
-

COLLEGE

D evelopm ent and Im plem entation of

R eal Tim e Image P roceoGi-ng-A lgorithm s

A Thesis submitted for the degree of

Doctor of Philosophy

of the University of London

b y

Adrian Ivor Clive Johnstone

Computer Science Department

Royal Holloway and Bedford New College

University of London

December 1988

ProQuest Number: 10096228

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com plete manuscript
and there are missing pages, th ese will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest.

ProQuest 10096228

Published by ProQuest LLC(2016). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code.

Microform Edition © ProQuest LLC.

ProQuest LLC
789 East Eisenhower Parkway

P.Q. Box 1346
Ann Arbor, Ml 48106-1346

A bstract

This work concerns the development and im plem entation of real-tim e

image processing algorithm s. Such systems may be applied to industria l inspection

problem s, which typically require basic operations to be performed on 256 x 256

pixel images in 20 to 100ms using systems costing less than about £20000.

Building such system s is difficult because conventional processors execut­

ing at around IM IPS w ith conventional algorithm s are some 2 orders of m agnitude

too slow. A solution to this is to use a closely coupled array processor such as

the DAP, or CLIP4 which is designed especially for image processing. However

such a space-parallel arch itecture imposes its own structure on the problem , and

this restricts the class of algorithm s which may be efficiently executed to those

exhibiting similar space parallelism , i.e. so-called ‘parallel algorithm s’.

This thesis exam ines an alternative approach which uses a mix of conven­

tional processors and high speed hardw are processors. A special fram e store has

been built for the acquisition and display of images stored in memory on a m ulti­

processor backplane. Also described are an interface to a host m ini-com puter,

a bus interface to the system and its use w ith some hardw ired and microcoded

processors. This system is com pared to a single com puter operating w ith a frame

store optim ised for image processing.

The basic software and hardw are system described in this thesis has been

used in a factory environm ent for foodproduct inspection.

C ontents

List o f F igures 9

List o f Tables 12

1 In trodu ction 13
1.1 The problem of robot vision .. 13
1.2 Classical p a tte rn recognition .. 15
1.3 The p a tte rn recognition hierarchy ... 15
1.4 N -tuple pa tte rn r e c o g n i t io n ... 17
1.5 S tructural p a tte rn recognition .. 17
1.6 The hum an paradigm and artificial in te l l ig e n c e 18
1.7 Overview of following c h a p t e r s ... 19

2 Im age representations for real tim e processing 21
2.1 Introduction ... 21
2.2 Inform ation in i m a g e s .. 22
2.3 D ig it is a t io n ... 22
2.4 Spatial q u a n t i s a t i o n ... 23

2.4.1 Spatial resolution .. 23
2.5 Regularity ... 24
2.6 Geometrical paradoxes .. 24

2.6.1 The crossing paradox ... 24
2.6.2 Geom etrical paradoxes in hierarchical representations . . . 26

2.7 Choice of tessellation .. 27
2.8 Distance inform ation .. 27
2.9 Grey scale d ig i t i s a t io n .. 27
2.10 Simple structures for binary processing .. 28
2.11 D ata structures ... 28

2.11.1 Trees .. 30
2.12 B ottom up and top down r e p re s e n ta t io n s ... 30
2.13 Q uadtrees .. 31

2.13.1 Extension to grey scale .. 32
2.13.2 Properties and applications of quadtrees 33
2.13.3 Shift invariance ... 35

2.14 M etrics ... 36
2.15 C o n c lu sio n s .. 41

3 A lgorithm analysis and design 42
3.1 In troduction .. 42
3.2 A lgorithm a n a ly s i s ... 43

3.3 T hroughput requirem ents for industria l systems 45
3.4 A lgorithm design ... 46

3.4.1 O perations and algorithm s ... 48
3.5 Problem solving strategies... 48

3.5.1 Hill climbing strategies .. 48
3.5.2 Backtracking and r e c u r s io n ... 49

3.6 T he benchm arking p r o b le m ... 50
3.7 Benchm ark im a g e s ... 52

Q uadtree algorithm s 56
4.1 In troduction ... 56
4.2 Q uadtree g e n e r a t io n ... 56

4.2.1 A note on terminology .. 57
4.2.2 Analysis of quadtree algorithm s ... 58

4.3 Algorithm 1 — top down recursive decom position 60
4.3.1 C o m m e n ta ry ... 61
4.3.2 Perform ance ... 62
4.3.3 Discussion . .. 63

4.4 Algorithm 2 — bo ttom up leaf m e r g i n g ... 63
4.4.1 C o m m e n ta ry ... 66
4.4.2 Perform ance ... 67
4.4.3 Discussion ... 69

4.5 Algorithm 3 — bottom up b a c k tr a c k in g .. 70
4.5.1 C o m m e n ta ry ... 71
4.5.2 Perform ance ... 72
4.5.3 Discussion ... 74

4.6 Algorithm 4 — an optim al quadtree generator 74
4.6.1 C o m m e n ta ry ... 77
4.6.2 Perform ance ... 79
4.6.3 A c c u r a c y .. 79
4.6.4 Discussion ... 80

4.7 Algorithms + A rchitectures = Im plem entations 81
4.7.1 Z-scan by bit tw ister .. 81

4.8 D ata com pression using quadtrees .. 83
4.9 Q uadtree controlled image processing operators 85

4.9.1 Edge d e t e c t io n .. 85
4.9.2 Smoothing ... 88

4.10 C o n c lu s io n s .. 90

Fram estore design 92
5.1 Introduction .. 92
5.2 Basic frame stores ... 92
5.3 Frame store b lo c k s .. 93
5.4 Video signal tim ing ... 94
5.5 Basic video t i m i n g .. 94
5.6 Video tim ing g e n e ra t io n .. 95
5.7 Advanced video effects ... 98
5.8 M e m o ry .. 99
5.9 Digitiser .. 101
5.10 Host interface ..102
5.11 Memory a r c h i te c tu r e s ..103

5.11.1 Integration into main m em ory a r c h i t e c t u r e104
5.11.2 Array access te c h n iq u e s ..105
5.11.3 Indirect and indexed addressing .. 105
5.11.4 In tegration into the peripheral s y s t e m .. 106
5.11.5 Special purpose memory a r c h i te c tu r e s .. 107

5.12 IPO FS — a com pact high perform ance fram e store108
5.13 IPO FS specification ..109
5.14 IPO FS theory of operation .. 109

5.14.1 Register set ...110
5.15 Internal operation ..112

5.15.1 Controller b o a r d .. 112
5.15.2 M emory b o a r d ... 114
5.15.3 Digitiser b o a r d ... 114

5.16 Program m ing differences w ith Cook’s fram e store 114
5.17 V I ...115

5.17.1 Register set ...116
5.17.2 Control and status r e g i s t e r ... 116
5.17.3 W ipe c i r c u i t r y ... 118
5.17.4 Line-scan in te r f a c e ...118

5.18 V 2 ... 120
5.18.1 V2 theory of operation .. 121
5.18.2 M emory subsystem ... 121
5.18.3 Video tim ing s u b s y s te m .. 122
5.18.4 Host interface ... 123

5.19 V3 enhancem ents to V 2 ..126

6 A rchitectural issues for sequential im age processors 127
6.1 In troduction ..127
6.2 Hardware requirem ents for im age processing ... 128
6.3 Processor design philosophy ...128
6.4 Language directed machines ...129

6.4.1 Procedure call instructions PD P-11, 68000 and VAX . . . 129
6.4.2 O ther complex VAX in s t ru c t io n s ...130

6.5 Big fast and simple m a c h in e s ...131
6.6 Register and stack based m a c h in e s .. 131
6.7 RISC m a c h in e s .. 132

6.7.1 I B M .. 132
6.7.2 Berkeley ..132
6.7.3 Stanford ..133
6.7.4 Inmos Transputer ...134
6.7.5 O ther commercial d e s ig n s ...134

6.8 RISC m achine common features ..134
6.8.1 Single instruction per cycle execution ...135
6.8.2 Processor memory bandw idth ...135

6.9 Software requirem ents for image p r o c e s s in g ...135
6.10 O rthogonality .. 136
6.11 Languages and program m ing environm ents ...137
6.12 Image processing w ith conventional languages 137
6.13 PPL2 ..138
6.14 P IP E ... 139

6.15 PIPE-32 ... 140
6.16 A spécification for interactive image p ro c e s s in g 141

7 P a ra l le l is m in h a r d w a r e 143
7.1 In troduction ...143
7.2 Spatial parallelism w ithin the CPU ...143

7.2.1 B it level p a r a l le l i s m ...143
7.2.2 W ord level p a ra l le l is m ..144
7.2.3 M ultiple functional units ...145
7.2.4 Sequencing and pipelines ...146

7.3 Vector processors .. 147
7.4 Parallel processor c la s s if ic a tio n ... 148

7.4.1 S tream c la ss if ic a tio n * . . 148
7.4.2 Functional un it c la s s if ic a t io n .. 148

7.5 Array p r o c e s s o r s .. 149
7.5.1 Solomon .. 150
7.5.2 ILLIAC III and IV ... 151
7.5.3 CLIP 1 - 4 .. 152
7.5.4 CLIP 7 ..153
7.5.5 The ICL DAP ... 154
7.5.6 The G oodyear M P P ... 155
7.5.7 T he N CR G A PP c h i p ..156
7.5.8 The GEC G R I D .. 156
7.5.9 The M IT connection machine .. 156

7.6 Systolic arrays ..157
7.6.1 W arp and P S C ..158

7.7 MIMD m ultiprocessors .. 158
7.7.1 C om m unication networks for m u ltip ro c e sso rs 159
7.7.2 Logical and physical networks ... 160
7.7.3 C .m m p ..161
7.7.4 CM* ... 162
7.7.5 PIC A P I and II .. 162
7.7.6 PASM ..164

7.8 Cone and pyram id architectures ... 165
7.8.1 PC L IP ..166

7.9 D ata flow p ro c e s s o r s ... 167
7.10 G raph reduction p ro c e s s o r s ..168
7.11 Associative p r o c e s s o r s ..169

7.11.1 S taran .. 170
7.12 Hardware sum m ary ... 170

8 P a ra l le l is m in s o f tw a re 172
8.1 In tro d u c tio n ...172
8.2 The concurrency p r o b l e m ... 173

8.2.1 M utual exclusion ... 173
8.3 Historical overview ..174
8.4 Coroutines ... 175
8.5 The common m em ory arb iter and busy w a i t in g 176
8.6 S e m a p h o re s ... 177
8.7 M onitors ...179
8.8 D istributed system s and m a ilb o x e s .. 180

8.9 R e n d e z v o u s ..181
8.9.1 The Occam rendezvous ..181
8.9.2 T he A da re n d e z v o u s ...182
8.9.3 N on-determ inacy in rendezvous s y s te m s 183

8.10 Array processor language features ...185
8.11 A utom atic detection of parallelism and VLIW architectures 185
8.12 C o n c lu s io n s .. 187

9 T he IM P sy stem 188
9.1 In troduction .. 188
9.2 Derivation of IM P a r c h i te c tu r e ..188

9.2.1 Coprocessor bus .. 189
9.2.2 Unification of m ultiple bus s c h e m e ..190
9.2.3 Com m ercial m ultiprocessor buses ..191
9.2.4 Conclusions ... 193

9.3 A rchitectural overview ..194
9.4 P roject m a n a g e m e n t ...195
9.5 Use of the V M Ebus in I M P ...197

9.5.1 V M Ebus lines 197
9.5.2 A rb itra tion bus 198
9.5.3 A rb itra tion p r o to c o l 199
9.5.4 D ata Transfer B u s 201
9.5.5 D ata transfer protocol 201
9.5.6 Use of address modifiers 202
9.5.7 In te rru p t b u s 202
9.5.8 U tility bus 204

9.6 Q-bus to V M Ebus link 204
9.6.1 QQ card 204

9.7 Q-bus protocols 206
9.7.1 D ata transfer c y c l e s 206
9.7.2 In te rru p t protocols 208
9.7.3 In te rru p t request p h a s e 208
9.7.4 In te rru p t acknowledge p h a s e 208
9.7.5 Vector read phase 209
9.7.6 Q-bus in te rru p t protocol h a z a r d 209

9.8 QV card 210
9.8.1 QV operation 210
9.8.2 A ddress and W T B T latches 210
9.8.3 Address decoding 211
9.8.4 VM E bus a c c e s s 211
9.8.5 In te rru p t s u b s y s te m 211
9.8.6 Bus services 212
9.8.7 Software access to the VM Ebus 212
9.8.8 Q-bus addressing conflicts 213

9.9 BASE c a r d 214
9.10 An industria l inspection application ... 214

9.10.1 The p r o b l e m ..215
9.10.2 W ho did w hat .. 215

9.11 The algorithm ...216
9.11.1 O bject d e t e c t i o n ...216

9.11.2 Edge d e t e c t i o n ...216
9.11.3 C entre d e t e c t i o n ..216
9.11.4 Show through in s p e c t io n ..216
9.11.5 Jam in s p e c t io n .. 217
9.11.6 Decision m a k i n g ...217

9.12 Real tim e im p le m e n ta t io n ... 218
9.13 Factory tria l ..218
9.14 C o n c lu s io n s ... 218
9.15 C o n c lu s io n s ... 219

10 A full cu stom V L SI SO BEL filter 220
10.1 In troduction ..220
10.2 Edge m easurem ent o p e r a t o r s ...220
10.3 The Plessey edge d e t e c to r ..221
10.4 SOBS-1 design d e r iv a t io n ... 222
10.5 SOBS-1 arithm etic section .. 223
10.6 Pixel pipelining ...223
10.7 O peration p ip e l in in g ..225
10.8 TT L equivalent chip count .. 226
10.9 VLSI im plem entation .. 227
lO.lOISIS c o n c e p ts ..227
lO .llSO B S-1 HDL im plem entation ... 228
10.12Leaf cells ...228

10.12.1 D -type la tch ..229
10.12.2 Full adder ... 231

10.13Global interconnection ...234
10.14Simulation results ... 235
10.15Leaf cell l a y o u t .. 239

10.15.1 D -type la tch ..239
10.15.2 Full adder ... 239

10.16Chip floorplan .. 240
10.17Test r e s u l t s ... 240
10 .18C onclusions... 242

11 C onclusions 243
11.1 In troduction ..243

11.1.1 A lg o r i th m s ... 243
11.1.2 S y s te m s .. 243
11.1.3 C om ponents ..244

11.2 Review .. 244
11.3 Further w o r k^ ... 244

B ibliography 247

List o f F igures

1.1 Postcode characters . . 14
1.2 Classical p a tte rn recognition m achine .. 16

2.1 Connectivity of rectangular te sse lla tio n .. 25
2.2 Crossing num ber (rectangular te sse lla tio n)... 25
2.3 Crossing num ber (hexagonal tessellation) ... 25
2.4 Hexagonal pixel num bering s c h e m e .. 26
2.5 Square tessellation crossing n u m b e r .. 26
2.6 C raph re p re s e n ta t io n s ... 29
2.7 Tree s t r u c tu r e .. 30
2.8 Q uadtree g e n e r a t io n .. 31
2.9 Q-image at th reshold 1 6 ... 33
2.10 Q-image at threshold 3 2 ... 34
2.11 Q-image at threshold 6 4 ... 34
2.12 Q-image at threshold 128 .. 35
2.13 Rectangle 1 .. 36
2.14 Rectangle 2 .. 37
2.15 Rectangle 3 .. 37
2.16 Rectangle 4 .. 38
2.17 Q-image of rectangle 1 ... 38
2.18 Q-image of rectangle 2 ... 39
2.19 Q-image of rectangle 3 ... 39
2.20 Q-image of rectangle 4 ... 40
2.21 Distances w ithin a q u a d t r e e .. 41

3.1 Behaviour of f u n c t io n s ... 44
3.2 Conveyer belt co v erag e ... 46
3.3 Abingdon C ro s s ... 53
3.4 Nuts and B o l t s ... 54
3.5 Pen ... 54
3.6 B is c u i t .. 55

4.1 Perform ance of Q U A D _T O P_R E C U R SE .. 62
4.2 Q-image worst case inpu t p i c tu r e .. 64
4.3 Perform ance of Q U A D _M ERCE_RECU RS... 68
4.4 Perform ance of Q U A D _BACK _RECU RS.. 72
4.5 Q-image of ANB, th r e s h o ld = 1 0 0 .. 73
4.6 Q-image of PEN , th r e s h o ld = 1 0 0 .. 73
4.7 Calculation of leaves from d iscon tinu ities.. 75
4.8 Perform ance of Q U A D .O P T .. 80

10

4.9 Z-scan and cartesian coordinate re la tio n sh ip .. 82
4.10 Bit tw is te r .. 82
4.11 Q-image of ANB at threshold 3 6 .. 84
4.12 M edian filtered Q - im a g e .. 84
4.13 M edian filtered original .. 85
4.14 Level 7 leaves in nuts and b o l t s ... 87
4.15 Level 7 leaves in nuts and bolts w ith Sobel d a t a 87
4.16 Full Sobel of nuts and b o l t s ... 88
4.17 M edian filter of P E N ... 89
4.18 Position of level 7 leaves in P E N ... 89
4.19 M edian filter of P E N ... 90

5.1 Fram e store block d ia g ra m ... 93
5.2 Interlaced video s i g n a l .. 94
5.3 Horizontal video t i m i n g .. 95
5.4 Vertical video t im in g ... 96
5.5 Video RAM ad d ress in g .. 96
5.6 Simple display generation l o g i c .. 97
5.7 Advanced video t im in g ... 98
5.8 D ynam ic RAM a rc h i te c tu re ..100
5.9 F lash analogue to digital c o n v e r te r ..102
5.10 M inicom puter memory a rc h ite c tu re ..103
5.11 IPO FS block d i a g r a m .. 110
5.12 IPO FS in ternal o p e r a t i o n ... 113
5.13 V I register b lo ck s ...117
5.14 V I line-scan interface .. 119
5.15 V2 block d ia g ra m ...121
5.16 V2 pipeline and m emory lo g ic .. 122
5.17 Pixel clock state m a c h i n e ... 122
5.18 Video tim ing l o g i c ... 123
5.19 Video tim ing state m ach in es ..124
5.20 Host interface lo g ic ...124
5.21 Host s ta te m a c h in e ...125

7.1 Parallelism within the full adder ... 144
7.2 The CDC 6600 p rocesso r...145
7.3 Three stage arithm etic p ip e l in e ...146
7.4 A dataflow machine ... 167
7.5 G raph reduction p ro cesso r... 169

9.1 IM P block d ia g ra m ... 194
9.2 IM P p r o t o t y p e ..195
9.3 IM P bus a r b i t r a t i o n ... 200
9.4 IM P d a ta transfer ..201
9.5 QQ block d i a g r a m ..205
9.6 QQ p ro to ty p e ... 206
9.7 Qbus d a ta t r a n s f e r ..207
9.8 QV block d i a g r a m ..210
9.9 A rb itra to r state d ia g ra m ...212
9.10 M emory m anagem ent program m er’s model ...213
9.11 Jam in s p e c t io n ..217

11

10.1 SOBS-1 arithm etic t r e e s ... 224
10.2 Pixel line b u ffe r .. 225
10.3 W indow-column b u f f e r ...225
10.4 O peration pipelining seq u en ce ...226
10.5 Inverter re p re s e n ta t io n s ... 228
10.6 D -type la tc h ... 229
10.7 Transm ission gate a d d e r ... 231
10.8 Transm ission XOR g a t e ... 231
10.9 T ransistor schem atic of full a d d e r ..232
lO.lOD-type latch layout ..240
10.11 Full adder l a y o u t ... 241
10.12S0BS-1 f lo o rp la n 241

12

List o f Tables

4.1 Q uadtree space r e q u ir e m e n ts .. 58
4.2 Q adtree leaf t o t a l s ... 59
4.3 Q uadtree mean leaf t o t a l s .. 60

5.1 IPO FS register s e t ..H I
5.2 V I r e g is te r s ..H 7

10.1 SOBS-1 test d a t a ... 236

Table o f A bbreviations
ABI Asynchronous Backplane Inteconnect
GSR Control and S tatus Register
IM P Im age-handling M ultiprocessor
IPO FS Image Processing O riented Fram e Store
LAP Linear Array Processor
PPL Picture Processing Language
PSW Processor S tatus W ord
S P l Sequential Processor 1
V I Video board 1
VAR VME Address Register

13

C hapter 1

Introduction

1.1 The problem of robot vision

R obots are no longer the creatures of fantasy bu t are being installed on

production lines up and down the country. However, it is clear th a t the currently

available machines are a far cry from the free-roving creatures beloved of science

fiction w riters. Typically, a paint spraying robot is merely a mimic device —

a hum an operator guides the arm around the lines of the workpiece whilst a

com puter m onitors the pa th , and subsequently retraces it autom atically. If the

workpiece is m isaligned or dam aged, then the robot will continue slavishly painting

th in air. The missing element in current commercial systems is a satisfactory

vision system. Program m ing com puters to recognise objects in an image is an

inherently difficult task, and is made more difficult by the enormous am ounts of

d a ta th a t m ust be processed.

A free-roving robot will need to be able to navigate itself and avoid

hazards. Consider the operations required in crossing the road. The robot is

being approached on two sides by massive objects which are possibly accelerating.

To cross safely, a gap between the cars must be recognised. This entails solving

sim ultaneous differential equations before the situation has altered so significantly

th a t the results are useless (th a t is in real time). This problem is dwarfed by the

task of identifying the cars and approxim ating their speed and direction, th a t is

obtaining the differential equations in the first place.

A simple way to identify the cars might be to store in the ro b o t’s memory

some pictures of cars and make point to point comparisons between them and the

incoming visual data . It is axiomatic th a t a representative sample of cars will

need to be stored. It is reasonable to expect the robot to in terpolate between

images, bu t extrapolation is much riskier and is likely to lead to erroneous results.

14

©0 0 0 o:0 ÜO0 0
1 ± Xü I BZ I I X
2 2 2 2 2 2 2 2 2 2

3 3 5 3 3 a 3 >
y 4 4 4 ÿr 4 4 4 4
5 5 5 5 W5 5 5 5
6 6 6 6 6 6 6 6 6 6
7 r 7 7 7 7 7 7 7 7
8 8 8 6 8 8 8 8 8 8
9 9 P9 9 9 9 9 9

Figure 1.1: Postcode characters

This glosses over exactly w hat ‘interpolation of im ages’ means. If a simple direct

com parison approach is used then the stored d a ta set will need examples not only

of all the cars on the road, bu t also pictures of them at different orientations

and in different lighting conditions. Near infinite am ounts of memory could be

consumed in this way, and even if such a database could be accum ulated, the

search tim e would be immense.

To underline this, consider a much simpler problem . Figure 1.1 shows a

selection of characters generated from photographs of typew ritten postcode char­

acters on envelopes. Each p a tte rn comprises 256 dots arranged in a 16 by 16

m atrix. Even with this restricted problem domain it is not possible to employ

a logical AND gate for recognition, because there are 2̂ ®® possible patterns con-

structable from 256 black-or-white dots. This is about 10^^, and even at a search

rate of IM Hz, 10^ ̂ seconds would be required for an exhaustive linear search.

Cosmologists disagree on the age of the Universe since the Big Bang, bu t most

estim ates are around 2 x 10̂ ® years [Ber76], or 6 x lO^^s, which is about 53 orders

of m agnitude less than our search time. Clearly point to point comparison has

lim ited application.

15

1.2 C lassical p attern recognition

Any practical p a tte rn recognition scheme will have to work with ex­

trem ely com pacted reference data . It may be possible to select representative

members of each class and use these as tem plates for com parison w ith incoming

d a ta according to some m atching criterion which is more relaxed th an direct point

to point comparison. However, it will be difficult to find a com prehensive set of

tem plates in situations where large variations are expected in the classes, since

they will not be clustered around a lim ited num ber of class prototypes. This is

the case in almost all non-trivial applications.

Classical p a tte rn recognition can be considered a tw o-part problem . Ini­

tially a feature detector ex tracts m easurem ents from the image. These are then

applied to a discriminator which holds inform ation concerning the various classes

and their feature d istributions. F igure 1.2 shows an image com prising rip individ­

ual pixel brightness values which is reduced by the feature detector to n / scalar

feature m easurem ents. For a practical scheme, Up)$> n j . The ny features trigger

a 1-of-ric boolean class ou tp u t a t the discrim inator.

The tem plate m atching approach described above is a special case in

which the features are the tem plates and the discrim inator is the m atching cri­

terion. In general the individual feature measurem ents define vectors in an N-

dimensional feature space, and the discrim inator will be a surface in th a t space.

Obviously it is desirable for the discrim inator to be linear (i.e. a hyperplane);

however, other functions often used are the m inim um distance, nearest neighbour

(piecewise linear) and low order polynom ial discrim inators [DH73].

1.3 The pattern recognition hierarchy

It is difficult, and perhaps unwise, to present a taxonom y of pa tte rn

recognition techniques. Nevertheless, a clear hierarchy can be discerned both

in term s of required processing power and the levels of abstrac tion provided by

various approaches.

In general, a vision system m ust first analyse the raw d a ta in to some

prim itives and then synthesize a global description of the field of view. Typically

the following steps would be perform ed:

1. Raw image d a ta is segm ented into regions which share some characteristic.

2. Each region is investigated to ex tract some m easurem ent such as colour.

16

Image data

T
0
1 i

Feature extractor

0 1
I I

Of
A .

Discriminator

0
i

Figure 1.2: Classical pa tte rn recognition m achine

texture, shape etc.

3. Relationships between regions are established in term s of these m easure­

ments.

4. The properties of objects in the field of view are inferred from the relations

between regions.

Processing levels above these might use stored contextual inform ation to ‘under­

s tan d ’ the image. A text reading machine provides a useful exam ple of the above

process.

1. Regions can be ex tracted from a page of text by looking for connected dark

areas and in m ost cases these would correspond to individual characters,

although some characters such as i, j, % and punctuation symbols such as

the semicolon would require special consideration.

2. Each region would be analysed to count branch points and the lengths of

limbs. At this point the regions could be com pared w ith known character

data , and most characters could be identified.

3. Relational properties of the characters based on the spacing of individual

characters could be used to identify separate word units and deal w ith non­

connected characters.

17

A lthough the system should now be able to answer queries such as ‘is this word

in the te x t’, it does no t in any sense understand the tex t, and cannot in fact

distinguish between nonsense and meaningful English. One can envisage a system

w ith a large stored knowledge base tha t could make com ments on the gram m atical

s tandard of the tex t. W hether such a machine com prehends the text is a question

outside the scope of th is thesis.

The descriptions given above place far m ore em phasis on the measure­

m ent of properties of p a rts of the image than the process of p a tte rn recognition

as described in section 1.2. Useful inform ation about the field of view is produced

even at the region segm entation level in the tex t reading m achine, and it is rea­

sonable to assum e th a t useful applications can be constructed w ithout invoking

the full m achinery of scene analysis.

1.4 N -tu p le p attern recognition

In the classical p a tte rn recognition system , it is possible for either the

feature extraction or discrim ination parts to be triv ial operations. An example of

trivial feature ex traction is the technique of Bledsoe and Browning first reported in

the 1950’s [BB59], now known as n-tuple recognition, in which random ly selected

groups of n bits are used as the ‘features’. An n-tuple based recognition system

for characters of the type shown in Figure 1.1 has been program m ed by the author

and can achieve a recognition rate of over 90% using 6-tuples and ten classes.

1.5 Structural pattern recognition

The case in which the discrim inator is simple is interesting because it

describes m any real life situations. For exam ple a robot arm may need the co­

ordinates of the centre of a workpiece. This is a m easurem ent ra ther than a

classification problem since the type of workpiece is already known. Similarly,

coated foodproducts such as fish fingers should show a uniform surface and any

defects in the covering will show up as areas of the underlying m aterial. Many

industria l inspection problem s may be form ulated in this way where the presence

or m agnitude of a feature is all th a t is required to identify faulty products. In

such cases the result appears directly from the feature extraction stage.

A more in teresting situation occurs where the feature detection algorithm

exhibits considerable ‘intelligence’ of its own. Such algorithm s make sequential

sets of m easurem ents on an object which take different courses depending on the

18

results. The text reading machine above m ight use such an algorithm to work its

way round an object counting branch points and m easuring the lengths of limbs.

This kind of algorithm is referred to as structural since the form of the algorithm

will reflect the s truc tu re of the object being scanned. In its purest form, this

kind of algorithm contains a com plete description of the object and in a sense

the algorithm ‘parses’ the object in much the same way as a compiler parses

tex t. The formal study of this kind of p a tte rn recognition is term ed syntactic

p a tte rn recognition, and is concerned w ith the search for picture grammars th a t

adequately describe scene content.

This thesis is particu larly concerned with the efficient im plem entation of

industria l inspection algorithm s of the s truc tu ra l type th a t use image processing

techniques to bypass the classical p a tte rn recognition stage.

1.6 The hum an paradigm and artificial in telli­

gence

U nfortunately, introspective analysis of our own capabilities does not

provide much inform ation useful to the robot engineer. M any workers have a t­

tem pted to synthesize models of brain behaviour by im plem enting those models

as com puter program s. Pre-em inent in the vision field has been the work of M arr

which follows an information transfer approach. Three principal representations

of the image d a ta are used:

“(1) the prim al sketch, which is concerned w ith m aking explicit p rop­
erties of the two dim ensional image, . . . (2) the 2 1/2-D sketch, which
is a viewer-centered representation of the depth and orientation of the
visible surfaces . . . ; and (3) the 3-D model representation, whose im ­
p o rtan t features are th a t its coordinate system is object centered, th a t
it includes volum etric prim itives (which make explicit the organisation
of the space occupied by an object and not just its visible surfaces),
and th a t prim itives of various size are included, arranged in a m odular,
hierarchical organisation.” [Mar82]

These models require prodigious am ounts of processor tim e using con­

ventional sequential com puters, bu t this is not surprising in view of the highly

parallel natu re of the brain.

A part from trying to model brain systems directly, m any workers in the

artificial intelligence field have used heuristic techniques to program problems

which are com binatorially too large for norm al analysis, such as chess and other

19

game playing, question and answer system s, and expert system s. ‘Artificial in­

telligence’ is an unfortunate nam e for these techniques which perhaps promises

more than can be tru ly delivered — for some years the artificial intelligence com­

m unity seems to have been in a ‘jam tom orrow , never jam today’ situation , which

is possibly the result of overam bitious targets.

Although artificial intelligence provides useful techniques for some p a t­

tern recognition problem s, technology constraints usually rule out the use of com­

plex heuristic m ethods for real tim e work and it may well be some tim e before

M arr’s work becomes directly usable in industrial environm ents. Therefore this

thesis concentrates on the efficient im plem entation of relatively simple algorithm s.

Note th a t ‘simple’ and ‘triv ia l’ are not synonymous — m any classical algorithm s

(such as Hoare’s Q uicksort) are bo th simple and elegant, but great insight was

required for their discovery.

1.7 O verview o f follow ing chapters

This work is concerned w ith the system atic design and im plem entation

of image processing algorithm s. It falls into three parts: pa rt 1 (C hapters 2-4)

is concerned with d a ta representation and algorithm design for im age processing;

part 2 (C hapters 5 and 6) looks at development systems for image processing

bearing in mind the needs of the program m er; and p art 3 (C hapters 7-10) looks at

parallel and hardw are im plem entation of algorithm s in high speed m ultiprocessor

systems.

C hapter 2 looks at some fundam ental properties of digital images and

their representations, concentrating on the use of hierarchical structu res for in ­

dustria l problems.

C hapter 3 discusses algorithm analysis and design, and the evaluation of

systems using standardised algorithm s and image data. T hroughput requirem ents

for industrial image processing are derived.

C hapter 4 gives some novel algorithm s for the generation of quadtree

d a ta structures from im ages, and their application to real tim e image processing.

C hapter 5 concerns the design of fram estore hardw are th a t allows a host

processor to efficiently access image da ta . Four frame stores designed by the

au thor are described along w ith u tility and application software.

C hapter 6 exam ines the m ajor trends in sequential processor design and

software systems to support image processing including P IP E , the software system

used for the applications work described in chapter 8.

20

C hapter 7 reviews parallelism in hardw are w ith a special em phasis on

parallel processors designed for image processing applications.

C hapter 8 looks at various parallel program m ing paradigm s and the

program m ing constructs available in various languages.

C hap ter 9 describes the design and im plem entation of a high speed m ul­

tiprocessor system called IM P and its use in a realtim e grey scale industrial in ­

spection application.

C hapter 10 describes a full custom VLSI im plem entation of the Sobel

filter designed to form the heart of an IM P hardw are processor.

C hap ter 11 summarises the results of the previous chapters and looks

ahead to fu tu re work.

21

C hapter 2

Im age representations for real

tim e processing

“A picture is w orth a thousand w ords.”

2.1 Introduction

A pplication of com puters to real world problems requires th a t the nec­

essary processing be form ulated as well defined algorithm s, and th a t the physical

dimensions and concepts of problem s be m apped to suitable in ternal representa­

tions. Choice of representation is in tim ately connected to algorithm perform ance.

This is because it is generally not possible to make all aspects of the d a ta sim ulta­

neously explicit. Any collection of d a ta in the com puter has some kind of topology

in which inform ation is im plicitly carried. As a result, any representation imposes

its own order on the image.

The simplest exam ple of this is the basic array representation of an image

in which spatial inform ation is carried in the topology of the array. This im plicit

inform ation is expensive to retrieve: it is easy to find out w hat colour a pixel with

certain coordinates has, bu t to find the coordinates of all pixels of a certain colour

requires an exhaustive search of the whole structure . Similarly, the location of all

3 x 3 areas in the im age w ith a certain d istribu tion of pixel colours will require

quite complex processing, because the inform ation is even more im plicit. However

it is possible to envisage an im age representation th a t directly enum erates all such

features. This might take the form of a simple list, or some com plex hierarchical

structure .

The simplest im age representation is an array, in which a one-to-one

relationship exists between points in the visual field and the stored d a ta points.

22

The discrete natu re of d ig ital representations may cause am biguities and noise in

subsequent processing. T he array representation is exam ined in some detail here

because it often forms the basis for m ore complex representations.

Early a ttem p ts to reduce storage and processing requirem ents in binary

systems generated represen tations such as chain code [Fre61] and skeletonisation

[Blu67].

There is a grow ing in terest in ‘hierarchical’ tree s tructu res for image

processing [TK80]. These m ay be generated by ‘bottom u p ’ processes which gen­

erate successively reduced resolution versions of an image, or ‘top dow n’ processes

which successively decom pose an im age in to sub-images. Top down structures use

global inform ation available at each level to subdivide the im age, whereas bo t­

tom up structures use th e local properties of pixels to group them together. A

s tructu re of particu lar in terest is the quadtree [Sam84], which can be used to pro­

vide global inform ation to inherently local image processing operations, allowing

increases in processing speed for certain classes of algorithm .

2.2 Inform ation in im ages

Several types of inform ation are present in an im age. M ost fundam en­

tally there is displacem ent in two dim ensions, and simple identification is possible

using silhouette or ‘b in a ry ’ images. However there is also dep th (i.e. displace­

m ent in a th ird dim ension) and colour/brightness inform ation. Typically depth

inform ation is less precise th an X /Y position, and colour inform ation is often

compressed into a m onochrom e image.

2.3 D ig itisa tion

Digital system s require inform ation to be presented in digital form, and

a continuum m ust be converted into a struc tu re containing num bers. M ost appli­

cations make use of a m onochrom atic representation where im age d a ta is stored

in a 2-dim ensional array of values corresponding to sample brightnesses across the

image. Colour and dep th inform ation may be incorporated by storing colour and

depth values along w ith the brightness data .

23

2.4 Spatial quantisation

The Spatial relationships in the im age are represented by splitting the

visual plane into a num ber of p icture elem ents or ‘pixels’. Through familiarity

w ith cartesian coordinates it is na tu ra l to m ake these pixels rectangular in shape,

bu t this is not necessarily the best tessellation available. By considering angles

at a point, it may be shown th a t squares, triangles and hexagons are the only

regular polygons capable of tiling the plane (the so called ‘regular tessellation’).

It can also be shown th a t there are only 8 ‘sem i-regular’ tessellations which are

tilings using a mix of regular polygons bu t w ith all vertices congruent [CR61].

For image represen tation , the characteristics of a good tessellation are:

1. it should have a fine enough net to avoid losing im portan t detail in the

quantisation noise and to avoid aliasing,

2. it should be regular and have as m any axes of ro tational sym m etry as pos^

sible,

3. it should be able to describe prim itive im age properties w ithout introducing

geom etrical paradoxes.

2.4.1 Spatial reso lu tion

C haracteristic 1 is a property of the spatia l resolution (i.e. pixel size)

and is not related to the actual tessellation. T he 625 line PAL colour television

system used in the UK specifies a line tim e of 64/is of which 12.05/16 ± 250ns is

blanking tim e used for flyback [IB71]. This leaves approxim ately 52/is of active

video tim e. The norm al video bandw idth is 5.5MHz although m any cam eras are

capable of higher perform ance, say 6MHz.

According to the sam pling theorem , in order to capture the full band­

w idth of a signal, sam ples m ust be taken a t twice the m axim um frequency in the

signal [GW87] — i.e. a t 11 MHz for broadcast video. Over the length of a 52/xs

display line, this corresponds to 572 pixels. This is an interesting result because

600 of the available 625 lines are used for display, which m eans th a t the spatial

resolution of broadcast video is much b e tte r in the Y direction (600 pixels in unit

length) than the X direction (572 pixels in 4 /3 un it length). This is a result of

the bandw idth lim iting im posed on the signal to reduce dem and on broadcast

frequencies. If the sam pling criterion is violated, aliasing can occur.

24

2.5 R egularity

R egularity is im portan t if features are to be invariant under translation.

If one p a rt of the field of view is stored a t higher resolution, then identical objects

in different p a rts of the image may m ap to different am ounts of image memory.

T here are cases where this is desirable, such as increasing horizontal resolution to

show vertical edge profiles in more detail. It is also desirable th a t features should

rem ain invarian t under rotation. Any tessellation will introduce distortions in the

im age, bu t m ultiple axes of ro tational sym m etry will help reduce inconsistencies

between representations of identical shapes a t different angles to the coordinate

axes.

2.6 G eom etrical paradoxes

2.6.1 T h e crossing paradox

In m ost cases, accurate representation is a property of resolution only,

bu t there is a deeper problem with rectangular tessellation. If four points are

arranged in a block:

1 0

0 1

then a n a tu ra l in terp re ta tion is th a t the two ‘1’ points are parts of a connected line

bisecting two background areas shown as ‘O’s. However the black and white areas

are spatially congruent, and there is no reason why this should not be in terpreted

as a discontinuity between two black areas. Thus connectivity is ill defined. This

is known as the crossing paradox and was first no ted by Rosenfeld [Ros70]. A rule

often used to circum vent this problem is to require background connected areas

to show four-connected adjacency, and allow foreground areas eight connectivity.

This is equivalent to enlarging the size of each foreground dot in the analogue

im age, so th a t it occupies a larger area th an one pixel as shown in Figure 2.1.

This obviously removes generality and sym m etry from the representation, and

shows ano ther problem with the rectangular tessellation: th a t the four and eight

connected points are different distances from the centre of a window, even though

they all border the centre.

The crossing paradox also affects the definition of crossing num ber, which

is a m easure of the order of connectivity at a point. W ithin a 3 x 3 window, four

cases can be distinguished as shown in F igure 2.2.

25

IB
•H I:

Figure 2,1: Connectivity of rectangular tessellation

- 0 -

X X X

X 0 X

X X X

- X

- 2

X -

4 -

X -

X - -

- 6 X

X - X

isolated isolated end mid cross

Figure 2.2: Crossing num ber (rectangular tessellation)

Crossing num ber may be calculated as twice the num ber of lines or wider

bodies m eeting at a point. Calculation for the hexagonal tessellation is s tra igh t­

forw ard, and some exam ples are shown in Figure 2.3.

The crossing num ber may be calculated by counting the num ber of

black/w hite transitions in the ring surrounding the central point. Let the pix­

els in the neighbouring ring be nam ed p i , p z . . . pe giving the pixel num bering

scheme shown in Figure 2.4.

Here the crossing num ber form ula is Pi XORp.^-i.

In the rectangular case, the situation is com plicated by the two level

hierarchy of points th a t exists within a window. The situation where three lines

meet in the vicinity of a 3 x 3 window can m ap to two different ‘types’ of window

- 0 -

X X

X 0 X

X X

- 2 -

X -

- X X -

- 4 - - 6 X

X - X -

isolated isolated end mid cross

Figure 2.3: Crossing num ber (hexagonal tessellation)

26

3 2

4 0 1

5 6

Figure 2.4: Hexagonal pixel num bering scheme

X - - - X -

- 6 X X 4 -

X - - - X

cross mid

Figure 2.5: Square tessellation crossing num ber

w ith different crossing num bers (Figure 2.5).

Using the connectivity criterion noted above, the two upper points in

the mid case are connected, and therefore generate only one transition in the

neighbouring ring of pixels. T he form ula for the rectangular case m ust be modified

to
4

E m - i X 0R p2i+ i + 2(N 0T p2i_ i AND AND N O T pj.+ i)
t=l

The first te rm generates the crossing num ber defined over the four-

connected poin ts, and the second adds in any isolated corner points [DP81].

2.6 .2 G eo m etr ica l paradoxes in hierarchical representa­

tion s

The rectangu lar tessellation can tessellate itself in a regular fashion, th a t

is a square may be sim ply tiled w ith squares. An equilateral triangle can be tiled

with equilateral triangles, b u t the centre triangle will be upside down w ith respect

to the im m ediately enclosing triangle. A hexagon cannot be tiled w ith complète

hexagons. These properties become im portan t when considering the hierarchical

representations which will be discussed below. Problem s arise w ith the hexagonal

tessellation and also to some extent the triangular tessellation when deciding

which level of a hierarchy a particu la r pixel belongs to.

27

2.7 C hoice o f tessella tion

The sem i-regular tessellations violate the need for translational invari­

ance and it is clear th a t of th e regular tessellations the hexagonal representation

is sim plest for connectivity analysis in a non-hierarchical representation. How­

ever, nearly all im age processing work is done using square or rectangular pixels.

Since the aspect ra tio of a s tandard video picture is 4:3 [IB71] and since it eases

indexing if a square array is used in memory, m any systems use pixels w ith a 4:3

aspect ra tio so as to m ake m axim um use of the available field of view. Therefore

an algorithm looking for circles in the image m ust look for ellipses in the memory

array by applying a 4 /3 correction factor to all Euclidean distances in the Y axis.

This is an unfortunate s ta te of affairs.

2.8 D istan ce inform ation

Range finder devices may be used to detect distance inform ation. It is

not necessary or desirable to extend the array representation to a th ird dimension

(which would require enorm ous am ounts of storage) because occlusion of objects

gives rise to only one distance da tum for each point in the visual plane. Hence

only one entry is required per pixel. Therefore distance inform ation is stored as a

pixel a ttr ib u te like colour or brightness, ra ther than as an extension to the spatial

digitisation scheme. If full scene representation is required (i.e. occlusion may

not be used to reduce storage requirem ents) a higher level description is normally

used.

2.9 Grey scale d ig itisation

Many early im age processing systems operated on binary images only. In

this case the incoming analogue signal is converted into a series of black-or-white

pixels by a single com parator. The threshold is varied by changing the reference

voltage to the com parator.

Most applications require the use of a grey scale w ith at least 16 levels. It

is often convenient to work on 1 byte pixels, giving 256 possible grey levels. This

corresponds to a dynam ic range of 48.2dB, which is in fact beyond the capabilities

of all but the most expensive video cam eras.

Colour inform ation is usually encoded separately for the red, green and

blue com ponents which requires a tripling of the basic system. Since three times

28

as m uch inform ation is being stored, processing tim es will be three times longer,

all else being equal. In fact ex tra inform ation is different in kind (the three

planes of colour inform ation are not the sam e as a 24-bit grey scale), and this

will inevitably make algorithm s more complex: thus processing times may be

even more extended. An alternative possibility is to store colour and lum inance

inform ation separately. A com pact code m ight be to display one of eight colours

using th ree bits, and have a five-bit brightness code.

2.10 Sim ple structures for binary processing

T here is a great deal of redundant inform ation present in an image, and

in principle it should be possible to store only those parts of the picture th a t

are stric tly relevant to the task in hand. As well as reducing storage space, this

will also allow more rap id searching and m anipulation of the image as long as

the required features have been efficiently coded. If the s tructu re is not directly

suitable then the conversion to a more appropria te form may impose unacceptable

overheads.

Inspection problem s usually require objects to be found and then anal­

ysed. Only in scene analysis or other ra th e r complex situations is the background

detail im portan t. Several redundancy reducing techniques exploit this to remove

background d a ta and areas of uniform in tensity in the foreground. Two funda­

m ental approaches may be followed: direct representation of edges from which

area inform ation may be inferred {e.g. chain code, edge descriptors for shape ap­

proxim ation), or direct representation of areas from which edge inform ation may

be constructed {e.g. in tensity threshold regions, tex ture segm entation).

2.11 D ata structures

Any assembly of d a ta forms a d a ta s truc tu re consisting of nodes which

store the d a ta item s, and pointers to o ther d a ta item s. The pointers may be

im plicit in the structu re , especially if the topology of the d a ta structu re is invariant

throughout its life, in which case a fixed m apping function is usually used to

recover d a ta ra ther than following a chain of links. The simplest exam ple is a two

dim ensional array in which the m apping is

[column X column_dimension + row]

29

1: E B 4 3 Z I

2: D H -H Z I

1 2 3

1 0 1 1

2 1 0 0
3: E B - ia a

3 0 0 0
4: (221 4 0 1 0

5: E E l 5 0 0 0

0 0

1 0

1 1

0 0

0 0

Figure 2.6: G raph representations

If a fixed allocation of nodes is used then the data struc tu re is static , bu t

if varying am ounts of storage are required during execution, then the structu re is

dynamic.

The array representation can be considered as a s ta tic d a ta structure ,

the form and storage requirem ents of which are fixed, in which only the da ta held

in the nodes varies. As a result, no pointer inform ation need be held within the

s tructu re , and a simple m apping is used to recover each pixel. On the o ther hand,

the chain code has a dynam ic topology and invariant ‘d a ta ’ — since the object is

fully described by the pointers, no da ta field is required.

The m ost general d a ta structure is the graph in which no restrictions are

placed on the layout of the links. A graph is consists of a finite, nonem pty set of

vertices and a set of edges. If the edges are ordered pairs then the graph is said

to be directed. If the edges are unordered pairs (t.e. sets) then the graph is said

to be undirected. A graph may be represented in the form of a series of linked

lists or an adjacency m atrix: an n x n b it table indicating which of the n possible

directed edges exist. These representations are shown in Figure 2.6.

A nondirected graph can be represented as n (n — l) / 2 bits since the

adjacency m atrix is sym m etrical about the leading diagonal.

Since a graph is a general structure, it follows th a t any structu re can fee

represented in linked or tab u la r form. If there are n nodes in the graph and e links,

or edges, then the linked representation requires storage proportional to n + e, and

the adjacency table storage proportional to n^. All else being equal, the num ber

of edges in the s tructu re dictates which representation will be the m ost efficient.

However, execution tim e of algorithm s is also dependant on representation.

In m any structu res, a hierarchy of nodes exists, and this gives rise to

directed edges th a t point from one node to another. If there is a p a th along

30

root

mother mothermother

leaf

mothermother leaf mother

leaf leafleaf leafleaf leaf

Figure 2.7: Tree structu re

directed edges th a t links any two nodes in bo th directions the graph is said to be

cyclic. An in teresting subclass of directed d a ta structures are the trees.

2.11.1 Trees

A tree is an acyclic directed graph w ith exactly one node (called the root)

which has no edges entering it, and an a rb itra ry num ber of other nodes which have

exactly one edge entering them [AHU75]. The root has daughter nodes which are

themselves m other nodes to the nodes beneath them . At the top of the tree exist

nodes which have no siblings: these are called leaves (Figure 2.7).

Trees have been used in image processing for the hierarchical segmen­

ta tion of images. It is possible to have a tree which is built up using m aximal

blocks (blobs) in the image, with the largest uniform block as the root and the

sm aller blocks forming sibling nodes. However, such a general structu re would

only produce a more complicated representation of the image than the array. A

more specialised tree structure th a t imposes some order on the image may speed

up some processes, given an algorithm tailored to th a t representation.

2.12 B o tto m up and top down representations

M any different hierarchical representations have been used for vision

processing [TanSO]. They can be classified into two types: bo ttom up in which

regions in the image are identified, grown and linked into larger regions th a t

are again linked; and top down in which the im age is decomposed by successive

passes into m ore and more detailed representations. These correspond to local

31

root

Figure 2.8: Quadtree generation
I

processing building up a global understanding of the image, and global processing

th a t ‘homes in ’ on specific local features of in terest.

Note th a t although a particular representation may be most easily de­

scribed in term s of its top down or bottom up em phasis, it m ay be possible to

construct a top down representation using a bo ttom up algorithm . This will be

illustrated in C hap ter 4 using quadtrees.

2.13 Q uadtrees

Chain code removes redundancy from the image by simply discarding all

bu t edge inform ation. An alternative approach is to encode an im age on several

hierarchical levels containing varying levels of redundancy. A simple represen­

ta tion called the quadtree has received considerable in terest. T he quadtree is

unfortunately nam ed since ‘quadtree’ is really the generic nam e for all tree struc­

tures of order 4 (th a t is all m other nodes have 4 daughters), and these occur in

m any areas ap a rt from image decomposition.

The quad tree o f a 2 " x 2” binary image may be constructed as follows.

1. If the entire im age is black then the root is a black leaf, and therefore this

is the only node in the tree.

2. If not, then create a m other node at the root, ascend one level in the tree

and subdivide th e image into quadrants. For each q uad ran t, create a leaf if

it is uniform , otherw ise create a m other node.

3. Subdivision of quadran ts continues recursively until the entire image is

stored in the structu re .

This process is shown in Figure 2.8.

32

Note th a t a t m ost only n -f 1 levels can exist in the tree. The bo ttom level

of the tree (level 0) contains leaves th a t correspond to individual pixels. Level n

of the tree m aps to n X n pixel areas.

It would be possible to allocate adequate storage for a sta tic representa­

tion of the tree. For each level n of the tree, there will be 2^” nodes. Hence the

to ta l num ber of nodes iVp in a p level tree is:

iVp = 2̂* + 2 ̂+ 2^ -f- • .. -f 2^-^ + 2P = 4(2" - l) /3

hence for an image w ith P = 2^ pixels, the m axim al quadtree will require

4 P /3 — 1/3 nodes.

For a 128 x 128 pixel image, the largest possible tree would have 16384

leaves and 21845 nodes would be required. In this sta tic representation, a stra igh t­

forward m apping function could be used to access the nodes. Each node would

need one of three values: black leaf, white leaf and parent, which may be encoded

into 2 bits. Thus about 5.3K bytes of storage would be required, some of which

would not be used in any o ther th an the worst case.

A nother form of direct m apping th a t is useful in controlling some image

processing operations is to use m ultiple image planes to store (a) the original

im age, (b) the dep th of each pixel in the tree, and (c) the grey-value of each

pixel. A lthough requiring considerable memory space, this arrangem ent makes

available to a conventional raster scanning operation all relevant inform ation from

the quadtree at each pixel w ithout searching the tree.

The alternative is to use a full dynam ic pointer storage scheme. On a

PDP-11 or o ther 16-bit com puter, this m ight be im plem ented w ith one word to

each node. The bo ttom bit distinguishes between parent and leaf nodes. For a

parent node, the o ther 15 bits form the word address of the first of four consecu­

tively stored daughters. In a leaf node, the top 15 bits would contain grey scale

inform ation. A lthough the binary quadtree would only require 1 b it, generalisa­

tion to grey scale and other ‘sim plicity’ measures may make use of the ex tra bits.

In the worst case, this scheme requires more storage (21845 X 2 bytes) than the

static representation, bu t for m any images w ith large uniform areas, and therefore

fewer nodes, less storage will be required.

2.13.1 E xten sion to grey scale

The quadtree may be generalised by applying a ‘sim plicity’ criterion

o ther than simple uniform ity. In particu lar, the stric t uniform ity m easure is not

suitable for use in the grey scale case because noise and tex tu re in the image will

33

Figure 2.9: Q-image a t threshold 16

allow very few tru ly uniform areas, th a t is regions of identical brightness. This

will give rise to very m any nodes, and result in large quadtrees. If the simplicity

m easure allows a range of pixel brightnesses to be present w ithin a leaf region,

then the quadtree will become sm aller, bu t fine detail will be lost.

T he quadtree of a binary image contains all the inform ation required to

reconstruct the original im age, th a t is the im age generated by deconstruction of

the quadtree (the Q-image) is the same as the source image (the S-image). The

grey scale quadtree does not contain all the inform ation because of the smearing

out of pixel intensities, and the resulting Q-image will tend to have a blocky

appearance. Q-images w ith leaves spanning various brightness ranges are shown

in Figures 2.9 - 2.12.

2.13.2 P ro p erties and ap p lications o f quadtrees

H unter and Steiglitz [HS79a] describe various lim its on the complexity

of the quadtree for polygonal figures and algorithm s for the location of a point

w ithin a polygon and the filling of polygons in tim e linear w ith the num ber of

nodes in the tree. These algorithm s arise from cartographic work. A series of

papers by workers at the University of M aryland describe algorithm s for sm ooth­

ing [RS81]; threshold selection [WHR82]; connected com ponent labelling [Sam81];

skeletonisation [Sam83]; and edge enhancem ent [Ran81].

34

Figure 2.10: Q-image at threshold 32

Figure 2.11: Q-image at threshold 64

35

Figure 2.12: Q-image at threshold 128

2.13.3 Shift invariance

The quadtree is not a shift invariant s tructu re . As a general rule, if a

given representation is d a ta driven (like the chain code) then its overall form will

be independent of position. Only the coordinates of the leading link will need to

be updated as an object makes its way across the field of view. On the other hand

if a representation is coordinate driven, then positional inform ation is im bedded

im plicitly or explicitly in the structu re itself, and movement of objects will cause

alteration of th a t s tructu re . Of course even the basic array s truc tu re suffers

from this in th a t an array of pixels effectively describes how well an analogue

im age m atches the tessellation, and shifting of features will create quantisation

noise as those features come in and out of alignm ent w ith the tessellation [LT82].

This problem is especially acute w ith the quadtree because the tessellation is of

variable resolution, and in some cases the ‘pixels’ (leaves) are very large. This

indicates th a t m ajor corruption of the spatial relationships in the image may be

caused. This m eans th a t any subsequent region oriented processing will be dis­

rup ted . Figures 2.13 - 2.20 show a rectangle at four positions w ithin the image

plane and the corresponding Q-images. The Q-image does preserve edges because

busy regions of the image generate m inim um size leaves, i.e. the original array

representation is preserved. Thus the quadtree can be regarded as an edge ori­

ented representation , even though at first sight it appears to be area oriented. The

area inform ation encoded in the tree is only an im perfect m easure of the busy-ness

of th a t p a rt of the image w ithin the lim its set by the degree of m atching to the

quadtree leaves. This inform ation may be useful in controlling certain algorithm s

36

Figure 2.13: Rectangle 1

dynam ically.

2.14 M etrics

Any represen tation imposes its own structu re on the data . A ‘grain’ of

some sort will be superim posed on a continuum , and therefore distance measures

may be distorted . T his is the case even for the array representation: the displayed

im age is noticeably p ixellated, and the set of equidistant points around a point

only approxim ates a circle. Both of these effects may be minimised by increas­

ing the resolution of th e representation because the underlying geom etry of the

representation is closely analagous to physical reality. A part from the granular

n a tu re of the array representation , Euclidean distance measures applied to array

coordinates will m ap to Euclidean m easures of the coordinates in the original

image. However, linked d a ta structures do not necessarily provide the original

geom etrical relationships in an easily retrievable way, and o ther m etrics may be

appropriate.

A m etric is a function, d(æ,i/), th a t m aps ordered pairs of coordinates

into positive distances. For all points P, Q and R the following m ust be satisfied:

1. d(xp,yQ) > 0

2. d{xp^yq) = 0 iff æ = y

3. d(xp , yQ) = d (y p , x q)

4. d{xp,ZR) < d { x p , z q) -f d{yqjZR) { The triangle inequality }

37

Figure 2.14: Rectangle 2

Figure 2.15: Rectangle 3

38

Figure 2.16: Rectangle 4

Figure 2.17: Q-image of rectangle 1

39

Figure 2.18: Q-image of rectangle 2

Figure 2.19: Q-image of rectangle 3

40

Figure 2.20: Q-image of rectangle 4

The m ost common m etric is Euclidean distance which corresponds to the everyday

m easure of distance d£;(P ,Q) = yj{xp — x q Y -f {yp — y ç Y

This can be used w ithin a digitised im age, bu t all the x and y coordinates

m ust be integers, and so a general circle cannot be drawn. An approxim ation can

be m ade by rounding the solutions of the circle equation to integers.

Two o ther m etrics which are used in im age processing are the City Block

distance d cg (P , Q) =\ xp — xq | + | i/p — t/q | and the Chessboard distance

dc{P ,Q) = m ax(| xp - x q \ , \ y p - yq |)

The chessboard m etric has the property th a t the set of points d istan t Q

from a given point P yields a square centred at P w ith side length 2Q. Samet

[Sam79] has proposed the use of the chessboard distance for quadtree based work

and presents an algorithm for calculating it efficiently.

W ith in a s tructu red representation of an image, two types of metrics

may be distinguished: those th a t relate directly to distances in the original image,

and those th a t describe the separation of nodes in the structure. For instance.

Figure 2.21 shows a quadtree where two leaves th a t are adjacent in the Q-image

are separated by 6 levels in the tree representation. This is another kind of ‘g rain ’

im posed on the data , and may cause gross inefficiencies in the retrieval of pixels

if inappropriate structures are applied to a problem . Samet [Sam82] describes

neighbour finding techniques for images represented by quadtrees, th a t is the

conversion of intra-im age distances to in tra -struc tu re distances.

41

B
root

Adjacent pixels A and B belong to widely spaced leaves A and B

Figure 2.21: D istances w ithin a quadtree

2.15 Conclusions

Digitisation of the visual field has been described with particu lar em pha­

sis on spatial quantisation. It has been shown th a t the hexagonal tessellation has

desirable properties, bu t noted th a t for hierarchical representations the rectan ­

gular tessellation is probably preferable. Of the hierarchical representations, the

quadtree have been described along w ith some of the broader, and in some ways

problem atic, im plications of its use in im age analysis. Algorithms for quadtree

generation and their uses in real tim e im age processing will be described in C hap­

ter 4.

42

C hapter 3

A lgorithm analysis and design

“ ‘Begin at the beginning’, the King said gravely, ‘and go till you come
to the end; then s to p ’ ”

Lewis Carroll, ‘Alice’s adventures in W onderland’ (1865)

3.1 In troduction

A procedure in the widest sense (not as a syntactic construct in pro­

gram m ing languages) is

“a finite sequence of well defined steps or operations, each of which
requires only a finite am ount of memory or working storage and takes
a finite am ount of tim e to com plete” [GH77].

The definition of a true algorithm is essentially the same, bu t m ore precise in th a t

“...an algorithm m ust term inate in finite tim e for any in p u t” .

Algorithms may be classified by function, i.e. w hat they do; by strategy, i.e.

how they do it; or by goodness, th a t is how well they do it. T he goodness

measure varies according to application, but accuracy, execution tim e and memory

requirem ents for different inpu ts will be the m ain criteria.

A topic of universal interest in com puting is the ‘benchm arking’ or com­

parative testing of system s. Typically this is a ttem pted by the adoption of bench­

m ark algorithm s which are run on the com peting systems to give m easures of

execution times. For these figures to be useful suitable algorithm s m ust exercise

all parts of the system in a way which is consistent w ith actual usage.

In this chapter, benchm arking of image processing system s is considered

after a discussion of algorithm analysis and design.

43

3.2 A lgorithm analysis

In image processing it is often difficult to say w hether an algorithm is

‘correct’ — two different edge detection operators will usually give different ou tpu t

im ages, and the assessm ent of which b e tte r defines the edge may be prim arily

subjective. The rigour of im age processing algorithm analysis would be im proved

if universal measures of accuracy for fundam ental operations could be agreed.

Davies [DP81,Dav84] has presented useful results in th inning and edge detection.

Assuming th a t the algorithm under study does actually present correct

answers to the problem , th e m ost im portan t aspects of its behaviour are the

am ount of storage space required and the execution time. These may be charac­

terised for varying inputs as the space com plexity and the tim e com plexity of the

algorithm .

The first step in determ ining the space or tim e complexity of an algo­

rith m is to define an integer num ber called the size of the problem . In a tree

type problem the size m ight be the num ber of leaves or edges in the inpu t data;

w ith an adaptive filtering problem the size m ight be the num ber of samples falling

w ithin the range of values which trigger the filter. The asym ptotic complexity of

an algorithm is the lim iting behaviour as the size of the inpu t increases, and this

u ltim ately lim its the size of the problem solvable on a given system.

Both the worst case and the average complexity of an algorithm are of

in terest. It may be th a t a particu la r algorithm performs well for m ost inputs, but

alm ost grinds to a halt w ith others. It would be useful to identify dangerous inputs

and filter them out. In general the worst case complexity is easier to calculate.

An upper bound on the num ber of basic instructions, perform ed by the

algorithm for a given size of problem n , is defined as the work function, f {n) . If

f { n) grows at or below the speed of a simple (finite length) polynom ial in n then

the algorithm is said to be polynom ial. If not then the algorithm is exponential.

In m any cases this simple division is all th a t is required since most systems seem

to be capable of executing polynom ial algorithm s in a reasonable tim e, whereas

an exponential algorithm can be guaranteed to stall for all bu t the smallest of

problem s. A simple exam ple of this has already been seen in Section 1.1 where

the point to point com parison of all 16 x 16 binary pa tte rn s against a single

test p a tte rn was shown to require around 10^^ seconds on a fast processor. This

problem is exponential in the size of the im age, since the num ber of images is 2”

w here n is the num ber of points in the pa tte rn .

A notation from lim it theory is often used in algorithm analysis. A

44

10,000

100

Figure 3.1; Behaviour of functions

function f { n) is said to be order g(n) for large n if

lim - y- \ = constant 0)
n - c » ^ (n)

This is w ritten f (n) = 0 [^(n)]

If for some function h(n) and large n

n-cx) fi{n)

then / (n) = o[/i(n)]

These term s are spoken “big o” and “little o” . If / (n) is 0[g{n)] then

the two functions increase at similar rates as n —» oo. If f (n) is ^[^'(n)] then g(n)

grows much more rapidly th an / (n) .

T he ‘upper bound’ definition of the work function given will generate

the worst case behaviour. If some kind of average num ber of operations is used

instead , then the complexity of the average run will be formed.

Figure 3.1 shows the behaviour of several kinds of function for increasing

n. It will be seen th a t for small n, the constant of proportionality in the complexity

relation is im portan t; for instance an algorithm which is 0[n^] is preferable to one

which is 0[n] if the constant of proportionality is 100 for n < 100. In fact even

an algorithm 0 [2 ”] is be tte r for n < 10.

Indiscrim inant use of order relations in algorithm analysis can be mis­

leading when selecting algorithm s for actual applications because the constants of

proportionality may dom inate.

45

3.3 T hroughput requirem ents for industrial sys­

tem s

The com putational th roughpu t required for a given application will de­

pend on three things:

1. the am ount of processing required for each pixel,

2. the resolution of the inp u t im age, th a t is the num ber of pixels to be processed

in each frame,

3. the num ber of frames to be processed in each second.

In some applications the am ount of tim e available for processing each fram e is

lim ited only by the patience of the program m er. Images returned from outer space

can be subject to very long processing tim es. However the processing of w eather

satellite images to provide cloud cover and w ind speed observations m ust proceed

fairly rapidly because the d a ta will be useless for forecasting w ithin a day or so.

A lthough the w eather forecasting m ust proceed in real time, it is a different order

of tim e to industrial real tim e, where control inform ation is typically required from

second to second. A particu larly taxing situa tion occurs when 100% inspection

of a line is required.

In this case the production line m ust be completely m apped into images.

Figure 3.2 shows the simple case of a single cam era covering the entire w idth of

the belt w ith a strip s m etres deep. Typically a 50% image overlay will be required

to resolve registration problem s and avoid sp litting of objects between successive

frames. The belt is moving a t speed v, and 1.5 v / s images will be required in

unit tim e. Belt speeds of above lm s “ ̂ are unusual due to slippage of products

on the conveyor when traversing bends a t such speeds, and a figure of 0.5ms“ ̂

is far more typical [Gre84]. For the study described in C hapter 9, each image

subtended 0.12m on the belt which was moving at ju s t over 0.4ms~^. In this case

around 3.3 images a second would need to be processed for 100% coverage.

The am ount of processing per fram e is of course totally d ictated by the

algorithm in use. Even the sim plest operation such as a global threshold for a 128

X 128 image will require 16384 pixel-read, com pare, pixel-write operations and a

corresponding num ber of coordinate counter updates.

46

Figure 3.2: Conveyer belt coverage

3.4 A lgorithm design

Formalising algorithm design is extremely difficult because of the in tu ­

itive and creative powers used in the design process.

Analysis of successful techniques can at best provide pointers to useful

strategies. However, the ad hoc construction of algorithm s using in tu ition or badly

justified heuristics should be avoided.

The definition of an algorithm given earlier is ra th e r wide ranging. On

m ost com puters addition is part of the machine code instruction set and an ‘algo­

rith m ’ to perform addition would be ra ther trivial — ‘ADD a TO b ’ . This is really

no more than a restatem ent of the problem and hardly qualifies for rigorous anal­

ysis. On the o ther hand , division is a fundam ental instruction on some machines

and not others. In the absence of the relevant hardw are, division can be quite

com plicated to im plem ent, especially in floating point.

This raises the question of w hat exactly the fundam ental ‘u n it’ of an

algorithm is and how to m easure the operation ra te of real systems. One has

a strong in tuitive feeling th a t any norm al com puter can be program m ed to ‘do

any th ing’, bu t th a t some machines require more detailed instructions than others.

In fact C odel’s Incom pleteness Theorem [Cod62] show th a t there are problems

th a t cannot be proved or com puted in any given formal system including th a t of

a digital com puter. However this still leaves the problem of w hat constitutes an

elem ental com putation w ithin the class of com putations th a t are possible. This

study is the province of au tom ata theory, and an effort to derive space and tim e

complexity for an algorithm from first principles m ight involve program m ing th a t

algorithm on a Turing m achine [Tur36] or other low level au tom aton . Some higher

level models of com putation than the pure Turing m achine can be ju s t as general

47

[AHU75] bu t for practical purposes a real m achine m ust be considered. The

constants of p r o p o r t i o n a l i t y in an order relation are almost com pletely governed by

the actual im plem entation and in some cases even the form of the function itself.

A part from these, it is undoubtedly true th a t an analysis from first principles

would be lengthy and error prone.

A secure approach would be to characterise each instruc tion of the real

m achine in term s of a Turing machine, and trea t the actual m achine instructions

as m acro calls to a lib rary of Turing routines. In this case the Turing machine

is em ulating the real m achine, and a different set of macros will be required for

any o ther m achine. Thus it is clear th a t when analysing from first principles,

only the general form of the relation may be discovered, and exact details of

the com plexity of an algorithm will always be im plem entation dependant. Here

accuracy m ilitates against generality.

An alternative and popular approach is to take a real or a paper archi­

tecture and use th a t as the s tandard machine. Reduced instruc tion set machines

(which are discussed in C hap ter 6) are especially useful for this because a richly

featured arch itecture provides more opportunities for unexpected side effects and

can lead to the use of ‘short cu ts’ which fail in unexpected ways. K nuth [Knu79]

designed a paper com puter called MIX and used it to describe an encyclopediac

collection of algorithm s. A more m odern approach would to be to use one of the so

called algorithm ic languages such as Algol-68 or Pascal. However these languages

all in troduce sem antic am biguities to one degree or another because of failings in

their specification or im plem entation. Such details may well tie a program to a

given m achine because of the lack of consistency across different compilers. Some

workers [AHU75] have used a subset of Algol-60 for control structu res and simple

statem ents and described more complex actions in English. W hilst this can be

very useful for teaching, and for m apping out algorithm s at the design stage, it is

hardly a rigorous m eans of com m unicating algorithm s.

The work presented here is alm ost all im plem ented on P D P - l ls in several

high and low level languages, and as a result this provides the im plem entation

model. A lthough th is is unsatisfactory for the reasons already described, it has

the advantage of providing a real system which may act as a sem antic arbiter in

all cases, th a t is in cases of am biguity the actual operation of the system described

will resolve th a t am biguity. The PDP-11 is especially useful in th is role because

it a very widely available machine.

48

3.4.1 O perations and algorithm s

M any operations in image processing involve the straightforw ard calcu­

lation of functions of pixels, and involve little or no transfer of control. Similarly,

m any image processing program s are m ade up of sequential com binations of these

operations. For instance, an object location routine might perform a m edian filter

to remove noise from the im age, detect edges using a Sobel filter and then thresh­

old to leave an edge description of each object. Simple propagation functions can

then label each object in tu rn . A lthough this program clearly constitu tes an algo­

rithm , its simple control flow constitutes a trivial design strategy which m ight be

labelled direct computation of the result. The situation here is analagous to th a t

noted in Section 3.4 w here operations such as addition and m ultiplication form

the elem ental units of algorithm design on conventional com puters. Processes

which require only triv ia l branching (such as term ination of loops) can be called

operations, as opposed to complex algorithm s. Thus by definition an operation

uses a degenerate ‘s tra teg y ’ th a t proceeds to the result by direct com putation.

It should be no ted th a t this distinction is relative and context dependant.

For instance, although the straightforw ard im plem entation of the Sobel filter is

undoubtedly an operation , removal of redundant calculations and retention of

window points for la te r processing can significantly improve perform ance, and

generate a routine th a t is too complex to be considered as a simple operation

[Lee83,Pic84].

A window operation is defined as an operation acting over a lim ited

num ber of pixels th a t is repeatedly applied across the image in a regular fash­

ion. W indow operations are especially im portan t because of the availability of

parallel processors th a t can apply a window operation at all points in an image

simultaneously.

3.5 P roblem solving strategies

3.5.1 H ill clim bing stra teg ies

A knowledge of the form of the solution space of an algorithm allows

successive passes of an algorithm to ‘home in ’ on a required solution. In classical

p a tte rn recognition, tra in ing on a set of n features will result in clusters of training

points in an n dim ensional space. If the features have been chosen well, each

cluster will correspond to one of the train ing classes. Discrim inators for the classes

may be derived by finding the peaks and saddle points of cluster densities, and hill

49

climbing techniques are readily suited to this. True hill climbing can a t best only

detect local m axim a, and so an unsuitable choice of s tarting point may result in

spurious results. Once a local m axim um has been discovered, fu rther exploration

around th a t m axim um m ay be used to discover contours and o ther local m axim a.

These iterative processes can be very tim e consuming, but th is is not a problem

if they yield d iscrim inators th a t may be rapidly calculated when the system is

operating in testing mode.

3.5.2 B acktracking and recursion

The quadtree generation algorithm described in Section 4.5 reserves de­

cisions about w hether a node should be a leaf or a parent un til it has exam ined

at least one point in the succeeding node. If a leaf is required, it steps back to

th a t node, creates the leaf and then picks up again where it left off. This strategy

is called backtracking, and often appears in so-called ‘bo ttom u p ’ algorithm s. In

a top down algorithm , the entire problem domain is scanned, and decisions as

to further processing or classification m ade in a global fashion. These decisions

are then passed on to lower level processing th a t continues the algorithm . An

interesting class of top down algorithm s im plem ent the same processing a t each

level, w ith the sub-algorithm calling itself recursively. The definition of a quadtree

given in C hapter 2 constitu tes a recursive top down algorithm .

In a bo ttom up algorithm , elements of the problem dom ain are exam ­

ined sequentially until enough inform ation has been built up to decide on a higher

level action. Backtracking is also often used for language parsing, where the lexi­

cal analyser scans source code characters until a decision can be m ade concerning

the symbol in use. Good language design can result in significantly reduced over­

heads. Pascal has been designed to be parsable using one symbol lookahead,

which effectively requires no backtracking. In practice this m eans th a t during

the scanning of the source tex t no am biguities can be created th a t would require

parsing to be deferred.

W hen faced w ith a new problem , the natura l strategy is to subdivide it

in a top down fashion in to sub-algorithm s. This allows separation of the global as­

pects of a problem from the low level details. As such, most m odern program m ing

languages seek to enforce top down program m ing. However, this does not neces­

sarily generate efficient algorithm s. The quadtree generation algorithm s described

la ter in this chapter are good examples of the benefits of bottom -up program m ing.

50

3.6 T he benchm arking problem

As noted in Section 3.4, working from first principles will not produce the

absolute complexity for a real machine and each m achine/algorithm com bination

m ust be analysed separately. Conversely, universal benchm arks cannot be found.

However com parison of actual machines is vital for progress to be m aintained,

and so some benchm arking m ethodology m ust be arrived at even in the absence

of stric t rigour.

Any problem has boundary conditions, and the program m er rapidly be­

comes aware th a t these are the ‘danger zones’ for an algorithm . U nexpected input

may cause a ttem pted division by zero, or a norm ally well behaved work function

may show a discontinuity around certain magic num bers. Identification of bound­

ary conditions may be sufficient to generate worst case behaviour, and therefore

these are a ttractive from a benchm arking point of view. For instance, a simple

edge detector m ight have a tim e complexity of 0[n] where n is the num ber of

points in the image which are sufficiently busy to trigger the edge m arking rou­

tine. The worst case behaviour therefore occurs for a m axim ally busy picture.

This im age should have full dynam ic range discontinuities a t every point, i.e. a

black and white checkerboard pa tte rn at the spatial resolution of the fram e store.

A lthough identification of worst case behaviour is im portan t for disaster

prediction, or for th roughpu t calculations when 100% inspection m ust be guaran­

teed, the average behaviour is often of more practical interest. The problem here

is th a t average behaviour is not well defined. Some industrial inspection problems

may be tightly constrained to dark objects on a light-coloured conveyer belt, and

others may involve more complex images. So benchm arking is a doubly ill-defined

problem — not only are the im plem entation details critical and varying for any

set of machines, bu t the inpu t d a ta can be critical and will vary across runs as

well as across applications.

Some efforts have been m ade to set up standard benchm arks for scientific

and o ther mixes of com puting [Wei84a]. An alternative to s tandard benchm ark

algorithm s is to characterise the processor speed in term s of the instruction ex­

ecution frequency. Two popular m easures are ‘M IPS’ (millions of instructions

per second) and the ‘megaflops’ (millions of floating point operations per second)

ratings. Since instruction sets vary widely in power (tha t is the am ount of useful

work th a t can be perform ed in one instruction) the MIPS ra te is not a useful

m easure across processors w ith different instruction sets (M IPS is said to be an

acronym for ‘meaningless indicator of processor speed’), bu t it may be useful in

51

com paring different im plem entations of a single architecture (although even this

can be m isleading) [Bel78].

The problem here is th a t a M IPS rating describes how a processor goes

about a task ra ther than w hat it achieves. Consider two P D P - l ls , one w ith a

hardw are m ultiply instruction and one w ithout. The Pascal fragm ent

VAR i : i n t e g e r ; BEGIN i : = i * 2 3 END;

will generate very different code for the two machines:

For the machine w ith m ultiply, we have this code:

$2 : ; e n t r y p o in t fro m ru n t im e i n i t i a l i s a t i o n
MOV i , r O ;g e t v a r ia b le t o r e g i s t e r
MÜL # 2 3 , rO ;m u l t ip ly by c o n s ta n t (1 0 .6 9 — 1 2 .2 9 u s)
MOV r l , i ;p u t r e s u l t i n v a r ia b le a re a
JMP $3 ; e x i t t o R T -11 th ro u g h ru n t im e l i b r a r y

In the o ther case, we have

$2 ; e n t r y p o in t fro m ru n t im e i n i t i a l i s a t i o n
MOV i , r 5 g e t v a r ia b le t o r e g i s t e r
MOV # 2 3 , rO g e t c o n s ta n t t o r e g i s t e r
HR 3$ s k ip

1$: ADD R0,R 1 s h i f t - a n d - a d d m u l t ip ly (2 .1 6 u s)
2 $: ASL RO (2 .3 1 u s)
3 $: CLC (2 . 16u s)

ROR R5 (2 .1 6 u s)
ECS 1$ (2 .3 1 u s on b ra n c h ,

1 .7 6 u s i f no b ra n c h)
BNE 2$ (2 .3 1 u s on b ra n c h ,

1 .7 6 u s i f no b ra n c h)
MOV R l , i p u t r e s u l t in v a r ia b le a re a
JMP $3 e x i t t o R T -11 th ro u g h ru n t im e l i b r a r y

All tim ings are for PD P-11/3 4 a w ith MOS memory.

Now on a P D P ll/3 4 a , the hardw are MUL #N,RO instruction can take

between 10.69 and 12.29/xs depending on the data . A long sequence of these

instructions would therefore execute at between 0.081 and 0.093 M IPS. On the

o ther hand, the software im plem entation of MUL #N,RO uses a loop containing

instructions th a t execute very quickly (individual instruction tim ings are noted in

the listing) and these generate a com posite M IPS ra te of about 0.44 for a sequence

of em ulated multiplies.

If the processors were com pared on the basis of how long it took to

perform the multiply, then natura lly the hardw are m ultiply wins. A lthough this

is a simple exam ple, confusion can and does arise. The extrem e case occurs when

52

proponents of reduced instruction set com puters (RISC architectures) directly

com pare their M IPS rates w ith those of a VAX or o ther conventional machine.

Since RISC architectures are specifically designed to im plem ent a small num ber

of simple operations th a t execute rapidly, they natu ra lly exhibit high M IPS rates.

Using this analysis, the non-hardw are m ultiply PD P-11 would therefore be more

‘powerful’. Various works have defined standard mixes of instructions for different

applications (comm ercial, scientific, tim e shared editing etc.) in an a ttem p t to

circumvent this problem . However, it is unusual for m anufacturers to quote the

mix used when deriving their figures.

Clearly, w hat is required is a functional m easure of processor perfor­

mance. The megaflop is a more useful m easure because it s ta rts to move away

from the m achine dependency. However, since the particu lar floating point op­

eration is not defined, a spread of rates may still be present. Even for a single

operation, the execution ra te may be da ta dependant, as in the case of the integer

m ultiply noted above.

To sum m arise: benchm ark program s are unsatisfactory because of their

lack of generality and dependence on complex in teractions between d a ta and archi­

tecture. A ttem pts to reduce interactions lead to direct com parison of individual

instruction rates, bu t even at this level precise m easurem ents are not possible

because of the lack of universally available and com parable operations. The only

reliable m easure of processor speed is completely functional (i.e. how long does

it take to do a particu lar job) and this is natu ra lly non-general. The best com­

promise may well be to use a suite of benchm ark program s and to trea t results

conservatively.

3.7 Benchm ark im ages

D ata for benchm arking program s is always im portan t, bu t especially so

in image processing. As already noted, systems tend to exhibit their pathological

behaviour when faced w ith boundary conditions. T he boundary conditions for a

sorting algorithm may be fairly easy to recognise, bu t for complex algorithm s or

pieces of hardw are, the lim its of operation may be only em pirically determ inable.

In such a case it is probably best to supply an im age w ith a rich mix of image

features, and ‘home in ’ on anomalous behaviour. Four images are presented here

for use in benchm arking:

1. Abingdon Cross (CROSS),

53

Figure 3.3: Abingdon Cross

2. N uts and Bolts (ANB),

3. Pen (PEN),

4. Biscuit (BISCU IT).

These images are shown in Figures 3.3 - 3.6. The Abingdon Cross is an artificially

constructed image form ed from two orthogonal bars overlaid w ith noise. It was

proposed as the basis of a skeletonisation benchm ark at the Abingdon W orkshop

on M ulti-Com puters for Im age Processing in 1982. The program to generate this

image was rew ritten from a routine proposed there which unfortunately contained

several am biguities, such as the use of uninitialised variables.

The nuts and bolts were photographed by the au thor to give a scene

with relatively few objects on an unevenly lit background w ith shadows and a

significant am ount of noise. The objects also have glints and varying surface

textures. This image has been in use as a benchm ark in this laboratory for some

years.

The pen p ic ture is interesting because it contains some w riting th a t is

only ju st readable. W hen used to benchm ark sm oothing algorithm s, any degra­

dation of the image sharpness is immediately apparen t in the readability of the

lettering.

The biscuit p ic tu re is an example of the foodproducts inspected using

the IM P system described in C hapter 9. It has some three dim ensional s tructu re

and is not well defined like the nuts and bolts.

54

Figure 3.4; N uts and Bolts

Figure 3.5: Pen

55

Figure 3.6; Biscuit

56

C hapter 4

Q uadtree algorithm s

“It is not enough to take steps which may some day lead to a goal;
each step m ust be itself a goal and a step likewise” — Goethe

4.1 In troduction

This chapter presents a selection of algorithm s for quadtree generation

and quadtree controlled im age processing.

The presentation of algorithm s is a difficult process, since the reader

requires a knowledge of overall purpose, strategy and low level details to fully

com prehend a real program . Typically, high level strategy is highly dependant

on the low level details, and so a simple ‘top dow n’ exposition is inadequate. In

fact any sequential exposition of an a lgorithm ’s strategy and tactics is likely to be

inadequate, and understand ing may only come from an iterative process of looking

a t the details, then the overall plan, back to the details and so on. In an effort to

sim ulate this process in a necessarily sequential tex t w ithout inducing boredom ,

the algorithm s in this chapter are in troduced by a discussion of the problem and

overall strategy, followed by a listing of a Pascal im plem entation and a detailed

com mentary. The perform ance of the algorithm is analysed and the strategy

discussed in the wider context from which suggestions for im provem ents often

arise.

4.2 Q uadtree generation

Q uadtrees were described in C hapter 2 and are an im portan t d a ta struc­

tu re in image processing because (a) they may be rapidly calculated and (b)

they can provide global inform ation concerning the busy-ness of an image in a

relatively explicit way. Q uadtrees are also extensively used in Geographical Infor-

57

m ation Systems (GIS) to represent maps which are sparse and therefore generate

com pact trees. Four algorithm s for quadtree generation from an array represen­

ta tio n are presented here: (1) a simple recursive decom position algorithm th a t

closely m irrors the description given in C hap ter 2; (2) a bo ttom up leaf merging

algorithm ; (3) a fast bo ttom up algorithm th a t uses backtracking to save multiple

scans; and (4) a sequential algorithm th a t avoids backtracking by directly calcu­

lating the leaf struc tu re of a quadtree. Q uadtree generation is exam ined in such

detail here because of the lessons th a t m ay be draw n concerning the m apping of

algorithm s onto real architectures. '

All four of these algorithm s operate on grey scale images, though algo­

rith m 4 produces approxim ate results w ith anyth ing other than a binary image.

The definition of a suitable smoothness measure may be d ictated by practical

constraints. Ideally, each subquadrant should be scanned to generate the mean

and stan d ard deviation of the intensity histogram . Speed considerations may re­

quire the use of cruder and less rigorous m easures. The monochrome quadtree

generation algorithm s simply have to decide w hether a sub quadrant is all black

or all w hite, which is equivalent to detecting the range of pixel values across a

subquadran t. In the grey scale case, this m ay be generalised to checking the range

of pixel values against some threshold. This can give good results, bu t is noise

sensitive. A com prom ise m ight be to threshold against the 5% and 95% points in

the histogram .

One im portan t aspect of the sm oothness m easure is w hether it may be

calculated on the fly in a sequential m anner, or w hether the entire quadrant must

be scanned before a m eaningful result emerges — i.e. w hether a parallel or serial

sm oothness m easure is used. These three algorithm s all use the absolute spread

of brightness values to m easure sm oothness, and th is may be calculated on the

fly. A lgorithm 1 is easily adapted to any o ther smoothness measure, algorithms

2 and 3 depend on using a sequential m easure, and algorithm 4 only produces

stric tly accurate results for binary images.

4.2 .1 A note on term inology

The to ta l num ber of nodes in a quadtree is denoted by N . L and P are

the to ta l num bers of leaves and parents respectively. Clearly N = L -j- F. The

num ber of nodes a t a level i is n^, likewise and pi are the num ber of i-level leaves

and parents. The results in this chapter apply to a x a images where s is usually

a power of 2. The results may easily be generalised to images of any other size by

58

v o l S iz e o f q u a d ra n t A rea o f q u a d ra n t N

0 1 X 1 1 1

1 2 X 2 4 5

2 4 X 4 16 21

3 8 X 8 64 85

4 16 X 16 256 341

5 32 X 32 1024 1365

6 64 X 64 4 0 9 6 5461

7 128 X 128 1 6384 21845

Table 4.1: Q uadtree space requirem ents

adding a border of dum m y pixels to side length up to the nearest power of 2.

4.2 .2 A n alysis o f quadtree a lgorithm s

Table 4.1 sum m arises the space requirem ents for various levels in a

quadtree.

This m axim um num ber of nodes is useful for worst case estim ation

of quadtree-based algorithm perform ance. Average perform ance (which will be

linked to average size) is more difficult to derive. The actual size of a quadtree will

depend on the sm oothness threshold (for grey scale images) and the busy-ness of

the image. A useful average m easure would give the expected size of the quadtree

for a large range of images and thresholds, and also perhaps a m eans of weighting

the average for specific types of application.

In the long run , any given quad tree may arise. One way of expressing

this is to assume th a t any potential node of the tree is equally likely to produce

a leaf or a parent. This form of average has been used to analyse tree traversal

algorithm s [Sam82]. However, such an average leads to an im m ediate paradox. If

there is a probability of 0.5 th a t any node in the tree may be a leaf, then on average

half of the possible nodes will be leaves. Table 4.2 shows the area requirem ents

th a t result from such an assum ption. N aturally this situation cannot occur for

any real im age, because the to ta l area of the quadrants corresponding to leaves is

four times the area of the image.

A more m eaningful average m ay be defined using the d istribu tion of

actual pixels am ongst the levels in the tree. Assume th a t, in the long run, each

pixel has an equal chance of m apping in to a leaf at any level. T hen on average.

59

L e v e l A re a o f q u a d ra n t A verage number p re s e n t T o t a l a re a

0 1 8192 8192

1 4 2048 8192

2 16 512 8192

3 64 128 8192

4 256 32 8192

5 1024 8 8192

6 4096 2 8192

7 16384 0 .5 8192

6 5536

Table 4.2: Q uadtree leaf totals

equal areas of the im age will be occupied by leaves belonging to each level. There

are log 5 4- 1 possible levels for a square image of pixels, hence the average

area occupied by leaves belonging to level i will be a,- = s^ /(lo g s + 1). Since at

level i the quadran t area is = 2^\ the average num ber of level i leaves will be

li = s^/(2^*logj 4- 1). Values for a 128 x 128 image are shown in Table 4.3. The

num ber of paren t nodes at level i, pi, can be derived in general from the num ber

of leaves Each group of four nodes at level i link to a single node at level i 4-1,

i.e. Pi = (pi-i 4- Z*-i)/4 w ith po = 0.

This gives for n^, the num ber of nodes at level i (n,- = p ̂ 4- li):

Hence

and

j=o

log* k

k=o j=o

log* k

k=0 j=0

As can be seen from the above table Pavus = 657.5625 and Lavus =

2666.75 so = 3324.3125.

T he definition of average used above assumes no prior knowledge of

the type of application. In many cases it may be possible to characterise the

application in such a way as to provide a weighted version of the average size tha t

more fully reflects actual quadtree sizes. Section 4.8 exam ines d a ta compression

60

L e v e l Q uadrant a r e a T o t a l a r e a Average le a v e s A v e ra g e p a r e n ts

0 1 2048 2048 0

1 4 2048 512 512

2 16 2048 64 256

3 64 2048 32 80

4 256 2048 8 28

5 1024 2048 2 9

6 4096 2048 0 . 5 2 . 7 5

7 16384 2048 0 .2 5 0 .8 1 2 5

2 6 6 6 .7 5 6 5 7 .5 6 2 5

Table 4.3: Q uadtree m ean leaf totals

using quadtrees. In this case a target is given for the to ta l num ber of leaves

required (say (log a)/10 which will compress the d a ta by an order of m agnitude)

and the threshold adjusted un til a suitable tree has been generated.

W here the type of d a ta being processed is relatively uniform , it is possi­

ble to build a real probability d istribu tion for leaf and node occurrence by testing

m any images. This d istribu tion may then be used in place of the square d istribu ­

tion.

4.3 A lgorithm 1

position

top down recursive decom -

In Section refq:def the quadtree was defined in term s of the recursive

subdivision of an image. A lgorithm QUAD T O P.R E C U R SE below is a s tra igh t­

forward im plem entation of this definition.

1 PROCEDURE QUAD_TOP_RECURS(xstart, y s t a r t , s i z e : i n t e g e r) ;
2 VAR
3 m in , maxi x f i n i s h , y f i n i s h , tem p: i n t e g e r ;
4 BEGIN
5 x f i n i s h : = (x s t a r t + s i z e) ; y f i n i s h : = (y s t a r t + s i z e) ;
6 m in : = m a x in t ; max :=0 ;
7 x : = x s t a r t ; { s c a n q u a d r a n t }
8 REPEAT
9 y : = y s t a r t ;

10 REPEAT
11 I F pO m ax THEN max:=pO; I F pO<min THEN m in := pO ;

61

{s c a n q u a d r a n t }
{ t e s t }

{ f i l l q u a d r a n t }

12 y : = y + l
13 UNTIL y = y f i n i s h ;
14 x : = x + l
15 UNTIL x = x f i n i s h ;
16 I F m a x -m in < th re s h
17 THEN
18 BEGIN
19 te m p := (m ax +m in) D IV 2;
20 x : = x s t a r t ;
21 REPEAT
22 y : = y s t a r t ;
23 REPEAT
24 qO:=tem p; r O : = s i z e ;
25 y : = y + l
26 UNTIL y = y f i n i s h ;
27 x : = x + l
28 UNTIL x = x f i n i s h ;
29 END
30 ELSE
31 BEGIN
32 te m p := s iz e D IV 2;
33 QUAD_TOP_RECURS(xstart, y s t a r t , t e m p) ;
34 Q U A D _ T O P _ R E C U R S (x s ta r t+ te m p ,y s ta r t , t e m p) ;
35 QUAD_TOP_RECURS(xstart, y s t a r t + t e m p , t e m p) ;
36 QUAD_TOP_RECURS(xstart+temp,y s te i r t+ te m p ,te m p) ;
37 END { s u b d i v id e }
38 END;

{ f i l l q u a d r a n t }

{ s u b d i v id e }

4.3.1 C om m entary

The procedure takes as param eters the coordinates of the top left corner

and the size of the quadran t to be scanned. The smoothness threshold is accessed

via global integer th re s h .

Line 5: the endpoints of the quadran t (the coordinates of the bottom

right corner plus 1) are calculated from the param eters.

Line 6: max and min are used during the scan of the quadrant to hold

the current brightest and darkest pixel values. They are initialised here to worst

case values of 0 and m axint respectively.

Lines 7-15: the quadran t is scanned to find the spread of brightnesses.

Line 16: if the brightness spread is w ithin threshold, then a leaf is cre­

ated , i.e. the corresponding quadran t in q-space is filled w ith the leaf colour, and

the quadrant in r-space is filled w ith the leaf size (lines 18-29). If the spread of

values is out of range, then QUAD_TOP_RECURS is recursively called for each

of the four subquadrants (lines 31-36). At the lowest level (where nodes map

I

Actual runtbna

.Singit pbcal pradictaë

large quadrant pradktad

127 in 2S90 I t

Figure 4.1: Performance of QUAD_TOP_RECURSE

to single pixels) max will be set to the same value as min, thus guaranteeing the

creation of a leaf. This removes the need for a special condition to ‘bottom o u t’

the recursion.

4.3 .2 P erform ance

The procedure is invoked once for each node in the tree. At each node

the quadran t is scanned to check for max and min (lines 7-15). If the quadrant

is a leaf then the quadran t is passed over again, and the colour and depth values

filled in (lines 20-28). Figure 4.1 shows a graph of execution tim e for a spread

of thresholds using ANB as the source data . R un tim e is dom inated by the time

taken to scan and fill quadrants. For very small thresholds, most of the image is

tiled w ith small quadran ts, necessitating deep recursion and m ultiple scans of the

image. At the high end, the algorithm executes a single scan and fill across the

whole image.

On this system (a PD P 11/23 with the IM P /V I fram esto r^a frame store

read takes 5.5/as, and a w rite 3.9/as. The procedure call overhead is 41.3/as and

the overhead of the REPEAT— UNTIL x = x f in ish requires around 12/as.

Large quadran ts are scanned at the ra te of 20.3/as per pixel and filled at

the ra te of 13.8/as per pixel. Overheads such as REPEAT count initialisation and

fill colour calculation become significant for small quadran ts. It takes 36.8/as to

63

scan a 1 X 1 quadrant and 45.2/as to fill.

We can m odel the run tim e of the algorithm as:

2*(/jt/ + njf,((log s) + 1 — i))
1 = 0

where t f is the fill time per pixel and t, is the scan time per pixel.

The rationale for this is th a t every level i leaf will require 2‘ fills and 2*

scans. Each level i scan will be the result of {logs) + 1 — i node scans.

T he do tted line on Figure 4.1 shows the result of applying this model to

ANB using the large quadran t pixel times. Using the correct tim es for single pixel

quadran ts produces the dashed line of Figure 4.1, which is much more accurate

for small thresholds.

For a 128 x 128 im age, the m ajdm um depth of recursion is eight levels,

so only a m oderately sized stack is required. The param eters are not in fact reused

upon re tu rn from any call to the routine, and so they could be held in external

globals, reducing the m axim um required stack space to eight procedure activation

frames. This will also reduce the procedure overhead call.

4.3 .3 D iscussion

This algorithm is clearly inefficient for large quadtrees because it scans

pixels repeatedly until a leaf is found. In the worst case (a m axim um dynamic

range checkerboard a t the spatial resolution of the frame store, such as Figure 4.2)

each pixel will be read eight times. The next algorithm attem pts to reduce this

overhead by constructing the quadtree bo ttom up. For small quadtrees the above

algorithm is very efficient, and for the lim iting case o{ N = L = 1 {e.g. thresh-

old=256) should be optim al since all th a t is required is a single scan and a single

fill of the entire im age. F igure 4.1 shows th a t this minimal case requires some

0.5s to run, and this should be taken as the upper limit on the perform ance of a

Pascal based algorithm on this processor.

4.4 A lgorithm 2 — b ottom up leaf m erging

The run tim e for algorithm Q U A D -TO P-RECURS is dom inated by (a)

the need for one scan per node, and (b) the need to scan a 2 *̂ sized region at

each level i node. A lgorithm QUAD_MERGE_RECURS, below, elim inates (b) by

starting w ith the sm allest possible leaves, and exam ining groups of four to see if

they may be merged into a higher order leaf. The status values of the nodes and

64

Figure 4.2: Q-image worst case inpu t picture

their colours are p ropagated upwards until the com plete tree is formed. W hen a

true leaf is created , the quadran t in q-space is filled w ith the m ean of the brightest

and darkest poin ts, and r-space is filled w ith the size of the leaf.

1 VAR
2 th r e s h ,m a x ,m in : i n t e g e r ;
3
4 PROCEDURE f i l l (x s t a r t , y s t a r t , s i z e , c o lo u r : i n t e g e r) ;
5 VAR
6 x f i n i s h , y f i n i s h : i n t e g e r ;
7 BEGIN
8 x f i n i s h : = (x s t a r t + s i z e) ; y f i n i s h : = (y s t a r t + s i z e) ;
9 x : = x s t a r t ;

10 REPEAT
11 y : = y s t a r t ;
12 REPEAT
13 q O := c o lo u r ; r O : = s i z e ;
14 y : = y + l
15 UNTIL y = y f i n i s h ;
16 x : = x + l ;
17 UNTIL x = x f i n i s h
18 END;
19
20 FUNCTION quad_ m erg e_re curs
21 (x s t a r t , y s t a r t , s i z e : i n t e g e r ; VAR m ax ,m in : i n t e g e r) : booleeui;
22 VAR
23 n e w s iz e , te m p : i n t e g e r ;
24 maxs, m in s : A R R A Y [0 . .3] OF i n t e g e r ;
25 f i l l e d , f i l l e d 0 , f i l l e d l , f i l l e d 2 , f i l l e d 3 : b o o le a n ;
26
27 BEGIN
28 I F s i z e = l

65

29 THEN
30 BEGIN
31 x : = x s t a r t ; y : = y s t a r t ; max:=pO; m in;=pO;

q u a d _ m e rg e _ re c u rs : = f a l s e ;
32 END
33 ELSE
34 BEGIN
35 n e w s iz e : = s i z e D IV 2;
36 f i l l e d O : =
37 q u a d _ m e r g o _ r e c u r s (x s t a r t , y s t a r t , n e w s i z e , m a x s [0] , m in s [0]) ;
38 f i l l e d l : *
39 q u a d _ m e r g e _ r e c u r s (x s t a r t + n e w s iz e , y s t a r t , '

n e w s iz e ,m a x s [1] ,m in s [1]) ;
40 f i l l e d 2 : =
41 q u a d _ m e rg e _ r 0 c u r s (x s t a r t , y s t a r t + n e w s i z e ,

n e w s iz e , m axs[2] ,m in s [2]) ;
42 f i l l e d 3 : =
43 q u a d _ m e rg e _ re c u rs
44 (x s t a r t + n e w s i z e , y s t a r t + n e w s i z e , n e w s i z e , m a x s [3] , m in s [3]) ;
45 f i l l e d : = f i l l e d O OR f i l l e d l OR f i l l e d 2 OR f i l l e d 3 ;
46 I F f i l l e d
47 THEN
48 BEGIN
49 I F NOT f i l l e d O
50 THEN
51 f i l l (x s t a r t , y s t a r t , n e w s iz e , (maxs [0] +mins [0]) D IV 2) ;
52 I F NOT f i l l e d l
53 THEN
54 f i l l (x s t a r t + n e w s i z e , y s t a r t , n e w s iz e ,

(meLxs [1] +mins [1]) D IV 2) ;
55 I F NOT f i l l e d 2
56 THEN
57 f i l l (x s t a r t , y s te u rt+ n e w s iz e , n e w s iz e ,

(m a x s [2] + m in s [2]) D IV 2) ;
58 I F NOT f i l l e d 3
59 THEN
60 f i l l (x s t e i r t + n e w s iz e , y s t a r t + n e w s i z e , n e w s iz e .
61 (m a x s [3] + m in s [3]) D IV 2) ;
62 END
63 ELSE
64 BEGIN
65 max : =0 ; m in : = m a x in t ;
66 FOR te m p := 0 TO 3 DO
67 BEGIN
68 IF maxs [tem p] >max THEN max : =maxs [tem p] ;
69 I F m ins [tem p] <min THEN m in: =mins [tem p] ;
70 END;
71 IF (m a x -m in > = th re s h)
72 THEN
73 BEGIN

66

74 f i l l (x s t a r t , y s t f i ü : t , n e w s i z e , (m a x s [0] + m in s [0]) D IV 2) ;
75 f i l l (x s t a r t + n e w s i z e , y s t a r t , n e w s i z e ,

(m a x s [l] + m in s [1]) D IV 2) ;
76 f i l l (x s t a r t , y s t a r t + n e w s i z e , n e w s i z e ,

(m axs[2] + m in s [2]) D IV 2) ;
77 f i l l (x s t a r t + n e w s i z e , y s t a r t + n e w s iz e , n e w s iz e ,
78 (m axs[3] + m in s [3]) D IV 2) ;
79 f i l l e d : = t r n e ;
80 END
81 ELSE f i l l e d : = f a l s e ;
82 END;
83 q n a d _ m e r g e _ r e c n r s : = f i l l e d '
84 END;
85 END;
86
87 BEGIN
88 t h r e s h : = 2 0 ;
89 I F NOT q n a d _ m e rg e _ re c n r s (0 ,0 , 1 2 8 , m ax,m in)
90 THEN f i l l (0 , 0 , 1 2 8 , (m a x - m i n) D IV 2) ;
91 END.

4.4.1 C om m entary

In this case, an entire program has been presented rather than just the

m ain procedure, because the mechanics of the im plem entation are a little more

difficult to follow.

The algorithm is form ulated as a recursive function. Line 88 sets the

threshold to an arb itrary value. Line 89 calls the m ain function, which will recur­

sively call itself until it reaches the lowest level of the tree (t.e. level 0). As the

routines re tu rn , the brightness spreads across the quadrants propagate back, and

if level 7 is reached w ithout any of the q-image being filled in, then line 90 fills

the entire image. P rocedure F IL L (lines 4-18) is called to paint in q and r spaces

when a non-m ergeable leaf is found.

Line 20: Function QUAD_MERGE_RECURS takes as param eters the

coordinates of the top left hand corner, and the size of the quadrant to be exam ­

ined. It re tu rns via max and min the brightest and darkest points in the image. If

the quadran t has already been painted in, (th a t is the spread of brightnesses in

the quadran t is out of threshold) QUAD-MERGE _RECURS returns TRUE else FALSE.

Lines 22-25: maxs and mins are used to store the brightness values re­

tu rned from the four leaves below the current level. Likewise f i l le d O to f i l l e d 3

store the booleans returned from the function calls in lines 36-44. f i l l e d is the

inclusive-OR of f i l le d O to f i l l e d 3 .

Lines 28-32: a t the lowest level of the tree where the leaf size is 1, the

67

function im m ediately re tu rns FALSE with max and min set to the brightness of the

current pixel. This in itia tes the merging process as the pixel values propagate

back up the call tree.

Lines 35-44: a t any other level in the tree, the function recursively calls

itself for each of the four subquadrants. On re tu rn from these calls maxs, mins

and f i l le d O to f i l l e d S will hold the brightness spreads and leaf statuses for

each of the four subquadrants.

Line 45: f i l l e d is set to the inclusive-OR of f i l le d O to f i l l e d S .

f i l l e d is thus TRUE if any of the four ' subquadran ts have already been filled

in. The inform ation retu rned from the lower leaves will cause one of four things

to happen. (1) If all four subquadrants have already been filled in then the func­

tion simply returns TRUE. (2) If only some of the subquadrants have already been

filled in, then the rest of the subquadrants m ust also be filled (lines 48-62). If

none of the subquadran ts have been filled, then the smoothness values across the

quadrant m ust be calculated (lines 65-70). The whole algorithm depends upon

the use of a sm oothness measure th a t m ay be simply combined from the four

subquadrants to provide a value for the whole. (3) If the brightness spread is

out of threshold, then the subquadrants m ust be filled in (lines 74-78), otherwise

(4) the function re tu rns max, min and FALSE to continue the propagation of pixel

values up the tree.

Line 46: f i l l e d is tested to see if any of the subquadrants have already

been filled in.

Lines 48-62: the individual f i l l e d flags are tested to find any subquad­

ran ts th a t have not yet been filled in, and they are then painted over.

Lines 64-70: if none of the sub quadrants have already been filled, then

the individual max and min values are tested to find the spread of brightnesses

across the quadrant. Note th a t this process is difficult to generalise to other

sm oothness measures.

Lines 71-82: If the brightness spread is out of threshold, then the indi­

vidual subquadrants are filled in (lines 74-78) and f i l l e d is set TRUE (line 79).

O therwise the function will exit TRUE w ith max and min showing the brightness

spread across the quadrant.

4.4 .2 Perform ance

Q UAD-M ERGE-RECURS does perform far fewer pixel accesses than

QUAD_TOP_RECURS. R ather than scanning the entire quadrant at each node

’ 1
I R u m d n w A

QUAD_MERGE_RECURS

63 1911370
Figure 4.3: Performance of QUAD_MERGE_RECURS

in the tree, it looks at the entire picture once (at level 0 nodes) and then passes

the values back up through the call tree. At each level four values are ex­

am ined to decide whether a node is a leaf or a parent. This clear advantage

is significantly offset by the need to exam ine every potential node of the tree,

ra ther than every actual node of the tree as in QUAD_TOP_RECURS. For large

trees, where QUAD-TOP-RECURS has to recurse deeply and therefore scan

many pixels, QUAD-M ERGE-RECURS should execute more rapidly. However

for small trees where QUAD -TOP-RECURS will only call itself a few times

QUAD-M ERGE-RECURS will be at a severe disadvantage because it is always

called N tim es. The actual crossover point will depend on the execution time

of each call to function QUAD M ERGE RECU RS, and is likely to be heavily

dependant on the Pascal function call overhead because of the large num ber of

param eters required. Figure 4.3 shows th a t for ANB, crossover occurs at a th resh­

old of around 30. However it also shows th a t QUAD-M ERGE-RECU RS is less

‘pathological’ th an QUAD-TOP-RECURS, th a t is its perform ance is m ore uni­

form across the entire range of trees, whereas Q U A D -TO P-RECURS varies by an

order of m agnitude in execution speed, showing a very steep increase in run time

for large trees.

The run tim e of QUAD-M ERGE-RECU RSE is dom inated by the proce­

dure call overhead. This will be an advantage on fast com puters w ith slow frame

69

stores. Fram estores such as the CRS 4000 connect to PDP-11 or VAX hosts via

DMA interfaces. Single pixel access to this frame store is very slow, so an algo­

rithm th a t trades off procedure calls against pixel accesses will be faster than one

such as QUAD_TOP_RECURS th a t repeatedly scans pixels.

The m axim um dep th of recursion for an s x a image will be log a 1 as

before, i.e. eight levels for a 128 x 128 image. In fact ra th e r m ore stack space

will be required than for Q U A D -TO P RECURS because of the ex tra param eters.

W ith the Pascal compiler in use in this laboratory, stack space is required to save

in ternal registers which are in use at the time of the procedure call (including the

re tu rn address of the rou tine), plus a one word pointer to the param eter area on

the stack, plus the space required for the actual param eters, which includes the

re tu rn param eter for functions. For QUAD-TOP-RECURS at least five words

are required per call, and for QUAD-M ERGE-RECURS eight words. Tem porary

register storage may require up to six further words in each case. In addition

stack space will be required for call to FILL.

4.4 .3 D iscussion

The perform ance of recursive algorithm s is heavily dependant on the

procedure call overhead for the im plem entation language. U nfortunately, the

present Pascal im plem entation is poor in this respect. W hen lines 29-32, 35 and

45-82 are removed (i.e. the algorithm is reduced to call tree generation and

re tu rn), QUAD-M ERGE-RECURS executes in 1.9s. If this overhead could be

reduced or even removed, the run time of the algorithm would be substantially

im proved.

It is a basic p roperty of the algorithm th a t the m ain function is called

once for every potential node in the tree, i.e. 21845 times for a 128 x 128 image.

Program m ing the algorithm in machine code could substantially reduce the time

required to call the function because this compiler makes poor assum ptions about

which registers to save at en try to the routine.

As noted in Section 4.4.1, each call results in one of four basic actions.

Type (1) calls are clearly redundant and serve simply to m ain tain the call tree

as the recursion unwinds. T he next two algorithm s attem pt to reduce the overall

redundancy of algorithm 2 by removing the need for a call tree. B oth algorithm s

scan the image in the same order as algorithm 2 , bu t they make im m ediate deci­

sions concerning leaf position w ithout passing d a ta back up to higher level pro­

cesses. In principle, these algorithm s should have run times linked to the num ber

70

of leaves in the tree ra th e r th a n the num ber of nodes (actual or po tential).

4.5 A lgorithm 3 — b ottom up backtracking

Simple image processing operators are usually applied in a raster scan

across the image. Since they are em ulating the operation of a parallel processor

(where the operator is applied sim ultaneously to all points in the im age) the scan

order is in fact irrelevant. However, serial algorithm s are often highly sensitive to

scan order. Typically sequential algorithm s m aintain running results which differ

if the operation is applied from different directions.

A sequential quadtree generation algorithm must track round the leaf

structu re w ithin the image. The raster scan does not correspond to a ‘n a tu ra l’

ordering of leaves. Close exam ination of algorithm 2 shows th a t the tree is visited

in preorder and th a t this is equivalent to visiting the pixels in z-order:

0 1 4 5 16 17

2 3 6 7 1 8 . . .

8 9 12 13

10 11 14 15

The next algorithm im plem ents the leaf merging idea of algorithm 2 by scanning

the image in z-order, and backtracking when an out of threshold point is found.

The max-min m easure of brightness is m aintained in a sequential fashion as the

scan proceeds to larger and larger leaf sizes. W hen max-min goes out of threshold,

the largest block so far com pleted is calculated, and it and its th ree siblings are

re-exam ined by a recursive call.

1 PROCEDURE q u a d _ b a c k _ r e c u r s (f i r s t , l a s t , s i z e : i n t e g e r) ;
2 VAR
3 m a x ,m in ,p o in t , t e m p e n d , t e m p s iz e : i n t e g e r ;
4 e x i t : b o o le a n ;
5
6 BEGIN
7 m ax:=0; m i n : = 2 5 5 ; p o i n t : = f i r s t ; e x i t : = f a l s e ;
8 REPEAT { s c a n }
9 X : = s c a n _ x [p o i n t] ; y : = s c a n _ y [p o i n t] ;

10 I F pO m a x THEN max:=pO; I F pO<min THEN m in:=pO ;
11 I F (m a x -m in)> = th r e s h
12 THEN
13 BEGIN
14 t e m p e n d : = l a s t - f i r s t ; p o i n t : = p o i n t - f i r s t ; e x i t : = t r u e ;
15 t e m p s iz e : = s i z e ;

71

16 REPEAT
17 tem p end: =tempend D IV 4 ;
18 t e m p s iz e : = te m p s iz e D IV 2;
19 q u a d _ b a c k _ r e c u r s (f i r s t + l + t e m p e n d , f i r s t + l + 2 * t e m p e n d ,

t e m p s i z e) ;
20 q u a d _ b a c k _ r e c u r s (f i r s t + 2 + 2 * t e r a p e n d , f i r s t + 2 + 3 * t e m p e n d ,

t e m p s i z e) ;
21 q u a d _ b a c k _ r e c u r s (f i r s t + 3 + 3 * t e m p e iv d , f i r s t + 3 + 4 * t e m p e n d ,

t e m p s i z e) ;
22 UNTIL te m p e n d < p o in t ;
23 q u a d _ b a c k _ r e c u r s (f i r s t , t e m p e n d + f i r s t , t e m p s i z e) ;
24 END
25 ELSE
26 p o i n t : = p o i n t + l ;
27 UNTIL e x i t OR (p o i n t > l a s t) ; { s c a n }
28 I F p o i n t > l a s t
29 THEN
30 BEGIN
31 p o i n t : = f i r s t ;
32 REPEAT { f i l l }
33 X : = s c a n _ x [p o i n t] ; y : = s c a n _ y [p o i n t] ;
34 qO :=(m ax+m in) D IV 2;
35 r O : = s i z e ;
36 p o in t : = p o i n t + l ;
37 UNTIL p o i n t > l a s t ; { f i l l }
38 END
39 END;

4.5.1 C om m entary

Procedure QUAD BACK RECURS takes as param eters the first and

last points of the block to be scanned, and the size of the block sidelength. The

size is only required when filling in the contour m ap of the quadtree, and could

be om itted if only the q-image is required. T he sm oothness threshold is supplied

via global integer th r e s h as above.

The scan order is defined by lookup tables scan_x and scan_y which are

both of type ARRAY [0 . . 16383] OF 0 . . 2 5 5 . They contain the x and y coordinates

for every point in the scan. Scan coordinate generation will be discussed further

in Section 4.7.1.

Line 3: p o in t is a running variable pointing to the current pixel in the

scan. It is used as an index into the lookup tables.

Line 7: max and min are initialised, p o in t is initialised to the first point

in the quadrant.

Line 9: the current pixel is addressed by loading the fram e store coordi­

72

I nMtaM
:4I
i

*
i \

i \ OUAD.TOP.RECURSE
1 \

j QUAD.BACK.RECURSE

W 1Ï7 1M 255

Figure 4.4: Perform ance of QUAD-BACK-RECURS

nate registers from the lookup table,

Line 10: max and min are updated w ith the new pixel.

Line 11: the brightness spread is tested against th r e s h .

Lines 13-24: if the spread is out of threshold, then block subdivision

starts .

Lines 16-22: each pass of the loop recursively calls the main function

for subquadrants 1, 2 and 3, and tests the size of quadrant 0 . If quadrant 0 lies

entirely w ithin the region scanned then the loop exits, else the process repeats

w ith subquadrant 0 as the new quadrant.

Line 26: if max-min is w ithin threshold , p o in t is simply increm ented.

Line 27: when p o in t reaches l a s t , a block has been successfully scanned

and may be filled in (lines 32-37).

4.5 .2 Perform ance

Figure 4.4 shows the perform ance of algorithm 3 at various thresholds

for ANB. The dotted line is the equivalent perform ance curve for algorithm 1.

As can be seen, algorithm 1 only becomes more efficient for thresholds

g reater than about 100, which results in quadtrees th a t hold too little inform ation

to be useful for image processing or representation, as shown in Figures 4.5 and

4.6.

73

Figure 4.5: Q-image of ANB, threshold=100

Figure 4.6: Q-image of PEN, threshold=100

74

For all useful cases, QUAD_BACK_RECURS is faster. T he storage re­

quirem ent depends, as ever, on the level of recursion. The w orst case storage

occurs when the second point in an image is out of threshold. In this case the

loop in lines 16-22 descends through 6 leaf sizes, generating th ree recursive calls

at each level until it reaches level 0, at which point line 23 generates a further

call. W ith the in itia ting call from the main routine this gives a to ta l of 20 stacked

calls, which is considerably g reater than algorithm s 1 and 2 .

The run tim e depends critically on the am ount of backtracking per­

formed. The worst case occurs for a sm ooth image w ith a single out-of-threshold

point at the end of the z-scan. M axim al backtracking also generates the m aximal

num ber of pixel scans.

4.5.3 D iscu ssion

A lgorithm 3 produces b e tte r perform ance in all cases th a n algorithm 2 by

dispensing w ith the large call tree and the associated movement of large am ounts

of data. If the am ount of backtracking could be reduced the perform ance might

be expected to im prove. A lgorithm 4 is able to reduce backtracking to zero, but

incurs a heavy penalty in calculation overhead.

One significant inefficiency in this algorithm lies in the z-scan generation.

Most com puters have increm ent instructions which allow one to be added to a

variable quickly. A lgorithm s 1 and 2 exploit this through the use of a raster scan

which only requires sim ple increm ent and test instructions. T he z-scan requires a

shift and merge operation which is not easily im plem ented on a PD P-11, and so a

lookup tab le is used instead . This will be exam ined in more detail in Section 4.7.1.

4.6 A lgorithm 4 — an optim al quadtree gener­

ator

A lgorithm 3 does not fully exploit the available inform ation wheii it

encounters an out-of-threshold point. There is a unique p a tte rn of leaves joining

any two points A and B in the z-scan. This pa tte rn of leaves will consist of

m axim al blocks of area where a is a power of 2 , and each block will be aligned

so th a t the coordinates of its top left corner modulo s is 0. T he area of the image

traversed between points A and B m ust be completely tiled by blocks. The proof

th a t there is a unique p a tte rn lies in the requirem ent th a t the area be tiled with

m axim al blocks. Clearly, the region could otherwise be tiled w ith single pixel

75

00101 04 06

0 2 i 0 3 i 0 5 î 0 7
te

62163

^ Section 1

I I I Section 2

Section 3

Figure 4.7: Calculation of leaves from discontinuities

sized blocks, b u t because of the maximal condition groups of four, it m ust merge

and remerge un til th e largest possible block appears.

Given th a t the unique pa tte rn exists, the values of A and B m ust contain

all the necessary inform ation to deduce the leaf s tructu re of the quadtree between

A and B. As no ted in C hapter 2 , in any d a ta s tructu re some inform ation is

explicit and cheap to retrieve, and some is im plicit, either in the topology of the

s truc tu re or in the coding of the da ta in the nodes of the structure. Clearly

an extrem ely com pact bu t im practical representation of the quadtree could be

constructed m erely by enum erating the discontinuities in the z-scan. A lgorithm

4 effectively converts th is representation to the explicit q-image/ contour m ap

representation used elsewhere in this chapter.

Consider th e case where point A is the origin. Figure 4.7 shows th a t if

a discontinuity occurs a t the point B = 59io (= I I IO I I2), then 3 level 2 leaves, 2

level 1 leaves and 3 level 0 leaves m ust be created. As will be seen this inform ation

may be ex tracted directly from the binary value of the discontinuity point num ber.

By selecting ascending pairs of bits we have I I 2, IO2 and I I 2 or (decimal 3, 2 and

3).

W hen poin t A is not the origin, the situation is more complex. In algo­

rithm 3, the m axim al block detection algorithm required the origin to be moved

to the first point of the scan region (line 14). A sim ilar procedure is used here,

except th a t the process of norm alisation is a little more subtle.

Figure 4.7 shows points A = 9 and B = 59. Here the leaf p a tte rn falls

into three sections. Points 9 to 15 inclusive m ap to 3 level 0 leaves and 1 level

76

1 leaf; points 16 to 47 inclusive m ap to 2 level 3 nodes; and points 48 to 58

inclusive m ap to 2 level 1 leaves and 3 level 0 leaves. These three regions can

be characterised as (1) moving to larger and larger block sizes, (2) traversing up

to four maximal blocks and (3) moving to sm aller block sizes. In general it is

possible for any of these th ree regions to be degenerate, and the case where A is

the origin corresponds to degenerate sections (1) and (2).

Interestingly, 59io — 48io = l l io , or IO II2, which shows th a t section 3

can be derived by moving the origin to the end of the last m aximal block in the

region. Also, I 610 —9io = 7io, or I I I 2 showing th a t a similar norm alisation can be

used to derive the leaf p a tte rn in section 1. Finally note th a t 59io — 9%o = 50io, or

IIOOIO2. The highest occupied b it pair here corresponds to level 3 leaves, and this

is the size of the m axim al block. The length of the section constitutes a signature

describing the leaf p a tte rn w ith in th a t section.

These observations can be used to derive the entire leaf p a tte rn between

points A and B by direct calculation, reducing the scanning requirem ent to a single

pass over the data, pausing a t every discontinuity to calculate the next section

of tree. This im plem entation colours leaves slightly differently to the o ther three

algorithm s except for the case of a b inary image. However, the shape of the tree

is always correct.

1 PROCEDURE q u a d_ opt ;
2 VAR
3 le a v e s ; A R R A Y [0 . .7] OF i n t e g e r ;
4 n o _ m ax_b lo cks , m a x _ s iz e , u p _ r e m a in d e r , d o w n _ re m a in d e r ,
5 m a x _ l e n g t h , f i r s t , s i z e , m a x , m i n , p o i n t , t e m p i , t e m p 2 : 0 . . 6 5 5 3 5 ;
6
7 BEGIN
8 p o i n t : = 1 ; f i r s t : = 0 ;
9 REPEAT { s c a n u n t i l o u t o f t h r e s h o l d }

10 m ax:=0; m i n : = 2 5 5 ; p o i n t : = p o i n t - l ;
11 REPEAT
12 p o i n t : = p o i n t + l ; x : = s c a n _ x [p o i n t] ; y : = s c a n _ y [p o i n t] ;
13 IF pO m a x THEN m ax:=pO; I F pO<min THEN m in:=pO ;
14 UNTIL (m a x -m in > = th r e s h) OR (p o i n t = 1 6 3 8 3) ;
15 IF p o in t= 1 6 3 8 3 THEN p o i n t := 1 6 3 8 4 ;
16 m a x _ s iz e := 1 6 3 8 4 ; te m p i : = p o i n t - f i r s t ; m a x _ le n g th := 1 2 8 ;
17 WHILE te m p i D IV m a x _ s iz e = 0 DO { f i n d s i z e o f m ax im a l b l o c k }
18 BEGIN
19 m a x _ le n g th ;= m a x _ le n g th D IV 2;
20 m a x _ s iz e := m a x _ s iz e D IV 4 ;
21 END;
22 u p ^ r e m a in d e r : = (N O T (f i r s t MOD m a x _ s i z e) + l) MOD m a x _ s iz e ;
23 d o w n _ re m a in d e r := p o in t MOD m a x _ s iz e ;
24 no_m ax_b locks: = (te m p l -u p _ r e m a in d e r -d o w n _ r e m a in d e r)

77

D IV m a x .s iz e ;
25 s i z e : = l ; { f i l l s e c t i o n l }
26 FOR te m p i ; = 0 TO 7 DO
27 BEGIN
28 t e m p 2 : = s i z e * s i z e * (u p _ r e m a in d e r AND 3) ;
29 u p ^ re m a in d e r := u p _ r e m a in d e r D IV 4 ;
30 WHILE tem p2>0 DO
31 BEGIN
32 X : = s c a n _ x [f i r s t] ; y : = s c a n _ y [f i r s t] ; r O : = s i z e ;

f i r s t : = f i r s t + l ;
33 te m p 2 := te m p 2 - l ;
34 END;
35 s i z e : = s i z e * 2 ;
36 END;
37 te m p 2 := m a x _ s iz e *n o _ m a x _ b lo c k s ; { f i l l s e c t i o n 2 }
38 WHILE temp2>0 DO
39 BEGIN
40 x : = s c a n _ x [f i r s t] ; y : = s c a n _ y [f i r s t] ; r O := m a x _ le n g th ;
41 te m p 2 : = t e m p 2 - l ; f i r s t : = f i r s t + 1 ;
42 END;
43 te m p 2 := d o w n _ re m a in d e r ; { f i l l s e c t i o n 3 }
44 FOR te m p i : = 0 TO 7 DO
45 BEGIN l e a v e s [t e m p i] : =temp2 AND 3 ; tem p 2:= te m p2 D IV 4 END;
46 s i z e : = 1 2 8 ;
47 FOR t e m p i : =7 DOWNTO 0 DO
48 BEGIN
49 t e m p 2 : = s i z e * s i z e * l e a v e s [t e m p i] ;
50 WHILE tem p2>0 DO
51 BEGIN
52 X : = s c a n _ x [f i r s t] ; y : = s c a n _ y [f i r s t] ; r O : = s i z e ;

f i r s t : = f i r s t + l ;
53 t e m p 2 : = t e m p 2 - l ;
54 END;
55 s i z e : = s i z e D IV 2;
56 END;
57 UN TIL p o in t= 1 6 3 8 4
58 END;

4.6.1 C om m entary

Procedure Q U A D .O PT assumes the use of a 128 x 128 im age, and there­

fore takes no param eters. The sm oothness threshold is passed as usual via global

integer th r e s h . Q U A D -O PT uses the same m echanism as QUAD_BACK_RECURS

to generate th e z-scan, i.e. two globally declared lookup tables scan_x and scan_y.

T he program consists of one large loop containing a sm aller loop to

actually scan the pixels (lines 11-14) and a series of loops to fill the three possible

sections of the tree between two breakpoints.

78

Lines 2-5: the array le a v e s [0 . .7] is used to hold the b it pairs derived

during decom position of the section 1 and 3 signatures. no_max_blocks, m ax .size

and m ax-leng th hold the num ber, area and sidelength respectively of the maximal

blocks found in section 2 . up_rem ainder and dow n_rem ainder hold the signatures

for sections 1 and 3 respectively, f i r s t , max, min and p o in t have the same

meanings as in algorithm 3. Note tha t all simple variables are declared as subrange

type 0 . .65535 ra th e r th a n as type in te g e r . This forces the present compiler

to generate code for 16-bit unsigned arithm etic as opposed to the 15-bit signed

arithm etic im plied by type integer on a 16-bit com puter. This is necessary to

prevent sign bit p ropagation in the shift and merge sequences.

As an aside, note th a t this use of subranges to force 16-bit arithm etic is

sem antically unsound, since type 0 . .6 5 5 3 5 is a subrange type of underlying type

in t e g e r [Coo83b], yet type integer on a 16-bit m achine ranges from -32768 to

32767. Clearly 0 . .6 5 5 3 5 can hardly be called a subrange of - 3 2 7 6 8 . .32767!

Line 8 : p o in t and f i r s t are initialised.

Line 10: max, min and p o in t are re-initialised after every fill operation.

Lines 11-14: as in algorithm 3, the im age is scanned in z-order until a

discontinuity (out-of-threshold point) is found, or the end of the image is reached.

Line 15: norm ally the scan loop (lines 11-14) exits w ith p o in t at the

first point of the next scan (i.e. the out of threshold point). A special case occurs

when the end of the im age is reached in th a t point is at the last point of the

area to be filled. Line 15 corrects p o in t under these circum stances so as to be

com patible w ith norm al processing.

Line 16: tem pi is set to p o i n t - f i r s t , which corresponds to the distance

between points A and B in the terminology of Section 4.6. This value will be

searched by b it pairs un til a maximal block is detected. m ax_size and m ax_length

are initialised to the ir largest possible value before in itia ting the search for a

m axim al block.

Lines 17-21: m a x .s ize is stepped down through the possible sizes of a

m axim al block until tem pi DIV m ax .size re tu rns non-zero. At this point the

largest possible block lying between points A and B has been detected.

Lines 22-23: th e signatures for sections 1 and 3 are derived.

Line 24: the num ber of m aximal blocks (between 0 and 4) is derived

by subtracting the length of the sections 1 and 3 (i.e. their signatures) from the

distance between points A and R, and dividing the result by m ax_size.

Lines 25-36: section 1 is filled. The outer loop (lines 26-29, 35-36)

selects a pair of bits from the signature, and the inner loop (lines 30-34) fills in

79

the corresponding blocks.

Lines 37-42: the m aximal blocks (section 2) are filled in.

Lines 43-56: section 3 is filled using the same strategy as for section 1

(lines 25-36) except th a t the bit pairs m ust first be unpacked into the le a v e s

array because the unpacking order is the reverse of the filling order.

4.6 .2 P erform ance

A lthough the order relation governing algorithm 4 is near optim al, the
I

constants of proportionality on the PDP-11 im plem entation yield actual runtim es

th a t are longer than those of algorithm 1 over m uch of the range of possible

thresholds. Figure 4.8 shows the usual run tim e curve against algorithm 1. Clearly,

the scan tim e will be proportional to the num ber of pixels in the image since they

are only scanned once. However, each discontinuity in the image will generate a

sequence of complex (and slow) shift and select operations, and a series of leaf

fill operations. The run tim e will therefore be roughly -f dt^ 4- where

is the num ber of pixels in the image, t , is the scan tim e for one pixel, d is the

num ber of discontinuities in the image, is the tim e taken to extract the leaf

p a tte rn using the shift and select loops and ty is the fill tim e. The num ber of

discontinuities in the image will be approxim ately the num ber of leaves in the

quadtree, and since the calculations are so com putationally intensive, the run

tim e will be roughly proportional to the num ber of leaves. Figure 4.8 also shows

the num ber of leaves in the tree for each threshold. Even on a PDP-11 w ithout

‘b it tw iddling’ instructions the algorithm is fastest over a useful range of values

(72-164). In VAX machine code, the algorithm would speed up significantly. (See

discussion below).

4.6 .3 A ccuracy

A grey scale quadtree is defined by the d istribu tion of nodes and the

colour of the leaves. Q UA D -OPT correctly calculates the distribution of nodes

{i.e. the shape of the tree) but cannot in general colour the leaves correctly,

because the leaf colours cannot in general be calculated on the fly w ithout back­

tracking.

A max-min smoothness measure has been selected because it may

be calculated and tested in a serial fashion, w hereas more desirable smoothness

m easures such as the true s tandard deviation of the intensity histogram require a

com plete quadran t to be scanned before a test can be m ade. The first th ree algo-

t

i '- N

Numb#̂
of IMVM

2551270

Figure 4.8: Performance of Q U A D .O FT

rithm s have defined the leaf colour as the mean of max and min. In Q U A D -O PT,

values of max and min may be accum ulated across several leaves before a discon­

tinuity is found so the individual max and min for each leaf are not available.

The max-min m easure is itself approxim ate, and is used for speed reasons

and because it is ‘n a tu ra l’ for serial algorithm s. By the same argum ent, colouring

leaves according to the (max-min)/DIV 2 in Q UA D -O PT is fast and natu ra l.

The m axim um error with respect to QUAD_TOP_RECURS occurs when a scan

section includes a pixel filled with pixel level i and quadrants containing pixels of

level i- \- t where t is the threshold. In such a case the leaves will be coloured with

(2i 4- 1)/2 which is an error o f f / 2 . The Q-images are usually indistinguishable by

eye.

4.6.4 D iscussion

A lgorithm 4 clearly illustrates a m ism atch between an algorithm s and

the PDP-11 architecture. There is in fact scope for im proving run tim e by remov­

ing some redundan t operations and im proving the loop design of Q U A D -O PT.

However, the fata l flaw of this im plem entation which leads to the disappointing

run tim es is the lack of b it field m anipulation instructions in the PD P-11. Most

of the tim e associated w ith f j is spent (a) finding the position of the highest set

b it in tem pi (lines 17-21) and (b) extracting the b it pairs from the section 1 and

81

3 signatures and ro ta ting them down to the bitO/1 positions. This has had to be

accomplished using a m ultip le ro ta te and test algorithm . To m ake m a tte rs worse,

the ro ta tion can only be specified in Pascal syntax by using the DIV operator,

and unfortunately the present compiler is not ‘sm art’ enough to replace division

by power-of-two constants w ith arithm etic shift instructions.

In contrast, the VAX instruction set includes the FIND F IR S T in struc­

tion (also known as P R IO R IT IS E) , the COMPARE FIELD instruction and the EXTRACT

FIELD instruction, Together, these would allow a very com pact m achine language

im plem entation of a lgorithm 4 on the VAX. The problem of specifying these in ­

struction sequences to a high level language compiler rem ains — it would require

ex traord inary depth of analysis in the compiler to recognise th a t lines 16-21 m ean

“find the highest set b it pa ir in te m p i” .

4.7 A lgorithm s + A rchitectures = Im plem enta­

tions

O rder analysis of algorithm s gives relations of p roportionality between

the size of a problem (in th is case the num ber of nodes in the tree) and its ex­

ecution tim e. The constants of proportionality are dependant on the particu lar

im plem entation. This thesis is prim arily concerned with real im plem entations

and how architectural features pertu rb the run tim e behaviour of an algorithm .

Given th a t the abstrac t algorithm is constant across im plem entations, com puter

architecture may be defined as all those properties of a system th a t can per­

tu rb the behaviour of an algorithm . This specifically includes such properties

as processor-mem ory bandw id th and available addressing m odes, b u t excludes

engineering details such as transm ission protocols and character coding schemes.

The m ism atch between algorithm 4 and the PDP-11 is great, whereas

w ith a VAX algorithm 4 would be the most efficient. A lgorithm 3 would be more

efficient on a system w ith a low bandw idth channel between the fram e store and

the processor. On the experim ental system , which uses a fram e store optim ised for

image processing to be described in C hapter 5, algorithm 1 perform s surprisingly

well.

4.7.1 Z-scan by b it tw ister

The calculations required to generate the z-scan im pose a large overhead

on algorithm 3 and 4. Look up tables have been used to speed access, bu t these

82

binary(N) binary(X) binary(Y) X Y

14 0 0 0 0 0 000 000 0 1110 0000 0010 0000 0011 2 3

15 000 0 0 000 0 0 0 0 1111 0000 0011 0000 0011 3 3

16 000 0 0 000 0001 0 0 0 0 0000 0100 0000 0 0 0 0 4 0

yxyx yxyx yxyx yxyx xxxx xxxx yyyy yyyy

7 766 5544 3322 1100 7654 3210 7654 3 210

Figure 4.9: Z-scan and cartesian coordinate relationship

Figure 4.10: Bit tw ister

require 32K bytes of storage, which is half of the v irtual address space of a PD P-

11. A little analysis shows th a t the X,Y coordinates of Z-scan poin t are em bedded

in the binary representation of N as shown in F igure 4.9.

Thus by separating out alternate bits from the Z-scan num ber the X,Y

coordinates may be directly obtained. The PD P-11 has to use shift and test

operations to ex trac t the coordinates.

If the com puter is equipped with a parallel port, a triv ial hardw are add­

on called a b it tw ister can be used to generate th e coordinates in two machine

instructions. T he sixteen o u tp u t bits are cross connected to the 16 in p u t bits as

shown in F igure 4.10.

The processor moves the z-scan coordinate to the o u tp u t register and

then reads the x,y coordinates back off the inpu t.

83

4.8 D ata com pression using quadtrees

T raditional m ethods of signal transm ission use fixed bandw id th sam ­

pling. Television signals require a full 5'.5MHz bandw idth channel even though

uniform areas in an im age will no t exercise the available bandw idth . The situation

here is analogous to D ijk stra’s m ultiplier [Dij76]:

“ ...during its lifetime the m ultiplier will be asked to perform only a
negligible fraction of the vast num ber of all possible m ultiplications it
could do: practically none of them! Funnily enough, we still require
th a t it should do any m ultip lication correctly when ordered to do so.
The reason underlying this fan tastic quality requirem ent is th a t we do
not know in advance, which are the negligibly few m ultiplications it
will be asked to perform .”

The television engineer has assum ed th a t he does not know which p a rts of an

im age will be busy and which will be sm ooth, so enough channel capacity has

been allocated to allow for the worst case of a maximally busy image. If however

a m easure of the busy-ness of an im age could be generated at the transm ission

end and used to dynam ically control the bandw idth of the channel, say by varying

the sam pling ra te , then the channel could be engineered to cope w ith average

conditions. A m ore concrete exam ple is the use of slow scan TV transm ission

down voice grade telephone lines. If an im age is digitised to 128 X 128 eight-

b it pixels then 16K bytes of d a ta m ust be sent, which at a typical 1200 baud

will take approxim ately 2.27 m inutes. In reality, five-bit pixels would be quite

acceptable, so transm ission tim e reduces to 1.42 m inutes (assum ing no parity).

Using a quadtree representation , each leaf could be sent as a five-bit colour code

com bined w ith a th ree-b it level code. If the leaves are sent in some predefined

order (e.^. postorder as above) then the tree could be constructed unam biguously

w ithout any explicit coordinate inform ation. The Q-image of ANB in Figure 4.11

contains only 1636 leaves, and could be tran sm itted in 13.6 seconds. The q-image

has the norm al blocky appearance which m ay be unacceptable in some images.

Low pass filtering may be applied to produce a more aesthetically pleasing image.

Figure 4.12 shows the result of applying a m edian filter to the Q-image, and for

com parison. Figure 4.13 shows a m edian filter of the original image.

84

P i g n r e 4 . 1 1 ; Q.
AN B at threshold 36

Figure 4.12; Medi
>un filtered Q-image

85

Figure 4.13: M edian filtered original

4.9 Q uadtree controlled im age processing oper­

ators

M any im age processing operators m anipulate the image according to

busy-ness. A part from the sim ple edge detection and sm oothing operators, more

subtle segm entation and region merging algorithm s may also be edge sensitive.

Since quadtrees provide explicit inform ation about the busy-ness of an image at

a point they can be used to skim over sm ooth areas in the image, restric ting full

processing to points of special in terest.

4.9.1 E dge d etec tio n

T he well known Sobel filter [DH73] is probably the most common edge

detection operato r in use. It is em pirically known to be accurate, and a paper by

Davies [Dav84] has given a theoretical base on which to design families of Sobel

like ‘circu lar’ operators. However the Sobel is expensive to im plem ent in full

since it requires a square root operation to derive the m agnitude of the intensity

gradient. Typically this square root is calculated using a lookup tab le or one

of several single iteration approxim ations to the square root. C heaper operators

such as the R obert’s Cross are also in use, bu t these do not provide accurate

estim ates of edge direction as opposed to m agnitude, and are unsuitable for some

algorithm s {e.g. the Hough Transform based circle detector described in C hapter

9).

One approach to speeding up the Sobel which has been used for indus­

86

tria l vision in this laborato ry is to apply simple in tensity skimmers before the

actual Sobel. Assume the use of a high con trast im age [i.e. the m ean foreground

in tensity should be a t least 30 grey levels away from the m ean background in­

tensity) and sharp edges where the transition from m ean foreground to mean

background intensities occurs over less th an 10 pixels. If high and low thresholds

hi and lo are applied to the image then only points w ith lo < intensity < hi will

be passed to the Sobel. For simple images such as BISC (Figure 3.6) this gives a

massive reduction in processing.

The application described in C hap ter 9 includes a circle detector th a t

relies on the use of a good edge detector. It has been found th a t of the order

of 100 points around the edge of a 30 pixel radius circle are sufficient to reliably

locate the centre of a roughly circular food product, and this criterion has been

used to provide values for hi and lo in an online inspection system .

The problem s w ith simple skim m ing are (a) it only works for high con­

tra s t images, (b) it requires two thresholds to be derived using a single setup cri­

terion and (c) intensity thresholding is vulnerable to changes in lighting level or

appearance of the p roduct. All of these factors combine to reduce the robustness

of the technique, and can contribute to the well known problem s of transferring

laborato ry techniques to the real world. These problem s stem from the mism atch

between the skimm ing process and the edge detector. Assum ptions are being

m ade about the relationship between absolute intensities and the busy-ness of the

im age. If a p art of the im age is darker then the lo threshold then it is assumed

sm ooth, and likewise for bright points.

It would be m uch better to apply a busy-ness rela ted skimmer to the

im age, such as preprocessing by a R obert’s Cross to find the points of high gradient

m agnitude, followed by application of a Sobel to find the gradient directions. This

involves the application of a single threshold (of gradient m agnitude) th a t is closely

related under all conditions with the quantity under inspection.

The lowest leaves of a quadtree correspond to busy p arts of the image,

ie the edges. F igure 4.14 shows the positions of all level 7 leaves in the Q-image

of ANB for a threshold of 25. The results of applying a Sobel to all corresponding

points in ANB is shown in Figure 4.15 , and for com parison a full Sobel of ANB

is shown in Figure 4.16. The Sobel applied to the entire im age executed in 1.19s,

w hilst w ith the help of the quadtree this decreased to 0.29s.

87

I

Figure 4.14: Level 7 leaves in nuts and bolts

Figure 4.15: Level 7 leaves in nuts and bolts with Sobel data

88

Figure 4.16: Full Sobel of nuts and bolts

4.9 .2 S m ooth in g

Sm oothing is the process of low pass filtering to reduce the effect of high

frequency noise. Sm oothing will, of course, also degrade edges, and m ust therefore

be applied w ith care.

In general, each pixel is replaced by the average intensity of its neigh­

bours, typically the m edian of a 3 x 3 region. The degree of sm oothing can be

varied by adjusting th e size of the region over which the average is calculated. If

the region size is dynam ically varied, then the degree of sm oothing can be reduced

near known edges.

It is possible to use the quadtree contour m ap (i.e. the contents of r-

space as generated by algorithm s 1-3 above) as a controller for the sm oothing

operator. However, th e quadtree is essentially an edge preserving representation,

and sm ooth regions in the image may be distorted (i.e. ‘blocky’). Because of

th is, the quadtree controller should only modify the region size near known level

7 leaves, since they are guaranteed to be ‘real’ as opposed to an artefact of the

quadtree conversion process.

Figure 4.17 shows the pen picture of Figure 3.5 after application of a 3

X 3 m edian filter. F igure 4.18 shows the position of all level 7 leaves in PEN for

a threshold of 20, and the effects of reducing the m edian’s window area to the

four-connected neighbours at level 7 pixels is shown in Figure 4.19. The writing

is more readable using the modified m edian, but background areas are still well

sm oothed.

89

Figure 4.17: M edian filter of PEN

Figure 4.18: Position of level 7 leaves in PEN

90

Figure 4.19: M edian filter of PEN

4.10 C onclusions

Four quadtree generation algorithm s have been presented. The simple

recursive algorithm QUAD_TOP-RECURS works well on the experim ental system

th a t includes a high perform ance frame store. A bo ttom up m erging algorithm

Q U A D -M ERG E-RECU RS requires relatively few fram e store accesses and would

be preferable when a low bandw idth channel is used between the processor and the

fram e store. This is especially so on processors such as the VAX or 68000 th a t have

efficient procedure call and stack frame generation instructions. Two sequential

algorithm s, QUAD_MERGE_RECURS and Q U A D -O PT use backtracking and a

serial scan of the image. QUAD_OPT, the best algorithm , is dom inated by the

calculations required to find the leaf positions after a discontinuity has been found.

T he PDP-11 lacks the necessary b it field instructions to perform the calculations

efficiently, bu t even so Q U A D -O PT performs better than Q U A D -TO P RECURS

over a useful range of conditions on a system optim ised for fram e store intensive

operations. In VAX m achine code, QUA D -O PT is expected to show significantly

b e tte r th roughput.

The algorithm s described in this chapter were all developed indepen­

dently by the au thor. B ottom -up algorithm s for quadtree generation are discussed

in [SamS4].

A pplications of quadtrees to the global control of local image processing

operations have been considered. Such use can lead to a significant speed up, bu t

the ra th e r coarse ‘globality’ inform ation they provide lim its the applicability of the

technique, and the tim e taken to generate the representation can be significant.

91

They can also be used to adap t the range of a filtering operator around edges so

as to preserve sharpness, whilst removing noise from background areas.

92

C hapter 5

Fram estore design

5.1 Introduction

Low level image processing requires high bandw idth transfers between

the processor and its fram e buffer. M odern com puters such as the VAX or 68000

w ith large v irtual address spaces may be able to store complete images using

m em ory m apped buffers, although the m ultiuser operating systems th a t support

such m achines often require non-m em ory devices to be accessed via device drivers

th a t im pose substan tial overheads. O lder m achines such as the PDP-11 rapidly

run out of v irtual address space, and therefore require some kind of memory

m anagem ent un it which may be integral w ith the frame store.

This chapter looks at the design of fram e stores specifically for image

processing, as opposed to graphics generation. Display generation, m em ory sub­

system s, digitisers and host fram e store com m unications are considered, and four

fram e stores designed by the au thor are described. It is shown th a t direct m em ­

ory m apping of the fram e buffer may not be the best solution, even for those

com puters th a t support it.

Software support for these devices is described in C hapter 6.

5.2 B asic frame stores

A video frame store is a block of m em ory into which digitised video d a ta

may be w ritten , retained and subsequently read out for display. T he m em ory is

sharable between the video circuitry and some processing circuitry, often a general

purpose com puter. For image processing purposes, the frame store param eters are:

1. the spatial resolution of the fram e store.

93

in terface

Tri-state txjffer
Video

RAM

\

/

/ ^

/

\

^ Video in

Video out

Figure 5.1; Fram e store block diagram

2. the grey scale resolution of the digitiser and the memory planes,

3. the ease and speed with which d a ta may be retrieved from the fram e store

for processing.

Frame stores attached to com puters are also used for graphics work and

the display of user interfaces to complex program s. For such system s, the

ability of the frame store to m ain tain m ultiple images, pan and zoom, and

even draw graphics prim itives autonom ously, are im portan t. Therefore, for

completeness we include:

4. the display form atting capabilities,

5. the graphics generation com m ands.

5.3 Frame store blocks

Figure 5.1 shows a block diagram of a frame store.

The RAM may be addressed via the m ultiplexer from either the host or

the video address generation circuitry. T here are two prim ary d a ta buses w ithin

the frame store — the Pixel D ata (PD) bus which connects the video RAM to

the analogue-to-digital and digital-to-analogue converters, and the C ontrol D ata

(CD) bus which connects the host to the control and sta tu s registers. They are

connected via the PD buffer. In operation, the host sets up control registers via

94
Odd
Even
Odd

Even
Odd

0
0
1

313
313

— 3

Figure 5.2: Interlaced video signal

the CD bus which define the form of the display and whether fram e grabbing is

active.

5.4 V ideo signal tim ing

The display generation hardw are is responsible for supplying the ad­

dresses to the memory array which define the way in which pixel d a ta appears on

the screen. The simplest display merely m aps a contiguous block of memory to

a rectangle on the screen. More advanced features allow zooming into the image,

scrolling and panning of the display area relative to the stored image, windowing

of the d a ta to allow both reduced apertu re viewing and the presentation of several

images on screen at once, the generation of cursors and cross hairs w ithout dis­

tu rb ing the memory contents, and the m apping of actual pixel values to various

on-screen colours.

5.5 B asic video tim ing

A part from exceptional cases where a very high on-screen resolution is

required, a s tandard video m onitor will be used as the display device. This will be

able to display a m axim um of around 800 x 600 pixels. W hen higher resolution

is required, special high scan ra te m onitors are available.

A standard TV signal generates a raster scan with a 2:1 interlace and a

4:3 aspect ra tio [IB71] (Figure 5.2).

The line time is 64/xs, m ade up of 1.55/xs front porch, 4.7/26 sync pulse,

5 .8 /2S back porch and 51.95/2S of active video. ‘Black’ is 0.3V above sync level and

95

White

0.7V

Black
0.3V

Sync
4.7 5.8 51.95

Figure 5.3: Horizontal video tim ing

‘w hite’ 0.7V above black (Figure 5.3).

Each of the two fields is made up of 312.5 lines. Broad and equalising

sync pulses are used to trigger the vertical scan and differentiate between the odd

and even fields (F igure 5.4).

5.6 V ideo tim ing generation

T he video tim ing will generate horizontal and vertical sync pulses and

blanking signals along w ith addresses for the video RAM.

If less th an 300 vertical pixels are required, then the interlacing can

be ignored, and two identical fields generated. If the signal is to contain Phase

A lteration Line (PAL) encoded colour inform ation, then a colour burst will be

required. However, even for low resolution colour displays, PAL significantly

degrades the displayed im age, so discrete red, green and blue (RGB) drives are

usually used. A video cassette recorder will require PAL for colour recording.

The sim plest display is formed by m apping video RAM locations to a

single rectangle on the screen as shown in Figure 5.5.

This m ay be achieved by using two counters, one for horizontal tim ­

ing clocked off a m aster pixel clock, and another clocked off the HSYNC signal.

Registers holding th e display and sync s ta rt and end points in pixel coordinates

are com pared w ith th e value of the counter a t each cycle and sync and blanking

signals generated accordingly (Figure 5.6).

The following pseudo code describes the X-logic function. Note th a t the

96

Ml
broad pulses

rm 111 I rrrr
display ---------------- - display

equalisation equalisation

Figure 5.4: Vertical video timing

256

512

1 2 255

65535

Figure 5.5: Video RAM addressing

97

X SCREENPIXCLK

X ENABLE

SYNC START

, X SCREEN

SYNC ENDDISPLAY START DISPLAY END

Figure 5.6: Simple display generation logic

RISING p ix c lk DO construction indicates th a t the enclosed clauses should all be

evaluated in parallel on every rising edge of the signal PIXCLK.

MODULE x _ lo g ic
(IN p ix c lk : s ig n a l ;

x .s c r e e n ,
x _ d is p la y _ s t a r t , x _ d is p la y _ e n d ,
x _ s y n c _ s ta r t , x_sy n c _ e n d : ARRAY[1 -.xw id th] OF s ig n a l ;
OUT x _ s y n c ,x _ e n a b le : s ig n a l) ;

BEGIN x _ lo g ic
RIS IN G p ix c lk DO

BEGIN
IF x _ s c r e e n = x _ d is p la y _ s ta r t THEN x _ e n a b le := t r u e ;
IF x _ s c re e n = x _ d is p la y _ e n d THEN x _ e n a b le : = f a ls e ;
IF x _ s c re e n = x _ s y n c _ s ta r t THEN x _ s y n c := tr i ie ;
IF x _ s c re e n = x _ s y n c _ e n d THEN x _ s y n c := fa ls e ;

END
END x _ lo g ic ;

The logic block takes as inpu ts the x .s c re e n counter contents, and values for

display s ta rt and end together w ith sync s ta rt and end from the corresponding

latches. It generates x_enab le which is used to enable the o u tpu ts of the video

RAM and x .sync which forms the horizontal sync pulse. A sim ilar logic block

would be used for the y axis. In a fully program m able system , the position and

size of the display window could be modified by updating the la tch contents.

98

PIXCLK

HS

VS

X_START
— 1 -

X ADDRESS
Load ROO Enable

X ZOOM

X ZOOM counter

“ DROO Enable

Y_START Y__ZOOM
1 1

. Y__ADDRESS r► Y__ZOOM counter
Load ROO Enable Load ROO ÜEnable

Figure 5.7: Advanced video tim ing

5.7 A dvanced v id eo effects

By changing th e m apping of video RAM addresses to points on the

screen, zoom, pan, scroll and m ultiple window displays become possible. In the

basic scheme above, th e o u tp u ts of the screen address counters are used directly

to address the video RA M . T he advanced scheme requires a separate x -a d d re s s

counter, a zoom counter and x _ s ta r t and x_zoom registers as shown in Figure 5.7.

The x_add ress counter is loaded by the horizontal sync pulse. The

x_zoom counter is clocked from the m aster pixel clock when x_en is active. The

Ripple Carry O ut (R C O) from x_zoom is used to clock x_address and to reload

x_zoom from its associated register.

The displayed im age can be zoomed by loading a zoom factor into

x_zoom. This effectively divides down the clock rate to the x_address counter

causing pixels to be repeated in adjacent display slots. Scrolling is achieved by

changing the x _ s ta r t address which will move the display window over the video

RAM contents.

M ultiple windows m ay be displayed by replicating the logic of Figure 5.7

and adding m ultiple screen _ x registers to the logic of Figure 5.6 to enable the

windows. A priority encoder will be required to resolve addressing conflicts be­

tween the m ultiple windows if more than one is active at any point on the screen

99

(i.e. when overlapping windows are present)

5.8 M em ory

Large am ounts of storage are required for high resolution images. G raph­

ics oriented fram e stores are available w ith on screen resolutions of 1024 x 1024

24-b it pixels, and several separate image stores. However, for real tim e image pro­

cessing work it is preferable to use the lowest resolution com patible w ith solving

a given problem , because of the increase in processing tim e associated with high

resolution images.

Most of the work described in this thesis is based around 128 x 128

eight-bit monochrom e images, and each of these requires 16K bytes of storage.

It is useful to have between four and sixteen images available simultaneously,

and so between 64K and 256K bytes of m em ory are required. The number of

sim ultaneous images required is independent of display resolution, so th a t for a

1024 X 1024 24-bit colour system, between 12M and 48M byte (IM = 1024K) are

needed.

The cheapest way of im plem enting m em ory systems is to use dynamic

RAMs (DRAM s) which are usually a generation ahead of sta tic RAMs (SRAMs),

i.e. a t any one tim e equivalently priced DRAM s and SRAMs will differ in their

capacity by a factor 4. However, 512 x 512 pixel tim ing requires memory cycle

tim es below 70ns, and no commercially available DRAMs have such a short cycle

(as opposed to access) tim e.

The straightforw ard solution to this bandw idth problem is to use static

RAMs which are available w ith cycle tim es down to 40ns and below. Another

advantage of using sta tic RAMs (apart from their cycle tim e) is the lack of critical

tim ing needed for refreshing dynamic RAMs, although in a video system continual

scanning of the m em ory array is already occurring, so refresh may not be much

of an overhead.

Large sta tic RAM arrays are uneconomic in term s of price and con­

sum ption of board real estate. Various m odifications to the basic DRAM design

have been m ade by m anufacturers to overcome the bandw idth problems for video

applications:

1. Page mode [Tex84]

Internally, dynam ic RAMs comprise square arrays of bit cells. Read-out

occurs by precharging an entire set of column lines which are then condi-

100

Row
and

latch
decoder

- i M h
=[mP

-IM- ■M--M-
HmF

T
T

- { M h
4 m}-

RowO

.... Bowl

Rows

- i M h -w - ~|m[~ -Im[- i 4mJ-
Row)

-M- -ImJ- -Im|- -[Mj- 114 m}-
illl

RowMJ 4 m1“

¥
- M -

¥
- i M h

¥
-{MJ“

¥
4mF

¥
San##
•mptfiar*

Column decoder 1

Figure 5.8: Dynamic RAM architecture

tionally discharged by a selected row of cells (see Figure 5.8). The resulting

logic levels are sensed and latched in a row of sense amplifiers. The required

bit is then steered to the output via the column decoder. This is an in­

herently two phase operation which gives rise to the fam iliar multiplexed

row /colum n addressing mechanism of commercial DRAM s. However, once

a row of bits has been latched in the sense amplifiers, fast single phase access

to o ther bits in the row is possible by latching new colum n addresses. This

can double the bandw id th of the device for the sequential type of access

required for video display. Most new DRAMs support page mode.

2. Nibble mode [Inm84b]

M any dynam ic RAM s are internally organised as four separate arrays. Four

bits are accessed on each cycle, and two bits of the column address are

decoded to provide an apparent single bit access. An access to any other

b it, including one in the same nibble, requires a com plete memory cycle.

INMOS m arket a device (IMS2600) [Inm84a] th a t has a tw o-bit presettable

counter between the bo ttom two column address inputs and the nibble-bit

decoder. This counter is loaded on the falling edge of CAS, and is clocked

on the rising edge. Norm ally this device behaves as a s tandard 64K X 1-bit

DRAM , bu t by toggling CAS whilst RAS is low the counter will be updated

and all four bits in the nibble may be sequentially accessed.

3. VRAM [Hit86]

101

The previous two techniques exploit the organisation of DRAM s and use

a m inim um of ex tra on board logic. No ex tra pins are required for their

operation. VRAM s (video RAMs) contain shift registers in parallel w ith

the sense amplifiers which can load an entire row of bits in one cycle and

then clock them out th rough a separate port under the control of a separate

serial clock asynchronously with norm al operations on the random access

port. The norm al random access p art of the device operates ju s t like a

standard 64K x 1 D RAM , and can even support page mode operations.

4. S tatic column RAM [Inm86]

Inmos have a DRAM which has a 256-bit sta tic RAM in parallel w ith the

sense amplifiers. As in the VRAM, a com plete row may be loaded into the

SRAM, after which full random access operations can occur b o th on the

DRAM and the SRAM . The disadvantage of this approach is the ex tra pins

required to support independent addressing on two arrays.

In the general case where com pletely random access at high speed to all pixel da ta

is required, none of these techniques are helpful, since the linear address scan is

no longer guaranteed. R andom access may be required by high speed processors

including a graphics processor. Of course, it is possible to lim it the cycle tim e

of the processor to allow for the full access tim e of the RAM s, bu t if this is

not satisfactory there is no recourse bu t to a true high bandw idth device. As a

compromise it may be viable to m aintain ju st one display plane of sta tic memory,

and build a bulk array of slower dynam ic RAM. A simple D irect M emory Access

(DMA) unit consisting of th ree counters would be sufficient to transfer blocks

at high speed across th is two tier system. S tatic column RAMs may be the

forerunners of a whole family of devices th a t in tegrate useful am ounts of static

RAM and large am ounts of dynam ic RAM in a transparen t way onto one chip.

5.9 D igitiser

For image processing, the digitiser is the m ost critical p a rt of the system ,

and it will often be the m ost expensive too. A 128 pixel line requires samples every

400 ns (2.5 MHz) and a 768 pixel line every 66 ns (15MHz). At these frequencies

a flash converter will be required. This comprises a set of m atched com parators

connected to a resistive divider network. The ou tpu ts of the com parators will

usually be fed to an on-board encoder so th a t a binary (ra th e r th an therm om e­

ter code) ou tpu t will be produced. These devices are expensive because of the

102

Binary output

r î > -
l t > -

Figure 5.9: Flash analogue to digital converter

difficulty of m atching the com parators and resistors to such an accuracy th a t the

inherent non-linearity is less than the resolution of the converter. The resolution

increases exponentially w ith the num ber of b its in the ou tpu t, so an 8-bit converter

will be much more expensive than the 7-bit version. Only the most expensive of

cam eras are capable of producing eight b its of inform ation, and so it is common

to find only seven or six-bit converters used. To resolve inform ation in the eighth

b it, the noise in the system must be less th a n 1/256 of the m axim um am plitude.

This corresponds to a signal to noise ra tio of b e tte r than 48.2 dB. An expensive

broadcast quality colour cam era (JV C KY-2000B) in use in this laboratory has a

S /N ra tio of 52dB. Generally available m onochrom e cameras suitable for indus­

tria l inspection would have a worse in trinsic S /N ra tio and be susceptible to noise

pickup from nearby machinery.

5.10 H ost interface

The most im portan t a ttr ib u te of a fram e store for real tim e image pro­

cessing is the d a ta transfer speed between im age m em ory and the processor. One

of three strategies may be adopted:

1. In tegrate the image memory directly into the processor’s s tandard memory

architecture so th a t images appear as arrays in main memory.

2. A ttach the fram e store as a high speed peripheral, either via special I /O

channels or via DMA links transferring im age d a ta into main memory. In

103

Main
memoryCPU MMU

Figure 5.10: M inicom puter m em ory architecture

this case the images again appear as arrays in main memory, but access

tim es will be long.

3. Use a special memory po rt th a t exploits the special behaviour of image

processing operators to increase th roughpu t.

5.11 M em ory architectures

Many older generation processors have severe lim its on their addressing

range, and this may itself slow down fram e store accesses. F igure 5.10 shows a

typical m inicom puter memory architecture.

The CPU has an address bus of lines. Thus the m axim um num ber

of addresses th a t may be accessed directly by a program is 2“*. Typically a*

ranges between 16 and 32, and the address range is known as the virtual address

space. The MMU provides two functions. For system s with a small virtual address

space, access to larger physical arrays is possible via expansion b its stored in MMU

registers. On the P D P - l l/3 4 a for instance, the 64K byte v irtual address space is

split in to eight pages, each with an associated Page Address Register (PAR). The

PAR contains a 12-bit offset specifying the physical address of the first location

in the page. Offsets m ust be aligned w ith a 32 byte boundary, th a t is the 12-bit

offset forms the high 12 bits of an 18-bit address. During execution, this 18-bit

address is added to the offset in to the page specified by the v irtual address to

form an 18-bit physical address. Extensions of th is arrangem ent allow P D P -l ls

to access up to 4M byte of m em ory using a 22-bit address.

The second function of m em ory m anagem ent is to pro tect segments of

104

code and d a ta from each other, and this is useful even on processors w ith large

v irtual address spaces. Protection bits associated w ith v irtual pages may be used

to trap illegal accesses, and m ultiple execution modes allow a hierarchy of software

layers to be built up, w ith separate m appings for each. On most machines, certain

instructions (such as HALT) are privileged, and m ay only be executed in high

priority execution modes. Typically operating system functions will be executed

in kernel or supervisor mode, and applications in user mode.

Newer architectures (VAX, 68020) allow m em ory m anagem ent traps to

be taken during instruction execution, a t which point the instruction itself aborts,

ra th e r th an running to completion before entering the trap service routine. This

allows the generation of virtual machine system s, in which a large v irtual address

space is m apped into a small physical address space (the reverse of the earlier

m emory m anagem ent scheme). Only small p a rts of a program need to be memory

resident sim ultaneously. If a reference to a non-resident page of code is m ade, a

page fault occurs which suspends instruc tion execution whilst the relevant page is

fetched from backing store. The offending instruc tion is then restarted w ithout

any d isturbance to the program ’s context.

Indiscrim inate use of v irtual m em ory may produce poor results. Many

studies have been m ade into the optim um size of page and the best algorithm to

use for reta in ing pages in memory [Knu70]. The VAX 11/780 uses a page size of

512 bytes. Efficiency of accesses to large arrays can vary significantly depending

on the order in which the array is accessed. Consider a 1024 x 1024 byte array

which is to be accessed via one 512 byte page (an extrem e exam ple). FORTRAN

stores arrays by column, ra ther than the more na tu ra l row first ordering. If the

array is to be ra s te r scanned in row order, then each pair of references will be

separated by 1024 addresses, and so every single reference will cause a page fault.

However, if the array is scanned in column order, a page fault will occur only

when a page boundary is crossed. Row order traversal thus generates 512 times

as m any page faults in the worst case. For simple processing, page faulting may

dom inate com putation thus increasing execution tim e by greater than two orders

of m agnitude. Section 5.14 describes a m em ory m anagem ent approach th a t allows

pixel windows to be accessed via absolute addressing.

5.11.1 In tegration into m ain m em ory arch itecture

If the host has a large v irtual address space, or if the v irtual to physical

relocation is efficient and the physical address space is large, it may be possible

105

to place im age m em ory on the same bus as m ain memory. A contention s tra t­

egy will be needed to resolve conflicts between video and host access. Usually

this will m ean either making the processor wait un til video blanking time before

allowing m em ory access, or allowing the processor to in te rru p t video operations,

thus causing on-screen hashing. Once the im age is available in memory, efficiency

will be very dependent on the speed of indexed addressing on the host, and the

algorithm used to calculate array offsets.

5.11 .2 A rray access techn iques

Access to an element a (i , j) of a two dim ensional array will be m apped

to an address:

base j X imax -f i

where base is the address of the first element in the array and imax is

the largest value taken by i. Calculation of the product te rm will dom inate the

access tim e, especially on processors lacking hardw are multiply.

This m ultip lication overhead may be removed by the process of vectoris­

ing, i.e. using an auxiliary vector v (j) th a t holds the s ta rt addresses of each of

the j rows. In th a t case, access to element a { i , j) m aps to

v{ j) + t

T he space overhead is one column of pointers, which is usually the same as one

column of integers.

M any high level language compilers autom atically make use of vectored

arrays for wide and high dim ensional cases. The RT-11 FO RTRA N IV compiler

in use in this labora to ry vectors arrays if the ratio of sizes between the array itself

and the access vector is less than 25%. It always a ttem p ts to vector the higher

dim ensions, so it is good program m ing practice to declare a 5 X 100 array as

a (1 0 0 ,5) not as a (5 ,1 0 0) since only 5 words of vector storage are required as

opposed to 100.

5.11 .3 In d irect and indexed addressing

B oth of the above formulae for accessing array elem ents require at least

one addition and one indirection. Nearly all processors provide an indexed ad­

dressing m ode for th is purpose. In general, a constan t is added to the contents

of a register, and th e result used as the address of the elem ent. Because of this,

106

indexed addressing is slower th an using the contents of a register as the address

directly, because the constan t m ust be fetched from memory and th e addition

perform ed before the effective address is available. On an MGS m em ory PD F

11/34a , use of indexed addressing adds around 1.5/xs (dependent on instruction)

to execution tim e over sim ple indirection. Absolute addressing is equivalent to

indexed addressing on the program counter, bu t if the address is known at com­

pilation tim e, the dereferencing of coordinates is not required. Thus accessing

of array elements, even using special addressing modes is slower th an accessing

absolute locations. '

5.11 .4 In tegration in to th e peripheral sy stem

If the available physical or v irtual memory space of the processor is less

than th a t required for im age storage, then the image memory cannot be integrated

w ith the m ain m em ory arch itecture. In this case, the frame store may be trea ted as

a form of backing store, and in tegrated into the peripheral system . Some machines

use specialised I /O processors (called ‘channels’ in IBM installations) to transfer

d a ta between peripherals and m ain memory. O ther smaller scale machines use

simple DMA controllers, which typically consist of a word counter, a m ain memory

address counter and a peripheral controller. A transfer is in itia ted by loading the

s ta rt address and the num ber of words to be transferred to the relevant registers,

and proceeds autonom ously to com pletion or an error abort, at which point the

host is in terrupted . In the case of im age memory, the peripheral controller section

can be as simple as a th ird counter addressing the memory planes.

This form of connection is popular with fram e store m anufacturers be­

cause it requires the m inim um disturbance to already existing hardw are and op­

erating systems. The only hardw are m odification required is the addition of a

small peripheral controller (ra the r th an the rebuilding of the m em ory environ­

m ent required above), and since all m odern operating systems im plem ent device

independence through a device driver protocol, the only system software required

to support the fram e store is a simple device driver to read and w rite blocks of

data .

U nfortunately, th e peripheral type connection brings no operational ad­

vantages to the user, since the d a ta , once transferred , merely appears in memory

as an array just as in the m em ory in tegrated case. The transfer itself imposes an

overhead, which m ay be significant since peripheral channels are only engineered

to cope w ith disc speed accesses and may not be able to make use of the extra

107

bandw idth available from the fram e store.

5.11.5 Specia l purpose m em ory architectures

As noted above, im age memory requirem ents often ou tstrip available

v irtual or even physical addressing capabilities, and a common solution to this is to

a ttach the fram e store as a bulk storage peripheral. Another common solution is to

use coordinate registers to specify the required pixel, and a pixel register to access

the image planes. Four 128 x 128 byte wide planes could be accom m odated on a
I

PDP-11 with the use of only three 16-bit words: an X register, a Y register and a

pixel register. This m ay be seen as a special purpose memory m anagem ent scheme,

whereby the X and Y registers hold the offset into image memory (equivalent to the

PDP-11 PAR) and the pixel register corresponding to the v irtual page. N aturally,

this arrangem ent is not very efficient, since in general a random access to any pixel

will require three m em ory accesses, although m ultiple accesses to the same pixel

will in fact be more efficient th a n in the array m apped case because as noted

above, compile tim e calculated absolute or relative addressing is quicker than

run tim e calculated indexed addressing. O verheads can be reduced by providing

m ultiple pixel registers, thus increasing the size of the window into im age space.

At this point a m em ory m anagem ent scheme th a t parallels the v irtu a l/ physical

m apping has been created, except th a t address translation occurs only for th a t

block of addresses allocated to the pixel window.

M any of the im age processing operators do not access images random ly,

bu t in a well defined scanning sequence. At each point in the sequence, a small area

of the image surrounding the central pixel is accessed. The memory m anagem ent

units on frame stores bu ilt for this project m ap the central pixel and its neighbours

to a series of absolute locations in memory. This allows window operators to use

absolute or relative addressing to access the window, rather than the complex

indexed accesses used when the im age d a ta exists in main memory. Thus, although

m emory m anagem ent is being used to circum vent the lim itations of the processor,

it actually provides significant im provem ents in efficiency. E x tra speed can also be

gained if a second set of window registers is provided tha t when accessed cause an

au tom atic increm ent of the window position to the next location. For applications

requiring a raster scan of the im age this completely removes the coordinate update

overhead.

This approach works well on a PD P-11. However, on the micro VAX, the

peripheral devices on the Q bus (including the frame store) have much longer access

108

tim es than the processor’s m ain m em ory which is connected via a synchronous

bus called the PM I (P rivate Memory Interconnect). The speedup is due to three

factors:

1. the PM I runs synchronously w ith th e processor removing de-skew overheads

associated with the Q-bus,

2. the PM I da ta bus is 32 bits wide w hereas the Qbus is only a 16-bit bus ,

3. the micro VAX Q-bus interface is optim ised for block mode DMA operations

and is in fact slower th an some PD P-11 im plem entations for program m ed

I /O .

As a result, it is alm ost always best to transfer d a ta from the frame

store to the micro VAX m ain memory for processing ra ther than perform ing the

processing ‘in the fram estore’. The exception is when m ain memory on the m i­

cro VAX is too small to hold the process, in which case paging will begin to occur.

In extrem e cases when m ultiple large processes are attem pting to run , swapping

of entire processes will occur and a significant degradation of perform ance will

result.

The memory architecture described in th is section has been used to good

effect on the IPO FS and V I fram e stores described below. V2 which was designed

for VAX hosts would not gain from such circuitry and adopts a more conventional

m em ory m apped approach. V3, which will also be used w ith PDP-11 hosts will

have a memory m anagem ent unit.

5.12 IPO FS — a com pact h igh perform ance frame

store

The Image Processing O riented Fram e Store (IPO FS) is designed to

be com patible w ith a fram e store in use in this laboratory described by Cook

[Coo83a]. Cook’s fram e store occupies a large p a rt of the address space of a PD P-

11 bu t allows access to a 256K byte im age address space using window m apping.

IPO FS is constructed using more m odern and com pact technology and offers

several new features. It is m ore closely optim ised than Cook’s fram estore for use

w ith PDP-11 systems in th a t it has a fully asynchronous interface to the host

and it requires only IK byte of address space. This is im portan t because PDP-11

system s expect all peripherals to be located in an 8K byte section a t the top of

th e address space, and accessing devices outside th a t area causes problem s with

109

the operating system. Two software systems (P P L 2 [Coo83a] and P IP E which

are described in C hapter 6) have been developed to overcome th is addressing

difficulty, bu t neither would work on a basic PD P-11 lacking memory managem ent

hardw are. T he new fram e store can operate w ith a m inim al single board PDP-11

com puter.

5.13 IPO FS specification

IPO FS is capable of holding and displaying up to eight 128 x 128 pixel

im ages a t 8-bit resolution. It can acquire real tim e video d a ta from a cam era

digitised to 7 bits. Memory m anagem ent allows a host processor direct access to

points w ithin a 5 x 5 window centred on any pixel. Access to o ther parts of the

im age requires the updating of a coordinate register.

The m ain controller and host interface reside on a single quad-w idth Q-

bus card. Up to 128K bytes of static RAM m ay be used as the pixel memory.

T he pro to type is based around 16K bit RAM chips and two boards the same size

as the controller would be required to fully populate the address space. Not all

of the controller card is occupied at present, and if a PCB were designed it would

be possible to include all 128K of RAM on board using 64K x 1 static RAMs.

In addition , a small digitiser board is housed in a die cast box for im ­

proved noise im m unity; this passes digitised video to the controller over a ribbon

cable. T he controller and memory is designed to reside inside a VT103 intelligent

term inal along w ith a PD P-11/21, 11/23 or 11/73, disk interface, host memory

and a real tim e clock card. This forms a very com pact system, and when coupled

w ith a sm all disc drive provides a portable version of the m ain research mini­

com puter. A lgorithm s developed in laboratory conditions can be tested in the

factory, and only a small am ount of equipm ent needs to be transported .

5.14 IPO FS theory o f operation

A block diagram of IPO FS is shown in Figure 5.11. Since a 6845 CRTC is

used to generate the video tim ings, some display effects are achievable including

scrolling, windowing and the display of a non-destructive cursor. A light pen

in p u t is also available to the frame store. A ROM based window m apper is used

in conjunction w ith X and Y coordinate registers to speed access to the image

data . T he size of the window is restricted to 32 elements so as to reduce the

dem ands on address space. Individual windows are available for each image, but

110

« S P

GRAB

Ptx«i daU

OACAOC

6845
CRTC

Figure 5.11: IPOFS block diagram

they are all linked to the same coordinates.

5.14.1 R eg ister set

IPO FS occupies IK bytes of the PDP-11 I /O page which is split into

two 512 byte pages, one for control registers (CONBLK) and the other filled with

window registers (REG BLK). There are 6 control registers as shown in Table 5.1.

T he CSR has four read only bits th a t re tu rn the curren t sta tus of the

synchronisation and blanking signals. V is the vertical sync, H the horizontal

sync and B the blanking signal. In addition the C bit re tu rns the logical O R of

the syncs, which supplies composite sync to the cam era. The CSR also has one

read /w rite b it (G) th a t governs the state of the video acquisition and display cir­

cuitry. If G is high then the ADC will write d a ta into memory giving a continuous

fram e grab cycle. W hen G is reset, normal display of the stored image is resumed.

T he CRTC register is used to access the 6845, which contains 18 internal

registers. R ather than m apping these directly, which would require 18 words of

address space, a separate address register is used to specify the active in ternal

register, which is then accessed via a ‘d a ta ’ pseudo register. As a result, only two

bytes are used in an eight bit system. In IPO FS, this is fu rther reduced by using

b it 8 of C R TC R to specify which pseudo register is to be opened, and accessing

Ill

Control and Status (CSR)

Cathode Ray Tube C ontroller (CRTCR)

X coordinate (X)

Y coordinate (Y)

D isplay s e le c t (DISP)

GRAB s e le c t (GRAB)

CVHB--------------------- G>
 ---- ̂ cccc cccc>

 xxxx xxxx>

-------------- yyyy yyyy>
-------------- dddd dddd>

-------------- gggg gggg>

A ll b it s are read /w rite , except CVH and B which are read on ly , and
R which i s w rite only.

Table 5.1: IPO FS register set

both address and d a ta registers through bits 0-7. To clear in ternal register 5, the

following sequence is required:

MOV # 5 ,CRTC ;b it 8=0 for address r eg is te r ; data = 5

MOV #400,CRTC ;b it 8=1 for data r e g is te r ; data * 0

By m anipulating the in ternal registers, tim ing param eters can be set up and

certain video effects can be generated such as scrolling and lim ited zoom and

windowing. Because of the constrained natu re of the 6845, program m ing is quite

difficult, and for fu rther details reference should be made to [Mot81]. Usually,

the 6845 will be initialised a t powerup using the supplied utility IP IN IT , and not

subsequently altered.

The X and Y registers together specify the centre point of the window.

These registers are eight b its wide, w ith only the lower seven bits significant.

DISP specifies th e num ber of the image to be displayed. It is an eight b it

register with the lower th ree bits significant. If the G bit in the CSR is set, video

acquisition is in progress, and the display will show the ou tpu ts of the digitiser.

GRAB is an eight-b it register — one bit for each of the eight available

images. W hen the corresponding bit is set, th a t plane is enabled for fram e grab­

bing, and will have video d a ta w ritten in to it when the G b it in the CSR is set.

In this way, m ultiple copies of an image may be acquired simultaneously. This is

useful for serial algorithm s th a t destroy the original image during processing bu t

need to refer to the original in la ter stages.

112

The other 512 byte page (REG BLK) contains 8 sets of 32 window regis­

ters, one set per im age plane. These are allocated in a spiral fashion:

27 31 26

16 15 14 13 12

17 4 3 2 11
18 5 0 1 10 30

19 6 7 8 9

20 21 22 23 24

28 29 25

This provides a 5 X 5 window w ith some useful ex tra points. T he num ­

bering is unfortunate since the spiral is not positively increasing (the origin is in

the top left of an im age so as to conform to the conventional video ras te r scan) —

this is to retain com patability w ith Cook’s fram e store.

5.15 Internal operation

IPO FS has a controller board , one or two memory boards and a digitiser

board interconnected by ribbon cables.

5.15.1 C ontroller board

The controller has three m ain in ternal sections: the Q -bus interface, the

video tim ing logic, and the registers and m ultiplexers. A diagram is shown in

F igure 5.12.

Host access occurs via the Q-bus, which is an asynchronous m ultiplexed

bus. A ddress/da ta lines, address and read /w rite strobes, and the RPLY hand­

shake line are buffered from the Q -bus connector. Addresses are la tched on the

rising edge of the address strobe, and decoded to s ta rt host cycles. REG BLK

addresses are decoded to give individual clocks for each of the onboard registers.

A byte wide static RAM (called the shadow RAM or SHRAM) parallels all R E G ­

BLK addresses. On a w rite bo th the register and the RAM are updated . On a

read, only the SHRAM is accessed. This allows read-back of all registers.

M aster tim ing is generated from a 20MHz crystal which is divided down

to give 2.5 and 3.3MHz pixel clocks for rectangular and square pixels respectively.

In the prototype, only square pixel tim ing is used, bu t the addition of a m ultiplexor

113

Q bus

Address
decode

Q address

Shadow
RAM

PIXCLK
generator

Video out

Q data

Video in

buffer

—TZ

3-

Ü # -

ADC

DAC buffer

i
latch DISP— I I — I nDISP -J GRAB - I

VRAM
tKJS

Figure 5.12: IPO FS internal operation

under control of one of the unused CSR bits would provide software selectable

square or rectangular pixels.

Sync signals, blanking and physical address signals are provided by the

6845. At its maxim um pixel frequency of 2.5MHz, the 6845 is not able to generate

a 128 X 128 square pixel display, so the CRTC is program m ed to provide a 64

X 128 pixel display, and the least significant PX line is driven directly from the

3.3MHz clock.

Video d a ta from the digitiser or memory board is latched and passed to

a fast DAC. The latch is cleared during blanking tim e. The o u tpu t of the DAC is

mixed with sync pulses in a high ou tpu t gated-input differential amplifier, which

drives 7511 loads directly.

An eight-bit la tch is provided for each of the registers. The ou tpu ts of

the X and Y registers are combined w ith the low 5 address bits from the host

in two m apping PRO M S. These contain lookup tables for the offsets required

to generate the spiral window. During host access to the memory board {i.e.

CONBLK accesses) video addresses from the 6845 are disabled and the memory

bus is driven from the m apping PROM s.

CSR bit 0 (G) governs the acquisition/display mode. D uring display

m ode, the low three b its of DISP are decoded to select one of eight image address

lines. During acquisition, these lines are driven by the ou tpu ts of the GRAB

114

register, and w rite pulses are sent to the m em ory board. The selected images will

therefore have video d a ta w ritten into them .

5.15.2 M em ory board

T he m em ory board holds 32 2K x 8 sta tic RAMs arranged as four blocks

of 16K bytes each. A 3-8 decoder provides chip selects w ithin a block, bu t m ultiple

blocks m ay be sim ultaneously enabled for w riting.

5.15.3 D ig itiser board

This board is based around the TRW 1047, a 7-bit 20 MSPS convertor.

Incoming video d a ta is black level clam ped and dc coupled to a high bandw idth

inverting am plifier. Conversions occur on com m and from the video tim ing logic,

and are m ultiplexed onto the im age d a ta bus using tri-sta te buffers.

5.16 Program m ing differences w ith C ook’s frame

store

T here are several differences between IPO FS and Cook’s fram estore th a t

affect the po rtab ility of software:

1. square/ rectangular pixels,

2. edge registers,

3. length of coordinate registers,

4. fram e grabber sequencing,

5. no hexagonal tessellation.

The square pixels of IPO FS m ean th a t fram e store coordinates m ap directly to real

world coordinates. W ith Cook’s fram e store, a 4 /3 correction m ust be applied to

all y coordinates to com pensate for the rectangular m apping used. W hen IPOFS

is in rectangu lar mode, the m appings correspond. However, IPO FS rectangular

mode is disabled in the prototype.

Cook’s fram e store has edge registers which are used to catch window

accesses m apping to out of bounds addresses as for instance when x = y = 0 and an

a ttem p t is m ade to access window element P2. IPO FS was designed with edge

115

registers, bu t they are disabled on the p ro to type so th a t out of bounds accesses

w rap round.

T he coordinate registers on Cook’s fram e store are seven bits long, i.e.

the Pascal fragm ent x := 1 2 7 ; x : = x + l ; w r i t e l n (x) outpu ts zero. This is dan­

gerous, because the host processor will assum e th a t the registers are byte-wide.

An x-scan on Cook’s fram e store is typically generated with:

x := 0 ; REPEAT { f u n c t io n } ; x : = x + l UNTIL x = 0 ;

An optim ising compiler will generate the following m achine code:

c l r X

lo o p :

; fu n c t io n

in c X

bne loop

W hen X is 127 the in c instruction will yield 128 in the processor’s internal

ALU. W hen this resu lt is w ritten back to the fram e store, the top b it will be

discarded leaving a zero. The next increm ent instruction will therefore yield

a one. As a result the ALU result will never be zero, so the loop will never

te rm inate . The coordinate registers on IP O F S are eight bits long and behave

exactly as norm al m em ory locations.

Cook’s fram e store contains in ternal logic for sequencing the frame grab.

IP O F S requires the host to m onitor the vertical synchronisation bit and enable

and disable grabbing directly.

Cook’s fram e store supports hexagonal m appings of the window registers.

This is not available on IPO FS because it was a very rarely used feature of the

earlier fram e store. It could be added sim ply by pu tting new addresses into the

lookup ROMs.

5.17 V I

The project described in C hapter 9 is based on a real tim e MIMD m ulti­

processor system called IM P (Imaging M ulti-Processor). A new fram estore called

V I was designed based on IPO FS bu t w ith a line-scan interface, a high speed

m em ory m apped p o rt, VM E bus to the IM P backplane and using newer memo­

ries th a t provide a tru e single board fram e store.

V I is in ternally similar to IPO FS w ith the following differences:

116

1. The Qbus in terface is replaced with a VM Ebus interface. It is intended

to be used w ith a separate Q-bus to VMEbus converter to be described in

C hapter 9.

2. High speed 16K x 1 sta tic RAMS are used to reduce the physical size of

the memory array.

3. Access to a 7 x 7 window is supported (5 x 5 on IPO FS).

4. V I has a novel line-scan interface.
)

5. V I has a m em ory m apped port in addition to the ROM m apped window

port.

6. V I has a W IP E reg ister which enables an image plane to be initialised to a

constant value in one fram e tim e w ithout processor intervention.

7. Sim ultaneous g rabb ing to m ultiple image planes is not available as a result

of buffer load problem s experienced with V I.

5.17.1 R eg ister se t

V I occupies 1024 bytes of VM E bus address space, arranged as eight

blocks of 64 word reg isters. M ost of the registers are eight-bit only, w ith the top

eight bits of the word unused.

IPO FS has tw o separate 512 byte pages, one for window registers and

the o ther for control registers. However, V I is accessed via the Qbus to VME

bus protocol converter described in C hapter 9 which m aps 256 byte regions of

V M Ebus space to Q bus space. To ensure th a t if only one page were available

for m apping all the V I control registers would be available, m ultiple copies of

the control registers are available as shown in Figure 5.13. Each register block

contains the elements shown in Table 5.2.

The window elem ent, x,y and display registers work as for IPO FS . CRTCR

is identical to the IP O F S C R T C R except th a t the R bit has been moved into the

CSR. The GRAB register takes a three-bit num ber to select one of eight planes

for fram e grabbing.

5.17.2 C ontrol and sta tu s register

The CSR on V I has ex tra b its to control the ex tra fram e store features:

A B 0 D E F Q H

00 00 00 00 00 00 00 00

01 01 01 01 01 01 01 01

03
■
1
1
I

03
■
I
1
I

03
■
■
1
■

03
■
I
■
■

03
■
I
I
I

03
■
I
■
■

03
■
■
I
1

03
■
I
1
I1

I
I

44

■
I
■

46

■
1
I

48

■
■
■

48

1
1
I

48

■
I
I

48

I
I
1

48

I
I
■

48

CSR CSR CSR CSR CSR CSR CSR CSR

EDGEA EDGEA EDGEA EDGEA EDGEA EDGEA EDGEA EDGEA

EDGEH EDGEH EDGEH EDGEH EDGEH EDGEH EDGEH EDGEH

117

Figure 5.13: V I register blocks

O f fs e t Name Mnemonic B its

0 A window e le m e n t 0 AO <---------------- aaaa aaaa>

2 A window e le m e n t 1 A1 <---------------- aaaa aaaa>

96 A window e le m e n t 48 A48 <---------------- aaaa aaaa>

98 C o n tr o l and s ta tu s CSR <vhcb X ----- p q a l rdgs>

100 CRTC c o n t r o l CRTCR <---------------- cccc cccc>

100 W ipe WIPE <---------------- dddd dddd>

102 Expose EXPOSE <---------------- dddd dddd>

104 GRAB GRAB <---------------- --------- - g g g >

106 d is p la y s e le c t D ISP <---------------- --------- -ddd>

108 y c o o r d in a te Y <---------------- dddd dddd>

110 X c o o r d in a te X <---------------- dddd dddd>

112 A edge r e g i s t e r EDGEA <---------------- dddd dddd>

114 B edge r e g i s t e r EDGEB <---------------- dddd dddd>

126 H edge r e g i s t e r EDGEH <---------------- dddd dddd>

Table 5.2: VI registers

118

V - r e t u r n s s ta tu s o f v e r t i c a l sync (r e a d o n ly)

h - r e t u r n s s ta tu s o f h o r iz o n t a l sync (r e a d o n ly)

c - c o m p o s ite s y n c , { \e m i . e . } l o g i c a l OR o f h and v (re a d o n ly)

b - r e t u r n s s ta tu s o f co m po site b la n k in g (r e a d o n ly)

X - low d u r in g l in e - s c a n a c t iv e d a ta t im e (re a d o n ly)

p - p a r a l l e l o u tp u t p

q - p a r a l l e l o u tp u t q

a - acces s speed i

1 - l in e - s c a n mode e n a b le

r - CRTC r e g i s t e r s e le c t

d - d i g i t i s e r / w i p e s e le c t

g - g ra b e n a b le

s - s q u a re p i x e l e n a b le

Parallel ou tpu ts p and q are buffered and routed off board via the VM E­

bus P2 connector. They are used to control lights, reject mechanisms etc.

T he a b it is used to synchronise fram e store accesses w ith the onboard

CRTC bus logic. Normally the frame store host interface runs asynchronously,

providing very fast access to the video memory. The 6845 requires slow syn­

chronous access.

5.17.3 W ip e circu itry

T he wipe register on V2 is an eight-bit la tch whose ou tpu ts are paralleled

w ith the o u tp u ts of the ADC. The CSR d bit selects between the ADC and the

wipe register. If a grab sequence is perform ed w ith the wipe register active, the

selected im age plane is initialised to the constant value in the wipe register.

5.17 .4 L ine-scan interface

Line-scan cam eras consist of a line of photoreceptor sites paralleled by an

analogue shift register. Typically two signals are required to drive the sensor: an

exposure clock X and a transport clock T. W hen the sensor receives an active X

edge, the charge accum ulated in the photoreceptors is transferred to the analogue

shift register and clocked out under control of the T clock.

T he sensitivity of typical devices is low com pared to some vidicon tubes,

which m eans th a t they cannot be run at video speeds. The line-scan interface on

V I a ttem p ts to em ulate a true video signal as closely as possible by (a) providing

119

PIXCLK

EXPOSE REGISTER

Expose counter

READ/WRITE*
to VRAM

O -----------------------

Figure 5.14: V I line-scan interface

an exposure tim er program m able in units of 64/is (i.e. one video line tim e) and

(b) clocking d a ta out of the sensor at video speeds, i.e. T is driven directly from

the pixel m aster clock. The result of this is a ‘video’ signal composed of m ultiple

blank lines followed by a single line of video speed data. There are no vertical

sync pulses. Such a signal can be directly supplied to a video fram e store for

for d ig itisation. T he host could then pack together the lines w ith valid da ta by

copying w ithin the frame buffer. However, V I allows the host to modify the y

address of the currently grabbed line in real tim e so th a t a packed line-scan image

can be acquired w ith no tim e overhead.

A lthough the 6845 is designed to generate norm al video tim ing, it was

found th a t suitable program m ing of the internal registers could disable the vertical

tim ing logic so th a t the device was providing continuous horizontal video lines w ith

no vertical blanking or syncing. The grabber logic was modified so th a t during

line-scan cycles d a ta was only w ritten to the image planes during the line after an

X pulse was generated. During other lines, the same data is repeatedly read out

and displayed. This gives a useful realtim e representation on the m onitor screen

of the cam era ou tpu ts.

In practice, the integration tim e of the sensor (i.e. the period of the X

waveform) will be locked to the speed of the conveyer belt being viewed. If a

line-scan pixel subtends p meters in the direction of belt travel, and the belt is

120

moving at q m eters per second, then the X period m ust be p /q seconds. Typical

exposure periods will be in the range 5-20ms for com mercial speed conveyers.

W hen the fram e store is in line-scan mode, the g rab /d isp lay y address

is taken from the Y register ra ther than the 6845. The host increm ents Y after

every line has been grabbed , thus providing a packed im age. T he following Pascal

procedure grabs a line-scan image:

PROCEDURE Ig r a b ; { g e t l in e - s c a n p i c t u r e }
BEGIN

c s r : = l ; ̂ { s e t l in e - s c a n g ra b mode}
y := 0 ; { s t a r t a c q u is i t io n fro m to p o f im a g e }
REPEAT

REPEAT UNTIL c s r AND x=0; { w a i t u n t i l s t a r t o f X p u ls e }
REPEAT UN TIL c s r AND x O O ; { w a i t u n t i l end o f X p u ls e }
y : = y + l { in c re m e n t l i n e c o u n te r }

UNTIL y=256
c s r : = f ; { s e t norm al f r o z e n v id e o mode}

END

The pro to type V I was used for the factory tria l described in C hapter 9

and has since been in use for several years as a replacem ent for Cook’s fram e store

which has now been decommissioned.

5.18 V2

The IM P system described in C hapter 9 is currently being developed

to support high speed m icrocoded processors. The new system is downwards

com patible w ith IM P and fram e stores may be interchanged between the two

system s. However, the philosophy of the system is different. IM P is a powerful

system containing special purpose hardw ired processors th a t are difficult to use.

This is partly a result of its origins with low powered P D P - l ls such as the single

board PD P 11/21. This encouraged the use of hardw are ‘w idgets’ to make up for

the low perform ance of the soft processors in the system.

The new system is intended mainly for use w ith VAX hosts and fast

m icrocodable processors. T he emphasis is on a ‘soft’ system com prising processors

and large am ounts of m em ory with as little special purpose hardw are as possible.

This is m ost noticable in the design of the fram estore, where the display hardw are

has been cut to a m inim um . Program m able processors on the bus will be able

to transfer an entire im age in less than one frame tim e, and so special displays

(such as multi-windowed zoom displays) can be created in near real tim e using

software.

121

V ideo out

V id eo In

D isplay
pipe

Grab
pipe

MUX

C ontrol and
R eg is ter

V ideo a d d r e s s
gen era to r

ADAC

VME
b u ffers

V ideo
RAM

Figure 5.15: V2 block diagram

As a result, V2 is an extremely simple frame store. It provides up to

eight 256 x 256 pixel im age planes with square or rectangular pixels at eight-bit

resolution. It will digitise RS170 video at eight-bit resolution. Host access is via

a 0.5M byte memory m apped port. Image data is packed two pixels to the word,

and so V2 appears to the host exactly like a 0.5M byte static RAM card. Frame

store control is via a single byte control and status register. M ultiple fram estores

are available in a single cra te and the system software (see C hapter 6) allows

dynam ic allocation of resources in a m ultiuser environment.

5.18.1 V 2 theory o f operation

V2 has three m ain com ponents as shown on Figure 5.15: the memory

subsystem , the video tim ing generator and the host interface. Unlike IPO FS , the

design is fully synchronous and makes extensive use of Field P rogram m able Logic

Sequencers (FPLS), fuse program m able devices from Signetics [CD83] th a t allow

powerful Mealy type s ta te machines [PW87] to be im plem ented on one chip.

5.18.2 M em ory su b sy stem

A lthough V2 generates 256 x 256 pixel displays, it was also intended as

a testbed for the techniques required in a 512 X 512 frame store. As a result the

memory subsystem has sufficient bandw idth to supply a new pixel to the display

logic every 66ns. This is achieved by providing a 100ns cycle tim e m em ory array

122
IDOO-07

GRAB1L0 GRABHI DISPLAYHlDISPLAYLO

C
PAOO

GRABOLO

ADCO-7 DACO-7

Figure 5.16: V2 pipeline and memory logic

-Rmn* nxctx, vwur.mr

Q.-HBUMC.-ACCESS.
-tWRITE'.-OSO‘
-vwLo*, -pixcu V v~vww, -nxcw

0.-HBLANK.-ACCESS.
-iwwrr.-osv

LOI

102

WAIT

m-n.-HOR*
RWCUC. V W L O -.V W r

Figure 5.17: Pixel clock s ta te machine

th a t is two pixels (i.e. 16 bits) wide, and m erging the d a ta stream s using grab

and display pipelines as shown in Figure 5.16.

The registers on the MD bus are u p dated every even pixel cycle, thus

providing a double length memory cycle. In V2 square pixel mode the memory is

cycled every 264ns. A full speed square pixel 512 x 512 system will cycle memory

every 132ns.

5.18.3 V ideo tim ing su b system

The m aster pixel clock is a selectable 176ns/132ns cycle clock generated

from a 22.125MHz m aster oscillator using a simple s ta te machine th a t m onitors the

s ta te of the R and G bits in the CSR along w ith the status of the host interface

and generates the pixel m aster clock and w rite pulses for the video RAM (see

Figure 5.17).

This s ta te m achine is im plem ented in one th ird of a Signetics PLS105A

FPLS, the rest of which contains the host interface controller. In s ta te HI, if the

123

XO-7 YO-7

PIXCLK

HSXCLR* YCLR*

X count Y count20 MHz Clock
ASM

Sync generato r
ASM

Figure 5.18: Video tim ing logic

host requires write access to either or bo th bytes of an image word or if grabbing

is active then write pulses are generated. In s ta te L 0 2 , if the R bit in the CSR

is active an ex tra wait sta te is entered. A wait sta te is also inserted for the last

two cycles of a square mode video line to bring the line tim e up to 64/xs. The

sta te m achine m onitors HCLR to detect the end of the line and inserts wait states

accordingly.

The m aster clock drives an eight-bit counter which supplies the X dis­

play addresses. It corresponds directly to the screen_x counter described in Sec­

tion 5.6. There is a second eight-bit counter driven by the horizontal sync pulse

which corresponds to the s c re e n .y counter. Sync pulses and clear pulses for the

address counters are supplied by another FPLS which m onitors the contents of

the address counters.

Internally, the video FPLS contains two similar s tate m achines, one for

each axis. T he display and sync s ta rt and end registers described in Section 5.6 are

effectively em bedded in the FPLS — the s tate machines wait for a preprogranuned

num ber to appear on the address counter ou tpu ts and then transition accordingly

causing a change in enable or sync outputs.

The X machine is complicated by the need for two sets of constants, one

for square and one for rectangular pixel tim ing.

5.18 .4 H ost interface

The host interface consists of a set of buffers and an FPLS th a t performs

address decoding and VM Ebus protocol handling.

On V I, host accesses are handled completely asynchronously with re­

spect to the video tim ing logic. This can cause a problem if the host attem pts

to access the im age buffers during a frame grab sequence. The fram e grab cycle

124

VA4I
-HILANKDEL

HBLANKOEL
VA^
HBLANKDEL

n.VA41
; \ r HIYWC

R.ŸA.1A

-R. VA-71

R .VAJI

VBLANK

VBACK

VCLRHVID

WIDLO

HFRONTB

KEY

HCLR2

WIDWHI

VFRONT

VSYNC

WJDWLO

HFHONTA

HBACK

HSYNC

HCLR1

Figure 5.19: Video tim ing state machines

WRITE'

DS1
DSO'

VMECSR'
A ddress
decoder

TDTACK'ASMVMEVID'IA01

ID/PD'
CONTROL'STATUS'

Control latchS tatus buffer

PDOO-15IDOO-15

Figure 5.20: Host interface logic

125

\ f \ r

0X0
-TOTACIC*

\ f

AS-
TOTACK*. 8TATU8*, VMEBUP

AS'

CSR

IDLE

DECODE

SYNC

RAM

WAIT RAM

TOTACaC.SVPO-.VMEBUP

Figure 5.21: Host sta te machine

will be aborted , bu t a race condition in the m emory controller could cause cor­

rup tion of random pixels. By and large this does not m a tte r since it is unusual

to want to mix host accesses w ith frame grab cycles. However, the real time ob­

ject detecting routine described in C hapter 9 does require such a facility. V I was

used successfully in spite of the race condition because the detection of an object

triggered the updating of 85% of the frame store memory and the probability of

pixel corruption in a critical p art of the image was low. V2 has been rigorously

designed using fully synchronous logic to avoid such problem s.

The host FPLS contains two fully independent s ta te machines, one for

the m aster pixel clock (already described) and one for the host interface which

also provides w rite control to the video RAM (Figure 5.21).

Access to the CSR register always occurs w ithin 132ns. W hen the host

requests access to the video planes the s tate m achine enters a synchronisation

sta te in which it waits for the pixel clock generator to arrive at its HI state. The

host m achine then sequences to s tate ACCESS, the ID /P D buffer is then opened

and the V M Ebus da ta buffer enabled. The pixel clock state machine senses tha t

the host m achine is waiting to do an image plane access and generates write pulses

if required. At the end of the next pixel clock m achine cycle the host machine

perform s V M Ebus handshaking and display operations s ta rt again. In this way

the pixel and host machines effectively ‘handshake’ to provide guaranteed safe

tim ing.

The PLS105A was not an ideal device to im plem ent these sta te machines.

Specifically, the pixel clock machine has to sense when the host m achine is in

126

sta te SYNC and m ore im portan tly when it is not in s ta te SYNC. This is difficult

because the PLS devices use a sum of products architecture. If a m achine has

n sta tes a i . . . and a transition is required for all states except (say) s ta te

a i then a p roduct te rm m ust be generated for each of the o ther term s. This

rapidly consumes term s. In the current im plem entation, this has been overcome

by using don’t care sta tes w ithin the sequencer. The critical ACCESS sta te of the

host m achine is allocated s ta te num ber 8 and the other six states allocated to

in ternal s ta te num bers 2 to 7. S tate num bers 9 to 15 are unallocated, so simply

by testing bit 2 of the in ternal FPLS sta te counter it is possible to see w hether

the host is in s ta te ACCESS.

5.19 V 3 en hancem ents to V2

V3, which is curren tly under development, is a stepwise refinement of

V2. M ost im portan tly it provides 512 x 512 timing. The video d a ta pipelining

necessary to support 512 X 512 tim ing has already been im plem ented on V2, so

the prim ary difference lies in the sync pulse generation. In addition, V3 has an

Inm os colour look up tab le to provide colour ou tpu ts, a ROM port of the type

used on V I, a line-scan interface and a genlock inpu t to allow the fram e store to

be sync locked to an ex ternal source.

127

C hapter 6

A rchitectural issues for

sequential im age processors

6.1 Introduction

In this chapter an a ttem p t is m ade to isolate the particular characteris­

tics of real tim e im age processing th a t m ight influence the design of a processor

system . The discussion proceeds at two levels — the hardw are features th a t might

im prove raw th roughpu t, and the software environm ent th a t allows non-specialists

to ex tract the theoretical perform ance from the system. In m any ways these two

needs run counter to each o ther. Recent controversy in the Com puter Science com­

m unity concerning the m erits of simplified processor design (the RISC philosophy)

m ight be seen as a way b o th to im prove perform ance and simplify program m ing,

bu t it is shown th a t regardless of the m erits or otherwise of RISC designs the

key problem in image processing system s is processor-memory bandw idth. Many

RISC designs have large in ternal register sets which may contribute more tow ards

the ir perform ance th an th e high th roughpu t of their simple instructions, bu t the

d a ta th roughput requirem ents of im age processing im mediately remove the ad­

vantages of a large register set because it is not possible to hold a useful am ount

of an im age in in ternal registers.

The most obvious architectural a ttr ib u te of many image processing sys­

tem s is their high degree of parallelism , bo th the SIMD parallelism of array

processors and the M IMD parallelism of m ultiprocessor systems. This chapter

concentrates solely on the a ttribu tes of sequential Von Neumann type machines,

and discussion of parallelism along w ith non-Von Neum ann architectures such as

dataflow machines and systolic arrays is delayed until C hapter 7.

128

6.2 H ardw are requirem ents for im age process­

ing

T raditional d a ta processing can be characterised as either com putation­

ally bound or d a ta bound. Typical scientific program m ing involves large am ounts

of real arithm etic calculation on relatively sm all d a ta sets, sometimes smaller than

the register set of the processor and alm ost always smaller than the v irtual address

space. Com m ercial program m ing typically involves collation and presentation of

inform ation from very large databases — well beyond the v irtual address space

of th e processor. The database is however a relatively fixed dataset in th a t it

is unlikely to change drastically w ithin the execution time of a typical database

operation . C alculation is more often integer or fixed point than real, and string

operations may dom inate arithm etic.

A lthough im age processing is often characterised as com putation inten­

sive, its prim ary characteristics are the high volume and rapid turnover of the

d a ta sets. Individual images are much larger th an the internal register sets of

curren t com puters bu t usually sm aller th a n the v irtual address space except in

the case of ou tda ted designs such as the PD P-11. In addition, images can be

generated every 20ms, or in 20,000 instruc tion cycles of a typical 1 MIPS mini­

com puter. Since there will be 256K pixels in a 512 x 512 image there may be only

0.1 instruc tion cycles available in which to process each pixel, thus showing the

futility of a ttem pting real tim e im plem entations for high resolution processing on

conventional machines.

It is im portan t to note th a t the size of an image is far in excess of the

in ternal storage of current processors, and th a t m ost low level vision operations are

extrem ely pixel intensive, th a t is nearly all the d a ta used is pixel data , either local

to a particu la r point for window type operations, or globally for transform based

operations. Transfer of pixels between fram e buffer and processor will therefore

dom inate all processing and processor-m em ory bandw idth is likely to be the most

accurate m etric of system perform ance.

6.3 P rocessor design philosophy

Despite in terest in dataflow architectures [GKW85] and d istribu ted logic

[PFP85] approaches to com puting, the Von N eum ann type architectures are still

alm ost universally applied to reed problem s, either as straightforw ard sequential

m achines or in parallel configurations. It is possible to discern trends in Von

129

N eum ann processor development, and in this section we exam ine their relevance

to im age processing.

6.4 Language directed m achines

M ost commercial mainframes, and la tterly minis and m icros, have evolved

tow ards the use of more complex instruction sets in an a ttem p t to narrow the ‘se­

m antic g ap ’ betw een the high level languages and machine code, the intention

being to im plem ent high level language constructs directly in the instruction set.

This tren d has been most noticable in the area of procedure activation instruc­

tions. I t is now generally accepted th a t m odularisation and top down design of

software increases program m er productivity, bu t increased use of procedures slows

execution over inline code because of the need to pass param eters and store return

addresses for subrou tine linkage.

6.4.1 P ro ced u re call instructions P D P -1 1 , 68000 and V AX

Some PD P-11 processors im plem ented an instruction called MARK which

was used instead of a ReTurn from Subroutine (RTS) to clean up the stack on

exit from a procedure. The call convention required tha t R5 be stored on the

stack, the stack poin ter updated to leave space for param eters and the PC at the

point of call be stored in R5. This was all achieved using s tan d ard instructions.

The single in s truc tion MARK N then restored the PC from R5, removed N pa­

ram eters from the top of the stack and popped the old value of R5, thus restoring

the calling p rocedu re’s context [Dig79b]. This instruction is only available on the

P D P -11 /34 and la ter machines, and has never been widely used. Even commer­

cial com pilers do not use the MARK instruction , and the T-11 microprocessor

PDP-11 im plem entation does not recognise it.

T he 68000 has a very similar instruction called UNLINK and a partner

called LINK which can be used to initialise the stack frame as p a rt of procedure

entry. These instruc tions are used, no doubt because they were defined as part of

the base p rocessor’s instruction set. Any commercial PDP-11 software th a t did

use the M ARK instruc tion would not run on early processors.

T he VAX architecture continues this process by defining a single system-

wide procedure calling convention. There are in fact two basic calling mechanisms

im plem ented via th e CALLS instruction for stack based param eter passing {e.g.

for Pascal and Algol) and CALLG for use with global param eter blocks {e.g. for

130

FO R TRA N). As weU as the usual PC and stack pointer, the VAX designates two

general purpose registers as the Frame pointer (F P) and the argum ent pointer

(A P). B oth the CALL instructions assume th a t the first word of a procedure is

an entry m ask which specifies which registers are used and therefore need to be

saved on the stack. In addition both CALL instructions always save the old AP,

F P and PC along w ith the current Processor S tatus W ord, the entry mask itself

(needed for stack clean up on exit) and a pointer to an exception handler th a t will

be invoked if an error is detected during procedure execution. Finally the F P and

AP are u p d a ted to reflect the position of the procedure’s local d a ta , and control

is passed to the procedure’s s ta rt address.

A particu la r feature of this system is the inclusion of the user specified

exception handler allowing multiple exception handlers to exist at different levels

of the p rog ram ’s execution tree. Exception handling on the VAX involves the

‘unw inding’ of successive stack frames until a handler is found th a t will service

the current exception. W hilst this is an extrem ely powerful feature for real tim e

failsafe system s, it m ight be considered overkill for a general purpose minicom­

puter.

6.4 .2 O ther com plex V AX in stru ctions

N on-prim itive instructions on the VAX include (a) those for floating

point and packed arithm etic, (b) direct calculation of array subscripts, (c) the

extrem ely useful bit field m anipulation instructions m entioned in the discussion

of A lgorithm 4 in C hapter 4, (d) case statem ent support, (e) queue instructions to

directly support operating system structures and (f) character string instructions

powerful enough to move a string in memory, transla ting on the fly and te rm inat­

ing if an out of range character is found. The increase in size of the instruction

set has im proved perform ance over th a t of the PD F -11: to quote from [Str78]:

“F irst, despite the larger virtual address and instruction set support
for m ore d a ta types, compiler (and hand) generated code for VAX-11
is typically sm aller than the equivalent PDP-11 code for algorithm s
operating on datatypes supported by the PDP-11. Second, of the 243
instructions in the instruction set, about 75 percent are generated by
the VAX-11 FORTRAN compiler. Of the instructions not generated,
most operate on d a ta types not part of the FORTRAN language.”

131

6.5 B ig fast and sim ple m achines

Large supercom puters such as the Cray series of machines are designed

for extrem ely fast clock cycles. This requires the use of ECL and (in the future)

G allium Arsenide devices, which consume large am ounts of chip area and power.

These high speed technologies usually only offer SSI and MSI com plexity parts.

Seymour Cray, the principal designer of the Cray machines espouses a philosophy

of ‘big fast and sim ple’ which rejects clever use of complex instructions in favour

of simple high speed design and the application of large scale pipelining. Such

vector processors are considered in more detail in C hapter 7.

6.6 R eg ister and stack based m achines

The trad itional Von N eum ann machine has a fixed set of in ternal regis­

ters each w ith a unique address, and a large main memory which is also arranged

as a vector of uniquely addressed cells. Work on compilers, especially for the

Algol descended languages em phasised the naturalness of the stack structu re for

expression evaluation and re-en tran t procedure calling. Coupled w ith the need

for reen tran t and nestable in te rru p t service routines, this has forced almost every

new com mercial arch itec tu re since 1970 to have at least rudim entary hardw are

for stack im plem entation.

Some m achines, no tab ly the Burroughs m ainfram es, take the concept

a step fu rther and dispense w ith m ost visible in ternal registers, im plem enting a

unified stack scheme th a t combines both internal registers and m ain memory into

a single stack. No absolute addressing is required since all variables are stored

relative to a Fram e Poin ter. Retrieval of non-local variables will require chaining

back th rough a series of stack fram es using the nested Fram e Pointers. W hen the

in ternal register based stack is full, the hardw are autom atically w rites p art of it

to m ain memory. [Mye77]

Using a pure stack architecture in this way completely removes the reg­

ister allocation problem which is possibly the m ajor concern of compiler writers.

Indeed, the low level language C even provides the user w ith a directive th a t may

be used to w arn th a t a particu la r variable will be frequently accessed and should

therefore be p u t in a register if possible.

132

6.7 R ISC m achines

6.7.1 IB M

T he first true Com plex Instruction Set Com puters (CISC) were probably

the IBM 360 series of m ainfram es, th a t m ade extensive use of microcode to provide

powerful machine code instructions. As hardw are costs came down and software

production became recognised as the real bottleneck to com puter developm ent,

it was na tu ra l for m ore and more software functionality to be em bedded directly

in the hardw are. T he average instruction execution time may have risen, bu t

th roughpu t increased.

In 1975, a team a t IBM was developing a fast controller for a large tele­

phone exchange. Later the controller was developed into the IBM 801 m achine

(which was never sold com mercially). During the development of the m achine the

design team had exam ined traces of executing program s on conventional m achines

and avoided im plem enting rarely used instructions. They used a fixed instruc tion

form at th a t allowed high speed decoding, and fast memory th a t allowed an in ­

struction to be executed for every machine cycle. The lack of m icrocode allows

straightforw ard pipelining techniques to be im plem ented and can significantly im ­

prove in te rru p t response.

6.7 .2 B erkeley

The availability of VLSI CAD tools and fabrication facilities to academ ic

researchers has given rise to m ost of the m ajor RISC developments. T he Berkeley

RISC I and II machines were based on the IBM work. RISC I suffered from

a design flaw and therefore did not meet design goals. The modified RISC II

processor is a register based m achine fabricated in 2 micron NMOS. I t has 39

opcodes, a 32-bit v irtual address space and supports 8, 16 and 32 b it datatypes.

A m ajor feature of the processor is its overlapping window register a r­

chitecture. RISC I has 138 registers of which only 32 are visible a t any one tim e.

The first ten registers are always visible and are used for global d a ta storage. Ten

o ther registers are available in each window for local storage. A nother ten are re­

ferred to as ‘overlapping’ registers. Five of these contain param eters passed from

the procedure above and five for param eters to be passed to the procedure beloW.

These overlapping windows are autom atically updated at procedure activation

and re tu rn .

This arrangem ent has two im portan t advantages over a typical processor

133

w ith 32 fixed registers. F irstly the large register set allows more d a ta to be held

local to the processor, significantly reducing m ain memory cycles. T he register is

faster th an a local d a ta cache. Secondly, the overlapping windows reduce the need

to save registers in m ain m em ory at procedure entry, i.e. the calling procedure’s

context is saved using a register level type of memory m anagem ent un it. This

again has the effect of reducing main m em ory cycles. RISC I procedure activation

typically requires 2fis against the 20ps required by a VAX 11/780. This is critical

for RISC m achines as the reduced instruc tion set implies more use of procedures

to construct complex sequences out of prim itive instructions.

Several workers have suggested th a t the excellent perform ance of the

RISC I and II machines is directly a ttr ib u tab le to this register arrangem ent.

“The Berkeley group has responded by agreeing th a t a significant po r­
tion of the speed is due to the overlapped register window. However,
the group notes th a t critics have ignored a key point in the design —
th a t a drop in control logic due to the reduced set of instructions
(from 50 percent to 6 percent) created space for the expanded num ber
of registers in the first place.” [M ar84]

In essence, their philosophy is to trad e off m icrocode ROM against p rogram avail­

able register storage. However this is clearly unnecessary since the RISC I and

II chips are not high density designs. RISC I is a 44,500 transisto r chip. Chips

w ith 1,000,000 transistors on board are w ithin the capabilities of current produc­

tion technologies — the m idrange T414 T ranspu ter contains 150,000 devices — so

there would be no problem in retain ing the large control blocks needed for CISC

designs and adding the novel large scale register sets.

T he Berkeley team has also im plem ented a chip called SOAR (Sm alltalk

On A RISC) and a symbolic processor called SPU R (Symbolic Processing Using

R is e s) designed to form the basis of a m ultiprocessor LISP w orkstation. SPUR

comprises a three chip set (cache controller, CPU and FPU) fabricated in 2 micron

CM OS. The CPU is sim ilar to RISC II bu t w ith a 512 byte instruc tion cache, a

four stage pipeline, a coprocessor interface and support for tagged data .

6.7 .3 Stanford

A sim ilar early project at S tanford resulted in the M IPS (M icroprocessor

w ithout Interlocked Pipeline Stages) processor. The em phasis in M IPS is on

pipelining and advanced compiler technology ra th e r than large register banks.

There is a five stage pipeline composed of instruction fetch, instruc tion decode.

134

operand decode, operand sto re/execu te and operand fetch com ponents. Each 32-

bit instruc tion word may hold two instructions, and instructions typically require

two cycles to execute. P ipelining com plicates the handling of non-linear sections of

code such as jum ps, branches and procedure calls. A m ajor effort in the S tanford

project was to investigate the reordering of code generated by the com pilers to

im prove instruction packing and to support ‘delayed branching’.

6.7 .4 Inm os T ransputer

The T ransputer is a stack based RISC. The T414 device contains 2K

bytes of 50ns RAM which allows 10 M IPS operation and is also available for

stack storage. The T ranspu ter can operate at up to 10 M IPS from this in ternal

RAM because of the 20MHz processor-m em ory bandw idth. This reinforces the

assertion th a t availability of opcodes and d a ta at high speed is the critical factor,

and the existence of a simplified instruc tion set is merely a side effect of the need

to reserve large parts of the chip for memory. Since the T ransputer is stack based,

the non-generalities of the Berkeley window register design, i.e. lack of overall

storage space and inappropriate register partition ing , are not present.

6.7.5 O ther com m ercia l design s

The M IPS project has yielded a com mercial machine (also called M IPS)

which has recently been adopted by D igital Equipm ent Corp. for their work­

station range. O ther com m ercial RISC processors include the IBM R T /P C , the

HP Spectrum range, the Inm os T ranspu ter [Whi85], the Acorn Rise M achine and

Sun M icrosystem s SPARC architecture. Texas Instrum ents and CDC are jointly

involved in a DARPA pro ject to produce a rad ia tion-hard G a As RISC processor

w ith a clock speed of 200MHz.

6.8 R ISC m achine com m on features

The discussion of M IPS ra te in Section 3.6 shows th a t a simple M IPS

com parison across different architectures is dangerous, especially when the RISC

m achines are specifically designed w ith very high execution rates bu t instructions

w ith very low sem antic content.

It is difficult to be exact about w hat constitutes a RISC architecture bu t

the following features seem typical:

1. No microcode — all instructions are hardw are encoded

135

2. L oad /sto re architecture no memory to register or memory to memory

operations o ther than d a ta transfer

3. Large register sets necessary to support efficient lo ad /sto re architecture

4. P rim itive addressing modes as a result of load /s to re architecture

5. Simple instruction decoding, often fixed field

T here are exceptions to this list: the Inmos T ranspu ter is a stack based architec­

tu re and the Stanford M IPS machines do not have especially large register sets

bu t rely on large scale pipelining to im prove th roughpu t.

6.8 .1 S ingle in stru ction per cyc le ex ecu tio n

T he overall aim of the RISC designer is to produce a machine th a t exe­

cutes one instruc tion per m ain memory cycle. Removal of m icrocode and complex

instructions enables one instruction per cycle operation to be obtained using sim­

ple design techniques, bu t pipelining, the use of large register sets and powerful

code generation techniques in compilers can all be applied to complex machines so

th a t they can also execute an instruction per cycle. The higher sem antic content

of a CISC instruction should then provide higher overall th roughput.

6.8 .2 P rocessor m em ory b and w idth

RISC machines can m atch the th roughpu t of more complex processors

at lower cost and w ith less design tim e required, so they m ay trium ph for eco­

nomic reasons. U ltim ate high perform ance m ay be obtained by applying RISC

type techniques (large register set, pipelining, reducing m ain memory accesses)

to CISC machines. The lim iting factor on perform ance will be the speed w ith

which operands can be fetched from relatively slow m ain memory, i.e. the pro­

cessor m em ory bandw idth . Although the large RISC I type register sets have

been dem onstrated as sufficient for a variety of applications [Rob87] in an image

processing environm ent, d a ta fetching will still dom inate unless the processor has

an in ternal register set two orders of m agnitude larger than to d ay ’s RISCs.

6.9 Software requirem ents for im age processing

In her m onum ental work ‘Program m ing Languages: H istory and Funda­

m entals’ [Sam69] Jean Sam m et mentions some 120 languages known to have been

136

im plem ented, and th a t was only at the end of 1967. She was aw are of a t least

as m any unim plem ented proposals, and in the intervening period it is likely th a t

the ra te of production of new systems has significantly increased. T here seems

to be a new language inside every systems program er try ing to get out. W hen,

in 1976 the US D epartm ent of Defense conducted a survey of the program m ing

languages in use for m ilitary applications, they counted over 400. At the tim e,

they were spending over th ree billion dollars a year on software [Ich84]. It was

this th a t spurred on the development of Ada.

There have been a ttem p ts to define ‘doom sday’ languages (eg. P L /1)

which a ttem p t to be all th ings to all people, not by im plem enting unified funda­

m ental concepts, bu t by layering features from several language trad itions w ith

possible overlap of s truc tu res. In the case of PL /1 this resulted in a language so

large and cum bersom e th a t special subsets had to be defined so th a t the over^

worked program er could handle the complexity.

The m ajor requirem ent for safe and efficient program design is disci­

pline. This should be coupled with program m ing tools th a t are as simple as is

com m ensurate w ith the job in hand.

M ultiplication and overlap of concepts and their im plem entation w ithin a

program m ing language provides more possibilities for side effects, i.e. unexpected

behaviour of one p a rt of a program due to a breakdown in a com pletely different

p a rt. This gives sym ptom s th a t show no simple connection w ith the ir cause, and

makes the program very difficult to debug.

6.10 O rthogonality

It is useful to distinguish between feature oriented and unified system s.

A lthough the hum an is capable of storing prodigious am ounts of inform ation,

program m ing systems th a t require access to m any facts and concepts appear to

over weigh the program m er so th a t even experts rapidly get to the poin t th a t they

cannot rem em ber the com m and for this or th a t operation. A lthough mnem onic

or preferably English nam es help, it is desirable to minimise the am ount of in­

form ation required to use a system . The only way to minimise the load on the

program m er w ithout restric ting the utility of the environm ent is to unify various

features into a more general com m and w ith natu ra l modifiers. [Hoa81] says:

“(This) m ethod is far m ore difficult. It dem ands the sam e skill, de­
votion, insight, and even inspiration as the discovery of the simple
physical laws th a t underlie the complex phenom ena of na tu re . It also

137

requires a willingness to accept objectives which are lim ited by physi­
cal, logical, and technological constraints, and to accept a com prom ise
when conflicting objectives cannot be m et. No com m ittee will ever do
th is until it is too la te .”

6.11 Languages and program m ing environm ents

In the not too d is tan t past all program s were subm itted in batch form

and there was no direct in teraction with the system. Any d a ta had to be included

after the program deck, and lineprinter ou tpu t would be received back anything

up to several days la ter. I t is not hard to see why assembly language program ­

ming had such a long developm ent cycle under such conditions. M uch of the

h istory of program m ing system s since then has concerned the im provem ent of the

developm ent cycle, bo th by speeding the edit-com pile-run loop and by producing

higher level languages in which to express the algorithm . This may be seen as the

adap ta tion of the m achine to the thinking patterns of the hum an, ra th e r th an the

hum an having to accom m odate to the machine. Such operating system s and high

level languages exist to hide the inner workings of the processor from the hum an,

preferably w ithout in troducing too many inefficiencies.

The second th ru s t of language development is the design of m ore pow­

erful no ta tions which actually help the program m er’s thinking. T he whole of

m athem atics may be viewed as the search for more elegant and com pact no ta­

tions for the description of problem s, for w ithout a notation there is no well defined

problem statem ent.

“By relieving the b ra in of all unnecessary work, a good no ta tion sets
it free to concentrate on more advanced problem s, and in effect in ­
creases the m ental pow er of the race. Before the in troduction of the
A rabic no ta tion , m ultiplication was difficult, and the division even of
integers called in to play the highest m athem atical faculties. P ro b a­
bly nothing in the m odern world would have more astonished a Greek
m athem atic ian th an to learn th a t ... a large proportion of the popu­
la tion of W estern E urope could perform the operation of division for
the largest num bers. This would have seemed to him a sheer im possi­
bility. ... O ur m odern power of easy reckoning w ith decimal fractions
is the alm ost m iraculous result of the gradual discovery of a perfect
no ta tio n .” [W hill]

6.12 Im age processing w ith conventional languages

Im age processing is extrem ely d a ta intensive, and code often contains

m any sm all loops. Even if these characteristics were radically different from nor-

138

mal program m ing, the design of a new language would not be justified. Instead,

s tan d ard techniques for solving those problem s should be developed and built into

existing languages, e ither in the form of a m acro preprocessor or procedure calls.

If already existing language features or philosophy block this ‘stepwise refinem ent’

approach then a new language may be called for, although this may only indicate

th a t the base language was a bad choice.

6.13 PPL 2

PPL2 is a special purpose im age processing language developed in this

labora to ry [Coo83a] and syntactically based on Algol-68. A part from predeclared

variables representing the fram e store registers, the only novel program m ing struc­

tu re of the language was the use of a [[. . .]] construct to denote the application

of a window operation to the image. In a conventional language this would be

specified using two nested DO loops. The language was very small and did not con­

ta in the sem antic richness of Algol-68. Integer only arithm etic was available, the

procedure call m echanism was im plem ented via m acro text substitu tion w ithout

param eter passing, variables were not predeclared with all the a ttendan t insecu­

rities this brings and source code was lim ited to 8K byte of text w ith no linking

to o ther PPL2 program s or to routines w ritten in other languages. There was

no file handling, and screen I /O was rudim entary. The storage space available

for variables was also lim ited bu t more seriously the register allocation algorithm

used for arithm etic expression evaluation could cause run tim e failures due to lack

of spare PDP-11 registers.

The language was in terpreted ap art from sections within a [[. . .]] con­

s tru c t which were com piled and then discarded at the completion of the scan.

T he [[. . .]] construct only supported top left to bo ttom right and bottom right to

top left scans, which m eant th a t routines requiring one of the eight possible scans

(e.g. convex hull p rogram s) had to be constructed out of DO loops anyway. Any

program s w ritten in th e language had to be converted to a conventional high level

language if a compiled speed im plem entation, or a portable one, was required.

One of the m ost serious problem s w ith the language was th a t its im ple­

m entation was dependent on Cook’s fram e store. Because of the unorthodox way

in which this was in terfaced to the host PD P-11, PPL2 had to directly m anip­

u la te the memory m anagem ent registers, risking disastrous interaction with the

operating system. As a result, a complete rew rite of the system would have been

required even to move it on to a Q-bus based PDP-11 containing an IPO FS or

139

V I fram e store, which follow PDP-11 hardw are configuration rules.

Of these deficiencies, the lack of a recognisable procedure calling m echa­

nism was the m ost awkward. In spite of th is, PPL 2 was used extensively and suc­

cessfully for rap id prototyping of image processing routines. A particu lar strength

was the capability to experiment quickly on problem s brought to the laboratory

by in dustria l and other visitors. PPL2 was highly interactive, containing its own

simple ed itor and run tim e system. In use it was far be tte r than the conventional

m acro based languages available on com mercial image processing systems at th a t

tim e (1980-83), such as the BRSL Autoview Viking m achine which is based on

B atchelor’s work. This is because in spite of its lim itations PPL2 was a general

program m ing language in which novel image processing algorithm s could be ex­

pressed, w hereas Autoview program s are constructed by concatenating predefined

operations w ith consequent lack of generality and efficiency.

T he case for a highly interactive program m ing system which has pre­

defined knowledge of the available hardw are is clear, even though PPL2 was an

unsatisfactory im plem entation.

6.14 P IP E

P IP E (Pascal Image Processing Environm ent) is a program m ing envi­

ronm ent designed and im plem ented by the au thor to replace the PPL system.

A lthough it lacks the interactive features of P P L , it gains by m aking use of s tan ­

dard Pascal and conforming to operating system protocols. P IP E has been exten­

sively used in th is laboratory and was used to im plem ent the project described in

C hap ter 9.

T he non-standard hardw are interface of Cook’s frame store required pro­

gram s w ritten in conventional high level languages to directly m anipulate the

m em ory m anagem ent unit. P IP E aims to hide these m anipulations from the

user, and to ease the transition from PPL program m ing to conventional large

scale program m ing in Pascal. The Pascal compiler in use. Parallel Pascal [Uni81],

includes the m ultitasking primitives of M odula [Wir77] which can be used in the

program m ing of the IM P system described in C hapter 9.

P IP E comprises:

1. a modified R un Time Library which initialises the fram estore and restores

the operating system environm ent at the end of a run,

2. a set of Pascal source preludes containing definitions of hardw are registers

140

and d a ta types,

3. an ob ject code lib rary containing picture I /O routines and tim er su ppo rt,

4. a set of s tan d alone u tility program s which may be run from th e operating

system com m and line,

5. a com m and file build u tility called NEW . This is used w ith tem p la te files to

genera te an indirect com m and file th a t will ed it, com pile, link and run the

cu rren t program .

T he facilities of th e Pascal com piler and operating system m ay be used to m ain tain

object code lib raries and to link w ith machine code and FO R T R A N routines.

P IP E has been im plem ented for Cook’s fram e store, IP O F S and V I.

T he m odified ru n tim e lib rary is not required for IPO FS and V I since these

do not require m em ory m anagem ent m anipulations. A part from the hardw are

p rogram m ing differences noted in C hapter 5 P IP E provides full po rtab ility of

source p rogram s betw een each of these systems. All the algorithm s in C hap ter 4

were originally im plem ented on Cook’s frame store and were p o rted to V I simply

by changing th e coord inate register loop counters to take account of V i ’s eight-bit

coord inate reg isters.

A lthough the N EW utility autom ates the various steps in the building

of a P IP E p rog ram , the system lacks the interactive ‘feel’ of P P L because the

com pile-link stage can take several m inutes for large program s. However, P IP E

suffers none of th e operational lim itations of PPL . The [[. . .]] co nstruc t is available

w ith th e use of an op tional preprocessor, bu t in practice th is has no t been used

because users prefer to insert the nested loops directly ra th e r th a n accept the

com pile tim e overhead of the preprocessor.

6.15 P IP E -3 2

T he V2 and V3 fram estores described in C hapter 5 are su ppo rted on

the VAX w ith a softw are package called PIPE-32 [Joh88a]. T his provides a full

set of d a ta types, fram estore control routines, transfer routines and VMS utilities

for the fram esto re user. Interlocked access to m ultiple fram estores is suppo rted ,

and program s are dynam ically reconfigurable from the com m and line for different

fram estores.

141

6.16 A specification for interactive im age pro­

cessing

An in teractive image processing language system based on a large subset

of Pascal is under developm ent. The P IP E system provides a useful environm ent

for eventual im plem entation of algorithm s but is slow and unwieldy for simple

experim ents and algorithm development. This is partly because the particu lar

Pascal com piler in use is very slow (although it does produce efficient code) and

partly because of the batch oriented edit-compile-run cycle.

In teractive program m ing has been available using the PPL2 system de­

scribed above, bu t the lack of file handling, procedures, local variables, library

facilities and real arithm etic coupled with the limited program and variable space

and the fact th a t the entire PPL system must be resident for a program to run

m eant th a t serious applications were difficult or impossible to develop. Conver­

sion of program s to a m ore norm al system is not easy because of the Algol-68

derived syntax and especially the macro oriented calling convention.

W hat is required is an interactive system th a t is com patible w ith a full

blown language com piler, so th a t if a problem becomes too large for the system ,

the progranuner can transfer to the main compiler. A problem could be broken

down into subproblem s which may be individually program m ed interactively and

then gathered together by the main compiler. This is an a ttem p t to provide the

‘best of bo th w orlds’ w ithout the need to develop a completely new language.

The system is called Pascal-I (for Pascal-Image processing) or P I and is

conceived as a direct replacem ent for PPL. Syntactically it is a stric t subset of ISO

Pascal [Coo83b]. However the compiler recognises several system procedures and

reserved variable nam es th a t are not in the standard Pascal symbol table. These

ex tra variables and procedures may be thought of as being defined in a system

prelude com piled in front of the user’s program . PPL2 system utilities will be

im plem ented as P I procedures, available at program level and interactively from

the keyboard.

In teraction will be provided through the use of an increm ental compiler

and a screen editor outw ardly similar to ED T, the VMS system editor. P rogram s

will be com piled one procedure at a tim e and stored for la te r execution. W hen

not running a program , P I will present the user with a list of known procedure

nam es. Any procedure declared at the global level is display able, along w ith the

p rew ritten routines. T he user may run any of these procedures by placing the

cursor over the nam e and h itting a non cursor key, or by explicitly entering the

142

nam e in the system p rom pt area.

T he present pro to type is based on W irth ’s Pascal-S [WirSl] w ith the

code generator modified to produce PDP-11 and subset VAX-11 machine code.

The system is being w ritten in Pascal and is being developed on a Micro Vax II.

In fu tu re it is in tended to add features to support parallel program m ing using

the M odula-1 m odel, and features to support array processing for the NPL LAP

machines [McC85] based on the Actus array processor language [Per79].

143

C hapter 7

Parallelism in hardware

"... recollect th a t the m ultip lication of two num bers, consisting each
of 20 figures, requires at the very u tm ost three m inutes.

... when a long series of identical com putations is to be perform ed, such
as those required for the form ation of num erical tables, the m achine
can be brought into play so as to give several results a t the same tim e,
which will greatly abridge the whole am ount of the processes.”

General M enabrea on B abbage’s A nalytical Engine, 1842

7.1 Introduction

This chapter first reviews parallelism from a structu ra l view point, th a t

is from a consideration of the underlying hardw are. The next chapter looks at

software constructs for the control of parallel machines.

7.2 Spatial parallelism w ith in the C P U

All real com puters exhibit some degree of parallelism . Usually th is is

in the form of m ultiple b it A rithm etic and Logic Units (ALUs) w ith associated

m ultiple bit memories. The w idth of the ALU, memory and com m unication buses

define the word size of the processor. However, parallelism exists (a t least con­

ceptually) at an even lower level w ithin the ALU itself.

7.2.1 B it level parallelism

In the lim it the ALU may be only one b it wide, i.e. the processor is bit-

serial. In the past some conventional com mercial machines have been bit-serial

for cost reasons such as the PDP-8S and its close cousin the Digico M16-S. Some

specialised machines such as the PD P-14 [BM78], an industrial controller designed

144

D 3>
>■

Sum

Carry

Figure 7.1: Parallelism w ithin the full adder

to replace hardw ired relay logic controllers in an industria l environm ent, also used

bit-serial processors.

W ith in the one bit wide ALU a variety of configurations are possible.

Typically a single full adder will be used, bu t it is clear th a t a single NAND gate

and a controlling state m achine would provide a general purpose processor since

all logic equations may be im plem ented by a set of NAND gates or by feeding the

term s through a single NAND gate w ith appropria te sequencing and storage of

in term ediate results. The use of a full adder provides parallelism (F igure 7.1).

The com plexity of the ALU could be described in term s of NAND (or

NOR) gate equivalents. This does not usually transla te directly into a gate count

of the actual device since m ost in tegrated circuit technologies provide logic prim ­

itives more complex than a single NAND gate. In T T L the m ultiple em itter

transisto rs provide an n -inpu t NAND prim itive. ECL logic provides NO R and

O R com plem entary ou tpu ts a t the m ost basic level, and CMOS technology pro­

vides a rb itra ry logic functions using 2n transisto rs for a simple n -inpu t gate, as

well as ‘trick ’ circuits such as the transm ission XOR gate [SOA73] described in

C hapter 10.

M ost array processors (discussed below) use b it serial processing ele­

m ents to reduce the hardw are cost of the machine.

7.2.2 W ord level parallelism

As noted previously, the word size of the processor’s ALU provides some

parallelism . T he actual im plem entation of the ALU can also provide parallelism .

In a simple ripple carry adder the bits are in a sense evaluated sequentially because

145

I/o
channels

Memojy

24
registers

Instruction
stack

Aoat +
■~TT“

+1
logic-

Branch

Score

7 T \

F igure 7.2: The CDC 6600 processor

a high order bit cannot settle until the carry has been produced from a low order

bit. The carry p a th can be speeded up using various adder designs such as the

carry lookahead adder [FP87], the carry select adder [FP87] and the two stage

adder [WE85]. For VLSI im plem entation the dynam ic M anchester carry adder

[WE85] provides a fast MOS adder, and the b inary lookahead carry adder uses a

b inary tree of adders to provide carry propagation times p roportional to log] of

the adder size.

7.2.3 M u ltip le fu n ction a l units

The processor m ay well contain other logic blocks to augm ent the typical

ALU operations of integer add and subtract and bitwise logical operations. T yp­

ically these would include com binatorial m ultipliers, barrel shifters, and floating

point units. Simple m achines do not usually allow concurrent operation of these

blocks due to problem s associated with synchronising the available resources and

saving the machine s ta te efficiently in the event of an in te rru p t or exception.

In some com puters, notably the CDC 6600 and 7600, m ultiple functional

units are employed w ithin th e processor and may operate concurrently. T he 6000

series machines used a status checkhoard to indicate the availability of resources. If

an instruction required a block th a t was already in use, the conflict was recorded

in the checkhoard and the instruc tion queued for deferred execution. Instructions

could be deferred several tim es. This m echanism provided a hardw are interlock

system . The CDC 6600 includes ten functional un its and 24 registers (F igure 7.2).

146

0 -
I

X > -
1 ■ \

L

#1 I y I

7

Figure 7.3: Three stage arithm etic pipeline

7.2 .4 S eq u en cin g and p ipelines

T he efficient use of a machine such as the CDC 6600 depends on the

availability of m any independent calculations em bedded in the s tream of m achine

code. A calculation obviously cannot be started until its operands are available.

In the w orst case, a sequence m ight require each functional un it in the processor in

tu rn , w ith th e operands at each stage of the calculation depending on the results

of the previous one. In th is case only one functional unit can be used at a time.

If however, such a sequence is to be repeated m any tim es using different

d a ta then the functional units could be sequenced to act as a pipeline. Consider

the following p rogram fragm ent:

{ 1 } FOR i : = l TO m a x .a r r DO

{ 2 } f : = (3 * a r r [i]

{ 3 } + 7)

{4} / j ;

This could be im plem ented using a pipeline of 3 units w ith d a ta latches between

each stage:

W ith such an arrangem ent, lines 2-4 would execute in th ree cycles for

a single da tum . W hen i is 1, a r r [l] is supplied to the inpu ts of the m ultiplier

during cycle 1. T he resu lt 3 * a r r [l] is supplied to the adder inpu t during cycle

2, and w ithou t pipelining the m ultiplier would be idle. If, however, a r r [2] is

supplied to th e m ultip lier during cycle 2 then m ultiplication of the second array

elem ent is overlapped w ith addition.

Clearly, if m ax_arr is greater than or equal than the num ber of stages

in the pipe th en there will be some time during the execution of the loop when

all un its are doing useful work. It is also clear th a t for an n -u n it pipe there will

be 71 — 1 cycles a t the beginning and n — 1 a t the end when the pipe is filling

or draining during which some units will be idle. For an n stage pipe and m

147

operands all the d a ta will have been processed after m + n — 1 cycles. T here are

n X (m -|- n — 1) operation slots available w ith n function units in m + n — 1 cycles,

so the functional un it u tilisa tion is m /(m -f n — 1) which will be close to 1 for

n.

Historically, pipelin ing was first used to speed instruc tion and operand

fetches ra th e r than w ith in the processor core itself. Typically p ipeline stages

im plem ent in struc tion fetch, in s truc tion decode (including address m ode calcu­

lation), operand fetch, execution and storage of results. On m ultip le address

architectures ex tra address calculation stages m ight be used. On linear sequences

of code, the in struc tion pipeline can be kept filled, bu t any branching in the con­

trol flow will require the pipeline to be flushed and refilled. This resu lts in loss of

th roughput. M odern com pilers for heavily pipelined machines such as the S tan ­

ford M IPS RISC processor [Mar84] a ttem p t to reorder the execution of loops so

th a t calculations th a t do no t m odify the loop decision operands are b rought to

the end of the loop, and th e branch decision is taken n cycles early w here n is the

num ber of cycles in the pipe. In th is way w hat would have been w asted cycles

during the pipe flush can perform useful work. This allows in struc tion pipes to

approach 100% utilisation even in the presence of branching code.

7.3 Vector processors

Machines w ith a rithm etic pipelines such as the CDC 7600 operate at

peak efficiency when supplied w ith highly repetetive sequences of instructions

th a t m ap well onto the pipeline. Vector machines such as the CDC STAR 100,

its descendants the C Y B E R 203 and C Y B ER 205, the TIA SC, th e Cray series

and the Fujitsu VP-200 provide explicit vector instructions w ith associated vector

registers. A single vector in s truc tion replaces a whole sequence of scalar in s truc­

tions th a t need to be repetitively fetched from program store on th e CDC 7600.

The vector registers allow in term ed ia te results to be held in the central processor

ra th e r than requiring m ain m em ory transfers.

T he perform ance of vector processors is heavily dependent on the m atch

between the vector and pipeline lengths. The perform ance of the Cray-1 can range

from 2.5 to 153 Mflops [HJ81]. A rithm etic u tilisation rises as the vector length

approaches th a t of the p ipeline and then halves as the vector length becomes

l+[length of pipeline) due to the load and flush phases. As a result th roughpu t

rates show discontinuities where the vector length is around a m ultip le of the

pipeline length.

148

7.4 Parallel processor classification

7.4.1 S tream classification

T he previous levels of parallelism have all been applicable to the execu­

tion of a single program on a single d a ta stream . F lynn defined four categories of

com puters in term s of the ir instruction and d a ta stream s:

1. SISD — Single Instruction , Single D ata s tream com puters such as the VAX,

2. SIMD — Single Instruction , M ultiple D a ta stream com puters such as the

ICL DAP [Red73],

3. MIMD — M ultiple Instruction , M ultiple D ata stream machines such as the

IM P system to be described in C hap ter 9,

4. MISD — M ultiple Instruction , Single D ata stream of which no practical

exam ples exist.

Fountain [Fou87] claims th a t F lynn designated pipelined systems as MISD because

m ultiple instructions are being applied to the sam e d a ta item s, bu t this seems no

m ore valid than claiming th a t a non-pipelined system is MISD — each datum is

only being operated by one functional un it a t a tim e whereas tru e MISD implies

th a t m ultiple instructions are operating on the sam e datum simultaneously. A

dual po rted cache m em ory m ight be in terp re ted as a true MISD ‘processor’ in

th a t m ultiple com parators m ight be testing the sam e tag sim ultaneously, but the

au tho r is not aware of any real im plem entations of such a device. Indeed Hockney

and Jesshope [HJ81] say th a t the class seems to be void, and Hwang and Briggs

[HB85] say th a t “No real em bodim ent of th is class exists” . [HJ81] notes th a t

the original paper by F lynn [Fly72] “states th a t it includes specialised stream ing

organisations using m ultiple instruction stream s on a single sequence of data.

However no examples are given” . M ost au thors prefer to consider pipelining as

being different in natu re to the organisations described by F lynn ’s taxonomy. In

this work the term spatial parallelism will be used to describe the topological

layout of processors as described by F lynn’s classification, and the te rm temporal

parallelism to describe pipelining.

7.4.2 F unctional un it c lassification

F lynn ’s elegant classification into stream s which yields th ree useful classes

is insufficiently detailed to do o ther th an sketch th e architecture of a real system.

149

Shore [Sho73] described six classes of m achine based on the ir constituent parts

and in terconnection. M achine I corresponds to the conventional Von Neumann

arch itecture. M achine II reads a bit slice from all words in m em ory and operates

b it-serially ra th e r than fetching da ta a word at a tim e. A rray processors such as

the ICL DAP and CLIP-4 fall into this category. M achine III is a com bination of

I and II w ith separate processors for words and bit slices. M achine IV has a single

control un it bu t m ultiple processing units. However no inter-processor communi­

cation is provided except via the controller. A m achine such as the ILLIAC-IV

would be type IV if all in ter-P E com m unication paths were disabled. Machine V

is the same as m achine IV bu t w ith in ter-P E com m unication added. Machine VI

corresponds to th e associative processors th a t will be described below. They are

characterised by having processor logic d is tribu ted th roughout the memory.

Shore’s classification is not m uch more detailed th a n F ly n n ’s and lacks

the elegance or m nem onic value of the class nam es. It does not address the issue

of pipelining and does not really address the MIMD class. Indeed classes II to V

are m erely subdivisions of F lynn ’s SIMD class.

Hockney and Jesshope [HJ81] developed a ra ther baroque notation for

w riting detailed s tru c tu ra l descriptions of the num ber of in struc tion , execution

and m em ory un its and the m anner of their interconnection and control. Intercon­

nections are represented using a notation analogous to th a t of a chemical formula.

T he Backus N aur Form [BBG*60] definition of their no ta tion requires about two

pages, and can be used to construct extrem ely complex expressions. The simplest

exam ple is th a t of a von-N eum ann serial machine:

C = I[E -M]

This defines the com puter C to be a single in struc tion processor I con­

tro lling the un it in th e brackets, being a single execution un it E connected by a

single d a ta p a th to a single memory bank. The no ta tion is like a com bination of

the s tru c tu ra l no ta tio n used by chemists and the processor-m em ory-sw itch (PM S)

no ta tion of Bell and Newell [BN71]. The advantage of this no ta tion over the other

classifications described here is th a t pipelining is explicitly represented.

7.5 A rray processors

An array processor is usually taken to be a system of the strict SIMD

type, i.e. a single control un it (CU) broadcasting instructions to a set of processing

elem ents (PE s) w hich operate in lockstep. The advantage of th is arrangem ent is

150

th a t by definition all processors are synchronised so th a t there can be no memory

contention or deadlock problem s. An array processor could be thought of as a

sim ple sequential m achine th a t includes unusual d a ta types, such as the bit slice

vector or b it slice p lane, am ongst its base operands.

Some recent designs such as PASM [KS86] and C L IP -7 allow the array

to be partitioned in to a num ber of autonom ous SIMD arrays. This is im portan t,

because in a conventional SIMD machine the only way of conditionally processing

p a rts of the d a ta set is to disable the processing elements corresponding to the

unprocessed p art. SIMD PE s are usually very simple bit-serial devices, and the

th ro u g h p u t of the array is sustained only through the high degree of parallelism .

Im age processing is one of the m ain applications for such machines. For

an a lgorithm to execute efficiently on a SIMD processor it m ust (a) operate on

d a ta which is highly s tru c tu red in a topology sim ilar to th a t of the array itself, and

(b) require only short range com m unication between processing elements. Small

window operators such as the Sobel edge detector working on square arrays of

pixels fit these requirem ents exactly.

Fountain identifies three active SIMD projects prior to 1975 — SOLOMON,

the ILLIAC m achines and the early CLIP machines. The basis for these was

U nger’s paper [Ung58] which described a com puter oriented tow ards spatial prob­

lems. His ab strac t m achine showed the classical SIMD features, nam ely broadcast

of in struc tions from a single Control Unit to m ultiple lockstepped PE s, each of

which had its own local m em ory and was connected in a two dim ensional array.

The second generation of systems is characterised by machines such as

the ICL DAP [Red73], CLIP 4 [FG80] and the Goodyear M PP [Bat80]. These

are all large arrays of b it-serial PEs and have all been used extensively for image

processing. They use m a tu re technology and have been commercially successful.

O ther in teresting system s include the G A PP chip from NCR [NCR84], G E C ’s

G RID processor [RM82] and the M IT Connection M achine [Hil85].

A th ird generation of arrays th a t provide some local autonom y are cur­

ren tly being developed. These include CLIP 7 [Fou85] and the P urdue University

m achine PASM [KS86].

7.5.1 Solom on

In the early 1960’s a machine called SOLOMON (Sim ultaneous Op­

era tion Linked O rdinal M O dular Network) was described by workers from the

W estinghouse C orporation [SBM62,GM63]. Bit serial processing elements were

151

arranged in a four connected mesh with duplication of routing functions so th a t

each inp u t of th e ALU could be connected independently to any of the available

d a ta sources. T he m axim um array size was to be 32 x 64, and each P E had 8K

bits of storage (x.e. a to ta l of 16M bits for a m axim ally configured array). The

control un it would accept variable length bit-parallel instructions such as m ultiply

and divide and generate the necessary bit-serial operations for broadcast to the

array. It is not clear th a t SOLOMON was ever com pleted, and the m achine does

not appear to have been used for image processing. The design was clearly very

am bitious, and th is may have contributed to its demise.

7.5.2 ILLIA C III and IV

T he ILLIAC III was a special purpose machine for analyzing bubble

cham ber pho tographs to aid the search for particle collisions. T he m achine de­

scribed in [McC63] had an array of 32 x 32 special purpose P E ’s th a t could be

eight or six-connected to their nearest neighbours. The eight neighbour inputs

were rou ted via an O R gate to an eight-bit shift register. The shift register ou tpu ts

were ANDed together and passed to the P E ou tpu t for connection to neighbours.

One end of the shift register was used for d a ta I /O to the local m em ory which

could act associatively. The prototype was dam aged in a fire and the project

abandoned in 1967.

ILLIAC IV was the first machine in the world capable of sustaining

average execution rates in excess of 20 Megaflops. It was designed and built

by the U niversity of Illinois and the Burroughs corporation. Between 1972 and

1982 it form ed one of the most powerful service nodes on A rpanet. The m achine

was an am bitious ‘one off’ which never reached its full specification bu t which

nevertheless has influenced all la ter supercom puter designs and perhaps more

im portan tly provided the test bed for several new ideas in program m ing languages

and algorithm design.

T he m achine provided an array of 64 PEs arranged as an 8 x 8 m atrix .

The last P E in each row could be connected to the first in the next row so as to

form a 64 X 1 array suitable for vector operations. Rem arkably, the PEs were

powerful 64-bit processors capable of 8, 32 and 64-bit arithm etic w ith on-board

barrel shifters and floating point units, and 2K 64-bit words of local memory.

This is in m arked con trast to the simple bit-serial PEs used in m ost o ther array

processors. W hen used in 32-bit mode, each P E could operate on two independent

d a ta elem ents, providing a 128 element array. Basic local m em ory access tim e

152

was 188ns, bu t contention between PEs for memory could raise th is to 350ns.

A B urroughs B6500 was used as a front end for com pilation, loading and d a ta

transfer.

One of the streng th s of the ILLIAC-IV was its backing store. A fixed

m ulti-head 20M byte disk was used w ith an average access tim e of 20ms and a

500MHz transm ission bandw id th . A good program m er could m ain tain a th ro u g h ­

pu t of more than 7 million words per second, allowing the disk to be used as part

of the prim ary store.

ILLIAC-IV was a very expensive machine. Development and construc­

tion cost around $40 m illion. R unning costs were around $2 million per annum .

One of the reasons for these high running costs was the absence of E rro r De­

tecting and C orrecting (EC D C) circuitry. The entire system contained around 6

million com ponents, and the M TB F was m easured in hours, not days. Extensive

diagnostics were run frequently and upon detection of an error the relevant P E

or control m odule was unplugged and subjected to detailed test offline on a sep­

ara te diagnostic m achine. New modules were available to m ain tain operations.

This lack of ECDC and the use of the (then) leading edge technologies such as

256-bit sem iconductor m em ories m ust be seen as design weaknesses. C om pare the

long development tim e w ith the four year development cycle of the Cray-1 vector

processor [HJ81] which used conservative technologies throughout and which has

been a m ajor com m ercial success.

As well as being a SIMD array processor the machine could dem onstrate

some concurrency. T he m aster control un it was more like a small com puter in its

own right, and the order code for ILLIAC-IV comprised two sets of instructions,

one for execution in the control unit and one for the array. Processing of these

two types of instructions could proceed concurrently.

Several program m ing languages were developed for use on ILLIAC-IV

such as Actus [Per79], C lypnir and CFD [Ste75] (an array processor FO R TR A N).

7.5.3 CLIP 1 -4

University College, London were also interested in detecting particle col­

lisions in bubble cham ber photographs and dem onstrated a 20 x 20 array called

U C P R l [DJT67]. This sum m ed and thresholded 3 x 3 and 5 x 5 neighbourhoods

and could find sharp changes in line orientation.

CLIP 1 [W at74] was a 10 x 10 four-connected mesh of very simple PEs

w ith no local memory. T he P E function set was lim ited to ex traction of closed

153

loops of ones, extraction of ones connected to the image edge and extraction of

the ou ter edge of blocks of solid ones. Inpu t was from a flying spot scanner via a

shift register. The o u tp u ts were displayed on an oscilloscope.

CLIP 2 [Fou87] which was com pleted in 1972 was a much more general

system comprising a 12 x 16 six-connected array of PEs containing two one bit

ALUs each capable of generating all 16 boolean functions of two variables. One

processor provided the neighbourhood o u tp u t which was fed to the six neighbours

and the o ther provided an o u tp u t which could be displayed or fed to one of two

im age memories for use by la ter processing. A lthough the processors were more

general, there was no way of selecting d a ta in p u t from a particu lar direction since

all neighbourhood inpu ts were routed via an OR gate.

CLIP 3 [DWFS73] replaced the O R gate inpu t selector w ith gated di­

rection inpu ts, so th a t the d a ta source direction could be explicitly defined in

the m achine code. A 12 x 16 array was built which supported bo th six and

eight-connected meshes. Each P E had 16 bits of local memory.

The early CLIPs were really only dem onstration machines. T heir appli­

cation was lim ited due to the small array size. CLIP 4 [FG80] was designed as

a 96 X 96 array of processors w ith functionality similar to th a t of CLIP 3. A

full custom integrated circuit containing eight PEs using about 3000 gates was

specified in 1974, bu t a full speed pro to type array was not available until 1983

due to a series of problem s w ith the chip fabrication. The CLIP 4 P E is sim ilar to

th a t of CLIP 3 w ith the addition of a carry b it to assist in grey scale arithm etic.

T he dual boolean processors were reta ined , and the local memory increased from

16 to 32 bits. The CLIP 3 analogue threshold gate was replaced by a simple OR

gate since a digital th reshold gate would have consumed as much silicon area as

th e rest of the processor.

CLIP 4 was available commercially from Stonefield Electronics and there

have been sales to the US military.

7.5 .4 CLIP 7

The CLIP 7 chip is designed to support varying degrees of local autonom y

allowing some freedom from the confines of SIMD processing [Fou87]. It is a

word parallel device containing a 16-bit ALU capable of perform ing addition,

sub trac tion and all 16 bitwise functions of two variables, a 16 bit shift register to

suppo rt logical and arithm etic shifts and logical ro tates, four 16-bit registers, a

16-bit C register th a t m ay be used for local function control or as a d a ta register

154

and an 8-bit D register for d a ta I /O . N eighbourhood registers store d a ta from the

eight connected neighbours and com m unication is via bit serial connections so as

to reduce the p inout of the device.

A part from its word parallel s tru c tu re , the m ain novelty of the CLIP

7 chip is its ability to locally modify the broadcast instruction stream using the

contents of the C register. An external pin is used to set the operation mode as

either global (in which case the C register is available for d a ta storage and no

control m odification occurs) or local. In local mode the contents of the C register

are used to control the following modifications:

1. disable P E — an activity bit can be set on carry, overflow, zero or sign and

used to disable the PE.

2. ALU operation — the carry inp u t can be either the previous carry ou tpu t

or the o u tpu t of bit 2 (this is used for m odulo 8 arithm etic which is required

for direction calculations).

3. register address — two bits of the C register may be used to address one of

the four d a ta registers. This provides locally modifiable indexed addressing,

although w ith such a small register set its usefulness m ust be lim ited in a

single P E array. The prototype system uses two CLIP 7 chips per P E with

one dedicated to local address generation.

4. connectivity control — eight bits of the C register are used to enable the

eight-bit serial neighbourhood inpu ts. The bo ttom three lines can be used in

grey scale mode to address one of the eight on-chip neighbourhood registers.

T he chips are being used to construct CLIP 7A, a 256 x 1 array of PEs. Each

P E uses two CLIP 7 chips, one to generate addresses for the 64K byte of local

m em ory and the o ther to perform the pixel calculations. It is intended th a t CLIP

7A will be the first of a series of machines th a t will be used to investigate locally

autonom ous arrays and P E interconnectivity.

7.5 .5 T h e ICL D A P

The DAP is an array processor add-on to the ICL 2900 range of pro­

cessors. The production system, first delivered in 1980, consists of a 64 x 64

four-connected array. Each P E contains a full adder, a carry b it, an activity bit

th a t may be used to disable PEs for conditional processing, a Q bit th a t latches

the sum o u tpu t of the full adder and 4k b it of local memory. The first description

155

of the system was in 1973 [Red73] and a p ro to type 32 x 32 array built from MSI

T T L was available by 1976.

As well as th e nearest neighbour connection netw ork, the DAP has row

and colum n buses which may be used to b roadcast d a ta and instructions to large

num bers of P E ’s simultaneously. The host 2900 sees the DAP as a norm al 2M

byte m em ory array, and the row bus is used to access the local m em ory of 64 PEs

a t a tim e, appearing as a single 64-bit word fetch to the 2900. This facility helps

overcome the inheren t I /O problem of SIMD processor arrays.

The cost of a DAP in 1980 was about i ’500,000 on top of the cost of

the host 2900, bu t th e ex tra memory provided by the DAP would have cost a

significant p a rt of th is figure anyway [HJ81]. A VLSI im plem entation of the DAP

is now available from Active Memory Technology L td in the form of the M iniDAP

add-on to Sun and Vax hosts. It uses a CMOS full custom chip. There is a bipolar

version of the design (M ILDAP) for m ilitary applications. The chips are intended

for use in 32 X 32 arrays. There has also been a proposal for a bit slice word

parallel processing elem ent, bu t it is not clear if th is design is going ahead.

7.5 .6 T h e G ood year M P P

The M assively Parallel Processor is designed to process LANDSAT-D

satellite images a t real tim e speeds. This requires a processing ra te in excess

of 10® operations per second [HJ81]. A clustering benchm ark dem onstrated by

Coodyear has achieved processing rates about 1400 tim es faster th an a VAX

11/780. The m achine is a 128 x 128 four connected array of DAP like processing

elem ents [Bat80]. T here are no broadcast buses and d a ta I /O is from the left

edge to the right. D uring I /O the M PP P E s act as 128, 128-bit shift registers.

There is a global b roadcast facility. The m ajo r enhancem ent over the DAP P E is

the addition of a program m able shift register (analogous to the Q -register in the

2900 bit slice elem ent) which is used to im prove m ultip lication tim e using B ooth’s

algorithm . The execution frequency of the array is lOMHz (the DAP runs at

5MHz, CLIP 4 a t 2.5M Hz) and it can perform a 32-bit floating point m ultiply in

60/i.s.

M PP is im plem ented using full custom VLSI w ith eight processors per

chip. Two external 4k b it RAM chips provide the Ik bit per P E storage. Since

the RAM is off chip, im provem ents in com mercial m em ory technology will allow

increases in local storage. An interesting feature of the M PP is the provision of

four additional redundan t columns th a t can be switched in after a failure in one of

156

the norm al columns. This should significantly increase the M T B F of the system.

7.5 .7 T h e N C R G A P P chip

N CR has produced the first in a series of array P E chips, the Geom etrical

A rray Parallel Processor (G A PP) [DT84,NCR84]. The processor is a simple full

adder four-connected to its neighbours via a com prehensive sw itching network

and to 128 bits of local on-chip memory. Connection to ex ternal m em ory is

possible, bu t external cycles will be at least an order of m agnitude slower than

local accesses. T he first G A PP chip in tegrates 72 of these processors in a 6 x 12

m atrix . This very high level of in tegration is expected to increase to a 2048 PE

chip by the early 1990’s. 5MHz and lOMHz parts are available.

7.5.8 T h e G EC G R ID

The GEC R ectangular Image and D ata processor (G R ID) resu lted from

collaboration between Southam pton University and the GEC H irst Research Cen­

tre [RM82]. It is intended to in tegrate 64 PEs (requiring some 50,000 transisto rs)

onto a single chip which will run at lOMHz. The P E is essentially conventional

w ith a single b it ALU and a block of local memory. The novel aspects of the

GRID concern its connectivity features. F irstly the local RAM is dual ported ,

thus speeding two operand calculations. Secondly the individual PE s m ay be ad­

dressed using X-Y addressing to access a single P E and row /colum n broadcast

as in the DAP. Thirdly, although the array is basically four connected, the carry

b it can be rou ted to diagonal neighbours thus providing a lim ited eight connected

pathway. F inally a h istogram bit H is present in each P E wired across the chip

as a shift register.

7.5.9 T h e M IT con n ection m achine

T he Connection M achine [Hil85] p ro to type contains 65536 P E s arranged

as a 12 dim ensional n-cube. The a ttractive p roperty of the n-cube connection is

th a t for a hypercube of dim ensionality N each node is connected to N o thers and

the m axim um num ber of links between two nodes is N . Each chip contains 16

PE s, and stric tly speaking the hypercube connectivity is only present a t the chip

level, i.e. betw een the 4096 chips (note th a t 4096 is 2^^). W ith in each chip 4 x 4

array of single b it PEs is connected via a message passing rou ter chip. T he rou ter

can accept four messages per cycle, and will direct the messages off chip in to the

157

hypercube network if necessary. T he m achine is being com mercially developed by

the Thinking M achines C orporation .

7.6 Systolic arrays

The te rm systolic array was coined by K ung and associates a t Carnegie-

Mellon University [KL79]. In its purest and m ost generally understood form a

systolic array comprises a two dim ensional array of non-program m able processors

acting like a two dim ensional pipeline. The only control signal required is a clock.

D ata is fed in at the edges of the array and passes through being transform ed

en route. The technique is especially applicable to algorithm s th a t require long

range calculations in the resu lt such as m atrix m ultiplication. T he array needs

to be filled and flushed like any o ther pipeline, and as a result th e technique

is m ost useful when high speed repetitive calculations are required. T he term

systolic refers to the ‘p u m p e d ’ na tu re of the d a ta pathways and is a reference to

the pum ping action of th e heart.

Recently, workers have produced more and more complex system s with

locally autonom ous processors, inter-processor queues and local d a ta loops. These

system s, typified by W A RP [Kun84], are not easily distinguishable from more

general pipeline processors and it would perhaps be best to re ta in the te rm systolic

for the sim pler non-program m able devices.

Simple systolic arrays are very am enable to VLSI im plem entation. The

prim ary constrain ts on any VLSI project are (a) transisto r count, (b) pinout

and (c) routing requirem ents. In a macroscopic design active circuit elements

(transisto rs) are expensive and interconnect (wire) low cost. At the silicon level

the two dim ensional n a tu re of the m edium along w ith the large relative size of

interlayer contacts m eans th a t w iring can consume a considerable area (typically

60% in a m odern m icroprocessor [WE85]). Long distance wiring on the chip also

slows the cycle tim e of the device. To propagate a signal across a lO^mm die

such as th a t used for the device described in C hapter 10 can take m ore than 10

transisto r switch tim es. T he sim ple systolic array can be constructed from small

cells th a t b u tt together w ith no global wiring — a so-called tiling architecture.

Systolic arrays are also p rim e candidates for im plem entation using W afer Scale

In tegration (W SI) when th a t becom es technically feasible.

G EC at the H irst Research C entre in association w ith the R SR E are

producing a set of bit serial systolic arrays including a correlator and a convolver

[MM82]. W orkers at P u rd u e and Carnegie Mellon [Kun84] have shown how various

158

classes of algorithm s m ay be au tom atically m apped onto systolic array architec­

tures.

7.6.1 W arp and P S C

Recent systolic work at Carnegie Mellon has concentrated on two more

general pipelined system s — the W ARP pipeline processor and Program m able

Systolic Chip (PSC).

W arp consists of a linear pipeline of 32-bit processors buffered by FIFO

queues. Each P E contains a W eitek W TL1032 m ultiplier and a W TL1033 ALU

[Wei84b,Wei83b,Wei83a]. These are 32-bit IE E E standard floating point chips

which use a five stage in terna l pipeline to produce a new result every two clock

cycles. E xternal pipeline registers are connected via a crossbar switch to a 4k X 32-

bit d a ta RAM which can store in term ediate results and lookup table coefficients.

The ten cell p ro to type is capable of lOOMFLOPS. A 5 x 5 convolution

kernel can be pipelined at the ra te of one every microsecond, and a 512 x 512

im age can be processed in about 250ms. The use of the W eitek units and the

F IFO s to sm ooth d a ta transfer make W arp a very high perform ance scientific

processor which can perform pipelined com plex F F T s at the ra te of one every

615/xs. However, the excellent (and expensive) floating point capability is probably

overkill for m ost im age processing applications.

The PSC device is in tended to be used in two dim ensional arrays th a t

are much closer to the original systolic concept th a n in the case of W arp. Each

chip contains an 8-bit ALU, an 8-bit in p u t/1 6 -b it ou tpu t m ultip lier/accum ulator,

th ree 8-bit d a ta inpu t po rts and three 8-bit d a ta ou tpu t po rts [FKM*83]. The

m ost intriguing feature of th e chip is the provision of a 64 word w ritable microcode

store and an associated stack based sequencer w ith a 64 word register block for

d a ta storage. This allows the processor to locally execute its own program , and

therefore is much more general th an the CLIP 7 chip which only effectively allows

for local address m odification and carry in p u t control. In CLIP 7A all control flow

is still centralised in the classical SIMD fashion, although fu tu re versions of the

system may be partitionab le in a m anner sim ilar to th a t of PASM (see below).

7.7 M IM D m ultiprocessors

It is difficult to p resent a system atic survey of MIMD systems because the

available degrees of freedom provide a very large space of possible configurations.

159

In particu lar;

1. the processing elements are not usually lim ited to the simple bit-serial de­

vices th a t array processors favour,

2. m ore general interconnection schemes are used,

3. varying degrees of coupling exist betw een the processing elements.

In an array the PEs are in lockstep, i.e. they all share the same instruction

stream . This is the case even in the case of CLIP 7A where the instruction stream

is only locally modifiable by address m ode and ALU function. In a close coupled

m ultiprocessor the processing elements are executing at similar rates and share

some m em ory so th a t d a ta may be exchanged synchronously and at high speed.

Loose coupled m ultiprocessors provide (possibly asynchronous) com m unication

channels betw een processors, and da ta in terchange is by message passing modelled

on the trad itional I /O read and write operations.

In th is section the early Carnegie M ellon m ultiprocessors C .m m p and

CM* are described, followed by the im age processing com puters P IC A P and

PASM and finally a brief review of cone and pyram id architectures.

7.7.1 C om m u nication netw orks for m ultiprocessors

The m ultiprocessor systems described so far have used provided local

connections to four, eight or six neighbours. In some cases row joining is available

(ILLIAC IV, GRID histogram network), o ther m achines provide broadcast facili­

ties a t the row or column level (DAP and G R ID) and in one case (the Connection

M achine) a long range hypercube network is p resent to allow global interchange

of data . Low level window based image processing operations fit such machines

well. However, real vision problem s require considerably more complex processing

th an th a t provided by window operators, and th a t this often takes the form of

gathering together inform ation from d isparate p a rts of an image, in o ther words

long range com m unication is required.

One way of providing such capability is to provide a conventional sequen­

tia l host which can access the local m em ory of the PE s. The ICL DAP and NPL

LAP 2 [McC85] adopt this approach. This im poses a hierarchy on the system and

the program m er has two system s (supporting two completely different program ­

ming paradigm s) to control. Some high level language compilers (such as ACTUS

and D A P-FO R TRA N which will be discussed below) provide a unified notation,

bu t it is a ttrac tiv e to consider the design of a system w ithout hierarchy where the

160

PE s can com m unicate over long distances and m ay be highly autonom ous, i.e.

MIMD system s in F ly n n ’s taxonomy.

Considerable research effort has been expended on the investigation of

com m unication networks for m ultiprocessors. For small num bers of processors it

may be possible to provide com plete interconnection such th a t every processor is

connected to each of its neighbours. The cost of the interconnect rises as and

the size of the processing element is also likely to rise as n for large n because the

m ultiple interfaces will dom inate over the processing circuitry itself. At the other

extrem e all processors may be connected to a single bus. This provides to tal

interconnectivity w ith no routing overhead bu t will suffer from bus contention

since only one processor-processor com m unication may be in progress at a time.

A m odern bus specification will however have a high bandw idth relative to the

in struc tion execution frequency of conventional serial processors, so for algorithm s

requiring lim ited intercom m unication the bus may be just as fast as a m axim ally

connected network. T he commercial ELXSI m ultiprocessor [Ste87] adopts this

approach by in terconnecting up to 12 fast processors over a 320M byte per second

64-bit databus.

In particu la r cases, either of the above extrem es may provide the best

com prom ise between perform ance and cost. However, for system s containing large

num bers of processors (say > 10) neither is likely to be very satisfactory — on

the one hand a bus will probably be reaching satu ration , and on the o ther the

cost of (say) 90 in terprocessor buses may well be greater th an the cost of the ten

processors. A cost effective solution is likely to lie w ithin the space of partially

connected networks.

7.7 .2 Logical and physical netw orks

The bus is logically equivalent to the maxim ally connected net in th a t

there is a direct connection between all processors in the system. Segm enting the

bus architecture into m ultiple buses implies the need for routers to connect proces­

sors on independent segm ents. Given th a t routers exist to connect all sub-buses

together then the segm ented bus is logically equivalent to a physical m axim ally

connected net, bu t w ith a tim e overhead. If some parts of the processor m atrix

were isolated then some processors would be unable to intercom m unicate.

If two bus structu res are logically equivalent then they are able to sim­

u la te each other, bu t usually there will be a tim e penalty. Given a network

com prising nodes th a t m ay process and route, the degree of a netw ork is defined

161

as the num ber of links connected to each node and the diam eter of the network

is defined as the m axim um num ber of links separating two nodes. For a given

num ber of nodes, increasing the degree will reduce the num ber of steps required

to rou te a m essage between processors on opposite sides of the network. Routing

will absorb resources a t the routing node and delay the p ropagation of messages.

T he bus is degree one, d iam eter one. A m axim ally connected net of n processors

is degree n — 1, d iam eter one. A hypercube of 2” processors has degree n and

d iam eter n and provides a good compromise between cost and routing overhead.

7.7 .3 C .m m p

T he C .m m p system [WC72], com prised 16 PD F 11/40E processors con­

nected to 16 shared m em ory modules via a crossbar switch. T he to ta l physical

address space was 32M bytes. The 11/40E processors were modified to make user

execution of instruc tions such as HALT, R ESET and RTI (re tu rn from in terrup t)

illegal, to allow bounds checking on the stack pointer, and to provide an extended

w ritable control store. Backing store, in the form of four 40M byte disk drives,

was a ttached to the U nibus of specific processors. A processor could not in itia te

I /O on a drive th a t was not connected to its own Unibus, i.e. peripherals were

not shared.

As well as the processor-m em ory crossbar, an interprocessor bus was used

to provide a com mon clock and common interprocessor control. The clock lines

provided a 60-bit clock counter updated at 250kHz which was m ultiplexed onto

a 16-bit datapa thw ay and read into four sixteen bit registers on each processor.

T he operating system (called H ydra) made extensive use of th is clock counter to

generate unique nam es w ithin the system. The top four bits of th e m ost significant

local clock register were set to the address of the processor. T he interprocessor

bus also provided in terprocessor in terrup ts and control. Each processor could

h a lt, in te rru p t, continue or s ta r t any processor, including itself.

T he v irtual address range of a PDP-11 is lim ited to 64K bytes, and this

was one of the m ajor lim itations of the C .m m p. The already ra th e r baroque

m em ory m anagem ent scheme of the 11/40 was m ade even more complex with

the provision of a 25-bit shared address space accessed via th e crossbar which

autom atically queued m em ory requests when contention occurred. It was planned

to add caches to each of the processors, bu t this was not in fact im plem ented.

T he basic intercom m unication m echanism in H ydra was the channel —

an I /O like link between two processes analogous to the m ailbox in VMS and

162

the message queue (M Q) device in RT-11. This was im plem ented using the same

protocols as for I /O processing, providing a unified program m ing environm ent for

interprocessor and periphera l com m unication. Since this message passing protocol

was inefficient for transferring large blocks of d ata , locks and sem aphores were also

provided to control access to shared memory.

7.7 .4 CM *

CM* [FOR*78] is also constructed out of PD P-11’s — in this case the

LSI-11 chip set. Unlike C .m m p, the processor-memory s truc tu re is hierarchical,

and as a result a large system w ith m any processing elements could be practically

considered. However, each processor can directly address all of the available main

m em ory bu t not a t uniform ly fast speeds. The basic P E (called a C om puter

M odule or CM) com prised an LSI-11 with local memory and I /O devices on a

local Q-bus. Essentially th e only difference between a CM and norm al LSI-11

processor was the in sertion of a switch between the processor and the Q -bus th a t

could either route addresses to the Q-bus with relocation, or route to a m ap

bus. Each m ap bus connected up to 14 CM ’s to a K m ap. This ensemble was

referred to as a cluster, and m ultiple clusters could be used in a single system .

The K m aps were ra th e r complex microcoded processors each com prising some

750 MSI chips on six cards. The reason for all this complexity was to enable CM*

to sim ulate m any arch itectu res easily, and in particu lar to research th e v irtual

addressing and m em ory pro tection requirem ents of m ultiprocessor system s.

CM* has been used for speech recognition [JCD*78], solution of partia l

differential equations by finite differences [Bau76] and to im plem ent a subset of Al­

gol 68 w ith extensions to allow concurrent execution of tasks and synchronisation.

The Algol 68 system has been used to investigate the autom atic decom position of

tasks.

7.7.5 P IC A P I and II

PIC A P-I and II [KDC82] are processors specifically designed for image

processing at Linkoping University.

A prelim inary P IC A P I prototype was completed in 1973 bu t the final

system was not ready un til 1975. It was fundam entally a SIMD m achine operating

on 64 X 64 arrays of four-b it pixels. The 64 x 64 array was m appable w ithin a

TV fram e containing 512 x 640 square pixels. Crey scale range and sam pling

density were program m able, so a full screen 64 X 64 image could be obtained or

163

a high resolution sub-im age. Nine im age planes were available.

The P IC A P-I instruc tion set breaks down into four categories:

1. 3 X 3 convolution,

2. pointwise arithm etic between separate im age planes,

3. tem plate m atch,

4. I /O .

The convolution m ultiplies each elem ent in a 3 x 3 window by a coefficient, sum s

the results and norm alises by dividing by an appropriate power of 2 (t.e. by

shifting the sum right).

The pointwise arithm etic in struc tion replaces the nine window elem ent

inpu ts of the convolver w ith pixels from each of the nine image planes and then

perform s the transform ation as for convolution.

The tem plate m atch employs an associative m atch un it to search through

up to eight supplied tem plates. The tem plates are 3 x 3 arrays of integers,

and during the associative search each tem plate element is com pared against its

corresponding picture elem ent. The less th an , greater than , equal to and don’t

care relations are all available.

The above array operations may also be applied sequential to the im age

in a top-left to bo ttom -righ t scan.

Finally, a set of hardw are counters are provided th a t (a) collect grey-level

h istogram d a ta and give the m axim um , m inim um and average of the d istribu tion ,

(b) count the num ber of hits on each of the eight tem plates and (c) track the m ax­

im um and m inim um coordinates of tem plate h its, thus providing the m inim um

rectangle enclosing all hits in an image.

PIC A P-I has been used to inspect prin ted circuit boards, fingerprints

and to detect m alaria parasites.

PIC A P-II is a bus based m ultiprocessor w ith a 40M b y te /s bandw idth

synchronous bus. M ultiple m em ory m odules are used with interleaving, i.e. m em ­

ory words w ith consecutive addresses are located in different modules. A m ax­

im um of 4M byte of error-correcting m em ory is available. Four m ain processor

blocks are available along w ith video I /O and graphics display:

1. filter processor, a generalisation of the convolution operator available in

P IC A P-I to neighbourhoods of any size.

164

2. logical processor, a generalisation of the PIC A P-I tem plate search instruc­

tions to allow eight-bit pixels and allow virtually any logical com bination of

neighbourhood pixels,

3. binary logical processor, a fast processor dedicated to logical operations on

packed binary im ages,

4. m easurem ent and region processor, which looks for connected regions and

m easures perim eter, ex ten t and area for each of them . It can label each

region uniquely and produce chain code of their outlines. N ested regions are

handled correctly and connectivity graphs can be produced of prelabelled

regions.

An Algol like language called P P L has been designed to program th e system . It

has an editor, increm ental com piler to in term ediate code and an in te rp re te r which

together provide an in teractive program development system.

7.7.6 PA SM

PASM (P artitionab le SIM D /M IM D) [KS86], is a proposal for a large

scale SIMD machine in w hich p a rts of the SIMD array (referred to as partitions)

may conditionally execute from different control units. This is m ore general than

the CLIP 7A design which allows conditional local modification of the in struc tion

stream from a single control un it.

A PASM system com prises a Parallel C om putation U nit (P C U), a set

of m icrocontrollers which provide the instructions stream s for the PC U , a set of

backing store devices controlled by a m em ory m anagem ent system and a host

com puter.

The PCU contains iV = 2" processors, N memory m odules and an in ­

terconnection network. The N PC U processors are controlled by Q = 2’ m icro­

controllers (M C). Each MC controls N / Q processors which defines the size of a

processor partition . Each p a rtitio n has an independent control un it, so PASM

may be considered a MIMD system where the processors are sm all SIMD arrays.

PASM can sim ulate larger SIMD arrays by loading the same code in to m ultiple

partitions, i.e. into m ultiple control units. Possible values for N and Q are 1024

and 16 respectively.

Com m unication between processors is achieved via the switching ne t­

work which allows m em ory to be shared am ongst various processors. The m em ­

ory modules are double buffered to allow sim ultaneous processor and file system

165

access.

7.8 Cone and pyram id architectures

It is clear th a t a (possibly ill-defined) hierarchy exists in the classical

p a tte rn recognition process. At the lowest level we have sim ple pixel level oper­

ations such as edge enhancem ents and sm oothing th a t are applied right across

an image. The results of such operations which do not differentiate between the

p arts of the im age are then processed to detect local features such as corners and

p arts of edges, a t which point large parts of the original im age are discarded in

favour of a higher level representation. Local features may be grouped in to more

global features and so on until the representation of the im age is in term s of a

specific classification.

Simple SIMD machines are useful at the lower levels, bu t become in ­

creasingly inefficient a t the higher levels. A SIMD machine in which one processor

handles each pixel will become progressively idle as more and more of the picture

is discarded, and eventually a single SIMD P E will be operational. Since SIMD

P E ’s are usually slow and simple devices, the m achine will run slowly com pared

to a conventional sequential processor.

Several m achines have been proposed and built which incorporate ex­

plicit hierarchy in an effort to sm ooth the transition from space parallel to se­

quential processing.

[Uhr78] described a recognition cone structu re which com prised a series

of 2-D d a ta memories interconnected by transform layers. A transform layer took

the d a ta from the m em ory below, processed it in some way and passed it up

to the memory above. The transform layer was conceptually a SIMD processor

operating on all of the points in the layer below. At each stage resolution could

be reduced, giving a cone of layers converging at the ou tpu t term inal. This cone

could be thought of as a pipeline of SIMD processors. The th roughpu t of the cone

would be lim ited by the slowest processing layer, as norm al for a pipeline.

Hanson and R isem an [HR74] described a generalisation of U hr’s recogni­

tion cone called a processing cone. In this structu re , the transform layers perm it

la tera l d a ta movement and d a ta flow down the cone, in addition to movement up

the cone.

Cone architectures call for m ultiple connections to each processing ele­

m ent in the transform layer because the resolution reduction properties require

the use of 5 x 5 or larger inpu t windows. A more restric ted class of machines

166

called pyram id machines [TK80], [Dye82] restric t the local interconnections to

either four or eight la teral neighbours, four sons and a father. They are believed

to be as general as the processing cone, and are m anifestly m ore economically

feasible.

P yram id m achine may be used to m ap various d a ta s tru c tu re representa­

tions of n im age onto hardw are such as the quadtree, the roped quadtree [HS79b],

overlapped quad tree, and colour, edge and tex tu re pyram ids [Lev80]. These rep­

resentations have been used for region analysis, hierarchical searches and image

com pression for transm ission.

A particu la r feature of pyram id m achines is th a t they are able (due to

their very regular architecture) to exploit VLSI technology, bu t they overcome the

lim itations of trad itio n a l SIMD arrays, i.e. lack of long distance connections and

high degree of parallelism which is unsuitable for m ore sequential algorithm s. Long

range com m unication in a pyram id m achine may be sim ulated by propagating up

the tree and then back down to the working layer.

7.8.1 P C L IP

The P C L IP machine [Tan83] is a sim ulation of a 32 x 32 base pyram id

running on a VAX processor. The sim ulated bit-serial P E ’s accept inputs from

th irteen neighbours and process them using boolean p a tte rn m atching. There are

three 1-bit registers per cell and a local m em ory of 128 bits. The Propagation

Register is accessible to neighbours, the C ondition Register is used as an activity

flag, causing the P E to ignore all instructions except those causing a transfer of

da ta into the condition register. The Target Register receives the result of a m atch

instruction .

M atch instructions compare a vector of 15 bits from the controller to

the 13 neighbourhood inputs plus the local T and P bits. A second 15-bit vector

(called the m ask) is used to indicate don’t care positions.

A lgorithm s have been described for pyram id form ation, selection and

segm entation and region colouring. In particu lar the region colouring algorithm

requires 0[logJ9] steps on the PCLIP and 0[D] steps on a conventional SIMD

array such as CLIP-4.

167

control
distribute

condition
evaluators

processors

arbitrate
data

distribute instruction cells

7.9

Figure 7.4: A dataflow machine

D ata flow processors

Von N eum ann architectures and the Non-Von N eum ann m achines de­

scribed so far all belong to the class of control flow com puters, in which the pro­

gram has complete control over instruction sequencing. D ata flow com puters do

not have explicit instruction stream s. Instead, instruction packets are constructed

containing an op code and the ‘address’ of operands, and a central controller ex­

am ines these packets. W hen the operands for an instruction become available,

then the packet is routed to a functional unit which perform s the com putation.

T here is no shared memory, which m ean th a t side effects resulting from assignm ent

to global variables are elim inated. D ata flow com putation is purely functional.

O perands are passed directly as tokens instead of addressed variables and dataflow

com putations have no far reaching effects, they are inherently local. O peration

is inherently asynchronous, and this coupled with local com putation and the un­

derlying functional program m ing model make such machines very am enable to

parallel im plem entation. In principle, the addition of ex tra functional un its and

routing paths will autom atically allow the system to make use of the available

parallelism within the algorithm .

A data flow com puter comprises a ring connecting memory, processors,

rou ters and token m atching sections. The processors are fixed functional units

perform ing the trad itional arithm etic and logical functions. In this respect the

processing section is rem iniscent of the CDC 6600 CPU where m ultiple functional

un its are allocated to the in struc tion stream using a hardw are interlock called the

s ta tu s checkboard.

W hen an instruc tion is enabled by the availability of its operands, it is

168

routed via th e a rb itra tio n netw ork to a processor. After execution by a processor

the results are routed back to m em ory by the d a ta d istribu tion network. If m ulti­

ple instruction packets require the results, then m ultiple copies of the d a ta m ust

be m ade. C onditional execution is handled using a set of condition evaluators

th a t are analagous to th e processors. The results from the condition evaluators

are control packets ra th e r th a n d a ta packets, and are inserted in to the memory

units by the control d is trib u tio n network.

T he processors, evaluators and d istribu tion networks operate as a pipeline

connected together by packet switching networks. The delay th rough this packet

switching network is a p rim ary source of potential inefficiencies in a dataflow

com puter.

The critics of dataflow m achines point out th a t norm al program s gener­

ally have very low levels of im plicit parallelism and th a t there is little real speed

advantage to be gained on general applications. It may well be th a t the highly

structu red n a tu re of low level im age processing does lend itself to dataflow m a­

chines.

A nother real problem w ith functional im plem entations in general is th a t

the lack of shared m em ory requires replication of operands. In the case of large

arrays (which are typical in im age processing) this can cause very large am ounts

of processor tim e to be absorbed in array copying.

7.10 G raph red u ction processors

Data-flow m achines are d a ta driven, and operation packets can be exe­

cuted as soon as their operands become available. In a graph reduction m achine,

an operation is only evaluated when the result is required as in p u t for some other

operation. G raph reduction m achines also have an underlying functional repre­

sentation which requires the use of languages w ithout side effects (i.e. functional

languages).

Proponents of g raph reduction m achines claim th a t complex d a ta s truc­

tures are more easily suppo rted and th a t replication of large d a ta s tructu res is

reduced.

A graph reduction m achine comprises a pool (m em ory un it) which holds

the operation packets, and interconnection un it and a series of processors which

individually are conventional Von N eum ann processors. In operation the proces­

sors run asynchronously in parallel taking packets from the pool, processing them

and return ing the results to the pool. T he overall arch itecture is dem and driven

169

Packet
processor

Packet
processor

Packet
processor

in tercon n ection network

pool

Figure 7.5: G raph reduction processor

by the ready sta tu s of the packets in the pool.

The overall block d iagram is very sim ilar to th a t of a general MIMD

processor. It is the way in which the processors interact w ith each o ther (via

the s ta tu s fields of the packets, ra th e r th an via explicitly program m ed shared

variables) th a t characterise the m achine as a graph reduction processor.

7.11 A ssocia tive processors

The ILLIAC III and P IC A P processors incorporated associative capa­

bilities. The te rm ‘associative’ is applied to m emory systems w ith some inbuilt

p a tte rn m atching capability. C onventional memories provide an array of unique

locations th a t may be addressed by location, or coordinate. An associative, or

content addressable m em ory provides an array of locations th a t may be addressed

by content, th a t is a d a ta word can be presented to the associative m em ory and

it will re tu rn a list of locations containing th a t d a ta word.

C onceptually each word in an associative memory chip com prises a con­

ventional memory location n b its wide and an n-b it com parator which checks the

contents of the word against the test d a ta word. The outputs of all the com para­

tors are available at the o u tp u t of the chip, and a full search of the contents of

the chip may be perform ed in tim e ty. -f tc, where tr is the read access tim e of the

memory and tc is the p ropagation tim e of the com parator. T heir m ost common

application is in cache m em ories for conventional processors, and direct support

in the form of special cache-tag RAMs is now available from some m anufacturers

[IDT86].

Large associative mem ories are prohibitively expensive because of the

silicon area consum ed by the com parators and the num ber of pins required to carry

170

the m atch inform ation (in principle one per com parator). As a result com parators

are assigned to a range of d a ta words and ex ternal logic sequences the conventional

address inpu ts to perform a linear search of the range. In this case an exhaustive

search of the stored d a ta may be perform ed in n(ty. 4- tf.) where n is the size of the

range of addresses assigned to each com parator.

7.11.1 Staran

STARAN [Pot82] is a SIMD array of b it serial P E ’s each of which con­

ta ins an X register, a Y register and a 16 function boolean processor. An activity

b it called the M register allows conditional execution of code sections. The local

m em ory is 256 bits wide.

STARAN can have up to 32 arrays of 256 processors each. The arrays

and P E ’s are assigned a unique num ber, so th a t every processor is location ad­

dressable.

In operation , the P E ’s perform local searching (t.e. bit-serial com par­

isons) in their local d a ta space. The results are loaded into the Y register. An

external resolver then associatively re tu rn s the address of the first P E by ordinal

num ber of array and P E to be generated in an in ternal register of the common

control unit, and this inform ation can be used to access the P E for fu rther pro­

cessing. Essentially this perform s an associative parallel to serial conversion.

7.12 H ardw are sum m ary

Im age processing architectures have been dom inated by the use of geo­

m etric arrays and even M IMD type system s show SIMD features. PASM is an

array of SIMD m achines. The pyram id m achines are pipelines of SIMD proces­

sors running a t successively lower resolution. T he use of associative processors

and techniques is of great im portance in database applications and in pa tte rn

recognition proper, bu t is of m arginal in terest in image processing. More general

MIMD systems are difficult to program and m ay be unable to exploit the available

geom etric parallelism im plicit in low level im age processing.

The particu la r problem in im age processing is th a t the simple natu re of

the com putation coupled w ith the very high d a ta rates and tight coupling between

adjacent parts of the im age yield a com putational problem th a t is data , not com­

p u ta tio n , dom inated. Pixel bandw idth rates dom inate over com pute operations.

A 3 X 3 convolution requires nine pixel fetches and only simple accum ulation

171

w ithin the ALU since no in term ediate term s are generated. Even the Sobel only

requires one in term ediate result to be held. This heavy dependence on global

m em ory accesses ra ther than in ternal tem porary register accesses means th a t the

processor cycle will be lim ited to the pixel read cycle. MIMD machines usually

rely on loose coupling between processors (i.e. low com m unication rates relative

to com putation) and this makes them unsuitab le for low level image processing.

On the o ther hand , it is clear th a t the simple processors used in arrays

are unsu itab le for higher level algorithm s, and th a t the perform ance of simple

processor arrays drops sharply as the degree of geometric parallelism is reduced.

M achines such as PASM and CLIP 7A a ttem p t to remedy this by partition ing by

providing sophisticated conditional execution capabilities w ithin the array bu t a

more useful solution m ight be a MIMD system , one or two processors of which

were them selves SIMD im age processors.

172

C hapter 8

P arallelism in softw are

“If we wish to succeed in building large concurrent program s which are
reliable, we m ust use program m ing languages th a t are so well s truc­
tu red th a t a com piler can catch m ost tim e-dependent errors (because
nobody else can).” [BH77]

8.1 In troduction

It is not currently (and may never be) practical to design program m ing

system s capable of catching all parallelism rela ted errors, bu t a variety of program ­

ming constructs have been proposed and im plem ented w ith a view to reducing

the error ra te in concurrent program s. This is analagous to the development of

s tru c tu red program m ing constructs in sequential languages.

This section reviews the fundam ental problem s of concurrency, and then

describes the semaphore^ monitor and rendezvous constructs. M uch of the dis­

cussion involves generalised MIMD type processors. Array processors are by def­

in ition synchronised and therefore m any in teresting concurrency problem s do not

arise. Of course, the penalty for this is the loss of generality leading to low ef­

ficiency (in term s of actual, as a fraction of poten tial th roughpu t) when array

processors are applied to problem s th a t do not exhibit a m atching space paral­

lelism. T he chapter concludes with a discussion of Very Long Instruction Word

(VLIW) m achines th a t present a compromise between array and full MIMD sys­

tem s. A special com pilation technique useful on VLIW and pipelined RISCs

known as trace scheduling holds the prom ise of being able to ex tract high levels

of parallelism from ord inary sequential scientific program s.

173

8.2 T he concurrency problem

On a m ultiprocessor system , or a timesliced uniprocessor, m ultip le tasks,

or processes may be runn ing simultaneously. S trictly speaking, the uniproces­

sor runs processes sequentially, switching contexts under the control of a central

scheduler or by program m ed transfer between jobs. Since the scheduler is driven

by an external clock, the tim e slicing behaviour of the system is effectively inde­

te rm inate , and it is convenient to think of the system as a set of tasks running on

their own processors. ,

If two tasks share no d a ta (or other resources such as tap e drives or

fram e stores) they are said to be disjoint. Execution of the tasks m ay progress

w ith no synchronisation betw een them and at no point is the correctness of the

system reliant on concurren t properties of the program s. The correctness of the

system may be shown by showing the correctness of the two tasks in isolation.

In general, however, tasks need to cooperate. This m ay involve dis­

ciplined access to a peripheral such as a frame store, updating of a common

d a ta base, or transm ission of inform ation between processes. All of these activ­

ities require synchronisation, and optionally da ta transfer. If two tasks are in

a producer-consum er rela tionship then it is necessary for the consum er to wait

until the producer has generated the next da ta frame. In a shared database

environm ent, it is reasonable for m ultiple processes to be reading the database

sim ultaneously, bu t only one process may write at a time. In addition , whilst a

w riter is active, all readers m ust be blocked. Failure to ensure th is m ay result in

a reader reading d a ta which is being updated.

8.2.1 M u tual ex c lu sio n

The most fundam ental problem in concurrency is th a t of m utual ex­

clusion to shared data . T his includes access to o ther shared resources such as

peripherals.

Two processes P I and P 2 access shared data . Only one process at a

tim e is allowed to access the data . If the other process a ttem p ts access, then it is

blocked, th a t is execution is suspended pending release of the data .

T he part of the process in which the shared d a ta is accessed is called

the critical section of the da ta . A protocol is required th a t allows a process to

request en try to its critical section and to signal successful com pletion of the

critical section.

A solution to th e m utual exclusion problem m ust not only ensure th a t

174

th e two processes do not clash, it m ust ensure th a t deadlock cannot occur (th a t is

b o th processes w ait endlessly for the o ther before continuing. It is also desirable

th a t the solution be fair, th a t is a process wishing to enter its critical section will

eventually be allowed to do so. A synchronisation scheme is fair if no process is

delayed indefinitely w aiting on a condition th a t happens infinitely often.

Fairness is especially difficult to ensure when several processes are coop­

erating . Two processes may ‘conspire’ together to lock a th ird process ou t of a

critical section by passing control between themselves. In reality, it is often nec­

essary to use protocols th a t are deliberately unfair, e.g. p rioritisation of in terrup t

requests. In this case, a rapidly in terrup ting process at a high priority will block

out low priority tasks.

8.3 H istorical overview

C oncurrent program m ing problem s first arose in the design of m ultitask­

ing operating system s w ith batch and spooling facilities. Interactive m ultitasking

and user w ritten in te rru p t service routines for real time program m ing were sup­

ported using operating system calls and a m onolithic executive th a t perform s all

tim e critical operations. The FO R K and JO IN program m ing constructs [Ben82j

are im plem ented in m any operating system s such as RT-11 [Dig82] and Unix.

The need for s tru c tu re in sequential program m ing gave rise to a family

of structured p rogram m ing constructs, typified by the D -structures th a t are single

entry, m ultiple exit control structures. In concurrent program m ing, the tim e di­

m ension requires special structu ring constructs. FO RK and JO IN are analagous

to the GOTO in th a t they allow com pletely random creation and destruction of

parallel control flows. T he CO BEG IN-COEND construct allows controlled execu­

tion and destruction of processes. Synchronisation of processes may be achieved

using shared m em ory variables, although the solution to the m utual exclusioti

problem using shared variables is non-trivial. As a result, a variety of synchroni­

sation prim itives have been designed. These fall into two classes: shared m emory

constructs which rely on the existence of high speed memory shared between co­

operating processes, and message passing constructs which reflect a d istribu ted

view of m ultiprocessor systems where common memory may not be available.

The sem aphore [Dij68] is bo th powerful and elementary, and has become

the s tandard by which o ther synchronisation prim itives are judged. The solution

to the m utual exclusion problem is triv ial w ith semaphores. M any languages

including Algol-68 , M odula and Parallel Pascal im plem ent sem aphores.

175

The operating system concept of a centralised executive controlling all

tim e critical operations has been generalised by Hoare into the m onitor program ­

ming construct. A m onitor is a package of sharable d a ta and the routines required

to m anipulate it. M utual exclusion is provided by ensuring th a t only one pro­

cess may enter the m onitor (i.e. be executing a m onitor procedure) at a tim e.

M onitors may use sem aphores in ternally and m ay have synchronisation code dis­

tr ib u ted w ithin them . M onitors have been im plem ented in m any languages includ­

ing C oncurrent Pascal [BH77], Pascal-P lus and M odula-2. F urther s tructu ring of

the m onitor concept yields the path s tru c tu re [CH74], a m onitor like construct

in which all concurrency constrain ts are defined in one place. P aths have been

im plem ented in P a th Pascal.

Recently the message passing paradigm has become increasingly im ­

p o rtan t bo th theoretically and practically due to the arrival of networked asyn­

chronous com puter system s such as w orkstation networks and tran sp u te r system s.

The m ost im portan t message passing construct is the rendezvous which provides

synchronisation and (optional) transfer of inform ation between processes. The

rendezvous forms the basis of H oare’s C om m unicating Sequential Processes (CSP)

[Hoa85] and has been im plem ented in its m ost pure form in Occam, and in an

extended form using rem ote procedure call sem antics in Ada.

8.4 C oroutines

On a uniprocessor control is trad itionally transferred using program m ed

jum ps, subroutine calls and in terrup ts , which m ay be viewed as externally trig ­

gered prioritised subroutines. The subroutine has an im plied hierarchy built in

which does not m atch the sem antics of concurrent execution even though in te rru p t

service routines are a prim e exam ple of concurrent program m ing. In operation,

the contents of the program counter at the point of subroutine call are stored and

control is transferred to the subroutine. At com pletion, the old value of the PC is

restored. This allows a subroutine to be coded w ithout knowledge of the re tu rn

jum p address. However, the subroutine m ust run to com pletion before control is

re tu rned to the main line routine and in th a t sense the subroutine is a slave to

the m ainline routine.

The coroutine generalises this m echanism to provide a non-hierarchical

call-and-return m echanism . Each coroutine has a local P rogram Counter. The

statem ent TR A N SFE R (R O U TIN E) suspends execution of the current routine and

res tarts execution of R O U T IN E at the poin t of last suspension.

176

C oroutines autom atically provide m u tual exclusion between routines.

T here is no preem ptive suspension of routines, so each routine is guaranteed sole

access to shared da ta structures until it explicitly executes a T R A N SFE R () to a

nam ed routine.

However, this determ inistic switch in control severely lim its the useful­

ness of a pure coroutine im plem entation. Consider the classical bounded buffer

problem . A buffer is required between two processes — the consum er and the

producer. T he producer inserts item s in to the buffer, and the consum er removes

them for processing. The whole point of the buffer is th a t the processes should

be decoupled — the only tim e a consum er should block is if the buffer is em pty,

and the only tim e a producer should block is if the buffer is full. W ith coroutines,

the processes are constrained to taking stric t tu rn s to access the buffer and so the

processes are not decoupled.

It is possible to use coroutines to construct queueing and ring scheduling

m echanism s [Wir83] so th a t for a uniprocessor coroutines can sim ulate sem aphores.

However, the sem antics of coroutines do not adequately describe the operation of

a true m ultiprocessor since by definition only one coroutine can be executing at

a tim e.

8.5 T h e com m on m em ory arbiter and busy w ait­

ing

Processes may synchronize by setting and unsetting flags in common

memory. Inheren t in such mechanisms is some idea of a hardw are interlock called

a common m em ory arbiter th a t ensures th a t the results of two processes w riting

to the sam e location sim ultaneously are consistent w ith the result of them w riting

sequentially. This means th a t if P I a ttem p ts to write a 1 to a location and

P 2 a ttem p ts to write a 0 then the result should be either a 1 or a 0, not some

corrupted value such as -1. This is ensured by the underlying hardw are. The

execution order of the processes access is unknown.

It tu rn s out th a t correct solutions to the m utual exclusion problem using

simple access to shared variables is non-triv ial. T he most well known solution is

D ekker’s algorithm [Ben82] which requires a flag variable for each process and an

a rb itra tio n variable. It has been generalised for N processes by D ijkstra.

A sim pler solution is provided by P ete rson ’s algorithm [Ben82]. Lam ­

p o r t’s algorithm s [Lam74] have the useful p roperty th a t the flag variables need

177

only be w ritten by one process which m ay reduce m em ory contention tim e.

The com m on feature of all these algorithm s is th a t a blocked process

cycles waiting for a shared variable to change sta te . This is referred to as busy-

waiting, or spinning, and naturally consumes processor resources. In an envi­

ronm ent where each process has its own processor this still im plies a loss of

th roughpu t because busy waiting will consume shared m em ory bandw idth . The

sem aphore and m onitor constructs im plem ent queueing of blocked processes which

does not consume processor cycles unnecessarily.

As well as consum ing processor cycles by busy-w aiting, these solutions

are difficult to use in practice because of the com plexity of their working and

because there is not necessarily a clear d istinction between process variables for

synchronisation and norm al da ta storage. Hence busy-w aiting algorithm s are

unstruc tu red both in term s of control and d a ta structu res.

8.6 Sem aphores

A sem aphore is a variable th a t can take positive integer values and zero.

The only operations allowed on a sem aphore are in itia lisation, w a it (s) and s ig ­

n a l s) [Dij68]

The operations are defined as follows:

w a i t (s) IF s > 0 THEN s : = s - l ELSE (su spen d c a l l i n g p ro c e s s)

s ig n a l(s) IF (a p ro c e s s P has been suspended by a p re v io u s w a it

on t h i s sem aphore) THEN (re s u m e (P)) ELSE s := s + l

In use a sem aphore is associated w ith each synchronisation condition.

Typically one sem aphore is required per critical section. M utual exclusion with

sem aphores is trivial. T he following exam ple dem onstrates m u tual exclusion be­

tween two processes A and B with critical sections criticaLA and criticaLB:

s: SEMAPHORE;
PROCEDURE A;

BEGIN
REPEAT

w a i t (s) ;
c r i t i c a l _ A ;
s i g n a l (s) ;
{ o th e r n o n - c r i t i c a l code }

UNTIL f a l s e ;
END;

PROCEDURE B;
BEGIN

178

REPEAT
w a i t (s) ;
c r i t i c a l _ B ;
s i g n a l (s) ;
{ o th e r n o n - c r i t i c a l code }

UNTIL f a l s e ;
END;

BEGIN
s : = l ; { i n i t i a l i s a t i o n o f sem aphore}
COBEGIN

A; B;
COEND

END.

The synchronisation details are hidden by the im plem entation , freeing the pro­

gram m er to think abou t the higher level aspects of the problem .

. w a i t and s ig n a l are prim itive (unin terrup tib le) operations and there­

fore exclude each o ther. M any com puters such as the IBM 360/370 and the 68000

have un in terrup tib le test-and-set instructions th a t can perform sem aphore im ple­

m entations and directly ensure m utual exclusion of sem aphore variable m anipu­

lations. More advanced machines such as the VAX have un in terrup tib le enqueue

and dequeue instructions. Test and set instructions can handle the mechanics of

m anipulating the sem aphore variable correctly bu t offer little assistance in the

im plem entation of su spend / resume mechanisms. The description of signal and

w ait above has deliberately been couched in term s of process suspension. A more

trad itional definition of the sem aphore operations is

w a i t (s) REPEAT UN TIL s>0; s : = s - l ;

s ig n a l(s) s : = s + l ;

The behaviour of these prim itives is equivalent to the earlier defini­

tion bu t implies busy-w aiting which is undesirable. Real im plem entations of

sem aphores associate a queue of processes w ith each sem aphore. A process per­

form ing a w a it(s) pu ts itself on the queue for s if s is zero and relinquishes

control of the processor. A process perform ing a s ig n a l(s) activates a process if

the queue is non-em pty, otherw ise it simply increm ents the sem aphore variable.

This ensures th a t a suspended process consumes no processor tim e. The only

overhead is the m em ory required to hold one process control block per blocked

process. The VAX enqueue and dequeue instructions ensure m utual exclusion of

sem aphore queue updates.

179

8.7 M onitors

A m onitor [Hoa74] is a m odule th a t packages the definition of a share­

able resource and the operations th a t m anipulate it. Condition synchronisation

w ithin the m onitor can be achieved using sem aphores or one of a variety of o ther

synchronisation prim itives. T he synchronisation prim itives are not available o u t­

side m onitor blocks. A m onitor contains a set of sta tic variables which are only

accessible to routines w ith in the m onitor, a set of callable procedures for m anip­

ulating them and a m ainline routine th a t is executed as in itia lisation code by the

run tim e system at s ta r tu p . All m onitors are initialised before the user’s m ain

line program s ta rts executing. T he callable procedures may have param eters th a t

are in s tan tia ted at call tim e. M onitor routines are m utually exclusive by defini­

tion, hence interleaved execution of m onitor routines need not be considered when

establishing the correctness of a concurrent system using m onitors.

M onitors are derived from the operating system executive concept wherein

all tim e dependent activities are perform ed by the executive on receipt of a system

call. M any systems use synchronous in te rru p ts or traps to activate these services

allowing a centralised despatcher to field bo th systems calls and external in te r­

rup ts . Such an executive is term ed a monolithic monitor. Since there is only one

m onitor controlling all resources, two processes vying for use of, say, a disk drive

may block a process requiring m em ory allocation. The m onitor itself becomes a

bottleneck since unrela ted synchronisation activities are coupled together. This

is a practical problem in uniprocessors, and becomes absolutely unacceptable in

m ultiprocessor systems.

H oare’s m onitors are d is tribu ted , and in general one m onitor will be

used to control each independent resource. This allows decoupling between con­

curren t processes. The m onitor concept lends itself well to im plem entation via the

software packaging m echanism s present in m any m odern languages such as Mesa

[MMS79] and M odula-2. Indeed W irth ’s s tan d ard library [Wir83] for M odula-

2 includes a im plem entation of m onitors and semaphores th a t requires almost

no extensions to the base language. In M odula-2 a m onitor is simply a m od­

ule w ith a priority, giving a very elegant and sparse syntax. M onitors were first

im plem ented in C oncurrent Pascal [BH77], a Pascal like language th a t included

extensions th a t included p ro c e s s , m o n i to r and c la ss types. Synchronisation

w ithin m onitors was perform ed using prim itives called d e la y and c o n tin u e oper­

ating on q u e u e types. T he c la ss type allowed encapsulation of d a ta and routines

in a way analagous to the c la ss construct of Simula-67 and m o d u le construct of

180

M odula-2.

8.8 D istr ib u ted system s and m ailboxes

A m onitor encapsulates a single copy of the synchronisation control d a ta

as well as the shared resource. It relies on sem aphores (or sim ilar prim itives)

and these rely on common memory arb itra tion . This becomes more and more

expensive as the degree of physical parallelism in system increases. On systems

w ith m ultiple buses, shared m em ory techniques rapidly become prohibitive. The

lim iting case is th a t of a network where self contained com puters are connected

over relatively slow com m unications links.

Such system s require synchronisation prim itives based on messages passed

around the system . This gives rise to an in p u t/o u tp u t model of synchronisation

ra th e r th an the shared variable model used previously. Several au thors (notably

[Hoa85]) have argued forcefully th a t this model is easier to program with cor­

rectly, as well as being necessary for d is tribu ted systems. Im plem entation of

message passing on a uniprocessor, or on a tigh tly coupled m ultiprocessor w ith

shared memory, is less efficient than the use of shared variables.

It is im p o rtan t to note th a t no tim ing can be guaranteed between sending

and receiving messages. Messages may pass each o ther in transit and there is no

central arb iter. Protocols m ust be self enforcing, to allow individual processes to

decide on the ir own in itia tive when to proceed. This is analagous to the busy

w aiting solutions because there is no central agent th a t can wake a process up.

T his con trasts w ith the sem aphore and m onitor solutions which are designed to

wake up o ther processes. Message passing protocols assume th a t there is no

way of rem otely m anipulating the execution p a th of another process by aborting

it, suspending it or res tarting it. In general, messages are sent and received

asynchronously. After a s e n d the transm itting process usually continues. The

receiving process will not usually be ready to im m ediately process the message

which im plies th a t it m ust be tem porarily stored in a system area known as a

m ailbox.

A significant problem with mailboxes is deciding on their size. Small

mailboxes m ay require messages to be split up in to m any sub messages, and long

mailboxes will be under-utilised by short messages. Variable length mailboxes

require ex tra protocol overhead to define their size and im ply the use of variable­

sized m em ory allocation routines th a t will generate the usual heap m anagem ent

problem s and require periodic garbage collection.

181

M essage passing has been used in operating system s applications for

m any years. M ost operating system s support the use of mailboxes which allow

producer-consum er in teraction between processes. Unix uses an elegant notation

to allow interconnection of producers and consum ers using pipes which act as

mailboxes betw een program s. This feature is very powerful because the Unix I /O

system trea ts pipes and I /O devices as files in a completely unified way. This

m eans th a t a user program can be w ritten using simple file I /O and can then

be connected to files, ou tp u t devices such as prin ters or piped to o ther program s

by supplying the correct com m ands at run tim e. R T -IT provides sim ilar unified

I /O and m ailbox system requests bu t does not allow the flexible com m and line

redirection of Unix, so m ailbox transfers tend to be ‘hardw ired’ in to user processes.

VMS also provides explicit m ailbox services.

8.9 R endezvous

M ailbox com m unication, even with fixed length m ailboxes, is inefficient.

T he rendezvous is an a ttem p t to im prove the efficiency of m ailbox schemes by

rem oving generality. A rendezvous m ay be considered as a m ailbox transfer w ith

a zero sized m ailbox. This implies th a t there is no buffering, and therefore th a t the

first process arriv ing a t the rendezvous m ust w ait for the other process to catch up.

Hence the rendezvous is inherently self synchronising. At the point of rendezvous,

d a ta may be transferred between processes. Since each datum requires a separate

rendezvous and each rendezvous implies a context switch on a uniprocessor (since

the first process arriving will suspend itself) efficient uniprocessor im plem entation

of the rendezvous relies on a low context switch overhead. This approach is

exemplified by the Inmos T ranspu ter which is designed to support rendezvous

com m unication and which can context switch by updating only two registers which

can potentially be perform ed in only four instruction cycles.

It tu rn s out th a t as well as being more efficient, the sim plicity of the

rendezvous allows rigorous m athem atical trea tm en t. H oare’s Com m unicating Se­

quential Processes (C SP) [Hoa85] is a m athem atical no ta tion for analyzing con­

currency problem s. The Occam language is heavily based on CSP.

8.9 .1 T h e O ccam rendezvous

The Occam rendezvous is program m ed as an explicit I /O transfer using

nam ed channels between processes. Channels are unidirectional and only one

182

w riter and one reader process is allowed per channel. Processes in Occam are

unnam ed because there are potentially a very large num ber of them . In contrast to

conventional concurrent languages such as C oncurrent Pascal and M odula-2 which

support concurrency a t th e procedure level, Occam allows individual statem ents to

be evaluated concurrently. Use of nam ed channels ra th e r th a n nam ed processes is

un fortunate from the po in t of view of correct program struc tu re . The one w riter

and one reader per channel restriction has to be checked by the compiler. If

channels were declared w ith nam ed source and sink processes then the syntax of

the declaration would au tom atically enforce the restriction.

In use, the syn tax ch an l ! v a r ia b le transm its the contents of variable

down the nam ed channel ch an l. The syntax chan l ? temp reads a datum off

channel ch an l into variable temp. If the writing process arrives at the send com­

m and before the reading process arrives at the receive com m and then the w riter

is suspended. W hen rendezvous is achieved the w riter is awakened and the da ta

transfer takes place. T his simple syntax is elegant and easy to use. Potentially

each statem ent in O ccam is a process in its own right and the ! and ? operators

form two of the five basic processes, the others being : = (assignm ent), STOP (a pro­

cess th a t never te rm inates and performs no useful work) and SKIP (a process th a t

term inates im m ediately and perform s no useful work). Read-only shared variables

are allowed between processes, although real im plem entations will usually forbid

this when the processes are executing on different processors.

8.9.2 T h e A d a rend ezvous

A da uses an extended rendezvous in which two way com m unication of

d a ta is allowed in a single rendezvous. The program m er’s m odel of the rendezvous

uses the concept of rem ote procedure activation ra ther than explicit I /O transfer

as in Occam. As a resu lt the syntax is ra ther unwieldy, and difficult to use.

An Ada process is called a task. Each task is a package containing

routines th a t may be rem otely called by other processes as well as internally

called routines and sta tic da ta . Ada packages have a specification p a rt and an

im plem entation p a rt called the body. The specification p a rt nam es the identifiers

th a t may be accessed from outside the package. In a task specification, procedure

nam es indicate po ten tial en try points. Shared variables are allowed by nam ing in

the specification p a rt. T he actual entry points are defined w ith a c c e p t statem ents

in the body of the task . T he following example shows an A da task th a t takes an

integer param eter from th e calling process and returns a running average, along

183

w ith two calling processes:

PROCEDURE taskdem o IS
n u m b e ro fp ro c e s s e s : CONSTANT:=2 ;

TASK TYPE p ro c e s s ;
TASK ru n n in g a v e ra g e IS

ENTRY c o m p u te (x : IN in t e g e r ; a v e ra g e : OUT i n t e g e r) ;
END ru n n in g a v e ra g e ;
TASK BODY p ro c e s s IS

i , r e tu r n e d a v e r a g e : in t e g e r ;

BEGIN
LOOP

i : = ra n d o m n u m b e rfu n c tio n ; — e x t e r n a l ly d e c la r e d
c o m p u te (i , r e t u r n e d a v e r a g e) ;

END LOOP
END p ro c e s s ;

TASK BODY ru n n in g a v e ra g e IS
n , t o t a l : i n t e g e r ;

BEGIN
n := 0 ; t o t a l : = 0 ;
LOOP

ACCEPT c o m p u te (x : IN in t e g e r ; a v e ra g e : OUT in t e g e r) DO
n: = n + l ;
t o t a l : = t o t a l + x ;
a v e ra g e : = a v e r a g e / t o t a l

END com pute;
END LOOP;

END ru n n in g a v e ra g e ;

P: A R R A Y d . .n u m b e ro fp ro c e s s e s) OF p ro c e s s ;

BEGIN
NULL;

END taskdem o;

8.9 .3 N o n -d eterm in a cy in rendezvous system s

Simple use of the rendezvous implies a tigh t coupling between consumer

and producer processes w hich causes problem s sim ilar to those of the coroutine

im plem entations above. A process can not proceed beyond a rendezvous point

until synchronisation is achieved w ith its p artner. Buffering between processing

is im possible: even w ith a separate process controlling the buffer contents it will

still be constrained to giving alternate access to the producer and consumer. This

Occam fragm ent outlines a buffer process w ith channels called pu t and get for use

184

by the producer and consum er:

CHAN OF IN T p u t , g e t :
SEQ

IN T h i , l o , i te m s :
VAL s iz e IS 100 :
[s i z e] IN T b u f f e r — c i r c u l a r b u f f e r
SEQ

ite m s := 0 ; h i : = 0 ; lo : = 0
WHILE TRUE

p u t ? b u f f e r [h i] ; ite m s : = i t e m s + l ; h i : = (h i + i) REM s iz e
g e t ! b u f f e r [l o] ; ite m s : = i t e m s - l ; l o : = (l o + l) REM s iz e

W hat is required is some way of allowing the buffer process to exam ine the s ta te

of the two channels and rendezvous w ith whichever is ready. This is supported in

Occam by the use of the a l t constructor and in Ada w ith the se le c t statem ent:

CHAN OF IN T p u t , g e t :
SEQ

IN T h i , l o , ite m s :
VAL s iz e IS 100 :
[s i z e] IN T b u f f e r — c i r c u l a r b u f f e r
SEQ

ite m s := 0 ; h i : = 0 ; lo : = 0
WHILE TRUE

ALT
ite m s < s iz e & p u t ? b u f f e r [h i] — g u a rd 1

SEQ
ite m s := ite m s + l ; h i : = (h i + l) REM s iz e

ite m s > 0 & g e t ! b u f f e r [l o] — i l l e g a l g u a rd 2
SEQ

ite m s : = i t e m s - l ; l o : = (l o + l) REM s iz e

W hen the buffer process reaches the a l t s tatem ent the guards are eval­

uated . In general a guard can comprise a boolean expression and a channel read

(?). If the boolean evaluates t r u e and there is a da tum waiting to be read on the

inpu t channel then the guard is said to be open. If several guards in an a l t are

open, then the program decides arb itrarily which guarded process to execute. If

no guards are open then a run tim e error results.

The above exam ple is not legal occam because ou tpu t operations are not

allowed in guards (as in guard 2). The reason for this is th a t if bo th inpu t and

o u tp u t operations on the same channel were part of guarded com m ands in separate

processes, the choice of alternative m ade in one process would have to result on the

choice of alternative m ade in the o ther process and vice versa. Resolution could

only be achieved by sequentially evaluating the ALT statem ents. This would be

185

extrem ely difficult to im plem ent especially in a d istribu ted system . The problem

may be overcome by constructing ano ther process th a t fields the G ET channel

and makes a request to the m ain buffer process using an auxiliary channel. This

effectively im plem ents handshaking between the buffer processes and allows the

logic of the G ET channel to be inverted.

8.10 Array processor language features

, The above sections have dealt w ith language extensions for the program ­

ming of explicit parallelism on MIMD type system s. There exists another class

of language extensions targeted at vector and array processors. D AP-FO RTRA N

[ICL79], ILLIAC IV CFD [Ste75] and ACTUS [Per87] fall into this class. T yp­

ically, extensions are provided th a t modify array declarations so as to declare

operands th a t will be operated on using spatia l parallelism , as well as parallel op­

erators for element selection, loop control and parallel decision evaluation. [PZ86]

provides a useful review of these languages.

8.11 A utom atic d etection o f parallelism and VLIW

architectures

The design of correct parallel algorithm s is non-trivial. M any a ttem pts

have been made to produce compilers th a t will allow the program m er to use a

sequential no tation and autom atically detect parallelism and m ap it on to h ard ­

ware. T he most successful of these have been the vectorising compilers such as

Cray O FT [Res82] and the GDC Cyber 200 FO RTRAN [Cor82] for the Cyber

205. The process of vectorisation essentially involves exam ining the contents of

DO loops to find sequences of sta tem ents th a t may be executed by a pipeline

of vector functional units. Use of G O TO s, IF statem ents, subroutines and I/O

w ithin the DO loop natura lly preclude vectorisation.

A completely different approach to the autom atic parallélisation of al­

gorithm s is provided by the use of functional program m ing languages running

on graph reduction and data-flow architectures. In principle the absence of side

effects in a functional language coupled w ith the d a ta driven evaluation of these

non-Von Neum ann processors should allow any parallelism existing in the problem

to be autom atically exploited. O pponents of th is approach claim th a t sequentially

constructed code simply does not contain enough parallelism to provide a signif-

186

leant speed up. Of course, functional languages m ay be used in an explicitly

parallel way to program the underlying hardw are in much the same way th a t the

im perative languages described above may, b u t th a t is beyond the scope of this

thesis.

An in teresting recent development known as Very Long Instruction Word

processing combines elements of RISC technology, array processing and MIMD

procedural program m ing. A VLIW m achine is a collection of RISC processors

w ith a large num ber of parallel, pipelined functional units bu t a single control

s tream [E1186). It is sim ilar to an array processor in th a t there is a single in ­

s truction stream bu t each ‘processing elem ent’ is a general processor w ith its own

control fields in the instruction word. A VLIW m achine m ight more usefully be

thought of as a microcoded machine w ith a very large flat in struc tion word control­

ling m any functional units. A practical m achine would have an instruc tion word of

the order of 1000 bits or more, hence the te rm Very Long Instruction W ord. The

instruc tion word also controls a switching m atrix th a t connects functional units

to banks of memory, allowing swapping of operands between functional units.

M anual program m ing of such a system would be all bu t im possible, and

the power of the system can only be exploited using high level languages and so­

phisticated com pilers. VLIW technology has its origins in the ELI project a t Yale

University [Fis82], [Jos83] and a com pilation technique known as trace scheduling.

Parallelising com pilers for machines such as the CDC 6600 and the scalar p a rt of

the Grays operate by compiling basic blocks w ith associated register storage and

then a ttem p ting to allocate such blocks w ith different resource requirem ents on

to a fixed set of processors. Experim ents have shown th a t one could expect at

m ost a two or th ree times speed-up by parallelising basic blocks [FR72]. However

la te r experim ents showed th a t many scientific program s contained fine grained

parallelism averaging a factor 90 [NF81].

Trace scheduling operates by tracing execution pa th s through blocks

and a ttem p ting to predict the most likely execution pa th . Ellis’s compiler (called

Bulldog) uses program m er supplied hints to aid in this process. The compiler

also analyses operand references to allow instruc tion stream s to be allocated to

processors and operands to be allocated to m em ory in such a way as to minimise

horizontal interdependencies. Sometimes an operand would be copied into several

m em ory banks.

Bulldog has been tested on m a trix m ultiply, E F T and o ther scientific

calculations. It is claimed th a t Bulldog can find significant parallelism and gen­

era te order of m agnitude speed-ups using conventional technology. The system is

187

being commercially exploited by Multiflow Inc.

The com bination of detection-of-parallelism compilers and massively p a r­

allel hardw are of a synchronised array type (ra th e r than an unsynchronised MIMD

type) suggests th a t the techniques may yield great re tu rns in im age processing

much of which resembles scientific processing w ith its em phasis on repetetive cal­

culation on large d a ta sets.

8.12 C onclusions

The wide variety of available constructs for concurrent program m ing

indicates th a t a concensus has not yet been reached concerning the ideal pro­

gram m ing paradigm . T here is a trend tow ards rendezvous based synchronisation

prim itives as evidenced by A da and Occam, bu t these do not address the require­

m ents of shared m em ory system s. The em phasis on message passing is a result of

the greater security offered to the program m er, and their am enability to form al

analysis. Image processing MIMD systems are likely to continue to be dom inated

by shared memory processors because of the very high d a ta rates th a t would be

required in a message passing system where images are the p rim ary data .

188

C hapter 9

T he IM P system

“im p [imp] n. m inor dem on; mischievous goblin, sprite e tc .”

9.1 In troduction

This chapter describes the au th o r’s Im age-handling M ultiprocessor (IM P)

and its application to a realtim e grey-scale industrial inspection problem .

IM P is a MIMD system which allows norm al com puters, hardw ired pro­

cessor boards, micro coded CPU s and fram e stores to be connected together over

a 16-bit d a ta bus capable of sustaining 6.6MHz transfers. This allows a complete

addressing cycle to be com pleted in one 256 x 256 square pixel tim e. Since the

d a ta bus is sixteen bits wide, a byte packed frames tore like the V2 board described

in C hapter 5 can provide pixels at 512 x 512 pixel rates. T he com m unications

s tan d ard is an upw ards com patible im plem entation of the com mercially available

V M Ebus [VIT85]. This m eans th a t the critical electrical com ponents (backplane,

drivers etc.) are com m ercially available and th a t the various protocols involved

are supported by custom in teg rated circuits.

9.2 D erivation o f IM P architecture

The original in ten tion was to upgrade IPO FS to 256 X 256 pixel images

and add bus m ultiplexing to allow another port into the im age memory. This

ex tra po rt would be used as a coprocessor bus. E x tra lines on the coprocessor bus

would control the operation of the processors themselves, and these lines would be

controlled by the host PD P-11 via ex tra control registers in the IPO FS CONBLK

area. Since the control signals for 256 X 256 video are already available w ithin

the IPO FS controller, only the addressing scheme and the window m apper circuit

189

would need to be expanded.

A lthough this new system would be com paratively simple to im plem ent,

it would have several disadvantages and problem s:

1. the window m apper hardw are which is the m ajor feature of IPO FS would

only be available to the host processor,

2. all synchronisation and control of coprocessors would have to be perform ed

by software in the host and this could become the m ajor bottleneck,

3. all d a ta transfers betw een coprocessors would have to be routed th rough the

host, since there is no inter-processor bus,

4. the backplane would have to be very well engineered to cope w ith the high

frequency signals generated during a processing pass.

In a system com prising the host PDP-11 and a series of small hardw are modules

im plem enting simple p arts of an algorithm , these restrictions would not be too

severe. For instance a m edian filter, Sobel operator, threshold sequence m ight be

im plem ented w ith each p a rt of the sequence a separate hardw are m odule s ta rted

up in tu rn by the host. Assum ing th a t a pixel could be read from m em ory in 150ns

then the processing tim e for a m odule would be approxim ately n fram e tim es,

where n is the num ber of m em ory accesses required per pixel. For a threshold this

would be 2 (one read and one w rite), and 10 for a straightforw ard im plem entation

of a 3 X 3 Sobel operato r. It is possible to speed up the Sobel by reta in ing some

p arts of a window for the next operation [Lee83,Pic84]. In th is case an average

of only one read and one w rite are required per pixel, and therefore the to ta l

execution tim e would again be 2 fram e tim es. The address generation circuitry

required to do th is is quite complex, and it would need to be replicated on each

m odule. Ideally resources such as th is would be centralised and available to all

processors.

9.2.1 C oprocessor bus

Since all control registers would reside on the m ain controller card, all

control inform ation would have to be provided by the ex tra lines on the copro­

cessor bus. The best way to do this is to provide an ex tra low speed address and

d a ta bus from which the host can dow nload d a ta into the coprocessors. Thus two

separate buses are provided, a pixel access bus and a processor bus.

The system as described is highly hierarchical, in th a t the host has abso­

lu te control, and all d a ta transfers between coprocessors m ust proceed th rough it.

190

Ideally, coprocessors would be allowed to com m unicate directly w ith each other.

A hybrid approach m ight be for the m essage sending coprocessor to leave the d a ta

to be com m unicated in an im age space, relinquish control of the pixel bus, and

rely on the host to in itia te receipt of the d a ta by another processor. In th is case,

only a rb itra tio n transactions are required on the processor bus, and d a ta transfer

occurs a t hardw ired speeds, ra ther th an host speeds.

A be tte r solution is to allow the coprocessors themselves to become m as­

ters on the coprocessor bus, and to d irectly address the other coprocessors. No

in teraction is required by the host, bu t some central arb itra tion scheme is required.

Given th a t the coprocessor bus is to be a rb itra te d centrally, it makes sense to arb i­

tra te the pixel bus at the same point. If these arb itra tion functions are perform ed

in hardw are, then coprocessor operations will all proceed very quickly, and the

role of the host can be reduced to m onitoring the buses, and initial preloading of

the system . Since it will not have to w aste tim e transferring d a ta and a rb itra t­

ing buses, it will be free to perform background tasks such as trend analysis and

s ta tis tica l reporting of the line under inspection.

9.2 .2 U n ification o f m ultip le bus schem e

It is clear th a t there is significant redundancy in the two bus scheme.

In general, a coprocessor will be using either the pixel bus or the coprocessor

bus. T he two buses will require a large num ber of backplane lines each, and it is

likely th a t the addressing and d a ta range of the buses will be restrictive for an

econom ically viable scheme. It is useful to have between four and sixteen im age

spaces available, and so the pixel bus will need to access between 256K and IM

locations, which requires 20 address lines. A 16-bit d a ta bus, read /w rite and valid

address strobes will require another 18 lines. All of these lines will require buffers

on each coprocessor board , and if two buses are to be im plem ented, then these

will have to be duplicated. 10 twenty pin IC packs will be required for this alone,

and when two a rb itra to r interfaces are required along with control logic it is clear

th a t the real-estate overhead on each board is significant.

If the coprocessor and pixel buses are not to be used concurrently, then

it would be much m ore sensible to com bine the two into one large address range

d a ta bus. Pixel m em ory and coprocessor registers can be allocated addresses

th roughou t the address m ap, and a m uch m ore unified (and economic) design

results.

T he final m odification to be m ade to the simple expanded IPO FS model

191

is to provide centralised m em ory m anagem ent resources, so th a t address genera­

tion for, say, 3 x 3 window operations can be done by one piece of hardw are for

all processors. The bus m ust provide a m echanism for a bus m aster to relinquish

the addressing section and allow the m em ory m anagem ent unit to fetch the data .

Several design exercises were conducted, m ainly centering on the a rb itra ­

tion s tru c tu re and the physical design of the backplane. It was quickly recognised

th a t an electrically robust bus requires very high engineering standards, and th a t

the developm ent of a dedicated backplane for IM P might be a lengthy job. Elec­

trical problem s become m ore im portan t as the num ber of loads in a system and

the operating frequency becom e greater. Clearly, the backplane is the potential

Achilles heel of a system , since it will probably have the greatest loading, and is

subject to variable loading depending on the card configuration, so ‘single case’

specification is not possible.

Real tim e industria l control is a growing m arket, and several m anufactur­

ers have defined bus s tandards for m ultiprocessor systems. The IM P bus requires

very high th roughpu t and m em ory m anagem ent facilities considerably in excess

of those norm ally found in industria l system s, bu t a survey was m ade of existing

buses to see if one could be adap ted for use in IM P. A daptation could be at one

of th ree levels:

1. Use of m anufactu rer’s backplane as the physical substra te for IM P, bu t w ith

an IM P-specific allocation of lines and protocol,

2. Use of m anufac tu rer’s bus s tan d ard w ithout modification,

3. Use of m anufactu rer’s bus s tandard w ith IM P-specific enhancem ents, prefer­

ably not conflicting w ith m anufactu rer’s standard .

Level 2 (no ad ap ta tion) would obviously be ideal, allowing work to commence at

once on the functional parts of IM P.

9.2 .3 C om m ercia l m ultip rocessor buses

Any real com puter bus will be a collection of several logical buses sup­

porting the d istribu tion of power and different kinds of signals such as:

1. d a ta transfer between processors and memories (which m ay reside w ithin

o ther processors),

2. a rb itra tio n .

192

3. in te rru p t inform ation,

4. system wide control, such as reset signals and m aster clocks.

These logical buses may be tim e m ultiplexed onto one set of wires, in which case

there is only one physical bus, or they may be im plem ented as separate physical

groups of lines. There may even be m ultiple physical buses for one logical func­

tion — for instance two d a ta transfer buses to speed m em ory access. The use of a

separate 1 /O bus falls in to this category, where transfers between processors and

m em ory m ay occur concurrently w ith transfers between processors and backing

store over two sets of wires. W ithin each physical bus fu rther m ultiplexing may be

used, for instance between addresses and data . Each operation on a bus is called

a transac tion , and may be a complete a rb itra tion cycle, an in terrup t-in terrup t

acknowledge sequence or the fetching of one word of data.

A bus may be evaluated in term s of economics and perform ance m ea­

surem ents. For instance a 16 line m ultiplexed ad d ress /d a ta bus running at a

m axim um square wave frequency of lOMHz can support up to 128K bytes of

m em ory which can be accessed at a m axim um frequency of 20M byte per second.

It will require 17 lines feind buffers (one ex tra line is needed for dem ultiplexing)

and for m any applications at least 16 latches will be required. An arb itra tion bus

will be able to support varying num bers of prioritised requests depending on the

num ber of lines dedicated, and similarly for the in terrup t bus. The arb iter may

prioritise requests using a preset priority scheme or a round robin scheme which

will ensure th a t all m asters get a fair share of the bus.

Bus transactions fall natura lly into two classes — asynchronous and syn­

chronous. These describe the natu re of the transfer protocol. In a synchronous

bus, all transactions occur at fixed times governed by a centrally generated clock.

M ost small com puters use this kind of bus, and w ith the addition of some arb i­

tra tio n logic, a m ultiprocessor bus can be constructed. In an asynchronous bus,

all transactions are handshaked. A bus m aster w riting to the d a ta bus asserts

address, d a ta and cycle type inform ation on the bus, waits for the bus to settle

and then asserts a strobe th a t tells the slave to begin address decoding and da ta

accessing. W hen the slave has acquired (write cycle) or fetched (read cycle) the

da ta , an acknowledge signal is returned to the m aster, which then removes the

strobe and o ther data . A rb itration and in te rru p t transactions may be similarly

handshaked.

Asynchronous transactions have the advantage th a t they autom atically

adap t to different speed m asters and slaves. In a synchronous system some de-

193

cision has to be m ade concerning the base frequency. Devices which run faster

m ust have some m eans of idling while the bus responds. Slower slaves will be

unusable for reads, and will require front end synchronisation latches for writes.

Any fu ture im provem ents in technology allowing faster operation will be difficult

to incorporate. In a mixed hardw ired/ conventional com puter environm ent such

as IM P there are bound to be at least two basic operating speeds — the hardw ired

accesses will probably operate at near video pixel rates (say 150ns per access),

and the com puter will operate at around 1/xs per access. An asynchronous system

will be able to cope w ith th is w ithout > requiring any hardw are overhead on the

individual boards.

T he review was restricted to widely d istribu ted buses, on the basis th a t

the economic advantages of adopting a m anufactu rer’s bus would be lost if th a t

bus were an obscure one. The systems considered included CAMAC, the DEC

om nibus. U nibus, Q-bus family, the synchronous SBI used in the VAX 11/780

m em ory subsystem , the STD and STE buses, the M otorola Versabus and VM E­

bus, and the In tel M ultibus and M ultibus II.

9.2 .4 C onclu sion s

Of the buses considered, only V M Ebus and M ultibus II are capable of

providing pixel ra te th roughputs at small system cost. It is clear th a t VM Ebus

is more applicable to IM P because it can adap t gracefully to the different access

rates required, and most im portan tly of all it provides a m eans of specifying spe­

cial cycles and protocols in an upwards com patible way through the use of address

modifiers. Since slaves m ust only respond to address modifiers th a t they under­

stand , m aking use of the user defined codes will autom atically disable commercial

and non-IM P slaves. This allows IM P-specific and com mercial boards to be mixed

in a single system w ith no contention. As a bonus, the protocol is sim ilar to the

Unibus and Q -bus protocols and this eases the design of a DEC to VM E interface.

This makes up for the im possibility of building the IM P system directly onto the

Q-bus host. Finally, a series of VLSI bus protocol chips to handle functions such

as bus a rb itra tio n and in te rru p te r/in te rru p t servicing are appearing, and 68000

family peripheral chips will interface directly.

194

ROM+sehal

Line scan camera

11/23 CPU
SIMb^e Winchester

+ !win floppies

Figure 9.1: IM P block diagram

9.3 A rchitectural overview

Figure 9.1 shows a block diagram of IM P at the backp lane/board level.

F igure 9.2 is a photograph of the pro to type. This is based around a 6U E urocard

crate w ith a 9 slot VME backplane m ounted in the upper connector position. A

250W power supply is m ounted a t the rear for the main logic supply. A sm aller

power supply for the analogue circuitry is bolted to one end, along w ith a die

cast box containing the digitiser logic. Each circuit board is of double extended

E urocard size w ith the lower connector available for I /O specific to th a t board.

The system controller card provides bus arb itration and m em ory m an­

agem ent, power up and m anual resets, and a bus watchdog th a t will tim e out any

bus transac tions th a t are not acknowledged w ithin 16 microseconds. A 16 MHz

clock is also provided for com patability w ith o ther VM E system s, although this

is of lim ited use in IMP.

T he Q -bus link is a two board set providing transm ission between Q -bus

and V M Ebus backplanes over a 20-way tw isted pair cable driven to the RS-422

electrical standard . The protocol used is a slightly modified version of the Q -bus

protocol which may be generated w ith some fu rther m ultiplexing of the Q-bus

lines, and a single flip-flop for in te rru p t latching. The electrical and protocol

s tan d ard form another bus specification called the Asynchronous Bus In terconnect

(A BI). The smaller Q-bus card carries RS-422 transceivers, Q -bus buffers and a

small am ount of m ultiplexing logic. The m ain p a rt of the protocol conversion is

perform ed on the larger VME card.

Figure 9.2: IM P prototype

The industria l inspection system described in Section 9.10 used the VI

fram estore described in C hap ter 5 and a PD P 11/23 host. C urren t versions of

the system use the V2 fram estore and PD P 11/73 or Micro Vax II hosts. Three

system s have been constructed and are in daily use in the M achine Vision G roup’s

Laboratories.

9.4 P roject m anagem ent

IM P is a po tentially large system, and the pro to type im plem entation

described here involves some 250 in tegrated circuits d istribu ted over four boards.

Large projects can rapidly becom e unm anageable, bu t significant efforts have been

m ade to m aintain a disciplined docum entation system from th e s ta r t . A com plete

description of all com ponent positions and interconnections is m ain tained in m a­

chine readable form using a suite of program s w ritten by the au thor. These

program s generate wiring lists, autom atically flagging some sim ple errors. Board

m aps can be produced on a norm al prin ter. There is also an interface to the Racal

R edboard PCB layout system and the combined system has been used for the im ­

plem entation of a com m ercial high-density peripheral card and the pro to type of

the NPL LAP2 array processor.

W hen the paper design of a board has been com pleted, a prototyping

card is selected and the com ponents laid out as desired. T he type of the board,

the com ponents and the pin 1 coordinates are typed into a com ponent listing

file. P rogram CADEXP then expands this listing using two databases containing

196

descriptions of the various pro to typing boards and IC types. T he result is a

listing of all IC pins on th e board w ith the ir coordinates and electrical types (e.ÿ.

to tem pole o u tp u t, open collector o u tp u t, bidirectional tri-s ta te etc.), as well as

the function of each chip and pin. Signal nam es are then taken from the paper

design and added beside each pin nam e. A nother program called CADSIG then

goes through the file collecting references to signals and collecting them together

in alphabetical order so as to form a wiring list. Errors such as the connection

of two ou tpu ts together are caught a t this stage. The board is wired directly

from this list on a coordinate to coordinate basis. W iring up is thus reduced to

a mechanical task which does not require constan t reference to the com ponent

side of the board to check th a t the correct IC has been located. This has reduced

the incidence of wiring errors (as opposed to logical design errors) to negligible

proportions. W iring errors were extrem ely common whilst building IPO FS , and

th is was exacerbated by the ‘design it on the b o a rd ’ approach.

The m achine readable wiring lists can be used to generate tapes for

au tom atic wire w rapping m achines which may provide cheaper fabrication for

small production runs (say less than 10) than using a PC B , especially since a

complex board like V I would require a m ulti plane board, or segm entation onto

two separate PCBs.

W ith in each generation, a board may go through m any changes as it

is debugged or enhanced. These small Engineering Change O rders (ECO s) are

accum ulated on a hard copy listing of the b o a rd ’s last dum ped sta te , or m arked

in a disk file. At intervals, a block of ECOs will be applied to the b o a rd ’s source

file, and new wiring lists will be generated. This constitutes a new revision of the

board . Therefore under this system a b o a rd ’s s ta te at any tim e will be given in a

file tagged by PR O JE C T /B O A R D -R E V ISIO N -E C O , e.g. IM P /V l-E -B .

Since this software is running on the IM P host com puter, it is available

for use on the bench, and has proved an extrem ely powerful debugging aid. If a

signal is found to be showing unexpected behaviour, the system editor can very

rapidly find all pins a ttached to th a t signal, and which is the ou tp u t. Since all

changes are recorded, unexpected side effects are avoided. D uring the develop­

m ent of IPO FS the situation often arose where a m odification to one part of the

circuit generated unexpected behaviour in a completely unrela ted p a rt, because

a common interconnection had been overlooked, or because a signal line had not

been com pletely restored after the removal of one link. This kind of bug, where

the sym ptom does not have a clear causal connection with the real problem is

the m ost difficult to track down, being highly analogous to the bugs found in

197

parallel software systems. Having a m achine-checked list of every pin, wire and

connection on the board has removed th is problem , and allows debugging to pro­

ceed in a far more linear and structu red way. A lthough originally conceived as a

docum entation aid to reduce the costs of PC B production, the system has tu rned

out to be v ital during development. The curren t docum entation for the prototype

IM P occupies some 300K bytes of disk space and it would clearly be impossible

to carry even a small am ount of th a t type of inform ation in the head. Since the

software autom ates working practices th a t had evolved during the development

of IPO FS , little or no adap tation has been required to make use of it: however it

has im posed more discipline, which u ltim ately reduces design tim e and costs.

9.5 U se o f th e V M E bus in IM P

IM P adheres closely to the V M Ebus stan d ard . W ith in the lim its of the

stan d ard two kinds of ‘custom isation’ are possible. F irstly there are various op­

tions concerning the w idth of d a ta and address buses; the kind of bus arb itra tion

provided; the d istribu tion of in te rru p t fielding processors; and the kinds of bus

cycles supported. Secondly, user definable address modifier codes are available for

the specification of unusual d a ta transfer cycles. In IMP, a centrally controlled

mem ory m anagem ent protocol has been designed and synchronous transfer modes

defined th rough the use of address modifiers. These additions to the basic V M E­

bus cycle types will be im plem ented on a fu tu re bus controller card. The VM Ebus

specification allows boards th a t are addressed w ith cycle types th a t they do not

recognise to re tu rn an error signal, thus m ain tain ing the integrity of the system .

A technical overview of VM E protocols is presented here to provide the

reader w ith enough inform ation to unders tan d the detailed operation of the IM P

boards. A fuller reference is [VIT85].

9.5.1 V M E bus lines

The 82 signal (i.e. non-power) lines on the upper (P I) Eurocard connec­

to r divide into four separate buses. These are: a 16-bit d a ta /2 4 -b it address D ata

Transfer Bus (DTB); a seven level in te rru p t bus (IN T); a four level DTB arb i­

tra to r w ith selectable priority or round robin scheduler algorithm s (ARB); and a

miscellaneous system utility bus (UTL) carrying a 16MHz clock signal, reset and

power m onitor lines, an error line for boards to indicate failure of self-tests, and

a low speed serial link for in terboard com m unication and synchronisation. The

198

signals are sum m arised below:

DTB

A 01-A 23 a d d re s s bus P r im a ry a d d re s s
D 00-D 15 d a ta bus P r im a ry d a ta
AM0-AM5 a d d re s s m o d if ie r s DTB c y c le c o n t r o l
LWORD* lo n g word Used w ith 3 2 - b i t e x te n s io n
WRITE* w r i t e
AS* a d d re s s s tro b e
DSO* d a ta s tro b e low low b y te a c ces s
D S l* d a ta s tro b e h ig h h ig h b y te a cces s
DTACK* d a ta ackn ow ledg e Handskake fro m s la v e
BERR* bus e r r o r Bus p r o to c o l e r r o r

ARB

B R 0*-B R 3* bus re q u e s t fo u r l e v e l r e q u e s t bus
B G 0 IN *-B G 3 IN * bus g ra n t in bus g ra n t d a is y c h a in s
BGO0UT*-BG30UT* bus g r a n t o u t
BBSY* bus busy m a s te r has bus
BCLR* bus c le a r m a s te r w an ts bus

IN T

IR Q 1 * -IR Q 7 * i n t e r r u p t r e q u e s t i n t e r r u p t re q u e s t bus
lACK* ackn ow ledg e
lA C K IN * ackn o w led g e in d a is y c h a in e d ackn ow ledg e
lACKOUT* ackn o w led g e o u t

UTL

ACFAIL* AC f a i l u r e pow er f a i l im m in en t
SYSRESET* system r e s e t
SYSFAIL* system f a i l f a i l e d s e l f t e s t
SYSCLK system c lo c k 16 MHz c lo c k
SERDAT s e r i a l d a ta low speed s e r i a l l i n e
SERCLK s e r i a l c lo c k

9.5 .2 A rb itration bus

IM P uses a four level priority a rb itra tion scheme, allocated as follows:

(h ig h e s t p r i o r i t y)3 - E x e c u t iv e p ro c e s s o r

2 - H a rd w ire d c o p ro c e s s o rs

1 - S o ftw a re based c o p ro c e s s o rs

0 - V id e o a c q u is i t io n and d is p la y (lo w e s t p r i o r i t y)

199

Only one video coprocessor is allowed in the system . Note th a t the fram estores

described in this thesis are video slaves which do not qualify as a coprocessors. A

graphics processor, or sync locked DMA transfer processor would be examples of

true coprocessors. N orm ally there will be only one executive processor, although

it is conceivable th a t a second level 3 processor m ight be used in some applications.

The executive processor is in overall charge of the system . It is able to

initialise, s ta rt and stop all o ther coprocessors, and in the p ro to type im plem enta­

tion is able to m onito r all bus activity above the level of ind iv idual d a ta transfers,

and so can be used as a sort of ‘software logic analyzer’ in the debugging of target

coprocessors. N aturally it has the highest priority so th a t it can usu rp an erran t

coprocessor which is tying up the bus.

The next highest priority is reserved for hardw ired coprocessors. It is

assum ed th a t such m achines will not in general be able to save the ir system state

easily (i.e. they are un in terrup tib le in th a t they will not be able to recover after

an in te rru p t, except via a general reset). Below these are the level 1 software con­

trolled coprocessors based around conventional microprocessors and com puters.

W hen there is no o ther activity on the bus, and when no requests are

ou tstand ing , the a rb itra to r gives control to the video subsystem . This allows

the video board to display im ages from V M Ebus memory, or to w rite digitised

video or o ther d a ta . W hen a coprocessor requests the bus, video display from

the bus will be suspended. This will cause ‘hashing’ on the screen. However, all

p lanned video boards also have onboard local memory from which displays may

be m ain tained even w hen th e video board is locked off the bus. V I uses local

m em ory exclusively, and therefore never needs to become a V M Ebus m aster. The

V I onboard m em ory is accessible through two blocks of V M E addresses — as a

m apped set of registers form ing a superset of the IPO FS registers, and as a simple

block of RAM filling 128K contiguous locations.

W ithin each level, bus grants are daisychained so as to provide an ex tra

level of prio ritisation based on physical proxim ity to the a rb itra to r.

9.5 .3 A rb itra tion p ro toco l

In IM P, there is always a bus m aster. If no coprocessors or executives

are active, control defaults to the video system . A simple bus request and grant

sequence is illu s tra ted in F igure 9.3.

1. A level 2 hardw ired coprocessor needs the bus and asserts BR2*. The bus

request lines are open collector, so several requests m ay be pending simul-

2 0 0

BRI"

BR2*

BBSr

BG2K

BG1K

 /
 /
~A / ____f
\ /

\ T

Figure 9.3: IM P bus arb itration

taneously.

2. W hen the a rb itra to r receives a request of higher priority than the last posted

grant, it asserts BCLR* to order the current bus m aster to release the bus.

3. In this case, the video board will tri-sta te its bus drivers and release the

BBSY* line.

4. The positive going edge of BBSY* is a signal to the a rb itra to r to issue a

grant to the next eligible m aster, in this case on level 2.

5. The grant will p ropagate down the backplane being exam ined and be passed

on by all boards un til it reaches the requesting m aster where the g ran t is

blocked.

6. The new m aster asserts BBSY* and the arb itra to r responds by removing

the grant (this im plies th a t gran ts m ust be latched on the m aster).

This completes the a rb itra tio n transac tion , and the new m aster will re ta in bus

ownership until either it has finished, or the executive processor requests the bus,

in which case a BCLR* signal will be generated.

It is possible for a rb itra tio n to be overlapped w ith D TB transactions. A

m aster may release BBSY* after the s ta r t of its last DTB cycle. The new m aster

will then receive a g ran t before the address and d a ta strobes have been released.

N aturally, the new m aster m ust wait until no strobes are present before activating

its own bus drivers. T his early release of BBSY is optional. Boards providing this

feature are called type P re RElease (P R E) m asters.

201

\
\

D80* \ / \ /

D81*

- ^ 0 0 - 0 3 1 - / ----------<

/ ■m r \ / \
READ W R IT E

Figure 9.4: IM P d a ta transfer

9 .5 .4 D a ta Transfer B us

The basic DTB comprises 16 d a ta lines, 23 address lines, one address

and two d a ta strobes, a write line, a norm al and an error acknowledge; and six

address modifiers which may be used to specify multiple address spaces (e.g.

kernel, supervisor and user space) or to specify special address cycle types. If the

second connector (P2) and backplane are fitted then the DTB is extended to 32

d a ta lines w ith another 8 address lines. A line LWORD* is used on the m ain

backplane to specify a 32 bit access. This extension is not used in the pro to type

IM P, so it is lim ited to an address space of 8M word of 16 bits.

9.5 .5 D a ta transfer p ro toco l

The IM P d a ta transfer cycle is shown in Figure 9.4.

1. After having taken possession of the bus (see above), the m aster asserts AOl-

A23, AM0-AM5 and W R ITE* w ith their required levels for this transaction .

2. The m aster waits for 35ns to allow for 25ns deskew and 10ns setup tim e at

the slave, and then asserts AS*.

3. For a w rite cycle, either concurrently w ith the assertion of the addresses, or

afterw ards, D00-D15 are asserted as required.

4. The d a ta strobes are asserted as required either concurrently w ith or after

the assertion of the address strobe. On a write cycle, 35ns deskew and

setup tim e m ust elapse after d a ta assertion before da ta strobes are asserted.

2 0 2

There is one d a ta s trobe for each byte in the word. This is in contrast to the

U nibus/Q -bus protocol which uses a dedicated ‘B Y T E ’ line, which m ust be

decoded w ith AO to access the correct byte.

5. After fetching or accepting the d a ta , the slave asserts DTACK*. If at any

tim e the slave detects a protocol error, it asserts BERR*. Both acknowledges

may be asserted b u t BERR* takes priority.

6. Upon receipt of an acknowledge, the m aster releases all strobes, thus sig­

nalling the end of the transac tion . '

7. W hen the slave detects all strobes high, it releases the acknowledge lines.

The IM P controller carries an 8-bit counter driven by the 16MHz SYSCLK signal

th a t is reset to 0 when the d a ta strobes are high. The counter overflow also drives

B ERR*, so th a t if 256 16MHz cycles (i.e. 16/xs) into a DTB da ta transfer no

acknowledge has been received, the transac tion will be ‘tim ed o u t’ and a protocol

erro r reported . W ithout this feature, the addressing of non-existent m em ory

would cause a system hang.

9.5 .6 U se o f address m odifiers

The six address m odifier lines allow one of 64 modes to be specified along

w ith the m ain address. These modifiers are decoded along w ith the address itself,

and slaves will respond only to the modes they recognise. (Typical commercial

system s decode the address m odifiers in a 64 word PROM which may be modified

by the custom er in line w ith any special needs.) There are 16 modes reserved

for user application (num bers 1 0 - lF hexadecim al). A lthough this feature will

probably be rarely used in conventional VM E com puters, it provides the key to

upgrading the bus in a safe way. As long as the strobe and interlock protocol is

adhered to, any special protocol can be designed, because assertion of any of the

16 user modes will disable all ‘no rm al’ slaves in the system.

9.5 .7 In terrupt bus

D uring the early design of this system an a ttem p t was m ade to unify

and condense the bus as m uch as possible — hence there is only one d a ta bus

over which all transfers w hether DMA, I /O or program m ed occur. However an

in te rru p t mechanism is also required. If the executive is to m anage the system

it m ust be inform ed when a coprocessor has com pleted an operation, or requires

203

atten tion of some kind. It is not possible for the executive to poll the coproces­

sor by reading its s ta tu s over the DTB because as m entioned above, hardwired

processors especially are unlikely to to lerate in terrup tion , and the executive will

need to gain bus m astersh ip to perform the poll.

One way to avoid using a separate com m unication channel for this status

inform ation would be to get the coprocessor to w rite to a special location which

generates an in te rru p t in the executive. (This is ju s t how the in te rru p t protocol on

the U nibus works, except th a t a special IRQ line is used to address the in terrup t

fielder ra th e r th an a particu la r location. As a result no separate in terrup t bus

is required.) However, since the single executive fields all in te rru p ts , and since

there may be m any in terrup ters , it makes sense to m inim ise the logic required

on the in te rru p te r a t the expense of a more complex in te rru p t fielder. A single

in te rru p t line on the backplane activated at the end of a process is much simpler to

im plem ent th an the logic required to address and w rite to a special bus location.

A nother problem w ith U nibus style in te rrup t protocols is th a t m asters th a t are

not in possession of the bus have no way of asking the executive for service.

Specifically the video circuitry in IM P can be used to supply tim ing inform ation

to the executive based on its frame and line tim ing. However, the video circuitry

can never cause a coprocessor to relinquish the bus because it has a lower priority,

and the a rb itra to r will sim ply ignore any requests.

As a result all 7 in terrup t levels on the V M Ebus are used for parallel

com m unications. All in te rru p t lines are open collector, and so m ultiple requests

on each line are possible. T he 7 levels are defined as:

7 — Executive processor (reserved)

6 — H ardw ired coprocessor error

5 — H ardw ired coprocessor completion

4 — Software coprocessor error

3 — Software coprocessor completion

2 — Video coprocessor error

1 — Video coprocessor completion

Level 7 is reserved for any future im plem entation th a t may have more

th an one executive level processor. In such a case, one will still have to be desig­

nated the in te rru p t fielder and will therefore be the m ain system controller. The

subsidiary executives, which may be controlling com plete IM P systems of their

own will com m unicate w ith the executive using level 7 in terrup ts . One appli­

cation would be to wide production lines, which due to optical and throughput

lim itations could not be m onitored with one system.

204

The o ther 6 levels are allocated equally to the o ther 3 processor lev­

els. For each, a com pletion and an error in terrup t are provided to signal correct

te rm ination and erro r abo rts of an operation.

9.5 .8 U tility bus

T he u tility bus provides power m onitoring, reset and clock facilities. In

the pro to type the power m onitoring lines are not used. The reset line is asserted

on power up and under software control from the host. The clock provides a

16MHz 50% du ty square wave in line w ith the VM E specification. In fact a

20MHz clock would be more useful since the pixel tim ing for b o th square and

rectangular im ages can be derived simply from this. The SYSFAIL* line provides

a way of a lerting the executive th a t a coprocessor has failed its self test. The

serial lines SERCLK and SERDAT are not used in IMP.

9.6 Q -bus to V M E bus link

T he p ro to type executive processor is a Q-bus based PD P-11. PD P

11/03, 11/21 (Falcon), 11/23, 11/73 and Micro VAX II hosts have been used

successfully. The interface link was designed to be electrically robust so th a t

operation in an electrically noisy environm ent such as a factory would not be

im paired. T he executive is also provided w ith a comprehensive bus m onitoring

capability.

Transm ission between buses is over a 20-way tw isted pair cable driven

to the RS-422 electrical standard . This allows operation a t frequencies of up

to lOMHz over distances of up to 10m. The cable may be extended up to 1km,

bu t w ith greatly dow ngraded frequency perform ance (50kHz m axim um at 1000m)

[Dev81a,Dev81b]. T he receivers can discrim inate against up to 25V of common

m ode noise, and th is allows complete decoupling of the chassis grounds between

the Q-bus m achine and IM P. The protocol is a modified Q-bus scheme using

additional m ultiplexing to reduce the num ber of signal lines to 20. T he electri­

cal and protocol s tandards together constitu te another bus stan d ard called the

Asynchronous Bus Interconnect (ABI).

9.6.1 QQ card

The QQ card is essentially ju s t a buffer board between the Q -bus and

the ABI. A block d iagram and a photograph of QQ are shown in F igure 9.5 and

205

<*>

mux

ZD6YNC

BLOCK"

IRQ"

T F P L Y -T A O C .fW X /T + T E N *

ABI

Figure 9.5: QQ block diagram

9.6 respectively.

The following lines are buffered from the Q-bus:

DALO-15 16 Data Address Line M ultiplexed data/address
BS7 1 Bank S e le c t 7 I/O page decode
WTBT 1 WRite/ByTe M ultiplexed w rite /b y te
SYNC 1 SYNChronise Bus cy c le in progress
DIN 1 Data IN Read strobe
DOUT 1 Data OUT Write strobe
RPLY 1 RePLY Slave handshake
lACKI 1 in terru p t ACKnowledge In Acknowledge daisy chain
lACKO 1 in terru p t ACKnowledge Out Acknowledge daisy chain
IRQ4 1 in terru p t ReQuest Request (lo p r io r ity)
IRQ5 1 in terru p t ReQuest
IRQ6 1 in terru p t ReQuest
IRQ7 1 in terru p t ReQuest Request (h i p r io r ity)

These lines are used in two ways:

1. D ata transfer cycles between the PDP-11 host and the ABI.

2. In terrup t requests and acknowledges.

The Q-bus protocol for these transactions will now be described. Note th a t IM P

does not use the DMA capability of the Q -bus, therefore the description below

is not a complete descrip tion of Q-bus operation, bu t only an overview of those

parts relevant to IM P. Fuller details may be found in [Dig79a].

206

Figure 9.6: QQ prototype

9.7 Q-bus protocols

9.7 .1 D a ta transfer cyc les

The DTB transac tion is shown in Figure 9.7

1. The m aster asserts DALO-15 w ith the required address. If the address is

w ithin the I /O page (the top 8K byte of the memory m ap), it asserts BS7.

If the cycle is a w rite, it asserts W TB T. After waiting 150ns m inim um , the

m aster asserts SYNC. This allows 75ns de-skew and 75ns setup tim e a t the

slave.

2. On the rising edge of SYNC, the slave latches the address, and if necessary

W T B T .

3. After waiting a fu rther 100ns m inim um , the m aster removes the address

from DALO-15 and negates W TB T. This allows at least 25ns of hold tim e

at the slave.

4. For a w rite, the m aster asserts DALO-15 with the required data . If the cycle

is a byte w rite, it asserts W T B T . After waiting at least 100ns, it asserts

DOUT. This allows at least 25ns of setup tim e at the slave.

5. For a read, the m aster asserts DIN.

6. W hen ready, the slave asserts RPLY. At least 150ns will elapse a t the slave

between the assertion of RPLY and the negation of the strobe (DIN or

207

SOIN

WHITE

Figure 9.7: Qbus d a ta transfer

D O U T).

7. For a read, d a ta is latched at the m aster on the falling edge of the strobe.

Because of setup tim e requirem ents, d a ta m ust be presented by the slave

not m ore than 125ns after the assertion of RPLY (i.e. this is an early

acknowledge protocol). W TB T will rem ain valid at the slave for a t least

25ns after the negation of the strobe.

8. For a w rite, d a ta is guaranteed to be present at the slave buffers for at least

25ns after the negation of the strobe. W T B T also m aintains its value for at

least 25ns.

9. If this is a w rite-after-read cycle, SYNC will rem ain asserted and the da ta

p a rt of a write cycle will be perform ed. O therw ise SYNC will be negated.

10. SYNC m ust remain negated for at least 200ns. This m eans th a t a t least

50ns dead time m ust occur before DALO-15 can be asserted with the next

address.

The m inim um read tim e for Q-bus is 550ns -f- Try and for w rites 650ns -f- T^,

where Tr is the response tim e of the slave. W ith current fast memories, it is

quite possible to produce slaves th a t do all in te rn a l accesses during the allowed

setup tim es of the protocol, and therefore appear to have zero response time. In

this case Tr will consist of the time required for the strobe (DIN or DOUT) to

p ropagate down the bus, be turned around onto RPLY and propagate back up. At

a m inim um , this would be two bus p ropagation tim es plus one gate propagation

208

tim e, say 50ns on a heavily loaded bus. This yields a m axim um bus frequency of

1.67MHz for continuous reads (i.e. a bandwidth o f 3.3Mbyte 1.43MHz for

continuous writes and 0.84MHz for continuous w rite-after-reads.

9.7 .2 In terrup t p rotoco ls

The in te rru p t protocol has three phases: in te rru p t request; in terrup t

acknowledge and a rb itra tion ; and vector read.

9.7 .3 In terrup t request phase

A device may assert an in terrup t request a t any tim e. Several devices

may be requesting service at once because the request lines are open collector.

The request codes are som ew hat com plicated by the need to m ain ta in comp at a-

bility across two versions of the Q-bus. Originally only one level of in te rru p t was

provided, bu t w ith the release of the LSI 11/23 processor this was upgraded to

4. The earlier scheme supported only the lowest level (IRQ4) and so all higher

requests m ust also assert IRQ4 to warn off earlier single level devices. To ease in

decoding during in te rru p t acknowledgement, level 7 IRQs m ust also assert IRQ6.

The full list of codes is:

4 IRQ4
5 IR Q 4 ,IR Q 5
6 IR Q 4 ,IR Q 6
7 IR Q 4 ,IR Q 6 ,IR Q 7

These lines rem ain asserted until the request is acknowledged.

9.7 .4 In terrup t acknow ledge phase

At the end of each instruction , the m aster exam ines the s ta te of the IRQ

lines and com pares the priority of any pending requests w ith its own execution

priority as defined by the Processor S tatus W ord (PSW). A request a t a higher

priority than the processor’s will in itia te an in te rru p t acknowledge transaction .

1. The m aster asserts DIN and at least 225ns la te r asserts lA CK O . Note th a t

SYNC is not asserted , and this may be used to differentiate between DTB

read and in te rru p t acknowledge cycles.

2. The device electrically closest to the m aster receives the acknowledge on its

lA CK I receiver.

209

3. If not requesting an in te rru p t, the device asserts its lA CK O line and thus

propagates the acknowledge to the next device in the daisychain.

4. If the device is requesting an in te rru p t, it checks the IRQ lines to see if a

higher level device is also requesting.

5. If no higher level request is present, the device blocks the acknowledge. (This

is done by using th e leading edge of DIN to clock a flip flop th a t disables

the lACKO tran sm itte r.) A rb itration is won, and the vector transfer phase

s ta rts .

6. If a higher level request exists, the device disqualifies itself (by clearing the

blocking flip flop) and the acknowledge propagates to the next device.

9.7 .5 V ector read phase

W hen a rb itra tio n has been successfully won, the device asserts RPLY,

and w ithin 150ns supplies an in terrup t vector on DALO-15. The m aster then

reads the vector, and negates DIN and lA CK O . The device then negates RPLY

and w ithin lOOns removes the vector. The m aster then uses the vector as the

address of a two word area in memory containing the address of the device’s

service routine which is loaded into the program counter, and a new sta tu s word

which is loaded to the PSW .

9.7 .6 Q -bus in terrup t p rotoco l hazard

The Q-bus in te rru p t protocol is in teresting because it effectively requires

the device itself to perform priority a rb itra tion . This is a sort of halfway house

between the Unibus and V M Ebus schemes. T he Unibus requires the in te rru p te r

to become a bus m aster, and therefore all a rb itra tio n is done by the DTB arb i­

tra to r. The Q-bus requires the in terrup ter to decide for itself w hether a received

acknowledge is for it or ano ther in terrup ter. The VM Ebus in te rru p t fielder tells

the in terrup ter which p rio rity it is responding to by pu tting out a three-b it code

on the address lines, so all the in terrup ter has to do is wait for an lA C K I w ith a

m atching code on A2-A0. In fact the Q-bus protocol could also do this because

not all 16 DAL lines are used for the vector (vectors are only allowed in the 512

bytes of memory, so only 9 DAL lines are needed for vector specification).

Because of the serial n a tu re of the arb itra tio n on the Q -bus, a potentially

fata l race condition exists wherein a low prio rity in terrup ter near to the in te rru p t

fielding processor may ‘s tea l’ a vector fetch cycle from a high priority in te rru p te r

ZDAlDOIS

ODOMS

MCO^IZ. 0087

2ASYWC
ZWfTBT
2DSYNC

ZACK*

AddTMt (t e x t e

WA*
(texd#

AteM * >
m tç ç m

IWRJTF

a *
Aiti(r*lar

gsr.
amv-
BRT..

16W4Z I SYSGUC

B g tff .HfgW‘
Rfiltf
ROMf

K0E

: S '
AO »-»
WtMTP

210

DOO-1S

AS-
D s r
061-

B8SY* BRS*

/fWcWog DTACK" But B8SY"
BERR" R tqutritr BG3K

Figure 9.8: QV block diagram

further away. This is resolved by ensuring th a t high priority in te rrup ters are

geographically close to the in te rrup ter.

9.8 QV card

The QV card forms the VM Ebus end of the ABI link. The full design

has been modified in la ter versions to remove the in terrup t generation circuitry

which tu rned out to be overkill for the current project.

QV provides controller functions for the VM Ebus, such as clock gen­

eration and bus tim e-out w atchdog, m em ory m anagem ent hardw are to convert

Q-bus addresses to full 24-bit VM Ebus addresses, and in te rru p t fielding on the

V M Ebus. The Q-bus d a ta transfer and in te rru p t service protocols are converted

to V M Ebus protocols. A block diagram of th e QV board is shown in F igure 9.8.

9.8.1 Q V op eration

9.8 .2 A ddress and W T B T la tch es

The ABI DAL signals are buffered and passed to the address latches

where the ad d re ss /d a ta inform ation is dem ultiplexed under the control of ZA-

SYNC. The ZW TBT line is buffered and latched in one half of a dual D -type

flip-flop. A simple la tch (such as those used for the DAL lines) is not sufficient

because the latched read will need to be changed to a w rite signal at the end of

the d a ta strobe (DSYNC) during read-m odify-w rite cycles. T he o ther half of the

211

D -type is clocked by the falling edge of DSYNC and clears the W R IT E flip-flop.

9.8 .3 A dd ress d ecod in g

T here are 32 m em ory m anagem ent and 8 in terrup t service registers on

the board . In ternal addresses are decoded by PRO M and random logic.

A further block of 4K bytes (usually the bottom half of the Q -bus I /O

page) is reserved for VM E bus access. This space is divided up in to 16 windows

of 256 bytes each.

9.8 .4 V M E bus access

W hen an address w ithin a V M Ebus window is detected, a request is sent

to the on-board V M Ebus requester and when a grant is received the V M Ebus

buffers are enabled. Bits 1 to seven inclusive of the Q-bus address (corresponding

to the address w ithin the window) are connected directly to the low seven bits

of the VM E bus buffers. The W T B T line is decoded with bit zero of the Q-bus

address to generate the correct set of d a ta strobes for the V M Ebus.

Bits eight th rough eleven are applied to the pair of 74LS621 address

m appers which access in ternal registers to supply 24 bits of ex tra addressing

inform ation. This is connected to V M E lines A8-23, AMO, LWORD* and lACK*.

9.8 .5 In terrup t su b sy stem

In terrup ts are la tched by two AMD 9519A Universal In te rru p t Controller

chips. These sophisticated devices allow program m able edge detection on eight

independent prioritised inpu ts and can be preloaded with vector inform ation for

the host. W hen an active edge is sensed by one of the in te rrup t controllers it sets

an in ternal flag b it and asserts an open collector In terrup t Request line. This

generates an in te rru p t cycle on the ABI. T he host processor will read the vector

inform ation from the controllers autom atically . Hence sixteen independently vec­

tored in te rru p ts are available. These are connected to (in decreasing priority or­

der) SYSRESET*, SYSFAIL*, BCLR* BG3*-BG0*, IRQ 7*-IRQ l* and BERR*.

Using these in terrup ts , the host m ay m onitor all transactions on the VM Ebus

above the level of individual d a ta transfers (i.e. in terrup ts, system failures and

bus m aster transfers).

- œ s r
BQCM*

B8Sr
B « r n e r

BBsr

GRANT 1

RESCT

C l£ A R 1

1 HAS BUS% HAS BUS

GRANT 0

0 HAS BUS

1 CLEAR

SCANNING

GRANT tGRANT 3

3 HAS BUS

0 CLEAR

212

Figure 9.9: A rb itrato r s ta te diagram

9.8 .6 B u s serv ices

QV provides an arb itra to r, a bus tim e-out watchdog and a system clock.

These subsystem s are completely independent of the other functions on the board

and could be disabled if the Q-bus machine was to be used w ith a proprietary bus

controller card.

The 16MHz clock is generated from a crystal oscillator and buffered

directly onto the V M Ebus. The clock is divided down by an eight-bit counter to

provide a 16/is tim er th a t is enabled at the s ta rt of each V M Ebus address strobe.

If a DTACK has not been received w ithin th a t tim e, the counter asserts BERR*

to indicate a bus tim e out.

The 16MHz clock drives the a rb itra to r which is a finite s ta te machine im ­

plem ented in a 85S105A Field Program m able Logic Sequencer. The sta te diagram

is shown in Figure 9.9.

9.8 .7 Softw are access to th e V M E bu s

The program m er’s model of the Q-bus to VM Ebus m em ory m anagem ent

is shown in Figure 9.10.

The sixteen V M Ebus windows each have an associated VME Address

Register (VAR), labelled VARO-15. Each VAR is 24 bits long and is accessed

via two Q-bus words. VARnLO holds b its 0-11 of the extension word, corre­

sponding to VM E b its A 8-19. VARnHI holds bits 12-23 of the extension word

corresponding to V M E bits A20-23, AMO-5, LWORD* and JACK*.

213
VARHI VARLO WINDOWS VME AddrMt spec#

A23-20 A19-08
AMO-S

000000
000100

A07-00

Figure 9.10: M emory m anagem ent program m er’s model

The sixteen windows may therefore be independently m apped to any 256

byte area on the VM Ebus starting a 256 byte boundary. Any address modifier

may be associated w ith the window.

As an exam ple, suppose the Q-bus host needs to access a sixteen-bit

word at VM Ebus address A9B115i6 with address modifier 3Cig, and th a t the first

two V M Ebus windows are already m apped.

In this case LWORD* and lACK* will be low, so the full 32-bit address

will be 3CA9B115i8. This address is divided in to three fields — the top twelve

b its, the m iddle twelve bits and the bo ttom eight b its, i.e. 3CAi6, 9Blig and

15i 6. The twelve bit fields are loaded into VAR2HI and VAR2L0 respectively.

T he Q-bus address is then b a se + n x 256 + o f f s e t , where b ase is the first

location of VARO, n is the num ber of the VAR and o f f s e t is the eight-bit field

from the full VM Ebus address.

9.8 .8 Q -bus addressing conflicts

The QQ-QV board set occupies a large p a rt of the Q-bus I /O page, and

some care is required when configuring the system to avoid conflicts w ith other

installed peripherals. On PDP-11 systems this is not usually a problem because

when the L S I ll /0 3 system was designed DEC allocated the bo ttom 4K bytes of

the I /O page for ex tra m em ory (i.e. the LSI 11/03 had 60K of memory ra ther

than the usual 56K). As a resu lt all s tandard DEC peripherals are allocated space

in the top half of the Q -bus to ensure comp at ability w ith the 11/03. Assuming

the host processor is not an 11/03 therefore QV can safely use the 4K I /O space.

214

O n an 11/03, sm aller windows m ust be used. However th is is not a practical

restric tion as the 11/03 is now obsolete.

On micro VAX system s the situation is less favourable. There is no re­

quirem ent for downwards com patability w ith the 11/03 and therefore some s tan ­

dard peripheral addresses have been moved down into the lower half of the I /O

page. In particu lar, the D H V ll octal m ultiplexer (which is s tan d ard equipm ent

on m ulti-user micro VAXes) falls w ithin the VAR2 space. In practice, this m eans

th a t any a ttem p t to m ap VAR2 to active VM Ebus memory will result in a m achine

check and reboot of the VAX because of m ultiple address clashes.

A future protocol converter will resolve this problem by m aking use of

the Q-bus memory space and thus relieving pressure on I /O space. The micro VAX

accesses its m ain m em ory in a separate address space th a t does not require Q-

bus allocation, so there is some 4M bytes of free address space for m apping to the

V M Ebus. This will significantly increase th roughput as rem apping of registers will

not be required unless m ore than 4M bytes of VM Ebus space m ust be accessed.

T he curren t design works w ith a s tandard micro VAX II as long as VAR2 is not

m apped to populated V M E locations.

9.9 B A SE card

To ease interfacing to the V M Ebus, a standard bus foundation module

was designed which provides full buffering, a bus requester, an in te rru p t requester,

and a simple synchronous bus slave protocol handler. Fuller details may be found

in [Joh85]. Most of th e functionality of the board is im plem ented in two 85S105A

Field Program m able Logic Sequencers.

As well as being used to interface the hardw ired coprocessors used in the

factory application described below, the BASE circuitry has been incorporated

in to the SIPP [Edm88j, S P l and SP2 [Joh88b] microcoded processors. The slave

protocol handler is also used in the V2 and V3 frame stores.

9.10 An industria l in sp ection application

A UK based food m anufacturer approached the research group w ith a

view to im proving quality control on their production lines. A vision system

was required th a t would gather sta tistics on product variability and remove bad

p roducts from the line. C entral to the project was the requirem ent for 100%

inspection of the line.

215

The resulting collaborative pro ject between RHC, U nited B iscuits L td

and Unilever Central Research L td provided much of the funding for the work

described in this chapter. It was decided early on th a t a difficult problem be

selected and a dem onstrator system constructed and run on a real p roduction line

for a realistic period. The ta rge t processing ra te was three products per second. In

the event the system operated successfully for two weeks at a th roughpu t of four

per second using a PD P 11/23 host. This was using a single fram e store so th a t

processing and image acquisition were not overlapped. Pipelining the acquisition

and processing stages by using a second fram estore and replacing the 11/23 w ith

an 11/73 host would raise the th roughpu t to over ten per second.

9.10.1 T h e prob lem

The product to be inspected was a circular chocolate coated sponge

w ith a circular jam insert. An exam ple is shown in Figure 3.6. The equipm ent

was required to check for overall circularity, radius of the product, rad ius and

concentricity of the jam insert, goodness of chocolate cover and gross failure,

such as upside-down or broken products. Inspection of the jam d istribu tion was

particu larly difficult because the chocolate coating was already in place.

9.10 .2 W ho did w h at

Dr E. R. Davies designed the algorithm s to perform the inspection on

s ta tic products which will be described below. He also designed two hardw ired

coprocessors at the block diagram level th a t im plem ented key parts of the algo­

rith m a t high speed. These processors were built by Dr M. A rain, and tested

and debugged using routines w ritten by E. R. Davies. The au thor designed and

constructed the m ultiprocessor system th a t housed these coprocessors, th e fram e

stores and cam era hardw are, the host protocol link and the interface for the h ard ­

ware coprocessors to his system . He developed the image acquisition software

th a t allowed rapidly moving objects to be captured and supplied to the rest of

the system at a norm alised position w ithin the frame buffer in real-tim e. He also

designed and im plem ented the system software, integrated the coprocessors and

the software algorithm s, and w rote the software to control the system in the fac­

tory which provided a front panel display and graphics to help dem onstrate the

system to m anagem ent. T he design decisions th a t resulted in this particu la r mix

of software and hardw are techniques are described in [DJ86] (a copy of which is

bound in at the end of this thesis) and [DJ89]. As p a rt of the evaluation process

216

the au tho r w rote software sim ulators for the hardw are coprocessors th a t may be

dropped into the factory package as a direct replacem ent for the hardw are control

code. T he au th o r’s factory package comprises some 3500 lines of code overall.

9.11 T he algorithm

The algorithm comprises six phases: object detection and acquisition,

thresholded edge detection, circle centre detection using a Hough Transform ,

showthrough (holes in the chocolate) inspection, jam inspection and pass/fail de­

cision m aking.

9.11.1 O b ject d e tec tio n

The V I fram estore allows host accesses during image acquisition. W hen

used w ith a line scan cam era, the line update counter is held at line 20 during

object detection. The host m onitors the horizontal flyback bit and reads the

central p a rt of the line during flyback. If it detects a dark area then the host

begins the line counter until a whole object has been grabbed. The top edge of

the object will therefore be fixed at line 20.

9.11 .2 E dge d e tec tio n

A Sobel operator is applied to the im age. The results are thresholded so

th a t (typically) about 100 points are m arked as being strong edge points.

9.11.3 C entre d e tec tio n

S tarting a t each edge point from the phase two list, the end point of a

vector r (the radius of the circle) pixels along the norm al to the direction of the

edge is m arked in an alternate edge space. At the end of this process, there will

be a peak corresponding to the centre of the circle in Hough space, as shown in

Figure 9.12.

9.11 .4 Show through in sp ection

The calculated centre is used to position a circular mask over the p rod­

uct. All points falling w ithin this m ask are thresholded against a low and a high

value. T he high values show light patches which can be in terp reted as holes in the

chocolate (although there will be some contribution from specular reflection of the

217

K liiia

1
M
iimiF••liiiii::::::

::::::

Figure 9.11: Jam inspection

lighting on the shiny chocolate). The dark area is used to control in terpreta tion

of the radial histogram .

9 .11.5 Jam in sp ection

Inspection of the jam layer under the chocolate is difficult even for hu­

m ans. However, Dr Davies observed th a t if the product is lit from above with a

parallel light beam then the fiat area of the product reflects light straight back

to the cam era. However the bevelled edges of the jam layer refiect light away

from the cam era. The result of this is th a t the m achine ‘sees’ a dark ring on the

p roduct corresponding to the edge of the jam layer.

This ring is indistinct, so the Hough transform technique used to locate

the p roduct itself is not useful for the jam disc. Instead the rad ia l grey scale

h istogram is collected. This will show a dip at the radius of a well formed jam

layer. If the jam is not concentric w ith the product, or if some of the jam is

m issing then the dip will be sm oothed out.

The histogram is correlated against a stored tem plate for the ‘ideal’

p roduct to provide an overall figure of m erit for the jam position and size.

C orrelation is perform ed by sum m ing the pointwise products of the his­

togram bins over the range of the actual histogram , after the actual histogram

has been norm alised about the m ean intensity.

9.11.6 D ecision m aking

M anagem ent-supplied thresholds are supplied for circularity tolerance,

radius, chocolate cover, jam figure of m erit and dark ring area. P roducts are

required to pass all these tests to proceed to the packing station . In a real sys-

218

tern, bad product would be blown off the line w ith a com pressed air je t. In the

dem onstra to r system , red and green lights were used to indicate pass/fail.

9.12 R eal tim e im plem entation

The frame store provided some hardw are assistance for the object loca­

tor.

H ardware coprocessor P I perform ed the Sobel calculation on the image.

U nfortunately, P I only re tu rned a list of coordinates th a t m arked strong edges.

T he Hough transform requires the X and Y edge vectors so as to calculate the

norm al direction to the edge and these had to be recalculated by th e host since P I

d iscarded the inform ation. This incurred significant overhead (%24ms). A VLSI

chip th a t can calculate Sobel com ponents will be described in the next chapter.

H ardware coprocessor P2 provided a software controlled circular tem ­

p la te used to specify the area of the im age covered by the p roduct. W ith in this

area, light area, dark area and radial histogram inform ation was collected in a

single pass over the im age. The tem plate was also correlated on the fly during

th is scan.

The rest of the program was im plem ented in Pascal on the host, along

w ith user interface functions.

9.13 Factory trial

The system was used on-line for two weeks. D uring this tim e there were

visits by senior m anagem ent and Unilever C entral Research L td com m issioned a

short video showing the system in operation. The perform ance exceeded specifi­

cation and we were able to gather useful statistics on product variability th a t had

not been available using the existing batch sam pling techniques.

9.14 C onclusions

This chapter has described a video-speed MIMD system and an applica­

tion in the food processing industry. The system hardw are has been in regular use

for th ree years w ith modified versions running on VAX processors. A repo rt com­

m issioned by United Biscuits L td indicated th a t the com mercial cost of producing

the system would be in the range of £10,000 per un it. This would allow real tim e

processing of grey scale im ages a t the ra te of around ten a second (depending

219

on the application). This is an advance on commercially available system s th a t

are typically restric ted to b inary real-tim e processing after th reshold ing of the

original grey scale im age.

As well as im proving quality control, systems such as IM P can control

costs where expensive coatings such as chocolate are in use. Given th a t there will

be variability of chocolate thickness due to environm ental factors, the m anufac­

tu re r m ust ensure th a t the worst case chocolate cover is still acceptable by the

consum er. To do th is, the m ean of the d istribution m ust be increased un til the tail

lies above the m inim um acceptable level. Therefore, on average, chocolate cover

will be b e tte r than required and this can be very expensive (a t the tim e of the

factory tria l, processed chocolate cost around T2000 per ton). However, if sys­

tem like IM P can guaran tee to inspect every product and remove those th a t have

th in chocolate coating then the m ean of the d istribution can be moved down to

the point where chocolate w astage due to product removal m atches the increased

costs of thickening the chocolate layer.

9.15 C onclusions

A system capable of supporting real-tim e grey scale im age processing

has been designed and successfully dem onstrated in a real factory environm ent.

The system is easily expandable using commercial and in-house boards, and has

been used as the foundation for o ther projects not described in th is thesis.

Figure 9.12: Centre detection

220

C hapter 10

A full custom VLSI SOBEL filter

10.1 Introduction

Edge enhancem ent is one of the most com mon operations in im age pro­

cessing. This chapter concerns the design and im plem entation of a VLSI Sobel

filter (called SOBS-1) which can calculate differential gradient com ponents w ith

an in ternal propagation tim e of less than 10ns. It is designed to be used w ith an

external lookup tab le in ROM which generates edge m agnitude data .

10.2 E dge m easurem ent operators

Edge m easurem ent requires the calculation of bo th the m agnitude and

the gradient of the edge. The work described in the previous chapter recognised

circles in th e im age using a Hough transform based algorithm . A fundam ental

requirem ent of such algorithm s is a realtim e edge detector w ith high angular

accuracy. Several classes of edge enhancem ent opera to r have been developed:

1. tem plate m atching [Pre70,Rob77,NB80],

2. differential gradient calculation, [DH73,Rob65],

3. use of orthonorm al basis functions [Hue71,Heu73],

4. difference of gaussians [MH80].

T he tem plate m atching operators use a set of predeterm ined p ro to type edge masks

and approxim ate the edge direction to th a t of the m ask w ith the best m atch. To

accurately approxim ate the edge direction, a large num ber of slightly different

m asks would be needed, however this implies elongated processing tim es. Here,

speed m ilitates against accuracy.

221

Hueckel’s operato rs and the M arr-H ildreth edge detectors are compu-

ta tionaly intensive. [Hue71,Heu73] quotes runtim es of the order of 1.5 m inutes

on a D EC -10 for a 297 x 231 pixel array. The M arr-H ildreth operators require

neighbourhoods of a t least 35 x 35 pixels. Both classes of operato r are currently

uneconomic for realtim e industria l applications.

The differential gradient operators a ttem p t to calculate the x and y

com ponents of the grad ien t directly by convolving w ith X and Y m asks and then

taking the norm alised root of the sum of the squares to find the edge m agnitude.

Essentially the operators a ttem p t to fit a plane to the pixel in tensities in the

neighbourhood. This m ethod is especially attractive for direction related applica­

tions as it directly provides the direction com ponents. [HarSO] suggests th a t the

masks equivalent to the P rew itt operator are optim al for a th ree by th ree window,

and th a t sim ilar m asks apply for larger areas, e.g. for a 5 x 5 neighbourhood:

M ,

1 - 2 - 1 0 1 2 ^ ̂ 2 2 2 2 2 ^

- 2 - 1 0 1 2 1 1 1 1 1

- 2 - 1 0 1 2 My : 0 0 0 0 0

- 2 - 1 0 1 2 - 1 - 1 - 1 - 1 - 1

 ̂ “ 2 - 1 0 1 2 J 1 - 2 - 2 - 2 - 2 - 2 /

In practice the Sobel operato r seems to be preferred. [Dav84] suggests circularity

as a criterion for testing the angular accuracy of differential grad ient operators.

O ptim al (real num ber) m ask coefficients are obtained by weighting according to

the area of each pixel included w ithin a circle enclosing the neighbourhood. Ac­

cording to this analysis, the angular response of the Sobel operato r is op tim al for

masks w ith integer coefficients. The theory is a ttractive b o th because it offers a

theoretical basis for th e popularity of the Sobel operator and because it provides

a rationale for the design of optim al edge operators using larger neighbourhoods

which provide an increase in accuracy over the basic Sobel.

10.3 The P lessey edge detector

Plessey Sem iconductors Ltd m arket an edge detection device (PDSP16401

[Sem86]) which uses tem p la te m atching against the following four tem plates:

1 1 1

0 0 0

- 1 - 1 - 1

\
(l 0 - 1 ^

/

1 0 - 1

/ u 0 - V \

2 1 0

1 0 - 1

0 - 1 - 2

0 - 1 - 2

1 0 - 1

2 1 0

222

The first two masks are norm alised by a factor 1.5 in an a ttem p t to take account

of the fact th a t the four-connected pixels are a factor \/2 closer to the centre of

the neighbourhood than the eight-connected pixels. N orm alisation by 1.5 is of

course only an approxim ation which eases the arithm etic im plem entation.

In operation, th ree ten-b it values representing the three lines of the cur­

ren t window are presented to the chip. P resum ably the ten bits are in tended to

represent three three-bit pixels w ith one spare bit. Four separate F IR filters pass

video d a ta associated w ith the o rien tation of each mask. The ou tpu ts are then

sorted to produce a three-b it word giving a one-of-eight approxim ation to the edge

direction. The 13-bit o u tp u t of the filter generating the strongest o u tp u t is avail­

able at the chip ou tpu ts, and the m ost significant ten bits are com pared against

an externally provided threshold . If the o u tp u t exceeds the threshold level, a chip

o u tp u t goes high. The chip can cycle at 15MHz, fast enough to process 1024 x

1024 pixel images in real tim e, bu t 20 cycles are required to process each set of

results. This twenty cycle pipeline delay will com plicate im age buffer addressing.

A lthough the chip is fast and provides an on-chip com parator (thus sav­

ing one external package), it is based on theoretically unsound principles, and

only calculates approxim ate norm alised convolutions. Even assum ing th a t the re­

sulting responses are accurate, the one-of-eight direction ind icator introduces an

angular error of up to 22.5°. Convolution errors when the actual edge direction is

midway between masks will add to this error. The chip processes pixels to only

eight grey-level accuracy and does not provide in ternal pipelining of pixel fetches

(as opposed to the processing pipeline), so considerable external support circuitry

will be required.

10.4 SOBS-1 d esign derivation

The architecture of the SOBS-1 chip is derived from th a t of the P2 h ard ­

ware processor designed by E R Davies for the IM P system application described

in the last chapter. The chip im plem ents a large array of adders along w ith a three

by three stage pixel pipeline. Unlike the P2 im plem entation, SOBS-1 m aintains

full arithm etic precision th roughout and generates 10-bit com ponent ou tpu ts. Of

itself this would be accurate enough for Hough transform circle detection to be

perform ed for circles up to 2048 pixels in d iam eter in ideal conditions of zero noise.

The P2 im plem entation is lim ited to 128 pixel d iam eter circles. To fully exploit

the available precision a square root lookup tab le is required w ith a address lines

where a is the num ber of significant b its taken from the adders. To fully exploit

223

the available precision a IM x 10-bit lookup tab le is required, bu t in general a

2(i o g n) + i y ^ b it tab le will be required for circles of d iam eter 2n pixels.

SOBS-1 also provides a prefetch stage on the inpu t pipeline allowing a

column of pixels to be preloaded before cycling the pipeline.

The full P2 system includes a set of com parators for detecting points

in the im age w ith large edge m agnitudes and a coordinate RAM which is loaded

during a p icture scan w ith a list of the coordinates of such out-of-threshold points.

These functions are not included in the present design, m ainly due to chip pinout

restrictions.

10.5 SO BS-1 arithm etic section

The Sobel convolution masks are:

f - 1 0 1^ (1 2 l \
5x : - 2 0 2 Sy : 0 0 0

. - 1 0 1 J 1 - 1 - 2 - 1 J

If we num ber the pixels thus:

P4 PS P2

P5 PO P I

P6 P7 P8

then the mask equations are

= P 2 - \ - 2 x P l + P S - (P 4 + 2 x P b + P 6) S y = P 4 - h 2 x P 3 + P 2 - (P 6 - f -2 x P 7 + P 8)

These m ay be generated using two trees of adders and sub tracters. The

m ultiply by two is simply a shift left. In a com binatorial im plem entation, a shift

left is obtained simply by connecting the adders w ith a one b it offset.

10.6 P ix e l p ipelin ing

A note by Lee [Lee83] w ith la ter expansion by P icton [Pic84] describes

elim ination of redundan t arithm etic operations in the Sobel filter. If the simple

Sobel convolutions are applied across an entire im age then some term s are calcu­

la ted more th an once. An obvious exam ple is the lower (negative) partia l sum in

Sy for line y = n which will be the same as the upper (positive) p artia l sum in

Sy for line y = n 2. T hroughput on a conventional sequential processor would

224

adder

adder
shl

up

dy partial sum

subtracter

adder

adder

complementary outputs

Figure 10.1: SOBS-1 arithm etic trees

be increased if these term s were stored and retrieved when necessary rather than

being recalculated. However, the arithm etic s tru c tu re in SOBS-1 calculates all

term s com binatorially in parallel, and there is very little speed to be gained by

storing in term ediate results for la ter operations. T he overhead in storage and

sequencing would be high.

Given th a t SOBS-1 calculates results when needed, a bottleneck exists at

the inpu ts where (potentially) nine pixel fetches are required from the fram estore

for each operation. This is unacceptable because the fram estore access time is

likely to be of the order of 50-100ns, and so a com plete filter operation (with

subsequent w riting of results to an ou tpu t fram e buffer) will require 0.5-1/is. This

is a gross m ism atch with the speed of the a rithm etic trees (~10ns). However, it

should be rem em bered th a t Sobel m agnitudes m ust be fetched from a ROM lookup

table which will also lim it the actual system speed. Large EPRO M s and ROMs

are widely available at speeds of around 250ns, and th is provides the target speed

for the pixel fetch circuitry.

Pixel I /O may be reduced by buffering of im age lines. If two complete

lines + 3 pixels are stored in shift registers in ternal to the chip then only one pixel

read from the fram e store is required per filter operation . This scheme requires a

great deal of on-chip storage and produces a design th a t requires expensive high

speed ROM s to m ake use of the ex tra speed. A b e tte r m atch to the ROM speed

is obtained using a simple window-column buffer com prising three separate three

225

2n + 3 bytes storage, two fs accesses per window

Figure 10.2: Pixel line buffer

12 bytes storage, four fs accesses per window

Figure 10.3: W indow-column buffer

pixel-pipelines.

Three pixel reads are now required for each operation. Together w ith the

o u tp u t write this requires four fram e store cycles, i.e. 268ns for a 67ns access tim e

fram e store (i.e. 512 x 512 square pixel speed). This m atches the 250ns access

tim e of the ROM well, and provides com pact VLSI im plem entation. This scheme

is used in SOBS-1. In a system with two fram e buffers or one where the results

are being w ritten to a different space, the write cycle may be fu rther overlapped

w ith one of the read cycles giving a 201ns overall cycle. N aturally a faster ROM

would be required in th is case.

10.7 O peration p ipelin ing

The propagation delay of the adder circuitry is negligible com pared with

the cycle tim e of the system , so no in ternal pipelining is required. However,

prefetch buffering of the next column of pixels is required so th a t fram e store

accesses may be fully overlapped with the ROM lookup. One way of im plem enting

this would be to la tch the two tw enty-bit differential gradient ou tpu ts a t the

inpu ts to the ROM . However, to m aintain m axim um th roughpu t the o u tp u t latch

would need to be activated exactly when the ou tpu ts from th e arithm etic tree

226

hi

mid

lo

data
in

3 24

5 0 1

6 7 8

clock iines

\

/

L
A

adder trees ROM Tc
H

data
out

Figure 10.4: O peration pipelining sequence

first stabilised. This will vary from sample to sample of the chip, and in any

case is likely to be of the order of 10ns after loading of the last pixel in the new

column. A ccurate generation of 10ns delays on-chip would be difficult and in

practice the whole system would have to be slowed down to allow for variations

due to tem pera tu re and processing factors.

The solution is to pu t the operation pipeline latch at the inpu ts to the

device and an o u tp u t la tch after the ROM. The filter chip works on a four phase

cycle. D uring phases one, two and three the pixels th a t will form P2, P I and P8

of the next calculation are loaded into the prefetch latches. D uring phase four

the prefetch la tch and the th ree level pipelines are connected as four-pixel shift

registers and d a ta shifted across one column. At the beginning of phase four,

the ROM o u tp u t la tch is clocked to load the result of the current operation and

during phase four th is value is w ritten back to the frame store.

M any bus interfaces include ou tpu t d a ta latches in the o u tp u t buffers,

and this provides the SOBS-1 ou tpu t latch ‘for free’.

10.8 TTL equivalent chip count

SOBS-1 contains twelve 8-bit latches and ten 11-bit adders along w ith a

small am ount of clock driver circuitry. Allowing for the fact th a t two of the 11-bit

adders could be im plem ented as 8-bit adders w ithout loss of arithm etic accuracy,

SOBS-1 is roughly equivalent to twelve 74LS374 octal latches, sixteen 74LS83A

four-bit adders and a buffer {e.g. 74LS245) to provide clock drive.

227

10.9 V LSI im p lem en tation

SOBS-1 is bu ilt in 2 micron CMOS using European Silicon S tructures

(ES2) e-beam processing. I t requires about 4,200 transistors (not counting I /O

buffers). It fits on a lO^mm die, which is small by m odern s tandards and should

therefore exhibit high yield. (Yield decreases w ith increasing die size due to the

higher probability of including a crystal defect w ithin a given chip).

The chip was designed using the ISIS software m arketed by Racal-Redac

[Rac87] which is a com m ercial version of the software developed by Inmos and

used in-house for the design of the T ranspu ter and other advanced devices. ISIS

was selected by the Alvey d irectorate as one of the preferred tools on the Alvey

VLSI projects and is regarded as one of the most advanced toolsets available for

full custom VLSI design.

ISIS com prises a H ardw are D escription Language (HDL) used to de­

scribe the in terconnectiv ity of transistors and higher level m odules, a sim ulator

called Hylas (H Ybrid Logic and Analogue Sim ulator) which supports mixed mode

sim ulation, and a layout package called BED (Hierarchical E D itor). The system

im poses a s tric t hierarchy on the design process and in general a ttem p ts to ap ­

ply the techniques of large scale software engineering to the process of hardw are

design.

10.10 ISIS concep ts

ISIS HDL is a B C PL like language used to describe the network of el­

em ents and wires th a t makes up the chip. It is effectively a d a ta description

language, not an executable program m ing language. For exam ple, an HDL DO-

loop Specifies the in s tan tia tio n of m ultiple copies of a piece of hardw are, not the

repeated execution of one step in an algorithm .

Blocks of hardw are in HDL are represented using a M ODULE which

roughly corresponds to a procedure in a program m ing language. Some modules

are prim itives supplied by th e system such as transistors and resistors. P rim itive

m odules are not decom posable in much the same way th a t FO RTRA N intrin-

sics or Pascal predefined routines are monolithic. O ther m odules are formed by

connecting m odules together in a hierarchical fashion.

Each HDL m odule has a param eter list which describes the connections

to the m odule. HDL m odules m ap onto rectangular, non-overlapping areas of

silicon a t layout tim e. All th e com ponents (and their interconnects) listed in the

228

SCHEMATIC
Vcc

h :

PE pullup

y

NE pulldown

HDL

M O O Jlfln vefler(IN a}= y
PE pu llup (a,V cc ,y)
NEpuHdown(a,y,GND)
END inverter

LAYOUT

_ Gnd

P diffusion

H I N diffusion

s s s a Poly silicon

8ES68 Metal 1

E) Contact

Figure 10.5: Inverter representations

HDL module m ust be contained w ithin the layout module. Connections to the

m odule correspond to wires crossing the boundaries of a layout module and these

are often referred to as ‘b ristles’.

Interconnection is established in HDL by associating actual signal vari­

ables w ith the formal param eters in a m odule’s list of bristles. The global (system)

signals GND and Vdd are available th roughout the circuit for power supply con­

nections.

This example shows the schem atic, HDL and symbolic layout represen­

ta tions for a simple CMOS inverter. The HDL calls two modules NE (N-channel

Enhancem ent) and P E (P-channel enhancem ent) which are prim itives supplied

by the system:

10.11 SOBS-1 H D L im plem entation

10.12 Leaf cells

An ISIS design comprises a hierarchy of modules and routing buffers

which provide interconnection at the different levels of the hierarchy. At the

bo ttom of the hierarchy are cells containing only prim itives w ith no calls to non­

prim itive modules. These are called leaf cells because they correspond to the

leaves of the hierarchy tree. SOBS-1 contains only three types of leaf cell: a D-

type latch, a full adder and an inverter. T he basic inverter has been described

above. The inverters used in SOBS-1 are m ore complex than th a t described

above because they are essentially acting as buffers and contain an array of scaled

229

D

LD

Figure 10.6: D -type la tch

transisto rs: space precludes a detailed description of the design principles. In

th is section the modules containing logic transisto rs only will be described, and

analogue engineering details will be om itted .

10.12.1 D -ty p e latch

CMOS perm its the design of com pact latches using analogue switches

and inverters ra ther than the conventional cross-coupled NAND gates. T he d-

type used in this design is a s tandard eight transisto r circuit [WE85].

W hen Id is true then transm ission gate D is open and transm ission gate

F is closed. D ata flows through inverter D and the ou tpu t follows the inpu t.

W hen Id is false, transm ission gate D closes and F opens forming a feedback loop

th rough the two inverters which latches the data .

The HDL representation of th is circuit is:

/ / Transmission gate D la tch
MODULE d_type(IN Id, Idbar, d, OUT q)

SIGNAL id , qbar
id=UPE fp (Id, q)
id=UNE fn (Idbar, q)
id=UPE dp (Idbar, d)
id=UNE dn (Id, d)
PE i l p (id , Vdd, qbar)
NE i l n (id , qbar, Gnd)
PE i2p (qbar, Vdd, q)
NE i2n (qbar, q,Gnd)
END d_type

T he D -types are combined into an octal d -type module. The prefetch and pipeline

blocks are bu ilt from master-slave sections com prising two octal d-types.

MODULE octal_d_type(IN Id, Idbar, d [0 :7] , OUT q [0 :7])
FOR i= [0 :7] DO

230

BEGIN b i t
d _ t y p e (l d , I d b a r , d [i] , q [i])

END b i t
END o c t a l _ d _ t y p e

MODULE o c t a l _ m a s t e r _ s l a v e (I N I d , I d b a r , d [0 : 7] , OUT q [0 : 7])
SIGNAL q i n t e r n a l [0 : 7]
o c t a l _ d _ t y p e m a s t e r (I d , I d b a r , d [0 : 7] , q i n t e r n a l [0 : 7])
o c t a l _ d _ t y p e s l a v e (I d b a r , I d , q i n t e r n a l [0 : 7] , q [0 : 7])
END o c t a l _ m a s t e r _ s l a v e

/ / T h re e o c t a l ms D - t y p e s t o h o l d inco m in g d a t a

MODULE p r e f e t c h _ l a t c h
(I N l d [0 : 2] , I d b a r [0 : 2] , d [0 : 7] , OUT q [0 : 2 3])

o c t a l _ m a s t e r _ s l a v e low (l d [0] , I d b a r [0] , d [0 : 7] , q [0 : 7])
o c t a l _ m a s t e r _ s l a v e mid (l d [l] , I d b a r [l] , d [0 : 7] , q [8 : 1 5])
o c t a l _ m a s t e r _ s l a v e h i (l d [2] , I d b a r [2] , d [0 : 7] , q [1 6 : 2 3])

END p r e f e t c h _ l a t c h

/ / T h r e e by t h r e e window p i p e l i n e

MODULE p i p e l i n e (I N I d , I d b a r , d [0 : 2 3] ,
OUT p i [0 : 7] , p 2 [0 : 7] , p 3 [0 : 7] , p 4 [0 : 7] ,

p 5 [0 : 7] , p 6 [0 : 7] , p 7 [0 : 7] , p 8 [0 : 7])
SIGNAL p 0 [0 : 7]

o c t a l _ m a s t e r _ s l a v e p 4 1 a t c h (l d , I d b a r , p 3 [0 : 7] , p 4 [0 : 7])
o c t a l _ m a s t e r _ s l a v e p 3 1 a t c h (l d , I d b a r , p 2 [0 : 7] , p 3 [0 : 7])
o c t a l _ m a s t e r _ s l a v e p 2 1 a t c h (l d , I d b a r , d [1 6 : 2 3] , p 2 [0 : 7])
o c t a l _ m a s t e r _ s l a v e p 5 1 a t c h (l d , I d b a r , p O [0 : 7] , p 5 [0 : 7])
o c t a l _ m a s t e r _ s l a v e p 0 1 a t c h (l d , I d b a r , p l [0 : 7] , p 0 [0 : 7])
o c t a l _ m a s t e r _ s l a v e p l l a t c h (l d , I d b a r , d [8 : 1 5] , p l [0 : 7])
o c t a l _ m a s t e r _ s l a v e p 6 1 a t c h (l d , I d b a r , p 7 [0 : 7] , p 6 [0 : 7])
o c t a l _ m a s t e r _ s l a v e p 7 1 a t c h (l d , I d b a r , p 8 [0 : 7] , p 7 [0 : 7])
o c t a l _ m a s t e r _ s l a v e p 8 1 a t c h (l d , I d b a r , d [0 : 7] , p 8 [0 : 7])

END p i p e l i n e

/ / C e n t r a l r e g i s t e r b l o c k w i t h p r e f e t c h and window

MODULE r e g i s t e r s (I N l d [0 : 3] , I d b a r [0 : 3] , d [0 : 7] ,
OUT p i [0 : 7] , p 2 [0 : 7] , p 3 [0 : 7] , p 4 [0 : 7] ,

p 5 [0 : 7] , p 6 [0 : 7] , p 7 [0 : 7] , p 8 [0 : 7])
SIGNAL i d [0 : 2 3]

p r e f e t c h _ l a t c h (l d [0 : 2] , I d b a r [0 : 2] , d [0 : 7] , i d [0 : 2 3])
p i p e l i n e (l d [3] , I d b a r [3] , i d [0 : 2 3] ,

p i [0 : 7] , p 2 [0 : 7] , p 3 [0 : 7] , p 4 [0 : 7] ,
p 5 [0 : 7] , p 6 [0 : 7] , p 7 [0 : 7] , p 8 [0 : 7])

END r e g i s t e r s

231

A exor B A e x o rB

not(A exor B) su m carrynot(A exor B)

Figure 10.7: TransmisBion gate adder

Vdd

, TGATE ,

A

ABAR

A EXORB

Figure 10.8: Transm ission XOR gate

10.12.2 Full adder

The full adder is based on a transm ission gate adder reported in [SOA73].

It uses a novel transm ission XOR gate and a pair of m ultiplexers connected as

shown in Figure 10.7

In a full adder, the following relations are true:

W hen A X O R B is true: sum = N O T C, CARRY = C

W hen A X O R B is false: sum = C, CARRY = B

The XOR gate is also based on transm ission gates bu t uses an unusual

form of pseudo-inverter.

The circuit com prises two inverter structu res followed by a transm ission

gate. The second inverter s tructu re is connected between the signals A and N O T

A instead of between th e supply rails as is norm al. The in p u t to this inverter is

B.

232

Sum

Carry

A

Figure 10.9: T ransistor schem atic of full adder

W hen A is tru e , N O T A will be connected to GND and the second

inverter will behave norm ally, producing N O T B at its ou tpu t. The same com­

bination of signals ensures th a t the transm ission gate if off, hence A X O R B =

N O T B when A is true.

W hen A is false, A B A R will be true and the ‘supply’ connections to the

second inverter s truc tu re will be reversed. This effectively disables the inverter

and no ou tpu t is produced. T he transm ission gate switches on, hence A X O R B

= B when A is false.

An XNOR gate m ay be constructed by reversing the connections of A

and N O T A to the second ‘inverte r’.

The com plete full adder requires 24 transistors.

A ‘T T L ’ style CM OS adder (i.e. direct im plem entation of F igure 7.1)

w ith active low ou tpu ts m ay be constructed in CMOS using 24 transisto rs but

the present circuit provides tru e ou tpu ts and has a balanced propagation delay

through the carry and sum paths. The conventional adder has a longer delay

th rough the carry pa th .

The HDL for the adder is sim ply a block of 24 transistors:

/ / M o n o l i t h i c t r a n s m i s s i o n g a t e a d d e r

233

MODULE f u l l _ a d d (I N a , b , c i n , OUT sum, sumbar, c o u t)
SIGNAL a b a r , b b a r , c i n b a r , c o u t b a r , a x o r b , axnorb

c i n , vdd , c i n b a r)
c i n , gnd, c i n b a r)
a x o r b , c i n b a r , sumbar)
a x n o r b , c i n b a r , sumbar)
a x n o r b , c i n , sumbar)
a x o r b , c i n , sumbar)
a x o r b , a b a r , c o u t b a r)
a x n o r b , a b a r , c o u t b a r)
a x n o r b , c i n b a r , c o u t b a r)
a x o r b , c i n b a r , c o u t b a r)
sumbar, v d d , sum)
sumbar, gnd , sum)
c o u t b a r , v d d , c o u t)
c o u t b a r , g n d , c o u t)
a , vdd, a b a r)
a , gnd, a b a r)
b , a , a x o rb)
b , a x o r b , a b a r)

PE p i c (b , a b a r , a x n o r b)
b , a x n o r b , a)
a , a x o r b , b)
a b a r , a x o r b , b)

PE p l 2 (abeur, a x n o r b , b)
a , a x n o r b , b)

END f u l l . a d d

PE p i
NE n l
PE P2
NE n2
PE p3
NE n3
PE p4
NE n4
PE p5
NE n5
PE p6
NE n6
PE P7
NE n7
PE p8
NE n8
PE p9
NE n9
PE plO
NE nlO
PE p l l
NE n i l
PE p l 2
NE n l 2

The adders are combined in to a universal 11-bit adder. This may be used as an

11-bit sub tracter by inverting one set of inpu ts and setting the least significant

carry-in to 1. Com plem entary ou tp u ts are available from the adder to assist in

th is function. The next higher m odule (M O D U LE one_two_one) im plem ents the

X 4- 2 X Y 4- Z function needed for each Sobel partia l sum.

/ / S t a n d a r d e l e v e n b i t a d d e r

MODULE a d d _ l l (I N a [0 : 1 0] , b [0 : 1 0] , c i n , OUT s u m [0 : 1 0] ,
sumbar [0 : 1 0])

SIGNAL i c [- l : 1 0]

i c [- l] = c i n
FOR i = [1 0 : 0] DO

BEGIN a d d e r
f u l l _ a d d (a [i] , b [i] , i c [i - l] , s u m [i] , s u m b a r [i] , i c [i])

END a dder
END a d d _ l l

/ / a + 2 *b + c f u n c t i o n

234

MODULE o n e _ t w o _ o n e (IN a [0 : 7] , b [0 : 7] , c [0 : 7] , OUT sum[G ; 1 0] ,
su m ba r [0 : 1 0])

SIGNAL i s u m [0 : 1 0]
a d d . l l o n e . tw o ([a [0 : 7] , GND,GND,GND], [G ND,b [0 : 7] , GND,GND],

G N D , is u m [0 : 1 0]
a d d . l l one (i s u m [0 : 1 0] , [c [0 : 7] , GND,GND,GND], GND,

sum[0 : 1 0] , su m bar [0 : 1 0])
END one_two_one

10.13 G lobal in terconnection

T he top level of th e chip hierarchy im plem ents the block d iagram of

Figures 10.1 and 10.3. T he m odule partition ing is not in tu itive in the HDL.

The register block is grouped w ith the D* partia l sum blocks (».e. instances of

M ODULE one_two_one). T he next level up includes the Dy p artia l sum blocks

and the top-m ost level (M O D U LE sobs) incorporates the sub tracters th a t provide

the final and Dy results. T he hierarchy is arranged this way to ease the global

routing on the silicon. T he ISIS routing tools work best when connecting small

num bers of blocks in a very hierarchical fashion and the present arrangem ent

reflects the spatial relationship of the layout modules.

MODULE r e g s _ a n d _ d x (l d [0 : 3] , I d b a r [0 : 3] , d [0 : 7] ,
p 4 [0 : 7] , p 3 [0 : 7] , p 2 [0 : 7] ,
p 6 [0 : 7] , p 7 [0 : 7] , p 8 [0 : 7] ,
d x _ h i _ b u s [0 : 1 0] , d x _ l o _ b u s _ b a r [0 : 1 0])

SIGNAL p 5 [0 : 7] , p i [0 : 7]

r e g i s t e r s (l d [0 : 3] , l d b a r [0 : 3] , d [0 : 7] ,
p i [0 : 7] , p 2 [0 : 7] , p 3 [0 : 7] , p 4 [0 : 7] ,
p 5 [0 : 7] , p 6 [0 : 7] , p 7 [0 : 7] , p 8 [0 : 7] >

one_two_one d x _ h i (p 2 [0 : 7] , p l [0 : 7] , p 8 [0 : 7] ,
d x _ h i _ b u s [0 : 1 0] , [? , ? , ? , ? , ? , ? , ? , ? , ? , ? , ?])

one_two_one d x _ l o C p 6 [0 : 7] , p 5 [0 : 7] , p 4 [0 : 7] ,
[? , ? , ? , ? , ? , ? , ? , ? , ? , ? , ?] , d x _ l o _ b u s _ b a r [0 : 1 0])

END re g s _ a n d _ d x

MODULE r e g s _ a n d _ d y (l d [0 : 3] , I d b a r [0 : 3] , d [0 : 7] ,
d y _ h i _ b u s [0 : 1 0] , d y _ l o _ b u s _ b a r [0 : 1 0] ,
d x _ h i _ b u s [0 : 1 0] , d x _ l o _ b u s _ b a r [0 : 1 0])

SIGNAL
p 4 [0 : 7] , p 3 [0 : 7] , p 2 [0 : 7] ,
p 6 [0 : 7] , p 7 [0 : 7] , p 8 [0 : 7]

r e g s _ a u d _ d x (l d [0 : 3] , I d b a r [0 : 3] , d [0 : 7] ,

235

p 4 [0 : 7] , p 3 [0 : 7] , p 2 [0 : 7] ,
p 6 [0 ; 7] , p 7 [0 : 7] , p 8 [0 : 7] ,
d x _ h i _ b u s [0 : 1 0] , d x _ l o _ b u s _ b a r [0 ; 1 0])

one_two_one d y _ h i (p 4 [0 : 7] , p 3 [0 : 7] , p 2 [0 : 7] ,
d y _ h i _ b u s [0 : 1 0] ,

one_two_one d y _ l o (p 8 [0 : 7] , p 7 [0 : 7] , p 6 [0 : 7] ,
, d y _ l o _ b u s _ b a r [0 : 1 0])

END r e g s _ a n d _ d y

/ / M a i n f u n c t i o n b l o c k

MODULE s o b s (I N d [0 : 7] . I d [0 : 3] , OUT d x [0 : 1 0] , d y [0 : 1 0])
SIGNAL

I d b a r [0 : 3] ,
d x _ h i _ b u s [0 : 1 0] , d x _ l o _ b u s _ b a r [0 : 1 0] ,
d y _ h i _ b u s [0 : 1 0] , d y _ l o _ b u s _ b a r [0 : 1 0]

/ / FOR i = [0 : 3] DO I d b a r [i] = i n v e r t (I d [i])
r e g s _ a n d _ d y (l d [0 : 3] , I d b a r [0 : 3] , d [0 : 7] ,

d y _ h i _ b u s [0 : 1 0] , d y _ l o _ b u s _ b a r [0 : 1 0] ,
d x _ h i _ b u s [0 : 1 0] , d x _ l o _ b u s _ b a r [0 : 1 0])

a d d _ l l dx_sub (d x _ h i _ b u s [0 : 1 0] , d x _ l o _ b u s _ b a r [0 : 1 0] , Vdd,
d x [0 : 1 0] , [? , ? , ? , ? , ? , ? , ? , ? , ? , ? , ?])

a d d . l l d y . s u b (d y . h i . b u s [0 : 1 0] , d y . l o . b u s . b a r [0 : 1 0] , Vdd,
d y [0 : 1 0] , [? , ? , ? , ? , ? , ? , ? , ? , ? , ? , ?])

END sobs

10.14 S im ulation results

SOBS-1 has been extensively sim ulated a t full circuit level. Switch level

sim ulators have difficulty handling transm ission gate intensive circuits where the

direction of current flow through the gate m ay change. The Suzuki adder is

particu larly troublesom e. As a result, full analogue sim ulation was required to

get realistic results. M ODULE sobs (i.e. the whole chip less the clock drivers)

requires approxim ately 9 cpu m inutes on a micro VAX IT to sim ulate Ins of realtim e

operation. It tu rn s out th a t the propagation tim e of the chip is about 12.5ns and

therefore 128 x 128 x 12.5 = 204/xs of real-tim e sim ulation would be needed to

process a com plete im age. This would require abou t 3.5 CPU years.

The sim ulator o u tpu t below shows a com plete sim ulation for the four

adjacent pixels B l, B2, B3 and B4 shown in Table 10.1.

Sim ulator o u tp u t for SOBS-1 follows tab le 10.1

colum n

2 3 4

236

0 0 0 27 140 240 A

0 0 0 127 250 229 B row

0 0 0 255 135 5 C

Table 10.1: SOBS-1 test d a ta

d[TiO] »ob i.d [7 iO]

ld [3 :0] B o b i.ld [3 :0]

ld b a r [3 : io b i . ld b a r [3 ;0]

ld [T :0] io b : . ie g :_ a n d _ d y .rc g # _ m n d ^ % .ic g l:* e r :. :d [7 :0)

id[15!B] s o b s . r e g s ^ n d .d ; . r e g f ^ n d - d x . i e g i s l e r i . i d [l 5 ; 8]

id [3 3 :1 6 io b i . r e g i - a n d .d ; . r e g B .a a d .d x . r e g i i i e r i . i d [3 3 ;1 8]

p 8[7 i0] :o b B .i« g i_ a n d _ d y .rc g # _ a m d ^ x .re g i» le rB .p !p e I in « .p 8 [7 :0]

p i [7:0] l o b i . t e g t ^ n d - d y . r e g i - a n d .d x . r e g i s t e n . p ip e l in e .p l [7:0]

p3[7 :0] B o b :.re g # -a n d _dy.regm _m nd.dx.regi» le iB .p ip e lin e .p 3 [7 :0]

p 7[7 :0] Bobm. rcg B -an d -d y .re g B -a n d -d x .re g iB te rm .p ip e lin e .p 7 [7 :0]

p0[7 :0] Bobm.rcgB .a n d .d y .re g B .a n d .d x .re g iB te rB .p ip e lin e .p 0 [7 :0]

p3[7 :0] Bobm.regB-an d -d y .re g B -an d -d x .re g im te rB .p ip e lin e .p 3 [7 :0]

p 6 [7 :0] B o b B .rc g B -a n d .d y .reg B _ an d .d x .reg iB le rB .p ip e lin e .p 6 [7 :0]

p 6[7 :0] B o b m .reg B -an d -d y .reg B -an d -d x .reg im le rB .p ip e lin e .p 5 [7 :0]

p4[7 :0] B obB .rcgB _and_dy .regB _and_dx .rcg lB *crB .p ipcllne .p4[7 :0]

iB um [lO : Bobs.rcgB a n d dy.regm a n d .d x .d x .h i . iB n m [10:0]

iB nm [lO : B obB .rcgB _and_dy .regB _and_dx .dx_ lo .i:nm [lO :0]

iB n m [l0 : B obB .rcgB _and_dy.dy-hi.iB nm [10:0]

imnm [10: Bobm .regB-and _dy .d y _ lo .iB n m [l0 :0]

d x - h i- b n B o b B .d x -h l-b n B [l0 :0]

d x J o - b n Bobm .dx-lo-bnm b a r [l0 :0]

d y -h i b n mobm.dy _ h i.b n B [l0 :0]

d y - lo -b n B obB .dy-lo .bnB _bar[lO :0]

d x [1 0 :0] Bobm.dx[10:0]

d y [l0 :0] B obm .dy[l0:0]

237

d 1 1 I i i p p p p p p p p p i 1 1 1 d d d d d d

(d d d d d 8 1 3 7 0 3 6 5 4 . . X y J X y

7 (b I (((([[[[(((• - - - - ((

> 3 a 7 1 3 7 7 7 7 7 7 7 7 7 m k 1 h 1 1 1

0 I t < 5 3 1 1 1 1 1 1 : : 1 I [([i O I o 0 0

] 0 I 0 . I 0 0 0 0 0 0 0 0 0 1 1 1 1 - - - - . .

] 3 1 8 1)]] 1 1]]]] 0 0 0 0 b b b b 0 0

• 1 6 , . : : a a a o]]

0 .0 0 0 0 L L L L H H H H 0

5 0 0 .0 0 0 0 p 0 L L L L H H H H 0 0 0 0 0 0 0 0 0 0 0 0 3047 3047 3047 3047 3047 0 3047 0 3046 3046

1.000000m 0 L L L L H H H H 0 0 0 0 0 0 0 0 0 0 0 0 3046 3046 3046 3046 Î T IÎ 3044 ÎTÎT 3044 0 0

1.500000m 0 L L L L H H H H 0 0 0 0 0 0 0 0 0 0 0 0 3046 3046 3046 3046 3 3044 3 3044 0 0

2.000000m 0 L L L L H H H H 0 0 0 0 0 0 0 0 0 0 0 0 Î Î Î 7 T ÎÎÎ TTÎÎ Î Î Î Î Î Î Î Î 7 7 7 7 7 7 7 7 7 7 7 7 0 0

3 .5 0 0 0 0 0 b 0 L L L L H H H H 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 7 7 7 7 3 7 7 7 7 0 0

3.000000m 0 L L L L H H H H 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 7 7 7 7 6 7 7 7 7 0 0

3 .500000m 0 L L L L H H H H 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 7 7 7 0 7 7 7 7 0 0

4.000000m 0 L L L L H H H H 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3033 Î Î ! ? 3033 7 7 7 7 0 0

4 .500000m 0 L L L L H H H H 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 : 7 7 3 0 4 7 7777 3047 0 0

6.000000m 0 L L L L H H H H 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3047 0 2 047 0 0

5 .500000m 0 L L L L H H H H 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3047 0 3 047 0 0

O.OOOOOOn 0 L L L L H H H H 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 047 0 3047 0 0

6 .5 0 0 0 0 0 n 0 L L L L H H H H 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 047 0 2047 0 0

T.OOOOOOn 0 L L L L H H H H 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3047 0 3047 0 0

7 .500000m 355 L L L L H H H H 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 047 0 3047 0 0

a.OOOOOOn 355 H L L H L H H L 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 304 7 0 304 7 0 0

8.500001m 355 H L L H L H H L 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 047 0 304 7 0 0

O.OOOOOOn 365 H L L H L H H L 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3047 0 3047 0 0

9 .5 0 0 0 0 0 n 355 H L L H L H H L 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 047 0 3047 0 0

lO.OOOOOn 355 H L L H L H H L 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 047 0 3047 0 0

1 0 .5 0 0 0 0 n 355 L L L L H H H H 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 047 0 3047 0 0

ll.OOOOOn 355 L L L L H H H H 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 047 0 3047 0 0

1 1 .5 0 0 0 0 n 355 L L L L H H H H 355 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3047 0 3047 0 0

1 3 .0 0 0 0 0 n 355 L L L L H H H H 365 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3047 0 30 4 7 0 0

1 3 .50000m 137 L L L L H H H H 355 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3047 0 3047 0 0

13.00000m 1 3 7 L L H L H H L H 355 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3047 0 3047 0 0

13.50000m 137 L L H L H H L H 366 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3047 0 3047 0 0

14.00000m 137 L L H L H H L H 365 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3047 0 3047 0 0

14.50000m 137 L L H L H H L H 255 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3047 0 3 047 0 0

15.00000m 127 L L H L H H L H 355 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3047 0 3047 0 0

1 5 .50000m 137 L L L L H H H H 355 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 047 0 3047 0 0

16.00000m 127 L L L L H H H H 355 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 047 0 3 047 0 0

16.50000m 137 L L L L H H H H 355 127 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3047 0 3047 0 0

17.00000m 137 L L L L H H H H 355 127 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3047 0 2047 0 0

17.50000m 37 L L L L H H H H 255 137 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3047 0 3047 0 0

18.00000m 37 L H L L H L H H 355 137 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3047 0 3047 0 0

18.50000m 37 L H L L H L H H 365 137 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3047 0 3047 0 0

10.00000m 37 L H L L H L H H 356 137 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3047 0 3047 0 0

19.50000m 37 L H L L H L H H 355 137 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3047 0 3047 0 0

30.00000m 3T L H L L H L H H 356 137 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3047 0 3047 0

238

0

30.50000m 37 L L L L H H H H 355 137 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3047 0 3047 0 0

31.00000m 37 L L L L H H H H 355 137 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3047 0 3047 0 0

31.60000m 37 L L L L H H H H 355 137 37 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3047 0 3047 0 0

33.00000m 37 L L L L H H H H 3 55 127 27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3047 0 3047 0 0

33.50000m 135 L L L L H H H H 355 137 37 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3047 0 3047 0 0

33.00000m 135 H L L H L H H L 355 137 37 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3047 0 2047 0 0

33.50000m 135 H L L H L H H L 355 137 37 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3047 0 3047 0 0

34.00000m 135 H L L H L H H L 355 137 37 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3047 0 304 7 0 0

3 4 .50000m 135 H L L H L H H L 355 137 37 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3047 0 3047 0 0

35.00000m 135 H L L H L H H L 355 137 37 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3047 0 3047 0 0

25.50000m 135 L L L L H H H H 355 137 37 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 3047 0 3047 0 0

36.00000m 135 L L L L H H H H 355 137 37 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3047 0 3047 0 0

36.50000m 135 L L L L H H H H 135 137 27 ÎT ! 127 77T 0 0 0 0 0 0 0 0 0 0 0 3047 0 3047 0 0

37.00001m 135 L L L L H H H H 135 137 37 355 137 37 0 0 0 0 0 0 0 0 0 0 0 3047 0 3047 0 0

37.50000m 350 L L L L H H H H 135 137 37 355 137 37 0 0 0 0 0 0 338 0 0 0 0 3047 0 3047 0 0

3 6 .00000m 350 L L H L H H L H 135 137 37 355 137 37 0 0 0 0 0 0 339 0 0 7777 7777 3047 37 3047 0 0

36.50000m 250 L L H L H H L H 135 137 37 355 137 37 0 0 0 0 0 0 339 0 0 365 355 3047 37 3047 0 0

39.00000m 260 L L H L H H L H 135 137 37 265 137 37 0 0 0 0 0 0 193 0 0 355 7777 3047 37 2047 7777 37

39.50001m 260 L L H L H H L H 135 137 27 355 127 37 0 0 0 0 0 0 309 0 0 355 63 3047 37 7777 355 37

30.00000m 350 L L H L H H L H 135 137 37 355 137 37 0 0 0 0 0 0 7777 0 0 355 190 3047 37 36

30.50000m 360 L L L L H H H H 135 137 37 355 127 37 0 0 0 0 0 0 7777 0 0 355 444 3047 37 1793 191 36

31.00000m 250 L L L L H H H H 135 ÎT Î 37 255 127 37 0 0 0 0 0 0 153 0 0 355 7777 304 7 37 1793 190 0

31.60000m 250 L L L L H H H H 135 350 37 355 127 37 0 0 0 0 0 0 35 0 0 355 493 3047 37 1793 446 7777

31.99999m 250 L L L L H H H H 135 350 37 355 137 37 0 0 0 0 0 0 35 0 0 355 456 3047 37 1793 444 300

33.50000m 140 L L L L H H H H 135 350 37 355 137 37 0 0 0 0 0 0 35 0 0 355 7777 3047 37 1793 493 300

33.99999m 140 L H L L H L H H 135 350 37 355 137 37 0 0 0 0 0 0 7777 0 0 355 393 3047 37 1793 456 7777

33.49999m 140 L H L L H L H H 135 350 37 355 137 37 0 0 0 0 0 0 381 0 0 355 408 2047 37 1793 456 838

3 3 .99996m 140 L H L L H L H H 135 350 37 355 137 37 0 0 0 0 0 0 381 0 0 355 408 304 7 27 1793 456 838

34.49999m 140 L H L L H L H H 135 350 37 255 137 37 0 0 0 0 0 0 381 0 0 355 380 3047 37 1793 408 1830

34.99999m 140 L H L L H L H H 135 350 37 355 137 27 0 0 0 0 0 0 381 0 0 355 380 3047 37 1793 408 1830

35.49998m 140 L L L L H H H H 135 350 37 355 137 37 0 0 0 0 0 0 381 0 0 355 34 3047 37 1793 7777 1830

35.99998m 140 L L L L H H H H 135 350 ÎT ! 255 137 37 0 0 0 0 0 0 381 0 0 355 34 3047 37 1793 380 1830

36.49998m 140 L L L L H H H H 135 350 140 355 137 37 0 0 0 0 0 0 381 0 0 355 34 3047 37 1793 380 1830

36.99998m 140 L L L L H H H H 135 250 140 355 127 37 0 0 0 0 0 0 381 0 0 355 7777 30 4 T 37 1793 34 1830

37.49998m 5 L L L L H H H H 135 350 140 355 127 37 0 0 0 0 0 0 381 0 0 355 536 3047 37 1793 34 1830

37.99997m 5 H L L H L H H L 135 350 140 355 137 37 0 0 0 0 0 0 381 0 0 355 536 3047 37 1793 34 1830

38.49997m 6 H L L H L H H L 135 350 140 355 137 27 0 0 0 0 0 0 281 0 0 355 536 2047 37 1793 536 1830

38.99997m 5 H L L H L H H L 135 350 140 355 127 37 0 0 0 0 0 0 281 0 0 355 536 3047 37 1793 536 1830

39.49996m 5 H L L H L H H L 135 250 140 265 127 27 0 0 0 0 0 0 281 0 0 255 536 3047 27 1793 536 1830

39.99996m 5 H L L H L H H L 135 350 140 355 127 27 0 0 0 0 0 0 381 0 0 355 536 304 7 37 1793 536 1830

40.49996m 5 L L L L H H H H 135 350 140 255 127 37 0 0 0 0 0 0 381 0 0 355 536 2047 37 1793 536 1830

4 0 .90997m 5 L L L L H H H H 135 350 140 255 127 27 0 0 0 0 0 0 281 0 0 355 536 304 7 37 1793 536 1830

41.49996m 5 L L L L H H H H 5 250 140 255 ??? 7?T 355 137 37 0 0 0 381 0 0 355 536 3047 37 1793 536 1820

41.09996m 5 L L L L H H H H 5 260 140 ! ! ? 350 777 355 1 3 7 3 7 0 0 0 381 0 0 255 536 3047 37 1792 536 1830

4 2 .49996m 119 L L L L H H H H 5 250 140 135 250 140 355 137 37 0 0 0 381 0 7777 7777 536 3047 37 1793 536 1830

43.90996m 110 L L H L H H L H 5 350 140 135 350 140 355 137 3 7 0 0 0 7777 0 54 7777 536 3047 7777 1793 536 1830

4 3 .4 9 9 9 6 n 119 L L H L H H L H 5 350 140 135 350 140 355 137 37 0 0 0 ???? 0 54 135 7 7 7 7 3 0 4 7 158 1793 536 1830

43.99995m 110 L L H L H H L H 5 350 140 135 350 140 355 137 3 7 0 0 0 640 0 54 i i r 553 2047 7777 1930 536 1830

239

44.4000611 l i e L L H L H H L H 5 350 140 135 350 140 355 137 37 0 0 0 640 0 54 117 800 3047 186 1033 536 1048

44.0990511 119 L L H L H H L H 5 350 140 135 350 140 355 137 37 0 0 0 640 0 54 T!TT 809 2047 178 1930 553 1821

45 .40995= l i e L L L L H H H H 5 250 140 135 350 140 355 137 37 0 0 0 640 0 54 613 811 3047 178 1930 T7TT 1853

45 .99905= 119 L L L L H H H H 5 TTT 140 135 350 140 355 137 37 0 0 0 640 0 54 ?7TT 811 3047 178 T7?? 809 1597

46 .49995= 119 L L L L H H H H 5 119 140 135 350 140 355 137 3 7 0 0 0 640 0 54 581 779 3047 163 7777 811 1597

46 .99994= 119 L L L L H H H H 5 119 140 135 350 140 355 137 37 0 0 0 640 0 54 581 783 3047 183 7777 811 1597

4 7 .49994= 340 L L L L H H H H 5 119 140 135 350 140 255 137 2 7 0 0 0 640 0 54 517 783 3047 130 1466 7777 1085

4 7 .99994= 340 L H L L H L H H 5 119 140 135 250 140 355 137 37 0 0 0 640 0 54 517 7777 3047 130 1466 783 1597

48 .49994= 340 L H L L H L H H 5 119 140 135 250 140 355 137 37 0 0 0 640 0 54 517 775 3047 130 7777 783 1597

4 8 .99993= 340 L H L L H L H H 5 119 140 135 350 140 355 137 37 0 0 0 640 0 54 845 775 3047 194 1530 783 1507

4 0 .49994= 340 L H L L H L H H 5 119 140 135 350 140 355 1 3 7 3 7 0 0 0 640 0 54 645 775 3047 194 1530 775 1597

49 .99993= 340 L H L L H L H H 5 119 140 135 350 140 355 137 3 7 0 0 0 640 0 54 645 775 3047 194 1530 775 1597

It will be seen th a t the overall p ropagation tim e of the circuit is around

12.5ns from receipt of a Id [3] going low (which in itia tes d a ta transfer into the

register bank) to results appearing on the ou tp u ts of the dx and dy adders. This

does not im ply th a t the overall chip propagation tim e will be so fast because

delays through the I /O pads are liable to be of the order of tens of nanoseconds.

However an overall perform ance of 20MHz (i.e. 50ns propagation tim e) would

seem atta inable .

10.15 Leaf cell layout

There are only two leaf cells in th is design — the d-type latch and the

full adder. These modules are connected hierarchically to form the full system.

T he hierarchical connections will be considered in the next section.

The cells are arranged with power connections in 8/i m etal 1 running

horizontally and signal connections (usually in m etal 2 and polysilicon) running

vertically. This allows cells to be ab u tted for power connection w ith horizontal

signal routing buffers between cell blocks.

10.15.1 D -ty p e latch

The d-type is 70/i x 50/i. The Id and Id b a r connections are in polysili­

con on the left of the cell. They swap over in ternally so th a t two d-types stacked

vertically form a m aster-slave pair w ith the control lines correctly wired by abu tt-

m ent. Similarly, the D and Q outputs are aligned so th a t the m aster will feed the

slave directly.

240

Figure 10.10: D-type latch layout

10.15.2 Full adder

The full adder cell is 115/x x 127.5/i. The Cin and Cout connections are

available at the sides and at the top of the cell so th a t ripple carry adders may be

constructed by horizontal abutm ent. The a, b, sum and sumbar connections are

available a t the top and the bo ttom of the cell to ease global routing.

10.16 Chip floorplan

The chip floorplan is shown with global routing removed in Figure 10.12

The d-bus runs from the I /O pads at the top of the chip to the tops of the

registers block. The first layer of the registers block contains the prefetch latch

and d a ta flows down through the register block on successive cycles. The four

Sobel partia l sum s are calculated using two 11-bit adders each in the one_two_one

m odules d istribu ted around the register block. The final dx and dy com ponents

are calculated in outerm ost blocks of the chip and routed to the I /O pads.

10.17 Test resu lts

The first fuU SOBS-1 prototype will be fabricated in A utum n 1988 with

silicon expected back a t about the beginning of M arch 1989. However, the leaf cell

241

Figure 10.11: Full adder layout

on□□□□□□□□□□□□□□□□op

OIŒ.TSIO.ONÎ

BY J «

PIPELip
f̂ pèIiné 0 t e

ONÊ_TWO.ONE

BY_LO

□n □□□□□□□□□□□□□□□□

Figure 10.12: SOBS-1 floorplan

242

samples have been individually fabricated by borrow ing spare area on underg rad ­

uate studen t designs fabricated as p a rt of the th ird year VLSI course a t RHBNC

which is taugh t by the au thor. The full adder and a m aster-slave flip-flop were

functionally perfect and perform ed as expected. In the absence of sophisticated

test equipm ent it is im possible to accurately m easure the speed of the devices

which is in the nanosecond range. However, these results give confidence th a t the

full chip will operate correctly.

10.18 C onclusions

A Sobel edge detector has been sim ulated and laid out for fabrication

in 2 micron CMOS. Exam ples of the leaf cells have been fabricated and shown

to work, and this gives confidence th a t the full chip will operate correctly. The

design is com pact and could be produced in m edium volumes at low cost. This

work indicates the m ajor changes in im plem entation technology th a t would be

expected were the inspection project described in the previous chapter s ta rted in

1989 ra th e r th an 1982. Availability of sophisticated CAD tools allows very high

perform ance designs to be im plem ented w ith sim ulation replacing the trad itional

breadboarding techniques.

243

C hapter 11

C onclusions

11.1 Introduction

This thesis has presented novel techniques in algorithm s, system s and

com ponents for real-tim e im age processing.

11.1.1 A lgorithm s

Four algorithm s for quadtree generation from array representations were

presented in C hapter 4. The m atch between algorithm s and architectures was

explored especially in term s of the ‘b it-tw iddling’ instructions required for algo­

rith m four. The quadtrees were used to control simple im age processing operators

such as edge detectors and sm oothers. It was shown th a t a quadtree controlled

skim m er applied as a preprocessor to an edge detector provided b e tte r results

th an a simple threshold skimm er.

11.1.2 S ystem s

Three fram estore designs (IPO FS, V I and V2) were described in C hap­

te r 5. These com pact designs provided a high level of perform ance w ith special

features (such as the ROM m apper and the wipe register) aimed at PD P-11 based

system s. The differing constrain ts of the m em ory subsystem s for VAX and PD P

system s were shown to favour in-store processing on P D P-11’s and m ain memory

processing on VAXes, especially Q-bus based m achines such as the Micro VAX II.

These fram estores have been used in the IM P system described in C hap­

te r 9 — a VME bus based MIMD m ultiprocessor w ith hardw ired co-processors

running at near-video speeds. A micro VAX or PDP-11 m ay partic ipa te in the

MIMD system via a Q-bus to VM E bus protocol converter, and acts as over­

244

all controller in the system , as well as providing software developm ent and user

interface functions. T he IM P system has been used w ith com m ercial 68000 pro­

cessor and m em ory boards as well as several m icrocoded processor designs. A

dem onstrato r system was constructed th a t perform ed au tom atic inspection of six

products per second on a real industrial p roduction line. T he system performed

well during a two week tria l,

11.1.3 C om p on en ts

Extensive use has been m ade of program m able logic devices in the sys­

tem s described here. S tandard sync pulse generator, V M Ebus arb itra to r, re­

quester, in te rru p te r and slave protocol handlers have been im plem ented.

The last chap ter described a VLSI Sobel filter capable of analysing 20

million windows per second, or about 76 full 512 x 512 pixel im ages per second.

The leaf cells for this device have been fabricated and shown to conform to sim­

ulated perform ance. T he full version of the chip is going forw ard for fabrication

in A utum n 1988.

11.2 R ev iew

This thesis includes review of basic results concerning im age representa­

tions, algorithm analysis, sequential processor design, asynchronous m ultiproces­

sor design, synchronous processor design and the design of program m ing language

features to exploit such machines.

11.3 Further work

W ork in the areas described in this thesis has continued. A microcoded

processor called S P l was developed and has now been superceded by SP2, a com­

pact 20MHz processor. This is designed to work in bo th pipelined and VLIW

configurations. High level language support for th is processor is currently under

developm ent w ith the assistance of postraduate students supervised by the au­

thor. An array processor designed at the NPL has been in tegrated into the IM P

architecture w ith a com piler for a high level array processor language. A sepa­

ra te pro ject under the direction of E R Davies has been investigating theoretical

results from the earlier collaboration w ith U nited Biscuits and Unilever, and the

microcoded processors will be used as the im plem entation vehicle for algorithm s

produced by th a t pro ject.

245

.;■ '■■ - / - ; V ,

246

A cknow ledgem ents

I should especially like to thank Dr. E. R. Davies for providing guidance

and encouragem ent th roughou t this project and during the w riting of this thesis.

I also thank M essrs. U nited Biscuits and Unilever C entral Research for

providing some of the finance and im petus for this work.

Finally, I am indebted to the Science and Engineering Research Council

for providing me w ith a s tuden t research g ran t, and for funding and loaning

equipm ent used in th is project.

247

B ibliography

[AHU75] A.V. Aho, J .E . Hopcroft, and J.D . Ullman. The Design
and Analysis o f Computer Algorithms. Addison Wesley,
1975.

[Bat80] K.E. B atcher. Design of a massively parallel processor.
IE E E Trans., 0-29:836-840, 1980.

[Bau76] G. B audet. Asynchronous Iterative Methods for M ulti­
processors. Technical R eport, Carnegie-M ellon University,
November 1976.

[BB59] W .W . Bledsoe and I. Browning. P a tte rn recognition and
reading by m achine. In Proceedings o f the Eastern Joint
Computer Conference, pages 225-232, 1959.

[BBG*60] J.W . Backus, F.L. Bauer, J. Green, C. K atz, J . M cCarthy,
P. N aur, A .J. Perlis, H. R utishauser, K. Samelson, B.
Vauquois, J.H . W egstein, A. van W ijngaarden, and M.
W oodger. R eport on the algorithm ic lanuage ALGOL60.
N um er. M ath., 2, 1960.

[Bel78] C G ordon Bell. Seven views of com puter system s. In Com­
puter Engineering, chapter one, pages 1-26, D igital Press,
1978.

[Ben82] M. Ben-A ri. Principles o f Concurrent Programming.
P rentice-H all In ternational, 1982.

[Ber76] M. Berry. Principles o f Cosmology and Gravitation. C am ­
bridge U niversity Press, 1976.

[BH77] Per B rinch Hansen. The architecture o f concurrent pro­
grams. P ren tice Hall, 1977.

[Blu67] H. Blum . A transform ation for extracting new descriptors
of shape. In W W athen-D unn, editor. Models fo r the P er­
ception o f Speech and Form, M IT press, Cam bridge, Mass.,
1967.

[BM78] C. G ordon Bell and John E. M cN am ara. T he pdp-8 and
other 12-bit com puters. In C. G ordon Bell, editor, Com­
puter Engineering, chapter 1, pages 1-26, D igital Press,
1978.

[BN71] C.G. Bell and A. Newell. Computer Structures: Readings
and Examples. M cGraw-Hill, 1971.

[CD83] Napoleone Cavlan and Stephen J . D urham . Sequencers
and arrays transform tru th tables into working tables. In

248

Integrated circuits Book 4 — Integrated Fuse Logic, chap­
ter 7, pages 187-194, M ullard L td , 1983.

[CH74] R.H. Cam pbell and A.N. H aberm ann. The specification of
process synchronisation by p a th expressions. In Coos and
H artm anis, editors. Lecture Notes in Computer Science,
pages 89-102, Springer-Verlag, 1974.

[Coo83a] B. M. Cook. Construction and use o f research tools for
image processing. PhD thesis. Royal Holloway and Bedford
New College, University of London, 1983.

[Coo83b] Doug Cooper. Standard Pascal. N orton, 1983.

[Cor82] C ontrol D ata Corporation. Cyber'200 Fortran, Version 1,
Reference Manual. 1982.

[CR61] H.M. Cundy and A.P. Rollet. M athematical Models. Ox­
ford University Press, 1961.

[Dav84] E. R. Davies. C ircularity - a new principle underlying the
design of accurate edge orien tation operators. Image and
Vision Computing, 2(3), A ugust 1984.

[Dev81a] Advanced Micro Devices. Am 26LS31 quad high speed dif­
ferential line driver. 1981.

[Dev81b] Advanced Micro Devices. A m 26LS32/A m 26LS33 quad dif­
ferential line receiver. 1981.

[DH73] R. 0 . D uda and P. E. H art. Pattern classification and
scene analysis. Wiley, New York, 1973.

[Dig79a] Digital. PD P 11 bus handbook. 1979.

[Dig79b] Digital. PD P 11 processor handbook. 1979.

[Dig82] D igital. RT-11 Technical Sum m ary. 1982.

[Dij68] E. W . D ijkstra. The s truc tu re of the TH E m ultiprogram ­
ming system . Comm. AC M , 11(5), May 1968.

[Dij76] E. W . D ijkstra. A Discipline o f Programming. Prentice
Hail, 1976.

[DJ86] E.R . Davies and A.I.C. Johnstone. Engineering trade-offs
in the design of a real-tim e system for the visual inspection
of small products. In Proc. IM echE, pages 15-22, 1986.

[DJ89] E.R. Davies and A.I.C. Johnstone. A m ethodology fpr op­
tim ising cost-speed tradeoffs in real- tim e inspection h ard ­
ware. lE E Proceedings Part E, 136:in press, 1989.

[DJT67] M .J.B . Duff, B.M. Jones, and L .J. Townsend. Parallel pro­
cessing p a tte rn recognition system U C P R l. Nucl. Instr.
M eth., 52:284-288, 1967.

[DP81] E. R. Davies and A. P. N. P lum m er. Thinning algorithm s:
a critique and a new m ethodology. P attern Recognition,
14, 1981.

[DT84] R. Davis and D. Thom as. Systolic array chip m atches the
pace of high-speed processing. Electronic Design, 207-218,
O ctober 1984.

249

[DWFS73] M .J.B . Duff, D.M. W atson, T .J . Fountain, and G .K. Shaw.
A cellular logic array for im age processing. Patt. Recogn.,
5:229-247,1973.

[Dye82] C .R. Dyer. Pyram id algorithm s and machines. In K. P re ­
ston and L. Uhr, editors. M ulticomputers and image pro­
cessing, chapter , pages 409-420, Academic Press, New
York, 1982.

[Edm88] M. Edm onds. Studies o f inspection algorithms and asso­
ciated microprogrammable im plem entations. PhD thesis.
Royal Holloway and Bedford New College, University of
L o n d o n ,1988.

[E1186] John R. Ellis. Bulldog: A compiler for V L IW Architec­
tures. The M IT Press, 1986.

[FG80] T .J . Fountain and V. G oetcherian. Clip4 parallel process­
ing system . lE E Proc., 127E:219-224, 1980.

[Fis82] Joseph A. Fisher. Computer System s architecture at Yale.
Technical Report Research R eport 241, Yale University,
D ept of Com puter Science, Ju ly 1982.

[FKM*83] A.L. Fisher, H.T. Kung, L.M. M onier, H. W alker, and Y.
Dohi. Design of the PSC: a program m able systolic chip.
In Proc. 3rd C ALTEC H Conf. on VLSI, pages 287-302,
1983.

[Fly72] M. J. Flynn. Some com puter organisations and their effec­
tiveness. IE E E Trans. Computers, C-21(9):948-960, 1972.

[FOR*78] Sam ual H. Fuller, John K. O usterhout, Levy Raskin,
Paul I. Rubinfeld, P radeep S. Sindhu, and R ichard Swan.
M ulti-microprocessors: an overview and working example.
In C. Gordon Bell, editor. Computer Engineering, chap­
te r 20, pages 463-484, D igital P ress, 1978.

[Fou85] T .J . Fountain. Plans for the CLIP7 chip. In S. Levialdi, ed­
ito r, Integrated Technology fo r Parallel Image Processing,
pages 199-214, Academic Press, 1985.

[Fou87] T . Fountain. Processor Arrays Architecture and Applica­
tions. Academic Press, 1987.

[FP87] J. Hill Fredrick and Gerald R. Peterson. Digital Systems,
Hardware, Organisation and Design. John Wiley and Sons,
th ird edition, 1987.

[FR72] C. C. Foster and E. M. R isem an. Percolation of code to
enhance parallel dispatching and execution. IE E E Trans­
actions on Computers, 21(12):1411-1415, December 1972.

[Fre61] H. Freem an. On the encoding of arb itrary geom etric con­
figurations. IR E transactions on Electronic Computing,
EC-10, 1961.

[GH77] S.E. Goodm an and S.T. H edetniem i. Introduction to the
design and analysis o f algoritms. M cGraw-Hill, 1977.

250

[GKW85] J R. G urd, C.C. K irkham , and I. W atson. T he M anch­
ester p ro to type dataflow com puter. Comm. ACM^ 28:34-
51, 1985.

[GM63] J. Gregory and R. M cReynolds. The SOLOM ON com­
pu ter. IE E E Trans., EC-12:774-781, 1963.

[God62] K urt Godel. On form ally undecidable propositions. Basic
books, New York, 1962. A transla tion of the original 1931
paper.

[Gre84] D. Green. Conveyer speeds. 1984. Private com m unication.

[GW87] Rafael C. Gonzalez and Paul W intz. D igital Image Pro­
cessing.' Addison Wesley, second edition, 1987.

[Har80] R.M . Haralick. Edge and region analysis for digital im age
data . Comput. Graph. Image Proc., 12:60-73, 1980.

[HB85] Kai Hwang and Faye A. Briggs. Computer Architecture
and Parallel Processing. McGraw-Hill, 1985.

[Heu73] M .F. Heuckel. A local visual operator which recognises
edges and lines. J. ACM , 20(4):634-647, 1973.

[Hil85] W .D. Hillis. The Connection Machine. M IT Press, C am ­
bridge, M ass., 1985.

[Hit86] Hitachi. HM53461 64K x 4 Video RA M . 1986.

[HJ81] R.W . Hockney and C.R. Jesshope. Parallel Computers.
A dam Hilger, 1981.

[Hoa74] C.A.R. Hoare. M onitors: an operating system struc tu ring
concept. Comm. ACM , 17:549-557, 1974.

[Hoa81] C. A. R. Hoare. The em peror’s old clothes. Com munica­
tions o f the ACM , 24(2):75-83, February 1981.

[Hoa85] C.A.R. Hoare. Communicating Sequential Processes.
Prentice-H all, 1985.

[HR74] A.R. Hanson and E.M. Riseman. Pre-processing cones: a
com putational structu re for scene analysis. CO INS Tech.
Rep. 74C-7, Univ. Massachussetts, 1974.

[HS79a] G. M. H unter and K. Steiglitz. Linear transform ation of
pictures represented by quadtrees. Comput. Gr. Image
Process., 10(3), Ju ly 1979.

[HS79b] G.M. H unter and K. Steiglitz. O perations on images using
quad trees. IE E E Trans. Pattern Analysis and M achine
Intelligence, PAM -I(2):145-153, April 1979.

[Hue71] M .F. Hueckel. An operator which locates edges in digitised
pictures. J. ACM , 18(1^113-125, 1971.

[IB71] ITA and BBC. Specification o f television standards fo r 625
line System -I transmission. 1971.

[Ich84] Jean Ichbiah. Ada: past, present and future. Comm. AC M ,
27(10):990-997, O ctober 1984.

[ICL79] ICL. D AP: Introduction to Fortran programming. 1979.

251

[IDT86] ID T. ID T 4 9 C4 O2A 16-bit CMOS microprocessor slice.
1986.

[Inm84a] Inm os. High Performance 64K x 1 D ynam ic R A M .
November 1984.

[Inm84b] Inmos. Nibble Mode Operation Simplifies High-Bandwidth
M em ory Applications. M arch 1984.

[Inm86] Inm os. IM S2800 High Performance 256k x 1 CM O S D y­
nam ic R A M . 1986.

[JCD*78] A.K. Jones, R .J. Chansler, I. D urham , P. Feiler, and K.
Schwans. P rogram m ing issues raised by a m ultiprocessor.
Proc. IE E E , 66(2^229-237, February 1978.

[Joh85] A drian Johnstone. Hardware verification system documen­
tation set. 1985.

[Joh88a] A drian Johnstone. PIPE-32 V2.00 user guide. O ctober
1988.

[Joh88b] A drian Johnstone. SP2. November 1988.

[Jos83] A. F isher Joseph. Very long instruction word architectures
and the ELI-512. The 10th Annual In ternational Sym po­
sium on Computer Architecture, June 1983.

[KDG82] Bjorn K ruse, Per-Erik Danielsson, and B jorn G udm unds-
son. From PIC A P I to PICA P II. Special Com puter A r ­
chitectures for P attern Processing, 127-156, 1982.

[KL79] H.T. K ung and G.E. Leiserson. Systolic arrays for vlsi. In
I.S. Duff and G.W . Stewar, editors. Sparse M atrix Proceed­
ings 78, pages 256-282, 1979.

[Knu70] D. E. K nu th . The art o f computer programming, Volume
3. Addison Wesley, 1970.

[Knu79] D. E. K nuth . The art o f computer programming, Volume
1. Addison Wesley, second edition, 1979.

[KS86] J .T . K uehn and H .J. Seigel. M ultifunction processing w ith
PASM. In M .J.B . Duff, editor. Interm ediate-Level Image
Processing, pages 209-230, Academic Press, 1986.

[Kun84] H.T. K ung. Systolic algorithm s for the CMU W arp pro­
cessor. In Proc. 7th In t. Conf. on P attern Recognition,
pages 570-577, 1984.

[Lam74] L. L am port. A new solution of D ijkstra’s concurrent pro­
gram m ing problem . Comm. ACM , 17:453-455, 1974.

[Lee83] C huang C hang Lee. Elim ination of redundan t operations
for a fast sobel operator. IE E E trans. Sys. M an Cyb.,
SM C-13(3), 1983.

[Lev80] M artin D. Levine. Region analysis using a pyram id d a ta
struc tu re . In S. Tanim oto and A. Klinger, editors. Struc­
tured Com puter Vision Machine Perception through H ier­
archical Com putation Structures, pages 57-100, Academic
Press, 1980.

252

[Mar82] David M arr. Vision. W .H. Freem an Co., 1982.

[Mar84] John Markoff. Rise chips. Byte, 191-206, November 1984.

[McC63] B.H. McCormick. T he Illinois p a tte rn recognition com­
puter — ILLIAC III. IE E E Trans., EC-12:791-813, 1963.

[McC85] A.J. M cCollum. Parallel com puter structures for high speed
image processing. Technical R eport, UW IST, February
1985.

[MH80] D. M arr and E. H ildreth. Theory of edge detection. Proc.
Royal Soc. London, B207:187-217, 1980.

[MM82] J.V . M cCanny and J.G . M cW hirter. On the im plem en­
ta tion of signal processing functions using one-bit systolic
arrays. Electron. Lett., 18:241-243, 1982.

[MMS79] J.G . M itchell, W. M aybury, and R. Sweet. Mesa Language
M anual (Version 5.0). A pril 1979.

[Mot81] M otorola. MC6845B Cathode Ray Tube Controller. 1981.

[Mye77] G .J. Myers. The case against stack oriented instruction
sets. A C M Sigarch News, 7-10, August 1977.

[NB80] R. Nevatia and K .R. B abu. L inear feature extraction and
description. Comput. Graph. Image Proc., 13:257-269,
1980.

[NCR84] NCR C orporation. Geometric Arithm etic Parallel proces­
sor, NCR45CG72. D rayton, Ohio, 1984.

[NF81] A lexandru Nicolau and Joseph A. Fisher. Using an oracle
to m easure parallelism in single instruction stream pro­
gram s. The 14 th A nnual Microprogramming Workshop,
O ctober 1981.

[Per79] R.H. P erro tt. A language for array and vector processors.
A C M Trans, on Prog. Lang. Syst., 2:177-195, 1979.

[Per87] R.H. P erro tt. Parallel Programming. Addison-Wesley,
1987.

[PFP85] J. W . Poulton, H. F. Fuchs, and A Paeth . Pixel planes
graphic engine. In Neil W este and K am ran Eshraghian,
editors. Principles o f CM OS V L SI design, chapter 9,
pages 448-480, Addison Wesley, 1985.

[Pic84] Philip D Picton. Com m ent on ‘elim ination of redundant
operations for a fast sobel o p era to r’. IE E E trans. Sys. Man
Cyb., SMC-14(3), 1984.

[Pot82] J.L . P o tte r. P a tte rn processing on star an. In K.S. Fu
and T. Ickikaw, editors. Special Computer Architectures for
Pattern Processing, pages 87-101, CRC Press Inc, Baton
Rouge, F lorida, 1982.

[Pre70] J.M .S. P rew itt. O bject enhancem ent and extraction. In
B.S. Lipkin and A. Rosenfeld, editors. Picture Processing
and Psychopictorics, pages 75-149, Academic Press, 1970.

253

[PW87] Franklin P. Prosser and D avid E. W inkel. The A rt o f
Digital Design: A n Introduction to Top-Down Design.
Prentice-H all In ternational, 2 edition, 1987.

[PZ86] R.H. P erro tt and A. Zarea-A liabadi. Supercom puter lan ­
guages. Computing Surveys, 18 (l):5 -22 , M arch 1986.

[Rac87] Racal-Redac. Visula IS IS P rim ary Useras Guide. 1987.

[Ran81] S. R anade. Use of quadtrees for edge enhancem ent. IE E E
Trans. Syst. Man Cybern., 11(5), May 1981.

[Red73] S.F. Redd away. DAP - a d is tribu ted array processor. In
1st Annual Symp. on Com puter Architecture, pages 61-65,
F lorida, 1973.

[Res82] Cray Research. Fortran (C F T) Reference Manual. 1982.

[RM82] I. N. Robinson and W . R. M oore. A parallel array processor
architecture and its im plem entation in silicon. In Proc
IE E E Custom Integrated Circuits Conference, pages 41-
55, 1982.

[Rob65] L.C. Roberts. M achine perception of three-dim ensional
solids. In T ippett J. et al, ed itor. Optical and Electro-
optical Inform ation Processing, chap ter 9, pages 159-197,
M IT Press, 1965.

[Rob77] C.S. Robinson. Edge detection by com pass gradient masks.
Comput. Graph. Image Proc., 6:492-501, 1977.

[Rob87] Phillip Robinson. How m uch of a rise? Byte, 12(4):143-
150, April 1987.

[Ros70] Azriel Rosenfeld. Connectivity in digital p ictures. J. ACM ,
17(1), 1970.

[RS81] S. R anade and M. Shneier. Using quadtrees to sm ooth
images. IE E E Trans. Syst. M an Cybern., 11(5), May 1981.

[Sam69] J. Sam m et. Programming languages: history and funda­
mentals. Prentice-H all, 1969.

[Sam79] H. Sam et. A distance transform fo r images represented by
quadtrees. Technical R eport TR-780, University of M ary­
land, College Park, M aryland, USA, 1979.

[Sam81] H. Samet. Connected com ponent labelling using quadtrees.
J. ACM , 28(3), July 1981.

[Sam82] H. Samet. Neighbor finding techniques for images repre­
sented by quadtrees. Comput Gr. Image Process., 18(1),
January 1982.

[Sam83] H. Sam et. A quadtree m edial axis transform . Comm.
AC M , 26(9), Septem ber 1983.

[Sam84] H anan Samet. The quadtree and related hierarchical d a ta
structures. A C M Computing Surveys, 16(2), June 1984.

[SBM62] D.L. Slotnick, W .C. Borck, and R .C . M cReynolds. The
Solomon com puter. In A F IP S Conf. Proc., pages 97-107,
1962.

254

[Sem86] Plessey Sem iconductors. P D S P I64OI 2-dim ensional edge
detector. May 1986.

[Sho73] J.E . Shore. Second thoughts on parallel processing. ’ Com­
put. Elect. Eng., 1:95-109, 1973.

[SOA73] Y. Suzuki, K. Odagawa, and T . Abe. Clocked cmos cal­
cu lator circuitry. IE E E Journal o f Solid-State Circuits,
SC-8(6):336-340, December 1973.

[Ste75] K .C . Stevens. CFD - a fortran-like language for the Illiac
IV. S IG P L A N Not. (A C M), 10(3):72-80, 1975.

[Ste87] Jeffrey Steinberg. A v irtual VAX does it in parallel. Digital
Review, 2-5 , M arch 23 1987.

[Str78] W .D. Strecker. VAX-11/780: a v irtual address extension
to the DEC PDP-11 family. In Proc. Computer Conference,
pages 967-980, June 1978.

[Tan80] Steven L. Tanim oto. Image d a ta s tructu res. In Struc­
tured Computer Vision, chapter two, pages 31-56, Aca­
demic Press, 1980.

[Tan83] S.L. Tanim oto. A pyram idal approach to parallel process­
ing. Proc. 10th Ann. In t. Symp. on Computer Architecture,
Stockholm, June, 372-378, 1983.

[Tex84] Texas Instrum ents. TM S44^4 65,536-word by 4~bit dy­
nam ic R A M . 1984.

[TK80] Steven L. Tanim oto and Allen Klinger, editors. Structured
Com puter Vision. Academic Press, 1980.

[Tur36] A. M. Turing. On com putable num bers, w ith an applica­
tion to the Entscheidungsproblem. Proc. London M athe­
matical Soc. Ser. 2, 42, 1936.

[Uhr78] L. Uhr. Recognition cones and some test results; the im ­
m inent arrival of w ell-structured parallel-serial com puters;
positions, and positions on positions. In A. R. H anson
and E. M. Risem an, editors, Computer vision system s,
pages 363-377, Academic Press, New York, 1978.

[Ung58] S.H. Unger. A com puter oriented tow ards spatia l problem s.
In Proc. Inst. Radio Eng. (U SA), pages 1744-50, 1958.

[Uni81] U nit-C . Parallel-Pascal product description. 1981.

[VIT85] VITA. The VMEbus specification R E V C .l. 1985.

[Wat74] D.M . W atson. The application o f cellular logic to image
processing. PhD thesis. University of London, 1974.

[WC72] W ulf W .A. and Bell C .C . C .m m p - a m ulti-m ini-processor.
A F IP S Conf. Proc. F JC C pt. II, 41:765-777, 1972.

[WE85] Neil W este and K am ran Eshraghian. Principles o f CM OS
design — a System s Perspective. Addison Wesley, 1985.

[Wei83a] W eitek. Designing with the W TL 1032/1033. 1983.

[Wei83b] W eitek. Perform ing Floating P oin t D ivision with the W TL
1032/1033. 1983.

255

[Wei84a] Rheinhold P. Weicker. D rystone: a synthetic system s pro­
gram m ing benchm ark. Comm. AC M , 27(10):1013-1030,
O ctober 1984.

[Wei84b] W eitek. W TL 1032 High-Speed 32-B it IE E E Floating Point
M ultiplier, W TL 1033 High-Speed 32-Bit IE E E Floating
P oint ALU . 1984.

[W hill] A.N. W hitehead. An introduction to m athem atics. Oxford
University Press, 1911.

[Whi85] Colin W hitby-S trevens. The tran sp u te r. In Proceedings of
the 12th International Symposium on Com puter Architec­
ture, pages 292-300, 1985.

[WHR82] A. Y. W u, T . H. Hong, and A. Rosenfeld. Threshold selec­
tion using quadtrees. IE E E Trans. Pattern Anal. Mach.
In tell., 4(1), January 1982.

[Wir77] N. W irth . M odula: a language for m odular m ultiprogram ­
ming. Software P and E, 7, 1977.

[Wir81] N. W irth . Pascal s: a subset and its im plem entation. In
D.W . B arron, editor, Pascal - The Languate and its Im ­
plem entation, chapter 12, pages 199-358, John W iley and
Sons, 1981.

[Wir83] Niklaus W irth . Programming in Modula-2. Springer-
Veri ag, second edition, 1983.

[Bal81] D. H. B allard . Ceneralizing the Hough Transform to detect
A rb itra ry Shapes. Pattern Recognition, 13:111-122, 1981.

[LT82] D. Lavie and W . K. Taylor. Effects of border variations due
to spatial quan tisation on binary-im age tem plate m atch-

___________ ing. Electronics letters, 18(10):418-420, May 1982.

256

C362/86

Engineering trade-offs in the design of a real-time
system for the visual inspection of small products
E R DAVIES, MA, DPhil, CPhys, MlnstP
D epartm ent of Physics, Royal Holloway and Bedford New College, Egham, Surrey
A 1 0 JOHNSTONE, BSc
D epartm ent of C om puter Science, Royal Holloway and Bedford New College, Egham, Surrey

SYNOPSIS T h is p a p e r p r e s e n t s a n a l g o r i t h m f o r t h e r a p i d i n s p e c t i o n o f s m a ll p r o d u c t s , a n d c o n s i d e r s
i t s o p t i m a l i m p le m e n ta t io n . S p e e d a n d c o s t l i m i t s c o n s t r a i n o p t i m i s a t i o n r e l a t i v e l y s im p ly , b u t
c o n c u r r e n c y m ak es t h e s i t u a t i o n c o n s i d e r a b l y m o re c o m p le x . H ow ever, a n i n s p e c t i o n s y s te m t h a t m akes
p a r t i c u l a r l y e f f i c i e n t u s e o f a s e t o f h a r d w a r e p r o c e s s o r s h a s b e e n d e s ig n e d . The h o s t CPU i s n o t
m e r e ly u s e d f o r c o n t r o l an d d a t a l o g g i n g , b u t t a k e s a n i n t e g r a l r o l e i n t h e m a in im a g e a n a l y s i s
t a s k . T h e e m p h a s is o f t h e p a p e r i s o n r e m o v in g a r b i t r a r i n e s s i n t h e d e s i g n o f h a r d w a r e f o r
i n d u s t r i a l i n s p e c t i o n s y s te m s .

1 INTRODUCTION

The p a s t d e c a d e h a s s e e n e n o rm o u s g ro w th i n t h e
a p p l i c a t i o n s o f c o m p u te rs t o m a n u f a c t u r i n g
e n g i n e e r i n g . A u to m ate d a s s e m b ly an d a u to m a te d
i n s p e c t i o n a r e b ecom ing m a tu re t e c h n o l o g i e s :
b o th c u s t o m a r i l y u s e v i s i o n , s i n c e s e n s o r s s u c h
a s TV a n d l i n e s c a n c a m e ra s a r e c a p a b le o f
p r o v i d i n g p r o d i g i o u s q u a n t i t i e s o f r e l e v a n t
i n f o r m a t i o n a t h ig h d a t a r a t e s , an d a l g o r i t h m s
a r e know n w h ic h w i l l a n a l y s e m uch o f t h i s d a t a
s u f f i c i e n t l y r e l i a b l y f o r t h e p u r p o s e o f
c o n t r o l . I n a u to m a te d a s s e m b ly , v i s i o n
p r o v i d e s d a t a o n t h e p o s i t i o n s a n d o r i e n t a t i o n s
o f p r o d u c t s , an d c a n a t t h e sam e t im e c h e c k
them f o r d e f e c t s . I n a u to m a te d i n s p e c t i o n , t h e
im m e d ia te p u r p o s e i s t h a t o f d i m e n s i o n a l
c h e c k in g and q u a l i t y c o n t r o l . M ore s p e c i f i c ­
a l l y , i t a im s (a) t o i d e n t i f y an d r e j e c t
p r o d u c t s c o n t a i n i n g d e f e c t s , (b) t o p r o v i d e
f e e d b a c k o n p r o d u c t c h a r a c t e r i s t i c s (s u c h a s
s i z e o r s u r f a c e t e x t u r e) so a s t o k e e p
m a n u f a c tu r e w i t h i n s p e c i f i e d t o l e r a n c e s , a n d
(c) t o p r o v i d e s t a t i s t i c s o n m a n u f a c t u r i n g
p a r a m e t e r s (1) .

T h e r e a r e tw o im p o r t a n t t r e n d s i n
m a n u f a c t u r i n g : o n e i s t h a t p r o d u c t s a r e
b eco m in g i n c r e a s i n g l y co m p lex an d s o p h i s t ­
i c a t e d ; t h e o t h e r i s t h a t t h e c o n su m e r i s
b eco m in g s i g n i f i c a n t l y m ore d e m a n d in g w i t h
r e g a r d t o q u a l i t y . As a r e s u l t t h e r e i s a m ove
to w a r d s 1 0 0 p e r c e n t i n s p e c t i o n o f p r o d u c t s .

I f t h e r e i s t o b e 100 p e r c e n t c o n t r o l o f
q u a l i t y a t a t im e when p r o d u c t s a r e b e co m in g
i n c r e a s i n g l y c o m p le x , t h i s n e c e s s a r i l y th r o w s a
h e a v y l o a d o n c o m p u tin g m a c h in e r y . I n d e e d , t h e
e n o rm o u s a m o u n ts o f d a t a i n t y p i c a l im a g e s ,
c o u p le d w i t h t h e h ig h th r o u g h p u t r a t e s , m ean
t h a t s p e c i a l e l e c t r o n i c h a r d w a re i s n e e d e d f o r
v i s u a l i n s p e c t i o n . S uch h a r d w a r e i s c o s t l y ,
and t h e r e a r e tw o b a s i c s t r a t e g i e s f o r
p r o v i d i n g i t : t h e f i r s t i s t o m a i n t a i n
g e n e r a l i t y b y b u i l d i n g m u l t i - p r o c e s s o r s y s te m s
c o n t a i n i n g (f o r e x a m p le) l a r g e n u m b e rs o f
m i c r o p r o c e s s o r s ; t h e o t h e r i s t o em p lo y s p e c i a l
d e d i c a t e d h a r d w a r e s y s te m s w h ic h a r e l e s s

a d a p t a b l e b u t may be c o n s i d e r a b l y c h e a p e r i n
i n d i v i d u a l a p p l i c a t i o n s . T h is p a p e r s t u d i e s
t h e s e b a s i c s t r a t e g i e s a n d a n a l y s e s t h e
s p e e d / c o s t t r a d e o f f s i n h a r d w a re f o r a u to m a te d
v i s u a l i n s p e c t i o n . I n a d d i t i o n , i t d e s c r i b e s
t h e r e a l - t i m e sy s te m we h a v e d e s ig n e d t o
i n s p e c t p r o d u c t s su c h a s b i s c u i t s a t c o s t s
c o m p a t ib le w i th t h e lo w p r o f i t m a r g in s o f
fo o d p r o d u c t m a n u f a c tu r e .

2 ALGORITHMS FOR PRODUCT INSPECTION

Many i n s p e c t i o n p ro b le m s in v o lv e t h r e e m ain
t a s k s : (1) im age a c q u i s i t i o n , (2) p r o d u c t
l o c a t i o n , and (3) p r o d u c t s c r u t i n y an d
m e a s u re m e n t. I n t h i s s e c t i o n we b y p a s s t h e
p ro b le m 'o f a c q u i s i t i o n an d c o n c e n t r a t e on
p r o d u c t l o c a t i o n an d s c r u t i n y .

To l o c a t e p r o d u c t s i n a g r e y - s c a l e im ag e
i t i s v e r y common t o t h r e s h o l d t h e i n t e n s i t y
an d t h u s o b t a i n a b i n a r y im ag e fro m w h ic h
o b j e c t s c a n be l o c a t e d w i th r e l a t i v e l y l i t t l e
f u r t h e r p r o c e s s i n g . T h is schem e i s o n ly
s u i t a b l e i f t h e l i g h t i n g s y s te m i s c a r e f u l l y
c o n f ig u r e d an d p r o d u c t s a p p e a r s i l h o u e t t e d
e . g . a s d a r k o b j e c t s a g a i n s t a l i g h t b a c k ­
g r o u n d , s o t h r . t t h e i n t e n s i t y h i s t o g r a m i s
b im o d a l . Many i n s p e c t i o n s y s te m s h a v e b e e n
d e s ig n e d o n t h i s b a s i s , b u t a t t e n t i o n i s now
s h i f t i n g to w a r d s m ore c o m p lex p r o d u c t s f o r
w h ic h t h i s a p p r o a c h i s u n l i k e l y t o be
s u c c e s s f u l . F o r t h i s r e a s o n we c o n c e n t r a t e
h e r e o n s y s te m s b a s e d on e d g e d e t e c t i o n . T h is
a p p r o a c h i s g e n e r a l l y much m ore r o b u s t , b e in g
a b l e t o n e g o t i a t e p ro b le m s d u e t o sh a d o w s ,
o v e r l a p p in g p r o d u c t s , e t c .

One common a p p ro a c h t o o b j e c t l o c a t i o n i s
t o u s e a s im p le e d g e d e t e c t o r t o l o c a t e t h e
b o u n d a r ie s o f o b j e c t s , an d t h e n t o l i n k b ro k e n
e d g e s i n o r d e r t o c r e a t e c o m p le te (c o n n e c te d)
o u t l i n e s o f o b j e c t s . H av in g o b t a i n e d c o m p le te
o b j e c t o u t l i n e s , t h e s e c a n be t h in n e d down t o
s i n g l e p i x e l w i d t h , and a t r a c k i n g a l g o r i t h m
c a n b e u s e d t o f o l lo w t h e o u t l i n e s o f
i n d i v i d u a l o b j e c t s , h e n c e g e n e r a t i n g a s e t o f

C362/86 €> IMechE 1986 15

257

p o l a r (r , 8) p l o t s (1 , 2) . E f f i c i e n t o n e
d i m e n s i o n a l p a t t e r n m a tc h in g a l g o r i t h m s c a n
t h e n b e u s e d t o i d e n t i f y o b j e c t s , a t t h e sam e
t im e d e t e r m i n i n g t h e i r o r i e n t a t i o n by f i n d i n g
how much t h e o b s e r v e d p r o f i l e n e e d s t o be
s h i f t e d b e f o r e i t m a tc h e s a s t a n d a r d t e m p l a t e .
I t i s w o r th n o t in g t h a t o b j e c t s c r u t i n y c a n
t h e n p r o c e e d , a t l e a s t i n p a r t , by c h e c k in g how
c l o s e t h e m a tc h w i th t h e s t a n d a r d t e m p l a t e i s .

T h is a p p r o a c h , w h ic h we s h a l l c a l l
A lg o r i th m A, h a s t h e d i s a d v a n t a g e t h a t im age
n o i s e , an d th e n a t u r e o f th e o b j e c t s and t h e
l i g h t i n g , t o g e t h e r w i th p o s s i b i l i t i e s o f
o v e r l a p p i n g o b j e c t s and o t h e r a r t e f a c t s , c a n
m ake i t d i f f i c u l t t o l i n k b ro k e n e d g e s
t o g e t h e r . I n d e e d , t h e r e a r e a r g u m e n ts t h a t
i n d i c a t e t h a t i t i s n o t i n g e n e r a l p o s s i b l e t o
p e r f o r m t h i s f u n c t i o n s u c c e s s f u l l y : i n a n y c a s e
we h a v e fo u n d many p r a c t i c a l i n s t a n c e s o f
f a i l u r e . H ow ever, i n t h e r e s t r i c t e d s e t o f
c a s e s i n w h ic h t h e a lg o r i t h m c a n b e u s e d , i t
o p e r a t e s e x t r e m e ly r a p i d l y , s i n c e t h e t r a c k i n g
a l g o r i t h m n e ed n o t v i s i t e v e r y p i x e l b u t c a n
b y - p a s s m uch o f t h e im a g e . An u n f o r t u n a t e
c o n s e q u e n c e o f t h i s i s t h a t t h e a l g o r i t h m d o e s
n o t t a k e i n en o u g h d a t a t o b e p a r t i c u l a r l y
r o b u s t . I n o u r w o rk , we h a v e a im ed a t h ig h
a c c u r a c y an d e x t r e m e ly h ig h l e v e l s o f
r o b u s t n e s s , s i n c e t h e s e a r e t h e q u a l i t i e s we
h a v e fo u n d p a r t i c u l a r l y i n demand i n i n d u s t r i a l
a p p l i c a t i o n s o f v i s i o n : we h a v e t h e r e f o r e
a v o id e d t h e t r a c k i n g sch em es u se d by
A lg o r i th m A.

An a l t e r n a t i v e a p p r o a c h w h ic h we s h a l l
c a l l A lg o r i th m B a l s o i n v o lv e s e d g e d e t e c t i o n ,
b u t i n s t e a d o f l i n k i n g b ro k e n e d g e s t o g e t h e r
d i r e c t l y i t p r o c e e d s w i th t h e H ough t r a n s f o r m
s t r a t e g y o f l o c a t i n g o b j e c t s by a c c u m u la t in g
(a t a r e f e r e n c e p o i n t w i t h i n e a c h o b j e c t) t h e
e v id e n c e t h a t i s a v a i l a b l e f o r t h e i r e x i s t e n c e
(3 , 4) . T h is g i v e s a p a r t i c u l a r l y r o b u s t
s t r a t e g y f o r l o c a t i n g o b j e c t s , th o u g h i t i s n o t
s o f a s t a s A lg o r i th m A. H ow ever, A lg o r i th m B
i s s t i l l h i g h l y e f f i c i e n t , s i n c e f u l l u s e i s
m ade o f l o c a l l y a v a i l a b l e e d g e o r i e n t a t i o n
i n f o r m a t i o n to co m p u te c a n d i d a t e p o s i t i o n s f o r
o b j e c t r e f e r e n c e p o i n t s . H ere we i l l u s t r a t e
t h i s t e c h n i q u e by r e f e r e n c e t o c i r c u l a r o b j e c t
l o c a t i o n . F o r a c i r c u l a r o b j e c t , e a c h ed g e
p i x e l t h a t i s fo u n d p e r m i t s c o m p u ta t io n o f a
c a n d i d a t e c e n t r e p o i n t a d i s t a n c e e q u a l t o R
(t h e r a d i u s) a lo n g t h e e d g e n o rm a l i n
'p a r a m e t e r s p a c e ' (4) . (I n t h i s a p p l i c a t i o n
p a r a m e t e r s p a c e i s i s o m o r p h ic t o im ag e s p a c e .)
When a l l e d g e p i x e l s i n an im ag e h a v e b e e n
p r o c e s s e d , i t i s o n ly n e c e s s a r y t o s e a r c h
p a r a m e t e r s p a c e f o r c l u s t e r s o f c a n d i d a t e
c e n t r e l o c a t i o n s an d t o a v e r a g e th em t o f i n d
a c c u r a t e p o s i t i o n s f o r t h e c e n t r e s o f c i r c u l a r
o b j e c t s .

O nce p r o d u c t s h a v e b e en fo u n d u s in g
A lg o r i th m B , t h e y may c o n v e n i e n t l y be
s c r u t i n i s e d u s in g t h e r a d i a l h i s to g r a m m e th o d ,
w h ic h i n v o l v e s c o m p u tin g a n a v e r a g e r a d i a l
i n t e n s i t y p r o f i l e o f t h e p r o d u c t , an d m a tc h in g
t h i s a g a i n s t a s u i t a b l e t e m p l a t e (5 , 6) . T h is
i s a g a i n a o n e - d im e n s io n a l a p p r o a c h , and i s
a n a lo g o u s t o t h a t o f m a tc h in g o n e - d im e n s io n a l
s h a p e p r o f i l e s i n A lg o r i th m A, th o u g h i t a im s
t o p r o v i d e i n f o r m a t io n o n p r o d u c t r e f l e c t i v i t y
a n d s i z e r a t h e r t h a n s h a p e (5 - 7) . N a t u r a l l y ,
A lg o r i th m A c o u ld a l s o be au g m en ted b y t h e u s e

o f r a d i a l i n t e n s i t y h i s t o g r a m s , i f t h i s w ere
a p p r o p r i a t e .

T h e s e a rg u m e n ts show t h a t A lg o r i th m B
s h o u ld be c o n s i d e r a b ly m ore r o b u s t an d a c c u r a t e
f o r o b j e c t l o c a t i o n th a n A lg o r i th m A. He h a v e
m ade e x t e n s i v e p r a c t i c a l t e s t s o f th e
s i t u a t i o n , p a r t i c u l a r l y f o r t h e l o c a t i o n o f
ro u n d f o o d p r o d u c t s su c h a s b i s c u i t s , and hav e
v e r i f i e d t h a t t h i s i s s o . S p e c i f i c a l l y ,
A lg o r i th m B h a s b e e n fo u n d t o b e e x c e p t i o n a l l y
t o l e r a n t o f b ro k e n and o v e r la p p in g p r o d u c t s ,
and th o s e h a v in g o t h e r sh a p e d e f e c t s su c h a s
p r o t u b e r a n c e s a ro u n d t h e i r e d g e s (5) . I n w hat
f o l lo w s we assu m e t h a t A lg o r i th m B i s t o be
u se d b e c a u s e o f i t s s u p e r i o r r o b u s t n e s s and
a c c u r a c y .

3 THE SPEED PROBLEM

F o r o u r t e s t s on b i s c u i t i n s p e c t i o n .
A lg o r i th m B was au g m en ted t o i n c l u d e a s s e s s m e n t
u n d e r f o u r m ain h e a d in g s - r o u n d n e s s , r a d i u s ,
am oun t o f c h o c o la t e c o v e r , an d g e n e r a l a c c e p t ­
a b i l i t y a c c o r d in g t o a r a d i a l i n t e n s i t y
c o r r e l a t i o n c o e f f i c i e n t . T he i n i t i a l v e r s i o n
o f t h i s a lg o r i t h m to o k a b o u t o n e m in u te t o r u n
on a PD P-11 /34À . S u b s e q u e n t o p t i m i s a t i o n o f
t h e a lg o r i t h m s t r a t e g y b r o u g h t t h e e x e c u t io n
t im e down t o "~5 s e c o n d s , w i th o u t r e s o r t i n g to
h an d m assa g e o f m ac h in e c o d e . A l th o u g h th e
o r i g i n a l a lg o r i t h m was w r i t t e n i n P a s c a l , i t
becam e c l e a r t h a t a t t e m p t s t o o p t im i s e th e
m ac h in e co d e would (f o r t h i s a l g o r i t h m) r e s u l t
i n a sp e e d u p f a c t o r o f l e s s t h a n tw o : a
3 se c o n d o v e r a l l e x e c u t i o n t im e a p p e a r e d t o be
a l i m i t i n g c a s e . T h is i s t o b e e x p e c te d f o r
t h e f o l lo w in g r e a s o n s . The e d g e d e t e c t i o n p a r t
o f A lg o r i th m B r e q u i r e s some 16 im ag e a c c e s s e s
f o r e a c h p i x e l i n t h e 128x128 im a g e . A lth o u g h
t h e a c c e s s t im e o f t h e f r a m e s t o r e i s a ro u n d
1 m ic r o s e c o n d , i n s t r u c t i o n f e t c h e s and
o v e r h e a d s w i t h in t h e p ro g ram l o o p s r e d u c e th e
a v e r a g e th r o u g h p u t to a ro u n d 100000
p i x e l s / s e c o n d . As a r e s u l t t h e minimum
e x e c u t i o n t im e o f t h e ed g e d e t e c t o r i s o f th e
o r d e r o f 2 .6 s e c o n d s . P r o d u c t s c r u t i n y th e n
r e q u i r e s some 4 -5 a c c e s s e s o v e r t h e r e l e v a n t
a r e a (a b o u t 3000 p i x e l s i n o u r a p p l i c a t i o n) ,
w h ic h w i l l t a k e a t l e a s t a n o th e r 0 .1 s e c o n d s .
The Hough t r a n s f o r m c a l c u l a t i o n s a r e o n ly
a p p l i e d t o some 200 p o i n t s , b u t t h e i r h ig h
c o m p u ta t io n a l c o s t w i l l add a n o t h e r 0 .1 s e c o n d s
t o t h e t o t a l e x e c u t i o n t im e . C l e a r l y e v e n w i th
i d e a l co d e g e n e r a t i o n t h e r e i s a lo w e r bound on
t h e o v e r a l l p r o c e s s in g t im e o f a b o u t 2 .8
s e c o n d s . C h a n g in g t o a 68000 o r o t h e r commonly
a v a i l a b l e m ic r o p r o c e s s o r w ould n o t a f f e c t t h i s
s u b s t a n t i a l l y .

A t b e s t , s o f tw a r e o p t i m i s a t i o n i s s u b j e c t
t o s e v e r e l y d im in i s h in g r e t u r n s , a n d f u r t h e r
sp e e d u p m u st r e l y o n e n h a n c e m e n t o f t h e
h a rd w a re im p le m e n ta t io n . As s t a t e d i n
s e c t i o n 1 , t h i s h a s t o be o b t a i n e d e i t h e r by
u s e o f s e v e r a l c e n t r a l p r o c e s s o r u n i t s (CPUs)
o r by s p e c i a l l y d e s ig n e d d e d i c a t e d e l e c t r o n i c
h a r d w a r e . To i n s p e c t b i s c u i t s a t t y p i c a l r a t e s
o f 1 0 -2 0 p e r s e c o n d , a sp e e d u p f a c t o r '^100 m ust
b e a t t a i n e d .

F o r i n d u s t r i a l a p p l i c a t i o n s , c o s t h a s t o
b e k e p t lo w , and i t i s u s e f u l t o s e e how
g e n e r a l i t y c a n be m a in ta in e d s u b j e c t t o t h i s

16 © IMechE 1986 C362/86

258

c o n s t r a i n t . W ith t h i s i n m ind we e x a m in e a
n u m b er o f a l t e r n a t i v e p r o c e s s i n g a r c h i t e c t u r e s .

4 MULTIPROCESSOR SYSTEM DESIGN

4 .1 SIM P a r c h i t e c t u r e

When c o n s i d e r i n g f a s t h a rd w a re f o r im ag e
a n a l y s i s a p p l i c a t i o n s , i t i s n a t u r a l t o s t a r t
w i t h t h e SIMD m a c h in e , s i n c e t h i s a r c h i t e c t u r e
w o u ld a p p e a r t o m a tc h t h e h a rd w a re t o t h e
a l g o r i t h m m o s t a c c u r a t e l y (8) . The SIMD (o r
'S i n g l e I n s t r u c t i o n M u l t ip l e D a t a ') a r c h i ­
t e c t u r e w hen a p p l i e d t o im age a n a l y s i s i d e a l l y
i n v o l v e s u s e o f o n e p r o c e s s i n g e le m e n t (PE) p e r
p i x e l , t h e PEs b e in g a r r a n g e d i n a n a r r a y
i s o m o r p h ic w i th t h e im age b e in g p r o c e s s e d .
S u c h a m a c h in e i s a b l e (f o r ex am p le) t o i n v e r t
o r t h r e s h o l d a n im ag e i n o n e i n s t r u c t i o n c y c l e ,
s i n c e a l l p r o c e s s o r s o p e r a t e s i m u l t a n e o u s ly o n
t h e i r r e s p e c t i v e p i x e l s . T h is ty p e o f m a c h in e
I s a l s o a b l e t o o p e r a t e r a p i d l y on im a g e s t o
re m o v e n o i s e by l o c a l a v e r a g in g , o r t o f i n d
e d g e p i x e l s r a p i d l y by o p e r a t i o n s w i t h i n 3x3
n e ig h o u r h o o d s . I n a d d i t i o n , i t c a n e f f i c i e n t l y
b u i l d u p d i s t a n c e f u n c t i o n s o r f i n d o b j e c t
s k e l e t o n s by s e q u e n c e s o f 3x3 n e ig h b o u rh o o d
o p e r a t i o n s . A t y p i c a l SIM) m ach in e (9) i s a b l e
t o p e r f o r m t h e s e 3x3 o p e r a t i o n s e f f i c i e n t l y
s i n c e e a c h p r o c e s s i n g c e l l h a s d i r e c t l i n k s
w i t h i t s 8 n e ig h b o u r s (o n ly 4 i n t h e c a s e o f
som e m a c h in e s su c h a s t h e ICL DAP (1 0)) , so t h e
r e q u i r e d d a t a i s im m e d ia te ly a v a i l a b l e .

M o st SIMD a r r a y s i n c l u d e a n a c t i v i t y b i t
f o r e a c h PE w h ic h a l lo w s s e l e c t i v e a p p l i c a t i o n
o f p r o c e s s i n g s t e p s t o d i f f e r e n t a r e a s o f t h e
im a g e b y d i s a b l i n g i n d i v i d u a l P E s. H ow ev er,
t h i s c l e a r l y w a s te s t h e pow er o f t h e SIMD
m a c h in e . U n f o r t u n a t e ly , a l l b u t t h e lo w e s t
l e v e l im a g e p r o c e s s i n g o p e r a t i o n s r e q u i r e
s e l e c t i v e p r o c e s s i n g o f t h e im a g e . T he Hough
t r a n s f o r m c a l c u l a t i o n s r e q u i r e d f o r A lg o r i th m B
fo rm a n i n t e r e s t i n g e x tre m e c a s e i n w h ic h
a r o u n d 2 0 0 s p e c i a l im ag e p o i n t s (e d g e p i x e l s)
t r i g g e r a f l o a t i n g p o i n t c a l c u l a t i o n , a t t h e
e n d o f w h ic h a s i n g l e p o i n t i n p a r a m e te r s p a c e
m u s t b e a c c e s s e d . I n p r i n c i p l e t h e f l o a t i n g
p o i n t c a l c u l a t i o n c o u ld b e p e r fo rm e d a t e v e r y
p o i n t b y t h e SIM) a r r a y , b u t t h e o n ly a v a i l a b l e
way o f p e r f o r m in g th e s u b s e q u e n t random a c c e s s
o f t h e p a r a m e te r p l a n e ' i s by p r o p a g a t io n
t e c h n i q u e s (9) . T y p ic a l l y 40 p r o p a g a t io n
c y c l e s p e r p o i n t w ould be r e q u i r e d i n t h i s
a p p l i c a t i o n f o r e a c h o f t h e 16384 p i x e l s i n t h e
im a g e . (N o te t h a t a n a t t e m p t t o r e - o r g a n i s e
A lg o r i th m B s o t h a t p r o p a g a t io n r o u t i n e s a r e
u s e d t o l o c a t e c i r c l e c e n t r e s l e a d s t o
s i g n i f i c a n t l o s s o f g e n e r a l i t y , s i n c e
A lg o r i th m B i t s e l f i s im m e d ia te ly g e n e r a l i s a b l e
t o d e t e c t a n y o b j e c t sh a p e (4) .) A c o n v e n ­
t i o n a l s e q u e n t i a l p r o c e s s o r w ould be s lo w a t
c a l c u l a t i n g t h e e d g e im a g e , b u t c o u ld t h e n
e f f i c i e n t l y e x e c u te t h e 200 f l o a t i n g p o i n t
c a l c u l a t i o n s an d d i r e c t l y a c c e s s t h e p a r a m e te r
s p a c e . I n a d d i t i o n , t e c h n o lo g y c o n s t r a i n t s
d i c t a t e t h e u s e o f s im p le b i t - s e r i a l p r o c e s s o r s
i n c u r r e n t SIMD m a c h in e s , an d t h e s e w ou ld
r e q u i r e many c y c l e s t o e x e c u te t h e r e q u i r e d
f l o a t i n g p o i n t c a l c u l a t i o n . C l e a r l y , t h e p u r e
SIMD s o l u t i o n w ou ld be much l e s s e f f i c i e n t .

An a l t e r n a t i v e h y b r id s t r a t e g y w ou ld b e t o
p e r f o r m t h e e d g e c a l c u l a t i o n i n t h e SIMD a r r a y .

a n d t h e n t o r e a d t h e r e s u l t s o u t s e q u e n t i a l l y
i n t o a c o n v e n t io n a l p r o c e s s o r w h ic h w ould
p e r f o r m t h e f l o a t i n g p o i n t c a l c u l a t i o n an d
u p d a te t h e p a r a m e te r s p a c e . The e c o n o m ic s o f
t h i s a p p r o a c h w ou ld be d i c t a t e d by t h e r e l a t i v e
c o s t s o f t h e S IM) and s e q u e n t i a l m a c h in e s an d
t h e b a n d w id th o f t h e c o m m u n ic a tio n c h a n n e l .
C u r r e n t SIMD a r r a y s a r e s t i l l r a t h e r e x p e n s iv e
d e v i c e s , w h ic h d i s c o u n te d t h e i r u s e i n o u r
a p p l i c a t i o n .

T h is a n a l y s i s shows t h a t SIMD a r c h i t e c t ­
u r e s a r e o f l i m i t e d u s e f o r p r o c e s s i n g t a s k s
t h a t c a n n o t e f f i c i e n t l y e x p l o i t t h e i r r e g u l a r
t o p o lo g y . T he s i m p l i c i t y o f t h e i n d i v i d u a l
P E s , a n d t h e a b s e n c e o f lo n g d i s t a n c e commun­
i c a t i o n l i n k s w i t h in t h e im ag e make them
p a r t i c u l a r l y u n s u i t a b l e f o r g e o m e t r i c a l
c a l c u l a t i o n s o n o b j e c t f e a t u r e s . T hus t h e SIMD
a r c h i t e c t u r e i s c u r r e n t l y i n a p p r o p r i a t e f o r
many t a s k s o f im age a n a l y s i s t h a t m ig h t b e
n e e d e d i n i n d u s t r i a l i n s p e c t i o n , e v e n th o u g h i t
m ig h t b e w e l l a d a p te d t o v a r i o u s im ag e
p r o c e s s i n g t a s k s i n a g e n e r a l im a g in g
e n v i r o n m e n t .

4 . 2 M u l t i - p r o c e s s o r sy s te m s

G e n e r a l m u l t i - p r o c e s s o r s t r u c t u r e s p r o v id e
r e s o u r c e s t h a t may be u se d c o n c u r r e n t l y i n a n
u n r e s t r i c t e d f a s h i o n , u n l ik e t h e SIMD m a c h in e
w h e re a l l r e s o u r c e s o p e r a t e i n l o c k s t e p . As
w i th a l l fo rm s o f p a r a l l e l im p le m e n ta t io n , t h e
e f f i c i e n c y o f a m u l t i - p r o c e s s o r s y s te m w i l l be
d i c t a t e d by t h e e f f e c t i v e n e s s o f t h e f u n c t i o n a l
p a r t i t i o n s . I n t e r a c t i o n s b e tw e e n f u n c t i o n s
w i l l r e q u i r e e i t h e r t r a n s m i s s i o n o f d a t a
b e tw e e n p r o c e s s e s o r a c c e s s t o s h a r e d memory
s p a c e s . I n t h e o n e c a s e t h e r e i s a p o t e n t i a l
d a t a b o t t l e n e c k d u e t o l a c k o f b a n d w id th i n t h e
c o m m u n ic a tio n s c h a n n e l , and i n t h e o t h e r ,
p r o c e s s e s may s t a l l d u r in g c o n t e n t i o n f o r
s h a r e d m em ory. T h e r e f o r e t h e sp e e d o f a
m u l t i - p r o c e s s o r sy s te m c o n ta i n in g N p r o c e s s o r s
i s n e v e r i n c r e a s e d by t h e i d e a l f a c t o r N u n l e s s
t h e r e i s no p r o c e s s i n t e r a c t i o n , w h ic h i s
u n l i k e l y t o b e t h e c a s e i n a s y s te m d o in g
u s e f u l w o rk . H ig h e f f i c i e n c y w i l l be o b t a in e d
by m in im is in g p r o c e s s i n t e r a c t i o n . N a t u r a l l y ,
t h e r e i s t h e r i s k t h a t a s y s te m c o n ta i n in g
N p r o c e s s o r s an d c a p a b le o f i n c r e a s i n g sp e e d by
t h e f a c t o r "lU O n o te d i n s e c t i o n 3 w i l l be
r a t h e r a n e x p e n s iv e s o l u t i o n .

4 .3 P i p e l i n e d p r o c e s s in g s y s te m s

P i p e l i n e d p r o c e s s in g s y s te m s fo rm a n
i n t e r e s t i n g s u b - c l a s s o f m u l t i - p r o c e s s o r
s y s te m s w h ic h c a n b e u s e f u l f o r t h e r e p e t i t i v e
e x e c u t i o n o f a g iv e n s e t o f o p e r a t i o n s . T h is
i s t y p i c a l l y t h e c a s e f o r i n d u s t r i a l i n s p e c t i o n
s y s te m s , w h e re t h e same a lg o r i t h m i s a p p l i e d t o
e a c h f ra m e o f d a t a a s i t com es o f f t h e c a m e ra .
I n a p i p e l i n e , i n d i v i d u a l f r a m e s o f d a t a a r e
p a s s e d a lo n g a c h a in o f p r o c e s s o r s so t h a t i n
a n N - p r o c e s s o r sy s te m , N d i f f e r e n t d a t a s e t s
a r e b e in g p r o c e s s e d a t an y o n e t im e .

S in c e a l l p r o c e s s o r s p a s s t h e i r c o m p le te d
d a t a s e t o n u p t h e c h a in a t t h e en d o f a f i x e d
t im e s l o t , p i p e l i n e s a r e o n ly a s f a s t a s t h e
s l o w e s t p r o c e s s o r i n t h e c h a i n . To b e o p t im a l ,
a l l p r o c e s o r s s h o u ld c o m p le te i n t h e sam e
am o u n t o f t im e . F o r a v id e o - b a s e d s y s te m , a n
o b v io u s a p p r o a c h w ould b e t o e x e c u te i n

C362/86 €> IMechE 1986 17

259

i n t e g r a l n u m b ers o f TV f r a m e s . F o r h ig h l e v e l
p a r t s o f t h e a l g o r i t h m , s u c h a s t h e Hough
t r a n s f o r m c a l c u l a t i o n s , s u b d i v i s i o n i n t o e q u a l
e x e c u t i o n t im e p r o c e s s e s w o u ld be v i r t u a l l y
i m p o s s i b l e t o a c h i e v e . F i n a l l y , t h e a p p ro a c h
r e q u i r e s s i g n i f i c a n t b u s s w i t c h in g l o g i c and
l o c a l m em ory, a s w e l l a s t h e h a rd w a re p r o c ­
e s s o r s , w h ic h a r e t h e m s e lv e s l i a b l e t o be
c o s t l y . T hus p i p e l i n e d s y s te m s p o s e a s e r i o u s
p a r t i t i o n i n g p r o b le m , an d i n a d d i t i o n t o
l a c k i n g g e n e r a l i t y a r e l i k e l y t o c o n s t i t u t e a
r a t h e r e x p e n s iv e s o l u t i o n t o t h e sp e e d p ro b le m .

4.4 G e n e r a l p r o c e s s i n g c a p a b i l i t y

We h a v e c o n c lu d e d i n o u r w ork t h a t , c o n t r a r y t o
m any o f t h e s u p p o s i t i o n s a b o u t im ag e a n a l y s i s
(b a s e d o n w h a t i s f r e q u e n t l y v a l i d i n im age
p r o c e s s i n g p e r s e) , t h e i d e a l ty p e o f
p r o c e s s i n g s y s te m i s a h i g h l y g e n e r a l m u l t i ­
c o m p u te r s y s te m , w h ich i s a b s t r a c t i n t h e s e n s e
o f n o t b e in g t i e d t o a n y s p e c i f i c im a g in g
r e p r e s e n t a t i o n . A g a in t h i s i s n o t a c h i e v a b l e
w i t h i n t h e b u d g e t o f m o st i n d u s t r i a l i n s p e c t i o n
s y s t e m s . F o r a lg o r i t h m s su c h a s A lg o r i th m B,
t h e b e s t co m p ro m ise seem ed t o be t o make
o p tim u m u s e o f a s i n g l e CPU by l i n k i n g i t w i th
a s e t o f h a rd w a re a c c e l e r a t o r s s e l e c t e d f o r
m a x im a l g e n e r a l i t y c o u p le d w i th a p p l i c a b i l i t y
t o t h e p ro b le m i n h a n d . I n t h i s c o n te x t .
A lg o r i th m B w as s e e n a s c o n s t i t u t i n g a u s e f u l
c a s e s tu d y i n a lg o r i t h m a n a l y s i s and m u l t i ­
p r o c e s s o r s y s te m d e s i g n ; t h i s w i l l b e d i s c u s s e d
i n m o re d e t a i l b e lo w .

5 FURTHER ANALYSIS OF ALGORITHM B AND ITS
IMPLEMENTATION

T a b l e 1 g i v e s a b reak d o w n o f t h e f u n c t i o n s i n
A l g o r i th m B. The 'd e s c r i p t i o n ' i n d i c a t e s t h e
s i z e o f t h e n e ig h b o u rh o o d e m p lo y e d i n im a g in g
o p e r a t i o n s . I t a l s o i n d i c a t e s t h o s e p r o c e s s e s
t h a t a r e o n e - d im e n s io n a l : t h e s e a r e m arked
s i n c e t h e y in v o lv e l o o p s c o n t a i n i n g a s i g n i f ­
i c a n t num ber o f o p e r a t i o n s , b u t n o t a s many a s
f o r tw o - d im e n s io n a l im ag e p r o c e s s i n g i n 1x1 o r
3 x 3 n e ig h b o u r h o o d s .

The tw o o t h e r h e a d in g s i n t h e t a b l e , t im e
f o r e x e c u t i o n i n s o f tw a r e o n a n L S I - 1 1 /2 3 and
c o s t o f h a rd w a re i m p le m e n ta t io n , a r e som ew hat
n o t i o n a l s i n c e i t i s d i f f i c u l t t o d i v i d e t h e
a l g o r i t h m r i g o r o u s l y i n t o c o m p le te ly s e g r e g a t e d
s e c t i o n s . F o r e x a m p le , i t h a s b e e n assum ed
t h a t v a r i o u s o v e rh e a d c o s t s s u c h a s t h a t o f a
b a c k p l a n e , r a c k and p o w er s u p p ly h a v e a l r e a d y
b e e n c o v e r e d : we s h a l l l a r g e l y i g n o r e su c h
c o m p l i c a t i o n s i n w h a t f o l l o w s . O v e r a l l , t h e
f i g u r e s p r e s e n t e d h e r e s h o u ld be s u f f i c i e n t l y
a c c u r a t e t o fo rm th e b a s i s f o r u s e f u l d e c i s i o n s
o n c o s t e f f e c t i v e n e s s o f h a r d w a r e . F i n a l l y ,
c o s t s a r e b a s e d o n c h ip an d o t h e r co m p o n en t
p r i c e s , an d d o n o t i n c l u d e l o g i c d e s i g n o r
p . c . b . l a y o u t . H ow ever, o n t h e w h o le t h e c o s t
o f d e s i g n an d l a y o u t w ork i s p r o p o r t i o n a l t o
t h e n u m b er o f c o n n e c t i o n s , w h ic h i s i t s e l f
r o u g h l y p r o p o r t i o n a l t o c o m p o n en t c o s t . T h is
m e a n s t h a t o u r r e s u l t s w i l l b e s u b s t a n t i a l l y
c o r r e c t , s i n c e t h e a n a l y s i s b e lo w i s
i n d e p e n d e n t o f s c a l i n g .

As a s im p le s t a r t i n g a p p r o x im a t io n , a n y
f u n c t i o n t h a t i s im p le m e n te d i n f a s t h a rd w a re
w i l l b e a ssu m ed t o r u n i n z e r o t im e . To f i n d

t h e m o st c o s t - e f f e c t i v e m eans o f s p e e d in g up
t h e s y s te m , we s h o u ld t h e r e f o r e c o n s i d e r a
se q u e n c e o f o p t i o n s i n e a c h o f w h ich o n e
a d d i t i o n a l f u n c t i o n i s im p le m e n te d i n h a rd w a re ,
s u c c e s s i v e l y r e d u c in g t h e l o a d o n t h e h o s t CPU.
To a c h ie v e t h i s s y s t e m a t i c a l l y , we sh o u ld
ex am in e t h e s p e e d - c o s t p r o d u c t (o r c o s t / t i m e
r a t i o) o f e v e r y f u n c t i o n , an d i n s u c c e s s iv e
o p t io n s im p le m e n t i n h a rd w a re t h e f u n c t io n
c u r r e n t l y h a v in g t h e l o w e s t v a lu e o f t h i s
p a r a m e te r : t h e r a t i o n a l e f o r t h i s i s t o
p r e f e r e n t i a l l y r e p l a c e i n h a rd w a re th o s e
f u n c t i o n s t h a t a r e s lo w an d w hose c o s t i s
r e l a t i v e l y s m a l l , b y a p p ly in g a c r i t e r i o n
f u n c t i o n w i th s u i t a b l e w e ig h t in g v a lu e s .

T h is s im p le p r o c e d u r e i s made som ewhat
m ore co m p lex by t h e s i g n i f i c a n t econcxn ies t h a t
a r e p o s s i b l e when im p le m e n t in g f u n c t i o n s 6 -1 0 ,
e . g . by u s in g coimnon p i x e l s c a n n in g c i r c u i t r y .
S p e c i f i c a l l y , an y s u b s e t o f t h e f u n c t i o n s 6 -1 0
c a n o p e r a t e w i th a s i n g l e i n t e r f a c e , s c a n n in g
c i r c u i t an d r a d i a l p o s i t i o n lo o k u p t a b l e (w h ich
g i v e s a v a lu e f o r r a d i a l p o s i t i o n o n c e x and y
d i s p l a c e m e n ts r e l a t i v e t o t h e c i r c l e c e n t r e a r e
kn o w n). On th e o t h e r h a n d , a n y s u b s e t o f th e s e
f u n c t i o n s t h a t i s n o t im p le m e n te d i n h a rd w a re
e n g e n d e r s a t im e o v e rh e a d i n s o f t w a r e . A f u l l
a n a l y s i s o f th e p ro b le m w ou ld r e q u i r e a l a r g e
num ber o f f u n c t i o n a l p a r t i t i o n s t o be exam ined
i n o r d e r t o f i n d t h e op tim um s y s te m c o n f ig ­
u r a t i o n . H ow ever, t h i s e x h a u s t iv e s e a r c h
p r o c e d u r e n e ed n o t be p e r fo rm e d i n t h i s
i n s t a n c e s i n c e t h e t im e o v e rh e a d i s much
g r e a t e r t h a n th e sum o f t h e s o f tw a r e t im e s f o r
f u n c t i o n s 6 - 1 0 . T h is m eans t h a t o n c e th e
i n i t i a l c o s t o v e rh e a d h a s b e en p a id i t w i l l
c l e a r l y b e o p tim a l* t o im p le m e n t a l l o f th e s e
f u n c t i o n s i n h a r d w a r e . F o r t h i s r e a s o n we
g ro u p f u n c t i o n s 6 -1 0 t o g e t h e r i n t h e r e m a in d e r
o f t h i s p a p e r . T a b le 2 su m m arise s th e
p o s i t i o n .

T a b le 2 show s t h a t t h e c o s t / t i m e r a t i o s
d i v i d e th e m s e lv e s i n t o f o u r m ain c a t e g o r i e s :
(1) t h o s e o f th e o r d e r o f 1 £ /m s v d iich a r e
c l e a r l y w o r th im p le m e n t in g i n h a rd w a re ;
(2) t h o s e b e tw ee n ~ 5 £ /m s an d 25 £/m s w hich
w i l l a l s o h a v e t o b e im p le m e n te d i n h a rd w a re t o
g e t a r e a s o n a b l e sp e e d s y s te m ; (3) t h o s e a ro u n d
100 £ /m s w h ic h i t w o u ld b e w o r th im p le m e n tin g
i f a v e r y much f a s t e r s y s te m w ere n e e d e d ; and
(4) t h o s e ab o v e 1 0 0 0 £ /m s w h ic h i t would
p r o b a b ly n e v e r be e c o n o m ic a l t o im p lem en t i n
h a rd w a re . I f o p t io n 1 w ere c h o s e n , t h e t o t a l
c o s t o f t h e s y s te m w ou ld b e £9000 and th e
a lg o r i t h m w ould r u n i n 0 .7 s e c o n d s ; i f o p t io n 2
w ere u s e d , t h e s y s te m w ou ld c o s t £13700 and
w ould r u n i n 0 .1 s e c o n d s ; i f o p t io n 3 w ere
c h o s e n , t h e sy s te m w ou ld c o s t £23700 and would
r u n i n 0 .0 0 2 s e c o n d s , w h e re a s w i th o p t io n 4 th e
s y s te m w ould c o s t £277 0 0 an d w ould r u n i n z e ro
t im e (i n t h e c u r r e n t a p p r o x im a t i o n) . H e re we
h a v e assu m ed t h a t t h e b a s e c o s t o f co m p u te r
p l u s c a m e ra , f ra m e s t o r e , b a c k p la n e , pow er
s u p p ly , e t c i s som e £6000 an d t h a t t h i s w i l l
p e r m i t t h e a lg o r i t h m t o r u n i n ' '5 . 0 s e c o n d s a s
i n d i c a t e d i n T a b le 2 .

I n t h e ab o v e a n a l y s i s we assu m ed t h a t
t h o s e f u n c t i o n s im p le m e n te d i n e l e c t r o n i c
h a rd w a re r u n i n z e r o t im e . T h is w i l l n o t be
e n t i r e l y v a l i d i n p r a c t i c e , an d t h e m ost
s e r i o u s e r r o r s w i l l b e f o r im ag e n e ig h b o u rh o o d
o p e r a t i o n s - p a r t i c u l a r l y t h o s e f o r n e ig h ­

18 © IMechE 1980 C362/86

260

b o u r h o o d s o f s i z e 3 x 3 . T a k in g 1 5 0 n s e c a s t h e
f a s t e s t t im e f o r p i x e l a c c e s s (a s w i t h o u r
i m p l e m e n t a t i o n u s in g th e VME b u s) , we s e e t h a t
a 3 x 3 n e ig h b o u rh o o d o p e r a t i o n i n a 128x 1 2 8
im a g e t a k e s some 25 m sec . W ith s u i t a b l e l o c a l
s t o r a g e t h i s c o u ld b e re d u c e d t o " 8 m sec o r
e v e n t o " 3 m se c . F o r a 1x1 n e ig h b o u r h o o d ,
p i x e l a c c e s s t im e s w ould be "3 m se c . N e x t , l e t
u s a s su m e t h a t t h e a c t u a l p r o c e s s i n g i s c a r r i e d
o u t b y TTL c i r c u i t r y i n some t e n s o f n a n o ­
s e c o n d s p e r p i x e l l o c a t i o n ; t h e n t h e p r o c e s s i n g
t im e w i l l b e l e s s t h a n 1 m se c . T hus q u i t e
s t r a i g h t f o r w a r d c i r c u i t r y c o u ld be u s e d t o
im p le m e n t e a c h f u n c t i o n i n t im e s a s s h o r t a s
3 - 4 m s e c : t h i s g o e s some way t o j u s t i f y i n g , an d
e x t e n d i n g , t h e a p p r o x im a t io n we m ade e a r l i e r .

He now i n t e r p r e t o u r f i n d i n g t h a t t h e
c o s t / t i m e r a t i o s f a l l i n t o f o u r m ain
c a t e g o r i e s . B r o a d ly , t h e f i r s t c a t e g o r y
(c o s t / t i m e T l £ /m s) a r i s e s f o r im a g in g
o p e r a t i o n s i n 3x3 n e ig h b o u r h o o d s , w h ic h a r e
w e l l w o r th im p le m e n tin g i n h a r d w a r e . T he
s e c o n d c a t e g o r y (c o s t / t i m e i n t h e r a n g e
5 t o 2 5 £ /m s) a r i s e s f o r f a s t e r im a g in g
o p e r a t i o n s i n 1x1 n e ig h b o u r h o o d s . The t h i r d
c a t e g o r y a r i s e s f o r o n e - d im e n s io n a l o p e r a t i o n s
w h ic h i n v o l v e l e s s p r o c e s s i n g , an d c e r t a i n
r a t h e r t im e -c o n s u m in g f l o a t i n g p o i n t
o p e r a t i o n s . And t h e f o u r t h c a t e g o r y i s a
g e n e r a l d a t a p r o c e s s in g c a t e g o r y w i th
n o n - r e p e t i t i v e o p e r a t i o n s t h a t r u n s o f a s t th e y
a r e u n l i k e l y t o be w o r th im p le m e n t in g i n
d e d i c a t e d h a r d w a r e . S p e c i f i c a l l y , f u n c t i o n s
5 , 1 2 ,1 3 , 1 4 r e q u i r e t e d i o u s l o g i c a n d /o r
f l o a t i n g p o i n t a r i t h m e t i c , w h ich m ean s t h a t o n e
i s c o m p e t in g w i th th e c o s t - e f f e c t i v e n e s s o f
m a s s - p r o d u c e d CPUs i f o n e im p le m e n ts th em i n
h a r d w a r e : i n g e n e r a l i t i s n o t w o r th d o in g
t h i s .

F u n c t io n 4 i s a t t h e h i g h end o f
c a t e g o r y 2 s i n c e i t i n v o lv e s r e l a t i v e l y few
p i x e l s a n d i s e s s e n t i a l l y a o n e - d im e n s io n a l
r a t h e r t h a n a n im a g in g o p e r a t i o n : i n a d d i t i o n ,
i t s c o s t i s r a t h e r h ig h b e c a u s e i t p e r fo r m s
q u i t e c o m p le x a r i t h m e t i c .

5 .1 M ore r i g o r o u s i n v e s t i g a t i o n o f h a r d w a r e -
s o f t w a r e t r a d e o f f s

We now a t t e m p t a m ore r i g o r o u s a n a l y s i s o f t h e
e f f e c t i v e n e s s o f im p le m e n tin g t h e v a r i o u s
f u n c t i o n s i n h a rd w a re . A c o m p le te b re ak d o w n o f
t h e o v e r a l l c o s t / t i m e r a t i o s e q u e n c e i s g iv e n
i n T a b le 3 . t an d c a r e t h e t im e s a n d c o s t s o f
t h e f u n c t i o n s . A ssum ing an o v e r h e a d c o s t o f
£ 6 0 0 0 (s e e a b o v e) , T and C a r e t h e o v e r a l l
t im e s a n d c o s t s r e s u l t i n g from im p le m e n t in g i n
h a r d w a r e a l l f u n c t i o n s down t o t h e o n e
i n d i c a t e d : t h e minimum v a lu e o f T i s t a k e n a s
0 .0 3 0 s e c o n d s an d i s b a se d on r e a l i s t i c v a lu e s
f o r t h e im a g in g and 1-D o p e r a t i o n s , a s
d i s c u s s e d e a r l i e r . L o o k in g a t t h e C*T p r o d u c t
s h o u ld now g i v e a n i n d i c a t i o n o f t h e o p t im a l
t r a d e o f f b e tw e e n h a rd w a re a n d s o f t w a r e : t h i s
o c c u r s f o r 13 f u n c t i o n s im p le m e n te d i n
h a r d w a r e .

I t i s i m p o r t a n t t o r e a l i s e t h a t m in im is in g
t h e C*T p r o d u c t o n ly g iv e s a g e n e r a l i n d i c a t i o n
o f t h e r e q u i r e d h a r d w a r e - s o f tw a r e t r a d e o f f .
A l o t d e p e n d s o n t h e o r i g i n a l s p e c i f i c a t i o n f o r
t h e i n s p e c t i o n sy s te m : i t m ig h t b e t h a t t h e
m a in a im i s t o m eet a c e r t a i n c o s t o r sp e e d

r a t h e r t h a n t o p ro d u c e a 'b a r g a i n p a c k a g e ' t h a t
m ig h t d o w e l l i n t h e m a rk e t p l a c e . I n o u r
w o rk , we h av e aim ed p a r t i c u l a r l y a t f o o d p r o d u c t
i n s p e c t i o n , w h ere I t seem ed t o b e v i t a l t o
m in im is e c o s t s w h ile k e e p in g s p e e d s m o d e r a te ly
h ig h (5) . F o r t h i s r e a s o n , we a im ed a t a n
o v e r a l l c o s t o f l e s s th a n £ 1 0 0 0 0 . By im plem ­
e n t i n g f u n c t i o n s 1 ,3 ,6 - 1 1 i n h a r d w a r e , we fo u n d
we c o u ld g e t w i th in a f a c t o r 3 .6 o f t h e o p t im a l
t r a d e o f f (C*T p r o d u c t) . H o w ev er, a n o th e r
i m p o r t a n t f a c t o r a r o s e i n t h i s a n a l y s i s : t h a t
was t h e d e c l i n i n g c o s t o f f a s t e r CPUs. T a b le 4
show s t h e same C*T c a l c u l a t i o n f o r a n L S I - 1 1 / 73
h o s t p r o c e s s o r r e p l a c i n g a n L S I - 1 1 / 2 3 . I n t h i s
c a s e t h e optim um t r a d e o f f a g a i n o c c u r s f o r
13 f u n c t i o n s im p lem en ted i n h a r d w a r e . H ow ever,
o u r co m p ro m ise o f im p le m e n t in g o n ly f u n c t i o n s
1 . 3 .6 - 1 1 i n h a rd w a re i s now w i t h i n a f a c t o r 1 .8
o f t h e o p t im a l t r a d e o f f . I t seem s f a i r t o
a ssu m e t h a t t h e s e f a c t o r s w i l l becom e e v e n m ore
a t t r a c t i v e w i th f u t u r e CPUs.

5 .2 F u r t h e r f a c t o r s i n h a rd w a re d e s i g n

Some f u r t h e r im provem en t i n p e r fo r m a n c e was
o b t a i n e d b y m aking u s e o f t h e f a c t t h a t t h e
h o s t p r o c e s s o r and th e d e d i c a t e d h a rd w a re c a n
o p e r a t e c o n c u r r e n t l y . (I d e a l l y we w ould g a in a
f a c t o r tw o i n sp eed by u s in g tw o p r o c e s s o r s ,
b u t i t i s c l e a r t h a t o u r d e s i g n c r i t e r i a
i n v o lv e m a n d a to ry p a r t i t i o n s i n t h e a lg o r i t h m
w h ich a r e i n im i c a l t o s u c h a l a r g e g a in i n
s p e e d .) I n p a r t i c u l a r , we fo u n d t h a t
f u n c t i o n 2 c a n ru n i n t h e h o s t CPU w h i le
f u n c t i o n 3 r u n s i n h a r d w a r e , and f u n c t i o n 13
c a n r u n o n th e CPU w h i le f u n c t i o n s 6 -1 1 r u n
c o n c u r r e n t l y i n h a rd w a re . F i g u r e 1 g i v e s an
e x e c u t i o n map o f o u r im p le m e n ta t io n , sh o w in g
t h a t o u r f i n a l a l l o c a t i o n o f f u n c t i o n a l i t y t o
h a rd w a re and s o f tw a r e i s a b l e t o make
s i g n i f i c a n t g a in s i n e f f i c i e n c y and s p e e d .
T h is f u r t h e r j u s t i f i e s im p le m e n t in g r e l a t i v e l y
few f u n c t i o n s i n h a rd w a re .

I n o u r im p le m e n ta t io n o f A lg o r i th m B , we
h a v e a c h ie v e d 25 m sec f o r f u n c t i o n 3 (e d g e
d e t e c t i o n) , and 10 m sec f o r f u n c t i o n s 6 - 1 1 : we
a r e c u r r e n t l y u p g ra d in g t h e s e t o r o u g h ly d o u b le
t h e s p e e d s . A t t h a t s t a g e t h e t im in g s w i l l be
a s i n d i c a t e d i n F ig u re 1 , an d a t a t o t a l c o s t
o f £12500 (u s in g an L S I - 1 1 /7 3 w i t h f u n c t i o n s
1 . 3 .6 - 1 1 i n h a rd w a re) we w i l l h a v e a s y s te m
c a p a b le o f i n s p e c t i n g 1 1 -1 2 p r o d u c t s / s e c o n d
u s in g A lg o r i th m B.

5 .3 G e n e r a l i t y o f th e f u n c t i o n s im p le m e n te d i n
h a rd w a re

A lg o r i th m B was p a r t i t i o n e d i n t o s e c t i o n s t h a t
c o r r e s p o n d t o a s i g n i f i c a n t d e g r e e o f
g e n e r a l i t y . F i r s t , ed g e d e t e c t i o n i t s e l f i s a
h i g h l y g e n e r a l im age a n a l y s i s f u n c t i o n (1 1) ;
s e c o n d , t h e Hough t r a n s f o r m p r o c e d u r e u s e d f o r
o b j e c t l o c a t i o n i s g e n e r a l i s a b l e t o a v a r i e t y
o f s h a p e s (4) ; t h i r d , t h e r a d i a l h i s to g r a m
a p p r o a c h h a s t h e p o t e n t i a l f o r b e in g u s e d e v e n
i n c a s e s w h ere c y l i n d r i c a l sy m m etry d o e s n o t
e x i s t , s i n c e i t c an b e u s e d t o p r o v id e a
r o t a t i o n a l l y i n v a r i a n t ' s i g n a t u r e ' c h a r a c t e r ­
i s t i c o f o n e o r o t h e r p a r t o f a n o b j e c t i n t h e
r e g i o n o f a n e a s i l y l o c a t a b l e f e a t u r e .
F i n a l l y , c e r t a i n t h r e s h o l d i n g o p e r a t i o n s
(e . g . c o u n t in g t h e num ber o f p i x e l s d a r k e r o r
l i g h t e r th a n c e r t a i n t h r e s h o l d v a lu e s) a r e
e x c e p t i o n a l l y e a s y t o im p le m e n t y e t g e n e r a l l y

C362/86 © IMechE 1986 19

261

u s e f u l f o r o b j e c t s c r u t i n y .

C l e a r l y , f u n c t i o n g e n e r a l i t y i s a c r u c i a l
f a c t o r w h ic h w i l l f r e q u e n t l y o v e r r i d e t h e C*T
c r i t e r i o n i n d e c i d i n g o n t h e p r i o r i t i e s f o r
b u i l d i n g d e d i c a t e d h a rd w a re . He h a v e k e p t t h i s
i n M ind w h i le d e c id in g w h ic h f u n c t i o n s t o
im p le m e n t i n h a rd w a re i n o u r v i s u a l i n s p e c t i o n
w o rk .

6 CONCLUSION

T h i s p a p e r h a s p r e s e n t e d a n a lg o r i t h m f o r t h e
r a p i d i n s p e c t i o n o f s m a ll p r o d u c t s s u c h a s
b i s c u i t s . I t h a s a n a ly s e d how t h i s a lg o r i t h m
may o p t i m a l l y be p a r t i t i o n e d b e tw e e n d e d ic a t e d
h a r d w a r e an d s o f t w a r e . D e t a i l e d s p e c i f i c a t i o n s
s u c h a s s t r i c t sp e e d o r c o s t l i m i t s h a v e b e en
s e e n t o c o n s t r a i n t h e b a s i c o p t i m i s a t i o n
p r o c e d u r e , an d f u n c t i o n g e n e r a l i t y i s a l s o a
c r i t i c a l f a c t o r . I n a d d i t i o n , i t h a s b e en
f o u n d d i f f i c u l t t o d e c id e s y s t e m a t i c a l l y t h e
b e s t w ays o f i n c o r p o r a t i n g c o n c u r r e n c y i n t o t h e
d e s i g n when p r o c e s s o r s t a k e r a d i c a l l y d i f f e r e n t
f o r m s : h o w e v e r , we h a v e b e e n a b l e t o d e s i g n an
i n s p e c t i o n s y s te m t h a t m akes e f f i c i e n t u s e b o th
o f t h e h o s t CPU and o f a l i m i t e d nu m b er o f
h a r d w a r e p r o c e s s o r s . The a p p r o a c h we h av e
a d o p te d seem s som ew hat u n u s u a l i n t h a t we h a v e
p r o v e d i t b e s t t o r e t a i n u s e o f t h e h o s t CPU
f o r a p r o p o r t i o n o f t h e p r o c e s s i n g r a t h e r th a n
t o s e t a b o u t b u i ld i n g e v e r y t h in g i n d e d ic a t e d
h a r d w a r e : s p e c i f i c a l l y , t h e h o s t CPU i s n o t
m e r e ly u s e d f o r c o n t r o l and g e n e r a l d a t a
l o g g i n g , b u t i s u s e d t o t a k e an i n t e g r a l r o l e
i n t h e m ain im ag e a n a l y s i s t a s k . U l t i m a t e l y ,
t h e a im o f o u r w ork i s t o d e v e lo p t h e
m e th o d o lo g y o f d i g i t a l h a rd w a re d e s i g n f o r
i n d u s t r i a l i n s p e c t i o n a p p l i c a t i o n s , a n d a t t h e
sam e t im e t o a r r i v e a t o p t im a l d e s i g n s r a t h e r
t h a n o n e s t h a t c o n ta i n a r b i t r a r y s e t s o f ad h o c
p r o c e s s o r s .

A ck n o w led g e m en ts

T h e a u t h o r s a r e g r a t e f u l t o t h e SERC an d to
U n i t e d B i s c u i t s and U n i l e v e r f o r f i n a n c i a l
s u p p o r t d u r in g t h e c o u r s e o f t h i s w o rk .

C o n t r o l s , L ondon , 9 -1 1 O c t 1 9 8 4 , 4 3 7 -4 4 6

(6) DAVIES, E . R . R a d ia l h i s to g r a m s a s an a id
i n t h e i n s p e c t i o n o f c i r c u l a r o b j e c t s .
lE E P ro c e e d in g s D. 1 9 8 5 , 1 3 2 , n o . 4 ,
S p e c i a l I s s u e on R o b o t ic s , 1 5 8 -1 6 3

(7) DAVIES, E . R . P r e c i s e m e a su re m e n t o f
r a d i a l d im e n s io n s i n a u to m a t i c v i s u a l
i n s p e c t i o n and q u a l i t y c o n t r o l - a new
a p p r o a c h . i n BILLINGSLEY, J . (e d i t o r)
R o b o ts an d A u to m ated M a n u f a c tu r e . lE E
C o n t r o l E n g in e e r in g S e r i e s 2 8 . P e t e r
P e r e g r i n u s L td : L o n d o n , 1 9 8 5 , 1 5 7 -1 7 1

(8) DAVIES, E . R . Im age p r o c e s s i n g - i t s
m i l i e u , i t s n a tu r e and c o n s t r a i n t s on th e
d e s ig n o f s p e c i a l a r c h i t e c t u r e s f o r i t s
im p le m e n ta t io n . i n DUFF, M. J . B.
(e d i t o r) C om puting S t r u c t u r e s f o r Im age
P r o c e s s i n g . A cadem ic P r e s s : L o n d o n , 1 9 8 3 ,
5 7 -7 6

(9) FOUNTAIN, T . J . C L IP4: a p r o g r e s s r e p o r t ,
i n DUFF, M. J . B . and LEVIALDI, S .
(e d i t o r s) L an g u a g es and A r c h i t e c t u r e s f o r
Im age P r o c e s s i n g . A cadem ic P r e s s , L o ndon ,
1 9 8 1 , 2 8 3 -2 9 1

(1 0) HUNT, D. J . The ICL DAP and i t s
a p p l i c a t i o n t o im age p r o c e s s i n g . i n
DUFF, M. J . B. and LEVIALDI, S . (i b i d)
1 9 8 1 , 2 7 5 -2 8 2

(1 1) DAVIES, E . R. C i r c u l a r i t y - a new
p r i n c i p l e u n d e r ly in g t h e d e s i g n o f
a c c u r a t e ed g e o r i e n t a t i o n o p e r a t o r s .
Im age and V is io n C o m p u tin g . 1 9 8 4 , 2 ,
n o . 3 , 1 3 4 -1 4 2

REFERENCES

(1) DAVIES, E . R . A g la n c e a t im ag e a n a l y s i s
how t h e r o b o t s e e s . C h a r te r e d

M e c h a n ic a l E n g in e e r . Dec 1 9 8 4 , 3 2 -3 5

(2) PARKS, J . R . I n d u s t r i a l s e n s o r y d e v i c e s .
C h. 10 i n BATCHELOR, B . G. (e d i t o r)
P a t t e r n R e c o g n i t io n - I d e a s i n P r a c t i c e .
P le n u m : New Y o rk , 1 9 7 8 , 2 5 3 -2 8 6

(3) H0U(3H, P . V. C . M ethod and m ean s f o r
r e c o g n i s i n g com plex p a t t e r n s . US P a t e n t
3 0 6 9 6 5 4 , 1962

(4) BALLARD, D. H. (S e n e r a l i s in g t h e Hough
t r a n s f o r m t o d e t e c t a r b i t r a r y s h a p e s .
P a t t e r n R e c o g n i t io n . 1 9 8 1 , 1 3 , n o . 2 ,
111-122

(5) DAVIES, E . R . D e s ig n o f c o s t - e f f e c t i v e
s y s te m s f o r t h e i n s p e c t i o n o f c e r t a i n
f o o d p r o d u c t s d u r in g m a n u f a c tu r e . P ro c 4 t h
C o n fe re n c e o n R o b o t V i s i o n a n d S e n s o ry

20 © IMechE 1986 C362/86

262

Table 1 Breakdown of algorithm B

c / t
f u n c t i o n d e s c r i p t i o n t im e c o s t r a t i o

(s e c) (£) (£ /m s)

1 . a c q u i r e im age 1x1 _ 1000 -

2 . c l e a r p a r a m e te r s p a c e 1x1 0 .0 1 7 200 1 1 .8
3 . f i n d e d g e p o i n t s 3x3 4 .2 6 5 3000 0 .7
4 . a c c u m u la te p o i n t s i n p a r a m e t e r s p a c e 1x1 0 .0 8 6 2000 2 3 .3
5 . f i n d a v e r a g e d c e n t r e - 0 .0 2 0 2000 1 0 0 .0
6 . f i n d a r e a o f p r o d u c t 1x1 0 .0 1 1 100 9 .1
7 . f i n d l i g h t a r e a (n o c h o c o l a t e c o v e r) 1x1 0 .0 1 9 200 1 0 .5
8 . f i n d d a r k a r e a (s l a n t o n p r o d u c t) 1x1 0 .0 2 1 200 9 .5
9 . com pute r a d i a l i n t e n s i t y h i s t o g r a m 1x1 0 .0 0 7 400 5 7 .1
1 0 . com p u te r a d i a l h i s to g r a m c o r r e l a t i o n 1-D 0 .0 1 3 400 3 0 .8
1 1 . o v e r h e a d s f o r f u n c t i o n s 6 -1 0 - 0 .4 1 5 1200 2 .9
1 2 . c a l c u l a t e p r o d u c t r a d i u s 1-D 0 .0 4 7 4000 8 5 .1
1 3 . t r a c k p a r a m e te r s an d lo g - 0 .0 3 7 4000 1 0 8 .1
1 4 . d e c id e i f r e j e c t i o n i s w a r r a n t e d 0 .0 0 2 4000 2 0 0 0 .0

t im e f o r w h o le a lg o r i t h m 4 .9 6 0

Table 2 Revised breakdown of algorithm B

c / t
f u n c t i o n d e s c r i p t i o n t im e c o s t r a t i o

(s e c) (£) (£ /m s)

1 . a c q u i r e im age 1x1 - 1000 -

2 . c l e a r p a r a m e te r s p a c e 1x1 0 .0 1 7 200 1 1 .8
3 . f i n d e d g e p o i n t s 3x3 4 .2 6 5 3000 0 .7
4 . a c c u m u la te p o i n t s i n p a r a m e te r s p a c e 1x1 0 .0 8 6 2000 2 3 .3
5 . f i n d a v e ra g e d c e n t r e - 0 .0 2 0 2000 1 0 0 .0
6 - 1 1 . s e t o f f u n c t i o n s w i th sam e o v e r h e a d 1x1 0 .4 8 6 2500 5 .1
1 2 . c a l c u l a t e p r o d u c t r a d i u s 1 -D 0 .0 4 7 4000 8 5 .1
1 3 . t r a c k p a r a m e te r s and lo g - 0 .0 3 7 4000 1 0 8 .1
1 4 . d e c id e i f r e j e c t i o n i s w a r r a n t e d

■

0 .0 0 2 4000 2 0 0 0 .0

tim e f o r w h o le a lg o r i t h m 4 .9 6 0

Table 3 Speed-cost trade-off figures for LSI-11/23 based system

o r d e r f u n c t i o n t c T C C*T

(s e c) (£) (s e c) (£) (£ - s e c)

0 6000 4 .9 9 0 6000 29940
1 3 4 .2 6 5 3000 0 .7 2 5 9000 6530
2 6 -1 1 0 .4 8 6 2500 0 .2 3 9 11500 2750
3 2 0 .0 1 7 200 0 .2 2 2 1 1 7 0 0 2600
4 4 0 .0 8 6 2000 0 .1 3 6 13 7 0 0 1860
5 12 0 .0 4 7 40 0 0 0 .0 8 9 17 700 1580
6 5 0 .0 2 0 2 000 0 .0 6 9 19700 1360
7 13 0 .0 3 7 4 0 0 0 0 .0 3 2 23700 760
8 14 0 .0 0 2 4000 0 .0 3 0 2 7 700 830

C362/86 O IMechE 1986 21

Table 4 S peed-cost trade-off figures for LSI-11/73 based system

263

o r d e r f u n c t i o n t c T C C*T g a in

(s e c) (£) (s e c) (£) (£ - s e c)

0 - - 7000 2 .1 5 4 7000 15080 1 .9 9
1 3 1 .8 3 5 3000 0 .3 1 9 1 0 0 0 0 3190 2 .0 5
2 6 -1 1 0 .2 0 7 2500 0 .1 1 2 1 2 500 1400 1 .9 6
3 2 0 .0 0 6 200 0 .1 0 6 1 2 700 1350 1 .9 3
4 4 0 .0 3 5 2000 0 .0 7 1 14700 1040 1 .7 9
5 12 0 .0 1 7 4000 0 .0 5 4 18700 1010 1 .5 6
6 13 0 .0 1 6 4000 0 .0 3 8 22700 860 1 .5 8
7 5 0 .0 0 7 2000 0 .0 3 1 24700 770 0 .9 8
8 14 0 .0 0 1 4000 0 .0 3 0 28700 860 0 .9 7

T he l a s t co lum n i n t h i s t a b l e show s t h e o v e r a l l g a in i n sp e e d
r e l a t i v e t o t h e c o r r e s p o n d in g L S I -1 1 /2 3 o p t i o n i n T a b le 3 .

12 3 5 7 1 7 16 1 m s e c

Fig 1 Execution map of algorithm B showing its implementation, making use of:

(a) pipelining of image acquisition and algorithm execution;
(b) simultaneous execution in hardware and software;
(c) sharing of scanning overhead and data I/O for functions six to ten.
Also indicated are the execution times of individual processes totalling 88 ms

□ operations involving host CPU
O operations executed in dedicated hardware

22 © IMechE 1986 C362/86

