described, it has
the advantage of providing a real system which may act as a semantic arbiter in
all cases, that is in cases of ambiguity the actual operation of the system described
will resolve that ambiguity. The PDP-11 is especially useful in this role because

it a very widely available machine.
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3.4.1 Operations and algorithms

Many operations in image processing involve the straightforward calcu-
lation of functions of pixels, and involve little or no transfer of control. Similarly,
many image processing programs are made up of sequential combinations of these
operations. For instance, an object location routine might perform a median filter
to remove noise from the image, detect edges using a Sobel filter and then thresh-
old to leave an edge description of each object. Simple propagation functions can
then label each object in turn. Although this program clearly constitutes an algo-
rithm, its simple control flow constitutes a trivial design strategy which might be
labelled direct computation of the result. The situation here is analagous to that
noted in Section 3.4 where operations such as addition and multiplication form
the elemental units of algorithm design on conventional computers. Processes
which require only trivial branching (such as termination of loops) can be called
operations, as opposed to complex algorithms. Thus by definition an operation
uses a degenerate ‘strategy’ that proceeds to the result by direct computation.

It should be noted that this distinction is relative and context dependant.
For instance, although the straightforward implementation of the Sobel filter is
undoubtedly an operation, removal of redundant calculations and retention of
window points for later processing can significantly improve performance, and
generate a routine that is too complex to be considered as a simple operation
[Lee83,Pic84].

A window operation is defined as an operation acting over a limited
number of pixels that is repeatedly applied across the image in a regular fash-
ion. Window operations are especially important because of the availability of
parallel processors that can apply a window operation at all points in an image

simultaneously.

3.5 Problem solving strategies

3.5.1 Hill climbing strategies

A knowledge of the form of the solution space of an algorithm allows
successive passes of an algorithm to ‘home in’ on a required solution. In classical
pattern recognition, training on a set of n features will result in clusters of training
points in an n dimensional space. If the features have been chosen well, each
cluster will correspond to one of the training classes. Discriminators for the classes

may be derived by finding the peaks and saddle points of cluster densities, and hill
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climbing techniques are readily suited to this. True hill climbing can at best only
detect local maxima, and so an unsuitable choice of starting point may result in
spurious results. Once a local maximum has been discovered, further exploration
around that maximum may be used to discover contours and other local maxima.
These iterative processes can be very time consuming, but this is not a problem
if they yield discriminators that may be rapidly calculated when the system is

operating in testing mode.

3.5.2 Backtracking and recursion

The quadtree generation algorithm described in Section 4.5 reserves de-
cisions about whether a node should be a leaf or a parent until it has examined
at least one point in the succeeding node. If a leaf is required, it steps back to
that node, creates the leafand then picks up again where it left off. This strategy
is called backtracking, and often appears in so-called ‘bottom up’ algorithms. In
a top down algorithm, the entire problem domain is scanned, and decisions as
to further processing or classification made in a global fashion. These decisions
are then passed on to lower level processing that continues the algorithm. An
interesting class of top down algorithms implement the same processing at each
level, with the sub-algorithm calling itself recursively. The definition of a quadtree
given in Chapter 2 constitutes a recursive top down algorithm.

In a bottom up algorithm, elements of the problem domain are exam-
ined sequentially until enough information has been built up to decide on a higher
level action. Backtracking is also often used for language parsing, where the lexi-
cal analyser scans source code characters until a decision can be made concerning
the symbol in use. Good language design can result in significantly reduced over-
heads. Pascal has been designed to be parsable using one symbol lookahead,
which effectively requires no backtracking. In practice this means that during
the scanning of the source text no ambiguities can be created that would require
parsing to be deferred.

When faced with a new problem, the natural strategy is to subdivide it
in a top down fashion into sub-algorithms. This allows separation of the global as-
pects of a problem from the low level details. As such, most modern programming
languages seek to enforce top down programming. However, this does not neces-
sarily generate efficient algorithms. The quadtree generation algorithms described

later in this chapter are good examples of the benefits of bottom-up programming.
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3.6 The benchmarking problem

As noted in Section 3.4, working from first principles will not produce the
absolute complexity for a real machine and each machine/algorithm combination
must be analysed separately. Conversely, universal benchmarks cannot be found.
However comparison of actual machines is vital for progress to be maintained,
and so some benchmarking methodology must be arrived at even in the absence
of strict rigour.

Any problem has boundary conditions, and the programmer rapidly be-
comes aware that these are the ‘danger zones’ for an algorithm. Unexpected input
may cause attempted division by zero, or a normally well behaved work function
may show a discontinuity around certain magic numbers. Identification of bound-
ary conditions may be sufficient to generate worst case behaviour, and therefore
these are attractive from a benchmarking point of view. For instance, a simple
edge detector might have a time complexity of 0/n]/ where n is the number of
points in the image which are sufficiently busy to trigger the edge marking rou-
tine. The worst case behaviour therefore occurs for a maximally busy picture.
This image should have full dynamic range discontinuities at every point, i.e. a
black and white checkerboard pattern at the spatial resolution of the frame store.

Although identification of worst case behaviour is important for disaster
prediction, or for throughput calculations when 100% inspection must be guaran-
teed, the average behaviour is often of more practical interest. The problem here
is that average behaviour is not well defined. Some industrial inspection problems
may be tightly constrained to dark objects on a light-coloured conveyer belt, and
others may involve more complex images. So benchmarking is a doubly ill-defined
problem — not only are the implementation details critical and varying for any
set of machines, but the input data can be critical and will vary across runs as
well as across applications.

Some efforts have been made to set up standard benchmarks for scientific
and other mixes of computing [Wei84a]. An alternative to standard benchmark
algorithms is to characterise the processor speed in terms of the instruction ex-
ecution frequency. Two popular measures are ‘MIPS’ (millions of instructions
per second) and the ‘megaflops’ (millions of floating point operations per second)
ratings. Since instruction sets vary widely in power (that is the amount of useful
work that can be performed in one instruction) the MIPS rate is not a useful
measure across processors with different instruction sets (MIPS is said to be an

acronym for ‘meaningless indicator of processor speed’), but it may be useful in
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comparing different implementations of a single architecture (although even this
can be misleading) [Bel78].

The problem here is that a MIPS rating describes how a processor goes
about a task rather than what it achieves. Consider two PDP-1ls, one with a

hardware multiply instruction and one without. The Pascal fragment
VAR i:integer; BEGIN i:=i*23 END;

will generate very different code for the two machines:

For the machine with multiply, we have this code:

$2: ;entry point from run time initialisation
Mov i,rO ;get variable to register
MOL #23,r0 ;multiply by constant (10.69— 12.29 us)
Mov ril,i ;put result in variable area
JMP $3 ;exit to RT-11 through run time library

In the other case, we have

$2 ;entry point from run time initialisation
Mov i,r5 get variable to register
Mov #23,r0 get constant to register
HR 3% skip
1$: ADD RO,R1 shift-and-add multiply (2.16us)
2$: ASL RO (2.31us)
3$: CLC (2.16us)
ROR R5 (2.16us)
ECS 1$ (2.31us on branch,
1.76us if no branch)
BNE 2% (2.31us on branch,
1.76us if no branch)
MoV R I,i put result in variable area
JMP $3 exit to RT-11 through run time library

All timings are for PDP-11/34a with MOS memory.

Now on a PDPII/34a, the hardware MUL #N,RO instruction can take
between 10.69 and 12.29/xs depending on the data. A long sequence of these
instructions would therefore execute at between 0.081 and 0.093 MIPS. On the
other hand, the software implementation of MUL #N,RO uses a loop containing
instructions that execute very quickly (individual instruction timings are noted in
the listing) and these generate a composite MIPS rate of about 0.44 for a sequence
of emulated multiplies.

If the processors were compared on the basis of how long it took to
perform the multiply, then naturally the hardware multiply wins. Although this

is a simple example, confusion can and does arise. The extreme case occurs when
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proponents of reduced instruction set computers (RISC architectures) directly
compare their MIPS rates with those of a VAX or other conventional machine.
Since RISC architectures are specifically designed to implement a small number
of simple operations that execute rapidly, they naturally exhibit high MIPS rates.
Using this analysis, the non-hardware multiply PDP-11 would therefore be more
‘powerful’. Various works have defined standard mixes of instructions for different
applications (commercial, scientific, time shared editing etc.) in an attempt to
circumvent this problem. However, it is unusual for manufacturers to quote the
mix used when deriving their figures.

Clearly, what is required is a functional measure of processor perfor-
mance. The megaflop is a more useful measure because it starts to move away
from the machine dependency. However, since the particular floating point op-
eration is not defined, a spread of rates may still be present. Even for a single
operation, the execution rate may be data dependant, as in the case of the integer
multiply noted above.

To summarise: benchmark programs are unsatisfactory because of their
lack of generality and dependence on complex interactions between data and archi-
tecture. Attempts to reduce interactions lead to direct comparison of individual
instruction rates, but even at this level precise measurements are not possible
because of the lack of universally available and comparable operations. The only
reliable measure of processor speed is completely functional (i.e. how long does
it take to do a particular job) and this is naturally non-general. The best com-
promise may well be to use a suite of benchmark programs and to treat results

conservatively.

3.7 Benchmark images

Data for benchmarking programs is always important, but especially so
in image processing. As already noted, systems tend to exhibit their pathological
behaviour when faced with boundary conditions. The boundary conditions for a
sorting algorithm may be fairly easy to recognise, but for complex algorithms or
pieces of hardware, the limits of operation may be only empirically determinable.
In such a case it is probably best to supply an image with a rich mix of image
features, and ‘home in’ on anomalous behaviour. Four images are presented here

for use in benchmarking:

1. Abingdon Cross (CROSS),
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Figure 3.3: Abingdon Cross

2. Nuts and Bolts (ANB),
3. Pen (PEN),
4. Biscuit (BISCUIT).

These images are shown in Figures 3.3 - 3.6. The Abingdon Cross is an artificially
constructed image formed from two orthogonal bars overlaid with noise. It was
proposed as the basis of a skeletonisation benchmark at the Abingdon Workshop
on Multi-Computers for Image Processing in 1982. The program to generate this
image was rewritten from a routine proposed there which unfortunately contained
several ambiguities, such as the use of uninitialised variables.

The nuts and bolts were photographed by the author to give a scene
with relatively few objects on an unevenly lit background with shadows and a
significant amount of noise. The objects also have glints and varying surface
textures. This image has been in use as a benchmark in this laboratory for some
years.

The pen picture is interesting because it contains some writing that is
only just readable. When used to benchmark smoothing algorithms, any degra-
dation of the image sharpness is immediately apparent in the readability of the
lettering.

The biscuit picture is an example of the foodproducts inspected using
the IMP system described in Chapter 9. It has some three dimensional structure

and i1s not well defined like the nuts and bolts.



Figure 3.4; Nuts and Bolts

Figure 3.5: Pen
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Figure 3.6; Biscuit
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Chapter 4

Quadtree algorithms

“It is not enough to take steps which may some day lead to a goal;
each step must be itself a goal and a step likewise” — Goethe

4.1 Introduction

This chapter presents a selection of algorithms for quadtree generation
and quadtree controlled image processing.

The presentation of algorithms is a difficult process, since the reader
requires a knowledge of overall purpose, strategy and low level details to fully
comprehend a real program. Typically, high level strategy is highly dependant
on the low level details, and so a simple ‘top down’ exposition is inadequate. In
fact any sequential exposition of an algorithm’s strategy and tactics is likely to be
inadequate, and understanding may only come from an iterative process oflooking
at the details, then the overall plan, back to the details and so on. In an effort to
simulate this process in a necessarily sequential text without inducing boredom,
the algorithms in this chapter are introduced by a discussion of the problem and
overall strategy, followed by a listing of a Pascal implementation and a detailed
commentary. The performance of the algorithm is analysed and the strategy
discussed in the wider context from which suggestions for improvements often

arise.

4.2 Quadtree generation

Quadtrees were described in Chapter 2 and are an important data struc-
ture in image processing because (a) they may be rapidly calculated and (b)
they can provide global information concerning the busy-ness of an image in a

relatively explicit way. Quadtrees are also extensively used in Geographical Infor-
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mation Systems (GIS) to represent maps which are sparse and therefore generate
compact trees. Four algorithms for quadtree generation from an array represen-
tation are presented here: (1) a simple recursive decomposition algorithm that
closely mirrors the description given in Chapter 2; (2) a bottom up leaf merging
algorithm; (3) a fast bottom up algorithm that uses backtracking to save multiple
scans; and (4) a sequential algorithm that avoids backtracking by directly calcu-
lating the leaf structure of a quadtree. Quadtree generation is examined in such
detail here because of the lessons that may be drawn concerning the mapping of
algorithms onto real architectures. '

All four of these algorithms operate on grey scale images, though algo-
rithm 4 produces approximate results with anything other than a binary image.
The definition of a suitable smoothness measure may be dictated by practical
constraints. Ideally, each subquadrant should be scanned to generate the mean
and standard deviation of the intensity histogram. Speed considerations may re-
quire the use of cruder and less rigorous measures. The monochrome quadtree
generation algorithms simply have to decide whether a subquadrant is all black
or all white, which is equivalent to detecting the range of pixel values across a
subquadrant. In the grey scale case, this may be generalised to checking the range
of pixel values against some threshold. This can give good results, but is noise
sensitive. A compromise might be to threshold against the 5% and 95% points in
the histogram.

One important aspect of the smoothness measure is whether it may be
calculated on the fly in a sequential manner, or whether the entire quadrant must
be scanned before a meaningful result emerges — i.e. whether a parallel or serial
smoothness measure is used. These three algorithms all use the absolute spread
of brightness values to measure smoothness, and this may be calculated on the
fly. Algorithm 1 is easily adapted to any other smoothness measure, algorithms
2 and 3 depend on using a sequential measure, and algorithm 4 only produces

strictly accurate results for binary images.

4.2.1 A note on terminology

The total number of nodes in a quadtree is denoted by N. L and P are
the total numbers of leaves and parents respectively. Clearly N = L - F. The
number of nodes at a level i is n®, likewise and pi are the number ofi-level leaves
and parents. The results in this chapter apply to a x a images where s is usually

a power of 2. The results may easily be generalised to images of any other size by
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vol Size of quadrant Area of quadrant N

0 1 x 1 1 1
1 2 x 2 4 5
2 4 x 4 16 21
3 8 x 8 64 85
4 16 x 16 256 341
5 32 x 32 1024 1365
6 64 x 64 4096 5461
7 128 x 128 16384 21845

Table 4.1: Quadtree space requirements

adding a border of dummy pixels to side length up to the nearest power of 2.

4.2.2 Analysis of quadtree algorithms

Table 4.1 summarises the space requirements for various levels in a

quadtree.

This maximum number of nodes is useful for worst case estimation
of quadtree-based algorithm performance. Average performance (which will be
linked to average size) is more difficult to derive. The actual size of a quadtree will
depend on the smoothness threshold (for grey scale images) and the busy-ness of
the image. A useful average measure would give the expected size of the quadtree
for a large range of images and thresholds, and also perhaps a means of weighting
the average for specific types of application.

In the long run, any given quadtree may arise. One way of expressing
this is to assume that any potential node of the tree is equally likely to produce
a leaf or a parent. This form of average has been used to analyse tree traversal
algorithms [Sam82]. However, such an average leads to an immediate paradox. If
there is a probability of 0.5 that any node in the tree may be a leaf, then on average
half of the possible nodes will be leaves. Table 4.2 shows the area requirements
that result from such an assumption. Naturally this situation cannot occur for
any real image, because the total area of the quadrants corresponding to leaves is
four times the area of the image.

A more meaningful average may be defined using the distribution of
actual pixels amongst the levels in the tree. Assume that, in the long run, each

pixel has an equal chance of mapping into a leaf at any level. Then on average.
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Level Area of quadrant Average number present Total area

0 1 8192 8192
1 4 2048 8192
2 16 512 8192
3 64 128 8192
4 256 32 8192
5 1024 8 8192
6 4096 2 8192
7 16384 0.5 8192

65536

Table 4.2: Quadtree leaf totals

equal areas of the image will be occupied by leaves belonging to each level. There
are log 5 4- 1 possible levels for a square image of pixels, hence the average
area occupied by leaves belonging to level i will be a- = s*/(logs + 1). Since at
level i the quadrant area is = 2™\ the average number of level i leaves will be
li = s™/(2"*logj 4 1). Values for a 128 x 128 image are shown in Table 4.3. The
number of parent nodes at level i, pi, can be derived in general from the number
of leaves Each group of four nodes at level i link to a single node at level i 4-1,
i.e. Pi = (pi-i 4 Z*-1)/4 with po = 0.

This gives for n®, the number of nodes at level i (n,- = p* 4- [i):

j=o
H
ence e K
k=0 j=o
and
log™ k
k=0j=0
As can be seen from the above table Pavus = 657.5625 and Lavus =
2666.75 so = 3324.3125.

The definition of average used above assumes no prior knowledge of
the type of application. In many cases it may be possible to characterise the
application in such a way as to provide a weighted version of the average size that

more fully reflects actual quadtree sizes. Section 4.8 examines data compression
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Level Quadrant area Total area Average leaves Average parents

0 1 2048 2048 0

1 4 2048 512 512

2 16 2048 64 256

3 64 2048 32 80

4 256 2048 8 28

5 1024 2048 2 9

6 4096 2048 0.5 2.75

7 16384 2048 0.25 0.8125

2666.75 657.5625

Table 4.3: Quadtree mean leaf totals

using quadtrees. In this case a target is given for the total number of leaves
required (say (loga)/10 which will compress the data by an order of magnitude)
and the threshold adjusted until a suitable tree has been generated.

Where the type of data being processed is relatively uniform, it is possi-
ble to build a real probability distribution for leaf and node occurrence by testing

many images. This distribution may then be used in place of the square distribu-

tion.

4.3 Algorithm 1 top down recursive decom-
position

In Section refq:def the quadtree was defined in terms of the recursive
subdivision of an image. Algorithm QUAD TOP.RECURSE below is a straight-

forward implementation of this definition.

1 PROCEDURE QUAD_TOP_RECURS(xstart,ystart,size: integer);
2 VAR

3 min, maxi xfinish, yfinish, temp: integer;
4 BEGIN

5 xfinish:=(xstart+size); yfinish:=(ystart+size);
6 min:=maxint; max:=0;
7 x:=xstart; {scan quadrant}

8 REPEAT

9 y:=ystart;

0 REPEAT

1 IF pOmax THEN max:=pO; IF pO<min THEN min:=pO;
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12 y:=y+l
13 UNTIL y=yfinish;
14 X:=x+l|

15 UNTIL x=xfinish; {scan quadrant}
16 IF max-min<thresh {test}

17 THEN

18 BEGIN {fill quadrant}
19 temp:=(max+min) DIV 2;

20 x:=xstart;

21 REPEAT

22 y:=ystart;

23 REPEAT

24 qO:=temp; rO:=size;

25 y:=y+l

26 UNTIL y=yfinish;

27 x:=x+l

28 UNTIL x=xfinish;

29 END {fill quadrant}
30 ELSE

31 BEGIN {subdivide}

32 temp:=size DIV 2;

33 QUAD_TOP_RECURS(xstart,ystart,temp);

34 QUAD_TOP_RECURS(xstart+temp,ystart,temp);

35 QUAD_TOP_RECURS(xstart,ystart+temp,temp);

36 QUAD_TOP_RECURS(xstart+temp,ysteirt+temp,temp) ;
37 END {subdivide}

38 END;

4.3.1 Commentary

The procedure takes as parameters the coordinates of the top left corner
and the size of the quadrant to be scanned. The smoothness threshold is accessed
via global integer thresh.

Line 5: the endpoints of the quadrant (the coordinates of the bottom
right corner plus 1) are calculated from the parameters.

Line 6: max and min are used during the scan of the quadrant to hold
the current brightest and darkest pixel values. They are initialised here to worst
case values of 0 and maxint respectively.

Lines 7-15: the quadrant is scanned to find the spread of brightnesses.

Line 16: if the brightness spread is within threshold, then a leaf is cre-
ated, i.e. the corresponding quadrant in g-space is filled with the leaf colour, and
the quadrant in r-space is filled with the leaf size (lines 18-29). If the spread of
values is out of range, then QUAD_TOP_RECURS is recursively called for each

of the four subquadrants (lines 31-36). At the lowest level (where nodes map
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Figure 4.1: Performance of QUAD TOP RECURSE

to single pixels) max will be set to the same value as min, thus guaranteeing the
creation of a leaf. This removes the need for a special condition to ‘bottom out’

the recursion.

4.3.2 Performance

The procedure is invoked once for each node in the tree. At each node
the quadrant is scanned to check for max and min (lines 7-15). If the quadrant
is a leaf then the quadrant is passed over again, and the colour and depth values
filled in (lines 20-28). Figure 4.1 shows a graph of execution time for a spread
of thresholds using ANB as the source data. Run time is dominated by the time
taken to scan and fill quadrants. For very small thresholds, most of the image is
tiled with small quadrants, necessitating deep recursion and multiple scans of the
image. At the high end, the algorithm executes a single scan and fill across the
whole image.

On this system (a PDP 11/23 with the IMP/VI framestor~a frame store
read takes 5.5/as, and a write 3.9/as. The procedure call overhead is 41.3/as and
the overhead of the REPEAT— UNTIL x=xfinish requires around 12/as.

Large quadrants are scanned at the rate of 20.3/as per pixel and filled at
the rate of 13.8/as per pixel. Overheads such as REPEAT count initialisation and

fill colour calculation become significant for small quadrants. It takes 36.8/as to
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scan a 1 X 1 quadrant and 45.2/as to fill.

We can model the run time of the algorithm as:

2*%(/jt/ + njf,((log s) + 1 —i))

1=0

where ¢/ is the fill time per pixel and t, is the scan time per pixel.

The rationale for this is that every level i leaf will require 2° fills and 2*
scans. Each level i scan will be the result of {logs) + 1 —i node scans.

The dotted line on Figure 4.1 shows the result of applying this model to
ANB using the large quadrant pixel times. Using the correct times for single pixel
quadrants produces the dashed line of Figure 4.1, which is much more accurate
for small thresholds.

For a 128 x 128 image, the majdmum depth of recursion is eight levels,
so only a moderately sized stack is required. The parameters are not in fact reused
upon return from any call to the routine, and so they could be held in external
globals, reducing the maximum required stack space to eight procedure activation

frames. This will also reduce the procedure overhead call.

4.3.3 Discussion

This algorithm is clearly inefficient for large quadtrees because it scans
pixels repeatedly until a leaf is found. In the worst case (a maximum dynamic
range checkerboard at the spatial resolution of the frame store, such as Figure 4.2)
each pixel will be read eight times. The next algorithm attempts to reduce this
overhead by constructing the quadtree bottom up. For small quadtrees the above
algorithm is very efficient, and for the limiting case of N = L = [ {e.g. thresh-
0ld=256) should be optimal since all that is required is a single scan and a single
fill of the entire image. Figure 4.1 shows that this minimal case requires some
0.5s to run, and this should be taken as the upper limit on the performance of a

Pascal based algorithm on this processor.

4.4 Algorithm 2 — bottom up leaf merging

The run time for algorithm QUAD-TOP-RECURS is dominated by (a)
the need for one scan per node, and (b) the need to scan a 2”* sized region at
each level i node. Algorithm QUAD MERGE RECURS, below, eliminates (b) by
starting with the smallest possible leaves, and examining groups of four to see if

they may be merged into a higher order leaf. The status values of the nodes and



Figure 4.2: Q-image worst case input picture

64

their colours are propagated upwards until the complete tree is formed. When a

true leafis created, the quadrant in g-space is filled with the mean of the brightest

and darkest points, and r-space is filled with the size of the leaf.
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VAR
thresh,max,min: integer;

PROCEDURE fill(xstart,ystart,size,colour: integer);
VAR
xfinish,yfinish: integer;
BEGIN
xfinish:=(xstart+size); yfinish:=(ystart+size);
x:=xstart;
REPEAT
y:=ystart;
REPEAT
gqO:=colour; rO:=size;
y:=y+l
UNTIL y=yfinish;
X:=x+1I;
UNTIL x=xfinish
END;

FUNCTION quad_merge_recurs

(xstart,ystart,size: integer; VAR max,min: integer):

VAR

newsize,temp: integer;

maxs, mins: ARRAY][0..3] OF integer;
filled,filled0,filledI,filled2,filled3: boolean;

BEGIN
IF size=lI

booleeui;
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THEN
BEGIN
x:=xstart; y:=ystart; max:=p0O; min;=pO0;
quad_merge_recurs:=false;
END
ELSE
BEGIN
newsize:=size DIV 2;
filledO : =
quad_mergo_recurs(xstart,ystart,newsize,maxs[0],mins[0]);
filledl:*
quad_merge_recurs(xstart+newsize,ystart, !
newsize,maxs[1],mins[1]);
filled2:=
quad_merge_rocurs(xstart,ystart+tnewsize,
newsize,maxs[2],mins[2]);
filled3:=
quad_merge_recurs
(xstart+newsize,ystarttnewsize,newsize,maxs[3],mins[3]);
filled:=filledO OR filledl OR filled2 OR filled3;
IF filled
THEN
BEGIN
IF NOT filledO
THEN
fill (xstart,ystart,newsize, (maxs [0]+mins [0] ) DIV 2);
IF NOT filled|I
THEN
fill(xstart+newsize,ystart,newsize,
(melLxs [1]+mins [1] ) DIV 2);
IF NOT filled 2
THEN
fill (xstart,ysteurt+tnewsize,newsize,
(maxs[2]+mins[2]) DIV 2);
IF NOT filled3
THEN
fill (xsteirt+tnewsize,ystarttnewsize,newsize.
(maxs[3]+mins[3]) DIV 2);
END
ELSE
BEGIN
max :=0; min:=maxint;
FOR temp:=0 TO 3 DO
BEGIN
IF maxs [temp] >max THEN max :=maxs [temp] ;
IF mins [temp] <min THEN min: =mins [temp] ;
END;
IF (max-min>=thresh)
THEN
BEGIN



66

74 fill(xstart,ystfili:t,newsize,(maxs[0]+mins[0]) DIV 2);

75 fill(xstart+newsize,ystart,newsize,
(maxs[l]+mins[1]) DIV 2);

76 fill(xstart,ystart+newsize,newsize,
(maxs[2]+mins[2]) DIV 2);

77 fill(xstarttnewsize,ystart+newsize,newsize,

78 (maxs[3]+mins[3]) DIV 2);

79 filled :=trne;

80 END

81 ELSE filled:=false;

82 END;

83 gnad_merge_recnrs:=filled !

84 END;

85 END;

86

87 BEGIN

88 thresh:=20;

89 IF NOT qnad_merge_recnrs(0,0,128,max,min)
90 THEN fill(0,0,128,(max-min) DIV 2);

91 END.

4.4.1 Commentary

In this case, an entire program has been presented rather than just the
main procedure, because the mechanics of the implementation are a little more
difficult to follow.

The algorithm is formulated as a recursive function. Line 88 sets the
threshold to an arbitrary value. Line 89 calls the main function, which will recur-
sively call itself until it reaches the lowest level of the tree (t.e. level 0). As the
routines return, the brightness spreads across the quadrants propagate back, and
if level 7 is reached without any of the g-image being filled in, then line 90 fills
the entire image. Procedure FILL (lines 4-18) is called to paint in q and r spaces
when a non-mergeable leaf is found.

Line 20: Function QUAD MERGE RECURS takes as parameters the
coordinates of the top left hand corner, and the size of the quadrant to be exam-
ined. It returns via max and min the brightest and darkest points in the image. If
the quadrant has already been painted in, (that is the spread of brightnesses in
the quadrant is out of threshold) QUAD-MERGE_RECURS returns TRUE else FALSE.

Lines 22-25: maxs and mins are used to store the brightness values re-
turned from the four leaves below the current level. Likewise filledO to filled3
store the booleans returned from the function calls in lines 36-44. filled is the
inclusive-OR of filledO to filled3.

Lines 28-32: at the lowest level of the tree where the leaf size is 1, the
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function immediately returns FALSE with max and min set to the brightness of the
current pixel. This initiates the merging process as the pixel values propagate
back up the call tree.

Lines 35-44: at any other level in the tree, the function recursively calls
itself for each of the four subquadrants. On return from these calls maxs, mins
and filledO to filledS will hold the brightness spreads and leaf statuses for
each of the four subquadrants.

Line 45: filled is set to the inclusive-OR of filledO to filledS.
filled 1is thus TRUE if any of the four 'subquadrants have already been filled
in. The information returned from the lower leaves will cause one of four things
to happen. (1) If all four subquadrants have already been filled in then the func-
tion simply returns TRUE. (2) If only some of the subquadrants have already been
filled in, then the rest of the subquadrants must also be filled (lines 48-62). If
none of the subquadrants have been filled, then the smoothness values across the
quadrant must be calculated (lines 65-70). The whole algorithm depends upon
the use of a smoothness measure that may be simply combined from the four
subquadrants to provide a value for the whole. (3) If the brightness spread is
out of threshold, then the subquadrants must be filled in (lines 74-78), otherwise
(4) the function returns max, min and FALSE to continue the propagation of pixel
values up the tree.

Line 46: filled is tested to see if any of the subquadrants have already
been filled in.

Lines 48-62: the individual filled flags are tested to find any subquad-
rants that have not yet been filled in, and they are then painted over.

Lines 64-70: if none of the subquadrants have already been filled, then
the individual max and min values are tested to find the spread of brightnesses
across the quadrant. Note that this process is difficult to generalise to other
smoothness measures.

Lines 71-82: If the brightness spread is out of threshold, then the indi-
vidual subquadrants are filled in (lines 74-78) and filled 1is set TRUE (line 79).
Otherwise the function will exit TRUE with max and min showing the brightness

spread across the quadrant.

4.4.2 Performance

QUAD-MERGE-RECURS does perform far fewer pixel accesses than
QUAD_TOP_RECURS. Rather than scanning the entire quadrant at each node
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Figure 4.3: Performance of QUAD MERGE RECURS

in the tree, it looks at the entire picture once (at level 0 nodes) and then passes
the values back up through the call tree. At each level four values are ex-
amined to decide whether a node is a leaf or a parent. This clear advantage
is significantly offset by the need to examine every potential node of the tree,
rather than every actual node of the tree as in QUAD_TOP_RECURS. For large
trees, where QUAD-TOP-RECURS has to recurse deeply and therefore scan
many pixels, QUAD-MERGE-RECURS should execute more rapidly. However
for small trees where QUAD-TOP-RECURS will only call itself a few times
QUAD-MERGE-RECURS will be at a severe disadvantage because it is always
called N times. The actual crossover point will depend on the execution time
of each call to function QUAD MERGE RECURS, and is likely to be heavily
dependant on the Pascal function call overhead because of the large number of
parameters required. Figure 4.3 shows that for ANB, crossover occurs at a thresh-
old of around 30. However it also shows that QUAD-MERGE-RECURS is less
‘pathological’ than QUAD-TOP-RECURS, that is its performance is more uni-
form across the entire range of trees, whereas QUAD-TOP-RECURS varies by an
order of magnitude in execution speed, showing a very steep increase in run time
for large trees.

The run time of QUAD-MERGE-RECURSE is dominated by the proce-

dure call overhead. This will be an advantage on fast computers with slow frame
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stores. Framestores such as the CRS 4000 connect to PDP-11 or VAX hosts via
DMA interfaces. Single pixel access to this frame store is very slow, so an algo-
rithm that trades off procedure calls against pixel accesses will be faster than one
such as QUAD _TOP_ RECURS that repeatedly scans pixels.

The maximum depth of recursion for an s x a image will be loga 1 as
before, i.e. eight levels for a 128 x 128 image. In fact rather more stack space
will be required than for QUAD-TOP RECURS because of the extra parameters.
With the Pascal compiler in use in this laboratory, stack space is required to save
internal registers which are in use at the time of the procedure call (including the
return address of the routine), plus a one word pointer to the parameter area on
the stack, plus the space required for the actual parameters, which includes the
return parameter for functions. For QUAD-TOP-RECURS at least five words
are required per call, and for QUAD-MERGE-RECURS ecight words. Temporary
register storage may require up to six further words in each case. In addition

stack space will be required for call to FILL.

4.4.3 Discussion

The performance of recursive algorithms is heavily dependant on the
procedure call overhead for the implementation language. Unfortunately, the
present Pascal implementation is poor in this respect. When lines 29-32, 35 and
45-82 are removed (i.e. the algorithm is reduced to call tree generation and
return), QUAD-MERGE-RECURS executes in 1.9s. If this overhead could be
reduced or even removed, the run time of the algorithm would be substantially
improved.

It is a basic property of the algorithm that the main function is called
once for every potential node in the tree, i.e. 21845 times for a 128 x 128 image.
Programming the algorithm in machine code could substantially reduce the time
required to call the function because this compiler makes poor assumptions about
which registers to save at entry to the routine.

As noted in Section 4.4.1, each call results in one of four basic actions.
Type (1) calls are clearly redundant and serve simply to maintain the call tree
as the recursion unwinds. The next two algorithms attempt to reduce the overall
redundancy of algorithm 2 by removing the need for a call tree. Both algorithms
scan the image in the same order as algorithm 2, but they make immediate deci-
sions concerning leaf position without passing data back up to higher level pro-

cesses. In principle, these algorithms should have run times linked to the number
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of leaves in the tree rather than the number of nodes (actual or potential).

4.5 Algorithm 3 — bottom up backtracking

Simple image processing operators are usually applied in a raster scan
across the image. Since they are emulating the operation of a parallel processor
(where the operator is applied simultaneously to all points in the image) the scan
order is in fact irrelevant. However, serial algorithms are often highly sensitive to
scan order. Typically sequential algorithms maintain running results which differ
if the operation is applied from different directions.

A sequential quadtree generation algorithm must track round the leaf
structure within the image. The raster scan does not correspond to a ‘natural’
ordering of leaves. Close examination of algorithm 2 shows that the tree is visited

in preorder and that this is equivalent to visiting the pixels in z-order:

0 1 4 5 16 17
2 3 6 7 18...
8 9 12 13

10 11 14 15

The next algorithm implements the leaf merging idea of algorithm 2 by scanning
the image in z-order, and backtracking when an out of threshold point is found.
The max-min measure of brightness is maintained in a sequential fashion as the
scan proceeds to larger and larger leaf sizes. When max-min goes out of threshold,
the largest block so far completed is calculated, and it and its three siblings are

re-examined by a recursive call.

1 PROCEDURE quad_back_recurs(first,last,size: integer);
2 VAR
3 max,min,point,tempend,tempsize: integer;

4 exit: boolean;

5

6 BEGIN

7 max:=0; min:=255; point:=first; exit:=false;
8 REPEAT {scan}

9 X:=scan_x[point]; y:=scan_y[point];
10 IF pOmax THEN max:=p0O; IF pO<min THEN min:=pO;

11 IF (max-min)>=thresh

12 THEN

13 BEGIN

14 tempend:=last-first; point:=point-first; exit:=true;

15 tempsize:=size;
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16 REPEAT

17 tempend:=tempend DIV 4;

18 tempsize:=tempsize DIV 2;

19 quad_back_recurs(first+l+tempend,first+l+2*tempend,
tempsize);

20 quad_back_recurs(first+2+2*terapend,first+2+3*tempend,
tempsize);

21 quad_back_recurs(first+3+3*tempeivd,first+3+4*tempend,
tempsize);

22 UNTIL tempend<point;

23 quad_back_recurs(first,tempend+first,tempsize);

24 END

25 ELSE

26 point:=point+l;

27 UNTIL exit OR (point>last); {scan}

28 IF point>last

29 THEN

30 BEGIN

31 point:=first;

32 REPEAT {fill}

33 X:=scan_x[point]; y:=scan_y[point];

34 gO:=(max+min) DIV 2;

35 rO:=size;

36 point:=point+l;

37 UNTIL point>last; {fill}

38 END

39 END;

4.5.1 Commentary

Procedure QUAD BACK RECURS takes as parameters the first and
last points of the block to be scanned, and the size of the block sidelength. The
size is only required when filling in the contour map of the quadtree, and could
be omitted if only the g-image is required. The smoothness threshold is supplied
via global integer thresh as above.

The scan order is defined by lookup tables scan_x and scan_y which are
both of type ARRAY[0. .16383] OF 0..255. They contain the x and y coordinates
for every point in the scan. Scan coordinate generation will be discussed further
in Section 4.7.1.

Line 3: point is a running variable pointing to the current pixel in the
scan. It is used as an index into the lookup tables.

Line 7: max and min are initialised, point is initialised to the first point
in the quadrant.

Line 9: the current pixel is addressed by loading the frame store coordi-
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Figure 4.4: Performance of QUAD-BACK-RECURS

nate registers from the lookup table,

Line 10: max and min are updated with the new pixel.

Line 11: the brightness spread is tested against thresh.

Lines 13-24: if the spread is out of threshold, then block subdivision
starts.

Lines 16-22: each pass of the loop recursively calls the main function
for subquadrants 1, 2 and 3, and tests the size of quadrant 0. If quadrant O lies
entirely within the region scanned then the loop exits, else the process repeats
with subquadrant 0 as the new quadrant.

Line 26: if max-min is within threshold, point is simply incremented.

Line 27: when point reaches last, a block has been successfully scanned

and may be filled in (lines 32-37).

4.5.2 Performance

Figure 4.4 shows the performance of algorithm 3 at various thresholds
for ANB. The dotted line is the equivalent performance curve for algorithm 1.

As can be seen, algorithm 1 only becomes more efficient for thresholds
greater than about 100, which results in quadtrees that hold too little information
to be useful for image processing or representation, as shown in Figures 4.5 and

4.6.



Figure 4.5: Q-image of ANB, threshold=100

Figure 4.6: Q-image of PEN, threshold=100

73



74

For all useful cases, QUAD BACK RECURS is faster. The storage re-
quirement depends, as ever, on the level of recursion. The worst case storage
occurs when the second point in an image is out of threshold. In this case the
loop in lines 16-22 descends through 6 leaf sizes, generating three recursive calls
at each level until it reaches level 0, at which point line 23 generates a further
call. With the initiating call from the main routine this gives a total of 20 stacked
calls, which is considerably greater than algorithms 1 and 2.

The run time depends critically on the amount of backtracking per-
formed. The worst case occurs for a smooth image with a single out-of-threshold
point at the end of the z-scan. Maximal backtracking also generates the maximal

number of pixel scans.

4.5.3 Discussion

Algorithm 3 produces better performance in all cases than algorithm 2 by
dispensing with the large call tree and the associated movement of large amounts
of data. If the amount of backtracking could be reduced the performance might
be expected to improve. Algorithm 4 is able to reduce backtracking to zero, but
incurs a heavy penalty in calculation overhead.

One significant inefficiency in this algorithm lies in the z-scan generation.
Most computers have increment instructions which allow one to be added to a
variable quickly. Algorithms 1 and 2 exploit this through the use of a raster scan
which only requires simple increment and test instructions. The z-scan requires a
shift and merge operation which is not easily implemented on a PDP-11, and so a

lookup table is used instead. This will be examined in more detail in Section 4.7.1.

4.6 Algorithm 4 — an optimal quadtree gener-

ator

Algorithm 3 does not fully exploit the available information wheii it
encounters an out-of-threshold point. There is a unique pattern of leaves joining
any two points 4 and B in the z-scan. This pattern of leaves will consist of
maximal blocks of area  where a is a power of 2, and each block will be aligned
so that the coordinates ofits top left corner modulo s is 0. The area of the image
traversed between points 4 and B must be completely tiled by blocks. The proof
that there is a unique pattern lies in the requirement that the area be tiled with

maximal blocks. Clearly, the region could otherwise be tiled with single pixel
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Figure 4.7: Calculation of leaves from discontinuities

sized blocks, but because of the maximal condition groups of four, it must merge
and remerge until the largest possible block appears.

Given that the unique pattern exists, the values of A and B must contain
all the necessary information to deduce the leaf structure of the quadtree between
A and B. As noted in Chapter 2, in any data structure some information is
explicit and cheap to retrieve, and some is implicit, either in the topology of the
structure or in the coding of the data in the nodes of the structure. Clearly
an extremely compact but impractical representation of the quadtree could be
constructed merely by enumerating the discontinuities in the z-scan. Algorithm
4 effectively converts this representation to the explicit g-image/contour map
representation used elsewhere in this chapter.

Consider the case where point 4 is the origin. Figure 4.7 shows that if
a discontinuity occurs at the point B = 59i0 (= 11O 112), then 3 level 2 leaves, 2
level 1 leaves and 3 level 0 leaves must be created. As will be seen this information
may be extracted directly from the binary value ofthe discontinuity point number.
By selecting ascending pairs of bits we have 112, 102 and 112 or (decimal 3, 2 and
3).

When point 4 is not the origin, the situation is more complex. In algo-
rithm 3, the maximal block detection algorithm required the origin to be moved
to the first point of the scan region (line 14). A similar procedure is used here,
except that the process of normalisation is a little more subtle.

Figure 4.7 shows points A = 9 and B = 59. Here the leaf pattern falls

into three sections. Points 9 to 15 inclusive map to 3 level 0 leaves and 1 level
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1 leaf; points 16 to 47 inclusive map to 2 level 3 nodes; and points 48 to 58
inclusive map to 2 level 1 leaves and 3 level 0 leaves. These three regions can
be characterised as (1) moving to larger and larger block sizes, (2) traversing up
to four maximal blocks and (3) moving to smaller block sizes. In general it is
possible for any of these three regions to be degenerate, and the case where A is
the origin corresponds to degenerate sections (1) and (2).

Interestingly, 59i0 —48io = Ilio, or 10112, which shows that section 3
can be derived by moving the origin to the end of the last maximal block in the
region. Also, 1610—9io = 7io, or [112showing that a similar normalisation can be
used to derive the leaf pattern in section 1. Finally note that 59i0 —%%® = 50io, or
IIOOI02. The highest occupied bit pair here corresponds to level 3 leaves, and this
is the size of the maximal block. The length of the section constitutes a signature
describing the leaf pattern within that section.

These observations can be used to derive the entire leaf pattern between
points A and B by direct calculation, reducing the scanning requirement to a single
pass over the data, pausing at every discontinuity to calculate the next section
of tree. This implementation colours leaves slightly differently to the other three
algorithms except for the case of a binary image. However, the shape of the tree
is always correct.

1 PROCEDURE quad_opt;
2 VAR

3 leaves; ARRAY[0..7] OF integer;
4 no_max_blocks,max_size,up_remainder,down_remainder,

5 max_length, first,size,max,min,point,tempi,temp2: 0..65535;
6

7 BEGIN

8 point:=1; first:=0;

9 REPEAT {scan until out of threshold}
10 max:=0; min:=255; point:=point-l;

11 REPEAT

12 point:=point+l; x:=scan_x[point]; y:=scan_y[point];

13 IF pOmax THEN max:=pO; IF pO<min THEN min:=pO;

14 UNTIL (max-min>=thresh) OR (point=16383);

15 IF point=16383 THEN point :=16384;

16 max_size:=16384; tempi:=point-first; max_length:=128;

17 WHILE tempi DIV max_size=0 DO {find size of maximal block}

18 BEGIN

19 max_length;=max_length DIV 2;
20 max_size:=max_size DIV 4;

21 END;

22 up*remainder:=(NOT(first MOD max_size)+l) MOD max_size;
23 down_remainder:=point MOD max_size;
24 no_max_blocks: =(templ-up_remainder-down_remainder)
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DIV max.size;

25 size:=1I; {fill sectionl}

26 FOR tempi;=0 TO 7 DO

27 BEGIN

28 temp2:=size*size*(up_remainder AND 3);

29 up*remainder:=up_remainder DIV 4;

30 WHILE temp2>0 DO

31 BEGIN

32 X:=scan_x][first]; y:=scan_y][first] ; rO:=size;
first:=first+1;

33 temp2:=temp2-Il;

34 END;

35 size:=size*2;

36 END;

37 temp2:=max_size*no_max_blocks; {fill section 2}

38 WHILE temp2>0 DO

39 BEGIN

40 x:=scan_x|[first]; y:=scan_y[first] ; rO:=max_length;

41 temp2:=temp2-1; first:=first+1;

42 END;

43 temp2:=down_remainder; {fill section 3}

44 FOR tempi:=0 TO 7 DO

45 BEGIN leaves[tempi]:=temp2 AND 3; temp2:=temp2 DIV 4 END;
46 size:=128;

47 FOR tempi:=7 DOWNTO 0 DO

48 BEGIN

49 temp2:=size*size*leaves[tempi];

50 WHILE temp2>0 DO

51 BEGIN

52 X:=scan_x|[first]; y:=scan_y|[first]; rO:=size;
first:=first+1;

53 temp2:=temp2-I;

54 END;

55 size:=size DIV 2;

56 END;

57 UNTIL point=16384

58 END;

4.6.1 Commentary

Procedure QUAD.OPT assumes the use ofa 128 x 128 image, and there-
fore takes no parameters. The smoothness threshold is passed as usual via global
integer thresh. QUAD-OPT uses the same mechanism as QUAD BACK RECURS
to generate the z-scan, i.e. two globally declared lookup tables scan_x and scan_y.

The program consists of one large loop containing a smaller loop to
actually scan the pixels (lines 11-14) and a series of loops to fill the three possible

sections of the tree between two breakpoints.
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Lines 2-5: the array leaves [0..7] is used to hold the bit pairs derived
during decomposition of the section 1 and 3 signatures. no_max_blocks, max.size
and max-length hold the number, area and sidelength respectively of the maximal
blocks found in section 2. up_remainder and down remainder hold the signatures
for sections 1 and 3 respectively, first, max, min and point have the same
meanings as in algorithm 3. Note that all simple variables are declared as subrange
type 0..65535 rather than as type integer. This forces the present compiler
to generate code for 16-bit unsigned arithmetic as opposed to the 15-bit signed
arithmetic implied by type integer on a 16-bit computer. This is necessary to
prevent sign bit propagation in the shift and merge sequences.

As an aside, note that this use of subranges to force 16-bit arithmetic is
semantically unsound, since type 0. .65535 is a subrange type of underlying type
integer [Coo83b], yet type integer on a 16-bit machine ranges from -32768 to
32767. Clearly 0. .65535 can hardly be called a subrange of -32768. .32767!

Line 8: point and first are initialised.

Line 10: max, min and point are re-initialised after every fill operation.

Lines 11-14: as in algorithm 3, the image is scanned in z-order until a
discontinuity (out-of-threshold point) is found, or the end of the image is reached.

Line 15: normally the scan loop (lines 11-14) exits with point at the
first point of the next scan (i.e. the out of threshold point). A special case occurs
when the end of the image is reached in that point is at the last point of the
area to be filled. Line 15 corrects point under these circumstances so as to be
compatible with normal processing.

Line 16: tempi is set to point-first, which corresponds to the distance
between points 4 and B in the terminology of Section 4.6. This value will be
searched by bit pairs until a maximal block is detected. max_size and max_length
are initialised to their largest possible value before initiating the search for a
maximal block.

Lines 17-21: max.size is stepped down through the possible sizes of a
maximal block until tempi DIV max.size returns non-zero. At this point the
largest possible block lying between points 4 and B has been detected.

Lines 22-23: the signatures for sections 1 and 3 are derived.

Line 24: the number of maximal blocks (between 0 and 4) is derived
by subtracting the length of the sections 1 and 3 (i.e. their signatures) from the
distance between points 4 and R, and dividing the result by max_size.

Lines 25-36: section 1 is filled. The outer loop (lines 26-29, 35-36)

selects a pair of bits from the signature, and the inner loop (lines 30-34) fills in
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the corresponding blocks.

Lines 37-42: the maximal blocks (section 2) are filled in.

Lines 43-56: section 3 is filled using the same strategy as for section 1
(lines 25-36) except that the bit pairs must first be unpacked into the leaves

array because the unpacking order is the reverse of the filling order.

4.6.2 Performance

Although the order relation governing algorithm 4 is near optimal, the
constants ofproportiorllality on the PDP-11 implementation yield actual runtimes
that are longer than those of algorithm 1 over much of the range of possible
thresholds. Figure 4.8 shows the usual run time curve against algorithm 1. Clearly,
the scan time will be proportional to the number of pixels in the image since they
are only scanned once. However, each discontinuity in the image will generate a
sequence of complex (and slow) shift and select operations, and a series of leaf
fill operations. The run time will therefore be roughly -f dt”™ 4- where
is the number of pixels in the image, t, is the scan time for one pixel, d is the
number of discontinuities in the image, is the time taken to extract the leaf
pattern using the shift and select loops and ty is the fill time. The number of
discontinuities in the image will be approximately the number of leaves in the
quadtree, and since the calculations are so computationally intensive, the run
time will be roughly proportional to the number of leaves. Figure 4.8 also shows
the number of leaves in the tree for each threshold. Even on a PDP-11 without
‘bit twiddling’ instructions the algorithm is fastest over a useful range of values
(72-164). In VAX machine code, the algorithm would speed up significantly. (See

discussion below).

4.6.3 Accuracy

A grey scale quadtree is defined by the distribution of nodes and the
colour of the leaves. QUAD-OPT correctly calculates the distribution of nodes
li.e. the shape of the tree) but cannot in general colour the leaves correctly,
because the leaf colours cannot in general be calculated on the fly without back-
tracking.

A max-min smoothness measure has been selected because it may
be calculated and tested in a serial fashion, wherecas more desirable smoothness
measures such as the true standard deviation of the intensity histogram require a

complete quadrant to be scanned before a test can be made. The first three algo-
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Figure 4.8: Performance of QUAD.OFT

rithms have defined the leaf colour as the mean of max and min. In QUAD-OPT,
values of max and min may be accumulated across several leaves before a discon-
tinuity is found so the individual max and min for each leaf are not available.
The max-min measure is itself approximate, and is used for speed reasons
and because it is ‘natural’ for serial algorithms. By the same argument, colouring
leaves according to the (max-min)/DIV 2 in QUAD-OPT is fast and natural.
The maximum error with respect to QUAD_TOP_RECURS occurs when a scan
section includes a pixel filled with pixel level i and quadrants containing pixels of
level i-\-t where ¢ is the threshold. In such a case the leaves will be coloured with
(2i 4 1)/2 which is an error off/2. The Q-images are usually indistinguishable by

eye.

4.6.4 Discussion

Algorithm 4 clearly illustrates a mismatch between an algorithms and
the PDP-11 architecture. There is in fact scope for improving run time by remov-
ing some redundant operations and improving the loop design of QUAD-OPT.
However, the fatal flaw of this implementation which leads to the disappointing
run times is the lack of bit field manipulation instructions in the PDP-11. Most
of the time associated with fj is spent (a) finding the position of the highest set

bit in tempi (lines 17-21) and (b) extracting the bit pairs from the section 1 and
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3 signatures and rotating them down to the bitO/1 positions. This has had to be
accomplished using a multiple rotate and test algorithm. To make matters worse,
the rotation can only be specified in Pascal syntax by using the DIV operator,
and unfortunately the present compiler is not ‘smart’ enough to replace division
by power-of-two constants with arithmetic shift instructions.

In contrast, the VAX instruction set includes the FIND FIRST instruc-
tion (also known as PRIORITISE), the COMPARE FIELD instruction and the EXTRACT
FIELD instruction, Together, these would allow a very compact machine language
implementation of algorithm 4 on the VAX. The problem of specifying these in-
struction sequences to a high level language compiler remains — it would require
extraordinary depth of analysis in the compiler to recognise that lines 16-21 mean

“find the highest set bit pair in tempi”.

4.7 Algorithms + Architectures = Implementa-

tions

Order analysis of algorithms gives relations of proportionality between
the size of a problem (in this case the number of nodes in the tree) and its ex-
ecution time. The constants of proportionality are dependant on the particular
implementation. This thesis is primarily concerned with real implementations
and how architectural features perturb the run time behaviour of an algorithm.
Given that the abstract algorithm is constant across implementations, computer
architecture may be defined as all those properties of a system that can per-
turb the behaviour of an algorithm. This specifically includes such properties
as processor-memory bandwidth and available addressing modes, but excludes
engineering details such as transmission protocols and character coding schemes.

The mismatch between algorithm 4 and the PDP-11 is great, whereas
with a VAX algorithm 4 would be the most efficient. Algorithm 3 would be more
efficient on a system with a low bandwidth channel between the frame store and
the processor. On the experimental system, which uses a frame store optimised for
image processing to be described in Chapter 5, algorithm 1 performs surprisingly

well.

4.7.1 Z-scan by bit twister

The calculations required to generate the z-scan impose a large overhead

on algorithm 3 and 4. Look up tables have been used to speed access, but these
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binary(N) binary(X) binary(Y) XY
14 0000 0000 0000 1110 0000 0010 0000 0011 2 3
15 0000 0000 0000 1111 0000 0011 0000 0011 3 3
16 0000 0000 0001 0000 0000 0100 0000 0000 4 0
YXyX YXyX YXyXx yxyx XXXX XXXX  YYYY YyYY
7766 5544 3322 1100 7654 3210 7654 3210

Figure 4.9: Z-scan and cartesian coordinate relationship

Figure 4.10: Bit twister

require 32K bytes of storage, which is half of the virtual address space of a PDP-
11. A little analysis shows that the X,Y coordinates of Z-scan point are embedded
in the binary representation of N as shown in Figure 4.9.

Thus by separating out alternate bits from the Z-scan number the X,Y
coordinates may be directly obtained. The PDP-11 has to use shift and test
operations to extract the coordinates.

If the computer is equipped with a parallel port, a trivial hardware add-
on called a bit twister can be used to generate the coordinates in two machine
instructions. The sixteen output bits are cross connected to the 16 input bits as

shown in Figure 4.10.

The processor moves the z-scan coordinate to the output register and

then reads the x,y coordinates back off the input.
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4.8 Data compression using quadtrees

Traditional methods of signal transmission use fixed bandwidth sam-
pling. Television signals require a full 5'."5MHz bandwidth channel even though
uniform areas in an image will not exercise the available bandwidth. The situation

here is analogous to Dijkstra’s multiplier [Dij76]:

“...during its lifetime the multiplier will be asked to perform only a
negligible fraction of the vast number of all possible multiplications it
could do: practically none of them! Funnily enough, we still require
that it should do any multiplication correctly when ordered to do so.
The reason underlying this fantastic quality requirement is that we do
not know in advance, which are the negligibly few multiplications it
will be asked to perform.”

The television engineer has assumed that he does not know which parts of an
image will be busy and which will be smooth, so enough channel capacity has
been allocated to allow for the worst case of a maximally busy image. If however
a measure of the busy-ness of an image could be generated at the transmission
end and used to dynamically control the bandwidth of the channel, say by varying
the sampling rate, then the channel could be engineered to cope with average
conditions. A more concrete example is the use of slow scan TV transmission
down voice grade telephone lines. If an image is digitised to 128 x 128 eight-
bit pixels then 16K bytes of data must be sent, which at a typical 1200 baud
will take approximately 2.27 minutes. In reality, five-bit pixels would be quite
acceptable, so transmission time reduces to 1.42 minutes (assuming no parity).
Using a quadtree representation, each leaf could be sent as a five-bit colour code
combined with a three-bit level code. If the leaves are sent in some predefined
order (e.”. postorder as above) then the tree could be constructed unambiguously
without any explicit coordinate information. The Q-image of ANB in Figure 4.11
contains only 1636 leaves, and could be transmitted in 13.6 seconds. The g-image
has the normal blocky appearance which may be unacceptable in some images.
Low pass filtering may be applied to produce a more aesthetically pleasing image.
Figure 4.12 shows the result of applying a median filter to the Q-image, and for

comparison. Figure 4.13 shows a median filter of the original image.
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Figure 4.13: Median filtered original

4.9 Quadtree controlled image processing oper-

ators

Many image processing operators manipulate the image according to
busy-ness. Apart from the simple edge detection and smoothing operators, more
subtle segmentation and region merging algorithms may also be edge sensitive.
Since quadtrees provide explicit information about the busy-ness of an image at
a point they can be used to skim over smooth areas in the image, restricting full

processing to points of special interest.

4.9.1 Edge detection

The well known Sobel filter [DH73] is probably the most common edge
detection operator in use. It is empirically known to be accurate, and a paper by
Davies [Dav84] has given a theoretical base on which to design families of Sobel
like ‘circular’ operators. However the Sobel is expensive to implement in full
since it requires a square root operation to derive the magnitude of the intensity
gradient. Typically this square root is calculated using a lookup table or one
of several single iteration approximations to the square root. Cheaper operators
such as the Robert’s Cross are also in use, but these do not provide accurate
estimates of edge direction as opposed to magnitude, and are unsuitable for some
algorithms {e.g. the Hough Transform based circle detector described in Chapter
9).

One approach to speeding up the Sobel which has been used for indus-
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trial vision in this laboratory is to apply simple intensity skimmers before the
actual Sobel. Assume the use of a high contrast image [i.e. the mean foreground
intensity should be at least 30 grey levels away from the mean background in-
tensity) and sharp edges where the transition from mean foreground to mean
background intensities occurs over less than 10 pixels. If high and low thresholds
hi and lo are applied to the image then only points with lo < intensity < hi will
be passed to the Sobel. For simple images such as BISC (Figure 3.6) this gives a
massive reduction in processing.

The application described in Chapter 9 includes a circle detector that
relies on the use of a good edge detector. It has been found that of the order
of 100 points around the edge of a 30 pixel radius circle are sufficient to reliably
locate the centre of a roughly circular food product, and this criterion has been
used to provide values for Ai and /o in an online inspection system.

The problems with simple skimming are (a) it only works for high con-
trast images, (b) it requires two thresholds to be derived using a single setup cri-
terion and (c) intensity thresholding is vulnerable to changes in lighting level or
appearance of the product. All of these factors combine to reduce the robustness
of the technique, and can contribute to the well known problems of transferring
laboratory techniques to the real world. These problems stem from the mismatch
between the skimming process and the edge detector. Assumptions are being
made about the relationship between absolute intensities and the busy-ness of the
image. If a part of the image is darker then the /o threshold then it is assumed
smooth, and likewise for bright points.

It would be much better to apply a busy-ness related skimmer to the
image, such as preprocessing by a Robert’s Cross to find the points ofhigh gradient
magnitude, followed by application of a Sobel to find the gradient directions. This
involves the application of a single threshold (of gradient magnitude) that is closely
related under all conditions with the quantity under inspection.

The lowest leaves of a quadtree correspond to busy parts of the image,
ie the edges. Figure 4.14 shows the positions of all level 7 leaves in the Q-image
of ANB for a threshold of 25. The results of applying a Sobel to all corresponding
points in ANB is shown in Figure 4.15 , and for comparison a full Sobel of ANB
is shown in Figure 4.16. The Sobel applied to the entire image executed in 1.19s,

whilst with the help of the quadtree this decreased to 0.29s.



Figure 4.14: Level 7 leaves in nuts and bolts

Figure 4.15: Level 7 leaves in nuts and bolts with Sobel data
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Figure 4.16: Full Sobel of nuts and bolts

4.9.2 Smoothing

Smoothing is the process of low pass filtering to reduce the effect of high
frequency noise. Smoothing will, of course, also degrade edges, and must therefore
be applied with care.

In general, each pixel is replaced by the average intensity of its neigh-
bours, typically the median of a 3 x 3 region. The degree of smoothing can be
varied by adjusting the size of the region over which the average is calculated. If
the region size is dynamically varied, then the degree of smoothing can be reduced
near known edges.

It is possible to use the quadtree contour map (i.e. the contents of r-
space as generated by algorithms 1-3 above) as a controller for the smoothing
operator. However, the quadtree is essentially an edge preserving representation,
and smooth regions in the image may be distorted (i.e. ‘blocky’). Because of
this, the quadtree controller should only modify the region size near known level
7 leaves, since they are guaranteed to be ‘real’ as opposed to an artefact of the
quadtree conversion process.

Figure 4.17 shows the pen picture of Figure 3.5 after application of a 3
X 3 median filter. Figure 4.18 shows the position of all level 7 leaves in PEN for
a threshold of 20, and the effects of reducing the median’s window area to the
four-connected neighbours at level 7 pixels is shown in Figure 4.19. The writing

is more readable using the modified median, but background areas are still well

smoothed.



Figure 4.17: Median filter of PEN

Figure 4.18: Position of level 7 leaves in PEN
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Figure 4.19: Median filter of PEN

4.10 Conclusions

Four quadtree generation algorithms have been presented. The simple
recursive algorithm QUAD_TOP-RECURS works well on the experimental system
that includes a high performance frame store. A bottom up merging algorithm
QUAD-MERGE-RECURS requires relatively few frame store accesses and would
be preferable when a low bandwidth channel is used between the processor and the
frame store. This is especially so on processors such as the VAX or 68000 that have
efficient procedure call and stack frame generation instructions. Two sequential
algorithms, QUAD MERGE_RECURS and QUAD-OPT use backtracking and a
serial scan of the image. QUAD_OPT, the best algorithm, is dominated by the
calculations required to find the leaf positions after a discontinuity has been found.
The PDP-11 lacks the necessary bit field instructions to perform the calculations
efficiently, but even so QUAD-OPT performs better than QUAD-TOP RECURS
over a useful range of conditions on a system optimised for frame store intensive
operations. In VAX machine code, QUAD-OPT is expected to show significantly
better throughput.

The algorithms described in this chapter were all developed indepen-
dently by the author. Bottom-up algorithms for quadtree generation are discussed
in [SamS4].

Applications of quadtrees to the global control of local image processing
operations have been considered. Such use can lead to a significant speed up, but
the rather coarse ‘globality’information they provide limits the applicability ofthe

technique, and the time taken to generate the representation can be significant.
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They can also be used to adapt the range of a filtering operator around edges so

as to preserve sharpness, whilst removing noise from background areas.
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Chapter 5

Framestore design

5.1 Introduction

Low level image processing requires high bandwidth transfers between
the processor and its frame buffer. Modern computers such as the VAX or 68000
with large virtual address spaces may be able to store complete images using
memory mapped buffers, although the multiuser operating systems that support
such machines often require non-memory devices to be accessed via device drivers
that impose substantial overheads. Older machines such as the PDP-11 rapidly
run out of virtual address space, and therefore require some kind of memory
management unit which may be integral with the frame store.

This chapter looks at the design of frame stores specifically for image
processing, as opposed to graphics generation. Display generation, memory sub-
systems, digitisers and host frame store communications are considered, and four
frame stores designed by the author are described. It is shown that direct mem-
ory mapping of the frame buffer may not be the best solution, even for those
computers that support it.

Software support for these devices is described in Chapter 6.

5.2 Basic frame stores

A video frame store is a block of memory into which digitised video data
may be written, retained and subsequently read out for display. The memory is
sharable between the video circuitry and some processing circuitry, often a general

purpose computer. Forimage processing purposes, the frame store parameters are:

1. the spatial resolution of the frame store.
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Figure 5.1; Frame store block diagram

2. the grey scale resolution of the digitiser and the memory planes,

3. the ease and speed with which data may be retrieved from the frame store

for processing.

Frame stores attached to computers are also used for graphics work and
the display of user interfaces to complex programs. For such systems, the
ability of the frame store to maintain multiple images, pan and zoom, and
even draw graphics primitives autonomously, are important. Therefore, for

completeness we include:
4. the display formatting capabilities,

5. the graphics generation commands.

5.3 Frame store blocks

Figure 5.1 shows a block diagram of a frame store.

The RAM may be addressed via the multiplexer from either the host or
the video address generation circuitry. There are two primary data buses within
the frame store — the Pixel Data (PD) bus which connects the video RAM to
the analogue-to-digital and digital-to-analogue converters, and the Control Data
(CD) bus which connects the host to the control and status registers. They are

connected via the PD buffer. In operation, the host sets up control registers via



94

Odd 0
Even 0
Odd
— 3
Even 313
Odd 313

Figure 5.2: Interlaced video signal

the CD bus which define the form of the display and whether frame grabbing is

active.

5.4 Video signal timing

The display generation hardware is responsible for supplying the ad-
dresses to the memory array which define the way in which pixel data appears on
the screen. The simplest display merely maps a contiguous block of memory to
a rectangle on the screen. More advanced features allow zooming into the image,
scrolling and panning of the display area relative to the stored image, windowing
ofthe data to allow both reduced aperture viewing and the presentation of several
images on screen at once, the generation of cursors and cross hairs without dis-
turbing the memory contents, and the mapping of actual pixel values to various

on-screen colours.

5.5 Basic video timing

Apart from exceptional cases where a very high on-screen resolution is
required, a standard video monitor will be used as the display device. This will be
able to display a maximum of around 800 x 600 pixels. When higher resolution
is required, special high scan rate monitors are available.

A standard TV signal generates a raster scan with a 2:1 interlace and a
4:3 aspect ratio [[B71] (Figure 5.2).

The line time is 64/xs, made up of 1.55/xs front porch, 4.7/26 sync pulse,
5.8/28 back porch and 51.95/2S of active video. ‘Black’is 0.3V above sync level and
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Figure 5.3: Horizontal video timing

‘white’ 0.7V above black (Figure 5.3).
Each of the two fields is made up of 312.5 lines. Broad and equalising
sync pulses are used to trigger the vertical scan and differentiate between the odd

and even fields (Figure 5.4).

5.6 Video timing generation

The video timing will generate horizontal and vertical sync pulses and
blanking signals along with addresses for the video RAM.

If less than 300 vertical pixels are required, then the interlacing can
be ignored, and two identical fields generated. If the signal is to contain Phase
Alteration Line (PAL) encoded colour information, then a colour burst will be
required. However, even for low resolution colour displays, PAL significantly
degrades the displayed image, so discrete red, green and blue (RGB) drives are
usually used. A video cassette recorder will require PAL for colour recording.

The simplest display is formed by mapping video RAM locations to a
single rectangle on the screen as shown in Figure 5.5.

This may be achieved by using two counters, one for horizontal tim-
ing clocked off a master pixel clock, and another clocked off the HSYNC signal.
Registers holding the display and sync start and end points in pixel coordinates
are compared with the value of the counter at each cycle and sync and blanking
signals generated accordingly (Figure 5.6).

The following pseudo code describes the X-logic function. Note that the
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Figure 5.5: Video RAM addressing

96



97

. X SCREEN
PIXCLK X SCREEN

X ENABLE

DISPLAY START  DISPLAY END SYNC START SYNC END

Figure 5.6: Simple display generation logic

RISING pixclk DO construction indicates that the enclosed clauses should all be

evaluated in parallel on every rising edge of the signal PIXCLK.

MODULE x_logic
(IN pixclk: signal;
x.screen,
x_display_start, x_display_end,
x_sync_start, x_sync_end: ARRAY[1-.xwidth] OF signal;
OUT x_sync,x_enable: signal);
BEGIN x_logic
RISING pixclk DO
BEGIN
IF x_screen=x_display_start THEN x_enable:=true;
IF x_screen=x_display_end THEN x_enable:=false;
IF x_screen=x_sync_start THEN x_sync:=triie;
IF x_screen=x_sync_end THEN x_sync:=false;
END
END x_logic;

The logic block takes as inputs the x.screen counter contents, and values for
display start and end together with sync start and end from the corresponding
latches. It generates x _enable which is used to enable the outputs of the video
RAM and x.sync which forms the horizontal sync pulse. A similar logic block
would be used for the y axis. In a fully programmable system, the position and

size of the display window could be modified by updating the latch contents.
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Figure 5.7: Advanced video timing

5.7 Advanced video effects

By changing the mapping of video RAM addresses to points on the
screen, zoom, pan, scroll and multiple window displays become possible. In the
basic scheme above, the outputs of the screen address counters are used directly
to address the video RAM. The advanced scheme requires a separate x-address

counter, a zoom counter and x _start and X _zoom registers as shown in Figure 5.7.

The x_address counter is loaded by the horizontal sync pulse. The
x_zoom counter is clocked from the master pixel clock when x _en is active. The
Ripple Carry Out (RCO) from x_zoom is used to clock x address and to reload
x_zoom from its associated register.

The displayed image can be zoomed by loading a zoom factor into
x_zoom. This effectively divides down the clock rate to the x address counter
causing pixels to be repeated in adjacent display slots. Scrolling is achieved by
changing the x start address which will move the display window over the video
RAM contents.

Multiple windows may be displayed by replicating the logic of Figure 5.7
and adding multiple screen_x registers to the logic of Figure 5.6 to enable the
windows. A priority encoder will be required to resolve addressing conflicts be-

tween the multiple windows if more than one is active at any point on the screen
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(i.e. when overlapping windows are present)

5.8 Memory

Large amounts of storage are required for high resolution images. Graph-
ics oriented frame stores are available with on screen resolutions of 1024 x 1024
24-bit pixels, and several separate image stores. However, for real time image pro-
cessing work it is preferable to use the lowest resolution compatible with solving
a given problem, because of the increase in processing time associated with high
resolution images.

Most of the work described in this thesis is based around 128 x 128
eight-bit monochrome images, and each of these requires 16K bytes of storage.
It is useful to have between four and sixteen images available simultaneously,
and so between 64K and 256K bytes of memory are required. The number of
simultaneous images required is independent of display resolution, so that for a
1024 x 1024 24-bit colour system, between 12M and 48M byte (IM = 1024K) are
needed.

The cheapest way of implementing memory systems is to use dynamic
RAMs (DRAMs) which are usually a generation ahead of static RAMs (SRAMs),
i.e. at any one time equivalently priced DRAMs and SRAMs will differ in their
capacity by a factor 4. However, 512 x 512 pixel timing requires memory cycle
times below 70ns, and no commercially available DRAMs have such a short cycle
(as opposed to access) time.

The straightforward solution to this bandwidth problem is to use static
RAMs which are available with cycle times down to 40ns and below. Another
advantage of using static RAMs (apart from their cycle time) is the lack of critical
timing needed for refreshing dynamic RAMs, although in a video system continual
scanning of the memory array is already occurring, so refresh may not be much
of an overhead.

Large static RAM arrays are uneconomic in terms of price and con-
sumption of board real estate. Various modifications to the basic DRAM design
have been made by manufacturers to overcome the bandwidth problems for video

applications:

1. Page mode [Tex84]

Internally, dynamic RAMs comprise square arrays of bit cells. Read-out

occurs by precharging an entire set of column lines which are then condi-
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Figure 5.8: Dynamic RAM architecture

tionally discharged by a selected row of cells (see Figure 5.8). The resulting
logic levels are sensed and latched in a row of sense amplifiers. The required
bit is then steered to the output via the column decoder. This is an in-
herently two phase operation which gives rise to the familiar multiplexed
row/column addressing mechanism of commercial DRAMs. However, once
a row of bits has been latched in the sense amplifiers, fast single phase access
to other bits in the row is possible by latching new column addresses. This
can double the bandwidth of the device for the sequential type of access

required for video display. Most new DRAMs support page mode.

2. Nibble mode [Inm84b]

Many dynamic RAMs are internally organised as four separate arrays. Four
bits are accessed on each cycle, and two bits of the column address are
decoded to provide an apparent single bit access. An access to any other
bit, including one in the same nibble, requires a complete memory cycle.
INMOS market a device (IMS2600) [Inm84a] that has a two-bit presettable
counter between the bottom two column address inputs and the nibble-bit
decoder. This counter is loaded on the falling edge of CAS, and is clocked
on the rising edge. Normally this device behaves as a standard 64K X 1-bit
DRAM, but by toggling CAS whilst RAS is low the counter will be updated

and all four bits in the nibble may be sequentially accessed.

3. VRAM [Hit86]
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The previous two techniques exploit the organisation of DRAMs and use
a minimum of extra on board logic. No extra pins are required for their
operation. VRAMs (video RAMs) contain shift registers in parallel with
the sense amplifiers which can load an entire row of bits in one cycle and
then clock them out through a separate port under the control of a separate
serial clock asynchronously with normal operations on the random access
port. The normal random access part of the device operates just like a

standard 64K x 1 DRAM, and can even support page mode operations.

4. Static column RAM [Inm86]

Inmos have a DRAM which has a 256-bit static RAM in parallel with the
sense amplifiers. As in the VRAM, a complete row may be loaded into the
SRAM, after which full random access operations can occur both on the
DRAM and the SRAM. The disadvantage of this approach is the extra pins

required to support independent addressing on two arrays.

In the general case where completely random access at high speed to all pixel data
is required, none of these techniques are helpful, since the linear address scan is
no longer guaranteed. Random access may be required by high speed processors
including a graphics processor. Of course, it is possible to limit the cycle time
of the processor to allow for the full access time of the RAMs, but if this is
not satisfactory there is no recourse but to a true high bandwidth device. As a
compromise it may be viable to maintain just one display plane of static memory,
and build a bulk array of slower dynamic RAM. A simple Direct Memory Access
(DMA) unit consisting of three counters would be sufficient to transfer blocks
at high speed across this two tier system. Static column RAMs may be the
forerunners of a whole family of devices that integrate useful amounts of static

RAM and large amounts of dynamic RAM in a transparent way onto one chip.

5.9 Digitiser

For image processing, the digitiser is the most critical part of the system,
and it will often be the most expensive too. A 128 pixel line requires samples every
400 ns (2.5 MHz) and a 768 pixel line every 66 ns (15MHz). At these frequencies
a flash converter will be required. This comprises a set of matched comparators
connected to a resistive divider network. The outputs of the comparators will
usually be fed to an on-board encoder so that a binary (rather than thermome-

ter code) output will be produced. These devices are expensive because of the
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Figure 5.9: Flash analogue to digital converter

difficulty of matching the comparators and resistors to such an accuracy that the
inherent non-linearity is less than the resolution of the converter. The resolution
increases exponentially with the number of bits in the output, so an 8-bit converter
will be much more expensive than the 7-bit version. Only the most expensive of
cameras are capable of producing eight bits of information, and so it is common
to find only seven or six-bit converters used. To resolve information in the eighth
bit, the noise in the system must be less than 1/256 of the maximum amplitude.
This corresponds to a signal to noise ratio of better than 48.2 dB. An expensive
broadcast quality colour camera (JVC KY-2000B) in use in this laboratory has a
S/N ratio of 52dB. Generally available monochrome cameras suitable for indus-
trial inspection would have a worse intrinsic S/N ratio and be susceptible to noise

pickup from nearby machinery.

5.10 Host interface

The most important attribute of a frame store for real time image pro-
cessing is the data transfer speed between image memory and the processor. One

of three strategies may be adopted:

1. Integrate the image memory directly into the processor’s standard memory

architecture so that images appear as arrays in main memory.

2. Attach the frame store as a high speed peripheral, either via special 1/0

channels or via DMA links transferring image data into main memory. In
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this case the images again appear as arrays in main memory, but access

times will be long.

3. Use a special memory port that exploits the special behaviour of image

processing operators to increase throughput.

5.11 Memory architectures

Many older generation processors have severe limits on their addressing
range, and this may itself slow down frame store accesses. Figure 5.10 shows a
typical minicomputer memory architecture.

The CPU has an address bus of  lines. Thus the maximum number
of addresses that may be accessed directly by a program is 2°*. Typically a*
ranges between 16 and 32, and the address range is known as the virtual address
space. The MMU provides two functions. For systems with a small virtual address
space, access to larger physical arrays is possible via expansion bits stored in MMU
registers. On the PDP-11/34a for instance, the 64K byte virtual address space is
split into eight pages, each with an associated Page Address Register (PAR). The
PAR contains a 12-bit offset specifying the physical address of the first location
in the page. Offsets must be aligned with a 32 byte boundary, that is the 12-bit
offset forms the high 12 bits of an 18-bit address. During execution, this 18-bit
address is added to the offset into the page specified by the virtual address to
form an 18-bit physical address. Extensions of this arrangement allow PDP-IIs
to access up to 4M byte of memory using a 22-bit address.

The second function of memory management is to protect segments of
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code and data from each other, and this is useful even on processors with large
virtual address spaces. Protection bits associated with virtual pages may be used
to trap illegal accesses, and multiple execution modes allow a hierarchy of software
layers to be built up, with separate mappings for each. On most machines, certain
instructions (such as HALT) are privileged, and may only be executed in high
priority execution modes. Typically operating system functions will be executed
in kernel or supervisor mode, and applications in user mode.

Newer architectures (VAX, 68020) allow memory management traps to
be taken during instruction execution, at which point the instruction itself aborts,
rather than running to completion before entering the trap service routine. This
allows the generation of virtual machine systems, in which a large virtual address
space is mapped into a small physical address space (the reverse of the earlier
memory management scheme). Only small parts of a program need to be memory
resident simultaneously. If a reference to a non-resident page of code is made, a
page fault occurs which suspends instruction execution whilst the relevant page is
fetched from backing store. The offending instruction is then restarted without
any disturbance to the program’s context.

Indiscriminate use of virtual memory may produce poor results. Many
studies have been made into the optimum size of page and the best algorithm to
use for retaining pages in memory [Knu70]. The VAX 11/780 uses a page size of
512 bytes. Efficiency of accesses to large arrays can vary significantly depending
on the order in which the array is accessed. Consider a 1024 x 1024 byte array
which is to be accessed via one 512 byte page (an extreme example). FORTRAN
stores arrays by column, rather than the more natural row first ordering. If the
array is to be raster scanned in row order, then each pair of references will be
separated by 1024 addresses, and so every single reference will cause a page fault.
However, if the array is scanned in column order, a page fault will occur only
when a page boundary is crossed. Row order traversal thus generates 512 times
as many page faults in the worst case. For simple processing, page faulting may
dominate computation thus increasing execution time by greater than two orders
of magnitude. Section 5.14 describes a memory management approach that allows

pixel windows to be accessed via absolute addressing.

5.11.1 Integration into main memory architecture

If the host has a large virtual address space, or if the virtual to physical

relocation is efficient and the physical address space is large, it may be possible



105

to place image memory on the same bus as main memory. A contention strat-
egy will be needed to resolve conflicts between video and host access. Usually
this will mean either making the processor wait until video blanking time before
allowing memory access, or allowing the processor to interrupt video operations,
thus causing on-screen hashing. Once the image is available in memory, efficiency
will be very dependent on the speed of indexed addressing on the host, and the

algorithm used to calculate array offsets.

5.11.2 Array access techniques

Access to an element a(i,j) of a two dimensional array will be mapped

to an address:
base j X imax -f i

where base is the address of the first element in the array and imax is
the largest value taken by i. Calculation of the product term will dominate the
access time, especially on processors lacking hardware multiply.

This multiplication overhead may be removed by the process of vectoris-
ing, i.e. using an auxiliary vector v(j) that holds the start addresses of each of

the j rows. In that case, access to element a{i,j) maps to

vij) +t

The space overhead is one column of pointers, which is usually the same as one
column of integers.

Many high level language compilers automatically make use of vectored
arrays for wide and high dimensional cases. The RT-11 FORTRAN IV compiler
in use in this laboratory vectors arrays if the ratio of sizes between the array itself
and the access vector is less than 25%. It always attempts to vector the higher
dimensions, so it is good programming practice to declare a 5 X 100 array as
a(100,5) not as a(5,100) since only 5 words of vector storage are required as

opposed to 100.

5.11.3 Indirect and indexed addressing

Both of the above formulae for accessing array elements require at least
one addition and one indirection. Nearly all processors provide an indexed ad-
dressing mode for this purpose. In general, a constant is added to the contents

of a register, and the result used as the address of the element. Because of this,
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indexed addressing is slower than using the contents of a register as the address
directly, because the constant must be fetched from memory and the addition
performed before the effective address is available. On an MGS memory PDF
11/34a, use of indexed addressing adds around 1.5/xs (dependent on instruction)
to execution time over simple indirection. Absolute addressing is equivalent to
indexed addressing on the program counter, but if the address is known at com-
pilation time, the dereferencing of coordinates is not required. Thus accessing
of array elements, even using special addressing modes is slower than accessing

absolute locations. !

5.11.4 Integration into the peripheral system

If the available physical or virtual memory space of the processor is less
than that required for image storage, then the image memory cannot be integrated
with the main memory architecture. In this case, the frame store may be treated as
a form of backing store, and integrated into the peripheral system. Some machines
use specialised I/O processors (called ‘channels’in IBM installations) to transfer
data between peripherals and main memory. Other smaller scale machines use
simple DMA controllers, which typically consist of a word counter, a main memory
address counter and a peripheral controller. A transfer is initiated by loading the
start address and the number of words to be transferred to the relevant registers,
and proceeds autonomously to completion or an error abort, at which point the
host is interrupted. In the case of image memory, the peripheral controller section
can be as simple as a third counter addressing the memory planes.

This form of connection is popular with frame store manufacturers be-
cause it requires the minimum disturbance to already existing hardware and op-
erating systems. The only hardware modification required is the addition of a
small peripheral controller (rather than the rebuilding of the memory environ-
ment required above), and since all modern operating systems implement device
independence through a device driver protocol, the only system software required
to support the frame store is a simple device driver to read and write blocks of
data.

Unfortunately, the peripheral type connection brings no operational ad-
vantages to the user, since the data, once transferred, merely appears in memory
as an array just as in the memory integrated case. The transfer itself imposes an
overhead, which may be significant since peripheral channels are only engineered

to cope with disc speed accesses and may not be able to make use of the extra
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bandwidth available from the frame store.

5.11.5 Special purpose memory architectures

As noted above, image memory requirements often outstrip available
virtual or even physical addressing capabilities, and a common solution to this is to
attach the frame store as a bulk storage peripheral. Another common solution is to
use coordinate registers to specify the required pixel, and a pixel register to access
the image planes. Four 128 x 128 byte wide planes could be accommodated on a
PDP-11 with the use of only three 16-bit words: an X rclagister, a Y register and a
pixel register. This may be seen as a special purpose memory management scheme,
whereby the X and Y registers hold the offset into image memory (equivalent to the
PDP-11 PAR) and the pixel register corresponding to the virtual page. Naturally,
this arrangement is not very efficient, since in general a random access to any pixel
will require three memory accesses, although multiple accesses to the same pixel
will in fact be more efficient than in the array mapped case because as noted
above, compile time calculated absolute or relative addressing is quicker than
run time calculated indexed addressing. Overheads can be reduced by providing
multiple pixel registers, thus increasing the size of the window into image space.
At this point a memory management scheme that parallels the virtual/physical
mapping has been created, except that address translation occurs only for that
block of addresses allocated to the pixel window.

Many of the image processing operators do not access images randomly,
but in a well defined scanning sequence. At each point in the sequence, a small area
of the image surrounding the central pixel is accessed. The memory management
units on frame stores built for this project map the central pixel and its neighbours
to a series of absolute locations in memory. This allows window operators to use
absolute or relative addressing to access the window, rather than the complex
indexed accesses used when the image data exists in main memory. Thus, although
memory management is being used to circumvent the limitations of the processor,
it actually provides significant improvements in efficiency. Extra speed can also be
gained if a second set of window registers is provided that when accessed cause an
automatic increment of the window position to the next location. For applications
requiring a raster scan of the image this completely removes the coordinate update
overhead.

This approach works well on a PDP-11. However, on the microVAX, the

peripheral devices on the Qbus (including the frame store) have much longer access
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times than the processor’s main memory which is connected via a synchronous
bus called the PMI (Private Memory Interconnect). The speedup is due to three

factors:

1. the PMI runs synchronously with the processor removing de-skew overheads

associated with the Q-bus,
2. the PMI data bus is 32 bits wide whereas the Qbus is only a 16-bit bus ,

3. the microVAX Q-bus interface is optimised for block mode DMA operations

and is in fact slower than some PDP-11 implementations for programmed

I/0.

As a result, it is almost always best to transfer data from the frame
store to the microVAX main memory for processing rather than performing the
processing ‘in the framestore’. The exception is when main memory on the mi-
croVAX is too small to hold the process, in which case paging will begin to occur.
In extreme cases when multiple large processes are attempting to run, swapping
of entire processes will occur and a significant degradation of performance will
result.

The memory architecture described in this section has been used to good
effect on the IPOFS and VI frame stores described below. V2 which was designed
for VAX hosts would not gain from such circuitry and adopts a more conventional
memory mapped approach. V3, which will also be used with PDP-11 hosts will

have a memory management unit.

5.12 TIPOFS — a compact high performance frame

store

The Image Processing Oriented Frame Store (IPOFS) is designed to
be compatible with a frame store in use in this laboratory described by Cook
[Coo83a]. Cook’s frame store occupies a large part of the address space ofa PDP-
11 but allows access to a 256K byte image address space using window mapping.
IPOFS is constructed using more modern and compact technology and offers
several new features. It is more closely optimised than Cook’s framestore for use
with PDP-11 systems in that it has a fully asynchronous interface to the host
and it requires only IK byte of address space. This is important because PDP-11
systems expect all peripherals to be located in an 8K byte section at the top of

the address space, and accessing devices outside that area causes problems with
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the operating system. Two software systems (PPL2 [Coo83a] and PIPE which
are described in Chapter 6) have been developed to overcome this addressing
difficulty, but neither would work on a basic PDP-11 lacking memory management
hardware. The new frame store can operate with a minimal single board PDP-11

computer.

5.13 IPOFS specification

IPOFS is capable of holding and displaying up to eight 128 x 128 pixel
images at 8-bit resolution. It can acquire real time video data from a camera
digitised to 7 bits. Memory management allows a host processor direct access to
points within a 5 x 5 window centred on any pixel. Access to other parts of the
image requires the updating of a coordinate register.

The main controller and host interface reside on a single quad-width Q-
bus card. Up to 128K bytes of static RAM may be used as the pixel memory.
The prototype is based around 16K bit RAM chips and two boards the same size
as the controller would be required to fully populate the address space. Not all
of the controller card is occupied at present, and if a PCB were designed it would
be possible to include all 128K of RAM on board using 64K x 1 static RAMs.

In addition, a small digitiser board is housed in a die cast box for im-
proved noise immunity; this passes digitised video to the controller over a ribbon
cable. The controller and memory is designed to reside inside a VT103 intelligent
terminal along with a PDP-11/21, 11/23 or 11/73, disk interface, host memory
and a real time clock card. This forms a very compact system, and when coupled
with a small disc drive provides a portable version of the main research mini-
computer. Algorithms developed in laboratory conditions can be tested in the

factory, and only a small amount of equipment needs to be transported.

5.14 IPOFS theory of operation

A block diagram of IPOFS is shown in Figure 5.11. Since a 6845 CRTC is
used to generate the video timings, some display effects are achievable including
scrolling, windowing and the display of a non-destructive cursor. A light pen
input is also available to the frame store. A ROM based window mapper is used
in conjunction with X and Y coordinate registers to speed access to the image
data. The size of the window is restricted to 32 elements so as to reduce the

demands on address space. Individual windows are available for each image, but



110

6845
CRTC

GRAB

Ptx«i daU

AOC OAC

Figure 5.11: IPOFS block diagram

they are all linked to the same coordinates.

5.14.1 Register set

IPOFS occupies IK bytes of the PDP-11 I/O page which is split into
two 512 byte pages, one for control registers (CONBLK) and the other filled with

window registers (REGBLK). There are 6 control registers as shown in Table 5.1.

The CSR has four read only bits that return the current status of the
synchronisation and blanking signals. V is the vertical sync, H the horizontal
sync and B the blanking signal. In addition the C bit returns the logical OR of
the syncs, which supplies composite sync to the camera. The CSR also has one
read/write bit (G) that governs the state of the video acquisition and display cir-
cuitry. If G is high then the ADC will write data into memory giving a continuous
frame grab cycle. When G is reset, normal display of the stored image is resumed.

The CRTC register is used to access the 6845, which contains 18 internal
registers. Rather than mapping these directly, which would require 18 words of
address space, a separate address register is used to specify the active internal
register, which is then accessed via a ‘data’ pseudo register. As a result, only two
bytes are used in an eight bit system. In IPOFS, this is further reduced by using
bit 8 of CRTCR to specify which pseudo register is to be opened, and accessing



Control and Status (CSR) CVHB G
Cathode Ray TubeController (CRTCR) — " ccee cece>
X coordinate X XXXX XXXX>
Y coordinate ) YYYY Yyyy>
Display select (DISP) e dddd dddd>
GRAB select GRAB) gggg gggge>

All bits are read/write, except CVH and B which are read only, and

R which is write only.

Table 5.1: IPOFS register set

both address and data registers through bits 0-7. To clear internal register 5, the

following sequence is required:

MWV #5,(RIC ;bit 8=0 for address register; data = 5
MWV #400,(RIC ;bit 8=1 for data register; data * 0

By manipulating the internal registers, timing parameters can be set up and
certain video effects can be generated such as scrolling and limited zoom and
windowing. Because of the constrained nature of the 6845, programming is quite
difficult, and for further details reference should be made to [Mot81]. Usually,
the 6845 will be initialised at powerup using the supplied utility IPINIT, and not
subsequently altered.

The X and Y registers together specify the centre point of the window.
These registers are eight bits wide, with only the lower seven bits significant.

DISP specifies the number of the image to be displayed. It is an eight bit
register with the lower three bits significant. If the G bit in the CSR is set, video
acquisition is in progress, and the display will show the outputs of the digitiser.

GRAB is an eight-bit register — one bit for each of the eight available
images. When the corresponding bit is set, that plane is enabled for frame grab-
bing, and will have video data written into it when the G bit in the CSR is set.
In this way, multiple copies of an image may be acquired simultaneously. This is
useful for serial algorithms that destroy the original image during processing but

need to refer to the original in later stages.
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The other 512 byte page (REGBLK) contains 8 sets of 32 window regis-

ters, one set per image plane. These are allocated in a spiral fashion:

27 31 26
16 15 14 13 12
17 4 3 211
18 5 0 1 10 30
19 6 7 8 9
20 21 22 23 24
28 29 25

This provides a 5 X 5 window with some useful extra points. The num-
bering is unfortunate since the spiral is not positively increasing (the origin is in
the top left of an image so as to conform to the conventional video raster scan) —

this is to retain compatability with Cook’s frame store.

5.15 Internal operation

IPOFS has a controller board, one or two memory boards and a digitiser

board interconnected by ribbon cables.

5.15.1 Controller board

The controller has three main internal sections: the Q-bus interface, the
video timing logic, and the registers and multiplexers. A diagram is shown in
Figure 5.12.

Host access occurs via the Q-bus, which is an asynchronous multiplexed
bus. Address/data lines, address and read/write strobes, and the RPLY hand-
shake line are buffered from the Q-bus connector. Addresses are latched on the
rising edge of the address strobe, and decoded to start host cycles. REGBLK
addresses are decoded to give individual clocks for each of the onboard registers.
A byte wide static RAM (called the shadow RAM or SHRAM) parallels all REG-
BLK addresses. On a write both the register and the RAM are updated. On a
read, only the SHRAM is accessed. This allows read-back of all registers.

Master timing is generated from a 20MHz crystal which is divided down
to give 2.5 and 3.3MHz pixel clocks for rectangular and square pixels respectively.

In the prototype, only square pixel timing is used, but the addition ofa multiplexor
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Figure 5.12: IPOFS internal operation

under control of one of the unused CSR bits would provide software selectable
square or rectangular pixels.

Sync signals, blanking and physical address signals are provided by the
6845. At its maximum pixel frequency of 2.5MHz, the 6845 is not able to generate
a 128 x 128 square pixel display, so the CRTC is programmed to provide a 64
X 128 pixel display, and the least significant PX line is driven directly from the
3.3MHz clock.

Video data from the digitiser or memory board is latched and passed to
a fast DAC. The latch is cleared during blanking time. The output of the DAC is
mixed with sync pulses in a high output gated-input differential amplifier, which
drives 7511 loads directly.

An eight-bit latch is provided for each of the registers. The outputs of
the X and Y registers are combined with the low 5 address bits from the host
in two mapping PROMS. These contain lookup tables for the offsets required
to generate the spiral window. During host access to the memory board f{i.e.
CONBLK accesses) video addresses from the 6845 are disabled and the memory
bus is driven from the mapping PROM:s.

CSR bit 0 (G) governs the acquisition/display mode. During display
mode, the low three bits of DISP are decoded to select one of eight image address

lines. During acquisition, these lines are driven by the outputs of the GRAB
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register, and write pulses are sent to the memory board. The selected images will

therefore have video data written into them.

5.15.2 Memory board

The memory board holds 32 2K x 8 static RAMs arranged as four blocks
of 16K bytes each. A 3-8 decoder provides chip selects within a block, but multiple

blocks may be simultaneously enabled for writing.

5.15.3 Digitiser board

This board is based around the TRW 1047, a 7-bit 20 MSPS convertor.
Incoming video data is black level clamped and dc coupled to a high bandwidth
inverting amplifier. Conversions occur on command from the video timing logic,

and are multiplexed onto the image data bus using tri-state buffers.

5.16 Programming differences with Cook’s frame

store

There are several differences between IPOFS and Cook’s framestore that

affect the portability of software:
1. square/rectangular pixels,
2. edge registers,
3. length of coordinate registers,
4. frame grabber sequencing,
5. no hexagonal tessellation.

The square pixels of [IPOFS mean that frame store coordinates map directly to real
world coordinates. With Cook’s frame store, a 4/3 correction must be applied to
all y coordinates to compensate for the rectangular mapping used. When IPOFS
is in rectangular mode, the mappings correspond. However, IPOFS rectangular
mode is disabled in the prototype.

Cook’s frame store has edge registers which are used to catch window
accesses mapping to out of bounds addresses as for instance when x=y=0 and an

attempt is made to access window element P2. IPOFS was designed with edge
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registers, but they are disabled on the prototype so that out of bounds accesses
wrap round.

The coordinate registers on Cook’s frame store are seven bits long, i.e.
the Pascal fragment x:=127; x:=x+I; writeln(x) outputs zero. This is dan-
gerous, because the host processor will assume that the registers are byte-wide.

An x-scan on Cook’s frame store is typically generated with:
x:=0; REPEAT {function}; x:=x+| UNTIL x=0;

An optimising compiler will generate the following machine code:

clr X
loop:

; function

inc X

bne loop

When Xis 127 the inc instruction will yield 128 in the processor’sinternal
ALU. When this result is written back to the frame store, the top bit will be
discarded leaving a zero. The next increment instruction will therefore yield
a one. As a result the ALU result will never be zero, so the loop will never
terminate. The coordinate registers on IPOFS are eight bits long and behave
exactly as normal memory locations.

Cook’s frame store contains internal logic for sequencing the frame grab.
IPOFS requires the host to monitor the vertical synchronisation bit and enable
and disable grabbing directly.

Cook’s frame store supports hexagonal mappings of the window registers.
This is not available on IPOFS because it was a very rarely used feature of the
earlier frame store. It could be added simply by putting new addresses into the

lookup ROMs.

517 VI

The project described in Chapter 9 is based on a real time MIMD multi-
processor system called IMP (Imaging Multi-Processor). A new framestore called
VI was designed based on IPOFS but with a line-scan interface, a high speed
memory mapped port, VME bus to the IMP backplane and using newer memo-
ries that provide a true single board frame store.

V1 is internally similar to IPOFS with the following differences:
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1. The Qbus interface is replaced with a VMEbus interface. It is intended

to be used with a separate Q-bus to VMEbus converter to be described in

Chapter 9.

2. High speed 16K x 1 static RAMS are used to reduce the physical size of

the memory array.
3. Access to a 7 x 7 window is supported (5 x 5 on IPOFS).

4. VI has a novel line-scan interface.

)

5. VI has a memory mapped port in addition to the ROM mapped window
port.

6. VI has a WIPE register which enables an image plane to be initialised to a

constant value in one frame time without processor intervention.

7. Simultaneous grabbing to multiple image planes is not available as a result

of buffer load problems experienced with VI.

5.17.1 Register set

VI occupies 1024 bytes of VME bus address space, arranged as eight
blocks of 64 word registers. Most of the registers are eight-bit only, with the top
eight bits of the word unused.

IPOFS has two separate 512 byte pages, one for window registers and
the other for control registers. However, VI is accessed via the Qbus to VME
bus protocol converter described in Chapter 9 which maps 256 byte regions of
VMEDbus space to Qbus space. To ensure that if only one page were available
for mapping all the VI control registers would be available, multiple copies of
the control registers are available as shown in Figure 5.13. Each register block
contains the elements shown in Table 5.2.

The window element, x,y and display registers work as for IPOFS. CRTCR
is identical to the IPOFS CRTCR except that the R bit has been moved into the
CSR. The GRAB register takes a three-bit number to select one of eight planes

for frame grabbing.

5.17.2 Control and status register

The CSR on VI has extra bits to control the extra frame store features:
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96

98
100
100
102
104
106
108
110
112
114

126

A B 0
00 00 00
01 01 01
03 03 03
[ ] ] [ ]
1 I [ ]
1 1 1
1 I [
1 u | |
1 I 1
1 [ I
44 46 48
CSR CSR CSR
EDGEA  EDGEA EDGEA
EDGEH  EDGEH EDGEH

Name

A window element 0

A window element 1

A window element 48

Control and status
CRTC control

Wipe

Expose

GRAB

display select

y coordinate

X coordinate

A edge register
B

edge register

D E F Q H
00 00 00 00 00
01 01 01 01 01
03 03 03 03 03
L] | | | n |
1 1 1 n I
u 1 [ ] I 1
u I [ ] 1 1
n 1 [ 1 1
] 1 1 1 1
] I 1 1 [ ]
48 48 48 48 48
CSR CSR CSR CSR CSR
EDGEA EDGEA EDGEA EDGEA EDGEA
EDGEH EDGEH EDGEH EDGEH EDGEH
Figure 5.13: VI register blocks
Mnemonic Bits
AO D — aaaa aaaa>
A1l g aaaa aaaa>
A48 < emmmmmmm—————— aaaa aaaa>
CSR <vhcb Xx----- pgal rdgs>
CRTCR mmmmmmmmmeeeee cccc  cccc>
WIPE T REERRRR. dddd dddd>
EXPOSE D dddd dddd>
DISP < -ddd>
Y D — dddd dddd>
X [ TR — dddd dddd>
EDGEA g dddd dddd>
EDGEB e dddd dddd>
EDGEH g dddd dddd>

edge register

Table 5.2: VI registers
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<

returns status ofverticalsync (read only)

h - returns status ofhorizontal sync (read only)

¢ - composite sync, {\em i.e.} logical OR of h and v (read only)
b - returns status of composite blanking (read only)

X - low during line-scan active data time (read only)

p - parallel output p

q - parallel output q

a - access speed i

1 - line-scan mode enable

r - CRTC register select

d - digitiser/wipe select

g - grab enable

s - square pixel enable

Parallel outputs p and q are buffered and routed off board via the VME-
bus P2 connector. They are used to control lights, reject mechanisms etc.

The a bit is used to synchronise frame store accesses with the onboard
CRTC bus logic. Normally the frame store host interface runs asynchronously,
providing very fast access to the video memory. The 6845 requires slow syn-

chronous access.

5.17.3 Wipe circuitry

The wipe register on V2 is an eight-bit latch whose outputs are paralleled
with the outputs of the ADC. The CSR d bit selects between the ADC and the
wipe register. If a grab sequence is performed with the wipe register active, the

selected image plane is initialised to the constant value in the wipe register.

5.17.4 Line-scan interface

Line-scan cameras consist of a line of photoreceptor sites paralleled by an
analogue shift register. Typically two signals are required to drive the sensor: an
exposure clock X and a transport clock 7. When the sensor receives an active X
edge, the charge accumulated in the photoreceptors is transferred to the analogue
shift register and clocked out under control of the T clock.

The sensitivity of typical devices is low compared to some vidicon tubes,
which means that they cannot be run at video speeds. The line-scan interface on

VI attempts to emulate a true video signal as closely as possible by (a) providing
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Figure 5.14: VI line-scan interface

an exposure timer programmable in units of 64/is (i.e. one video line time) and
(b) clocking data out of the sensor at video speeds, i.e. T is driven directly from
the pixel master clock. The result of this is a ‘video’ signal composed of multiple
blank lines followed by a single line of video speed data. There are no vertical
sync pulses. Such a signal can be directly supplied to a video frame store for
for digitisation. The host could then pack together the lines with valid data by
copying within the frame buffer. However, VI allows the host to modify the y
address of the currently grabbed line in real time so that a packed line-scan image
can be acquired with no time overhead.

Although the 6845 is designed to generate normal video timing, it was
found that suitable programming ofthe internal registers could disable the vertical
timing logic so that the device was providing continuous horizontal video lines with
no vertical blanking or syncing. The grabber logic was modified so that during
line-scan cycles data was only written to the image planes during the line after an
X pulse was generated. During other lines, the same data is repeatedly read out
and displayed. This gives a useful realtime representation on the monitor screen
of the camera outputs.

In practice, the integration time of the sensor (i.e. the period of the X
waveform) will be locked to the speed of the conveyer belt being viewed. If a

line-scan pixel subtends p meters in the direction of belt travel, and the belt is
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moving at ¢ meters per second, then the X period must be p/g seconds. Typical
exposure periods will be in the range 5-20ms for commercial speed conveyers.
When the frame store is in line-scan mode, the grab/display y address
is taken from the Y register rather than the 6845. The host increments Y after
every line has been grabbed, thus providing a packed image. The following Pascal

procedure grabs a line-scan image:

PROCEDURE Igrab; {get line-scan picture}

BEGIN
csr:=1; A {set line-scan grab mode}

y:=0; {start acquisition from top of image}
REPEAT
REPEAT UNTIL csr AND x=0; {wait until start of X pulse}
REPEAT UNTIL csr AND xOO0; {wait until end of X pulse}
y:i=y+l {increment line counter}

UNTIL y=256
csr:=f; {set normal frozen video mode}

END

The prototype VI was used for the factory trial described in Chapter 9
and has since been in use for several years as a replacement for Cook’s frame store

which has now been decommissioned.

5.18 V2

The IMP system described in Chapter 9 is currently being developed
to support high speed microcoded processors. The new system is downwards
compatible with IMP and frame stores may be interchanged between the two
systems. However, the philosophy of the system is different. IMP is a powerful
system containing special purpose hardwired processors that are difficult to use.
This is partly a result of its origins with low powered PD P-1ls such as the single
board PDP 11/21. This encouraged the use of hardware ‘widgets’ to make up for
the low performance of the soft processors in the system.

The new system is intended mainly for use with VAX hosts and fast
microcodable processors. The emphasis is on a ‘soft’ system comprising processors
and large amounts of memory with as little special purpose hardware as possible.
This is most noticable in the design of the framestore, where the display hardware
has been cut to a minimum. Programmable processors on the bus will be able
to transfer an entire image in less than one frame time, and so special displays
(such as multi-windowed zoom displays) can be created in near real time using

software.
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Figure 5.15: V2 block diagram

As a result, V2 is an extremely simple frame store. It provides up to
eight 256 x 256 pixel image planes with square or rectangular pixels at eight-bit
resolution. It will digitise RS170 video at eight-bit resolution. Host access is via
a 0.5M byte memory mapped port. Image data is packed two pixels to the word,
and so V2 appears to the host exactly like a 0.5M byte static RAM card. Frame
store control is via a single byte control and status register. Multiple framestores
are available in a single crate and the system software (see Chapter 6) allows

dynamic allocation of resources in a multiuser environment.

5.18.1 V2 theory of operation

V2 has three main components as shown on Figure 5.15: the memory
subsystem, the video timing generator and the host interface. Unlike IPOFS, the
design is fully synchronous and makes extensive use of Field Programmable Logic
Sequencers (FPLS), fuse programmable devices from Signetics [CD83] that allow

powerful Mealy type state machines [PW87] to be implemented on one chip.

5.18.2 Memory subsystem

Although V2 generates 256 x 256 pixel displays, it was also intended as
a testbed for the techniques required in a 512 x 512 frame store. As a result the
memory subsystem has sufficient bandwidth to supply a new pixel to the display

logic every 66ns. This is achieved by providing a 100ns cycle time memory array
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Figure 5.16: V2 pipeline and memory logic
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Figure 5.17: Pixel clock state machine

that is two pixels (i.e. 16 bits) wide, and merging the data streams using grab
and display pipelines as shown in Figure 5.16.

The registers on the MD bus are updated every even pixel cycle, thus
providing a double length memory cycle. In V2 square pixel mode the memory is
cycled every 264ns. A full speed square pixel 512 x 512 system will cycle memory

every 132ns.

5.18.3 Video timing subsystem

The master pixel clock is a selectable 176ns/132ns cycle clock generated
from a 22.125MHz master oscillator using a simple state machine that monitors the
state of the R and G bits in the CSR along with the status of the host interface
and generates the pixel master clock and write pulses for the video RAM (see
Figure 5.17).

This state machine is implemented in one third of a Signetics PLS105A

FPLS, the rest of which contains the host interface controller. In state HI, if the
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Figure 5.18: Video timing logic

host requires write access to either or both bytes of an image word or if grabbing
is active then write pulses are generated. In state L02, if the R bit in the CSR
is active an extra wait state is entered. A wait state is also inserted for the last
two cycles of a square mode video line to bring the line time up to 64/xs. The
state machine monitors HCLR to detect the end ofthe line and inserts wait states
accordingly.

The master clock drives an eight-bit counter which supplies the X dis-
play addresses. It corresponds directly to the screen_x counter described in Sec-
tion 5.6. There is a second eight-bit counter driven by the horizontal sync pulse
which corresponds to the screen.y counter. Sync pulses and clear pulses for the
address counters are supplied by another FPLS which monitors the contents of
the address counters.

Internally, the video FPLS contains two similar state machines, one for
each axis. The display and sync start and end registers described in Section 5.6 are
effectively embedded in the FPLS — the state machines wait for a preprogranuned
number to appear on the address counter outputs and then transition accordingly
causing a change in enable or sync outputs.

The X machine is complicated by the need for two sets of constants, one

for square and one for rectangular pixel timing.

5.18.4 Host interface

The host interface consists of a set of buffers and an FPLS that performs
address decoding and VMEbus protocol handling.

On VI, host accesses are handled completely asynchronously with re-
spect to the video timing logic. This can cause a problem if the host attempts

to access the image buffers during a frame grab sequence. The frame grab cycle
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Figure 5.21: Host state machine

will be aborted, but a race condition in the memory controller could cause cor-
ruption of random pixels. By and large this does not matter since it is unusual
to want to mix host accesses with frame grab cycles. However, the real time ob-
ject detecting routine described in Chapter 9 does require such a facility. VI was
used successfully in spite of the race condition because the detection of an object
triggered the updating of 85% of the frame store memory and the probability of
pixel corruption in a critical part of the image was low. V2 has been rigorously
designed using fully synchronous logic to avoid such problems.

The host FPLS contains two fully independent state machines, one for
the master pixel clock (already described) and one for the host interface which
also provides write control to the video RAM (Figure 5.21).

Access to the CSR register always occurs within 132ns. When the host
requests access to the video planes the state machine enters a synchronisation
state in which it waits for the pixel clock generator to arrive at its HI state. The
host machine then sequences to state ACCESS, the ID/PD buffer is then opened
and the VMEbus data buffer enabled. The pixel clock state machine senses that
the host machine is waiting to do an image plane access and generates write pulses
if required. At the end of the next pixel clock machine cycle the host machine
performs VMEbus handshaking and display operations start again. In this way
the pixel and host machines effectively ‘handshake’ to provide guaranteed safe
timing.

The PLS105A was not an ideal device to implement these state machines.

Specifically, the pixel clock machine has to sense when the host machine is in
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state SYNC and more importantly when it is not in state SYNC. This is difficult
because the PLS devices use a sum of products architecture. If a machine has
n states ai ... and a transition is required for all states except (say) state
ai then a product term must be generated for each of the other terms. This
rapidly consumes terms. In the current implementation, this has been overcome
by using don’t care states within the sequencer. The critical ACCESS state of the
host machine is allocated state number 8 and the other six states allocated to
internal state numbers 2 to 7. State numbers 9 to 15 are unallocated, so simply
by testing bit 2 of the internal FPLS state counter it is possible to see whether
the host is in state ACCESS.

5.19 V3 enhancements to V2

V3, which is currently under development, is a stepwise refinement of
V2. Most importantly it provides 512 x 512 timing. The video data pipelining
necessary to support 512 X 512 timing has already been implemented on V2, so
the primary difference lies in the sync pulse generation. In addition, V3 has an
Inmos colour look up table to provide colour outputs, a ROM port of the type
used on VI, a line-scan interface and a genlock input to allow the frame store to

be sync locked to an external source.
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Chapter 6

Architectural issues for

sequential image processors

6.1 Introduction

In this chapter an attempt is made to isolate the particular characteris-
tics of real time image processing that might influence the design of a processor
system. The discussion proceeds at two levels — the hardware features that might
improve raw throughput, and the software environment that allows non-specialists
to extract the theoretical performance from the system. In many ways these two
needs run counter to each other. Recent controversy in the Computer Science com-
munity concerning the merits of simplified processor design (the RISC philosophy)
might be seen as a way both to improve performance and simplify programming,
but it is shown that regardless of the merits or otherwise of RISC designs the
key problem in image processing systems is processor-memory bandwidth. Many
RISC designs have large internal register sets which may contribute more towards
their performance than the high throughput of their simple instructions, but the
data throughput requirements of image processing immediately remove the ad-
vantages of a large register set because it is not possible to hold a useful amount
of an image in internal registers.

The most obvious architectural attribute of many image processing sys-
tems is their high degree of parallelism, both the SIMD parallelism of array
processors and the MIMD parallelism of multiprocessor systems. This chapter
concentrates solely on the attributes of sequential Von Neumann type machines,
and discussion of parallelism along with non-Von Neumann architectures such as

dataflow machines and systolic arrays is delayed until Chapter 7.
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6.2 Hardware requirements for image process-
ing

Traditional data processing can be characterised as either computation-
ally bound or data bound. Typical scientific programming involves large amounts
of real arithmetic calculation on relatively small data sets, sometimes smaller than
the register set of the processor and almost always smaller than the virtual address
space. Commercial programming typically involves collation and presentation of
information from very large databases — well beyond the virtual address space
of the processor. The database is however a relatively fixed dataset in that it
is unlikely to change drastically within the execution time of a typical database
operation. Calculation is more often integer or fixed point than real, and string
operations may dominate arithmetic.

Although image processing is often characterised as computation inten-
sive, its primary characteristics are the high volume and rapid turnover of the
data sets. Individual images are much larger than the internal register sets of
current computers but usually smaller than the virtual address space except in
the case of outdated designs such as the PDP-11. In addition, images can be
generated every 20ms, or in 20,000 instruction cycles of a typical 1 MIPS mini-
computer. Since there will be 256K pixels in a 512 x 512 image there may be only
0.1 instruction cycles available in which to process each pixel, thus showing the
futility of attempting real time implementations for high resolution processing on
conventional machines.

It is important to note that the size of an image is far in excess of the
internal storage of current processors, and that most low level vision operations are
extremely pixel intensive, that is nearly all the data used is pixel data, either local
to a particular point for window type operations, or globally for transform based
operations. Transfer of pixels between frame buffer and processor will therefore
dominate all processing and processor-memory bandwidth is likely to be the most

accurate metric of system performance.

6.3 Processor design philosophy

Despite interest in dataflow architectures [GKW85] and distributed logic
[PFP85] approaches to computing, the Von Neumann type architectures are still
almost universally applied to reed problems, either as straightforward sequential

machines or in parallel configurations. It is possible to discern trends in Von
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Neumann processor development, and in this section we examine their relevance

to image processing.

6.4 Language directed machines

Most commercial mainframes, and latterly minis and micros, have evolved
towards the use of more complex instruction sets in an attempt to narrow the ‘se-
mantic gap’ between the high level languages and machine code, the intention
being to implement high level language constructs directly in the instruction set.
This trend has been most noticable in the area of procedure activation instruc-
tions. It is now generally accepted that modularisation and top down design of
software increases programmer productivity, but increased use of procedures slows
execution over inline code because ofthe need to pass parameters and store return

addresses for subroutine linkage.

6.4.1 Procedure call instructions PDP-11, 68000 and VAX

Some PDP-11 processors implemented an instruction called MARK which
was used instead of a ReTurn from Subroutine (RTS) to clean up the stack on
exit from a procedure. The call convention required that R5 be stored on the
stack, the stack pointer updated to leave space for parameters and the PC at the
point of call be stored in R5. This was all achieved using standard instructions.
The single instruction MARK N then restored the PC from RS, removed N pa-
rameters from the top of the stack and popped the old value of RS, thus restoring
the calling procedure’s context [Dig79b]. This instruction is only available on the
PDP-11/34 and later machines, and has never been widely used. Even commer-
cial compilers do not use the MARK instruction, and the T-11 microprocessor
PDP-11 implementation does not recognise it.

The 68000 has a very similar instruction called UNLINK and a partner
called LINK which can be used to initialise the stack frame as part of procedure
entry. These instructions are used, no doubt because they were defined as part of
the base processor’s instruction set. Any commercial PDP-11 software that did
use the MARK instruction would not run on early processors.

The VAX architecture continues this process by defining a single system-
wide procedure calling convention. There are in fact two basic calling mechanisms
implemented via the CALLS instruction for stack based parameter passing {e.g.

for Pascal and Algol) and CALLG for use with global parameter blocks {fe.g. for
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FORTRAN). As weU as the usual PC and stack pointer, the VAX designates two
general purpose registers as the Frame pointer (FP) and the argument pointer
(AP). Both the CALL instructions assume that the first word of a procedure is
an entry mask which specifies which registers are used and therefore need to be
saved on the stack. In addition both CALL instructions always save the old AP,
FP and PC along with the current Processor Status Word, the entry mask itself
(needed for stack clean up on exit) and a pointer to an exception handler that will
be invoked if an error is detected during procedure execution. Finally the FP and
AP are updated to reflect the position of the procedure’s local data, and control
is passed to the procedure’s start address.

A particular feature of this system is the inclusion of the user specified
exception handler allowing multiple exception handlers to exist at different levels
of the program’s execution tree. Exception handling on the VAX involves the
‘unwinding’ of successive stack frames until a handler is found that will service
the current exception. Whilst this is an extremely powerful feature for real time
failsafe systems, it might be considered overkill for a general purpose minicom-

puter.

6.4.2 Other complex VAX instructions

Non-primitive instructions on the VAX include (a) those for floating
point and packed arithmetic, (b) direct calculation of array subscripts, (c¢) the
extremely useful bit field manipulation instructions mentioned in the discussion
of Algorithm 4 in Chapter 4, (d) case statement support, (¢) queue instructions to
directly support operating system structures and (f) character string instructions
powerful enough to move a string in memory, translating on the fly and terminat-
ing if an out of range character is found. The increase in size of the instruction

set has improved performance over that of the PDF -11: to quote from [Str78]:

“First, despite the larger virtual address and instruction set support
for more data types, compiler (and hand) generated code for VAX-11
is typically smaller than the equivalent PDP-11 code for algorithms
operating on datatypes supported by the PDP-11. Second, of the 243
instructions in the instruction set, about 75 percent are generated by
the VAX-11 FORTRAN compiler. Of the instructions not generated,
most operate on data types not part of the FORTRAN language.”
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6.5 Big fast and simple machines

Large supercomputers such as the Cray series of machines are designed
for extremely fast clock cycles. This requires the use of ECL and (in the future)
Gallium Arsenide devices, which consume large amounts of chip area and power.
These high speed technologies usually only offer SSI and MSI complexity parts.
Seymour Cray, the principal designer of the Cray machines espouses a philosophy
of ‘big fast and simple’ which rejects clever use of complex instructions in favour
of simple high speed design and the application of large scale pipelining. Such

vector processors are considered in more detail in Chapter 7.

6.6 Register and stack based machines

The traditional Von Neumann machine has a fixed set of internal regis-
ters each with a unique address, and a large main memory which is also arranged
as a vector of uniquely addressed cells. Work on compilers, especially for the
Algol descended languages emphasised the naturalness of the stack structure for
expression evaluation and re-entrant procedure calling. Coupled with the need
for reentrant and nestable interrupt service routines, this has forced almost every
new commercial architecture since 1970 to have at least rudimentary hardware
for stack implementation.

Some machines, notably the Burroughs mainframes, take the concept
a step further and dispense with most visible internal registers, implementing a
unified stack scheme that combines both internal registers and main memory into
a single stack. No absolute addressing is required since all variables are stored
relative to a Frame Pointer. Retrieval of non-local variables will require chaining
back through a series of stack frames using the nested Frame Pointers. When the
internal register based stack is full, the hardware automatically writes part of it
to main memory. [Mye77]

Using a pure stack architecture in this way completely removes the reg-
ister allocation problem which is possibly the major concern of compiler writers.
Indeed, the low level language C even provides the user with a directive that may
be used to warn that a particular variable will be frequently accessed and should

therefore be put in a register if possible.
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6.7 RISC machines

6.7.1 IBM

The first true Complex Instruction Set Computers (CISC) were probably
the IBM 360 series of mainframes, that made extensive use of microcode to provide
powerful machine code instructions. As hardware costs came down and software
production became recognised as the real bottleneck to computer development,
it was natural for more and more software functionality to be embedded directly
in the hardware. The average instruction execution time may have risen, but
throughput increased.

In 1975, a team at IBM was developing a fast controller for a large tele-
phone exchange. Later the controller was developed into the IBM 801 machine
(which was never sold commercially). During the development of the machine the
design team had examined traces of executing programs on conventional machines
and avoided implementing rarely used instructions. They used a fixed instruction
format that allowed high speed decoding, and fast memory that allowed an in-
struction to be executed for every machine cycle. The lack of microcode allows
straightforward pipelining techniques to be implemented and can significantly im-

prove interrupt response.

6.7.2 Berkeley

The availability of VLSI CAD tools and fabrication facilities to academic
researchers has given rise to most of the major RISC developments. The Berkeley
RISC I and II machines were based on the IBM work. RISC I suffered from
a design flaw and therefore did not meet design goals. The modified RISC II
processor is a register based machine fabricated in 2 micron NMOS. It has 39
opcodes, a 32-bit virtual address space and supports 8, 16 and 32 bit datatypes.

A major feature of the processor is its overlapping window register ar-
chitecture. RISC I has 138 registers of which only 32 are visible at any one time.
The first ten registers are always visible and are used for global data storage. Ten
other registers are available in each window for local storage. Another ten are re-
ferred to as ‘overlapping’registers. Five of these contain parameters passed from
the procedure above and five for parameters to be passed to the procedure beloW.
These overlapping windows are automatically updated at procedure activation

and return.

This arrangement has two important advantages over a typical processor
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with 32 fixed registers. Firstly the large register set allows more data to be held
local to the processor, significantly reducing main memory cycles. The register is
faster than a local data cache. Secondly, the overlapping windows reduce the need
to save registers in main memory at procedure entry, i.e. the calling procedure’s
context is saved using a register level type of memory management unit. This
again has the effect of reducing main memory cycles. RISC I procedure activation
typically requires 2fis against the 20ps required by a VAX 11/780. This is critical
for RISC machines as the reduced instruction set implies more use of procedures
to construct complex sequences out of primitive instructions.

Several workers have suggested that the excellent performance of the

RISC I and II machines is directly attributable to this register arrangement.

“The Berkeley group has responded by agreeing that a significant por-
tion of the speed is due to the overlapped register window. However,
the group notes that critics have ignored a key point in the design —
that a drop in control logic due to the reduced set of instructions
(from 50 percent to 6 percent) created space for the expanded number
of registers in the first place.” [Mar84]

In essence, their philosophy is to trade off microcode ROM against program avail-
able register storage. However this is clearly unnecessary since the RISC I and
II chips are not high density designs. RISC I is a 44,500 transistor chip. Chips
with 1,000,000 transistors on board are within the capabilities of current produc-
tion technologies — the midrange T414 Transputer contains 150,000 devices — so
there would be no problem in retaining the large control blocks needed for CISC
designs and adding the novel large scale register sets.

The Berkeley team has also implemented a chip called SOAR (Smalltalk
On A RISC) and a symbolic processor called SPUR (Symbolic Processing Using
Rises) designed to form the basis of a multiprocessor LISP workstation. SPUR
comprises a three chip set (cache controller, CPU and FPU) fabricated in 2 micron
CMOS. The CPU is similar to RISC II but with a 512 byte instruction cache, a

four stage pipeline, a coprocessor interface and support for tagged data.

6.7.3 Stanford

A similar early project at Stanford resulted in the MIPS (Microprocessor
without Interlocked Pipeline Stages) processor. The emphasis in MIPS is on
pipelining and advanced compiler technology rather than large register banks.

There is a five stage pipeline composed of instruction fetch, instruction decode.
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operand decode, operand store/execute and operand fetch components. Each 32-
bit instruction word may hold two instructions, and instructions typically require
two cycles to execute. Pipelining complicates the handling ofnon-linear sections of
code such as jumps, branches and procedure calls. A major effort in the Stanford
project was to investigate the reordering of code generated by the compilers to

improve instruction packing and to support ‘delayed branching’.

6.7.4 Inmos Transputer

The Transputer is a stack based RISC. The T414 device contains 2K
bytes of 50ns RAM which allows 10 MIPS operation and is also available for
stack storage. The Transputer can operate at up to 10 MIPS from this internal
RAM because of the 20MHz processor-memory bandwidth. This reinforces the
assertion that availability of opcodes and data at high speed is the critical factor,
and the existence of a simplified instruction set is merely a side effect of the need
to reserve large parts of the chip for memory. Since the Transputer is stack based,
the non-generalities of the Berkeley window register design, i.e. lack of overall

storage space and inappropriate register partitioning, are not present.

6.7.5 Other commercial designs

The MIPS project has yielded a commercial machine (also called MIPS)
which has recently been adopted by Digital Equipment Corp. for their work-
station range. Other commercial RISC processors include the IBM RT/PC, the
HP Spectrum range, the Inmos Transputer [Whi85], the Acorn Rise Machine and
Sun Microsystems SPARC architecture. Texas Instruments and CDC are jointly
involved in a DARPA project to produce a radiation-hard GaAs RISC processor
with a clock speed of 200MHz.

6.8 RISC machine common features

The discussion of MIPS rate in Section 3.6 shows that a simple MIPS
comparison across different architectures is dangerous, especially when the RISC
machines are specifically designed with very high execution rates but instructions
with very low semantic content.

It is difficult to be exact about what constitutes a RISC architecture but

the following features seem typical:

1. No microcode — all instructions are hardware encoded
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2. Load/store architecture no memory to register or memory to memory

operations other than data transfer

3. Large register sets necessary to support efficient load/store architecture
4. Primitive addressing modes as a result of load/store architecture
5. Simple instruction decoding, often fixed field

There are exceptions to this list: the Inmos Transputer is a stack based architec-
ture and the Stanford MIPS machines do not have especially large register sets

but rely on large scale pipelining to improve throughput.

6.8.1 Single instruction per cycle execution

The overall aim of the RISC designer is to produce a machine that exe-
cutes one instruction per main memory cycle. Removal of microcode and complex
instructions enables one instruction per cycle operation to be obtained using sim-
ple design techniques, but pipelining, the use of large register sets and powerful
code generation techniques in compilers can all be applied to complex machines so
that they can also execute an instruction per cycle. The higher semantic content

of a CISC instruction should then provide higher overall throughput.

6.8.2 Processor memory bandwidth

RISC machines can match the throughput of more complex processors
at lower cost and with less design time required, so they may triumph for eco-
nomic reasons. Ultimate high performance may be obtained by applying RISC
type techniques (large register set, pipelining, reducing main memory accesses)
to CISC machines. The limiting factor on performance will be the speed with
which operands can be fetched from relatively slow main memory, i.e. the pro-
cessor memory bandwidth. Although the large RISC 1 type register sets have
been demonstrated as sufficient for a variety of applications [Rob87] in an image
processing environment, data fetching will still dominate unless the processor has

an internal register set two orders of magnitude larger than today’s RISCs.

6.9 Software requirements for image processing

In her monumental work ‘Programming Languages: History and Funda-

mentals’ [Sam69] Jean Sammet mentions some 120 languages known to have been
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implemented, and that was only at the end of 1967. She was aware of at least
as many unimplemented proposals, and in the intervening period it is likely that
the rate of production of new systems has significantly increased. There seems
to be a new language inside every systems programer trying to get out. When,
in 1976 the US Department of Defense conducted a survey of the programming
languages in use for military applications, they counted over 400. At the time,
they were spending over three billion dollars a year on software [Ich84]. It was
this that spurred on the development of Ada.

There have been attempts to define ‘doomsday’ languages (eg. PL/1)
which attempt to be all things to all people, not by implementing unified funda-
mental concepts, but by layering features from several language traditions with
possible overlap of structures. In the case of PL/1 this resulted in a language so
large and cumbersome that special subsets had to be defined so that the over®
worked programer could handle the complexity.

The major requirement for safe and efficient program design is disci-
pline. This should be coupled with programming tools that are as simple as is
commensurate with the job in hand.

Multiplication and overlap of concepts and their implementation within a
programming language provides more possibilities for side effects, i.e. unexpected
behaviour of one part of a program due to a breakdown in a completely different
part. This gives symptoms that show no simple connection with their cause, and

makes the program very difficult to debug.

6.10 Orthogonality

It is useful to distinguish between feature oriented and unified systems.
Although the human is capable of storing prodigious amounts of information,
programming systems that require access to many facts and concepts appear to
overweigh the programmer so that even experts rapidly get to the point that they
cannot remember the command for this or that operation. Although mnemonic
or preferably English names help, it is desirable to minimise the amount of in-
formation required to use a system. The only way to minimise the load on the
programmer without restricting the utility of the environment is to unify various
features into a more general command with natural modifiers. [Hoa81] says:

“(This) method is far more difficult. It demands the same skill, de-

votion, insight, and even inspiration as the discovery of the simple
physical laws that underlie the complex phenomena of nature. It also
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requires a willingness to accept objectives which are limited by physi-
cal, logical, and technological constraints, and to accept a compromise

when conflicting objectives cannot be met. No committee will ever do
this until it is too late.”

6.11 Languages and programming environments

In the not too distant past all programs were submitted in batch form
and there was no direct interaction with the system. Any data had to be included
after the program deck, and lineprinter output would be received back anything
up to several days later. It is not hard to see why assembly language program-
ming had such a long development cycle under such conditions. Much of the
history of programming systems since then has concerned the improvement of the
development cycle, both by speeding the edit-compile-run loop and by producing
higher level languages in which to express the algorithm. This may be seen as the
adaptation of the machine to the thinking patterns of the human, rather than the
human having to accommodate to the machine. Such operating systems and high
level languages exist to hide the inner workings of the processor from the human,
preferably without introducing too many inefficiencies.

The second thrust of language development is the design of more pow-
erful notations which actually help the programmer’s thinking. The whole of
mathematics may be viewed as the search for more elegant and compact nota-
tions for the description of problems, for without a notation there is no well defined
problem statement.

“By relieving the brain of all unnecessary work, a good notation sets
it free to concentrate on more advanced problems, and in effect in-
creases the mental power of the race. Before the introduction of the
Arabic notation, multiplication was difficult, and the division even of
integers called into play the highest mathematical faculties. Proba-
bly nothing in the modern world would have more astonished a Greek
mathematician than to learn that ... a large proportion of the popu-
lation of Western Europe could perform the operation of division for
the largest numbers. This would have seemed to him a sheer impossi-
bility. ... Our modern power of easy reckoning with decimal fractions
is the almost miraculous result of the gradual discovery of a perfect
notation.” [W hill]

6.12 Image processing with conventional languages

Image processing is extremely data intensive, and code often contains

many small loops. Even if these characteristics were radically different from nor-
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mal programming, the design of a new language would not be justified. Instead,
standard techniques for solving those problems should be developed and built into
existing languages, either in the form of a macro preprocessor or procedure calls.
If already existing language features or philosophy block this ‘stepwise refinement’
approach then a new language may be called for, although this may only indicate

that the base language was a bad choice.

6.13 PPL2

PPL2 is a special purpose image processing language developed in this
laboratory [Coo83a] and syntactically based on Algol-68. Apart from predeclared
variables representing the frame store registers, the only novel programming struc-
ture of the language was the use of a [[ ... ]] construct to denote the application
of a window operation to the image. In a conventional language this would be
specified using two nested DO loops. The language was very small and did not con-
tain the semantic richness of Algol-68. Integer only arithmetic was available, the
procedure call mechanism was implemented via macro text substitution without
parameter passing, variables were not predeclared with all the attendant insecu-
rities this brings and source code was limited to 8K byte of text with no linking
to other PPL2 programs or to routines written in other languages. There was
no file handling, and screen I/O was rudimentary. The storage space available
for variables was also limited but more seriously the register allocation algorithm
used for arithmetic expression evaluation could cause run time failures due to lack
of spare PDP-11 registers.

The language was interpreted apart from sections within a [[ ... ]| con-
struct which were compiled and then discarded at the completion of the scan.
The [[...]] construct only supported top left to bottom right and bottom right to
top left scans, which meant that routines requiring one of the eight possible scans
(e.g. convex hull programs) had to be constructed out of DO loops anyway. Any
programs written in the language had to be converted to a conventional high level
language if a compiled speed implementation, or a portable one, was required.

One of the most serious problems with the language was that its imple-
mentation was dependent on Cook’s frame store. Because of the unorthodox way
in which this was interfaced to the host PDP-11, PPL2 had to directly manip-
ulate the memory management registers, risking disastrous interaction with the
operating system. As a result, a complete rewrite of the system would have been

required even to move it on to a Q-bus based PDP-11 containing an IPOFS or
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V1 frame store, which follow PDP-11 hardware configuration rules.

Of these deficiencies, the lack of a recognisable procedure calling mecha-
nism was the most awkward. In spite of this, PPL2 was used extensively and suc-
cessfully for rapid prototyping of image processing routines. A particular strength
was the capability to experiment quickly on problems brought to the laboratory
by industrial and other visitors. PPL2 was highly interactive, containing its own
simple editor and run time system. In use it was far better than the conventional
macro based languages available on commercial image processing systems at that
time (1980-83), such as the BRSL Autoview Viking machine which is based on
Batchelor’s work. This is because in spite of its limitations PPL2 was a general
programming language in which novel image processing algorithms could be ex-
pressed, whereas Autoview programs are constructed by concatenating predefined
operations with consequent lack of generality and efficiency.

The case for a highly interactive programming system which has pre-
defined knowledge of the available hardware is clear, even though PPL2 was an

unsatisfactory implementation.

6.14 PIPE

PIPE (Pascal Image Processing Environment) is a programming envi-
ronment designed and implemented by the author to replace the PPL system.
Although it lacks the interactive features of PPL, it gains by making use of stan-
dard Pascal and conforming to operating system protocols. PIPE has been exten-
sively used in this laboratory and was used to implement the project described in
Chapter 9.

The non-standard hardware interface of Cook’s frame store required pro-
grams written in conventional high level languages to directly manipulate the
memory management unit. PIPE aims to hide these manipulations from the
user, and to ease the transition from PPL programming to conventional large
scale programming in Pascal. The Pascal compiler in use. Parallel Pascal [Uni81],
includes the multitasking primitives of Modula [Wir77] which can be used in the
programming of the IMP system described in Chapter 9.

PIPE comprises:

1. a modified Run Time Library which initialises the framestore and restores

the operating system environment at the end of a run,

2. a set of Pascal source preludes containing definitions of hardware registers
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and data types,

3. an object code library containing picture I/O routines and timer support,

4. a set of stand alone utility programs which may be run from the operating

system command line,

5. a command file build utility called NEW. This is used with template files to

generate an indirect command file that will edit, compile, link and run the

current program.

The facilities of the Pascal compiler and operating system may be used to maintain
object code libraries and to link with machine code and FORTRAN routines.

PIPE has been implemented for Cook’s frame store, IPOFS and VI.
The modified run time library is not required for IPOFS and VI since these
do not require memory management manipulations. Apart from the hardware
programming differences noted in Chapter 5 PIPE provides full portability of
source programs between each of these systems. All the algorithms in Chapter 4
were originally implemented on Cook’s frame store and were ported to VI simply
by changing the coordinate register loop counters to take account of V i’s eight-bit
coordinate registers.

Although the NEW utility automates the various steps in the building
of a PIPE program, the system lacks the interactive ‘feel’ of PPL because the
compile-link stage can take several minutes for large programs. However, PIPE
suffers none of the operational limitations of PPL. The [[...]] construct is available
with the use of an optional preprocessor, but in practice this has not been used
because users prefer to insert the nested loops directly rather than accept the

compile time overhead of the preprocessor.

6.15 PIPE-32

The V2 and V3 framestores described in Chapter 5 are supported on
the VAX with a software package called PIPE-32 [Joh88a]. This provides a full
set of data types, framestore control routines, transfer routines and VMS utilities
for the framestore user. Interlocked access to multiple framestores is supported,
and programs are dynamically reconfigurable from the command line for different

framestores.
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6.16 A specification for interactive image pro-

cessing

An interactive image processing language system based on a large subset
of Pascal is under development. The PIPE system provides a useful environment
for eventual implementation of algorithms but is slow and unwieldy for simple
experiments and algorithm development. This is partly because the particular
Pascal compiler in use is very slow (although it does produce efficient code) and
partly because of the batch oriented edit-compile-run cycle.

Interactive programming has been available using the PPL2 system de-
scribed above, but the lack of file handling, procedures, local variables, library
facilities and real arithmetic coupled with the limited program and variable space
and the fact that the entire PPL system must be resident for a program to run
meant that serious applications were difficult or impossible to develop. Conver-
sion of programs to a more normal system is not easy because of the Algol-68
derived syntax and especially the macro oriented calling convention.

W hat is required is an interactive system that is compatible with a full
blown language compiler, so that if a problem becomes too large for the system,
the progranuner can transfer to the main compiler. A problem could be broken
down into subproblems which may be individually programmed interactively and
then gathered together by the main compiler. This is an attempt to provide the
‘best of both worlds’ without the need to develop a completely new language.

The system is called Pascal-I (for Pascal-Image processing) or PI and is
conceived as a direct replacement for PPL. Syntactically it is a strict subset of ISO
Pascal [Coo083b]. However the compiler recognises several system procedures and
reserved variable names that are not in the standard Pascal symbol table. These
extra variables and procedures may be thought of as being defined in a system
prelude compiled in front of the user’s program. PPL2 system utilities will be
implemented as PI procedures, available at program level and interactively from
the keyboard.

Interaction will be provided through the use of an incremental compiler
and a screen editor outwardly similar to EDT, the VMS system editor. Programs
will be compiled one procedure at a time and stored for later execution. When
not running a program, PI will present the user with a list of known procedure
names. Any procedure declared at the global level is displayable, along with the
prewritten routines. The user may run any of these procedures by placing the

cursor over the name and hitting a non cursor key, or by explicitly entering the
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name in the system prompt area.

The present prototype is based on Wirth’s Pascal-S [WirSl] with the
code generator modified to produce PDP-11 and subset VAX-11 machine code.
The system is being written in Pascal and is being developed on a MicroVax II.
In future it is intended to add features to support parallel programming using
the Modula-1 model, and features to support array processing for the NPL LAP

machines [McC85] based on the Actus array processor language [Per79].
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Chapter 7

Parallelism in hardware

n

. recollect that the multiplication of two numbers, consisting each
of 20 figures, requires at the very utmost three minutes.

. when a long series ofidentical computations is to be performed, such
as those required for the formation of numerical tables, the machine
can be brought into play so as to give several results at the same time,
which will greatly abridge the whole amount of the processes.”

General Menabrea on Babbage’s Analytical Engine, 1842

7.1 Introduction

This chapter first reviews parallelism from a structural viewpoint, that
is from a consideration of the underlying hardware. The next chapter looks at

software constructs for the control of parallel machines.

7.2 Spatial parallelism within the CPU

All real computers exhibit some degree of parallelism. Usually this is
in the form of multiple bit Arithmetic and Logic Units (ALUs) with associated
multiple bit memories. The width ofthe ALU, memory and communication buses
define the word size of the processor. However, parallelism exists (at least con-

ceptually) at an even lower level within the ALU itself.

7.2.1 Bit level parallelism

In the limit the ALU may be only one bit wide, i.e. the processor is bit-
serial. In the past some conventional commercial machines have been bit-serial
for cost reasons such as the PDP-8S and its close cousin the Digico M16-S. Some

specialised machines such as the PDP-14 [BM78], an industrial controller designed
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Figure 7.1: Parallelism within the full adder

to replace hardwired relay logic controllers in an industrial environment, also used
bit-serial processors.

Within the one bit wide ALU a variety of configurations are possible.
Typically a single full adder will be used, but it is clear that a single NAND gate
and a controlling state machine would provide a general purpose processor since
all logic equations may be implemented by a set of NAND gates or by feeding the
terms through a single NAND gate with appropriate sequencing and storage of
intermediate results. The use of a full adder provides parallelism (Figure 7.1).

The complexity of the ALU could be described in terms of NAND (or
NOR) gate equivalents. This does not usually translate directly into a gate count
of the actual device since most integrated circuit technologies provide logic prim-
itives more complex than a single NAND gate. In TTL the multiple emitter
transistors provide an n-input NAND primitive. ECL logic provides NOR and
OR complementary outputs at the most basic level, and CMOS technology pro-
vides arbitrary logic functions using 2n transistors for a simple n-input gate, as
well as ‘trick’ circuits such as the transmission XOR gate [SOA73] described in
Chapter 10.

Most array processors (discussed below) use bit serial processing ele-

ments to reduce the hardware cost of the machine.

7.2.2 Word level parallelism

As noted previously, the word size of the processor’s ALU provides some
parallelism. The actual implementation of the ALU can also provide parallelism.

In a simple ripple carry adder the bits are in a sense evaluated sequentially because
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Figure 7.2: The CDC 6600 processor

a high order bit cannot settle until the carry has been produced from a low order
bit. The carry path can be speeded up using various adder designs such as the
carry lookahead adder [FP87], the carry select adder [FP87] and the two stage
adder [WE85]. For VLSI implementation the dynamic Manchester carry adder
[WEB8S5] provides a fast MOS adder, and the binary lookahead carry adder uses a
binary tree of adders to provide carry propagation times proportional to log] of

the adder size.

7.2.3 Multiple functional units

The processor may well contain other logic blocks to augment the typical
ALU operations of integer add and subtract and bitwise logical operations. Typ-
ically these would include combinatorial multipliers, barrel shifters, and floating
point units. Simple machines do not usually allow concurrent operation of these
blocks due to problems associated with synchronising the available resources and
saving the machine state efficiently in the event of an interrupt or exception.

In some computers, notably the CDC 6600 and 7600, multiple functional
units are employed within the processor and may operate concurrently. The 6000
series machines used a status checkhoard to indicate the availability of resources. If
an instruction required a block that was already in use, the conflict was recorded
in the checkhoard and the instruction queued for deferred execution. Instructions
could be deferred several times. This mechanism provided a hardware interlock

system. The CDC 6600 includes ten functional units and 24 registers (Figure 7.2).
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Figure 7.3: Three stage arithmetic pipeline

7.2.4 Sequencing and pipelines

The efficient use of a machine such as the CDC 6600 depends on the
availability of many independent calculations embedded in the stream of machine
code. A calculation obviously cannot be started until its operands are available.
In the worst case, a sequence might require each functional unit in the processor in
turn, with the operands at each stage of the calculation depending on the results
of the previous one. In this case only one functional unit can be used at a time.

If however, such a sequence is to be repeated many times using different
data then the functional units could be sequenced to act as a pipeline. Consider

the following program fragment:

{1} FOR i:=1 TO max.arr DO
{2} f:=(3*arr][i]

{3} +7)

{4} /1y

This could be implemented using a pipeline of 3 units with data latches between
each stage:

With such an arrangement, lines 2-4 would execute in three cycles for
a single datum. When i is 1, arr[l] is supplied to the inputs of the multiplier
during cycle 1. The result 3*arr[1] is supplied to the adder input during cycle
2, and without pipelining the multiplier would be idle. If, however, arr[2] is
supplied to the multiplier during cycle 2 then multiplication of the second array
element is overlapped with addition.

Clearly, if max_arr is greater than or equal than the number of stages
in the pipe then there will be some time during the execution of the loop when
all units are doing useful work. It is also clear that for an n-unit pipe there will
be 71 —1 cycles at the beginning and n —1 at the end when the pipe is filling

or draining during which some units will be idle. For an n stage pipe and m
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operands all the data will have been processed after m + n —1 cycles. There are

n X(m --n —1) operation slots available with n function units in m + n —1 cycles,

so the functional unit utilisation is m/(m -fn —1) which will be close to 1 for
n.

Historically, pipelining was first used to speed instruction and operand
fetches rather than within the processor core itself. Typically pipeline stages
implement instruction fetch, instruction decode (including address mode calcu-
lation), operand fetch, execution and storage of results. On multiple address
architectures extra address calculation stages might be used. On linear sequences
of code, the instruction pipeline can be kept filled, but any branching in the con-
trol flow will require the pipeline to be flushed and refilled. This results in loss of
throughput. Modern compilers for heavily pipelined machines such as the Stan-
ford MIPS RISC processor [Mar84] attempt to reorder the execution of loops so
that calculations that do not modify the loop decision operands are brought to
the end of the loop, and the branch decision is taken n cycles early where n is the
number of cycles in the pipe. In this way what would have been wasted cycles
during the pipe flush can perform useful work. This allows instruction pipes to

approach 100% utilisation even in the presence of branching code.

7.3 Vector processors

Machines with arithmetic pipelines such as the CDC 7600 operate at
peak efficiency when supplied with highly repetetive sequences of instructions
that map well onto the pipeline. Vector machines such as the CDC STAR 100,
its descendants the CYBER 203 and CYBER 205, the TIASC, the Cray series
and the Fujitsu VP-200 provide explicit vector instructions with associated vector
registers. A single vector instruction replaces a whole sequence of scalar instruc-
tions that need to be repetitively fetched from program store on the CDC 7600.
The vector registers allow intermediate results to be held in the central processor
rather than requiring main memory transfers.

The performance of vector processors is heavily dependent on the match
between the vector and pipeline lengths. The performance ofthe Cray-1 can range
from 2.5 to 153 Mflops [HJ81]. Arithmetic utilisation rises as the vector length
approaches that of the pipeline and then halves as the vector length becomes
[+[length of pipeline) due to the load and flush phases. As a result throughput
rates show discontinuities where the vector length is around a multiple of the

pipeline length.
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7.4 Parallel processor classification

7.4.1 Stream classification

The previous levels of parallelism have all been applicable to the execu-
tion of a single program on a single data stream. Flynn defined four categories of

computers in terms of their instruction and data streams:
1. SISD — Single Instruction, Single Data stream computers such as the VAX,

2. SIMD — Single Instruction, Multiple Data stream computers such as the

ICL DAP [Red73],

3. MIMD — Multiple Instruction, Multiple Data stream machines such as the
IMP system to be described in Chapter 9,

4. MISD — Multiple Instruction, Single Data stream of which no practical

examples exist.

Fountain [Fou87] claims that Flynn designated pipelined systems as MISD because
multiple instructions are being applied to the same data items, but this seems no
more valid than claiming that a non-pipelined system is MISD — each datum is
only being operated by one functional unit at a time whereas true MISD implies
that multiple instructions are operating on the same datum simultaneously. A
dual ported cache memory might be interpreted as a true MISD ‘processor’ in
that multiple comparators might be testing the same tag simultaneously, but the
author is not aware of any real implementations of such a device. Indeed Hockney
and Jesshope [HJ81] say that the class seems to be void, and Hwang and Briggs
[HB85] say that “No real embodiment of this class exists”. [HJ81] notes that
the original paper by Flynn [Fly72] “states that it includes specialised streaming
organisations using multiple instruction streams on a single sequence of data.
However no examples are given”. Most authors prefer to consider pipelining as
being different in nature to the organisations described by Flynn’s taxonomy. In
this work the term spatial parallelism will be used to describe the topological
layout of processors as described by Flynn’s classification, and the term temporal

parallelism to describe pipelining.

7.4.2 Functional unit classification

Flynn’s elegant classification into streams which yields three useful classes

is insufficiently detailed to do other than sketch the architecture of a real system.
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Shore [Sho73] described six classes of machine based on their constituent parts
and interconnection. Machine I corresponds to the conventional Von Neumann
architecture. Machine II reads a bit slice from all words in memory and operates
bit-serially rather than fetching data a word at a time. Array processors such as
the ICL DAP and CLIP-4 fall into this category. Machine III is a combination of
I and Il with separate processors for words and bit slices. Machine IV has a single
control unit but multiple processing units. However no inter-processor communi-
cation is provided except via the controller. A machine such as the ILLIAC-IV
would be type IV if all inter-PE communication paths were disabled. Machine V
is the same as machine IV but with inter-PE communication added. Machine VI
corresponds to the associative processors that will be described below. They are
characterised by having processor logic distributed throughout the memory.

Shore’s classification is not much more detailed than Flynn’s and lacks
the elegance or mnemonic value of the class names. It does not address the issue
of pipelining and does not really address the MIMD class. Indeed classes II to V
are merely subdivisions of Flynn’s SIMD class.

Hockney and Jesshope [HJ81] developed a rather baroque notation for
writing detailed structural descriptions of the number of instruction, execution
and memory units and the manner of their interconnection and control. Intercon-
nections are represented using a notation analogous to that of a chemical formula.
The Backus Naur Form [BBG*60] definition of their notation requires about two
pages, and can be used to construct extremely complex expressions. The simplest

example is that of a von-Neumann serial machine:
C=I[E-M]

This defines the computer C to be a single instruction processor | con-
trolling the unit in the brackets, being a single execution unit E connected by a
single data path to a single memory bank. The notation is like a combination of
the structural notation used by chemists and the processor-memory-switch (PMS)
notation of Bell and Newell [BN71]. The advantage of this notation over the other

classifications described here is that pipelining is explicitly represented.

7.5 Array processors

An array processor is usually taken to be a system of the strict SIMD
type, i.e. a single control unit (CU) broadcasting instructions to a set of processing

elements (PEs) which operate in lockstep. The advantage of this arrangement is
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that by definition all processors are synchronised so that there can be no memory
contention or deadlock problems. An array processor could be thought of as a
simple sequential machine that includes unusual data types, such as the bit slice
vector or bit slice plane, amongst its base operands.

Some recent designs such as PASM [KS86] and CLIP-7 allow the array
to be partitioned into a number of autonomous SIMD arrays. This is important,
because in a conventional SIMD machine the only way of conditionally processing
parts of the data set is to disable the processing elements corresponding to the
unprocessed part. SIMD PEs are usually very simple bit-serial devices, and the
throughput of the array is sustained only through the high degree of parallelism.

Image processing is one of the main applications for such machines. For
an algorithm to execute efficiently on a SIMD processor it must (a) operate on
data which is highly structured in a topology similar to that of the array itself, and
(b) require only short range communication between processing elements. Small
window operators such as the Sobel edge detector working on square arrays of
pixels fit these requirements exactly.

Fountain identifies three active SIMD projects prior to 1975 — SOLOMON,
the ILLIAC machines and the early CLIP machines. The basis for these was
Unger’s paper [Ung58] which described a computer oriented towards spatial prob-
lems. His abstract machine showed the classical SIMD features, namely broadcast
of instructions from a single Control Unit to multiple lockstepped PEs, each of
which had its own local memory and was connected in a two dimensional array.

The second generation of systems is characterised by machines such as
the ICL DAP [Red73], CLIP 4 [FG80] and the Goodyear MPP [Bat80]. These
are all large arrays of bit-serial PEs and have all been used extensively for image
processing. They use mature technology and have been commercially successful.
Other interesting systems include the GAPP chip from NCR [NCR84], GEC’s
GRID processor [RM82] and the MIT Connection Machine [Hil85].

A third generation of arrays that provide some local autonomy are cur-
rently being developed. These include CLIP 7 [Fou85] and the Purdue University
machine PASM [KS8&6].

7.5.1 Solomon

In the early 1960’s a machine called SOLOMON (Simultaneous Op-
eration Linked Ordinal M Odular Network) was described by workers from the

Westinghouse Corporation [SBM62,GM63]. Bit serial processing elements were
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arranged in a four connected mesh with duplication of routing functions so that
each input of the ALU could be connected independently to any of the available
data sources. The maximum array size was to be 32 x 64, and each PE had 8K
bits of storage (x.e. a total of 16M bits for a maximally configured array). The
control unit would accept variable length bit-parallel instructions such as multiply
and divide and generate the necessary bit-serial operations for broadcast to the
array. It is not clear that SOLOMON was ever completed, and the machine does
not appear to have been used for image processing. The design was clearly very

ambitious, and this may have contributed to its demise.

7.5.2 ILLIAC III and IV

The ILLIAC III was a special purpose machine for analyzing bubble
chamber photographs to aid the search for particle collisions. The machine de-
scribed in [McC63] had an array of 32 x 32 special purpose PE’s that could be
eight or six-connected to their nearest neighbours. The eight neighbour inputs
were routed via an OR gate to an eight-bit shift register. The shift register outputs
were ANDed together and passed to the PE output for connection to neighbours.
One end of the shift register was used for data I/O to the local memory which
could act associatively. The prototype was damaged in a fire and the project
abandoned in 1967.

ILLIAC IV was the first machine in the world capable of sustaining
average execution rates in excess of 20 Megaflops. It was designed and built
by the University of Illinois and the Burroughs corporation. Between 1972 and
1982 it formed one of the most powerful service nodes on Arpanet. The machine
was an ambitious ‘one off” which never reached its full specification but which
nevertheless has influenced all later supercomputer designs and perhaps more
importantly provided the test bed for several new ideas in programming languages
and algorithm design.

The machine provided an array of 64 PEs arranged as an 8§ x 8 matrix.
The last PE in each row could be connected to the first in the next row so as to
form a 64 X 1 array suitable for vector operations. Remarkably, the PEs were
powerful 64-bit processors capable of 8, 32 and 64-bit arithmetic with on-board
barrel shifters and floating point units, and 2K 64-bit words of local memory.
This is in marked contrast to the simple bit-serial PEs used in most other array
processors. When used in 32-bit mode, each PE could operate on two independent

data elements, providing a 128 element array. Basic local memory access time



152

was 188ns, but contention between PEs for memory could raise this to 350ns.
A Burroughs B6500 was used as a front end for compilation, loading and data
transfer.

One of the strengths of the ILLIAC-IV was its backing store. A fixed
multi-head 20M byte disk was used with an average access time of 20ms and a
500MHz transmission bandwidth. A good programmer could maintain a through-
put of more than 7 million words per second, allowing the disk to be used as part
of the primary store.

ILLTAC-IV was a very expensive machine. Development and construc-
tion cost around $40 million. Running costs were around $2 million per annum.
One of the reasons for these high running costs was the absence of Error De-
tecting and Correcting (ECDC) circuitry. The entire system contained around 6
million components, and the MTBF was measured in hours, not days. Extensive
diagnostics were run frequently and upon detection of an error the relevant PE
or control module was unplugged and subjected to detailed test offline on a sep-
arate diagnostic machine. New modules were available to maintain operations.
This lack of ECDC and the use of the (then) leading edge technologies such as
256-bit semiconductor memories must be seen as design weaknesses. Compare the
long development time with the four year development cycle of the Cray-1 vector
processor [HJ81] which used conservative technologies throughout and which has
been a major commercial success.

As well as being a SIMD array processor the machine could demonstrate
some concurrency. The master control unit was more like a small computer in its
own right, and the order code for ILLIAC-IV comprised two sets of instructions,
one for execution in the control unit and one for the array. Processing of these
two types of instructions could proceed concurrently.

Several programming languages were developed for use on ILLIAC-IV

such as Actus [Per79], Clypnir and CFD [Ste75] (an array processor FORTRAN).

7.5.3 CLIP 1-4

University College, London were also interested in detecting particle col-
lisions in bubble chamber photographs and demonstrated a 20 x 20 array called
UCPRI [DJT67]. This summed and thresholded 3 x3 and 5 x5 neighbourhoods
and could find sharp changes in line orientation.

CLIP 1 [Wat74] was a 10 x 10 four-connected mesh of very simple PEs

with no local memory. The PE function set was limited to extraction of closed
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loops of ones, extraction of ones connected to the image edge and extraction of
the outer edge of blocks of solid ones. Input was from a flying spot scanner via a
shift register. The outputs were displayed on an oscilloscope.

CLIP 2 [Fou87] which was completed in 1972 was a much more general
system comprising a 12 x 16 six-connected array of PEs containing two one bit
ALUs each capable of generating all 16 boolean functions of two variables. One
processor provided the neighbourhood output which was fed to the six neighbours
and the other provided an output which could be displayed or fed to one of two
image memories for use by later processing. Although the processors were more
general, there was no way of selecting data input from a particular direction since
all neighbourhood inputs were routed via an OR gate.

CLIP 3 [DWFS73] replaced the OR gate input selector with gated di-
rection inputs, so that the data source direction could be explicitly defined in
the machine code. A 12 x 16 array was built which supported both six and
eight-connected meshes. Each PE had 16 bits of local memory.

The early CLIPs were really only demonstration machines. Their appli-
cation was limited due to the small array size. CLIP 4 [FG80] was designed as
a 96 X 96 array of processors with functionality similar to that of CLIP 3. A
full custom integrated circuit containing eight PEs using about 3000 gates was
specified in 1974, but a full speed prototype array was not available until 1983
due to a series of problems with the chip fabrication. The CLIP 4 PE is similar to
that of CLIP 3 with the addition of a carry bit to assist in grey scale arithmetic.
The dual boolean processors were retained, and the local memory increased from
16 to 32 bits. The CLIP 3 analogue threshold gate was replaced by a simple OR
gate since a digital threshold gate would have consumed as much silicon area as
the rest of the processor.

CLIP 4 was available commercially from Stonefield Electronics and there

have been sales to the US military.

7.5.4 CLIP 7

The CLIP 7 chip is designed to support varying degrees oflocal autonomy
allowing some freedom from the confines of SIMD processing [Fou87]. It is a
word parallel device containing a 16-bit ALU capable of performing addition,
subtraction and all 16 bitwise functions of two variables, a 16 bit shift register to
support logical and arithmetic shifts and logical rotates, four 16-bit registers, a

16-bit C register that may be used for local function control or as a data register
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and an 8-bit D register for data I/O. Neighbourhood registers store data from the
eight connected neighbours and communication is via bit serial connections so as
to reduce the pinout of the device.

Apart from its word parallel structure, the main novelty of the CLIP
7 chip is its ability to locally modify the broadcast instruction stream using the
contents of the C register. An external pin is used to set the operation mode as
either global (in which case the C register is available for data storage and no
control modification occurs) or local. In local mode the contents of the C register

are used to control the following modifications:

1. disable PE — an activity bit can be set on carry, overflow, zero or sign and

used to disable the PE.

2. ALU operation — the carry input can be either the previous carry output
or the output of bit 2 (this is used for modulo 8 arithmetic which is required

for direction calculations).

3. register address — two bits of the C register may be used to address one of
the four data registers. This provides locally modifiable indexed addressing,
although with such a small register set its usefulness must be limited in a
single PE array. The prototype system uses two CLIP 7 chips per PE with

one dedicated to local address generation.

4. connectivity control — eight bits of the C register are used to enable the
eight-bit serial neighbourhood inputs. The bottom three lines can be used in

grey scale mode to address one ofthe eight on-chip neighbourhood registers.

The chips are being used to construct CLIP 7A, a 256 x 1 array of PEs. Each
PE uses two CLIP 7 chips, one to generate addresses for the 64K byte of local
memory and the other to perform the pixel calculations. It is intended that CLIP
7A will be the first of a series of machines that will be used to investigate locally

autonomous arrays and PE interconnectivity.

7.5.5 The ICL DAP

The DAP is an array processor add-on to the ICL 2900 range of pro-
cessors. The production system, first delivered in 1980, consists of a 64 x 64
four-connected array. Each PE contains a full adder, a carry bit, an activity bit
that may be used to disable PEs for conditional processing, a Q bit that latches

the sum output of the full adder and 4k bit of local memory. The first description



155

of the system was in 1973 [Red73] and a prototype 32 x 32 array built from MSI
TTL was available by 1976.

As well as the nearest neighbour connection network, the DAP has row
and column buses which may be used to broadcast data and instructions to large
numbers of PE’s simultaneously. The host 2900 sees the DAP as a normal 2M
byte memory array, and the row bus is used to access the local memory of 64 PEs
at a time, appearing as a single 64-bit word fetch to the 2900. This facility helps
overcome the inherent I/O problem of SIMD processor arrays.

The cost of a DAP in 1980 was about i°500,000 on top of the cost of
the host 2900, but the extra memory provided by the DAP would have cost a
significant part of this figure anyway [HJ81]. A VLSI implementation of the DAP
is now available from Active Memory Technology Ltd in the form of the MiniDAP
add-on to Sun and Vax hosts. It uses a CMOS full custom chip. There is a bipolar
version of the design (MILDAP) for military applications. The chips are intended
for use in 32 x 32 arrays. There has also been a proposal for a bit slice word

parallel processing element, but it is not clear if this design is going ahead.

7.5.6 The Goodyear MPP

The Massively Parallel Processor is designed to process LANDSAT-D
satellite images at real time speeds. This requires a processing rate in excess
of 10® operations per second [HJ81]. A clustering benchmark demonstrated by
Coodyear has achieved processing rates about 1400 times faster than a VAX
11/780. The machine is a 128 x 128 four connected array of DAP like processing
elements [Bat80]. There are no broadcast buses and data I/O is from the left
edge to the right. During I/O the MPP PEs act as 128, 128-bit shift registers.
There is a global broadcast facility. The major enhancement over the DAP PE is
the addition of a programmable shift register (analogous to the Q-register in the
2900 bit slice element) which is used to improve multiplication time using Booth’s
algorithm. The execution frequency of the array is IOMHz (the DAP runs at
SMHz, CLIP 4 at 2.5MHz) and it can perform a 32-bit floating point multiply in
60/i.s.

MPP is implemented using full custom VLSI with eight processors per
chip. Two external 4k bit RAM chips provide the Ik bit per PE storage. Since
the RAM is off chip, improvements in commercial memory technology will allow
increases in local storage. An interesting feature of the M PP is the provision of

four additional redundant columns that can be switched in after a failure in one of
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the normal columns. This should significantly increase the MTBF of the system.

7.5.7 The NCR GAPP chip

NCR has produced the first in a series of array PE chips, the Geometrical
Array Parallel Processor (GAPP) [DT84,NCR84]. The processor is a simple full
adder four-connected to its neighbours via a comprehensive switching network
and to 128 bits of local on-chip memory. Connection to external memory is
possible, but external cycles will be at least an order of magnitude slower than
local accesses. The first GAPP chip integrates 72 of these processors in a 6 x 12
matrix. This very high level of integration is expected to increase to a 2048 PE

chip by the early 1990°s. SMHz and IO0MHz parts are available.

7.5.8 The GEC GRID

The GEC Rectangular Image and Data processor (GRID) resulted from
collaboration between Southampton University and the GEC Hirst Research Cen-
tre [RM82]. It is intended to integrate 64 PEs (requiring some 50,000 transistors)
onto a single chip which will run at IOMHz. The PE is essentially conventional
with a single bit ALU and a block of local memory. The novel aspects of the
GRID concern its connectivity features. Firstly the local RAM is dual ported,
thus speeding two operand calculations. Secondly the individual PEs may be ad-
dressed using X-Y addressing to access a single PE and row/column broadcast
as in the DAP. Thirdly, although the array is basically four connected, the carry
bit can be routed to diagonal neighbours thus providing a limited eight connected
pathway. Finally a histogram bit H is present in each PE wired across the chip

as a shift register.

7.5.9 The MIT connection machine

The Connection Machine [Hil85] prototype contains 65536 PEs arranged
as a 12 dimensional n-cube. The attractive property of the n-cube connection is
that for a hypercube of dimensionality N each node is connected to N others and
the maximum number of links between two nodes is N. Each chip contains 16
PEs, and strictly speaking the hypercube connectivity is only present at the chip
level, i.e. between the 4096 chips (note that 4096 is 2*"). Within each chip 4 x 4
array of single bit PEs is connected via a message passing router chip. The router

can accept four messages per cycle, and will direct the messages off chip into the
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hypercube network if necessary. The machine is being commercially developed by

the Thinking Machines Corporation.

7.6 Systolic arrays

The term systolic array was coined by Kung and associates at Carnegie-
Mellon University [KL79]. In its purest and most generally understood form a
systolic array comprises a two dimensional array of non-programmable processors
acting like a two dimensional pipeline. The only control signal required is a clock.
Data is fed in at the edges of the array and passes through being transformed
en route. The technique is especially applicable to algorithms that require long
range calculations in the result such as matrix multiplication. The array needs
to be filled and flushed like any other pipeline, and as a result the technique
is most useful when high speed repetitive calculations are required. The term
systolic refers to the ‘pumped’ nature of the data pathways and is a reference to
the pumping action of the heart.

Recently, workers have produced more and more complex systems with
locally autonomous processors, inter-processor queues and local data loops. These
systems, typified by WARP [Kun84], are not easily distinguishable from more
general pipeline processors and it would perhaps be best to retain the term systolic
for the simpler non-programmable devices.

Simple systolic arrays are very amenable to VLSI implementation. The
primary constraints on any VLSI project are (a) transistor count, (b) pinout
and (c) routing requirements. In a macroscopic design active circuit elements
(transistors) are expensive and interconnect (wire) low cost. At the silicon level
the two dimensional nature of the medium along with the large relative size of
interlayer contacts means that wiring can consume a considerable area (typically
60% in a modern microprocessor [WE85]). Long distance wiring on the chip also
slows the cycle time of the device. To propagate a signal across a 10"mm die
such as that used for the device described in Chapter 10 can take more than 10
transistor switch times. The simple systolic array can be constructed from small
cells that butt together with no global wiring — a so-called tiling architecture.
Systolic arrays are also prime candidates for implementation using Wafer Scale
Integration (WSI) when that becomes technically feasible.

GEC at the Hirst Research Centre in association with the RSRE are
producing a set of bit serial systolic arrays including a correlator and a convolver

[MM82]. Workers at Purdue and Carnegie Mellon [Kun84] have shown how various



158

classes of algorithms may be automatically mapped onto systolic array architec-

tures.

7.6.1 Warp and PSC

Recent systolic work at Carnegie Mellon has concentrated on two more
general pipelined systems — the WARP pipeline processor and Programmable
Systolic Chip (PSC).

Warp consists of a linear pipeline of 32-bit processors buffered by FIFO
queues. Each PE contains a Weitek WTL1032 multiplier and a WTL1033 ALU
[Wei84b,Wei83b,Wei83a]. These are 32-bit IEEE standard floating point chips
which use a five stage internal pipeline to produce a new result every two clock
cycles. External pipeline registers are connected via a crossbar switch to a 4k X 32-
bit data RAM which can store intermediate results and lookup table coefficients.

The ten cell prototype is capable of IOOMFLOPS. A 5 x 5 convolution
kernel can be pipelined at the rate of one every microsecond, and a 512 x 512
image can be processed in about 250ms. The use of the Weitek units and the
FIFOs to smooth data transfer make Warp a very high performance scientific
processor which can perform pipelined complex FFTs at the rate of one every
615/xs. However, the excellent (and expensive) floating point capability is probably
overkill for most image processing applications.

The PSC device is intended to be used in two dimensional arrays that
are much closer to the original systolic concept than in the case of Warp. Each
chip contains an 8-bit ALU, an 8-bit input/16-bit output multiplier/accumulator,
three 8-bit data input ports and three 8-bit data output ports [FKM*83]. The
most intriguing feature of the chip is the provision of a 64 word writable microcode
store and an associated stack based sequencer with a 64 word register block for
data storage. This allows the processor to locally execute its own program, and
therefore is much more general than the CLIP 7 chip which only effectively allows
for local address modification and carry input control. In CLIP 7A all control flow
is still centralised in the classical SIMD fashion, although future versions of the

system may be partitionable in a manner similar to that of PASM (see below).

7.7 MIMD multiprocessors

It is difficult to present a systematic survey of MIMD systems because the

available degrees of freedom provide a very large space of possible configurations.
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In particular;

1. the processing elements are not usually limited to the simple bit-serial de-

vices that array processors favour,
2. more general interconnection schemes are used,

3. varying degrees of coupling exist between the processing elements.

In an array the PEs are in lockstep, i.e. they all share the same instruction
stream. This is the case even in the case of CLIP 7A where the instruction stream
is only locally modifiable by address mode and ALU function. In a close coupled
multiprocessor the processing elements are executing at similar rates and share
some memory so that data may be exchanged synchronously and at high speed.
Loose coupled multiprocessors provide (possibly asynchronous) communication
channels between processors, and data interchange is by message passing modelled
on the traditional I/O read and write operations.

In this section the early Carnegie Mellon multiprocessors C.mmp and
CM* are described, followed by the image processing computers PICAP and

PASM and finally a brief review of cone and pyramid architectures.

7.7.1 Communication networks for multiprocessors

The multiprocessor systems described so far have used provided local
connections to four, eight or six neighbours. In some cases row joining is available
(ILLTAC 1V, GRID histogram network), other machines provide broadcast facili-
ties at the row or column level (DAP and GRID) and in one case (the Connection
Machine) a long range hypercube network is present to allow global interchange
of data. Low level window based image processing operations fit such machines
well. However, real vision problems require considerably more complex processing
than that provided by window operators, and that this often takes the form of
gathering together information from disparate parts of an image, in other words
long range communication is required.

One way of providing such capability is to provide a conventional sequen-
tial host which can access the local memory of the PEs. The ICL DAP and NPL
LAP 2 [McC85] adopt this approach. This imposes a hierarchy on the system and
the programmer has two systems (supporting two completely different program-
ming paradigms) to control. Some high level language compilers (such as ACTUS
and DAP-FORTRAN which will be discussed below) provide a unified notation,

but it is attractive to consider the design of a system without hierarchy where the
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PEs can communicate over long distances and may be highly autonomous, i.e.
MIMD systems in Flynn’s taxonomy.

Considerable research effort has been expended on the investigation of
communication networks for multiprocessors. For small numbers of processors it
may be possible to provide complete interconnection such that every processor is
connected to each of its neighbours. The cost of the interconnect rises as and
the size of the processing element is also likely to rise as n for large n because the
multiple interfaces will dominate over the processing circuitry itself. At the other
extreme all processors may be connected to a single bus. This provides total
interconnectivity with no routing overhead but will suffer from bus contention
since only one processor-processor communication may be in progress at a time.
A modern bus specification will however have a high bandwidth relative to the
instruction execution frequency of conventional serial processors, so for algorithms
requiring limited intercommunication the bus may be just as fast as a maximally
connected network. The commercial ELXSI multiprocessor [Ste87] adopts this
approach by interconnecting up to 12 fast processors over a 320M byte per second
64-bit databus.

In particular cases, either of the above extremes may provide the best
compromise between performance and cost. However, for systems containing large
numbers of processors (say > 10) neither is likely to be very satisfactory — on
the one hand a bus will probably be reaching saturation, and on the other the
cost of (say) 90 interprocessor buses may well be greater than the cost of the ten
processors. A cost effective solution is likely to lie within the space of partially

connected networks.

7.7.2 Logical and physical networks

The bus is logically equivalent to the maximally connected net in that
there is a direct connection between all processors in the system. Segmenting the
bus architecture into multiple buses implies the need for routers to connect proces-
sors on independent segments. Given that routers exist to connect all sub-buses
together then the segmented bus is logically equivalent to a physical maximally
connected net, but with a time overhead. If some parts of the processor matrix
were isolated then some processors would be unable to intercommunicate.

If two bus structures are logically equivalent then they are able to sim-
ulate each other, but usually there will be a time penalty. Given a network

comprising nodes that may process and route, the degree of a network is defined
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as the number of links connected to each node and the diameter of the network
is defined as the maximum number of links separating two nodes. For a given
number of nodes, increasing the degree will reduce the number of steps required
to route a message between processors on opposite sides of the network. Routing
will absorb resources at the routing node and delay the propagation of messages.
The bus is degree one, diameter one. A maximally connected net of n processors
is degree n — 1, diameter one. A hypercube of 2” processors has degree n and

diameter n and provides a good compromise between cost and routing overhead.

7.7.3 C.mmp

The C.mmp system [WC72], comprised 16 PDF 11/40E processors con-
nected to 16 shared memory modules via a crossbar switch. The total physical
address space was 32M bytes. The 11/40E processors were modified to make user
execution of instructions such as HALT, RESET and RTI (return from interrupt)
illegal, to allow bounds checking on the stack pointer, and to provide an extended
writable control store. Backing store, in the form of four 40M byte disk drives,
was attached to the Unibus of specific processors. A processor could not initiate
I/O on a drive that was not connected to its own Unibus, i.e. peripherals were
not shared.

As well as the processor-memory crossbar, an interprocessor bus was used
to provide a common clock and common interprocessor control. The clock lines
provided a 60-bit clock counter updated at 250kHz which was multiplexed onto
a 16-bit datapathway and read into four sixteen bit registers on each processor.
The operating system (called Hydra) made extensive use of this clock counter to
generate unique names within the system. The top four bits of the most significant
local clock register were set to the address of the processor. The interprocessor
bus also provided interprocessor interrupts and control. Each processor could
halt, interrupt, continue or start any processor, including itself.

The virtual address range of a PDP-11 is limited to 64K bytes, and this
was one of the major limitations of the C.mmp. The already rather baroque
memory management scheme of the 11/40 was made even more complex with
the provision of a 25-bit shared address space accessed via the crossbar which
automatically queued memory requests when contention occurred. It was planned
to add caches to each of the processors, but this was not in fact implemented.

The basic intercommunication mechanism in Hydra was the channel —

an I/0 like link between two processes analogous to the mailbox in VMS and
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the message queue (M Q) device in RT-11. This was implemented using the same
protocols as for I/O processing, providing a unified programming environment for
interprocessor and peripheral communication. Since this message passing protocol
was inefficient for transferring large blocks of data, locks and semaphores were also

provided to control access to shared memory.

774 CM*

CM* [FOR*78] is also constructed out of PDP-11’s — in this case the
LSI-11 chip set. Unlike C.mmp, the processor-memory structure is hierarchical,
and as a result a large system with many processing elements could be practically
considered. However, each processor can directly address all of the available main
memory but not at uniformly fast speeds. The basic PE (called a Computer
Module or CM) comprised an LSI-11 with local memory and I/O devices on a
local Q-bus. Essentially the only difference between a CM and normal LSI-11
processor was the insertion of a switch between the processor and the Q-bus that
could either route addresses to the Q-bus with relocation, or route to a map
bus. Each map bus connected up to 14 CM’s to a K map. This ensemble was
referred to as a cluster, and multiple clusters could be used in a single system.
The K maps were rather complex microcoded processors each comprising some
750 MSI chips on six cards. The reason for all this complexity was to enable CM*
to simulate many architectures easily, and in particular to research the virtual
addressing and memory protection requirements of multiprocessor systems.

CM* has been used for speech recognition [JCD*78], solution of partial
differential equations by finite differences [Bau76] and to implement a subset of Al-
gol 68 with extensions to allow concurrent execution of tasks and synchronisation.
The Algol 68 system has been used to investigate the automatic decomposition of

tasks.

7.7.5 PICAP I and II

PICAP-I and II [KDCB82] are processors specifically designed for image
processing at Linkoping University.

A preliminary PICAP I prototype was completed in 1973 but the final
system was not ready until 1975. It was fundamentally a SIMD machine operating
on 64 X 64 arrays of four-bit pixels. The 64 x 64 array was mappable within a
TV frame containing 512 x 640 square pixels. Crey scale range and sampling

density were programmable, so a full screen 64 X 64 image could be obtained or
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a high resolution sub-image. Nine image planes were available.

The PICAP-I instruction set breaks down into four categories:
1. 3 X 3 convolution,
2. pointwise arithmetic between separate image planes,
3. template match,

4. 1/0.

The convolution multiplies each element in a 3 x 3 window by a coefficient, sums
the results and normalises by dividing by an appropriate power of 2 (t.e. by
shifting the sum right).

The pointwise arithmetic instruction replaces the nine window element
inputs of the convolver with pixels from each of the nine image planes and then
performs the transformation as for convolution.

The template match employs an associative match unit to search through
up to eight supplied templates. The templates are 3 x 3 arrays of integers,
and during the associative search each template element is compared against its
corresponding picture element. The less than, greater than, equal to and don’t
care relations are all available.

The above array operations may also be applied sequential to the image
in a top-left to bottom-right scan.

Finally, a set of hardware counters are provided that (a) collect grey-level
histogram data and give the maximum, minimum and average of the distribution,
(b) count the number of hits on each of the eight templates and (c) track the max-
imum and minimum coordinates of template hits, thus providing the minimum
rectangle enclosing all hits in an image.

PICAP-I has been used to inspect printed circuit boards, fingerprints
and to detect malaria parasites.

PICAP-II is a bus based multiprocessor with a 40M byte/s bandwidth
synchronous bus. Multiple memory modules are used with interleaving, i.e. mem-
ory words with consecutive addresses are located in different modules. A max-
imum of 4M byte of error-correcting memory is available. Four main processor

blocks are available along with video I/O and graphics display:

1. filter processor, a generalisation of the convolution operator available in

PICAP-I to neighbourhoods of any size.
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2. logical processor, a generalisation of the PICAP-I template search instruc-
tions to allow eight-bit pixels and allow virtually any logical combination of

neighbourhood pixels,

3. binary logical processor, a fast processor dedicated to logical operations on

packed binary images,

4. measurement and region processor, which looks for connected regions and
measures perimeter, extent and area for each of them. It can label each
region uniquely and produce chain code of their outlines. Nested regions are
handled correctly and connectivity graphs can be produced of prelabelled

regions.

An Algol like language called PPL has been designed to program the system. It
has an editor, incremental compiler to intermediate code and an interpreter which

together provide an interactive program development system.

7.7.6 PASM

PASM (Partitionable SIMD/MIMD) [KS86], is a proposal for a large
scale SIMD machine in which parts of the SIMD array (referred to as partitions)
may conditionally execute from different control units. This is more general than
the CLIP 7A design which allows conditional local modification of the instruction
stream from a single control unit.

A PASM system comprises a Parallel Computation Unit (PCU), a set
of microcontrollers which provide the instructions streams for the PCU, a set of
backing store devices controlled by a memory management system and a host
computer.

The PCU contains iV = 2" processors, N memory modules and an in-
terconnection network. The N PCU processors are controlled by Q = 2’ micro-
controllers (MC). Each MC controls N/Q processors which defines the size of a
processor partition. Each partition has an independent control unit, so PASM
may be considered a MIMD system where the processors are small SIMD arrays.
PASM can simulate larger SIMD arrays by loading the same code into multiple
partitions, i.e. into multiple control units. Possible values for N and Q are 1024
and 16 respectively.

Communication between processors is achieved via the switching net-
work which allows memory to be shared amongst various processors. The mem-

ory modules are double buffered to allow simultaneous processor and file system
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accCess.

7.8 Cone and pyramid architectures

It is clear that a (possibly ill-defined) hierarchy exists in the classical
pattern recognition process. At the lowest level we have simple pixel level oper-
ations such as edge enhancements and smoothing that are applied right across
an image. The results of such operations which do not differentiate between the
parts of the image are then processed to detect local features such as corners and
parts of edges, at which point large parts of the original image are discarded in
favour of a higher level representation. Local features may be grouped into more
global features and so on until the representation of the image is in terms of a
specific classification.

Simple SIMD machines are useful at the lower levels, but become in-
creasingly inefficient at the higher levels. A SIMD machine in which one processor
handles each pixel will become progressively idle as more and more of the picture
is discarded, and eventually a single SIMD PE will be operational. Since SIMD
PE’s are usually slow and simple devices, the machine will run slowly compared
to a conventional sequential processor.

Several machines have been proposed and built which incorporate ex-
plicit hierarchy in an effort to smooth the transition from space parallel to se-
quential processing.

[Uhr78] described a recognition cone structure which comprised a series
of 2-D data memories interconnected by transform layers. A transform layer took
the data from the memory below, processed it in some way and passed it up
to the memory above. The transform layer was conceptually a SIMD processor
operating on all of the points in the layer below. At each stage resolution could
be reduced, giving a cone of layers converging at the output terminal. This cone
could be thought of as a pipeline of SIMD processors. The throughput of the cone
would be limited by the slowest processing layer, as normal for a pipeline.

Hanson and Riseman [HR74] described a generalisation of Uhr’s recogni-
tion cone called a processing cone. In this structure, the transform layers permit
lateral data movement and data flow down the cone, in addition to movement up
the cone.

Cone architectures call for multiple connections to each processing ele-
ment in the transform layer because the resolution reduction properties require

the use of 5 x 5 or larger input windows. A more restricted class of machines
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called pyramid machines [TK80], [Dye82] restrict the local interconnections to
either four or eight lateral neighbours, four sons and a father. They are believed
to be as general as the processing cone, and are manifestly more economically
feasible.

Pyramid machine may be used to map various data structure representa-
tions of n image onto hardware such as the quadtree, the roped quadtree [HS79b],
overlapped quadtree, and colour, edge and texture pyramids [Lev80]. These rep-
resentations have been used for region analysis, hierarchical searches and image
compression for transmission.

A particular feature of pyramid machines is that they are able (due to
their very regular architecture) to exploit VLSI technology, but they overcome the
limitations of traditional SIMD arrays, i.e. lack of long distance connections and
high degree of parallelism which is unsuitable for more sequential algorithms. Long
range communication in a pyramid machine may be simulated by propagating up

the tree and then back down to the working layer.

7.8.1 PCLIP

The PCLIP machine [Tan83] is a simulation of a 32 x 32 base pyramid
running on a VAX processor. The simulated bit-serial PE’s accept inputs from
thirteen neighbours and process them using boolean pattern matching. There are
three 1-bit registers per cell and a local memory of 128 bits. The Propagation
Register is accessible to neighbours, the Condition Register is used as an activity
flag, causing the PE to ignore all instructions except those causing a transfer of
data into the condition register. The Target Register receives the result of a match
instruction.

Match instructions compare a vector of 15 bits from the controller to
the 13 neighbourhood inputs plus the local T and P bits. A second 15-bit vector
(called the mask) is used to indicate don’t care positions.

Algorithms have been described for pyramid formation, selection and
segmentation and region colouring. In particular the region colouring algorithm
requires O[logl9] steps on the PCLIP and 0/D] steps on a conventional SIMD
array such as CLIP-4.
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Figure 7.4: A dataflow machine

7.9 Data flow processors

Von Neumann architectures and the Non-Von Neumann machines de-
scribed so far all belong to the class of control flow computers, in which the pro-
gram has complete control over instruction sequencing. Data flow computers do
not have explicit instruction streams. Instead, instruction packets are constructed
containing an op code and the ‘address’ of operands, and a central controller ex-
amines these packets. When the operands for an instruction become available,
then the packet is routed to a functional unit which performs the computation.
There is no shared memory, which mean that side effects resulting from assignment
to global variables are eliminated. Data flow computation is purely functional.
Operands are passed directly as tfokens instead of addressed variables and dataflow
computations have no far reaching effects, they are inherently local. Operation
is inherently asynchronous, and this coupled with local computation and the un-
derlying functional programming model make such machines very amenable to
parallel implementation. In principle, the addition of extra functional units and
routing paths will automatically allow the system to make use of the available
parallelism within the algorithm.

A data flow computer comprises a ring connecting memory, processors,
routers and token matching sections. The processors are fixed functional units
performing the traditional arithmetic and logical functions. In this respect the
processing section is reminiscent of the CDC 6600 CPU where multiple functional
units are allocated to the instruction stream using a hardware interlock called the
status checkboard.

When an instruction is enabled by the availability of its operands, it is
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routed via the arbitration network to a processor. After execution by a processor
the results are routed back to memory by the data distribution network. If multi-
ple instruction packets require the results, then multiple copies of the data must
be made. Conditional execution is handled using a set of condition evaluators
that are analagous to the processors. The results from the condition evaluators
are control packets rather than data packets, and are inserted into the memory
units by the control distribution network.

The processors, evaluators and distribution networks operate as a pipeline
connected together by packet switching networks. The delay through this packet
switching network is a primary source of potential inefficiencies in a dataflow
computer.

The critics of dataflow machines point out that normal programs gener-
ally have very low levels of implicit parallelism and that there is little real speed
advantage to be gained on general applications. It may well be that the highly
structured nature of low level image processing does lend itself to dataflow ma-
chines.

Another real problem with functional implementations in general is that
the lack of shared memory requires replication of operands. In the case of large
arrays (which are typical in image processing) this can cause very large amounts

of processor time to be absorbed in array copying.

7.10 Graph reduction processors

Data-flow machines are data driven, and operation packets can be exe-
cuted as soon as their operands become available. In a graph reduction machine,
an operation is only evaluated when the result is required as input for some other
operation. Graph reduction machines also have an underlying functional repre-
sentation which requires the use of languages without side effects (i.e. functional
languages).

Proponents of graph reduction machines claim that complex data struc-
tures are more easily supported and that replication of large data structures is
reduced.

A graph reduction machine comprises a pool (memory unit) which holds
the operation packets, and interconnection unit and a series of processors which
individually are conventional Von Neumann processors. In operation the proces-
sors run asynchronously in parallel taking packets from the pool, processing them

and returning the results to the pool. The overall architecture is demand driven
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Figure 7.5: Graph reduction processor

by the ready status of the packets in the pool.

The overall block diagram is very similar to that of a general MIMD
processor. It is the way in which the processors interact with each other (via
the status fields of the packets, rather than via explicitly programmed shared

variables) that characterise the machine as a graph reduction processor.

7.11 Associative processors

The ILLIAC III and PICAP processors incorporated associative capa-
bilities. The term ‘associative’is applied to memory systems with some inbuilt
pattern matching capability. Conventional memories provide an array of unique
locations that may be addressed by location, or coordinate. An associative, or
content addressable memory provides an array of locations that may be addressed
by content, that is a data word can be presented to the associative memory and
it will return a list of locations containing that data word.

Conceptually each word in an associative memory chip comprises a con-
ventional memory location n bits wide and an n-bit comparator which checks the
contents of the word against the test data word. The outputs of all the compara-
tors are available at the output of the chip, and a full search of the contents of
the chip may be performed in time # -f tc, where tr is the read access time of the
memory and fc is the propagation time of the comparator. Their most common
application is in cache memories for conventional processors, and direct support
in the form of special cache-tag RAMs is now available from some manufacturers
[IDT86].

Large associative memories are prohibitively expensive because of the

silicon area consumed by the comparators and the number of pins required to carry
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the match information (in principle one per comparator). As a result comparators
are assigned to a range of data words and external logic sequences the conventional
address inputs to perform a linear search of the range. In this case an exhaustive
search of the stored data may be performed in n(#y. 4-¢f) where n is the size of the

range of addresses assigned to each comparator.

7.11.1 Staran

STARAN [Pot82] is a SIMD array of bit serial PE’s each of which con-
tains an X register, a Y register and a 16 function boolean processor. An activity
bit called the M register allows conditional execution of code sections. The local
memory is 256 bits wide.

STARAN can have up to 32 arrays of 256 processors each. The arrays
and PE’s are assigned a unique number, so that every processor is location ad-
dressable.

In operation, the PE’s perform local searching (t.e. bit-serial compar-
isons) in their local data space. The results are loaded into the Y register. An
external resolver then associatively returns the address of the first PE by ordinal
number of array and PE to be generated in an internal register of the common
control unit, and this information can be used to access the PE for further pro-

cessing. Essentially this performs an associative parallel to serial conversion.

7.12 Hardware summary

Image processing architectures have been dominated by the use of geo-
metric arrays and even MIMD type systems show SIMD features. PASM is an
array of SIMD machines. The pyramid machines are pipelines of SIMD proces-
sors running at successively lower resolution. The use of associative processors
and techniques is of great importance in database applications and in pattern
recognition proper, but is of marginal interest in image processing. More general
MIMD systems are difficult to program and may be unable to exploit the available
geometric parallelism implicit in low level image processing.

The particular problem in image processing is that the simple nature of
the computation coupled with the very high data rates and tight coupling between
adjacent parts of the image yield a computational problem that is data, not com-
putation, dominated. Pixel bandwidth rates dominate over compute operations.

A 3 X 3 convolution requires nine pixel fetches and only simple accumulation
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within the ALU since no intermediate terms are generated. Even the Sobel only
requires one intermediate result to be held. This heavy dependence on global
memory accesses rather than internal temporary register accesses means that the
processor cycle will be limited to the pixel read cycle. MIMD machines usually
rely on loose coupling between processors (i.e. low communication rates relative
to computation) and this makes them unsuitable for low level image processing.

On the other hand, it is clear that the simple processors used in arrays
are unsuitable for higher level algorithms, and that the performance of simple
processor arrays drops sharply as the degree of geometric parallelism is reduced.
Machines such as PASM and CLIP 7A attempt to remedy this by partitioning by
providing sophisticated conditional execution capabilities within the array but a
more useful solution might be a MIMD system, one or two processors of which

were themselves SIMD image processors.
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Chapter 8

Parallelism in software

“If we wish to succeed in building large concurrent programs which are
reliable, we must use programming languages that are so well struc-
tured that a compiler can catch most time-dependent errors (because
nobody else can).” [BH77]

8.1 Introduction

It is not currently (and may never be) practical to design programming
systems capable of catching all parallelism related errors, but a variety of program-
ming constructs have been proposed and implemented with a view to reducing
the error rate in concurrent programs. This is analagous to the development of
structured programming constructs in sequential languages.

This section reviews the fundamental problems of concurrency, and then
describes the semaphore™ monitor and rendezvous constructs. Much of the dis-
cussion involves generalised MIMD type processors. Array processors are by def-
inition synchronised and therefore many interesting concurrency problems do not
arise. Of course, the penalty for this is the loss of generality leading to low ef-
ficiency (in terms of actual, as a fraction of potential throughput) when array
processors are applied to problems that do not exhibit a matching space paral-
lelism. The chapter concludes with a discussion of Very Long Instruction Word
(VLIW) machines that present a compromise between array and full MIMD sys-
tems. A special compilation technique useful on VLIW and pipelined RISCs
known as trace scheduling holds the promise of being able to extract high levels

of parallelism from ordinary sequential scientific programs.
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8.2 The concurrency problem

On a multiprocessor system, or a timesliced uniprocessor, multiple tasks,
or processes may be running simultaneously. Strictly speaking, the uniproces-
sor runs processes sequentially, switching contexts under the control of a central
scheduler or by programmed transfer between jobs. Since the scheduler is driven
by an external clock, the time slicing behaviour of the system is effectively inde-
terminate, and it is convenient to think of the system as a set of tasks running on
their own processors. ,

If two tasks share no data (or other resources such as tape drives or
frame stores) they are said to be disjoint. Execution of the tasks may progress
with no synchronisation between them and at no point is the correctness of the
system reliant on concurrent properties of the programs. The correctness of the
system may be shown by showing the correctness of the two tasks in isolation.

In general, however, tasks need to cooperate. This may involve dis-
ciplined access to a peripheral such as a frame store, updating of a common
data base, or transmission of information between processes. All of these activ-
ities require synchronisation, and optionally data transfer. If two tasks are in
a producer-consumer relationship then it is necessary for the consumer to wait
until the producer has generated the next data frame. In a shared database
environment, it is reasonable for multiple processes to be reading the database
simultaneously, but only one process may write at a time. In addition, whilst a
writer is active, all readers must be blocked. Failure to ensure this may result in

a reader reading data which is being updated.

8.2.1 Mutual exclusion

The most fundamental problem in concurrency is that of mutual ex-
clusion to shared data. This includes access to other shared resources such as
peripherals.

Two processes PI and P2 access shared data. Only one process at a
time is allowed to access the data. If the other process attempts access, then it is
blocked, that is execution is suspended pending release of the data.

The part of the process in which the shared data is accessed is called
the critical section of the data. A protocol is required that allows a process to
request entry to its critical section and to signal successful completion of the
critical section.

A solution to the mutual exclusion problem must not only ensure that
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the two processes do not clash, it must ensure that deadlock cannot occur (that is
both processes wait endlessly for the other before continuing. It is also desirable
that the solution be fair, that is a process wishing to enter its critical section will
eventually be allowed to do so. A synchronisation scheme is fair if no process is
delayed indefinitely waiting on a condition that happens infinitely often.
Fairness is especially difficult to ensure when several processes are coop-
erating. Two processes may ‘conspire’ together to lock a third process out of a
critical section by passing control between themselves. In reality, it is often nec-
essary to use protocols that are deliberately unfair, e.g. prioritisation of interrupt
requests. In this case, a rapidly interrupting process at a high priority will block

out low priority tasks.

8.3 Historical overview

Concurrent programming problems first arose in the design of multitask-
ing operating systems with batch and spooling facilities. Interactive multitasking
and user written interrupt service routines for real time programming were sup-
ported using operating system calls and a monolithic executive that performs all
time critical operations. The FORK and JOIN programming constructs [Ben82j
are implemented in many operating systems such as RT-11 [Dig82] and Unix.

The need for structure in sequential programming gave rise to a family
of structured programming constructs, typified by the D-structures that are single
entry, multiple exit control structures. In concurrent programming, the time di-
mension requires special structuring constructs. FORK and JOIN are analagous
to the GOTO in that they allow completely random creation and destruction of
parallel control flows. The COBEGIN-COEND construct allows controlled execu-
tion and destruction of processes. Synchronisation of processes may be achieved
using shared memory variables, although the solution to the mutual exclusioti
problem using shared variables is non-trivial. As a result, a variety of synchroni-
sation primitives have been designed. These fall into two classes: shared memory
constructs which rely on the existence of high speed memory shared between co-
operating processes, and message passing constructs which reflect a distributed
view of multiprocessor systems where common memory may not be available.

The semaphore [Dij68] is both powerful and elementary, and has become
the standard by which other synchronisation primitives are judged. The solution
to the mutual exclusion problem is trivial with semaphores. Many languages

including Algol-68 , Modula and Parallel Pascal implement semaphores.
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The operating system concept of a centralised executive controlling all
time critical operations has been generalised by Hoare into the monitor program-
ming construct. A monitor is a package of sharable data and the routines required
to manipulate it. Mutual exclusion is provided by ensuring that only one pro-
cess may enter the monitor (i.e. be executing a monitor procedure) at a time.
Monitors may use semaphores internally and may have synchronisation code dis-
tributed within them. Monitors have been implemented in many languages includ-
ing Concurrent Pascal [BH77], Pascal-Plus and Modula-2. Further structuring of
the monitor concept yields the path structure [CH74], a monitor like construct
in which all concurrency constraints are defined in one place. Paths have been
implemented in Path Pascal.

Recently the message passing paradigm has become increasingly im-
portant both theoretically and practically due to the arrival of networked asyn-
chronous computer systems such as workstation networks and transputer systems.
The most important message passing construct is the rendezvous which provides
synchronisation and (optional) transfer of information between processes. The
rendezvous forms the basis of Hoare’s Communicating Sequential Processes (CSP)
[Hoa85] and has been implemented in its most pure form in Occam, and in an

extended form using remote procedure call semantics in Ada.

8.4 Coroutines

On a uniprocessor control is traditionally transferred using programmed
jumps, subroutine calls and interrupts, which may be viewed as externally trig-
gered prioritised subroutines. The subroutine has an implied hierarchy built in
which does not match the semantics of concurrent execution even though interrupt
service routines are a prime example of concurrent programming. In operation,
the contents of the program counter at the point of subroutine call are stored and
control is transferred to the subroutine. At completion, the old value of the PC is
restored. This allows a subroutine to be coded without knowledge of the return
jump address. However, the subroutine must run to completion before control is
returned to the main line routine and in that sense the subroutine is a slave to
the mainline routine.

The coroutine generalises this mechanism to provide a non-hierarchical
call-and-return mechanism. Each coroutine has a local Program Counter. The
statement TRANSFER(ROUTINE) suspends execution ofthe current routine and

restarts execution of ROUTINE at the point of last suspension.
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Coroutines automatically provide mutual exclusion between routines.
There is no preemptive suspension of routines, so each routine is guaranteed sole
access to shared data structures until it explicitly executes a TRANSFER() to a
named routine.

However, this deterministic switch in control severely limits the useful-
ness of a pure coroutine implementation. Consider the classical bounded buffer
problem. A buffer is required between two processes — the consumer and the
producer. The producer inserts items into the buffer, and the consumer removes
them for processing. The whole point of the buffer is that the processes should
be decoupled — the only time a consumer should block is if the buffer is empty,
and the only time a producer should block is if the buffer is full. With coroutines,
the processes are constrained to taking strict turns to access the buffer and so the
processes are not decoupled.

It is possible to use coroutines to construct queueing and ring scheduling
mechanisms [Wir83] so that for a uniprocessor coroutines can simulate semaphores.
However, the semantics of coroutines do not adequately describe the operation of
a true multiprocessor since by definition only one coroutine can be executing at

a time.

85 The common memory arbiter and busy wait-
ing

Processes may synchronize by setting and unsetting flags in common
memory. Inherent in such mechanisms is some idea of a hardware interlock called
a common memory arbiter that ensures that the results of two processes writing
to the same location simultaneously are consistent with the result of them writing
sequentially. This means that if PI attempts to write a 1 to a location and
P2 attempts to write a 0 then the result should be either a 1 or a 0, not some
corrupted value such as -1. This is ensured by the underlying hardware. The
execution order of the processes access is unknown.

It turns out that correct solutions to the mutual exclusion problem using
simple access to shared variables is non-trivial. The most well known solution is
Dekker’s algorithm [Ben82] which requires a flag variable for each process and an
arbitration variable. It has been generalised for N processes by Dijkstra.

A simpler solution is provided by Peterson’s algorithm [Ben82]. Lam-

port’s algorithms [Lam74] have the useful property that the flag variables need
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only be written by one process which may reduce memory contention time.

The common feature of all these algorithms is that a blocked process
cycles waiting for a shared variable to change state. This is referred to as busy-
waiting, or spinning, and naturally consumes processor resources. In an envi-
ronment where each process has its own processor this still implies a loss of
throughput because busy waiting will consume shared memory bandwidth. The
semaphore and monitor constructs implement queueing of blocked processes which
does not consume processor cycles unnecessarily.

As well as consuming processor cycles by busy-waiting, these solutions
are difficult to use in practice because of the complexity of their working and
because there is not necessarily a clear distinction between process variables for
synchronisation and normal data storage. Hence busy-waiting algorithms are

unstructured both in terms of control and data structures.

8.6 Semaphores

A semaphore is a variable that can take positive integer values and zero.
The only operations allowed on a semaphore are initialisation, wait(s) and sig-
nals) [Dij68]

The operations are defined as follows:

wait(s) IF s>0 THEN s:=s-1 ELSE (suspend calling process)

signal(s) IF (a process P has been suspended by a previous wait
on this semaphore) THEN (resume(P)) ELSE s:=s+]|

In use a semaphore is associated with each synchronisation condition.
Typically one semaphore is required per critical section. Mutual exclusion with
semaphores is trivial. The following example demonstrates mutual exclusion be-

tween two processes A and B with critical sections criticaLA and criticalLB:

s: SEMAPHORE;
PROCEDURE A;
BEGIN
REPEAT
wait(s);
critical_A;
signal(s);
{ other non-critical code }
UNTIL false;
END;

PROCEDURE B;
BEGIN
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REPEAT
wait(s);
critical_B;
signal(s);
{ other non-critical code }
UNTIL false;
END;
BEGIN
s:=1; {initialisation of semaphore}
COBEGIN
A; B;
COEND
END.

The synchronisation details are hidden by the implementation, freeing the pro-
grammer to think about the higher level aspects of the problem.

wait and signal are primitive (uninterruptible) operations and there-
fore exclude each other. Many computers such as the IBM 360/370 and the 68000
have uninterruptible test-and-set instructions that can perform semaphore imple-
mentations and directly ensure mutual exclusion of semaphore variable manipu-
lations. More advanced machines such as the VAX have uninterruptible enqueue
and dequeue instructions. Test and set instructions can handle the mechanics of
manipulating the semaphore variable correctly but offer little assistance in the
implementation of suspend/resume mechanisms. The description of signal and
wait above has deliberately been couched in terms of process suspension. A more
traditional definition of the semaphore operations is

wait(s) REPEAT UNTIL s>0; s:=s-I;

signal(s) s:=s+l;

The behaviour of these primitives is equivalent to the earlier defini-
tion but implies busy-waiting which is undesirable. Real implementations of
semaphores associate a queue of processes with each semaphore. A process per-
forming a wait(s) puts itself on the queue for s if s is zero and relinquishes
control of the processor. A process performing a signal(s) activates a process if
the queue is non-empty, otherwise it simply increments the semaphore variable.
This ensures that a suspended process consumes no processor time. The only
overhead is the memory required to hold one process control block per blocked
process. The VAX enqueue and dequeue instructions ensure mutual exclusion of

semaphore queue updates.



179

8.7 Monitors

A monitor [Hoa74] is a module that packages the definition of a share-
able resource and the operations that manipulate it. Condition synchronisation
within the monitor can be achieved using semaphores or one of a variety of other
synchronisation primitives. The synchronisation primitives are not available out-
side monitor blocks. A monitor contains a set of static variables which are only
accessible to routines within the monitor, a set of callable procedures for manip-
ulating them and a mainline routine that is executed as initialisation code by the
run time system at startup. All monitors are initialised before the user’s main
line program starts executing. The callable procedures may have parameters that
are instantiated at call time. Monitor routines are mutually exclusive by defini-
tion, hence interleaved execution of monitor routines need not be considered when
establishing the correctness of a concurrent system using monitors.

Monitors are derived from the operating system executive concept wherein
all time dependent activities are performed by the executive on receipt of a system
call. Many systems use synchronous interrupts or traps to activate these services
allowing a centralised despatcher to field both systems calls and external inter-
rupts. Such an executive is termed a monolithic monitor. Since there is only one
monitor controlling all resources, two processes vying for use of, say, a disk drive
may block a process requiring memory allocation. The monitor itself becomes a
bottleneck since unrelated synchronisation activities are coupled together. This
is a practical problem in uniprocessors, and becomes absolutely unacceptable in
multiprocessor systems.

Hoare’s monitors are distributed, and in general one monitor will be
used to control each independent resource. This allows decoupling between con-
current processes. The monitor concept lends itself well to implementation via the
software packaging mechanisms present in many modern languages such as Mesa
[MMS79] and Modula-2. Indeed W irth’s standard library [Wir83] for Modula-
2 includes a implementation of monitors and semaphores that requires almost
no extensions to the base language. In Modula-2 a monitor is simply a mod-
ule with a priority, giving a very elegant and sparse syntax. Monitors were first
implemented in Concurrent Pascal [BH77], a Pascal like language that included
extensions that included process, monitor and class types. Synchronisation
within monitors was performed using primitives called delay and continue oper-
ating on queue types. The class type allowed encapsulation of data and routines

in a way analagous to the class construct of Simula-67 and module construct of
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Modula-2.

8.8 Distributed systems and mailboxes

A monitor encapsulates a single copy of the synchronisation control data
as well as the shared resource. It relies on semaphores (or similar primitives)
and these rely on common memory arbitration. This becomes more and more
expensive as the degree of physical parallelism in system increases. On systems
with multiple buses, shared memory techniques rapidly become prohibitive. The
limiting case is that of a network where self contained computers are connected
over relatively slow communications links.

Such systems require synchronisation primitives based on messages passed
around the system. This gives rise to an input/output model of synchronisation
rather than the shared variable model used previously. Several authors (notably
[Hoa85]) have argued forcefully that this model is easier to program with cor-
rectly, as well as being necessary for distributed systems. Implementation of
message passing on a uniprocessor, or on a tightly coupled multiprocessor with
shared memory, is less efficient than the use of shared variables.

It is important to note that no timing can be guaranteed between sending
and receiving messages. Messages may pass each other in transit and there is no
central arbiter. Protocols must be self enforcing, to allow individual processes to
decide on their own initiative when to proceed. This is analagous to the busy
waiting solutions because there is no central agent that can wake a process up.
This contrasts with the semaphore and monitor solutions which are designed to
wake up other processes. Message passing protocols assume that there is no
way of remotely manipulating the execution path of another process by aborting
it, suspending it or restarting it. In general, messages are sent and received
asynchronously. After a send the transmitting process usually continues. The
receiving process will not usually be ready to immediately process the message
which implies that it must be temporarily stored in a system area known as a
mailbox.

A significant problem with mailboxes is deciding on their size. Small
mailboxes may require messages to be split up into many sub messages, and long
mailboxes will be under-utilised by short messages. Variable length mailboxes
require extra protocol overhead to define their size and imply the use of variable-
sized memory allocation routines that will generate the usual heap management

problems and require periodic garbage collection.
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Message passing has been used in operating systems applications for
many years. Most operating systems support the use of mailboxes which allow
producer-consumer interaction between processes. Unix uses an elegant notation
to allow interconnection of producers and consumers using pipes which act as
mailboxes between programs. This feature is very powerful because the Unix I/0
system treats pipes and I/O devices as files in a completely unified way. This
means that a user program can be written using simple file I/O and can then
be connected to files, output devices such as printers or piped to other programs
by supplying the correct commands at run time. RT-IT provides similar unified
I[/0 and mailbox system requests but does not allow the flexible command line
redirection of Unix, so mailbox transfers tend to be ‘hardwired’into user processes.

VMS also provides explicit mailbox services.

8.9 Rendezvous

Mailbox communication, even with fixed length mailboxes, is inefficient.
The rendezvous is an attempt to improve the efficiency of mailbox schemes by
removing generality. A rendezvous may be considered as a mailbox transfer with
a zero sized mailbox. This implies that there is no buffering, and therefore that the
first process arriving at the rendezvous must wait for the other process to catch up.
Hence the rendezvous is inherently self synchronising. At the point of rendezvous,
data may be transferred between processes. Since each datum requires a separate
rendezvous and each rendezvous implies a context switch on a uniprocessor (since
the first process arriving will suspend itself) efficient uniprocessor implementation
of the rendezvous relies on a low context switch overhead. This approach is
exemplified by the Inmos Transputer which is designed to support rendezvous
communication and which can context switch by updating only two registers which
can potentially be performed in only four instruction cycles.

It turns out that as well as being more efficient, the simplicity of the
rendezvous allows rigorous mathematical treatment. Hoare’s Communicating Se-
quential Processes (CSP) [Hoa85] is a mathematical notation for analyzing con-

currency problems. The Occam language is heavily based on CSP.

8.9.1 The Occam rendezvous

The Occam rendezvous is programmed as an explicit I/O transfer using

named channels between processes. Channels are unidirectional and only one
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writer and one reader process is allowed per channel. Processes in Occam are
unnamed because there are potentially a very large number of them. In contrast to
conventional concurrent languages such as Concurrent Pascal and Modula-2 which
support concurrency at the procedure level, Occam allows individual statements to
be evaluated concurrently. Use of named channels rather than named processes is
unfortunate from the point of view of correct program structure. The one writer
and one reader per channel restriction has to be checked by the compiler. If
channels were declared with named source and sink processes then the syntax of
the declaration would automatically enforce the restriction.

In use, the syntax chanl ! variable transmits the contents of variable
down the named channel chanl. The syntax chanl ? temp reads a datum off
channel chanl into variable temp. If the writing process arrives at the send com-
mand before the reading process arrives at the receive command then the writer
is suspended. When rendezvous is achieved the writer is awakened and the data
transfer takes place. This simple syntax is elegant and easy to use. Potentially
each statement in Occam is a process in its own right and the ! and ? operators
form two of the five basic processes, the others being := (assignment), STOP (a pro-
cess that never terminates and performs no useful work) and SKIP (a process that
terminates immediately and performs no useful work). Read-only shared variables
are allowed between processes, although real implementations will usually forbid

this when the processes are executing on different processors.

8.9.2 The Ada rendezvous

Ada uses an extended rendezvous in which two way communication of
data is allowed in a single rendezvous. The programmer’s model of the rendezvous
uses the concept of remote procedure activation rather than explicit [/O transfer
as in Occam. As a result the syntax is rather unwieldy, and difficult to use.

An Ada process is called a task. Each task is a package containing
routines that may be remotely called by other processes as well as internally
called routines and static data. Ada packages have a specification part and an
implementation part called the body. The specification part names the identifiers
that may be accessed from outside the package. In a task specification, procedure
names indicate potential entry points. Shared variables are allowed by naming in
the specification part. The actual entry points are defined with accept statements
in the body of the task. The following example shows an Ada task that takes an

integer parameter from the calling process and returns a running average, along
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with two calling processes:

PROCEDURE taskdemo IS

numberofprocesses: CONSTANT:=2;

TASK TYPE process;

TASK runningaverage IS

ENTRY compute(x: IN integer; average: OUT integer);
END runningaverage;

TASK BODY process IS

i, returnedaverage: integer;

BEGIN

LOOP
i :=randomnumberfunction; — externally declared
compute(i,returnedaverage);

END LOOP

END process;

TASK BODY runningaverage IS
n,total: integer;

BEGIN
n:=0; total:=0;
LOOP
ACCEPT compute(x: IN integer; average: OUT integer) DO
n:=n+l;
total:=total+x;
average :=average/total
END compute;
END LOOP;
END runningaverage;

P: ARRAYd. .numberofprocesses) OF process;

BEGIN
NULL;
END taskdemo;

8.9.3 Non-determinacy in rendezvous systems

Simple use of the rendezvous implies a tight coupling between consumer
and producer processes which causes problems similar to those of the coroutine
implementations above. A process can not proceed beyond a rendezvous point
until synchronisation is achieved with its partner. Buffering between processing
is impossible: even with a separate process controlling the buffer contents it will
still be constrained to giving alternate access to the producer and consumer. This

Occam fragment outlines a buffer process with channels called put and get for use
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by the producer and consumer:

CHAN OF INT put, get:
SEQ
INT hi, lo, items:
VAL size IS 100:

[size]INT buffer — circular buffer
SEQ
items:=0; hi:=0; lo:=0
WHILE TRUE
put?buffer[hi]; items :=items+l; hi:=(hi+i) REM size
get!buffer[lo]; items:=items-I; lo:=(lo+l) REM size

What is required is some way of allowing the buffer process to examine the state
of the two channels and rendezvous with whichever is ready. This is supported in

Occam by the use of the alt constructor and in Ada with the select statement:

CHAN OF INT put, get:
SEQ
INT hi, lo, items:
VAL size IS 100:

[size]INT buffer — circular buffer
SEQ
items:=0; hi:=0; lo:=0
WHILE TRUE
ALT
items<size & put ? buffer[hi] — guard 1
SEQ
items:=items+I|; hi:=(hi+l) REM size
items>0 & get ! buffer[lo] — llegal guard 2
SEQ
items :=items-I; lo: =(lo+1) REM size

When the buffer process reaches the alt statement the guards are eval-
uated. In general a guard can comprise a boolean expression and a channel read
(7). If the boolean evaluates true and there is a datum waiting to be read on the
input channel then the guard is said to be open. If several guards in an alt are
open, then the program decides arbitrarily which guarded process to execute. If
no guards are open then a run time error results.

The above example is not legal occam because output operations are not
allowed in guards (as in guard 2). The reason for this is that if both input and
output operations on the same channel were part of guarded commands in separate
processes, the choice of alternative made in one process would have to result on the
choice of alternative made in the other process and vice versa. Resolution could

only be achieved by sequentially evaluating the ALT statements. This would be
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extremely difficult to implement especially in a distributed system. The problem
may be overcome by constructing another process that fields the GET channel
and makes a request to the main buffer process using an auxiliary channel. This
effectively implements handshaking between the buffer processes and allows the

logic of the GET channel to be inverted.

8.10 Array processor language features

, The above sections have dealt with language extensions for the program-
ming of explicit parallelism on MIMD type systems. There exists another class
of language extensions targeted at vector and array processors. DAP-FORTRAN
[ICL79], ILLIAC IV CFD [Ste75] and ACTUS [Per87] fall into this class. Typ-
ically, extensions are provided that modify array declarations so as to declare
operands that will be operated on using spatial parallelism, as well as parallel op-
erators for element selection, loop control and parallel decision evaluation. [PZ86]

provides a useful review of these languages.

8.11 Automatic detection of parallelism and VLIW

architectures

The design of correct parallel algorithms is non-trivial. Many attempts
have been made to produce compilers that will allow the programmer to use a
sequential notation and automatically detect parallelism and map it on to hard-
ware. The most successful of these have been the vectorising compilers such as
Cray OFT [Res82] and the GDC Cyber 200 FORTRAN [Cor82] for the Cyber
205. The process of vectorisation essentially involves examining the contents of
DO loops to find sequences of statements that may be executed by a pipeline
of vector functional units. Use of GOTOs, IF statements, subroutines and 1/0
within the DO loop naturally preclude vectorisation.

A completely different approach to the automatic parallélisation of al-
gorithms is provided by the use of functional programming languages running
on graph reduction and data-flow architectures. In principle the absence of side
effects in a functional language coupled with the data driven evaluation of these
non-Von Neumann processors should allow any parallelism existing in the problem
to be automatically exploited. Opponents of this approach claim that sequentially

constructed code simply does not contain enough parallelism to provide a signif-
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leant speed up. Of course, functional languages may be used in an explicitly
parallel way to program the underlying hardware in much the same way that the
imperative languages described above may, but that is beyond the scope of this
thesis.

An interesting recent development known as Very Long Instruction Word
processing combines elements of RISC technology, array processing and MIMD
procedural programming. A VLIW machine is a collection of RISC processors
with a large number of parallel, pipelined functional units but a single control
stream [E1186). It is similar to an array processor in that there is a single in-
struction stream but each ‘processing element’is a general processor with its own
control fields in the instruction word. A VLIW machine might more usefully be
thought of as a microcoded machine with a very large flat instruction word control-
ling many functional units. A practical machine would have an instruction word of
the order of 1000 bits or more, hence the term Very Long Instruction Word. The
instruction word also controls a switching matrix that connects functional units
to banks of memory, allowing swapping of operands between functional units.

Manual programming of such a system would be all but impossible, and
the power of the system can only be exploited using high level languages and so-
phisticated compilers. VLIW technology has its origins in the ELI project at Yale
University [Fis82], [Jos83] and a compilation technique known as trace scheduling.
Parallelising compilers for machines such as the CDC 6600 and the scalar part of
the Grays operate by compiling basic blocks with associated register storage and
then attempting to allocate such blocks with different resource requirements on
to a fixed set of processors. Experiments have shown that one could expect at
most a two or three times speed-up by parallelising basic blocks [FR72]. However
later experiments showed that many scientific programs contained fine grained
parallelism averaging a factor 90 [NFS81].

Trace scheduling operates by tracing execution paths through blocks
and attempting to predict the most likely execution path. Ellis’s compiler (called
Bulldog) uses programmer supplied hints to aid in this process. The compiler
also analyses operand references to allow instruction streams to be allocated to
processors and operands to be allocated to memory in such a way as to minimise
horizontal interdependencies. Sometimes an operand would be copied into several
memory banks.

Bulldog has been tested on matrix multiply, EFT and other scientific
calculations. It is claimed that Bulldog can find significant parallelism and gen-

erate order of magnitude speed-ups using conventional technology. The system is
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being commercially exploited by Multiflow Inc.

The combination of detection-of-parallelism compilers and massively par-
allel hardware of a synchronised array type (rather than an unsynchronised MIMD
type) suggests that the techniques may yield great returns in image processing
much of which resembles scientific processing with its emphasis on repetetive cal-

culation on large data sets.

8.12 Conclusions

The wide variety of available constructs for concurrent programming
indicates that a concensus has not yet been reached concerning the ideal pro-
gramming paradigm. There is a trend towards rendezvous based synchronisation
primitives as evidenced by Ada and Occam, but these do not address the require-
ments of shared memory systems. The emphasis on message passing is a result of
the greater security offered to the programmer, and their amenability to formal
analysis. Image processing MIMD systems are likely to continue to be dominated
by shared memory processors because of the very high data rates that would be

required in a message passing system where images are the primary data.
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Chapter 9

The IMP system

“imp [imp] n. minor demon; mischievous goblin, sprite etc.”

9.1 Introduction

This chapter describes the author’sImage-handling Multiprocessor (IMP)
and its application to a realtime grey-scale industrial inspection problem.

IMP is a MIMD system which allows normal computers, hardwired pro-
cessor boards, microcoded CPUs and frame stores to be connected together over
a 16-bit data bus capable of sustaining 6.6MHz transfers. This allows a complete
addressing cycle to be completed in one 256 x 256 square pixel time. Since the
data bus is sixteen bits wide, a byte packed framestore like the V2 board described
in Chapter 5 can provide pixels at 512 x 512 pixel rates. The communications
standard is an upwards compatible implementation of the commercially available
VMEbus [VIT85]. This means that the critical electrical components (backplane,
drivers etc.) are commercially available and that the various protocols involved

are supported by custom integrated circuits.

9.2 Derivation of IMP architecture

The original intention was to upgrade IPOFS to 256 x 256 pixel images
and add bus multiplexing to allow another port into the image memory. This
extra port would be used as a coprocessor bus. Extra lines on the coprocessor bus
would control the operation of the processors themselves, and these lines would be
controlled by the host PDP-11 via extra control registers in the IPOFS CONBLK
area. Since the control signals for 256 x 256 video are already available within

the IPOFS controller, only the addressing scheme and the window mapper circuit
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would need to be expanded.
Although this new system would be comparatively simple to implement,

it would have several disadvantages and problems:

1. the window mapper hardware which is the major feature of IPOFS would

only be available to the host processor,

2. all synchronisation and control of coprocessors would have to be performed

by software in the host and this could become the major bottleneck,

3. all data transfers between coprocessors would have to be routed through the

host, since there is no inter-processor bus,

4. the backplane would have to be very well engineered to cope with the high

frequency signals generated during a processing pass.

In a system comprising the host PDP-11 and a series of small hardware modules
implementing simple parts of an algorithm, these restrictions would not be too
severe. For instance a median filter, Sobel operator, threshold sequence might be
implemented with each part of the sequence a separate hardware module started
up in turn by the host. Assuming that a pixel could be read from memory in 150ns
then the processing time for a module would be approximately n frame times,
where n is the number of memory accesses required per pixel. For a threshold this
would be 2 (one read and one write), and 10 for a straightforward implementation
of a 3 X 3 Sobel operator. It is possible to speed up the Sobel by retaining some
parts of a window for the next operation [Lee83,Pic84]. In this case an average
of only one read and one write are required per pixel, and therefore the total
execution time would again be 2 frame times. The address generation circuitry
required to do this is quite complex, and it would need to be replicated on each
module. Ideally resources such as this would be centralised and available to all

processors.

9.2.1 Coprocessor bus

Since all control registers would reside on the main controller card, all
control information would have to be provided by the extra lines on the copro-
cessor bus. The best way to do this is to provide an extra low speed address and
data bus from which the host can download data into the coprocessors. Thus two
separate buses are provided, a pixel access bus and a processor bus.

The system as described is highly hierarchical, in that the host has abso-

lute control, and all data transfers between coprocessors must proceed through it.
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Ideally, coprocessors would be allowed to communicate directly with each other.
A hybrid approach might be for the message sending coprocessor to leave the data
to be communicated in an image space, relinquish control of the pixel bus, and
rely on the host to initiate receipt of the data by another processor. In this case,
only arbitration transactions are required on the processor bus, and data transfer
occurs at hardwired speeds, rather than host speeds.

A better solution is to allow the coprocessors themselves to become mas-
ters on the coprocessor bus, and to directly address the other coprocessors. No
interaction is required by the host, but some central arbitration scheme is required.
Given that the coprocessor bus is to be arbitrated centrally, it makes sense to arbi-
trate the pixel bus at the same point. If these arbitration functions are performed
in hardware, then coprocessor operations will all proceed very quickly, and the
role of the host can be reduced to monitoring the buses, and initial preloading of
the system. Since it will not have to waste time transferring data and arbitrat-
ing buses, it will be free to perform background tasks such as trend analysis and

statistical reporting of the line under inspection.

9.2.2 Unification of multiple bus scheme

It is clear that there is significant redundancy in the two bus scheme.
In general, a coprocessor will be using either the pixel bus or the coprocessor
bus. The two buses will require a large number of backplane lines each, and it is
likely that the addressing and data range of the buses will be restrictive for an
economically viable scheme. It is useful to have between four and sixteen image
spaces available, and so the pixel bus will need to access between 256K and IM
locations, which requires 20 address lines. A 16-bit data bus, read/write and valid
address strobes will require another 18 lines. All of these lines will require buffers
on each coprocessor board, and if two buses are to be implemented, then these
will have to be duplicated. 10 twenty pin IC packs will be required for this alone,
and when two arbitrator interfaces are required along with control logic it is clear
that the real-estate overhead on each board is significant.

If the coprocessor and pixel buses are not to be used concurrently, then
it would be much more sensible to combine the two into one large address range
data bus. Pixel memory and coprocessor registers can be allocated addresses
throughout the address map, and a much more unified (and economic) design
results.

The final modification to be made to the simple expanded IPOFS model
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is to provide centralised memory management resources, so that address genera-
tion for, say, 3 x 3 window operations can be done by one piece of hardware for
all processors. The bus must provide a mechanism for a bus master to relinquish
the addressing section and allow the memory management unit to fetch the data.

Several design exercises were conducted, mainly centering on the arbitra-
tion structure and the physical design of the backplane. It was quickly recognised
that an electrically robust bus requires very high engineering standards, and that
the development of a dedicated backplane for IMP might be a lengthy job. Elec-
trical problems become more important as the number of loads in a system and
the operating frequency become greater. Clearly, the backplane is the potential
Achilles heel of a system, since it will probably have the greatest loading, and is
subject to variable loading depending on the card configuration, so ‘single case’
specification is not possible.

Real time industrial control is a growing market, and several manufactur-
ers have defined bus standards for multiprocessor systems. The IMP bus requires
very high throughput and memory management facilities considerably in excess
of those normally found in industrial systems, but a survey was made of existing
buses to see if one could be adapted for use in IMP. Adaptation could be at one

of three levels:

1. Use of manufacturer’s backplane as the physical substrate for IMP, but with

an IMP-specific allocation of lines and protocol,
2. Use of manufacturer’s bus standard without modification,

3. Use of manufacturer’s bus standard with IMP-specific enhancements, prefer-

ably not conflicting with manufacturer’s standard.
Level 2 (no adaptation) would obviously be ideal, allowing work to commence at

once on the functional parts of IMP.

9.2.3 Commercial multiprocessor buses

Any real computer bus will be a collection of several logical buses sup-

porting the distribution of power and different kinds of signals such as:

1. data transfer between processors and memories (which may reside within

other processors),

2. arbitration.
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3. interrupt information,
4. system wide control, such as reset signals and master clocks.

These logical buses may be time multiplexed onto one set of wires, in which case
there is only one physical bus, or they may be implemented as separate physical
groups of lines. There may even be multiple physical buses for one logical func-
tion — for instance two data transfer buses to speed memory access. The use of a
separate 1/0 bus falls into this category, where transfers between processors and
memory may occur concurrently with transfers between processors and backing
store over two sets of wires. Within each physical bus further multiplexing may be
used, for instance between addresses and data. Each operation on a bus is called
a transaction, and may be a complete arbitration cycle, an interrupt-interrupt
acknowledge sequence or the fetching of one word of data.

A bus may be evaluated in terms of economics and performance mea-
surements. For instance a 16 line multiplexed address/data bus running at a
maximum square wave frequency of IOMHz can support up to 128K bytes of
memory which can be accessed at a maximum frequency of 20M byte per second.
It will require 17 lines feind buffers (one extra line is needed for demultiplexing)
and for many applications at least 16 latches will be required. An arbitration bus
will be able to support varying numbers of prioritised requests depending on the
number of lines dedicated, and similarly for the interrupt bus. The arbiter may
prioritise requests using a preset priority scheme or a round robin scheme which
will ensure that all masters get a fair share of the bus.

Bus transactions fall naturally into two classes — asynchronous and syn-
chronous. These describe the nature of the transfer protocol. In a synchronous
bus, all transactions occur at fixed times governed by a centrally generated clock.
Most small computers use this kind of bus, and with the addition of some arbi-
tration logic, a multiprocessor bus can be constructed. In an asynchronous bus,
all transactions are handshaked. A bus master writing to the data bus asserts
address, data and cycle type information on the bus, waits for the bus to settle
and then asserts a strobe that tells the slave to begin address decoding and data
accessing. When the slave has acquired (write cycle) or fetched (read cycle) the
data, an acknowledge signal is returned to the master, which then removes the
strobe and other data. Arbitration and interrupt transactions may be similarly
handshaked.

Asynchronous transactions have the advantage that they automatically

adapt to different speed masters and slaves. In a synchronous system some de-
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cision has to be made concerning the base frequency. Devices which run faster
must have some means of idling while the bus responds. Slower slaves will be
unusable for reads, and will require front end synchronisation latches for writes.
Any future improvements in technology allowing faster operation will be difficult
to incorporate. In a mixed hardwired/conventional computer environment such
as IMP there are bound to be at least two basic operating speeds — the hardwired
accesses will probably operate at near video pixel rates (say 150ns per access),
and the computer will operate at around 1/xs per access. An asynchronous system
will be able to cope with this without>equiring any hardware overhead on the
individual boards.

The review was restricted to widely distributed buses, on the basis that
the economic advantages of adopting a manufacturer’s bus would be lost if that
bus were an obscure one. The systems considered included CAMAC, the DEC
omnibus. Unibus, Q-bus family, the synchronous SBI used in the VAX 11/780
memory subsystem, the STD and STE buses, the Motorola Versabus and VME-
bus, and the Intel Multibus and Multibus II.

9.2.4 Conclusions

Of the buses considered, only VMEbus and Multibus II are capable of
providing pixel rate throughputs at small system cost. It is clear that VMEbus
is more applicable to IMP because it can adapt gracefully to the different access
rates required, and most importantly of all it provides a means of specifying spe-
cial cycles and protocols in an upwards compatible way through the use of address
modifiers. Since slaves must only respond to address modifiers that they under-
stand, making use of the user defined codes will automatically disable commercial
and non-IMP slaves. This allows IMP-specific and commercial boards to be mixed
in a single system with no contention. As a bonus, the protocol is similar to the
Unibus and Q-bus protocols and this eases the design ofa DEC to VME interface.
This makes up for the impossibility of building the IMP system directly onto the
Q-bus host. Finally, a series of VLSI bus protocol chips to handle functions such
as bus arbitration and interrupter/interrupt servicing are appearing, and 68000

family peripheral chips will interface directly.
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Figure 9.1: IMP block diagram

9.3 Architectural overview

Figure 9.1 shows a block diagram of IMP at the backplane/board level.
Figure 9.2 is a photograph of the prototype. This is based around a 6U Eurocard
crate with a 9 slot VME backplane mounted in the upper connector position. A
250W power supply is mounted at the rear for the main logic supply. A smaller
power supply for the analogue circuitry is bolted to one end, along with a die
cast box containing the digitiser logic. Each circuit board is of double extended

Eurocard size with the lower connector available for I/O specific to that board.

The system controller card provides bus arbitration and memory man-
agement, power up and manual resets, and a bus watchdog that will time out any
bus transactions that are not acknowledged within 16 microseconds. A 16 MHz
clock is also provided for compatability with other VME systems, although this
is of limited use in IMP.

The Q-bus link is a two board set providing transmission between Q-bus
and VMEDbus backplanes over a 20-way twisted pair cable driven to the RS-422
electrical standard. The protocol used is a slightly modified version of the Q-bus
protocol which may be generated with some further multiplexing of the Q-bus
lines, and a single flip-flop for interrupt latching. The electrical and protocol
standard form another bus specification called the Asynchronous Bus Interconnect
(ABI). The smaller Q-bus card carries RS-422 transceivers, Q-bus buffers and a
small amount of multiplexing logic. The main part of the protocol conversion is

performed on the larger VME card.



Figure 9.2: IMP prototype

The industrial inspection system described in Section 9.10 used the VI
framestore described in Chapter 5 and a PDP 11/23 host. Current versions of
the system use the V2 framestore and PDP 11/73 or MicroVax II hosts. Three
systems have been constructed and are in daily use in the Machine Vision Group’s

Laboratories.

94 Project management

IMP is a potentially large system, and the prototype implementation
described here involves some 250 integrated circuits distributed over four boards.
Large projects can rapidly become unmanageable, but significant efforts have been
made to maintain a disciplined documentation system from the start. A complete
description of all component positions and interconnections is maintained in ma-
chine readable form using a suite of programs written by the author. These
programs generate wiring lists, automatically flagging some simple errors. Board
maps can be produced on a normal printer. There is also an interface to the Racal
Redboard PCB layout system and the combined system has been used for the im-
plementation of a commercial high-density peripheral card and the prototype of
the NPL LAP2 array processor.

When the paper design of a board has been completed, a prototyping
card is selected and the components laid out as desired. The type of the board,
the components and the pin 1 coordinates are typed into a component listing

file. Program CADEXP then expands this listing using two databases containing
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descriptions of the various prototyping boards and IC types. The result is a
listing of all IC pins on the board with their coordinates and electrical types (e.y.
totem pole output, open collector output, bidirectional tri-state etc.), as well as
the function of each chip and pin. Signal names are then taken from the paper
design and added beside each pin name. Another program called CADSIG then
goes through the file collecting references to signals and collecting them together
in alphabetical order so as to form a wiring list. Errors such as the connection
of two outputs together are caught at this stage. The board is wired directly
from this list on a coordinate to coordinate basis. Wiring up is thus reduced to
a mechanical task which does not require constant reference to the component
side of the board to check that the correct IC has been located. This has reduced
the incidence of wiring errors (as opposed to logical design errors) to negligible
proportions. Wiring errors were extremely common whilst building IPOFS, and
this was exacerbated by the ‘design it on the board’ approach.

The machine readable wiring lists can be used to generate tapes for
automatic wire wrapping machines which may provide cheaper fabrication for
small production runs (say less than 10) than using a PCB, especially since a
complex board like VI would require a multi plane board, or segmentation onto
two separate PCBs.

Within each generation, a board may go through many changes as it
is debugged or enhanced. These small Engineering Change Orders (ECOs) are
accumulated on a hard copy listing of the board’s last dumped state, or marked
in a disk file. At intervals, a block of ECOs will be applied to the board’s source
file, and new wiring lists will be generated. This constitutes a new revision of the
board. Therefore under this system a board’s state at any time will be given in a
file tagged by PROJECT/BOARD-REVISION-ECO, eg IMP/VI-E-B.

Since this software is running on the IMP host computer, it is available
for use on the bench, and has proved an extremely powerful debugging aid. If a
signal is found to be showing unexpected behaviour, the system editor can very
rapidly find all pins attached to that signal, and which is the output. Since all
changes are recorded, unexpected side effects are avoided. During the develop-
ment of IPOFS the situation often arose where a modification to one part of the
circuit generated unexpected behaviour in a completely unrelated part, because
a common interconnection had been overlooked, or because a signal line had not
been completely restored after the removal of one link. This kind of bug, where
the symptom does not have a clear causal connection with the real problem is

the most difficult to track down, being highly analogous to the bugs found in
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parallel software systems. Having a machine-checked list of every pin, wire and
connection on the board has removed this problem, and allows debugging to pro-
ceed in a far more linear and structured way. Although originally conceived as a
documentation aid to reduce the costs of PCB production, the system has turned
out to be vital during development. The current documentation for the prototype
IMP occupies some 300K bytes of disk space and it would clearly be impossible
to carry even a small amount of that type of information in the head. Since the
software automates working practices that had evolved during the development
of IPOFS, little or no adaptation has been required to make use of it: however it

has imposed more discipline, which ultimately reduces design time and costs.

9.5 Use of the VMEDbus in IMP

IMP adheres closely to the VMEbus standard. Within the limits of the
standard two kinds of ‘customisation’ are possible. Firstly there are various op-
tions concerning the width of data and address buses; the kind of bus arbitration
provided; the distribution of interrupt fielding processors; and the kinds of bus
cycles supported. Secondly, user definable address modifier codes are available for
the specification of unusual data transfer cycles. In IMP, a centrally controlled
memory management protocol has been designed and synchronous transfer modes
defined through the use of address modifiers. These additions to the basic VME-
bus cycle types will be implemented on a future bus controller card. The VMEbus
specification allows boards that are addressed with cycle types that they do not
recognise to return an error signal, thus maintaining the integrity of the system.

A technical overview of VME protocols is presented here to provide the
reader with enough information to understand the detailed operation of the IMP

boards. A fuller reference is [VIT85].

9.5.1 VMEDbus lines

The 82 signal (i.e. non-power) lines on the upper (PI) Eurocard connec-
tor divide into four separate buses. These are: a 16-bit data/24-bit address Data
Transfer Bus (DTB); a seven level interrupt bus (INT); a four level DTB arbi-
trator with selectable priority or round robin scheduler algorithms (ARB); and a
miscellaneous system utility bus (UTL) carrying a 16MHz clock signal, reset and
power monitor lines, an error line for boards to indicate failure of self-tests, and

a low speed serial link for interboard communication and synchronisation. The



DTB

A01-A23
D00-D15
AMO0-AM5
LWORD*
WRITE*
AS*

DSO*
DSI*
DTACK*
BERR*

ARB

BRO*-BR3*
BGOIN*-BG3IN*
BGOOUT*-BG30UT*
BBSY*

BCLR*

INT

IRQ1*-IRQ7*
IACK*
IACKIN*
IACKOUT*

UTL

ACFAIL*
SYSRESET*
SYSFAIL*
SYSCLK
SERDAT
SERCLK

Arbitration

signals are summarised below:

address bus
data bus

address modifiers

long word
write

address strobe
data strobe low
data strobe high
data acknowledge

bus error

bus
bus
bus
bus
bus

request
grant in
grant out
busy
clear

interrupt
acknowledge
acknowledge in
acknowledge out

AC failure
system reset
system fail
system clock
serial data
serial clock
bus

request

Primary address
Primary data
DTB cycle control
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Used with 32-bit extension

low byte access

high byte access
Handskake from slave
Bus protocol error

four level request bus

bus grant daisy chains

master has bus
master wants bus

interrupt request bus

daisychained acknowledge

power fail imminent
failed self test
16 MHz clock

low speed serial line

IMP uses a four level priority arbitration scheme, allocated as follows:

Executive processor

Hardwired coprocessors

Software based coprocessors

Video acquisition and display

(highest priority)

(lowest priority)
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Only one video coprocessor is allowed in the system. Note that the framestores
described in this thesis are video slaves which do not qualify as a coprocessors. A
graphics processor, or sync locked DMA transfer processor would be examples of
true coprocessors. Normally there will be only one executive processor, although
it is conceivable that a second level 3 processor might be used in some applications.

The executive processor is in overall charge of the system. It is able to
initialise, start and stop all other coprocessors, and in the prototype implementa-
tion is able to monitor all bus activity above the level ofindividual data transfers,
and so can be used as a sort of ‘software logic analyzer’in the debugging of target
coprocessors. Naturally it has the highest priority so that it can usurp an errant
coprocessor which is tying up the bus.

The next highest priority is reserved for hardwired coprocessors. It is
assumed that such machines will not in general be able to save their system state
easily (i.e. they are uninterruptible in that they will not be able to recover after
an interrupt, except via a general reset). Below these are the level 1 software con-
trolled coprocessors based around conventional microprocessors and computers.

When there is no other activity on the bus, and when no requests are
outstanding, the arbitrator gives control to the video subsystem. This allows
the video board to display images from VMEbus memory, or to write digitised
video or other data. When a coprocessor requests the bus, video display from
the bus will be suspended. This will cause ‘hashing’ on the screen. However, all
planned video boards also have onboard local memory from which displays may
be maintained even when the video board is locked off the bus. VI uses local
memory exclusively, and therefore never needs to become a VM Ebus master. The
VI onboard memory is accessible through two blocks of VME addresses — as a
mapped set of registers forming a superset of the IPOFS registers, and as a simple
block of RAM filling 128K contiguous locations.

Within each level, bus grants are daisychained so as to provide an extra

level of prioritisation based on physical proximity to the arbitrator.

9.5.3 Arbitration protocol

In IMP, there is always a bus master. If no coprocessors or executives
are active, control defaults to the video system. A simple bus request and grant

sequence is illustrated in Figure 9.3.

1. A level 2 hardwired coprocessor needs the bus and asserts BR2*. The bus

request lines are open collector, so several requests may be pending simul-
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Figure 9.3: IMP bus arbitration
taneously.

2. When the arbitrator receives a request of higher priority than the last posted

grant, it asserts BCLR* to order the current bus master to release the bus.

3. In this case, the video board will tri-state its bus drivers and release the

BBSY* line.

4. The positive going edge of BBSY* is a signal to the arbitrator to issue a

grant to the next eligible master, in this case on level 2.

5. The grant will propagate down the backplane being examined and be passed

on by all boards until it reaches the requesting master where the grant is

blocked.

6. The new master asserts BBSY* and the arbitrator responds by removing

the grant (this implies that grants must be latched on the master).

This completes the arbitration transaction, and the new master will retain bus
ownership until either it has finished, or the executive processor requests the bus,
in which case a BCLR* signal will be generated.

It is possible for arbitration to be overlapped with DTB transactions. A
master may release BBSY* after the start of its last DTB cycle. The new master
will then receive a grant before the address and data strobes have been released.
Naturally, the new master must wait until no strobes are present before activating
its own bus drivers. This early release of BBSY is optional. Boards providing this

feature are called type Pre RElease (PRE) masters.
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Figure 9.4: IMP data transfer

9.5.4 Data Transfer Bus

The basic DTB comprises 16 data lines, 23 address lines, one address
and two data strobes, a write line, a normal and an error acknowledge; and six
address modifiers which may be used to specify multiple address spaces (e.g.
kernel, supervisor and user space) or to specify special address cycle types. If the
second connector (P2) and backplane are fitted then the DTB is extended to 32
data lines with another 8 address lines. A line LWORD¥* is used on the main
backplane to specify a 32 bit access. This extension is not used in the prototype

IMP, so it is limited to an address space of 8M word of 16 bits.

9.5.5 Data transfer protocol

The IMP data transfer cycle is shown in Figure 9.4.

1. After having taken possession ofthe bus (see above), the master asserts AOI-

A23, AM0O-AMS and WRITE* with their required levels for this transaction.

2. The master waits for 35ns to allow for 25ns deskew and 10ns setup time at

the slave, and then asserts AS*.

3. For a write cycle, either concurrently with the assertion of the addresses, or

afterwards, D00-D15 are asserted as required.

4. The data strobes are asserted as required either concurrently with or after
the assertion of the address strobe. On a write cycle, 35ns deskew and

setup time must elapse after data assertion before data strobes are asserted.
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There is one data strobe for each byte in the word. This is in contrast to the
Unibus/Q-bus protocol which uses a dedicated ‘BYTE’ line, which must be

decoded with AO to access the correct byte.

5. After fetching or accepting the data, the slave asserts DTACK®*. If at any
time the slave detects a protocol error, it asserts BERR*. Both acknowledges

may be asserted but BERR* takes priority.

6. Upon receipt of an acknowledge, the master releases all strobes, thus sig-

1

nalling the end of the transaction.

7. When the slave detects all strobes high, it releases the acknowledge lines.

The IMP controller carries an 8-bit counter driven by the 16MHz SYSCLK signal
that is reset to 0 when the data strobes are high. The counter overflow also drives
BERR*, so that if 256 16MHz cycles (i.e. 16/xs) into a DTB data transfer no
acknowledge has been received, the transaction will be ‘timed out’and a protocol
error reported. Without this feature, the addressing of non-existent memory

would cause a system hang.

9.5.6 Use of address modifiers

The six address modifier lines allow one of 64 modes to be specified along
with the main address. These modifiers are decoded along with the address itself,
and slaves will respond only to the modes they recognise. (Typical commercial
systems decode the address modifiers in a 64 word PROM which may be modified
by the customer in line with any special needs.) There are 16 modes reserved
for user application (numbers 10-1F hexadecimal). Although this feature will
probably be rarely used in conventional VME computers, it provides the key to
upgrading the bus in a safe way. As long as the strobe and interlock protocol is
adhered to, any special protocol can be designed, because assertion of any of the

16 user modes will disable all ‘normal’ slaves in the system.

9.5.7 Interrupt bus

During the early design of this system an attempt was made to unify
and condense the bus as much as possible — hence there is only one data bus
over which all transfers whether DMA, I/0 or programmed occur. However an
interrupt mechanism is also required. If the executive is to manage the system

it must be informed when a coprocessor has completed an operation, or requires
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attention of some kind. It is not possible for the executive to poll the coproces-
sor by reading its status over the DTB because as mentioned above, hardwired
processors especially are unlikely to tolerate interruption, and the executive will
need to gain bus mastership to perform the poll.

One way to avoid using a separate communication channel for this status
information would be to get the coprocessor to write to a special location which
generates an interrupt in the executive. (This is just how the interrupt protocol on
the Unibus works, except that a special IRQ line is used to address the interrupt
fielder rather than a particular location. As a result no separate interrupt bus
is required.) However, since the single executive fields all interrupts, and since
there may be many interrupters, it makes sense to minimise the logic required
on the interrupter at the expense of a more complex interrupt fielder. A single
interrupt line on the backplane activated at the end of a process is much simpler to
implement than the logic required to address and write to a special bus location.
Another problem with Unibus style interrupt protocols is that masters that are
not in possession of the bus have no way of asking the executive for service.
Specifically the video circuitry in IMP can be used to supply timing information
to the executive based on its frame and line timing. However, the video circuitry
can never cause a coprocessor to relinquish the bus because it has a lower priority,
and the arbitrator will simply ignore any requests.

As a result all 7 interrupt levels on the VMEbus are used for parallel
communications. All interrupt lines are open collector, and so multiple requests
on each line are possible. The 7 levels are defined as:

7 — Executive processor (reserved)

6 — Hardwired coprocessor error

5 — Hardwired coprocessor completion
4 — Software coprocessor error

3 — Software coprocessor completion

2 — Video coprocessor error

1 — Video coprocessor completion

Level 7 is reserved for any future implementation that may have more
than one executive level processor. In such a case, one will still have to be desig-
nated the interrupt fielder and will therefore be the main system controller. The
subsidiary executives, which may be controlling complete IMP systems of their
own will communicate with the executive using level 7 interrupts. One appli-
cation would be to wide production lines, which due to optical and throughput

limitations could not be monitored with one system.
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The other 6 levels are allocated equallyto the other 3 processor lev-
els. For each, a completion and an error interrupt are provided to signal correct

termination and error aborts of an operation.

9.5.8 Utility bus

The utility bus provides power monitoring, reset and clock facilities. In
the prototype the power monitoring lines are not used. The reset line is asserted
on power up and under software control from the host. The clock provides a
16MHz 50% duty square wave in line with the VME specification. In fact a
20MHz clock would be more useful since the pixel timing for both square and
rectangular images can be derived simply from this. The SYSFAIL* line provides
a way of alerting the executive that a coprocessor has failed its self test. The

serial lines SERCLK and SERDAT are not used in IMP.

9.6 Q-bus to VMEDbus link

The prototype executive processor is a Q-bus based PDP-11. PDP
11/03, 11/21 (Falcon), 11/23, 11/73 and MicroVAX II hosts have been used
successfully. The interface link was designed to be electrically robust so that
operation in an electrically noisy environment such as a factory would not be
impaired. The executive is also provided with a comprehensive bus monitoring
capability.

Transmission between buses is over a 20-way twisted pair cable driven
to the RS-422 electrical standard. This allows operation at frequencies of up
to IOMHz over distances of up to 10m. The cable may be extended up to lkm,
but with greatly downgraded frequency performance (50kHz maximum at 1000m)
[Dev8la,Dev81b]. The receivers can discriminate against up to 25V of common
mode noise, and this allows complete decoupling of the chassis grounds between
the Q-bus machine and IMP. The protocol is a modified Q-bus scheme using
additional multiplexing to reduce the number of signal lines to 20. The electri-
cal and protocol standards together constitute another bus standard called the

Asynchronous Bus Interconnect (ABI).

9.6.1 QQ card

The QQ card is essentially just a buffer board between the Q-bus and
the ABI. A block diagram and a photograph of QQ are shown in Figure 9.5 and
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ABI

Figure 9.5: QQ block diagram

The following lines are buffered from the Q-bus:

DALO-15
BS7
WIBT
SYNC
DIN
DOUT
RPLY
IACKI
IACKO
IRQ4
IRQ5
TRQ6
IRQ7

—
=)

ke ek e el ek e ek

Data Address Line

Bank Select 7
WRite/ByTe

SYNChronise

Data IN

Data OUT

RePLY

interrupt ACKnowledge In
interrupt ACKnowledge Out
interrupt ReQuest
interrupt ReQuest
interrupt ReQuest
interrupt ReQuest

These lines are used in two ways:

Multiplexed data/address
I/O page decode
Multiplexed write/byte
Bus cycle in progress
Read strobe

Write strobe

Slave handshake
Acknowledge daisy chain
Acknowledge daisy chain
Request (lo priority)

Request (hi priority)

1. Data transfer cycles between the PDP-11 host and the ABI.

2. Interrupt requests and acknowledges.

The Q-bus protocol for these transactions will now be described. Note that IMP

does not use the DMA capability of the Q-bus, therefore the description below

is not a complete description of Q-bus operation, but only an overview of those

parts relevant to IMP. Fuller details may be found in [Dig79a].
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Figure 9.6: QQ prototype

9.7 Q-bus protocols

9.7.1 Data transfer cycles
The DTB transaction is shown in Figure 9.7

. The master asserts DALO-15 with the required address. If the address is
within the /O page (the top 8K byte of the memory map), it asserts BS7.
If the cycle is a write, it asserts WTBT. After waiting 150ns minimum, the
master asserts SYNC. This allows 75ns de-skew and 75ns setup time at the

slave.

2. On the rising edge of SYNC, the slave latches the address, and if necessary
WTBT.

3. After waiting a further 100ns minimum, the master removes the address
from DALO-15 and negates WTBT. This allows at least 25ns of hold time

at the slave.

4. For a write, the master asserts DALO-15 with the required data. If the cycle
is a byte write, it asserts WTBT. After waiting at least 100ns, it asserts

DOUT. This allows at least 25ns of setup time at the slave.
5. For a read, the master asserts DIN.

6. When ready, the slave asserts RPLY. At least 150ns will elapse at the slave

between the assertion of RPLY and the negation of the strobe (DIN or
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Figure 9.7: Qbus data transfer

DOUT).

7. For a read, data is latched at the master on the falling edge of the strobe.
Because of setup time requirements, data must be presented by the slave
not more than 125ns after the assertion of RPLY (i.e. this is an early
acknowledge protocol). WTBT will remain valid at the slave for at least

25ns after the negation of the strobe.

8. For a write, data is guaranteed to be present at the slave buffers for at least
25ns after the negation of the strobe. WTBT also maintains its value for at

least 25ns.

9. If this is a write-after-read cycle, SYNC will remain asserted and the data

part of a write cycle will be performed. Otherwise SYNC will be negated.

10. SYNC must remain negated for at least 200ns. This means that at least
50ns dead time must occur before DALO-15 can be asserted with the next

address.

The minimum read time for Q-bus is 550ns £ 7ry and for writes 650ns £ T#,
where Tr is the response time of the slave. With current fast memories, it is
quite possible to produce slaves that do all internal accesses during the allowed
setup times of the protocol, and therefore appear to have zero response time. In
this case Tr will consist of the time required for the strobe (DIN or DOUT) to
propagate down the bus, be turned around onto RPLY and propagate back up. At

a minimum, this would be two bus propagation times plus one gate propagation
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time, say 50ns on a heavily loaded bus. This yields a maximum bus frequency of
1.67MHz for continuous reads ( i.e. a bandwidth of 3.3Mbyte 1.43MHz for

continuous writes and 0.84MHz for continuous write-after-reads.

9.7.2 Interrupt protocols

The interrupt protocol has three phases: interrupt request; interrupt

acknowledge and arbitration; and vector read.

9.7.3 Interrupt request phase

A device may assert an interrupt request at any time. Several devices
may be requesting service at once because the request lines are open collector.
The request codes are somewhat complicated by the need to maintain compata-
bility across two versions of the Q-bus. Originally only one level of interrupt was
provided, but with the release of the LSI 11/23 processor this was upgraded to
4. The earlier scheme supported only the lowest level (IRQ4) and so all higher
requests must also assert IRQ4 to warn off earlier single level devices. To ease in
decoding during interrupt acknowledgement, level 7 IRQs must also assert IRQ6.

The full list of codes is:

IRQ4

IRQ4,IRQ5
IRQ4,IRQ6
IRQ4,IRQ6,IRQ7

~N o o &

These lines remain asserted until the request is acknowledged.

9.7.4 Interrupt acknowledge phase

At the end of each instruction, the master examines the state of the IRQ
lines and compares the priority of any pending requests with its own execution
priority as defined by the Processor Status Word (PSW). A request at a higher

priority than the processor’s will initiate an interrupt acknowledge transaction.

1. The master asserts DIN and at least 225ns later asserts IACKO. Note that
SYNC is not asserted, and this may be used to differentiate between DTB

read and interrupt acknowledge cycles.

2. The device electrically closest to the master receives the acknowledge on its

1A CKI receiver.



209

3. If not requesting an interrupt, the device asserts its IACKO line and thus

propagates the acknowledge to the next device in the daisychain.

4. If the device is requesting an interrupt, it checks the IRQ lines to see if a

higher level device is also requesting.

5. Ifno higher level request is present, the device blocks the acknowledge. (This
is done by using the leading edge of DIN to clock a flip flop that disables
the IACKO transmitter.) Arbitration is won, and the vector transfer phase

starts.

6. If a higher level request exists, the device disqualifies itself (by clearing the

blocking flip flop) and the acknowledge propagates to the next device.

9.7.5 Vector read phase

When arbitration has been successfully won, the device asserts RPLY,
and within 150ns supplies an interrupt vector on DALO-15. The master then
reads the vector, and negates DIN and IACKO. The device then negates RPLY
and within 100ns removes the vector. The master then uses the vector as the
address of a two word area in memory containing the address of the device’s
service routine which is loaded into the program counter, and a new status word

which is loaded to the PSW.

9.7.6 Q-bus interrupt protocol hazard

The Q-bus interrupt protocol is interesting because it effectively requires
the device itself to perform priority arbitration. This is a sort of halfway house
between the Unibus and VMEbus schemes. The Unibus requires the interrupter
to become a bus master, and therefore all arbitration is done by the DTB arbi-
trator. The Q-bus requires the interrupter to decide for itself whether a received
acknowledge is for it or another interrupter. The VMEbus interrupt fielder tells
the interrupter which priority it is responding to by putting out a three-bit code
on the address lines, so all the interrupter has to do is wait for an IACKI with a
matching code on A2-A0. In fact the Q-bus protocol could also do this because
not all 16 DAL lines are used for the vector (vectors are only allowed in the 512
bytes of memory, so only 9 DAL lines are needed for vector specification).

Because of the serial nature of the arbitration on the Q-bus, a potentially
fatal race condition exists wherein a low priority interrupter near to the interrupt

fielding processor may ‘steal’ a vector fetch cycle from a high priority interrupter
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Figure 9.8: QV block diagram

further away. This is resolved by ensuring that high priority interrupters are

geographically close to the interrupter.

9.8 QYV card

The QV card forms the VMEbus end of the ABI link. The full design
has been modified in later versions to remove the interrupt generation circuitry
which turned out to be overkill for the current project.

QV provides controller functions for the VMEbus, such as clock gen-
eration and bus time-out watchdog, memory management hardware to convert
Q-bus addresses to full 24-bit VM Ebus addresses, and interrupt fielding on the
VMEDbus. The Q-bus data transfer and interrupt service protocols are converted

to VMEbus protocols. A block diagram of the QV board is shown in Figure 9.8.

9.8.1 QYV operation

9.8.2 Address and WTBT latches

The ABI DAL signals are buffered and passed to the address latches
where the address/data information is demultiplexed under the control of ZA-
SYNC. The ZWTBT line is buffered and latched in one half of a dual D-type
flip-flop. A simple latch (such as those used for the DAL lines) is not sufficient
because the latched read will need to be changed to a write signal at the end of

the data strobe (DSYNC) during read-modify-write cycles. The other half of the
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D-type is clocked by the falling edge of DSYNC and clears the WRITE flip-flop.

9.8.3 Address decoding

There are 32 memory management and 8 interrupt service registers on
the board. Internal addresses are decoded by PROM and random logic.

A further block of 4K bytes (usually the bottom half of the Q-bus I/O
page) is reserved for VME bus access. This space is divided up into 16 windows

of 256 bytes each.

9.8.4 VME bus access

When an address within a VM Ebus window is detected, a request is sent
to the on-board VMEDbus requester and when a grant is received the VMEbus
buffers are enabled. Bits 1 to seven inclusive of the Q-bus address (corresponding
to the address within the window) are connected directly to the low seven bits
of the VME bus buffers. The WTBT line is decoded with bit zero of the Q-bus
address to generate the correct set of data strobes for the VMEbus.

Bits eight through eleven are applied to the pair of 74LS621 address
mappers which access internal registers to supply 24 bits of extra addressing

information. This is connected to VME lines A8-23, AMO, LWORD* and IACK*.

9.8.5 Interrupt subsystem

Interrupts are latched by two AMD 9519A Universal Interrupt Controller
chips. These sophisticated devices allow programmable edge detection on eight
independent prioritised inputs and can be preloaded with vector information for
the host. When an active edge is sensed by one of the interrupt controllers it sets
an internal flag bit and asserts an open collector Interrupt Request line. This
generates an interrupt cycle on the ABI. The host processor will read the vector
information from the controllers automatically. Hence sixteen independently vec-
tored interrupts are available. These are connected to (in decreasing priority or-
der) SYSRESET*, SYSFAIL*, BCLR* BG3*-BG0*, IRQ7*-IRQI1* and BERR*.
Using these interrupts, the host may monitor all transactions on the VMEbus
above the level of individual data transfers (i.e. interrupts, system failures and

bus master transfers).
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Figure 9.9: Arbitrator state diagram

9.8.6 Bus services

QV provides an arbitrator, a bus time-out watchdog and a system clock.
These subsystems are completely independent of the other functions on the board
and could be disabled if the Q-bus machine was to be used with a proprietary bus
controller card.

The 16MHz clock is generated from a crystal oscillator and buffered
directly onto the VMEbus. The clock is divided down by an eight-bit counter to
provide a 16/is timer that is enabled at the start of each VM Ebus address strobe.
If a DTACK has not been received within that time, the counter asserts BERR*
to indicate a bus time out.

The 16MHz clock drives the arbitrator which is a finite state machine im-
plemented in a 85S105A Field Programmable Logic Sequencer. The state diagram

is shown in Figure 9.9.

9.8.7 Software access to the VMEDbus

The programmer’s model of the Q-bus to VM Ebus memory management
is shown in Figure 9.10.

The sixteen VMEbus windows each have an associated VME Address
Register (VAR), labelled VARO-15. Each VAR is 24 bits long and is accessed
via two Q-bus words. VARnLO holds bits 0-11 of the extension word, corre-
sponding to VME bits A8-19. VARnHI holds bits 12-23 of the extension word
corresponding to VME bits A20-23, AMO-5, LWORD* and JACK*.



213
VARHI VARLO WINDOWS VME AddrMt spec#

000000
000100

A23-20 A19-08 A07-00
AMO-S

Figure 9.10: Memory management programmer’s model

The sixteen windows may therefore be independently mapped to any 256
byte area on the VMEbus starting a 256 byte boundary. Any address modifier
may be associated with the window.

As an example, suppose the Q-bus host needs to access a sixteen-bit
word at VM Ebus address A9B115i6 with address modifier 3Cig, and that the first
two VMEbus windows are already mapped.

In this case LWORD?* and I1ACK* will be low, so the full 32-bit address
will be 3CA9B11518. This address is divided into three fields — the top twelve
bits, the middle twelve bits and the bottom eight bits, i.e. 3CAi6, 9Blig and
1516. The twelve bit fields are loaded into VAR2HI and VAR2LO respectively.
The Q-bus address is then base + n x 256 + offset, where base is the first
location of VARO, n is the number of the VAR and offset is the eight-bit field
from the full VMEbus address.

9.8.8 Q-bus addressing conflicts

The QQ-QV board set occupies a large part of the Q-bus I/O page, and
some care is required when configuring the system to avoid conflicts with other
installed peripherals. On PDP-11 systems this is not usually a problem because
when the LSIII/03 system was designed DEC allocated the bottom 4K bytes of
the 1/0 page for extra memory (i.e. the LSI 11/03 had 60K of memory rather
than the usual 56K). As a result all standard DEC peripherals are allocated space
in the top half of the Q-bus to ensure compatability with the 11/03. Assuming
the host processor is not an 11/03 therefore QV can safely use the 4K I/O space.
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On an 11/03, smaller windows must be used. However this is not a practical
restriction as the 11/03 is now obsolete.

On microVAX systems the situation is less favourable. There is no re-
quirement for downwards compatability with the 11/03 and therefore some stan-
dard peripheral addresses have been moved down into the lower half of the 1/0
page. In particular, the DHV Il octal multiplexer (which is standard equipment
on multi-user microVAXes) falls within the VAR2 space. In practice, this means
that any attempt to map VAR2 to active VM Ebus memory will result in a machine
check and reboot of the VAX because of multiple address clashes.

A future protocol converter will resolve this problem by making use of
the Q-bus memory space and thus relieving pressure on I/O space. The microVAX
accesses its main memory in a separate address space that does not require Q-
bus allocation, so there is some 4M bytes of free address space for mapping to the
VMEDbus. This will significantly increase throughput as remapping of registers will
not be required unless more than 4M bytes of VMEbus space must be accessed.
The current design works with a standard microVAX II as long as VAR2 is not

mapped to populated VME locations.

9.9 BASE card

To ease interfacing to the VMEbus, a standard bus foundation module
was designed which provides full buffering, a bus requester, an interrupt requester,
and a simple synchronous bus slave protocol handler. Fuller details may be found
in [Joh85]. Most of the functionality ofthe board is implemented in two 85S105A
Field Programmable Logic Sequencers.

As well as being used to interface the hardwired coprocessors used in the
factory application described below, the BASE circuitry has been incorporated
into the SIPP [Edm88j, SP1 and SP2 [Joh88b] microcoded processors. The slave

protocol handler is also used in the V2 and V3 frame stores.

9.10 An industrial inspection application

A UK based food manufacturer approached the research group with a
view to improving quality control on their production lines. A vision system
was required that would gather statistics on product variability and remove bad
products from the line. Central to the project was the requirement for 100%

inspection of the line.
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The resulting collaborative project between RHC, United Biscuits Ltd
and Unilever Central Research Ltd provided much of the funding for the work
described in this chapter. It was decided early on that a difficult problem be
selected and a demonstrator system constructed and run on a real production line
for a realistic period. The target processing rate was three products per second. In
the event the system operated successfully for two weeks at a throughput of four
per second using a PDP 11/23 host. This was using a single frame store so that
processing and image acquisition were not overlapped. Pipelining the acquisition
and processing stages by using a second framestore and replacing the 11/23 with

an 11/73 host would raise the throughput to over ten per second.

9.10.1 The problem

The product to be inspected was a circular chocolate coated sponge
with a circular jam insert. An example is shown in Figure 3.6. The equipment
was required to check for overall circularity, radius of the product, radius and
concentricity of the jam insert, goodness of chocolate cover and gross failure,
such as upside-down or broken products. Inspection of the jam distribution was

particularly difficult because the chocolate coating was already in place.

9.10.2 Who did what

Dr E. R. Davies designed the algorithms to perform the inspection on
static products which will be described below. He also designed two hardwired
coprocessors at the block diagram level that implemented key parts of the algo-
rithm at high speed. These processors were built by Dr M. Arain, and tested
and debugged using routines written by E. R. Davies. The author designed and
constructed the multiprocessor system that housed these coprocessors, the frame
stores and camera hardware, the host protocol link and the interface for the hard-
ware coprocessors to his system. He developed the image acquisition software
that allowed rapidly moving objects to be captured and supplied to the rest of
the system at a normalised position within the frame buffer in real-time. He also
designed and implemented the system software, integrated the coprocessors and
the software algorithms, and wrote the software to control the system in the fac-
tory which provided a front panel display and graphics to help demonstrate the
system to management. The design decisions that resulted in this particular mix
of software and hardware techniques are described in [DJ86] (a copy of which is

bound in at the end of this thesis) and [DJ89]. As part of the evaluation process
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the author wrote software simulators for the hardware coprocessors that may be
dropped into the factory package as a direct replacement for the hardware control

code. The author’s factory package comprises some 3500 lines of code overall.

9.11 The algorithm

The algorithm comprises six phases: object detection and acquisition,
thresholded edge detection, circle centre detection using a Hough Transform,
showthrough (holes in the chocolate) inspection, jam inspection and pass/fail de-

cision making.

9.11.1 Object detection

The VI framestore allows host accesses during image acquisition. When
used with a line scan camera, the line update counter is held at line 20 during
object detection. The host monitors the horizontal flyback bit and reads the
central part of the line during flyback. If it detects a dark area then the host
begins the line counter until a whole object has been grabbed. The top edge of

the object will therefore be fixed at line 20.

9.11.2 Edge detection

A Sobel operator is applied to the image. The results are thresholded so

that (typically) about 100 points are marked as being strong edge points.

9.11.3 Centre detection

Starting at each edge point from the phase two list, the end point of a
vector r (the radius of the circle) pixels along the normal to the direction of the
edge is marked in an alternate edge space. At the end of this process, there will
be a peak corresponding to the centre of the circle in Hough space, as shown in

Figure 9.12.

9.11.4 Showthrough inspection

The calculated centre is used to position a circular mask over the prod-
uct. All points falling within this mask are thresholded against a low and a high
value. The high values show light patches which can be interpreted as holes in the

chocolate (although there will be some contribution from specular reflection of the
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Figure 9.11: Jam inspection

lighting on the shiny chocolate). The dark area is used to control interpretation

of the radial histogram.

9.11.5 Jam inspection

Inspection of the jam layer under the chocolate is difficult even for hu-
mans. However, Dr Davies observed that if the product is lit from above with a
parallel light beam then the fiat area of the product reflects light straight back
to the camera. However the bevelled edges of the jam layer refiect light away
from the camera. The result of this is that the machine ‘sees’ a dark ring on the
product corresponding to the edge of the jam layer.

This ring is indistinct, so the Hough transform technique used to locate
the product itself is not useful for the jam disc. Instead the radial grey scale
histogram is collected. This will show a dip at the radius of a well formed jam
layer. If the jam is not concentric with the product, or if some of the jam is
missing then the dip will be smoothed out.

The histogram is correlated against a stored template for the ‘ideal’
product to provide an overall figure of merit for the jam position and size.

Correlation is performed by summing the pointwise products of the his-
togram bins over the range of the actual histogram, after the actual histogram

has been normalised about the mean intensity.

9.11.6 Decision making

Management-supplied thresholds are supplied for circularity tolerance,
radius, chocolate cover, jam figure of merit and dark ring area. Products are

required to pass all these tests to proceed to the packing station. In a real sys-
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tern, bad product would be blown off the line with a compressed air jet. In the

demonstrator system, red and green lights were used to indicate pass/fail.

9.12 Real time implementation

The frame store provided some hardware assistance for the object loca-
tor.

Hardware coprocessor PI performed the Sobel calculation on the image.
Unfortunately, PI only returned a list of coordinates that marked strong edges.
The Hough transform requires the X and Y edge vectors so as to calculate the
normal direction to the edge and these had to be recalculated by the host since PI
discarded the information. This incurred significant overhead (%24ms). A VLSI
chip that can calculate Sobel components will be described in the next chapter.

Hardware coprocessor P2 provided a software controlled circular tem-
plate used to specify the area of the image covered by the product. Within this
area, light area, dark area and radial histogram information was collected in a
single pass over the image. The template was also correlated on the fly during
this scan.

The rest of the program was implemented in Pascal on the host, along

with user interface functions.

9.13 Factory trial

The system was used on-line for two weeks. During this time there were
visits by senior management and Unilever Central Research Ltd commissioned a
short video showing the system in operation. The performance exceeded specifi-
cation and we were able to gather useful statistics on product variability that had

not been available using the existing batch sampling techniques.

9.14 Conclusions

This chapter has described a video-speed MIMD system and an applica-
tion in the food processing industry. The system hardware has been in regular use
for three years with modified versions running on VAX processors. A report com-
missioned by United Biscuits Ltd indicated that the commercial cost of producing
the system would be in the range of £10,000 per unit. This would allow real time

processing of grey scale images at the rate of around ten a second (depending
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on the application). This is an advance on commercially available systems that
are typically restricted to binary real-time processing after thresholding of the
original grey scale image.

As well as improving quality control, systems such as IMP can control
costs where expensive coatings such as chocolate are in use. Given that there will
be variability of chocolate thickness due to environmental factors, the manufac-
turer must ensure that the worst case chocolate cover is still acceptable by the
consumer. To do this, the mean of the distribution must be increased until the tail
lies above the minimum acceptable level. Therefore, on average, chocolate cover
will be better than required and this can be very expensive (at the time of the
factory trial, processed chocolate cost around T2000 per ton). However, if sys-
tem like IMP can guarantee to inspect every product and remove those that have
thin chocolate coating then the mean of the distribution can be moved down to
the point where chocolate wastage due to product removal matches the increased

costs of thickening the chocolate layer.

9.15 Conclusions

A system capable of supporting real-time grey scale image processing
has been designed and successfully demonstrated in a real factory environment.
The system is easily expandable using commercial and in-house boards, and has

been used as the foundation for other projects not described in this thesis.

Figure 9.12: Centre detection
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Chapter 10

A full custom VLSI SOBEL filter

10.1 Introduction

Edge enhancement is one of the most common operations in image pro-
cessing. This chapter concerns the design and implementation of a VLSI Sobel
filter (called SOBS-1) which can calculate differential gradient components with
an internal propagation time of less than 10ns. It is designed to be used with an

external lookup table in ROM which generates edge magnitude data.

10.2 Edge measurement operators

Edge measurement requires the calculation of both the magnitude and
the gradient of the edge. The work described in the previous chapter recognised
circles in the image using a Hough transform based algorithm. A fundamental
requirement of such algorithms is a realtime edge detector with high angular

accuracy. Several classes of edge enhancement operator have been developed:
1. template matching [Pre70,Rob77,NB8&80],
2. differential gradient calculation, [DH73,Rob65],
3. use of orthonormal basis functions [Hue71,Heu73],
4. difference of gaussians [MHS80].

The template matching operators use a set of predetermined prototype edge masks
and approximate the edge direction to that of the mask with the best match. To
accurately approximate the edge direction, a large number of slightly different
masks would be needed, however this implies elongated processing times. Here,

speed militates against accuracy.
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Hueckel’s operators and the Marr-Hildreth edge detectors are compu-
tationaly intensive. [Hue71,Heu73] quotes runtimes of the order of 1.5 minutes
on a DEC-10 for a 297 x 231 pixel array. The Marr-Hildreth operators require
neighbourhoods of at least 35 x 35 pixels. Both classes of operator are currently
uneconomic for realtime industrial applications.

The differential gradient operators attempt to calculate the x and y
components of the gradient directly by convolving with X and Y masks and then
taking the normalised root of the sum of the squares to find the edge magnitude.
Essentially the operators attempt to fit a plane to the pixel intensities in the
neighbourhood. This method is especially attractive for direction related applica-
tions as it directly provides the direction components. [HarSO] suggests that the
masks equivalent to the Prewitt operator are optimal for a three by three window,

and that similar masks apply for larger areas, e.g. for a 5 x 5 neighbourhood:

-2 -1 01 2~ A22 2 2 2
-2 -1 012 1 1 1 1 1

M, -2 -1 012 My: 0 0 0 0 0
-2 -1 0 12 -1 -1 -1 -1 -1
A€ -1 01 2y 1-2 -2 -2 -2 .y

In practice the Sobel operator seems to be preferred. [Dav84] suggests circularity
as a criterion for testing the angular accuracy of differential gradient operators.
Optimal (real number) mask coefficients are obtained by weighting according to
the area of each pixel included within a circle enclosing the neighbourhood. Ac-
cording to this analysis, the angular response of the Sobel operator is optimal for
masks with integer coefficients. The theory is attractive both because it offers a
theoretical basis for the popularity of the Sobel operator and because it provides
a rationale for the design of optimal edge operators using larger neighbourhoods

which provide an increase in accuracy over the basic Sobel.

10.3 The Plessey edge detector

Plessey Semiconductors Ltd market an edge detection device (PDSP16401

[Sem86]) which uses template matching against the following four templates:

\ /
1 1 1 (/0 -1~ 2 1 0 0 -1 -2
0 0 0 1 0 -1 1 0 -1 1 0 -1
-1 -1 -1 /1 0 vV 0 -1 -2 2 1 0
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The first two masks are normalised by a factor 1.5 in an attempt to take account
of the fact that the four-connected pixels are a factor \/2 closer to the centre of
the neighbourhood than the eight-connected pixels. Normalisation by 1.5 is of
course only an approximation which eases the arithmetic implementation.

In operation, three ten-bit values representing the three lines of the cur-
rent window are presented to the chip. Presumably the ten bits are intended to
represent three three-bit pixels with one spare bit. Four separate FIR filters pass
video data associated with the orientation of each mask. The outputs are then
sorted to produce a three-bit word giving a one-of-eight approximation to the edge
direction. The 13-bit output of the filter generating the strongest output is avail-
able at the chip outputs, and the most significant ten bits are compared against
an externally provided threshold. If the output exceeds the threshold level, a chip
output goes high. The chip can cycle at 15MHz, fast enough to process 1024 x
1024 pixel images in real time, but 20 cycles are required to process each set of
results. This twenty cycle pipeline delay will complicate image buffer addressing.

Although the chip is fast and provides an on-chip comparator (thus sav-
ing one external package), it is based on theoretically unsound principles, and
only calculates approximate normalised convolutions. Even assuming that the re-
sulting responses are accurate, the one-of-eight direction indicator introduces an
angular error of up to 22.5°. Convolution errors when the actual edge direction is
midway between masks will add to this error. The chip processes pixels to only
eight grey-level accuracy and does not provide internal pipelining of pixel fetches
(as opposed to the processing pipeline), so considerable external support circuitry

will be required.

10.4 SOBS-1 design derivation

The architecture of the SOBS-1 chip is derived from that of the P2 hard-
ware processor designed by E R Davies for the IMP system application described
in the last chapter. The chip implements a large array of adders along with a three
by three stage pixel pipeline. Unlike the P2 implementation, SOBS-1 maintains
full arithmetic precision throughout and generates 10-bit component outputs. Of
itself this would be accurate enough for Hough transform circle detection to be
performed for circles up to 2048 pixels in diameter in ideal conditions of zero noise.
The P2 implementation is limited to 128 pixel diameter circles. To fully exploit
the available precision a square root lookup table is required with a address lines

where a is the number of significant bits taken from the adders. To fully exploit
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the available precision a IM x 10-bit lookup table is required, but in general a
2i0em+i y ~ bit table will be required for circles of diameter 2n pixels.

SOBS-1 also provides a prefetch stage on the input pipeline allowing a
column of pixels to be preloaded before cycling the pipeline.

The full P2 system includes a set of comparators for detecting points
in the image with large edge magnitudes and a coordinate RAM which is loaded
during a picture scan with a list of the coordinates of such out-of-threshold points.
These functions are not included in the present design, mainly due to chip pinout

restrictions.

10.5 SOBS-1 arithmetic section

The Sobel convolution masks are:

f-1 0 1~ ( 1 2 1\
5x: -2 0 2 Sy: 0o 0 0

-1 % 913 1-1 "2 .13

If we number the pixels thus:

P4 PS P2
P5 PO PI
P6 P7 P8

then the mask equations are

= P2-\-2xPl+PS-(P4+2xPb+P6)Sy = P4-h2xP3+P2-(P6-f-2xP7+P8)

These may be generated using two trees of adders and subtracters. The
multiply by two is simply a shift left. In a combinatorial implementation, a shift

left is obtained simply by connecting the adders with a one bit offset.

10.6 Pixel pipelining

A note by Lee [Lee83] with later expansion by Picton [Pic84] describes
elimination of redundant arithmetic operations in the Sobel filter. If the simple
Sobel convolutions are applied across an entire image then some terms are calcu-
lated more than once. An obvious example is the lower (negative) partial sum in
Sy for line y = n which will be the same as the upper (positive) partial sum in

Sy for line y = n 2. Throughput on a conventional sequential processor would
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Figure 10.1: SOBS-1 arithmetic trees

be increased if these terms were stored and retrieved when necessary rather than
being recalculated. However, the arithmetic structure in SOBS-1 calculates all
terms combinatorially in parallel, and there is very little speed to be gained by
storing intermediate results for later operations. The overhead in storage and
sequencing would be high.

Given that SOBS-1 calculates results when needed, a bottleneck exists at
the inputs where (potentially) nine pixel fetches are required from the framestore
for each operation. This is unacceptable because the framestore access time is
likely to be of the order of 50-100ns, and so a complete filter operation (with
subsequent writing of results to an output frame buffer) will require 0.5-1/is. This
is a gross mismatch with the speed of the arithmetic trees (~10ns). However, it
should be remembered that Sobel magnitudes must be fetched from a ROM lookup
table which will also limit the actual system speed. Large EPROMs and ROMs
are widely available at speeds of around 250ns, and this provides the target speed
for the pixel fetch circuitry.

Pixel I/0 may be reduced by buffering of image lines. If two complete
lines + 3 pixels are stored in shift registers internal to the chip then only one pixel
read from the frame store is required per filter operation. This scheme requires a
great deal of on-chip storage and produces a design that requires expensive high
speed ROMs to make use of the extra speed. A better match to the ROM speed

is obtained using a simple window-column buffer comprising three separate three
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2n + 3 bytes storage, two fs accesses per window

Figure 10.2: Pixel line buffer

12 bytes storage, four fs accesses per window

Figure 10.3: Window-column buffer

pixel-pipelines.

Three pixel reads are now required for each operation. Together with the
output write this requires four frame store cycles, i.e. 268ns for a 67ns access time
frame store (i.e. 512 x 512 square pixel speed). This matches the 250ns access
time of the ROM well, and provides compact VLSI implementation. This scheme
is used in SOBS-1. In a system with two frame buffers or one where the results
are being written to a different space, the write cycle may be further overlapped

with one of the read cycles giving a 201ns overall cycle. Naturally a faster ROM

would be required in this case.

10.7 Operation pipelining

The propagation delay of the adder circuitry is negligible compared with
the cycle time of the system, so no internal pipelining is required. However,
prefetch buffering of the next column of pixels is required so that frame store
accesses may be fully overlapped with the ROM lookup. One way ofimplementing
this would be to latch the two twenty-bit differential gradient outputs at the
inputs to the ROM. However, to maintain maximum throughput the output latch

would need to be activated exactly when the outputs from the arithmetic tree
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Figure 10.4: Operation pipelining sequence

first stabilised. This will vary from sample to sample of the chip, and in any
case is likely to be of the order of 10ns after loading of the last pixel in the new
column. Accurate generation of 10ns delays on-chip would be difficult and in
practice the whole system would have to be slowed down to allow for variations
due to temperature and processing factors.

The solution is to put the operation pipeline latch at the inputs to the
device and an output latch after the ROM. The filter chip works on a four phase
cycle. During phases one, two and three the pixels that will form P2, PI and P8
of the next calculation are loaded into the prefetch latches. During phase four
the prefetch latch and the three level pipelines are connected as four-pixel shift
registers and data shifted across one column. At the beginning of phase four,
the ROM output latch is clocked to load the result of the current operation and
during phase four this value is written back to the frame store.

Many bus interfaces include output data latches in the output buffers,

and this provides the SOBS-1 output latch ‘for free’.

10.8 TTL equivalent chip count

SOBS-1 contains twelve 8-bit latches and ten 11-bit adders along with a
small amount of clock driver circuitry. Allowing for the fact that two of the 11-bit
adders could be implemented as 8-bit adders without loss of arithmetic accuracy,
SOBS-1 is roughly equivalent to twelve 74LS374 octal latches, sixteen 74LS83A
four-bit adders and a buffer fe.g. 74L.S245) to provide clock drive.
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10.9 VLSI implementation

SOBS-1 is built in 2 micron CMOS using European Silicon Structures
(ES2) e-beam processing. It requires about 4,200 transistors (not counting I/O
buffers). It fits on a 10”mm die, which is small by modern standards and should
therefore exhibit high yield. (Yield decreases with increasing die size due to the
higher probability of including a crystal defect within a given chip).

The chip was designed using the ISIS software marketed by Racal-Redac
[Rac87] which is a commercial version of the software developed by Inmos and
used in-house for the design of the Transputer and other advanced devices. ISIS
was selected by the Alvey directorate as one of the preferred tools on the Alvey
VLSI projects and is regarded as one of the most advanced toolsets available for
full custom VLSI design.

ISIS comprises a Hardware Description Language (HDL) used to de-
scribe the interconnectivity of transistors and higher level modules, a simulator
called Hylas (HYbrid Logic and Analogue Simulator) which supports mixed mode
simulation, and a layout package called BED (Hierarchical EDitor). The system
imposes a strict hierarchy on the design process and in general attempts to ap-
ply the techniques of large scale software engineering to the process of hardware

design.

10.10 ISIS concepts

ISIS HDL is a BCPL like language used to describe the network of el-
ements and wires that makes up the chip. It is effectively a data description
language, not an executable programming language. For example, an HDL DO-
loop Specifies the instantiation of multiple copies of a piece of hardware, not the
repeated execution of one step in an algorithm.

Blocks of hardware in HDL are represented using a MODULE which
roughly corresponds to a procedure in a programming language. Some modules
are primitives supplied by the system such as transistors and resistors. Primitive
modules are not decomposable in much the same way that FORTRAN intrin-
sics or Pascal predefined routines are monolithic. Other modules are formed by
connecting modules together in a hierarchical fashion.

Each HDL module has a parameter list which describes the connections
to the module. HDL modules map onto rectangular, non-overlapping areas of

silicon at layout time. All the components (and their interconnects) listed in the
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Figure 10.5: Inverter representations

HDL module must be contained within the layout module. Connections to the
module correspond to wires crossing the boundaries of a layout module and these
are often referred to as ‘bristles’.

Interconnection is established in HDL by associating actual signal vari-
ables with the formal parameters in a module’s list of bristles. The global (system)
signals GND and Vdd are available throughout the circuit for power supply con-
nections.

This example shows the schematic, HDL and symbolic layout represen-
tations for a simple CMOS inverter. The HDL calls two modules NE (N-channel
Enhancement) and PE (P-channel enhancement) which are primitives supplied

by the system:

10.11 SOBS-1 HDL implementation

10.12 Leaf cells

An ISIS design comprises a hierarchy of modules and routing buffers
which provide interconnection at the different levels of the hierarchy. At the
bottom of the hierarchy are cells containing only primitives with no calls to non-
primitive modules. These are called leaf cells because they correspond to the
leaves of the hierarchy tree. SOBS-1 contains only three types of leaf cell: a D-
type latch, a full adder and an inverter. The basic inverter has been described
above. The inverters used in SOBS-1 are more complex than that described

above because they are essentially acting as buffers and contain an array of scaled
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LD

Figure 10.6: D-type latch

transistors: space precludes a detailed description of the design principles. In
this section the modules containing logic transistors only will be described, and

analogue engineering details will be omitted.

10.12.1 D-type latch

CMOS permits the design of compact latches using analogue switches
and inverters rather than the conventional cross-coupled NAND gates. The d-
type used in this design is a standard eight transistor circuit [WES85].

When Id is true then transmission gate D is open and transmission gate
F is closed. Data flows through inverter D and the output follows the input.
When Id is false, transmission gate D closes and F opens forming a feedback loop
through the two inverters which latches the data.

The HDL representation of this circuit is:

/!l Transmission gate D latch
MODULE d_type(IN Id, Idbar, d, OUT q)
SIGNAL id, qbar

id=UPE fp (Id, q)

id=UNE fn (Idbar, q)

id=UPE dp (Idbar, d)

id=UNE dn (Id, d)

PE ilp (id, Vvdd, gbar)

NE iln (id, gbar, Gnd)

PE i2p (qbar, Vdd, q)

NE i2n (qbar, q,Gnd)

END d_type

The D-types are combined into an octal d-type module. The prefetch and pipeline

blocks are built from master-slave sections comprising two octal d-types.

MODULE octal_d_type(IN Id, Idbar, d[0:7], OUT q[0:7])
FOR i=[0:7] DO



BEGIN bit
d_type(ld, Idbar,
END bit

END octal_d_type

MODULE octal_master_

dfi], q[i])

slave(IN Id, Idbar, d[0:7], OUT q[0:7])

SIGNAL qinternal[0:7]

octal_d_type master

(Id, Ildbar, d[0:7], ginternal[0:7])

octal_d_type slave (ldbar, Id, qinternal[0:7], q[0:7])
END octal_master_slave

Il Three octal ms D-types to hold incoming data

MODULE prefetch_latch

(IN Id[0:2],
octal_master_slave

octal_master_slave
END prefetch_latch

Idbar[0:2], d[0:7], OUT q[0:23])

low (Id[0], Idbar[0], d[0:7], q[0:7])
octal_master_slave mid (Id[I], Idbar[l], d[0:7], q[8:15])
hi (Id[2], Idbar[2], d[0:7], q[16:23])

Il Three by three window pipeline

MODULE pipeline(IN Id, Idbar, d[0:23],

ouT

SIGNAL p0[0:7]
octal_master_slave
octal_master_slave
octal_master_slave
octal_master_slave
octal_master_slave
octal_master_slave
octal_master_slave
octal_master_slave
octal_master_slave

END pipeline

Il Central register

MODULE registers (IN

OUT pi[0:7], p2[0:7], p3[0:7], p4f[0:7],
p5[0:7], p6[0:7], p7[0:7], p8[0:7])

SIGNAL id[0:23]

prefetch_latch(Id[0:

pi [0:7], p2[0:7], p3[0:7], p4[0:7],
p5[0:7], p6[0:7], p7[0:7], p8[0:7])

pd41atch(ld,Idbar,p3[0:7] ,p4[0:7])
p31atch(ld,Idbar,p2[0:7],p3[0:7])
p21atch(ld,Idbar,d[16:23],p2[0:7])
p51atch(ld,Idbar,pO[0:7],p5[0:7])
p0t1atch(ld,Idbar,pl[0:7] ,p0[0:7])
pllatch(ld,Idbar,d[8:15],pI[0:7])
p61atch(ld,Idbar,p7[0:7],p6[0:7])
p71atch(ld,Idbar,p8[0:7],p7[0:7])
p81atch(ld,Idbar,d[0:7],p8[0:7])

block with prefetch and window

1d[0:3], Idbar[0:3], d[0:7],

2], Idbar[0:2], d[0:7], id[0:23])

pipeline(ld[3], Idbar[3], id[0:23],
pi[0:7], p2[0:7], p3[0:7], p4[0:7],
p5[0:7], p6[0:7], p7[0:7], p8[0:7])

END registers

230
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Figure 10.7: TransmisBion gate adder

vdd

, TGATE ,

A EXORB

Figure 10.8: Transmission XOR gate

10.12.2 Full adder

The full adder is based on a transmission gate adder reported in [SOA73].
It uses a novel transmission XOR gate and a pair of multiplexers connected as
shown in Figure 10.7

In a full adder, the following relations are true:

When A XOR B is true: sum = NOT C, CARRY = C

When A XOR B is false: sum = C, CARRY = B

The XOR gate is also based on transmission gates but uses an unusual
form of pseudo-inverter.

The circuit comprises two inverter structures followed by a transmission
gate. The second inverter structure is connected between the signals A and NOT
A instead of between the supply rails as is normal. The input to this inverter is

B.

carry
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Sum

Carry

Figure 10.9: Transistor schematic of full adder

When A is true, NOT A will be connected to GND and the second
inverter will behave normally, producing NOT B at its output. The same com-
bination of signals ensures that the transmission gate if off, hence A XOR B =
NOT B when A is true.

When A is false, AB AR will be true and the ‘supply’connections to the
second inverter structure will be reversed. This effectively disables the inverter
and no output is produced. The transmission gate switches on, hence A XOR B
= B when A is false.

An XNOR gate may be constructed by reversing the connections of A
and NOT A to the second ‘inverter’.

The complete full adder requires 24 transistors.

A ‘TTL’ style CMOS adder (i.e. direct implementation of Figure 7.1)
with active low outputs may be constructed in CMOS using 24 transistors but
the present circuit provides true outputs and has a balanced propagation delay
through the carry and sum paths. The conventional adder has a longer delay
through the carry path.

The HDL for the adder is simply a block of 24 transistors:

Il Monolithic transmission gate adder
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MODULE full_add ( IN a, b, cin, OUT sum, sumbar, cout )
SIGNAL abar, bbar, cinbar, coutbar, axorb, axnorb

PE
NE
PE
NE
PE
NE
PE
NE
PE
NE
PE
NE
PE
NE
PE
NE
PE
NE
PE
NE
PE
NE
PE
NE

pi cin, vdd, cinbar )

nl cin, gnd, cinbar )

P2 axorb, cinbar, sumbar )
n2 axnorb, cinbar, sumbar )
p3 axnorb, cin, sumbar )
n3 axorb, cin, sumbar )

p4 axorb, abar, coutbar )
n4 axnorb, abar, coutbar )
p5 axnorb, cinbar, coutbar )
n5 axorb, cinbar, coutbar )
p6 sumbar, vdd, sum )

n6 sumbar, gnd, sum )

P7 coutbar, vdd, cout )

n7 coutbar, gnd, cout )

p8 a, vdd, abar )

n8 a, gnd, abar )

p9 b, a, axorb )

n9 b, axorb, abar )

piO ( b, abar, axnorb )

nlO b, axnorb, a )
pll a, axorb, b )
nil abar, axorb, b )

pl2 ( abeur, axnorb, b )
nl2 a, axnorb, b )

END full.add

The adde

rs are combined into a universal 11-bit adder. This may be used as an

11-bit subtracter by inverting one set of inputs and setting the least significant

carry-in to 1. Complementary outputs are available from the adder to assist in

this function. The next higher module (MODULE one two_one) implements the

X 42X

1

Y 4 Z function needed for each Sobel partial sum.

Standard eleven bit adder

MODULE add_II(IN a[0:10], b[0:10], cin, OUT sum[0:10],

sumbar[0:10])

SIGNAL ic[-1:10]

ic

[-1]=cin

FOR i=[10:0] DO
BEGIN adder

E
END

Il

full_add(a[i],b[i],ic[i-l],sum][i]l,sumbarl[i],ic[i])
ND adder
add_lII

a+2*b+c function
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MODULE one_two_one(IN a[0:7],b[0:7],c[0:7], OUT sum[G;10],
sumbar[0:10])

SIGNAL isum[0:10]

add.Il one.two ([a[0:7],GND,GND,GND], [GND,b[0:7],GND,GND],
GND,isum[0:10]

add.ll one (isum[0:10], [c[0:7],GND,GND,GND], GND,
sum[0:10],sumbar[0:10])

END one_two_one

10.13 Global interconnection

The top level of the chip hierarchy implements the block diagram of
Figures 10.1 and 10.3. The module partitioning is not intuitive in the HDL.
The register block is grouped with the D* partial sum blocks (».e. instances of
MODULE one _two_one). The next level up includes the Dy partial sum blocks
and the top-most level (MODULE sobs) incorporates the subtracters that provide
the final and Dy results. The hierarchy is arranged this way to ease the global
routing on the silicon. The ISIS routing tools work best when connecting small
numbers of blocks in a very hierarchical fashion and the present arrangement
reflects the spatial relationship of the layout modules.

MODULE regs_and_dx(ld[0:3], Idbar[0:3], d[0:7],
p4[0:7], p3[0:7], p2[0:7],

p6[0:7], p7[0:7], p8[0:7],
dx_hi_bus[0:10], dx_lo_bus_bar[0:10])

SIGNAL p5[0:7], pi[0:7]

registers (1d[0:3], Idbar[0:3], d[0:7],
pi[0:7], p2[0:7], p3[0:7], p4[0:7],
p5[0:7], p6[0:7], p7[0:7], p8[0:7]>
one_two_one dx_hi (p2[0:7],pl [0:7],p8[0:7],
dx_hi_bus[0:10],[?,?,?,?,2,2,2,?2,2,2,?])
one_two_one dx_lo Cp6[0:7],p5[0:7],p4[0:7],
[?,?2,2,2,2,?2,?2,2,?2,?,?],dx_lo_bus_bar[0:10])
END regs_and_dx

MODULE regs_and_dy(ld[0:3], Idbar[0:3], d[0:7],
dy_hi_bus[0:10], dy_lo_bus_bar[0:10],
dx_hi_bus[0:10], dx_lo_bus_bar[0:10])

SIGNAL
p4[0:7], p3[0:7], p2[0:7],
p6[0:7], p7[0:7], p8[0:7]

regs_aud_dx(1d[0:3], Idbar[0:3], d[0:7],
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p4[0:7], p3[0:7], p2[0:7],

p6[0;7], p7[0:7], p8[0:7],

dx_hi_bus[0:10], dx_lo_bus_bar[0;10])
one_two_one dy_hi (p4[0:7],p3[0:7],p2[0:7],

dy_hi_bus[0:10],
one_two_one dy_lo (p8[0:7],p7[0:7],p6[0:7],

, dy_lo_bus_bar[0:10])

END regs_and_dy

[IMain function block

MODULE sobs(IN d[0:7]. 1d[0:3], OUT dx[0:10], dy[0:10])
SIGNAL
Idbar[0:3],
dx_hi_bus[0:10], dx_lo_bus_bar[0:10],
dy_hi_bus [0:10], dy_lo_bus_bar[0:10]
Il FOR i=[0:3] DO Idbar[i]l=invert(ld[i])
regs_and_dy(ld[0:3], Idbar[0:3], d[0:7],
dy_hi_bus[0:10], dy_lo_bus_bar[0:10],
dx_hi_bus[0:10] , dx_lo_bus_bar[0:10])
add_Il dx_sub (dx_hi_bus[0:10] , dx_lo_bus_bar[0:10], Vdd,
dx[0:10], [?,?,?,?,?2,?2,2,?2,?2,?2,?])
add.ll dy.sub (dy.hi.bus[0:10], dy.lo.bus.bar[0:10], Vdd,
dy[0:10], [?.,?,?,?,?2,2,2,?2,?2,?2,?])
END sobs

10.14 Simulation results

SOBS-1 has been extensively simulated at full circuit level. Switch level
simulators have difficulty handling transmission gate intensive circuits where the
direction of current flow through the gate may change. The Suzuki adder is
particularly troublesome. As a result, full analogue simulation was required to
get realistic results. MODULE sobs (i.e. the whole chip less the clock drivers)
requires approximately 9 cpu minutes on a microVAX IT to simulate Ins ofrealtime
operation. It turns out that the propagation time of the chip is about 12.5ns and
therefore 128 x 128 x 12.5 = 204/xs of real-time simulation would be needed to
process a complete image. This would require about 3.5 CPU years.

The simulator output below shows a complete simulation for the four

adjacent pixels B1, B2, B3 and B4 shown in Table 10.1.

Simulator output for SOBS-1 follows table 10.1



d[TiO]
1d[3:0]
Idbar[3:
1d[T:0]
id[15!B]
id[33:16
p8[7i0]
pi[7:0]
p3[7:0]
p7[7:0]
p0[7:0]
p3[7:0]
p6[7:0]
p6[7:0]
p4[7:0]
iBum[lO:
iBnm[l1O:
iBnm[10:
imnm[10:
dx-hi-bn
dxJo-bn
dy -hi bn
dy-lo-bn
dx[10:0]

dy[10:0]

column

2 3 4

0 0 27 140 240 A
0 0 127 250 229 B row
0 0 255 135 5 C

Table 10.1: SOBS-1 test data

»obi.d[7i0]

Bobi.ld[3:0]

iobi.ldbar[3;0]
iob:.ieg:_and_dy.rcg#_mnd”%.icgl:*er:.:d[7:0)
sobs.regs®nd.d;.regf*nd-dx.iegisleri.id[15;8]
iobi.regi-and.d;.regB.aad.dx.regiiieri.id[33;18]
:obB.i«gi_and_dy.rcg#_amd”x.reginlerB.p!pelin«.p8[7:0]
lobi.tegt*nd-dy.regi-and.dx.registen.pipeline.pl[7:0]
Bob:.reg#-and _dy.regm_mnd.dx.regi» leiB.pipeline.p3[7:0]
Bobm.rcgB-and-dy.regB-and-dx.regiB term.pipeline.p7[7:0]
Bobm.rcgB .and.dy.regB.and.dx.regiBterB.pipeline.p0[7:0]
Bobm.regB-and-dy.regB-and-dx.regimterB .pipeline.p3[7:0]
BobB.rcgB-and.dy.regB_and.dx.regiBlerB.pipeline.p6[7:0]
Bobm.regB-and-dy.regB-and-dx.regimlerB.pipeline.p5[7:0]
BobB.rcgB_and_dy.regB_and_dx.rcglB*crB.pipcllne.p4[7:0]
Bobs.rcgB and dy.regm and.dx.dx.hi.iBnm[10:0]
BobB.rcgB_and_dy.regB_and_dx.dx_lo.i:nm[10:0]
BobB.rcgB_and_dy.dy-hi.iBnm[10:0]

Bobm.regB-and _dy.dy_lo.iBnm[10:0]

BobB.dx-hl-bnB[10:0]

Bobm.dx-lo-bnm bar[10:0]

mobm.dy _hi.bnB[10:0]

BobB.dy-lo.bnB_bar[10:0]

Bobm.dx[10:0]

Bobm.dy[10:0]
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44.4000611 lie LLHL HHLH 5350 140 135 350 140 355 13737 000 640 0 54 117 800 3047 186 1033 536 1048
44.0990511 119 LLHL HHLH 5350 140 135 350 140 355 137 37 00 0 640 0 54 T!TT 809 2047 178 1930 553 1821
45.40995= lie LLLL HHHH 5250 140 135350 140 355 137 37000 640 0 54 613 811 3047 178 1930 T7TT 1853
45.99905= 119 LLLL HHHH 5 TIT 140 135 350 140 355 137 37 0 0 0 640 0 54 ?7TT 811 3047 178T7?? 809 1597
46.49995= 119 LLLL HHHH 5 119 140 135 350 140 355 137 37 00 0 640 0 54 581 779 3047 1637777 811 1597
46.99994= 119 LLLL HHHH 5 119 140 135 350 140 355 13737 000 640 0 54 581 783 3047 1837777 811 1597
47.49994= 340 LLLL HHHH 5 119 140 135 350 140 255 13727 000 640 0 54 517 783 3047 130 1466 7777 1085
47.99994= 340 LHLL HLHH 5 119 140 135 250 140 355 137 37 000 640 0 54 517 7777 3047 130 1466 783 1597
48.49994= 340 LHLL HLHH 5 119 140 135 250 140 355 13737 000 640 054 517 775 3047 1307777 783 1597
48.99993= 340 LHLL HLHH 5 119 140 135 350 140 355 13737 0 00 640 0 54 845 775 3047 1941530 783 1507
40.49994= 340 LHLL HLHH 5 119 140 135 350 140 355 13737 000 640 0 54 645 775 3047 1941530 775 1597
49.99993= 340 LHLL HLHH 5 119 140 135 350 140 355 13737 000 640 0 54 645 775 3047 1941530 775 1597

It will be seen that the overall propagation time of the circuit is around
12.5ns from receipt of a Id [3] going low (which initiates data transfer into the
register bank) to results appearing on the outputs of the dx and dy adders. This
does not imply that the overall chip propagation time will be so fast because
delays through the I/O pads are liable to be of the order of tens of nanoseconds.
However an overall performance of 20MHz (i.e. 50ns propagation time) would

seem attainable.

10.15 Leaf cell layout

There are only two leaf cells in this design — the d-type latch and the
full adder. These modules are connected hierarchically to form the full system.
The hierarchical connections will be considered in the next section.

The cells are arranged with power connections in 8/i metal 1 running
horizontally and signal connections (usually in metal 2 and polysilicon) running
vertically. This allows cells to be abutted for power connection with horizontal

signal routing buffers between cell blocks.

10.15.1 D-type latch

The d-type is 70/i x 50/i. The Id and Idbar connections are in polysili-
con on the left of the cell. They swap over internally so that two d-types stacked
vertically form a master-slave pair with the control lines correctly wired by abutt-
ment. Similarly, the D and Qoutputs are aligned so that the master will feed the

slave directly.
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Figure 10.10: D-type latch layout

10.15.2 Full adder

The full adder cell is 115/x x 127.5/i. The Cin and Cout connections are
available at the sides and at the top of the cell so that ripple carry adders may be
constructed by horizontal abutment. The a, b, sum and sumbar connections are

available at the top and the bottom of the cell to ease global routing.

10.16 Chip floorplan

The chip floorplan is shown with global routing removed in Figure 10.12

The d-bus runs from the I/O pads at the top ofthe chip to the tops of the
registers block. The first layer of the registers block contains the prefetch latch
and data flows down through the register block on successive cycles. The four
Sobel partial sums are calculated using two 11-bit adders each in the one two one
modules distributed around the register block. The final dx and dy components

are calculated in outermost blocks of the chip and routed to the I/O pads.

10.17 Test results

The first fuU SOBS-1 prototype will be fabricated in Autumn 1988 with

silicon expected back at about the beginning of March 1989. However, the leaf cell
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Figure 10.11: Full adder layout
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samples have been individually fabricated by borrowing spare area on undergrad-
uate student designs fabricated as part of the third year VLSI course at RHBNC
which is taught by the author. The full adder and a master-slave flip-flop were
functionally perfect and performed as expected. In the absence of sophisticated
test equipment it is impossible to accurately measure the speed of the devices
which is in the nanosecond range. However, these results give confidence that the

full chip will operate correctly.

10.18 Conclusions

A Sobel edge detector has been simulated and laid out for fabrication
in 2 micron CMOS. Examples of the leaf cells have been fabricated and shown
to work, and this gives confidence that the full chip will operate correctly. The
design is compact and could be produced in medium volumes at low cost. This
work indicates the major changes in implementation technology that would be
expected were the inspection project described in the previous chapter started in
1989 rather than 1982. Availability of sophisticated CAD tools allows very high
performance designs to be implemented with simulation replacing the traditional

breadboarding techniques.
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Chapter 11

Conclusions

11.1 Introduction

This thesis has presented novel techniques in algorithms, systems and

components for real-time image processing.

11.1.1 Algorithms

Four algorithms for quadtree generation from array representations were
presented in Chapter 4. The match between algorithms and architectures was
explored especially in terms of the ‘bit-twiddling’ instructions required for algo-
rithm four. The quadtrees were used to control simple image processing operators
such as edge detectors and smoothers. It was shown that a quadtree controlled
skimmer applied as a preprocessor to an edge detector provided better results

than a simple threshold skimmer.

11.1.2 Systems

Three framestore designs (IPOFS, VI and V2) were described in Chap-
ter 5. These compact designs provided a high level of performance with special
features (such as the ROM mapper and the wipe register) aimed at PDP-11 based
systems. The differing constraints of the memory subsystems for VAX and PDP
systems were shown to favour in-store processing on PDP-11’s and main memory
processing on VAXes, especially Q-bus based machines such as the MicroVAX II.

These framestores have been used in the IMP system described in Chap-
ter 9 — a VME bus based MIMD multiprocessor with hardwired co-processors
running at near-video speeds. A microVAX or PDP-11 may participate in the

MIMD system via a Q-bus to VME bus protocol converter, and acts as over-
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all controller in the system, as well as providing software development and user
interface functions. The IMP system has been used with commercial 68000 pro-
cessor and memory boards as well as several microcoded processor designs. A
demonstrator system was constructed that performed automatic inspection of six
products per second on a real industrial production line. The system performed

well during a two week trial,

11.1.3 Components

Extensive use has been made of programmable logic devices in the sys-
tems described here. Standard sync pulse generator, VMEbus arbitrator, re-
quester, interrupter and slave protocol handlers have been implemented.

The last chapter described a VLSI Sobel filter capable of analysing 20
million windows per second, or about 76 full 512 x 512 pixel images per second.
The leaf cells for this device have been fabricated and shown to conform to sim-
ulated performance. The full version of the chip is going forward for fabrication

in Autumn 1988.

11.2 Review

This thesis includes review of basic results concerning image representa-
tions, algorithm analysis, sequential processor design, asynchronous multiproces-
sor design, synchronous processor design and the design of programming language

features to exploit such machines.

11.3 Further work

Work in the areas described in this thesis has continued. A microcoded
processor called SP1 was developed and has now been superceded by SP2, a com-
pact 20MHz processor. This is designed to work in both pipelined and VLIW
configurations. High level language support for this processor is currently under
development with the assistance of postraduate students supervised by the au-
thor. An array processor designed at the NPL has been integrated into the IMP
architecture with a compiler for a high level array processor language. A sepa-
rate project under the direction of E R Davies has been investigating theoretical
results from the earlier collaboration with United Biscuits and Unilever, and the

microcoded processors will be used as the implementation vehicle for algorithms
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produced by that project.
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Engineering trade-offs in the design of a real-time
system for the visual inspection of small products
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SYNOPSIS This paper presents an algorithm for the rapid inspection of small products, and considers
its optimal implementation. Speed and cost lim its constrain optimisation relatively simply, but
concurrency makes the situation considerably more complex. However, an inspection system that makes
particularly efficient use of a set of hardware processors has been designed. The host CPU is not
merely used for control and data logging, but takes an integral role in the main image analysis
task. The emphasis of the paper is on removing arbitrariness in the design of hardware for
industrial inspection systems.

1 INTRODUCTION adaptable but may be considerably cheaper in

individual applications. This paper studies
The past decade has seen enormous growth in the these basic strategies and analyses the
applications of computers to manufacturing speed/cost tradeoffs in hardware for automated
engineering. Automated assembly and automated visual inspection. In addition, it describes
inspection are becoming mature technologies: the real-time system we have designed to
both customarily use vision, since sensors such inspect products such as biscuits at costs
as TV and linescan cameras are capable of compatible with the low profit margins of
providing prodigious quantities of relevant foodproduct manufacture.

information at high data rates, and algorithms
are known which will analyse much of this data

sufficiently reliably for the purpose of 2 ALGORITHMS FOR PRODUCT INSPECTION
control. In automated assembly, vision
provides data on the positions and orientations Many inspection problems involve three main
of products, and can at the same time check tasks: (1) image acquisition, (2) product
them for defects. In automated inspection, the location, and (3) product scrutiny and
immediate purpose is that of dimensional measurement. In this section we bypass the
checking and quality control. More specific- problem 'of acquisition and concentrate on
ally, it aims (a) to identify and reject product location and scrutiny.
products containing defects, (b) to provide
feedback on productcharacteristics (such as To locate products in a grey-scale image
size or surface texture) soas to keep it is very common to threshold the intensity
manufacture within specified tolerances, and and thus obtain a binary image from which
(c) to provide statistics on manufacturing objects can be located with relatively little
parameters (1). further processing. This scheme is only
suitable if the lighting system is carefully
Thereare two important trends in configured and products appear silhouetted
manufacturing: one is that products are e.g. as dark objects against a light back-
becoming increasingly complex and sophist- ground, so thr.t the intensity Thistogram is
icated; the other is that the consumer is bimodal. Many inspection systems have been
becoming significantly more demanding with designed on this basis, but attention is now
regard to quality. As a result there is a move shifting towards more complex products for
towards 100 per cent inspection of products. which this approach is unlikely to be
successful. For this reason we concentrate
If there is to be 100 per cent control of here on systems based on edge detection. This
quality at a time when products are becoming approach is generally much more robust, being
increasingly complex, this necessarily throws a able to negotiate problems due to shadows,
heavy load on computing machinery. Indeed, the overlapping products, etc.
enormous amounts of data in typical images,
coupled with the high throughput rates, mean One common approach to object location is
that special electronic hardware is needed for to use a simple edge detector to locate the
visual inspection. Such hardware is costly, boundaries of objects, and then to link broken
and there are two basic strategies for edges in order to create complete (connected)
providing it: the first is to maintain outlines of objects. Having obtained complete
generality by building multi-processor systems object outlines, these can be thinned down to
containing (for example) large numbers of single pixel width, and a tracking algorithm
microprocessors; the other is to employ special can be wused to follow the outlines of
dedicated hardware systems which are less individual objects, hence generating a set of
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polar (r,8) plots (1,2). E fficient one
dimensional pattern matching algorithms can
then be used to identify objects, at the same
time determining their orientation by finding
how much the observed profile needs to be
shifted before it matches a standard template.
It is worth noting that object scrutiny can
then proceed, at least in part, by checking how
close the match with the standard template is.

This approach, which we shall call
Algorithm A, has the disadvantage that image

noise, and the mnature of the objects and the
lighting, together with possibilities of
overlapping objects and other artefacts, can
make it difficult to link Dbroken edges
together. Indeed, there are arguments that

indicate that it is not in general possible to
perform this function successfully: in any case
we have found many practical instances of
failure. However, in the restricted set of
cases in which the algorithm <can be used, it
operates extremely rapidly, since the tracking
algorithm need not visit every pixel but can
by-pass much of the image. An unfortunate
consequence of this is that the algorithm does
not take in enough data to be particularly
robust. In our work, we have aimed at high
accuracy and extremely high levels of
robustness, since these are the qualities we
have found particularly in demand in industrial
applications of wvision: we have therefore
avoided the schemes used by
Algorithm A.

tracking

An alternative approach which we shall
call Algorithm B also involves edge detection,
but instead of linking ©broken edges together
directly it proceeds with the Hough transform
strategy of locating objects by accumulating
(at a reference point within each object) the
evidence that is available for their existence
(3.4). This gives a particularly robust
strategy for locating objects, though it is not
so fast as Algorithm A. However, Algorithm B
is still highly efficient, since full wuse is
made of locally available wedge orientation
information to compute candidate positions for
object reference points. Here we illustrate
this technique by reference to circular object
location. For a circular object, each edge
pixel that is found permits computation of a
candidate centre point a distance equal to R
(the radius) along the edge normal in
'parameter space' (4). (In this application
parameter space is isomorphic to image space.)
When all edge pixels in an image have been
processed, it is only mnecessary to search
parameter space for clusters of candidate
centre locations and to average them to find
accurate positions for the centres of circular
objects.

Once products have been found wusing
Algorithm B, they may conveniently be
scrutinised using the radial histogram method,
which involves computing an average radial
intensity profile of the product, and matching
this against a suitable template (5,6). This
is again a one-dimensional approach, and is
analogous to that of matching one-dimensional
shape profiles in Algorithm A, though it aims
to provide information on product reflectivity
and size rather than shape (5-7). Naturally,
Algorithm A could also be augmented by the wuse
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of radial intensity Thistograms, if this were
appropriate.

These arguments show that Algorithm B
should be considerably more robust and accurate
for object location than Algorithm A. He have
made extensive practical tests of the
situation, particularly for the location of
round foodproducts such as biscuits, and have
verified that this is so. Specifically,
Algorithm B has been found to be exceptionally
tolerant of broken and overlapping products,
and those having other shape defects such as
protuberances around their edges (5). In what
follows we assume that Algorithm B 1is to be
used because of its superior robustness and
accuracy.

3 THE SPEED PROBLEM

For our tests on biscuit inspection.
Algorithm B was augmented to include assessment
under four main headings - roundness, radius,
amount of chocolate cover, and general accept-
ability according to a radial intensity
correlation coefficient. The initial version

of this algorithm took about one minute to run
on a PDP-11/34A. Subsequent optimisation of
the algorithm strategy brought the execution
time down to "~5 seconds, without resorting to
hand massage of machine code. Although the
original algorithm was written in Pascal, it
became clear that attempts to optimise the
machine code would (for this algorithm) result
in a speedup factor of less than two: a
3 second overall execution time appeared to be
a limiting case. This is to be expected for
the following reasons. The edge detection part
of Algorithm B requires some 16 image accesses
for each pixel in the 128x128 image. Although
the access time of the framestore is around

1 microsecond, instruction fetches and
overheads within the program loops reduce the
average throughput to around 100000
pixels/second. As a result the minimum

execution time of the edge detector is of the
order of 2.6 seconds. Product scrutiny then
requires some 4-5 accesses over the relevant
area (about 3000 pixels in our application),
which will take at least another 0.1 seconds.
The Hough transform calculations are only
applied to some 200 points, but their high
computational cost will add another 0.1 seconds
to the total execution time. Clearly even with
ideal code generation there is a lower bound on
the overall processing time of about 2.8
seconds. Changing to a 68000 or other commonly
available microprocessor would not affect this
substantially.

At best, software optimisation is subject
to severely diminishing returns, and further

speedup must rely on enhancement of the
hardware implementation. As stated in
section 1, this has to be obtained either by

use of several central processor units (CPUs)
or by specially designed dedicated welectronic
hardware. To inspect biscuits at typical rates
of 10-20 per second, a speedup factor 100 must
be attained.

For industrial applications, cost has to
be kept low, and it is wuseful to see how
generality can be maintained subject to this
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constraint. With this in mind we examine a
number of alternative processing architectures.

4  MULTIPROCESSOR SYSTEM DESIGN
4.1 SIMP architecture

When considering fast hardware for image
analysis applications, it is natural to start
with the SIMD machine, since this architecture
would appear to match the hardware to the
algorithm most accurately (8). The SIMD (or
'Single Instruction Multiple Data')y archi-
tecture when applied to image analysis ideally
involves use of one processing element (PE) per
pixel, the PEs being arranged in an array
isomorphic with the image being processed.
Such a machine is able (for example) to invert
or threshold an image in one instruction cycle,
since all processors operate simultaneously on
their respective pixels. This type of machine
Is also able to operate rapidly on images to
remove noise by local averaging, or to find
edge pixels rapidly by operations within 3x3
neighourhoods. 1In addition, it can efficiently
build up distance functions or find object
skeletons by sequences of 3x3 neighbourhood
operations. A typical SIM) machine (9) is able
to perform these 3x3 operations efficiently
since each processing cell has direct links
with its 8 neighbours (only 4 in the case of
some machines such as the ICL DAP (10)), so the
required data is immediately available.

Most SIMD arrays include an activity bit
for each PE which allows selective application
of processing steps to different areas of the
image by disabling individual PEs. However,
this clearly wastes the power of the SIMD
machine. Unfortunately, all but the lowest
level image processing operations require
selective processing of the image. The Hough
transform calculations required for Algorithm B
form an interesting extreme case in which
around 200 special image points (edge pixels)
trigger a floating point calculation, at the
end of which a single point in parameter space
must be accessed. In principle the floating
point calculation could be performed at every
point by the SIM) array, but the only available
way of performing the subsequent random access
of the parameter plane' is by propagation
techniques (9). Typically 40 propagation
cycles per point would be required in this
application for each of the 16384 pixels in the

image. (Note that an attempt to re-organise
Algorithm B so that propagation routines are
used to locate «circle centres leads to
significant loss of generality, since

Algorithm B itself is immediately generalisable
to detect any object shape (4).) A conven-
tional sequential processor would be slow at
calculating the edge image, but could then
efficiently execute the 200 floating point
calculations and directly access the parameter
space. In addition, technology <constraints
dictate the use of simple bit-serial processors

in current SIMD machines, and these would
require many cycles to execute the required
floating point calculation. Clearly, the pure

SIMD solution would be much less efficient.

An alternative hybrid strategy would be to
perform the edge calculation in the SIMD array.
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and then to read the results out sequentially
into a conventional processor which would
perform the floating point calculation and
update the parameter space. The economics of
this approach would be dictated by the relative
costs of the SIM) and sequential machines and
the bandwidth of the communication channel.
Current SIMD arrays are still rather expensive
devices, which discounted their wuse in our
application.

This analysis shows that SIMD architect-
ures are of limited wuse for processing tasks
that cannot efficiently exploit their regular

topology. The simplicity of the individual
PEs, and the absence of long distance commun-
ication links within the image make them
particularly unsuitable for geometrical

calculations on object features. Thus the SIMD
architecture is currently inappropriate for
many tasks of image analysis that might be
needed in industrial inspection, even though it

might be well adapted to various image
processing tasks in a general imaging
environment.

4.2 Multi-processor systems

General multi-processor structures provide

resources that may be wused concurrently in an
unrestricted fashion, unlike the SIMD machine
where all resources operate in lockstep. As
with all forms of parallel implementation, the
efficiency of a multi-processor system will be
dictated by the effectiveness of the functional
partitions. Interactions between functions
will require either transmission of data
between processes or access to shared memory
spaces. In the one case there is a potential
data bottleneck due to lack of bandwidth in the
communications channel, and in the other,
processes may stall during contention for
shared memory. Therefore the speed of a
multi-processor system containing N processors
is never increased by the ideal factor N unless
there is no process interaction, which is
unlikely to be the case in a system doing
useful work. High efficiency will be obtained
by minimising process interaction. Naturally,

there is the risk that a system containing
N processors and capable of increasing speed by
the factor "IlUO noted in section 3 will be
rather an expensive solution.

4.3 Pipelined processing systems

Pipelined processing systems form an
interesting sub-class of multi-processor

systems which can be wuseful for the repetitive
execution of a given set of operations. This
is typically the case for industrial inspection
systems, where the same algorithm is applied to
each frame of data as it comes off the camera.
In a pipeline, individual frames of data are
passed along a chain of processors so that in
an N-processor system, N different data sets
are being processed at any one time.

Since all processors pass their completed
data set on up the chain at the end of a fixed
time slot, pipelines are only as fast as the
slowest processor in the chain. To be optimal,

all procesors should complete in the same
amount of time. For a video-based system, an
obvious approach would be to execute in
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integral numbers of TV frames. For high level
parts of the algorithm, such as the Hough
transform calculations, subdivision into equal
execution time processes would be virtually
impossible to achieve. Finally, the approach
requires significant bus switching logic and
local memory, as well as the hardware proc-
essors, which are themselves liable to be
costly. Thus pipelined systems pose a serious
partitioning problem, and in addition to
lacking generality are likely to constitute a
rather expensive solution to the speed problem.

4.4 General processing capability

We have concluded in our work that, contrary to
many of the suppositions about image analysis
(based on what is frequently wvalid in image
processing per se), the ideal type of
processing system is a highly general multi-
computer system, which is abstract in the sense
of mnot Dbeing tied to any specific imaging
representation. Again this is not achievable
w ithin the budget of most industrial inspection
systems. For algorithms such as Algorithm B,
the best compromise seemed to be to make
optimum use of a single CPU by linking it with
a set of hardware accelerators selected for
maximal generality coupled with applicability
to the problem in hand. In this context.
Algorithm B was seen as constituting a useful
case study in algorithm analysis and multi-
processor system design; this will be discussed
in more detail below.

5 FURTHER ANALYSIS OF ALGORITHM B AND ITS
IMPLEMENTATION

Table 1 gives a breakdown of the functions in
Algorithm B. The 'description' indicates the
size of the neighbourhood employed in imaging
operations. It also indicates those processes
that are one-dimensional: these are marked
since they involve loops containing a signif-
icant number of operations, but not as many as
for two-dimensional image processing in Ixl or
3x3 neighbourhoods.

The two other headings in the table, time
for execution in software on an LSI-11/23 and
cost of hardware implementation, are somewhat
notional since it is difficult to divide the
algorithm rigorously into completely segregated
sections. For example, it has been assumed
that various overhead costs such as that of a
backplane, rack and power supply have already
been covered: we shall largely ignore such
complications in what follows. Overall, the
figures presented here should be sufficiently
accurate to form the basis for useful decisions
on cost effectiveness of hardware. Finally,
costs are based on chip and other component
prices, and do notinclude logic design or
p.c.b. layout. However, on the whole the cost
of design and layout work 1is proportional to
the number of connections, which is itself
roughly proportional to component cost. This
means that our results will be substantially
correct, since the analysis below is
independent of scaling.

As a simple starting approximation, any

function that is implemented in fast hardware
w ill be assumed to run in zero time. To find

18
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the most cost-effective means of speeding up
the system, we should therefore consider a
sequence of options in each of which one
additional function is implemented in hardware,
successively reducing the load on the host CPU.
To achieve this system atically, we should
examine the speed-cost product (or cost/time
ratio) of every function, and 1in successive
options implement in hardware the function
currently having the lowest value of this
parameter: the rationale for this is to
preferentially replace in hardware those
functions that are slow and whose cost is
relatively small, by applying a criterion
function with suitable weighting values.

This simple procedure is made somewhat
more complex by the significant econcxnies that
are possible when implementing functions 6-10,
e.g. by wusing coimnon pixel scanning circuitry.
Specifically, any subset of the functions 6-10
can operate with a single interface, scanning
circuit and radial position lookup table (which
gives a value for radial position once x and y
displacements relative to the circle centre are
known). On the other hand, any subset of these
functions that is not implemented in hardware
engenders a time overhead in software. A full
analysis of the problem would require a large
number of functional partitions to be examined
in order to find the optimum system config-
uration. However, this exhaustive search
procedure need mnot be performed in this
instance since the time overhead s much
greater than the sum of the software times for
functions 6-10. This means that once the
initial cost overhead has been paid it will
clearly be optimal* to implement all of these

functions in hardware. For this reason we
group functions 6-10 together in the remainder
of this paper. Table2 summarises the
position.

Table 2 shows that the cost/time ratios
divide themselves into four main categories:
(1) those of the order of 1 £/ms vdiich are
clearly worthimplementing in hardware;
(2) those ©between ~5 £/ms and 25 £/ms which
w ill also have to be implemented in hardware to
get a reasonable speed system; (3) those around
100 £/ms which it would be worth implementing
if a very much faster system were needed; and
(4) those above 1000 £/ms which it would
probably never be economical to implement in
hardware. If option 1 were chosen, the total
cost of the system would be £9000 and the
algorithm would run in 0.7 seconds; if option 2
were used, the system would <cost £13700 and
would run in 0.1 seconds; if option 3 were
chosen, the system would cost £23700 and would
run in 0.002 seconds, whereas with option 4 the
system would cost £27700 and would run in zero
time (in the current approximation). Here we
have assumed that the base cost of computer
plus camera, frame store, backplane, power
supply, etc is some £6000 and that this will
permit the algorithm to run in "5.0 seconds as
indicated in Table 2.

In the above analysis we assumed that
those functions implemented in electronic
hardware run in zero time. This will not be
entirely wvalid in practice, and the most
serious errors will be for image neighbourhood
operations - particularly those for mneigh-
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bourhoods of size 3x3. Taking 150 nsec as the
fastest time for pixel access (as with our
implementation wusing the VME bus), we see that
a 3x3 neighbourhood operation in a 128x128
image takes some 25 msec. With suitable local
storage this could be reduced to "8 msec or
even to "3 msec. For a 1x1 neighbourhood,
pixel access times would be "3 msec. Next, let
us assume that the actual processing is carried
out by TTL circuitry in some tens of nano-
seconds per pixel location; then the processing
time will be less than | msec. Thus quite
straightforward circuitry could be wused to
implement each function in times as short as
3-4 msec: this goes some way to justifying, and
extending, the approximation we made earlier.

He now interpret our finding that the

cost/tim e ratios fall into four main
categories. Broadly, the first category
(cost/time TI £/ms) arises for imaging
operations in 3x3 neighbourhoods, which are
well worth implementing in hardware. The
second category (cost/tim e in the range
5 to 25 £/ms) arises for faster imaging

operations in 1x1 neighbourhoods. The third
category arises for one-dimensional operations
which involve less processing, and certain
rather time-consuming floating point
operations. And the fourth category is a
general data processing category with
non-repetitive operations that run so fast they
are unlikely to be worth implementing in
dedicated hardware. Specifically, functions
5,12,13,14 require tedious logic and/or
floating point arithmetic, which means that one
is competing with the cost-effectiveness of
mass-produced CPUs if one implements them in
hardware: in general it is not worth doing
this.

Function 4 is at the high end of
category 2 since it involves relatively few
pixels and is essentially a one-dimensional
rather than an imaging operation: in addition,
its cost is rather high because it performs
quite complex arithm etic.

5.1 More rigorous investigation of hardware-
software tradeoffs

We now attempt a more rigorous analysis of the
effectiveness of implementing the various
functions in hardware. A complete breakdown of
the overall cost/time ratio sequence is given
in Table 3. t and c¢ are the times and costs of
the functions. Assuming an overhead cost of
£6000 (see above), T and C are the overall
times and costs resulting from implementing in
hardware all functions down to the one
indicated: the minimum value of T is taken as
0.030 seconds and is based on realistic values
for the imaging and 1-D operations, as
discussed earlier. Looking at the C*T product
should now give an indication of the optimal
tradeoff ©between hardware and software: this
occurs for 13 functions implemented in
hardware.

It is important to realise that minimising
the C*T product only gives a general indication
of the required hardware-software tradeoff.
A lot depends on the original specification for
the inspection system: it might be that the
main aim is to meet a certain cost or speed
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rather than to produce a 'bargain package' that
might do well in the market place. In our
work, we have aimed particularly at foodproduct
inspection, where It seemed to be vital to
minimise costs while keeping speeds moderately
high (5). For this reason, we aimed at an
overall cost of less than £10000. By implem-
enting functions 1,3,6-11 in hardware, we found
we could get within a factor 3.6 of the optimal
tradeo ff (C*T product). However, another
important factor arose in this analysis: that
was the declining cost of faster CPUs. Table 4
shows the same C*T calculation for an LSI-11/73
host processor replacing an LSI-11/23. In this
case the optimum tradeoff again occurs for
13 functions implemented in hardware. However,
our compromise of implementing only functions
1.3.6-11 in hardware is now within a factor 1.8
of the optimal tradeoff. It seems fair to
assume that these factors will become even more
attractive with future CPUs.

5.2 Further factors in hardware design

Some further improvement in performance was
obtained by making use of the fact that the
host processor and the dedicated hardware can
operate concurrently. (Ideally we would gain a
factor two in speed by wusing two processors,
but it is clear that our design criteria
involve mandatory partitions in the algorithm
which are inimical to such a large gain in
speed.) In particular, we found that
function 2 can run in the host CPU while
function 3 runs in hardware, and function 13
can run on the CPU while functions 6-11 run
concurrently in hardware. Figure 1 gives an
execution map of our implementation, showing
that our final allocation of functionality to
hardware and software is able to make
significant gains in efficiency and speed.
This further justifies implementing relatively
few functions in hardware.

In our implementation of Algorithm B, we
have achieved 25 msec for function 3 (edge
detection), and 10 msec for functions 6-11: we
are currently upgrading these to roughly double
the speeds. At that stage the timings will be
as indicated in Figure 1, and at a total cost
of £12500 (using an LSI-11/73 with functions
1.3.6-11 in hardware) we will have a system
capable of inspecting 11-12 products/second
using Algorithm B.

5.3 Generality of the functions implemented in
hardware

Algorithm B was partitioned into sections that
correspond to a significant degree of
generality. First, edge detection itself is a
highly general image analysis function (11);
second, the Hough transform procedure used for
object location is generalisable to a variety
of shapes (4); third, the radial histogram
approach has the potential for being used even
in cases where cylindrical symmetry does not
exist, since it can be wused to provide a

rotationally invariant ‘'signature' character-
istic of one or other part of an object in the
region of an easily locatable feature.

Finally, certain thresholding operations
(e.g. counting the number of pixels darker or
lighter than certain threshold values) are
exceptionally easy to implement yet generally
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useful for object scrutiny.

Clearly, function generality is a crucial
factor which will frequently override the C*T
criterion in deciding on the priorities for
building dedicated hardware. He have kept this

in Mind while deciding which functions to
implement in hardware in our visual inspection
work.

6 CONCLUSION

This paper has presented an algorithm for the

rapid inspection of small products such as
biscuits. It has analysed how this algorithm
may optimally be partitioned between dedicated

hardware and software. Detailed specifications
such as strict speed or cost lim its have been
seen to constrain the ©basic optimisation
procedure, and function generality is also a
critical factor. In addition, it has been
found difficult to decide systematically the
best ways of incorporating concurrency into the
design when processors take radically different
forms: however, we have been able to design an
inspection system that makes efficient use both
of the host CPU and of a limited number of
hardware processors. The approach we have
adopted seems somewhat unusual in that we have
proved it best to retain use of the host CPU
for a proportion of the processing rather than

to set about building everything in dedicated
hardware: specifically, the host CPU is not
merely wused for control and general data

logging, but is used to take an integral role

in the main image analysis task. Ultimately,
the aim of our work is to develop the
methodology of digital hardware design for

industrial inspection applications, and at the
same time to arrive at optimal designs rather
than ones that contain arbitrary sets of ad hoc
processors.
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Table 1 Breakdown of algorithm B

[« I e O N O R

Table 2

C362/86 O IMechE 1986

function

acquire image

clear parameter space

find edge points

accumulate points in parameter space
find averaged centre

find area of product

find light area (no chocolate cover)
find dark area (slant on product)
compute radial intensity histogram
compute radial histogram correlation
overheads for functions 6-10
calculate product radius

track parameters and log

decide if rejection is warranted

time for whole algorithm

Revised breakdown of algorithm B

function

acquire image

clear parameter space

find edge points

accumulate points in parameter space
find averaged centre

set of functions with same overhead
calculate product radius

track parameters and log

decide if rejection is warranted

time for whole algorithm

description

1x1
1x1
3x3
1x1

1x1
1x1
1x1
Ix1
1-D

description

Table 3 Speed-cost trade-off figures for LSI-11/23 based system

order function t c T

(sec) (£) (sec)
0 6000 4.990
1 3 4.265 3000 0.725
2 6-11 0.486 2500 0.239
3 2 0.017 200 0.222
4 4 0.086 2000 0.136
5 12 0.047 4000 0.089
6 5 0.020 2000 0.069
7 13 0.037 4000 0.032
8 14 0.002 4000 0.030

(£)

6000

9000
11500
11700
13700
17700
19700
23700
27700

time cost
(sec)  (£)
- 1000
0.017 200
4.265 3000
0.086 2000
0.020 2000
0.011 100
0.019 200
0.021 200
0.007 400
0.013 400
0.415 1200
0.047 4000
0.037 4000
0.002 4000
4.960
time cost
(sec)  (£)
- 1000
0.017 200
4.265 3000
0.086 2000
0.020 2000
0.486 2500
0.047 4000
0.037 4000
0.002 4000
4.960
C*T
(£-sec)
29940
6530
2750
2600
1860
1580
1360
760
830
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Table 4 Speed-cost trade-off figures for LSI-11/73 based system

order function t c T C C*T gain
(sec) (£) (sec) (£) (£-sec)
0 - 7000 2.154 7000 15080 1.99
1 3 1.835 3000 0.319 10000 3190 2.05
2 6-11 0.207 2500 0.112 12500 1400 1.96
3 2 0.006 200 0.106 12700 1350 1.93
4 4 0.035 2000 0.071 14700 1040 1.79
5 12 0.017 4000 0.054 18700 1010 1.56
6 13 0.016 4000 0.038 22700 860 1.58
7 5 0.007 2000 0.031 24700 770 0.98
8 14 0.001 4000 0.030 28700 860 0.97

The last column in this table shows the overall gain in speed
relative to the corresponding LSI-11/23 option in Table 3.

12 35 7 17 16 1 msec

Fig 1 Execution map of algorithm B showing its implementation, making use of:

(a) pipelining of image acquisition and algorithm execution;

(b) simultaneous execution in hardware and software;

(c) sharing of scanning overhead and data I/O for functions six to ten.

Also indicated are the execution times of individual processes totalling 88 ms

O  operations involving host CPU
O operations executed in dedicated hardware
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