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A bstract

This work concerns the development and im plem entation of real-tim e 

image processing algorithm s. Such systems may be applied to  industria l inspection 

problem s, which typically require basic operations to be performed on 256 x 256 

pixel images in 20 to 100ms using systems costing less than  about £20000.

Building such system s is difficult because conventional processors execut­

ing at around IM IPS w ith conventional algorithm s are some 2 orders of m agnitude 

too slow. A solution to this is to  use a closely coupled array processor such as 

the DAP, or CLIP4 which is designed especially for image processing. However 

such a space-parallel arch itecture imposes its own structure on the problem , and 

this restricts the class of algorithm s which may be efficiently executed to  those 

exhibiting similar space parallelism , i.e. so-called ‘parallel algorithm s’.

This thesis exam ines an alternative approach which uses a mix of conven­

tional processors and high speed hardw are processors. A special fram e store has 

been built for the acquisition and  display of images stored in memory on a m ulti­

processor backplane. Also described are an interface to a host m ini-com puter, 

a  bus interface to the system  and its use w ith some hardw ired and microcoded 

processors. This system  is com pared to  a single com puter operating w ith a frame 

store optim ised for image processing.

The basic software and hardw are system  described in this thesis has been 

used in a factory environm ent for foodproduct inspection.
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C hapter 1

Introduction

1.1 The problem  of robot vision

R obots are no longer the creatures of fantasy bu t are being installed on 

production lines up and down the country. However, it is clear th a t the currently 

available machines are a far cry from the free-roving creatures beloved of science 

fiction w riters. Typically, a paint spraying robot is merely a mimic device — 

a hum an operator guides the arm  around the lines of the workpiece whilst a 

com puter m onitors the pa th , and subsequently retraces it autom atically. If the 

workpiece is m isaligned or dam aged, then the robot will continue slavishly painting 

th in  air. The missing element in current commercial systems is a satisfactory 

vision system. Program m ing com puters to recognise objects in an image is an 

inherently difficult task, and is made more difficult by the enormous am ounts of 

d a ta  th a t m ust be processed.

A free-roving robot will need to be able to  navigate itself and avoid 

hazards. Consider the operations required in crossing the road. The robot is 

being approached on two sides by massive objects which are possibly accelerating. 

To cross safely, a gap between the cars must be recognised. This entails solving 

sim ultaneous differential equations before the situation  has altered so significantly 

th a t the results are useless (th a t is in real time). This problem  is dwarfed by the 

task of identifying the cars and approxim ating their speed and direction, th a t is 

obtaining the differential equations in the first place.

A simple way to identify the cars might be to store in the ro b o t’s memory 

some pictures of cars and make point to point comparisons between them  and the 

incoming visual data . It is axiomatic th a t a representative sample of cars will 

need to be stored. It is reasonable to expect the robot to in terpolate between 

images, bu t extrapolation  is much riskier and is likely to lead to  erroneous results.
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Figure 1.1: Postcode characters

This glosses over exactly w hat ‘interpolation of im ages’ means. If a simple direct 

com parison approach is used then the stored d a ta  set will need examples not only 

of all the cars on the road, bu t also pictures of them  at different orientations 

and in different lighting conditions. Near infinite am ounts of memory could be 

consumed in this way, and even if such a database could be accum ulated, the 

search tim e would be immense.

To underline this, consider a much simpler problem . Figure 1.1 shows a 

selection of characters generated from photographs of typew ritten  postcode char­

acters on envelopes. Each p a tte rn  comprises 256 dots arranged in a 16 by 16 

m atrix. Even with this restricted problem domain it is not possible to  employ 

a logical AND gate for recognition, because there are 2̂ ®® possible patterns con- 

structable from 256 black-or-white dots. This is about 10^^, and even at a search 

rate  of IM Hz, 10^  ̂ seconds would be required for an exhaustive linear search. 

Cosmologists disagree on the age of the Universe since the Big Bang, bu t most 

estim ates are around 2 x 10̂ ® years [Ber76], or 6 x lO^^s, which is about 53 orders 

of m agnitude less than  our search time. Clearly point to point comparison has 

lim ited application.
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1.2 C lassical p attern  recognition

Any practical p a tte rn  recognition scheme will have to  work with ex­

trem ely com pacted reference data . It may be possible to select representative 

members of each class and use these as tem plates for com parison w ith incoming 

d a ta  according to some m atching criterion which is more relaxed th an  direct point 

to point comparison. However, it will be difficult to  find a com prehensive set of 

tem plates in situations where large variations are expected in the classes, since 

they will not be clustered around a lim ited num ber of class prototypes. This is 

the case in almost all non-trivial applications.

Classical p a tte rn  recognition can be considered a tw o-part problem . Ini­

tially a feature detector ex tracts m easurem ents from the image. These are then 

applied to a discriminator which holds inform ation concerning the various classes 

and their feature d istributions. F igure 1.2 shows an image com prising rip individ­

ual pixel brightness values which is reduced by the feature detector to  n /  scalar 

feature m easurem ents. For a practical scheme, Up )$> n j .  The ny features trigger 

a 1-of-ric boolean class ou tp u t a t the discrim inator.

The tem plate m atching approach described above is a special case in 

which the features are the tem plates and the discrim inator is the m atching cri­

terion. In general the individual feature measurem ents define vectors in an N- 

dimensional feature space, and the discrim inator will be a surface in th a t space. 

Obviously it is desirable for the discrim inator to  be linear (i.e. a hyperplane); 

however, other functions often used are the m inim um  distance, nearest neighbour 

(piecewise linear) and low order polynom ial discrim inators [DH73].

1.3 The pattern  recognition  hierarchy

It is difficult, and perhaps unwise, to  present a taxonom y of pa tte rn  

recognition techniques. Nevertheless, a clear hierarchy can be discerned both 

in term s of required processing power and the levels of abstrac tion  provided by 

various approaches.

In general, a vision system  m ust first analyse the raw d a ta  in to  some 

prim itives and then synthesize a global description of the field of view. Typically 

the following steps would be perform ed:

1. Raw image d a ta  is segm ented into regions which share some characteristic.

2. Each region is investigated to  ex tract some m easurem ent such as colour.
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Figure 1.2: Classical pa tte rn  recognition m achine 

texture, shape etc.

3. Relationships between regions are established in term s of these m easure­

ments.

4. The properties of objects in the field of view are inferred from the relations 

between regions.

Processing levels above these might use stored contextual inform ation to ‘under­

s tan d ’ the image. A text reading machine provides a useful exam ple of the above 

process.

1. Regions can be ex tracted  from a page of text by looking for connected dark 

areas and in m ost cases these would correspond to individual characters, 

although some characters such as i, j, % and punctuation  symbols such as 

the semicolon would require special consideration.

2. Each region would be analysed to count branch points and the lengths of 

limbs. At this point the regions could be com pared w ith known character 

data , and most characters could be identified.

3. Relational properties of the characters based on the spacing of individual 

characters could be used to identify separate word units and deal w ith non­

connected characters.
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A lthough the system  should now be able to  answer queries such as ‘is this word 

in the te x t’, it does no t in any sense understand  the tex t, and cannot in fact 

distinguish between nonsense and meaningful English. One can envisage a system 

w ith a large stored knowledge base tha t could make com ments on the gram m atical 

s tandard  of the tex t. W hether such a machine com prehends the text is a question 

outside the scope of th is thesis.

The descriptions given above place far m ore em phasis on the measure­

m ent of properties of p a rts  of the image than  the process of p a tte rn  recognition 

as described in section 1.2. Useful inform ation about the field of view is produced 

even at the region segm entation level in the tex t reading m achine, and it is rea­

sonable to  assum e th a t useful applications can be constructed w ithout invoking 

the full m achinery of scene analysis.

1.4 N -tu p le  p attern  recognition

In the classical p a tte rn  recognition system , it is possible for either the 

feature extraction or discrim ination parts to be triv ial operations. An example of 

trivial feature ex traction  is the technique of Bledsoe and Browning first reported in 

the 1950’s [BB59], now known as n-tuple recognition, in which random ly selected 

groups of n bits are used as the ‘features’. An n-tuple based recognition system 

for characters of the type shown in Figure 1.1 has been program m ed by the author 

and can achieve a recognition rate of over 90% using 6-tuples and ten  classes.

1.5 Structural pattern  recognition

The case in which the discrim inator is simple is interesting because it 

describes m any real life situations. For exam ple a robot arm  may need the co­

ordinates of the centre of a workpiece. This is a m easurem ent ra ther than  a 

classification problem  since the type of workpiece is already known. Similarly, 

coated foodproducts such as fish fingers should show a uniform  surface and any 

defects in the covering will show up as areas of the  underlying m aterial. Many 

industria l inspection problem s may be form ulated in this way where the presence 

or m agnitude of a feature is all th a t is required to  identify faulty products. In 

such cases the result appears directly from the feature extraction stage.

A more in teresting  situation occurs where the feature detection algorithm  

exhibits considerable ‘intelligence’ of its own. Such algorithm s make sequential 

sets of m easurem ents on an object which take different courses depending on the
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results. The text reading machine above m ight use such an algorithm  to  work its 

way round an object counting branch points and m easuring the lengths of limbs. 

This kind of algorithm  is referred to  as structural since the form of the algorithm  

will reflect the s truc tu re  of the object being scanned. In its purest form, this 

kind of algorithm  contains a com plete description of the object and in a sense 

the algorithm  ‘parses’ the object in much the same way as a compiler parses 

tex t. The formal study  of this kind of p a tte rn  recognition is term ed syntactic 

p a tte rn  recognition, and is concerned w ith the search for picture grammars th a t 

adequately describe scene content.

This thesis is particu larly  concerned with the efficient im plem entation of 

industria l inspection algorithm s of the s truc tu ra l type th a t use image processing 

techniques to  bypass the classical p a tte rn  recognition stage.

1.6 The hum an paradigm  and artificial in telli­

gence

U nfortunately, introspective analysis of our own capabilities does not 

provide much inform ation useful to the robot engineer. M any workers have a t­

tem pted  to synthesize models of brain  behaviour by im plem enting those models 

as com puter program s. Pre-em inent in the vision field has been the work of M arr 

which follows an information transfer approach. Three principal representations 

of the image d a ta  are used:

“(1) the prim al sketch, which is concerned w ith m aking explicit p rop­
erties of the two dim ensional image, . . .  (2) the 2 1/2-D  sketch, which 
is a viewer-centered representation of the depth  and orientation of the 
visible surfaces . . .  ; and (3) the 3-D model representation, whose im ­
p o rtan t features are th a t its coordinate system  is object centered, th a t 
it includes volum etric prim itives (which make explicit the organisation 
of the space occupied by an object and not just its visible surfaces), 
and th a t prim itives of various size are included, arranged in a m odular, 
hierarchical organisation.” [Mar82]

These models require prodigious am ounts of processor tim e using con­

ventional sequential com puters, bu t this is not surprising in view of the highly 

parallel natu re of the brain.

A part from trying to model brain  systems directly, m any workers in the 

artificial intelligence field have used heuristic techniques to  program  problems 

which are com binatorially too large for norm al analysis, such as chess and other
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game playing, question and  answer system s, and expert system s. ‘Artificial in­

telligence’ is an unfortunate nam e for these techniques which perhaps promises 

more than  can be tru ly  delivered — for some years the artificial intelligence com­

m unity seems to have been in a ‘jam  tom orrow , never jam  today’ situation , which 

is possibly the result of overam bitious targets.

Although artificial intelligence provides useful techniques for some p a t­

tern  recognition problem s, technology constraints usually rule out the use of com­

plex heuristic m ethods for real tim e work and it may well be some tim e before 

M arr’s work becomes directly usable in industrial environm ents. Therefore this 

thesis concentrates on the  efficient im plem entation of relatively simple algorithm s. 

Note th a t ‘simple’ and ‘triv ia l’ are not synonymous — m any classical algorithm s 

(such as Hoare’s Q uicksort) are bo th  simple and elegant, but great insight was 

required for their discovery.

1.7 O verview  o f follow ing chapters

This work is concerned w ith the system atic design and im plem entation 

of image processing algorithm s. It falls into three parts: pa rt 1 (C hapters 2-4) 

is concerned with d a ta  representation and algorithm  design for im age processing; 

part 2 (C hapters 5 and 6) looks at development systems for image processing 

bearing in mind the needs of the program m er; and p art 3 (C hapters 7-10) looks at 

parallel and hardw are im plem entation of algorithm s in high speed m ultiprocessor 

systems.

C hapter 2 looks at some fundam ental properties of digital images and 

their representations, concentrating on the use of hierarchical structu res for in ­

dustria l problems.

C hapter 3 discusses algorithm  analysis and design, and the evaluation of 

systems using standardised algorithm s and  image data. T hroughput requirem ents 

for industrial image processing are derived.

C hapter 4 gives some novel algorithm s for the generation of quadtree 

d a ta  structures from im ages, and their application to real tim e image processing.

C hapter 5 concerns the design of fram estore hardw are th a t allows a host 

processor to efficiently access image da ta . Four frame stores designed by the 

au thor are described along w ith u tility  and application software.

C hapter 6 exam ines the m ajor trends in sequential processor design and 

software systems to  support image processing including P IP E , the software system  

used for the applications work described in  chapter 8.
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C hapter 7 reviews parallelism  in hardw are w ith a special em phasis on 

parallel processors designed for image processing applications.

C hapter 8 looks at various parallel program m ing paradigm s and the 

program m ing constructs available in various languages.

C hap ter 9 describes the design and im plem entation of a high speed m ul­

tiprocessor system  called IM P and its use in a realtim e grey scale industrial in ­

spection application.

C hapter 10 describes a full custom  VLSI im plem entation of the Sobel 

filter designed to form the heart of an IM P hardw are processor.

C hap ter 11 summarises the results of the previous chapters and looks 

ahead to  fu tu re  work.
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C hapter 2 

Im age representations for real 

tim e processing

“A picture is w orth a thousand  w ords.”

2.1 Introduction

A pplication of com puters to  real world problems requires th a t the nec­

essary processing be form ulated  as well defined algorithm s, and th a t the  physical 

dimensions and concepts of problem s be m apped to suitable in ternal representa­

tions. Choice of representation  is in tim ately  connected to algorithm  perform ance. 

This is because it is generally not possible to  make all aspects of the d a ta  sim ulta­

neously explicit. Any collection of d a ta  in the com puter has some kind of topology 

in which inform ation is im plicitly carried. As a result, any representation  imposes 

its own order on the image.

The simplest exam ple of this is the basic array representation of an image 

in which spatial inform ation is carried in the topology of the array. This im plicit 

inform ation is expensive to retrieve: it is easy to  find out w hat colour a pixel with 

certain coordinates has, bu t to  find the coordinates of all pixels of a certain  colour 

requires an exhaustive search of the  whole structure . Similarly, the  location of all 

3 x 3  areas in the im age w ith a certain  d istribu tion  of pixel colours will require 

quite complex processing, because the inform ation is even more im plicit. However 

it is possible to  envisage an im age representation th a t directly enum erates all such 

features. This might take the form of a simple list, or some com plex hierarchical 

structure .

The simplest im age representation  is an array, in which a  one-to-one 

relationship exists between points in the  visual field and the stored d a ta  points.
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The discrete natu re of d ig ital representations may cause am biguities and noise in 

subsequent processing. T he array  representation is exam ined in some detail here 

because it often forms the  basis for m ore complex representations.

Early a ttem p ts  to  reduce storage and processing requirem ents in binary 

systems generated represen tations such as chain code [Fre61] and skeletonisation 

[Blu67].

There is a grow ing in terest in ‘hierarchical’ tree s tructu res for image 

processing [TK80]. These m ay be generated by ‘bottom  u p ’ processes which gen­

erate successively reduced resolution versions of an image, or ‘top dow n’ processes 

which successively decom pose an im age in to  sub-images. Top down structures use 

global inform ation available at each level to  subdivide the im age, whereas bo t­

tom  up structures use th e  local properties of pixels to group them  together. A 

s tructu re  of particu lar in terest is the quadtree [Sam84], which can be used to  pro­

vide global inform ation to  inherently  local image processing operations, allowing 

increases in processing speed for certain  classes of algorithm .

2.2 Inform ation in im ages

Several types of inform ation are present in an im age. M ost fundam en­

tally  there is displacem ent in two dim ensions, and simple identification is possible 

using silhouette or ‘b in a ry ’ images. However there is also dep th  (i.e. displace­

m ent in a th ird  dim ension) and colour/brightness inform ation. Typically depth 

inform ation is less precise th an  X /Y  position, and colour inform ation is often 

compressed into a m onochrom e image.

2.3 D ig itisa tion

Digital system s require inform ation to  be presented in digital form, and 

a continuum  m ust be converted into a struc tu re  containing num bers. M ost appli­

cations make use of a  m onochrom atic representation where im age d a ta  is stored 

in a 2-dim ensional array  of values corresponding to sample brightnesses across the 

image. Colour and dep th  inform ation may be incorporated  by storing colour and 

depth  values along w ith  the  brightness data .
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2.4 Spatial quantisation

The Spatial relationships in the im age are represented by splitting the 

visual plane into a num ber of p icture elem ents or ‘pixels’. Through familiarity 

w ith cartesian coordinates it is na tu ra l to  m ake these pixels rectangular in shape, 

bu t this is not necessarily the  best tessellation available. By considering angles 

at a point, it may be shown th a t squares, triangles and hexagons are the only 

regular polygons capable of tiling the plane (the  so called ‘regular tessellation’). 

It can also be shown th a t there  are only 8 ‘sem i-regular’ tessellations which are 

tilings using a mix of regular polygons bu t w ith  all vertices congruent [CR61].

For image represen tation , the characteristics of a good tessellation are:

1. it should have a fine enough net to  avoid losing im portan t detail in the 

quantisation noise and to avoid aliasing,

2. it should be regular and  have as m any axes of ro tational sym m etry as pos^ 

sible,

3. it should be able to  describe prim itive im age properties w ithout introducing 

geom etrical paradoxes.

2.4.1 Spatial reso lu tion

C haracteristic  1 is a property  of the spatia l resolution (i.e. pixel size) 

and is not related to  the  actual tessellation. T he 625 line PAL colour television 

system  used in the  UK specifies a line tim e of 64/is of which 12.05/16 ±  250ns is 

blanking tim e used for flyback [IB71]. This leaves approxim ately 52/is of active 

video tim e. The norm al video bandw idth  is 5.5MHz although m any cam eras are 

capable of higher perform ance, say 6MHz.

According to the  sam pling theorem , in order to capture the full band­

w idth of a signal, sam ples m ust be taken a t twice the  m axim um  frequency in the 

signal [GW87] — i.e. a t 11 MHz for broadcast video. Over the length of a 52/xs 

display line, this corresponds to  572 pixels. This is an interesting result because 

600 of the available 625 lines are used for display, which m eans th a t the spatial 

resolution of broadcast video is much b e tte r in the Y direction (600 pixels in unit 

length) than  the X direction (572 pixels in 4 /3  un it length). This is a result of 

the  bandw idth  lim iting im posed on the signal to  reduce dem and on broadcast 

frequencies. If the sam pling criterion is violated, aliasing can occur.
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2.5 R egularity

R egularity  is im portan t if features are to  be invariant under translation. 

If one p a rt of the  field of view is stored a t higher resolution, then identical objects 

in different p a rts  of the image may m ap to  different am ounts of image memory. 

T here are cases where this is desirable, such as increasing horizontal resolution to  

show vertical edge profiles in more detail. It is also desirable th a t features should 

rem ain invarian t under rotation. Any tessellation will introduce distortions in the 

im age, bu t m ultiple axes of ro tational sym m etry will help reduce inconsistencies 

between representations of identical shapes a t different angles to  the coordinate 

axes.

2.6 G eom etrical paradoxes

2.6.1 T h e  crossing paradox

In m ost cases, accurate representation  is a property  of resolution only, 

bu t there is a  deeper problem with rectangular tessellation. If four points are 

arranged in a block:

1 0 

0 1

then  a n a tu ra l in terp re ta tion  is th a t the two ‘1’ points are parts  of a connected line 

bisecting two background areas shown as ‘O’s. However the black and white areas 

are spatially  congruent, and there is no reason why this should not be in terpreted  

as a discontinuity  between two black areas. Thus connectivity is ill defined. This 

is known as the  crossing paradox and was first no ted  by Rosenfeld [Ros70]. A rule 

often used to  circum vent this problem  is to  require background connected areas 

to  show four-connected adjacency, and allow foreground areas eight connectivity. 

This is equivalent to  enlarging the size of each foreground dot in the analogue 

im age, so th a t it occupies a larger area th an  one pixel as shown in Figure 2.1. 

This obviously removes generality and sym m etry from the representation, and 

shows ano ther problem  with the rectangular tessellation: th a t the four and eight 

connected points are different distances from  the centre of a window, even though 

they all border the centre.

The crossing paradox also affects the  definition of crossing num ber, which 

is a m easure of the order of connectivity at a  point. W ithin a 3 x 3 window, four 

cases can be distinguished as shown in F igure 2.2.
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Figure 2,1: Connectivity of rectangular tessellation
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Figure 2.2: Crossing num ber (rectangular tessellation)

Crossing num ber may be calculated as twice the num ber of lines or wider 

bodies m eeting at a point. Calculation for the hexagonal tessellation is s tra igh t­

forw ard, and some exam ples are shown in Figure 2.3.

The crossing num ber may be calculated by counting the num ber of 

black/w hite transitions in the ring surrounding the central point. Let the pix­

els in the neighbouring ring be nam ed p i , p z . . .  pe giving the pixel num bering 

scheme shown in Figure 2.4.

Here the crossing num ber form ula is Pi XORp.^-i.

In the rectangular case, the situation  is com plicated by the two level 

hierarchy of points th a t exists within a window. The situation where three lines 

meet in the vicinity of a 3 x 3 window can m ap to two different ‘types’ of window
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Figure 2.3: Crossing num ber (hexagonal tessellation)
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Figure 2.4: Hexagonal pixel num bering scheme
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Figure 2.5: Square tessellation crossing num ber

w ith different crossing num bers (Figure 2.5).

Using the connectivity  criterion noted above, the two upper points in 

the mid case are connected, and therefore generate only one transition  in the 

neighbouring ring of pixels. T he form ula for the rectangular case m ust be modified 

to
4

E m - i  X 0R p2i+ i +  2( N 0T p2i_ i AND AND N O T pj.+ i)
t=l

The first te rm  generates the crossing num ber defined over the four- 

connected poin ts, and  the  second adds in any isolated corner points [DP81].

2.6 .2  G eo m etr ica l paradoxes in hierarchical representa­

tion s

The rectangu lar tessellation can tessellate itself in a regular fashion, th a t 

is a square may be sim ply tiled w ith squares. An equilateral triangle can be tiled 

with equilateral triangles, b u t the centre triangle will be upside down w ith respect 

to  the im m ediately enclosing triangle. A hexagon cannot be tiled w ith complète 

hexagons. These properties become im portan t when considering the hierarchical 

representations which will be discussed below. Problem s arise w ith the hexagonal 

tessellation and  also to  some extent the triangular tessellation when deciding 

which level of a hierarchy a  particu la r pixel belongs to.
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2.7 C hoice o f  tessella tion

The sem i-regular tessellations violate the need for translational invari­

ance and it is clear th a t of th e  regular tessellations the hexagonal representation 

is sim plest for connectivity analysis in a non-hierarchical representation. How­

ever, nearly all im age processing work is done using square or rectangular pixels. 

Since the aspect ra tio  of a s tandard  video picture is 4:3 [IB71] and since it eases 

indexing if a square array  is used in memory, m any systems use pixels w ith a 4:3 

aspect ra tio  so as to  m ake m axim um  use of the available field of view. Therefore 

an algorithm  looking for circles in the image m ust look for ellipses in the memory 

array by applying a 4 /3  correction factor to all Euclidean distances in the Y axis. 

This is an unfortunate  s ta te  of affairs.

2.8 D istan ce inform ation

Range finder devices may be used to  detect distance inform ation. It is 

not necessary or desirable to  extend the array representation to  a th ird  dimension 

(which would require enorm ous am ounts of storage) because occlusion of objects 

gives rise to only one distance da tum  for each point in the visual plane. Hence 

only one entry is required per pixel. Therefore distance inform ation is stored as a 

pixel a ttr ib u te  like colour or brightness, ra ther than  as an extension to  the spatial 

digitisation scheme. If full scene representation is required (i.e. occlusion may 

not be used to  reduce storage requirem ents) a higher level description is normally 

used.

2.9 Grey scale d ig itisation

Many early im age processing systems operated  on binary images only. In 

this case the incoming analogue signal is converted into a series of black-or-white 

pixels by a single com parator. The threshold is varied by changing the reference 

voltage to the com parator.

Most applications require the use of a grey scale w ith at least 16 levels. It 

is often convenient to  work on 1 byte pixels, giving 256 possible grey levels. This 

corresponds to a dynam ic range of 48.2dB, which is in fact beyond the capabilities 

of all but the most expensive video cam eras.

Colour inform ation is usually encoded separately for the red, green and 

blue com ponents which requires a  tripling of the basic system. Since three times
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as m uch inform ation is being stored, processing tim es will be three times longer, 

all else being equal. In fact ex tra  inform ation is different in kind (the three 

planes of colour inform ation are not the  sam e as a 24-bit grey scale), and this 

will inevitably make algorithm s more complex: thus processing times may be 

even more extended. An alternative possibility is to  store colour and lum inance 

inform ation separately. A com pact code m ight be to  display one of eight colours 

using th ree bits, and have a five-bit brightness code.

2.10 Sim ple structures for binary processing

T here is a great deal of redundant inform ation present in an image, and 

in principle it should be possible to store only those parts  of the picture th a t 

are stric tly  relevant to the task in hand. As well as reducing storage space, this 

will also allow more rap id  searching and m anipulation of the image as long as 

the  required features have been efficiently coded. If the s tructu re is not directly 

suitable then  the conversion to a more appropria te  form  may impose unacceptable 

overheads.

Inspection problem s usually require objects to  be found and then anal­

ysed. Only in scene analysis or other ra th e r complex situations is the background 

detail im portan t. Several redundancy reducing techniques exploit this to  remove 

background d a ta  and areas of uniform  in tensity  in the foreground. Two funda­

m ental approaches may be followed: direct representation of edges from which 

area inform ation may be inferred {e.g. chain code, edge descriptors for shape ap­

proxim ation), or direct representation of areas from  which edge inform ation may 

be constructed {e.g. in tensity  threshold regions, tex ture  segm entation).

2.11 D ata  structures

Any assembly of d a ta  forms a d a ta  s truc tu re  consisting of nodes which 

store the d a ta  item s, and pointers to  o ther d a ta  item s. The pointers may be 

im plicit in  the structu re , especially if the topology of the d a ta  structu re  is invariant 

throughout its life, in which case a fixed m apping function is usually used to 

recover d a ta  ra ther than  following a chain of links. The simplest exam ple is a two 

dim ensional array in which the m apping is

[column X column_dimension + row]
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1 1 

0 0 

0 0

Figure 2.6: G raph representations

If a fixed allocation of nodes is used then the data  struc tu re  is static , bu t 

if varying am ounts of storage are required during execution, then the structu re is 

dynamic.

The array  representation can be considered as a s ta tic  d a ta  structure , 

the form and storage requirem ents of which are fixed, in which only the da ta  held 

in the nodes varies. As a result, no pointer inform ation need be held within the 

s tructu re , and a simple m apping is used to recover each pixel. On the o ther hand, 

the chain code has a  dynam ic topology and invariant ‘d a ta ’ — since the object is 

fully described by the pointers, no da ta  field is required.

The m ost general d a ta  structure is the graph in which no restrictions are 

placed on the layout of the links. A graph is consists of a finite, nonem pty set of 

vertices and a set of edges. If the edges are ordered pairs then the graph is said 

to  be directed. If the edges are unordered pairs (t.e. sets) then  the graph is said 

to  be undirected. A graph may be represented in  the form of a series of linked 

lists or an adjacency m atrix: an n  x n  b it table indicating which of the n  possible 

directed edges exist. These representations are shown in Figure 2.6.

A nondirected graph can be represented as n (n  — l ) / 2  bits since the 

adjacency m atrix  is sym m etrical about the leading diagonal.

Since a graph is a general structure, it follows th a t any structu re  can fee 

represented in linked or tab u la r form. If there are n  nodes in the graph and e links, 

or edges, then the  linked representation requires storage proportional to  n  +  e, and 

the adjacency table storage proportional to n^. All else being equal, the num ber 

of edges in the s tructu re  dictates which representation will be the m ost efficient. 

However, execution tim e of algorithm s is also dependant on representation.

In m any structu res, a hierarchy of nodes exists, and this gives rise to 

directed edges th a t point from  one node to another. If there is a p a th  along
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Figure 2.7: Tree structu re

directed edges th a t links any two nodes in bo th  directions the graph is said to be 

cyclic. An in teresting subclass of directed d a ta  structures are the trees.

2.11.1 Trees

A tree is an acyclic directed graph w ith exactly one node (called the root) 

which has no edges entering it, and an a rb itra ry  num ber of other nodes which have 

exactly one edge entering them  [AHU75]. The root has daughter nodes which are 

themselves m other nodes to  the nodes beneath  them . At the top of the tree exist 

nodes which have no siblings: these are called leaves (Figure 2.7).

Trees have been used in image processing for the hierarchical segmen­

ta tion  of images. It is possible to have a tree which is built up using m aximal 

blocks (blobs) in the image, with the largest uniform  block as the root and the 

sm aller blocks forming sibling nodes. However, such a general structu re  would 

only produce a more complicated representation of the image than  the array. A 

more specialised tree structure th a t imposes some order on the image may speed 

up some processes, given an algorithm  tailored to th a t representation.

2.12 B o tto m  up and top down representations

M any different hierarchical representations have been used for vision 

processing [TanSO]. They can be classified into two types: bo ttom  up in which 

regions in the image are identified, grown and linked into larger regions th a t 

are again linked; and top down in which the im age is decomposed by successive 

passes into m ore and more detailed representations. These correspond to  local
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root

Figure 2.8: Quadtree generation
I

processing building up  a global understanding of the  image, and global processing 

th a t ‘homes in ’ on specific local features of in terest.

Note th a t although a particular representation may be most easily de­

scribed in term s of its top down or bottom  up em phasis, it m ay be possible to 

construct a top down representation using a bo ttom  up algorithm . This will be 

illustrated  in C hap ter 4 using quadtrees.

2.13 Q uadtrees

Chain code removes redundancy from the image by simply discarding all 

bu t edge inform ation. An alternative approach is to  encode an im age on several 

hierarchical levels containing varying levels of redundancy. A simple represen­

ta tion  called the  quadtree has received considerable in terest. T he quadtree is 

unfortunately  nam ed since ‘quadtree’ is really the generic nam e for all tree struc­

tures of order 4 ( th a t is all m other nodes have 4 daughters), and these occur in 

m any areas ap a rt from  image decomposition.

The quad tree o f a 2 " x  2” binary image may be constructed  as follows.

1. If the entire im age is black then the root is a black leaf, and therefore this 

is the only node in the tree.

2. If not, then  create a m other node at the root, ascend one level in the tree 

and subdivide th e  image into quadrants. For each q uad ran t, create a leaf if 

it is uniform , otherw ise create a m other node.

3. Subdivision of quadran ts continues recursively until the entire image is 

stored in the structu re .

This process is shown in Figure 2.8.
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Note th a t a t m ost only n -f  1 levels can exist in the tree. The bo ttom  level 

of the tree (level 0) contains leaves th a t correspond to  individual pixels. Level n 

of the tree m aps to n X n  pixel areas.

It would be possible to  allocate adequate storage for a sta tic  representa­

tion of the tree. For each level n of the tree, there will be 2^” nodes. Hence the 

to ta l num ber of nodes iVp in a p level tree is:

iVp =  2̂* +  2  ̂+  2^ -f- • ..  -f 2^-^ +  2P =  4(2" -  l ) /3

hence for an  image w ith P  =  2^ pixels, the m axim al quadtree will require 

4 P /3  — 1/3  nodes.

For a 128 x 128 pixel image, the largest possible tree would have 16384 

leaves and 21845 nodes would be required. In this sta tic  representation, a stra igh t­

forward m apping function could be used to access the nodes. Each node would 

need one of three values: black leaf, white leaf and parent, which may be encoded 

into 2 bits. Thus about 5.3K bytes of storage would be required, some of which 

would not be used in any o ther th an  the worst case.

A nother form  of direct m apping th a t is useful in controlling some image 

processing operations is to use m ultiple image planes to  store (a) the original 

im age, (b) the dep th  of each pixel in the tree, and (c) the grey-value of each 

pixel. A lthough requiring considerable memory space, this arrangem ent makes 

available to a conventional raster scanning operation all relevant inform ation from 

the quadtree at each pixel w ithout searching the tree.

The alternative is to use a full dynam ic pointer storage scheme. On a 

PDP-11 or o ther 16-bit com puter, this m ight be im plem ented w ith one word to 

each node. The bo ttom  bit distinguishes between parent and leaf nodes. For a 

parent node, the  o ther 15 bits form the word address of the first of four consecu­

tively stored daughters. In a leaf node, the top 15 bits would contain grey scale 

inform ation. A lthough the binary quadtree would only require 1 b it, generalisa­

tion to grey scale and other ‘sim plicity’ measures may make use of the ex tra  bits. 

In the worst case, this scheme requires more storage (21845 X 2 bytes) than  the 

static  representation, bu t for m any images w ith large uniform  areas, and therefore 

fewer nodes, less storage will be required.

2.13.1 E xten sion  to  grey scale

The quadtree may be generalised by applying a  ‘sim plicity’ criterion 

o ther than  simple uniform ity. In particu lar, the stric t uniform ity m easure is not 

suitable for use in the  grey scale case because noise and tex tu re  in  the  image will
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Figure 2.9: Q-image a t threshold 16

allow very few tru ly  uniform  areas, th a t is regions of identical brightness. This 

will give rise to  very m any nodes, and result in large quadtrees. If the simplicity 

m easure allows a range of pixel brightnesses to  be present w ithin a leaf region, 

then  the quadtree will become sm aller, bu t fine detail will be lost.

T he quadtree of a binary image contains all the inform ation required to 

reconstruct the original im age, th a t is the im age generated by deconstruction of 

the quadtree (the Q-image) is the same as the  source image (the S-image). The 

grey scale quadtree does not contain all the inform ation because of the smearing 

out of pixel intensities, and the resulting Q-image will tend  to have a blocky 

appearance. Q-images w ith leaves spanning various brightness ranges are shown 

in Figures 2.9 -  2.12.

2.13.2 P ro p erties and ap p lications o f  quadtrees

H unter and Steiglitz [HS79a] describe various lim its on the complexity 

of the quadtree for polygonal figures and algorithm s for the  location of a point 

w ithin a polygon and the filling of polygons in tim e linear w ith the num ber of 

nodes in the tree. These algorithm s arise from  cartographic work. A series of 

papers by workers at the University of M aryland describe algorithm s for sm ooth­

ing [RS81]; threshold selection [WHR82]; connected com ponent labelling [Sam81]; 

skeletonisation [Sam83]; and edge enhancem ent [Ran81].
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Figure 2.10: Q-image at threshold 32

Figure 2.11: Q-image at threshold 64
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Figure 2.12: Q-image at threshold 128

2.13.3  Shift invariance

The quadtree is not a shift invariant s tructu re . As a general rule, if a 

given representation  is d a ta  driven (like the chain code) then  its overall form will 

be independent of position. Only the coordinates of the leading link will need to 

be updated  as an object makes its way across the field of view. On the other hand 

if a representation  is coordinate driven, then  positional inform ation is im bedded 

im plicitly or explicitly in the structu re  itself, and movement of objects will cause 

alteration  of th a t s tructu re . Of course even the basic array  s truc tu re  suffers 

from  this in th a t an  array  of pixels effectively describes how well an analogue 

im age m atches the  tessellation, and shifting of features will create quantisation 

noise as those features come in and out of alignm ent w ith the tessellation [LT82]. 

This problem  is especially acute w ith the  quadtree because the  tessellation is of 

variable resolution, and in some cases the ‘pixels’ (leaves) are very large. This 

indicates th a t m ajor corruption of the spatial relationships in the image may be 

caused. This m eans th a t any subsequent region oriented processing will be dis­

rup ted . Figures 2.13 -  2.20 show a rectangle at four positions w ithin the image 

plane and the corresponding Q-images. The Q-image does preserve edges because 

busy regions of the  image generate m inim um  size leaves, i.e. the original array 

representation is preserved. Thus the quadtree can be regarded as an edge ori­

ented representation , even though at first sight it appears to  be area oriented. The 

area inform ation encoded in the tree is only an im perfect m easure of the busy-ness 

of th a t p a rt of the  image w ithin the lim its set by the degree of m atching to  the 

quadtree leaves. This inform ation may be useful in  controlling certain  algorithm s
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Figure 2.13: Rectangle 1

dynam ically.

2.14 M etrics

Any represen tation  imposes its own structu re  on the data . A ‘grain’ of 

some sort will be superim posed on a continuum , and therefore distance measures 

may be distorted . T his is the case even for the array representation: the displayed 

im age is noticeably p ixellated, and the set of equidistant points around a point 

only approxim ates a circle. Both of these effects may be minimised by increas­

ing the resolution of th e  representation because the underlying geom etry of the 

representation  is closely analagous to  physical reality. A part from the granular 

n a tu re  of the array  representation , Euclidean distance measures applied to  array 

coordinates will m ap to  Euclidean m easures of the coordinates in  the original 

image. However, linked d a ta  structures do not necessarily provide the original 

geom etrical relationships in  an easily retrievable way, and o ther m etrics may be 

appropriate.

A m etric is a  function, d(æ,i/), th a t m aps ordered pairs of coordinates 

into positive distances. For all points P, Q and R the following m ust be satisfied:

1. d(xp,yQ) >  0

2. d{xp^yq)  =  0 iff æ =  y

3. d( xp , yQ)  =  d ( y p , x q )

4. d{xp,ZR) < d { x p , z q )  -f d{yqjZR) { The triangle inequality }
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Figure 2.14: Rectangle 2

Figure 2.15: Rectangle 3
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Figure 2.16: Rectangle 4

Figure 2.17: Q-image of rectangle 1
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Figure 2.18: Q-image of rectangle 2

Figure 2.19: Q-image of rectangle 3
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Figure 2.20: Q-image of rectangle 4

The m ost common m etric is Euclidean distance which corresponds to the  everyday 

m easure of distance d£;(P ,Q) =  yj{xp — x q Y  -f {yp — y ç Y

This can be used w ithin a digitised im age, bu t all the x and y coordinates 

m ust be integers, and so a general circle cannot be drawn. An approxim ation can 

be m ade by rounding the solutions of the circle equation to integers.

Two o ther m etrics which are used in im age processing are the City Block 

distance d cg (P , Q) =\ xp  — xq  | +  | i/p — t/q | and the Chessboard distance 

dc{P ,Q )  =  m ax(| xp - x q  \ , \ y p -  yq |)

The chessboard m etric has the property  th a t the set of points d istan t Q 

from a given point P  yields a square centred at P  w ith side length 2Q.  Samet 

[Sam79] has proposed the use of the chessboard distance for quadtree based work 

and presents an algorithm  for calculating it efficiently.

W ith in  a s tructu red  representation of an image, two types of metrics 

may be distinguished: those th a t relate directly to distances in the original image, 

and those th a t describe the separation of nodes in  the structure. For instance. 

Figure 2.21 shows a quadtree where two leaves th a t are adjacent in the Q-image 

are separated  by 6 levels in the tree representation. This is another kind of ‘g rain ’ 

im posed on the data , and may cause gross inefficiencies in the retrieval of pixels 

if inappropriate  structures are applied to  a problem . Samet [Sam82] describes 

neighbour finding techniques for images represented by quadtrees, th a t is the 

conversion of intra-im age distances to  in tra -struc tu re  distances.
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Adjacent pixels A and B belong to widely spaced leaves A and B

Figure 2.21: D istances w ithin a quadtree

2.15 Conclusions

Digitisation of the visual field has been described with particu lar em pha­

sis on spatial quantisation. It has been shown th a t the hexagonal tessellation has 

desirable properties, bu t noted th a t for hierarchical representations the rectan ­

gular tessellation is probably preferable. Of the hierarchical representations, the 

quadtree have been described along w ith some of the broader, and in some ways 

problem atic, im plications of its use in  im age analysis. Algorithms for quadtree 

generation and their uses in real tim e im age processing will be described in C hap­

ter 4.



42

C hapter 3 

A lgorithm  analysis and design

“ ‘Begin at the beginning’, the King said gravely, ‘and go till you come 
to the end; then  s to p ’ ”

Lewis Carroll, ‘Alice’s adventures in W onderland’ (1865)

3.1 In troduction

A procedure in the  widest sense (not as a syntactic construct in pro­

gram m ing languages) is

“a finite sequence of well defined steps or operations, each of which 
requires only a finite am ount of memory or working storage and  takes 
a finite am ount of tim e to  com plete” [GH77].

The definition of a true  algorithm  is essentially the same, bu t m ore precise in th a t 

“...an algorithm  m ust term inate  in finite tim e for any in p u t” .

Algorithms may be classified by function, i.e. w hat they do; by strategy, i.e. 

how they do it; or by goodness, th a t is how well they do it. T he goodness 

measure varies according to  application, but accuracy, execution tim e and memory 

requirem ents for different inpu ts  will be the m ain criteria.

A topic of universal interest in com puting is the ‘benchm arking’ or com­

parative testing of system s. Typically this is a ttem pted  by the  adoption  of bench­

m ark algorithm s which are run  on the com peting systems to give m easures of 

execution times. For these figures to be useful suitable algorithm s m ust exercise 

all parts of the system  in a way which is consistent w ith actual usage.

In this chapter, benchm arking of image processing system s is considered 

after a discussion of algorithm  analysis and design.
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3.2 A lgorithm  analysis

In image processing it is often difficult to  say w hether an algorithm  is 

‘correct’ —  two different edge detection operators will usually give different ou tpu t 

im ages, and the assessm ent of which b e tte r defines the edge may be prim arily 

subjective. The rigour of im age processing algorithm  analysis would be im proved 

if universal measures of accuracy for fundam ental operations could be agreed. 

Davies [DP81,Dav84] has presented useful results in th inning and edge detection.

Assuming th a t the  algorithm  under study does actually present correct 

answers to  the problem , th e  m ost im portan t aspects of its behaviour are the 

am ount of storage space required  and the execution time. These may be charac­

terised for varying inputs as the  space com plexity and the tim e com plexity of the 

algorithm .

The first step in determ ining the space or tim e complexity of an algo­

rith m  is to  define an integer num ber called the size of the problem . In a tree 

type problem  the size m ight be the  num ber of leaves or edges in the inpu t data; 

w ith an adaptive filtering problem  the size m ight be the num ber of samples falling 

w ithin the range of values which trigger the filter. The asym ptotic complexity of 

an algorithm  is the lim iting behaviour as the size of the inpu t increases, and this 

u ltim ately  lim its the size of the  problem  solvable on a given system.

Both the worst case and  the average complexity of an algorithm  are of 

in terest. It may be th a t a particu la r algorithm  performs well for m ost inputs, but 

alm ost grinds to a halt w ith others. It would be useful to identify dangerous inputs 

and  filter them  out. In general the worst case complexity is easier to  calculate.

An upper bound on the num ber of basic instructions, perform ed by the 

algorithm  for a given size of problem  n , is defined as the work function, f {n ) .  If 

f { n )  grows at or below the speed of a simple (finite length) polynom ial in  n  then 

the algorithm  is said to  be polynom ial. If not then the algorithm  is exponential. 

In m any cases this simple division is all th a t is required since most systems seem 

to be capable of executing polynom ial algorithm s in a reasonable tim e, whereas 

an exponential algorithm  can be guaranteed to stall for all bu t the smallest of 

problem s. A simple exam ple of this has already been seen in Section 1.1 where 

the  point to point com parison of all 16 x 16 binary pa tte rn s against a single 

test p a tte rn  was shown to require around 10^^ seconds on a fast processor. This 

problem  is exponential in the  size of the im age, since the num ber of images is 2” 

w here n  is the num ber of points in the pa tte rn .

A notation from lim it theory is often used in algorithm  analysis. A
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Figure 3.1; Behaviour of functions 

function f { n )  is said to  be order g(n)  for large n  if

lim - y- \  =  constant 0)
n - c »  ^ ( n )

This is w ritten  f ( n )  =  0 [^(n)]

If for some function h(n)  and large n

n-cx) fi{n)

then / ( n )  =  o[/i(n)]

These term s are spoken “big o” and “little  o” . If / ( n )  is 0[g{n)] then 

the two functions increase at similar rates as n  —» oo. If f ( n )  is ^[^'(n)] then g(n)  

grows much more rapidly th an  / (n ) .

T he ‘upper bound’ definition of the work function given will generate 

the worst case behaviour. If some kind of average num ber of operations is used 

instead , then  the complexity of the average run  will be formed.

Figure 3.1 shows the behaviour of several kinds of function for increasing 

n. It will be seen th a t for small n, the constant of proportionality  in the complexity 

relation is im portan t; for instance an algorithm  which is 0[n^] is preferable to  one 

which is 0[n] if the constant of proportionality  is 100 for n  <  100. In fact even 

an algorithm  0 [2 ” ] is be tte r for n  <  10.

Indiscrim inant use of order relations in algorithm  analysis can be mis­

leading when selecting algorithm s for actual applications because the constants of 

proportionality  may dom inate.
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3.3 T hroughput requirem ents for industrial sys­

tem s

The com putational th roughpu t required for a given application will de­

pend on three things:

1. the am ount of processing required for each pixel,

2. the resolution of the inp u t im age, th a t is the num ber of pixels to be processed 

in each frame,

3. the num ber of frames to  be processed in  each second.

In some applications the am ount of tim e available for processing each fram e is 

lim ited only by the patience of the program m er. Images returned from outer space 

can be subject to  very long processing tim es. However the processing of w eather 

satellite images to  provide cloud cover and w ind speed observations m ust proceed 

fairly rapidly because the d a ta  will be useless for forecasting w ithin a day or so. 

A lthough the w eather forecasting m ust proceed in real time, it is a different order 

of tim e to  industrial real tim e, where control inform ation is typically required from 

second to second. A particu larly  taxing situa tion  occurs when 100% inspection 

of a line is required.

In this case the production line m ust be completely m apped into images. 

Figure 3.2 shows the simple case of a single cam era covering the entire w idth of 

the belt w ith a strip  s m etres deep. Typically a  50% image overlay will be required 

to  resolve registration problem s and avoid sp litting  of objects between successive 

frames. The belt is moving a t speed v, and  1.5 v / s  images will be required in 

unit tim e. Belt speeds of above lm s “  ̂ are unusual due to slippage of products 

on the conveyor when traversing bends a t such speeds, and a figure of 0.5ms“  ̂

is far more typical [Gre84]. For the study  described in C hapter 9, each image 

subtended 0.12m on the belt which was moving at ju s t over 0.4ms~^. In this case 

around 3.3 images a second would need to be processed for 100% coverage.

The am ount of processing per fram e is of course totally  d ictated  by the 

algorithm  in use. Even the sim plest operation such as a global threshold  for a 128 

X 128 image will require 16384 pixel-read, com pare, pixel-write operations and a 

corresponding num ber of coordinate counter updates.
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Figure 3.2: Conveyer belt coverage

3.4 A lgorithm  design

Formalising algorithm  design is extremely difficult because of the in tu ­

itive and creative powers used in the design process.

Analysis of successful techniques can at best provide pointers to useful 

strategies. However, the ad hoc construction of algorithm s using in tu ition  or badly 

justified heuristics should be avoided.

The definition of an algorithm  given earlier is ra th e r wide ranging. On 

m ost com puters addition is part of the machine code instruction  set and an ‘algo­

rith m ’ to perform  addition would be ra ther trivial — ‘ADD a TO b ’ . This is really 

no more than  a restatem ent of the problem and hardly  qualifies for rigorous anal­

ysis. On the o ther hand , division is a fundam ental instruction  on some machines 

and not others. In the absence of the relevant hardw are, division can be quite 

com plicated to  im plem ent, especially in floating point.

This raises the question of w hat exactly the fundam ental ‘u n it’ of an 

algorithm  is and how to  m easure the operation ra te  of real systems. One has 

a strong in tuitive feeling th a t any norm al com puter can be program m ed to ‘do 

any th ing’, bu t th a t some machines require more detailed instructions than  others. 

In fact C odel’s Incom pleteness Theorem  [Cod62] show th a t there are problems 

th a t cannot be proved or com puted in any given formal system  including th a t of 

a digital com puter. However this still leaves the problem  of w hat constitutes an 

elem ental com putation w ithin the class of com putations th a t are possible. This 

study is the province of au tom ata  theory, and an effort to derive space and tim e 

complexity for an algorithm  from first principles m ight involve program m ing th a t 

algorithm  on a Turing m achine [Tur36] or other low level au tom aton . Some higher 

level models of com putation than  the pure Turing m achine can be ju s t as general
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[AHU75] bu t for practical purposes a real m achine m ust be considered. The 

constants of p r o p o r t i o n a l i t y  in an order relation are almost com pletely governed by 

the actual im plem entation  and  in some cases even the  form of the function itself. 

A part from these, it is undoubtedly true  th a t an analysis from  first principles 

would be lengthy and  error prone.

A secure approach would be to characterise each instruc tion  of the real 

m achine in term s of a Turing machine, and trea t the  actual m achine instructions 

as m acro calls to  a  lib rary  of Turing routines. In this case the  Turing machine 

is em ulating the  real m achine, and a different set of macros will be required for 

any o ther m achine. Thus it is clear th a t when analysing from  first principles, 

only the general form  of the relation may be discovered, and exact details of 

the com plexity of an algorithm  will always be im plem entation dependant. Here 

accuracy m ilitates against generality.

An alternative and popular approach is to  take a real or a paper archi­

tecture and use th a t as the  s tandard  machine. Reduced instruc tion  set machines 

(which are discussed in C hap ter 6) are especially useful for this because a richly 

featured arch itecture provides more opportunities for unexpected side effects and 

can lead to the use of ‘short cu ts’ which fail in unexpected ways. K nuth  [Knu79] 

designed a paper com puter called MIX and used it to  describe an encyclopediac 

collection of algorithm s. A more m odern approach would to  be to  use one of the so 

called algorithm ic languages such as Algol-68 or Pascal. However these languages 

all in troduce sem antic am biguities to one degree or another because of failings in 

their specification or im plem entation. Such details may well tie a  program  to a 

given m achine because of the lack of consistency across different compilers. Some 

workers [AHU75] have used a subset of Algol-60 for control structu res and simple 

statem ents and described more complex actions in English. W hilst this can be 

very useful for teaching, and for m apping out algorithm s at the design stage, it is 

hardly a rigorous m eans of com m unicating algorithm s.

The work presented here is alm ost all im plem ented on P D P - l ls  in several 

high and low level languages, and as a result this provides the  im plem entation 

model. A lthough th is is unsatisfactory for the reasons already described, it has 

the advantage of providing a  real system  which may act as a sem antic arbiter in 

all cases, th a t is in  cases of am biguity the actual operation of the  system  described 

will resolve th a t am biguity. The PDP-11 is especially useful in th is role because 

it a very widely available machine.
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3.4.1 O perations and algorithm s

M any operations in image processing involve the straightforw ard calcu­

lation of functions of pixels, and involve little  or no transfer of control. Similarly, 

m any image processing program s are m ade up of sequential com binations of these 

operations. For instance, an  object location routine might perform  a m edian filter 

to remove noise from the  im age, detect edges using a Sobel filter and then  thresh­

old to  leave an edge description of each object. Simple propagation functions can 

then label each object in  tu rn . A lthough this program  clearly constitu tes an algo­

rithm , its simple control flow constitutes a trivial design strategy which m ight be 

labelled direct computation  of the result. The situation here is analagous to  th a t 

noted in Section 3.4 w here operations such as addition and m ultiplication form 

the elem ental units of algorithm  design on conventional com puters. Processes 

which require only triv ia l branching (such as term ination of loops) can be called 

operations, as opposed to  complex algorithm s. Thus by definition an operation 

uses a degenerate ‘s tra teg y ’ th a t proceeds to  the result by direct com putation.

It should be no ted  th a t this distinction is relative and context dependant. 

For instance, although the  straightforw ard im plem entation of the Sobel filter is 

undoubtedly an operation , removal of redundant calculations and retention of 

window points for la te r processing can significantly improve perform ance, and 

generate a routine th a t is too complex to  be considered as a simple operation 

[Lee83,Pic84].

A window operation  is defined as an operation acting over a lim ited 

num ber of pixels th a t is repeatedly applied across the image in a regular fash­

ion. W indow operations are especially im portan t because of the availability of 

parallel processors th a t can apply a window operation at all points in an image 

simultaneously.

3.5 P roblem  solving strategies

3.5.1 H ill clim bing stra teg ies

A knowledge of the  form of the solution space of an algorithm  allows 

successive passes of an algorithm  to ‘home in ’ on a required solution. In classical 

p a tte rn  recognition, tra in ing  on a set of n  features will result in clusters of training 

points in an n  dim ensional space. If the features have been chosen well, each 

cluster will correspond to  one of the train ing  classes. Discrim inators for the classes 

may be derived by finding the peaks and saddle points of cluster densities, and hill
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climbing techniques are readily  suited to  this. True hill climbing can a t best only 

detect local m axim a, and so an unsuitable choice of s tarting  point may result in 

spurious results. Once a local m axim um  has been discovered, fu rther exploration 

around th a t m axim um  m ay be used to discover contours and o ther local m axim a. 

These iterative processes can be very tim e consuming, but th is is not a problem  

if they yield d iscrim inators th a t may be rapidly calculated when the system  is 

operating in testing mode.

3.5.2 B acktracking and recursion

The quadtree generation algorithm  described in Section 4.5 reserves de­

cisions about w hether a node should be a leaf or a parent un til it has exam ined 

at least one point in the succeeding node. If a leaf is required, it steps back to 

th a t node, creates the leaf and  then  picks up again where it left off. This strategy 

is called backtracking, and often appears in so-called ‘bo ttom  u p ’ algorithm s. In 

a top down algorithm , the entire problem  domain is scanned, and decisions as 

to  further processing or classification m ade in a global fashion. These decisions 

are then passed on to  lower level processing th a t continues the algorithm . An 

interesting class of top  down algorithm s im plem ent the same processing a t each 

level, w ith the sub-algorithm  calling itself recursively. The definition of a quadtree 

given in C hapter 2 constitu tes a recursive top down algorithm .

In a bo ttom  up algorithm , elements of the problem  dom ain are exam ­

ined sequentially until enough inform ation has been built up to  decide on a higher 

level action. Backtracking is also often used for language parsing, where the lexi­

cal analyser scans source code characters until a decision can be m ade concerning 

the symbol in  use. Good language design can result in significantly reduced over­

heads. Pascal has been designed to  be parsable using one symbol lookahead, 

which effectively requires no backtracking. In practice this m eans th a t during 

the scanning of the source tex t no am biguities can be created th a t would require 

parsing to be deferred.

W hen faced w ith a new problem , the natura l strategy is to  subdivide it 

in  a top down fashion in to  sub-algorithm s. This allows separation of the  global as­

pects of a problem  from  the low level details. As such, most m odern program m ing 

languages seek to  enforce top down program m ing. However, this does not neces­

sarily generate efficient algorithm s. The quadtree generation algorithm s described 

la ter in this chapter are good examples of the benefits of bottom -up program m ing.
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3.6 T he benchm arking problem

As noted in Section 3.4, working from first principles will not produce the 

absolute complexity for a real machine and each m achine/algorithm  com bination 

m ust be analysed separately. Conversely, universal benchm arks cannot be found. 

However com parison of actual machines is vital for progress to  be m aintained, 

and  so some benchm arking m ethodology m ust be arrived at even in the absence 

of stric t rigour.

Any problem  has boundary conditions, and the program m er rapidly be­

comes aware th a t these are the  ‘danger zones’ for an algorithm . U nexpected input 

may cause a ttem pted  division by zero, or a norm ally well behaved work function 

may show a discontinuity around certain magic num bers. Identification of bound­

ary conditions may be sufficient to  generate worst case behaviour, and therefore 

these are a ttractive from  a benchm arking point of view. For instance, a simple 

edge detector m ight have a tim e complexity of 0[n] where n  is the num ber of 

points in the image which are sufficiently busy to trigger the edge m arking rou­

tine. The worst case behaviour therefore occurs for a m axim ally busy picture. 

This im age should have full dynam ic range discontinuities a t every point, i.e. a 

black and white checkerboard pa tte rn  at the spatial resolution of the fram e store.

A lthough identification of worst case behaviour is im portan t for disaster 

prediction, or for th roughpu t calculations when 100% inspection m ust be guaran­

teed, the average behaviour is often of more practical interest. The problem  here 

is th a t average behaviour is not well defined. Some industrial inspection problems 

may be tightly constrained to  dark objects on a light-coloured conveyer belt, and 

others may involve more complex images. So benchm arking is a doubly ill-defined 

problem  — not only are the im plem entation details critical and varying for any 

set of machines, bu t the inpu t d a ta  can be critical and will vary across runs as 

well as across applications.

Some efforts have been m ade to set up standard  benchm arks for scientific 

and o ther mixes of com puting [Wei84a]. An alternative to  s tandard  benchm ark 

algorithm s is to  characterise the processor speed in term s of the instruction  ex­

ecution frequency. Two popular m easures are ‘M IPS’ (millions of instructions 

per second) and the ‘megaflops’ (millions of floating point operations per second) 

ratings. Since instruction  sets vary widely in  power (tha t is the am ount of useful 

work th a t can be perform ed in one instruction) the MIPS ra te  is not a useful 

m easure across processors w ith different instruction  sets (M IPS is said to be an 

acronym  for ‘meaningless indicator of processor speed’), bu t it may be useful in
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com paring different im plem entations of a single architecture (although even this 

can be m isleading) [Bel78].

The problem  here is th a t a M IPS rating  describes how a processor goes 

about a task  ra ther than  w hat it achieves. Consider two P D P - l ls ,  one w ith a 

hardw are m ultiply instruction and one w ithout. The Pascal fragm ent

VAR i : i n t e g e r ;  BEGIN i : = i * 2 3  END;

will generate very different code for the two machines:

For the  machine w ith m ultiply, we have this code:

$2 : ; e n t r y  p o in t  fro m  ru n  t im e  i n i t i a l i s a t i o n
MOV i , r O  ;g e t  v a r ia b le  t o  r e g i s t e r  
MÜL # 2 3 , rO ;m u l t ip ly  by c o n s ta n t ( 1 0 .6 9 — 1 2 .2 9  u s )
MOV r l , i  ;p u t  r e s u l t  i n  v a r ia b le  a re a
JMP $3 ; e x i t  t o  R T -11  th ro u g h  ru n  t im e  l i b r a r y

In the o ther case, we have

$2 ; e n t r y  p o in t  fro m  ru n  t im e  i n i t i a l i s a t i o n
MOV i  , r 5 g e t v a r ia b le  t o  r e g i s t e r
MOV # 2 3 , rO g e t  c o n s ta n t t o  r e g i s t e r
HR 3$ s k ip

1$: ADD R0,R 1 s h i f t - a n d - a d d  m u l t ip ly  ( 2 .1 6 u s )
2 $: ASL RO ( 2 .3 1 u s )
3 $ : CLC ( 2 . 16u s )

ROR R5 ( 2 .1 6 u s )
ECS 1$ (2 .3 1 u s  on b ra n c h ,  

1 .7 6 u s  i f  no b ra n c h )
BNE 2$ (2 .3 1 u s  on b ra n c h ,  

1 .7 6 u s  i f  no b ra n c h )
MOV R l , i p u t r e s u l t  in  v a r ia b le  a re a
JMP $3 e x i t  t o  R T -11  th ro u g h  ru n  t im e  l i b r a r y

All tim ings are for PD P-11/3 4 a  w ith MOS memory.

Now on a P D P ll/3 4 a , the hardw are MUL #N,RO instruction can take 

between 10.69 and 12.29/xs depending on the data . A long sequence of these 

instructions would therefore execute at between 0.081 and 0.093 M IPS. On the 

o ther hand, the software im plem entation of MUL #N,RO uses a loop containing 

instructions th a t execute very quickly (individual instruction tim ings are noted in 

the listing) and these generate a com posite M IPS ra te  of about 0.44 for a sequence 

of em ulated multiplies.

If the processors were com pared on the basis of how long it took to 

perform  the multiply, then natura lly  the hardw are m ultiply wins. A lthough this 

is a simple exam ple, confusion can and does arise. The extrem e case occurs when
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proponents of reduced instruction set com puters (RISC architectures) directly 

com pare their M IPS rates w ith those of a  VAX or o ther conventional machine. 

Since RISC architectures are specifically designed to  im plem ent a small num ber 

of simple operations th a t execute rapidly, they natu ra lly  exhibit high M IPS rates. 

Using this analysis, the non-hardw are m ultiply PD P-11 would therefore be more 

‘powerful’. Various works have defined standard  mixes of instructions for different 

applications (comm ercial, scientific, tim e shared editing etc.) in an a ttem p t to 

circumvent this problem . However, it is unusual for m anufacturers to  quote the 

mix used when deriving their figures.

Clearly, w hat is required is a functional m easure of processor perfor­

mance. The megaflop is a  more useful m easure because it s ta rts  to  move away 

from the m achine dependency. However, since the  particu lar floating point op­

eration is not defined, a spread of rates may still be present. Even for a single 

operation, the execution ra te  may be da ta  dependant, as in the  case of the integer 

m ultiply noted above.

To sum m arise: benchm ark program s are unsatisfactory  because of their 

lack of generality and dependence on complex in teractions between d a ta  and archi­

tecture. A ttem pts to  reduce interactions lead to direct com parison of individual 

instruction  rates, bu t even at this level precise m easurem ents are not possible 

because of the lack of universally available and com parable operations. The only 

reliable m easure of processor speed is completely functional (i.e. how long does 

it take to  do a particu lar job) and this is natu ra lly  non-general. The best com­

promise may well be to  use a suite of benchm ark program s and to  trea t results 

conservatively.

3.7 Benchm ark im ages

D ata for benchm arking program s is always im portan t, bu t especially so 

in image processing. As already noted, systems tend  to exhibit their pathological 

behaviour when faced w ith boundary conditions. T he boundary  conditions for a 

sorting algorithm  may be fairly easy to  recognise, bu t for complex algorithm s or 

pieces of hardw are, the  lim its of operation may be only em pirically determ inable. 

In such a case it is probably best to supply an im age w ith a rich mix of image 

features, and ‘home in ’ on anomalous behaviour. Four images are presented here 

for use in benchm arking:

1. Abingdon Cross (CROSS),
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Figure 3.3: Abingdon Cross

2. N uts and Bolts (ANB),

3. Pen (PEN ),

4. Biscuit (BISCU IT).

These images are shown in Figures 3.3 -  3.6. The Abingdon Cross is an artificially 

constructed image form ed from  two orthogonal bars overlaid w ith noise. It was 

proposed as the basis of a  skeletonisation benchm ark at the  Abingdon W orkshop 

on M ulti-Com puters for Im age Processing in 1982. The program  to generate this 

image was rew ritten from  a routine proposed there which unfortunately  contained 

several am biguities, such as the use of uninitialised variables.

The nuts and  bolts were photographed by the au thor to  give a scene 

with relatively few objects on an unevenly lit background w ith shadows and a 

significant am ount of noise. The objects also have glints and varying surface 

textures. This image has been in use as a benchm ark in this laboratory  for some 

years.

The pen p ic ture is interesting because it contains some w riting th a t is 

only ju st readable. W hen used to  benchm ark sm oothing algorithm s, any degra­

dation of the image sharpness is immediately apparen t in the readability  of the 

lettering.

The biscuit p ic tu re  is an example of the foodproducts inspected using 

the  IM P system  described in  C hapter 9. It has some three dim ensional s tructu re 

and is not well defined like the nuts and bolts.
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Figure 3.4; N uts and Bolts

Figure 3.5: Pen
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Figure 3.6; Biscuit
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C hapter 4 

Q uadtree algorithm s

“It is not enough to  take steps which may some day lead to a goal; 
each step m ust be itself a goal and a step likewise” — Goethe

4.1 In troduction

This chapter presents a selection of algorithm s for quadtree generation 

and quadtree controlled im age processing.

The presentation  of algorithm s is a difficult process, since the reader 

requires a knowledge of overall purpose, strategy  and low level details to fully 

com prehend a real program . Typically, high level strategy is highly dependant 

on the  low level details, and so a simple ‘top dow n’ exposition is inadequate. In 

fact any sequential exposition of an a lgorithm ’s strategy and tactics is likely to  be 

inadequate, and understand ing  may only come from  an iterative process of looking 

a t the details, then  the overall plan, back to  the details and so on. In an effort to 

sim ulate this process in  a  necessarily sequential tex t w ithout inducing boredom , 

the algorithm s in this chapter are in troduced by a discussion of the problem  and 

overall strategy, followed by a listing of a  Pascal im plem entation and a detailed 

com mentary. The perform ance of the algorithm  is analysed and the strategy 

discussed in the wider context from which suggestions for im provem ents often 

arise.

4.2 Q uadtree generation

Q uadtrees were described in C hapter 2 and are an im portan t d a ta  struc­

tu re  in image processing because (a) they may be rapidly calculated and (b) 

they can provide global inform ation concerning the  busy-ness of an image in a 

relatively explicit way. Q uadtrees are also extensively used in Geographical Infor-
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m ation  Systems (GIS) to  represent maps which are sparse and therefore generate 

com pact trees. Four algorithm s for quadtree generation from  an array represen­

ta tio n  are presented here: (1) a simple recursive decom position algorithm  th a t 

closely m irrors the description given in C hap ter 2; (2) a bo ttom  up leaf merging 

algorithm ; (3) a fast bo ttom  up algorithm  th a t uses backtracking to  save multiple 

scans; and (4) a sequential algorithm  th a t avoids backtracking by directly calcu­

lating  the leaf struc tu re  of a quadtree. Q uadtree generation is exam ined in such 

detail here because of the  lessons th a t m ay be draw n concerning the m apping of 

algorithm s onto real architectures. '

All four of these algorithm s operate on grey scale images, though algo­

rith m  4 produces approxim ate results w ith anyth ing  other than  a binary image. 

The definition of a suitable smoothness measure may be d ictated  by practical 

constraints. Ideally, each subquadrant should be scanned to  generate the mean 

and stan d ard  deviation of the intensity histogram . Speed considerations may re­

quire the use of cruder and less rigorous m easures. The monochrome quadtree 

generation algorithm s simply have to decide w hether a sub quadrant is all black 

or all w hite, which is equivalent to detecting the range of pixel values across a 

subquadran t. In the grey scale case, this m ay be generalised to  checking the range 

of pixel values against some threshold. This can give good results, bu t is noise 

sensitive. A com prom ise m ight be to  threshold  against the 5% and 95% points in 

the histogram .

One im portan t aspect of the sm oothness m easure is w hether it may be 

calculated on the fly in a sequential m anner, or w hether the entire quadrant must 

be scanned before a m eaningful result emerges — i.e. w hether a parallel or serial 

sm oothness m easure is used. These three algorithm s all use the absolute spread 

of brightness values to  m easure sm oothness, and  th is may be calculated on the 

fly. A lgorithm  1 is easily adapted  to any o ther smoothness measure, algorithms 

2 and 3 depend on using a sequential m easure, and  algorithm  4 only produces 

stric tly  accurate results for binary images.

4.2 .1  A  note on term inology

The to ta l num ber of nodes in a quadtree is denoted by N .  L  and P  are 

the  to ta l num bers of leaves and parents respectively. Clearly N  = L  -j- F.  The 

num ber of nodes a t a level i is n^, likewise and  pi are the num ber of i-level leaves 

and parents. The results in this chapter apply to  a x a images where s is usually 

a power of 2. The results may easily be generalised to  images of any other size by
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v o l S iz e  o f q u a d ra n t A rea  o f  q u a d ra n t N

0 1 X 1 1 1

1 2 X 2 4 5

2 4 X 4 16 21

3 8 X 8 64 85

4 16 X 16 256 341

5 32 X 32 1024 1365

6 64 X 64 4 0 9 6 5461

7 128 X 128 1 6384 21845

Table 4.1: Q uadtree space requirem ents 

adding a border of dum m y pixels to side length up to  the nearest power of 2.

4.2 .2  A n alysis o f  quadtree a lgorithm s

Table 4.1 sum m arises the space requirem ents for various levels in a

quadtree.

This m axim um  num ber of nodes is useful for worst case estim ation 

of quadtree-based algorithm  perform ance. Average perform ance (which will be 

linked to average size) is more difficult to  derive. The actual size of a quadtree will 

depend on the sm oothness threshold (for grey scale images) and the busy-ness of 

the image. A useful average m easure would give the expected size of the quadtree 

for a large range of images and thresholds, and also perhaps a m eans of weighting 

the average for specific types of application.

In the long run , any given quad tree may arise. One way of expressing 

this is to  assume th a t any potential node of the tree is equally likely to produce 

a leaf or a parent. This form of average has been used to analyse tree traversal 

algorithm s [Sam82]. However, such an average leads to  an im m ediate paradox. If 

there is a probability  of 0.5 th a t any node in the  tree may be a leaf, then  on average 

half of the possible nodes will be leaves. Table 4.2 shows the area requirem ents 

th a t result from such an assum ption. N aturally  this situation cannot occur for 

any real im age, because the to ta l area of the  quadrants corresponding to  leaves is 

four times the area of the image.

A more m eaningful average m ay be defined using the d istribu tion  of 

actual pixels am ongst the levels in the tree. Assume th a t, in  the  long run, each 

pixel has an equal chance of m apping in to  a leaf at any level. T hen on average.
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L e v e l A re a  o f  q u a d ra n t A verage number p re s e n t T o t a l  a re a

0 1 8192 8192

1 4 2048 8192

2 16 512 8192

3 64 128 8192

4 256 32 8192

5 1024 8 8192

6 4096 2 8192

7 16384 0 .5 8192

6 5536

Table 4.2: Q uadtree leaf totals

equal areas of the im age will be occupied by leaves belonging to each level. There 

are log 5 4- 1 possible levels for a square image of pixels, hence the average 

area occupied by leaves belonging to  level i will be a,- =  s^ /(lo g s  +  1). Since at 

level i the quadran t area is =  2^\ the average num ber of level i leaves will be 

li =  s^/(2^*logj 4- 1). Values for a 128 x 128 image are shown in Table 4.3. The 

num ber of paren t nodes at level i, pi, can be derived in general from  the num ber 

of leaves Each group of four nodes at level i link to a single node at level i 4-1, 

i.e. Pi = (pi-i  4- Z*-i)/4 w ith po =  0.

This gives for n^, the num ber of nodes at level i (n,- =  p  ̂ 4- li):

Hence

and

j=o

log* k 

k=o j=o 

log* k

k=0 j=0

As can be seen from the above table Pavus = 657.5625 and Lavus = 

2666.75 so =  3324.3125.

T he definition of average used above assumes no prior knowledge of 

the  type of application. In many cases it may be possible to  characterise the 

application in such a  way as to  provide a weighted version of the average size tha t 

more fully reflects actual quadtree sizes. Section 4.8 exam ines d a ta  compression
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L e v e l Q uadrant a r e a  T o t a l  a r e a Average  le a v e s A v e ra g e  p a r e n ts

0 1 2048 2048 0

1 4 2048 512 512

2 16 2048 64 256

3 64 2048 32 80

4 256 2048 8 28

5 1024 2048 2 9

6 4096 2048 0 . 5 2 . 7 5

7 16384 2048 0 .2 5 0 .8 1 2 5

2 6 6 6 .7 5 6 5 7 .5 6 2 5

Table 4.3: Q uadtree m ean leaf totals

using quadtrees. In this case a target is given for the to ta l num ber of leaves 

required (say (log a )/10  which will compress the d a ta  by an order of m agnitude) 

and the threshold adjusted un til a suitable tree has been generated.

W here the type of d a ta  being processed is relatively uniform , it is possi­

ble to  build a real probability  d istribu tion  for leaf and node occurrence by testing 

m any images. This d istribu tion  may then  be used in place of the  square d istribu ­

tion.

4.3 A lgorithm  1 

position

top down recursive decom -

In Section refq:def the quadtree was defined in term s of the  recursive 

subdivision of an image. A lgorithm  QUAD T O P.R E C U R SE  below is a s tra igh t­

forward im plem entation of this definition.

1 PROCEDURE QUAD_TOP_RECURS(xstart, y s t a r t , s i z e :  i n t e g e r ) ;
2 VAR
3 m in ,  maxi x f i n i s h ,  y f i n i s h ,  tem p: i n t e g e r ;
4 BEGIN
5 x f i n i s h : = ( x s t a r t + s i z e ) ; y f i n i s h : = ( y s t a r t + s i z e ) ;
6 m in : = m a x in t ; max :=0  ;
7 x : = x s t a r t ;  { s c a n  q u a d r a n t }
8 REPEAT
9 y : = y s t a r t ;

10 REPEAT
11 I F  pO m ax  THEN max:=pO; I F  pO<min THEN m in := pO ;
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{s c a n  q u a d r a n t }  
{ t e s t }

{ f i l l  q u a d r a n t }

12 y : = y + l
13 UNTIL y = y f i n i s h ;
14 x : = x + l
15 UNTIL x = x f i n i s h ;
16 I F  m a x -m in < th re s h
17 THEN
18 BEGIN
19 te m p := (m ax +m in ) D IV  2;
20 x : = x s t a r t ;
21 REPEAT
22 y : = y s t a r t ;
23 REPEAT
24 qO:=tem p; r O : = s i z e ;
25 y : = y + l
26 UNTIL y = y f i n i s h ;
27 x : = x + l
28 UNTIL x = x f i n i s h ;
29 END
30 ELSE
31 BEGIN
32 te m p := s iz e  D IV  2;
33 QUAD_TOP_RECURS(xstart, y s t a r t , t e m p ) ;
34 Q U A D _ T O P _ R E C U R S (x s ta r t+ te m p ,y s ta r t , t e m p ) ;
35 QUAD_TOP_RECURS(xstart, y s t a r t + t e m p , t e m p ) ;
36 QUAD_TOP_RECURS(xstart+temp,y s te i r t+ te m p ,te m p )  ;
37 END { s u b d i v id e }
38 END;

{ f i l l  q u a d r a n t }  

{ s u b d i v id e }

4.3.1 C om m entary

The procedure takes as param eters the coordinates of the top left corner 

and the size of the quadran t to  be scanned. The smoothness threshold is accessed 

via global integer th re s h .

Line 5: the endpoints of the quadran t (the coordinates of the bottom  

right corner plus 1) are calculated from the param eters.

Line 6: max and min are used during the scan of the quadrant to  hold 

the current brightest and darkest pixel values. They are initialised here to worst 

case values of 0 and m axint respectively.

Lines 7-15: the  quadran t is scanned to  find the spread of brightnesses.

Line 16: if the brightness spread is w ithin threshold, then  a  leaf is cre­

ated , i.e. the corresponding quadran t in q-space is filled w ith the  leaf colour, and 

the quadrant in r-space is filled w ith the leaf size (lines 18-29). If the spread of 

values is out of range, then  QUAD_TOP_RECURS is recursively called for each 

of the four subquadrants (lines 31-36). At the  lowest level (where nodes map
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to  single pixels) max will be set to the same value as min, thus guaranteeing the 

creation of a leaf. This removes the need for a special condition to  ‘bottom  o u t’ 

the recursion.

4.3 .2  P erform ance

The procedure is invoked once for each node in the tree. At each node 

the  quadran t is scanned to  check for max and min (lines 7-15). If the quadrant 

is a leaf then  the quadran t is passed over again, and the colour and  depth  values 

filled in (lines 20-28). Figure 4.1 shows a graph of execution tim e for a spread 

of thresholds using ANB as the source data . R un tim e is dom inated by the time 

taken to scan and fill quadrants. For very small thresholds, most of the image is 

tiled w ith small quadran ts, necessitating deep recursion and m ultiple scans of the 

image. At the high end, the  algorithm  executes a single scan and fill across the 

whole image.

On this system  (a PD P  11/23 with the IM P /V I fram esto r^a  frame store 

read takes 5.5/as, and a w rite 3.9/as. The procedure call overhead is 41.3/as and 

the  overhead of the REPEAT— UNTIL x = x f in ish  requires around 12/as.

Large quadran ts are scanned at the ra te  of 20.3/as per pixel and filled at 

the ra te  of 13.8/as per pixel. Overheads such as REPEAT count initialisation and 

fill colour calculation become significant for small quadran ts. It takes 36.8/as to
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scan a 1 X 1 quadrant and 45.2/as to fill.

We can m odel the run  tim e of the algorithm  as:

2*(/jt/ +  njf,((log s) +  1 — i))
1 = 0

where t f  is the fill time per pixel and t, is the scan time per pixel.

The rationale for this is th a t every level i leaf will require 2‘ fills and 2* 

scans. Each level i scan will be the result of {logs) +  1 — i node scans.

T he do tted  line on Figure 4.1 shows the result of applying this model to 

ANB using the large quadran t pixel times. Using the correct tim es for single pixel 

quadran ts produces the dashed line of Figure 4.1, which is much more accurate 

for small thresholds.

For a 128 x 128 im age, the m ajdm um  depth  of recursion is eight levels,

so only a m oderately sized stack is required. The param eters are not in fact reused

upon re tu rn  from any call to the routine, and so they could be held in external 

globals, reducing the m axim um  required stack space to eight procedure activation 

frames. This will also reduce the procedure overhead call.

4.3 .3  D iscussion

This algorithm  is clearly inefficient for large quadtrees because it scans 

pixels repeatedly until a leaf is found. In the worst case (a m axim um  dynamic 

range checkerboard a t the spatial resolution of the frame store, such as Figure 4.2) 

each pixel will be read eight times. The next algorithm  attem pts to  reduce this 

overhead by constructing the  quadtree bo ttom  up. For small quadtrees the above 

algorithm  is very efficient, and for the lim iting case o{ N  = L  = 1 {e.g. thresh- 

old=256) should be optim al since all th a t is required is a single scan and a single 

fill of the entire im age. F igure 4.1 shows th a t this minimal case requires some 

0.5s to  run, and this should be taken as the upper limit on the perform ance of a 

Pascal based algorithm  on this processor.

4.4 A lgorithm  2 —  b ottom  up leaf m erging

The run  tim e for algorithm  Q U A D -TO P-RECURS is dom inated by (a) 

the need for one scan per node, and (b) the need to scan a 2 *̂ sized region at 

each level i node. A lgorithm  QUAD_MERGE_RECURS, below, elim inates (b) by 

starting  w ith the sm allest possible leaves, and exam ining groups of four to see if 

they may be merged into a  higher order leaf. The status values of the nodes and
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Figure 4.2: Q-image worst case inpu t picture

their colours are p ropagated  upwards until the com plete tree is formed. W hen a 

true  leaf is created , the quadran t in q-space is filled w ith the m ean of the brightest 

and darkest poin ts, and r-space is filled w ith the size of the leaf.

1 VAR
2 th r e s h ,m a x ,m in :  i n t e g e r ;
3
4 PROCEDURE f i l l ( x s t a r t , y s t a r t , s i z e , c o lo u r  : i n t e g e r ) ;
5 VAR
6 x f i n i s h , y f i n i s h :  i n t e g e r ;
7 BEGIN
8 x f i n i s h : = ( x s t a r t + s i z e ) ; y f i n i s h : = ( y s t a r t + s i z e ) ;
9 x : = x s t a r t ;

10 REPEAT
11 y : = y s t a r t ;
12 REPEAT
13 q O := c o lo u r ;  r O : = s i z e ;
14 y : = y + l
15 UNTIL y = y f i n i s h ;
16 x : = x + l ;
17 UNTIL x = x f i n i s h
18 END;
19
20 FUNCTION quad_ m erg e_re curs
21 ( x s t a r t , y s t a r t , s i z e :  i n t e g e r ;  VAR m ax ,m in : i n t e g e r ) :  booleeui;
22 VAR
23 n e w s iz e , te m p :  i n t e g e r ;
24 maxs, m in s :  A R R A Y [0 . .3 ]  OF i n t e g e r ;
25 f i l l e d , f i l l e d 0 , f i l l e d l , f i l l e d 2 , f i l l e d 3 :  b o o le a n ;
26
27 BEGIN
28 I F  s i z e = l
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29 THEN
30 BEGIN
31 x : = x s t a r t ;  y : = y s t a r t ;  max:=pO; m in;=pO;

q u a d _ m e rg e _ re c u rs : = f a l s e ;
32 END
33 ELSE
34 BEGIN
35 n e w s iz e : = s i z e  D IV  2;
36 f i l l e d O : =
37 q u a d _ m e r g o _ r e c u r s ( x s t a r t , y s t a r t , n e w s i z e , m a x s [ 0 ] , m in s [ 0 ] ) ;
38 f i l l e d l : *
39 q u a d _ m e r g e _ r e c u r s ( x s t a r t + n e w s iz e , y s t a r t , '

n e w s iz e ,m a x s [ 1 ] ,m in s [ 1 ] ) ;
40 f i l l e d 2 : =
41 q u a d _ m e rg e _ r 0 c u r s ( x s t a r t , y s t a r t + n e w s i z e ,

n e w s iz e , m axs[ 2 ] ,m in s [ 2 ] ) ;
42 f i l l e d 3 : =
43 q u a d _ m e rg e _ re c u rs
44 ( x s t a r t + n e w s i z e , y s t a r t + n e w s i z e , n e w s i z e , m a x s [ 3 ] , m in s [ 3 ] ) ;
45 f i l l e d : = f i l l e d O  OR f i l l e d l  OR f i l l e d 2  OR f i l l e d 3 ;
46 I F  f i l l e d
47 THEN
48 BEGIN
49 I F  NOT f i l l e d O
50 THEN
51 f  i l l  ( x s t a r t , y s t a r t , n e w s iz e , (maxs [ 0 ] +mins [0 ]  ) D IV  2 ) ;
52 I F  NOT f i l l e d l
53 THEN
54 f i l l ( x s t a r t + n e w s i z e , y s t a r t , n e w s iz e ,  

(meLxs [ 1 ] +mins [1 ]  ) D IV  2 ) ;
55 I F  NOT f i l l e d 2
56 THEN
57 f i l l  ( x s t a r t , y s te u rt+ n e w s iz e ,  n e w s iz e ,  

(m a x s [ 2 ] + m in s [ 2 ] )  D IV  2 ) ;
58 I F  NOT f i l l e d 3
59 THEN
60 f  i l l  ( x s t e i r t + n e w s iz e , y s t a r t + n e w s i z e ,  n e w s iz e .
61 (m a x s [ 3 ] + m in s [ 3 ] )  D IV  2 ) ;
62 END
63 ELSE
64 BEGIN
65 max : =0 ; m in  : = m a x in t  ;
66 FOR te m p := 0  TO 3 DO
67 BEGIN
68 IF  maxs [ tem p] >max THEN max : =maxs [tem p] ;
69 I F  m ins [tem p] <min THEN m in: =mins [tem p] ;
70 END;
71 IF  (m a x -m in > = th re s h )
72 THEN
73 BEGIN
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74 f i l l ( x s t a r t , y s t f i ü : t , n e w s i z e , ( m a x s [ 0 ] + m in s [ 0 ] ) D IV  2 ) ;
75 f i l l ( x s t a r t + n e w s i z e , y s t a r t , n e w s i z e ,

( m a x s [ l ] + m in s [ 1 ] )  D IV  2 ) ;
76 f i l l ( x s t a r t , y s t a r t + n e w s i z e , n e w s i z e ,

(m axs[ 2 ] + m in s [ 2 ] )  D IV  2 ) ;
77 f i l l ( x s t a r t + n e w s i z e , y s t a r t + n e w s iz e , n e w s iz e ,
78 (m axs[ 3 ] + m in s [ 3 ] )  D IV  2 ) ;
79 f i l l e d : = t r n e ;
80 END
81 ELSE f i l l e d : = f a l s e ;
82 END;
83 q n a d _ m e r g e _ r e c n r s : = f i l l e d  '
84  END;
85 END;
86
87 BEGIN
88 t h r e s h : = 2 0 ;
89 I F  NOT q n a d _ m e rg e _ re c n r s (0 ,0 , 1 2 8 , m ax,m in )
90 THEN f i l l ( 0 , 0 , 1 2 8 , ( m a x - m i n )  D IV  2 ) ;
91 END.

4.4.1 C om m entary

In this case, an entire program  has been presented rather than  just the 

m ain procedure, because the mechanics of the im plem entation are a little more 

difficult to  follow.

The algorithm  is form ulated as a recursive function. Line 88 sets the 

threshold  to an arb itrary  value. Line 89 calls the m ain function, which will recur­

sively call itself until it reaches the lowest level of the tree (t.e. level 0). As the 

routines re tu rn , the brightness spreads across the quadrants propagate back, and 

if level 7 is reached w ithout any of the q-image being filled in, then line 90 fills 

the entire image. P rocedure F IL L  (lines 4-18) is called to  paint in q and r spaces 

when a non-m ergeable leaf is found.

Line 20: Function QUAD_MERGE_RECURS takes as param eters the 

coordinates of the top left hand corner, and the size of the quadrant to be exam ­

ined. It re tu rns via max and min the brightest and darkest points in the image. If 

the quadran t has already been painted  in, (th a t is the spread of brightnesses in 

the quadran t is out of threshold) QUAD-MERGE _RECURS returns TRUE else FALSE.

Lines 22-25: maxs and mins are used to store the brightness values re­

tu rned  from the four leaves below the current level. Likewise f  i l le d O  to f  i l l e d 3  

store the booleans returned  from the  function calls in lines 36-44. f i l l e d  is the 

inclusive-OR of f i l le d O  to f i l l e d 3 .

Lines 28-32: a t the lowest level of the tree where the leaf size is 1, the
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function im m ediately re tu rns FALSE with max and min set to  the brightness of the 

current pixel. This in itia tes the merging process as the pixel values propagate 

back up the call tree.

Lines 35-44: a t any other level in the tree, the function recursively calls 

itself for each of the  four subquadrants. On re tu rn  from these calls maxs, mins 

and f i l le d O  to f i l l e d S  will hold the brightness spreads and leaf statuses for 

each of the four subquadrants.

Line 45: f i l l e d  is set to the inclusive-OR of f i l le d O  to f i l l e d S .  

f i l l e d  is thus TRUE if any of the four ' subquadran ts have already been filled 

in. The inform ation retu rned  from the lower leaves will cause one of four things 

to  happen. (1) If all four subquadrants have already been filled in then  the func­

tion simply returns TRUE. (2) If only some of the subquadrants have already been 

filled in, then the rest of the subquadrants m ust also be filled (lines 48-62). If 

none of the subquadran ts have been filled, then the smoothness values across the 

quadrant m ust be calculated (lines 65-70). The whole algorithm  depends upon 

the use of a sm oothness measure th a t m ay be simply combined from the four 

subquadrants to provide a value for the whole. (3) If the brightness spread is 

out of threshold, then  the subquadrants m ust be filled in (lines 74-78), otherwise 

(4) the function re tu rns max, min and FALSE to continue the propagation of pixel 

values up the tree.

Line 46: f i l l e d  is tested to see if any of the subquadrants have already 

been filled in.

Lines 48-62: the individual f i l l e d  flags are tested to find any subquad­

ran ts th a t have not yet been filled in, and they are then painted over.

Lines 64-70: if none of the sub quadrants have already been filled, then 

the individual max and  min values are tested  to  find the spread of brightnesses 

across the quadrant. Note th a t this process is difficult to  generalise to other 

sm oothness measures.

Lines 71-82: If the brightness spread is out of threshold, then  the indi­

vidual subquadrants are filled in (lines 74-78) and f i l l e d  is set TRUE (line 79). 

O therwise the function will exit TRUE w ith max and min showing the brightness 

spread across the quadrant.

4.4 .2  Perform ance

Q UAD-M ERGE-RECURS does perform  far fewer pixel accesses than  

QUAD_TOP_RECURS. R ather than  scanning the entire quadrant at each node
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in the tree, it looks at the entire picture once (at level 0 nodes) and then passes 

the values back up through the call tree. At each level four values are ex­

am ined to decide whether a node is a leaf or a parent. This clear advantage 

is significantly offset by the need to exam ine every potential node of the tree, 

ra ther than  every actual node of the tree as in QUAD_TOP_RECURS. For large 

trees, where QUAD-TOP-RECURS has to recurse deeply and therefore scan 

many pixels, QUAD-M ERGE-RECURS should execute more rapidly. However 

for small trees where QUAD -TOP-RECURS will only call itself a few times 

QUAD-M ERGE-RECURS will be at a severe disadvantage because it is always 

called N  tim es. The actual crossover point will depend on the execution time 

of each call to  function QUAD M ERGE RECU RS, and is likely to  be heavily 

dependant on the Pascal function call overhead because of the large num ber of 

param eters required. Figure 4.3 shows th a t for ANB, crossover occurs at a  th resh­

old of around 30. However it also shows th a t QUAD-M ERGE-RECU RS is less 

‘pathological’ th an  QUAD-TOP-RECURS, th a t is its perform ance is m ore uni­

form across the entire range of trees, whereas Q U A D -TO P-RECURS varies by an 

order of m agnitude in execution speed, showing a very steep increase in run  time 

for large trees.

The run  tim e of QUAD-M ERGE-RECU RSE is dom inated by the  proce­

dure call overhead. This will be an advantage on fast com puters w ith slow frame
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stores. Fram estores such as the  CRS 4000 connect to  PDP-11 or VAX hosts via 

DMA interfaces. Single pixel access to this frame store is very slow, so an algo­

rithm  th a t trades off procedure calls against pixel accesses will be faster than  one 

such as QUAD_TOP_RECURS th a t repeatedly scans pixels.

The m axim um  dep th  of recursion for an s x a image will be log a 1 as 

before, i.e. eight levels for a 128 x 128 image. In fact ra th e r m ore stack space 

will be required than  for Q U A D -TO P RECURS because of the ex tra  param eters. 

W ith  the Pascal compiler in use in this laboratory, stack space is required to  save 

in ternal registers which are in use at the time of the procedure call (including the 

re tu rn  address of the rou tine), plus a one word pointer to the param eter area on 

the stack, plus the space required for the actual param eters, which includes the 

re tu rn  param eter for functions. For QUAD-TOP-RECURS at least five words 

are required per call, and for QUAD-M ERGE-RECURS eight words. Tem porary 

register storage may require up to six further words in each case. In addition 

stack space will be required for call to FILL.

4.4 .3  D iscussion

The perform ance of recursive algorithm s is heavily dependant on the 

procedure call overhead for the im plem entation language. U nfortunately, the 

present Pascal im plem entation is poor in this respect. W hen lines 29-32, 35 and 

45-82 are removed (i.e. the algorithm  is reduced to  call tree generation and 

re tu rn ), QUAD-M ERGE-RECURS executes in 1.9s. If this overhead could be 

reduced or even removed, the run  time of the algorithm  would be substantially  

im proved.

It is a basic p roperty  of the algorithm  th a t the m ain function is called 

once for every potential node in the tree, i.e. 21845 times for a 128 x 128 image. 

Program m ing the algorithm  in machine code could substantially  reduce the  time 

required to call the function because this compiler makes poor assum ptions about 

which registers to save at en try  to  the routine.

As noted in Section 4.4.1, each call results in one of four basic actions. 

Type (1) calls are clearly redundant and serve simply to m ain tain  the call tree 

as the recursion unwinds. T he next two algorithm s attem pt to  reduce the  overall 

redundancy of algorithm  2 by removing the need for a call tree. B oth  algorithm s 

scan the image in the same order as algorithm  2 , bu t they make im m ediate deci­

sions concerning leaf position w ithout passing d a ta  back up to  higher level pro­

cesses. In principle, these algorithm s should have run times linked to  the num ber
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of leaves in the tree ra th e r th a n  the num ber of nodes (actual or po tential).

4.5 A lgorithm  3 —  b ottom  up backtracking

Simple image processing operators are usually applied in a  raster scan 

across the image. Since they are em ulating the operation of a parallel processor 

(where the operator is applied sim ultaneously to all points in the  im age) the scan 

order is in fact irrelevant. However, serial algorithm s are often highly sensitive to 

scan order. Typically sequential algorithm s m aintain running results which differ 

if the operation is applied from  different directions.

A sequential quadtree generation algorithm  must track  round the leaf 

structu re  w ithin the image. The raster scan does not correspond to  a ‘n a tu ra l’ 

ordering of leaves. Close exam ination of algorithm  2 shows th a t the  tree is visited 

in preorder and th a t this is equivalent to visiting the pixels in z-order:

0 1 4  5 16 17

2 3 6 7 1 8 . . .

8 9 12 13

10 11 14 15

The next algorithm  im plem ents the leaf merging idea of algorithm  2 by scanning 

the image in z-order, and backtracking when an out of threshold point is found. 

The max-min m easure of brightness is m aintained in a sequential fashion as the 

scan proceeds to larger and larger leaf sizes. W hen max-min goes out of threshold, 

the  largest block so far com pleted is calculated, and it and its th ree siblings are 

re-exam ined by a recursive call.

1 PROCEDURE q u a d _ b a c k _ r e c u r s ( f i r s t , l a s t , s i z e :  i n t e g e r ) ;
2 VAR
3 m a x ,m in ,p o in t , t e m p e n d , t e m p s iz e :  i n t e g e r ;
4 e x i t :  b o o le a n ;
5
6 BEGIN
7 m ax:=0; m i n : = 2 5 5 ;  p o i n t : = f i r s t ; e x i t : = f a l s e ;
8 REPEAT { s c a n }
9 X : = s c a n _ x [ p o i n t ] ; y : = s c a n _ y [ p o i n t ] ;

10 I F  pO m a x  THEN max:=pO; I F  pO<min THEN m in:=pO ;
11 I F  (m a x -m in )> = th r e s h
12 THEN
13 BEGIN
14 t e m p e n d : = l a s t - f i r s t ; p o i n t : = p o i n t - f i r s t ; e x i t : = t r u e ;
15 t e m p s iz e : = s i z e ;
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16 REPEAT
17 tem p end: =tempend D IV  4 ;
18 t e m p s iz e : = te m p s iz e  D IV  2;
19 q u a d _ b a c k _ r e c u r s ( f i r s t + l + t e m p e n d , f i r s t + l + 2 * t e m p e n d ,

t e m p s i z e ) ;
20 q u a d _ b a c k _ r e c u r s ( f i r s t + 2 + 2 * t e r a p e n d , f i r s t + 2 + 3 * t e m p e n d ,

t e m p s i z e ) ;
21 q u a d _ b a c k _ r e c u r s ( f i r s t + 3 + 3 * t e m p e iv d , f i r s t + 3 + 4 * t e m p e n d ,

t e m p s i z e ) ;
22 UNTIL te m p e n d < p o in t ;
23 q u a d _ b a c k _ r e c u r s ( f i r s t , t e m p e n d + f i r s t , t e m p s i z e ) ;
24 END
25 ELSE
26 p o i n t : = p o i n t + l ;
27 UNTIL e x i t  OR ( p o i n t > l a s t ) ; { s c a n }
28 I F  p o i n t > l a s t
29 THEN
30 BEGIN
31 p o i n t : = f i r s t ;
32 REPEAT { f i l l }
33 X : = s c a n _ x [ p o i n t ] ; y : = s c a n _ y [ p o i n t ] ;
34 qO :=(m ax+m in) D IV  2;
35 r O : = s i z e ;
36 p o in t  : = p o i n t + l ;
37 UNTIL p o i n t > l a s t ;  { f i l l }
38 END
39 END;

4.5.1 C om m entary

Procedure QUAD BACK RECURS takes as param eters the first and 

last points of the block to be scanned, and the  size of the block sidelength. The 

size is only required when filling in the contour m ap of the  quadtree, and could 

be om itted  if only the q-image is required. T he sm oothness threshold is supplied 

via global integer th r e s h  as above.

The scan order is defined by lookup tables scan_x and scan_y which are 

both  of type ARRAY [0 .  . 16383 ] OF 0 . . 2 5 5 .  They contain the x  and y coordinates 

for every point in the scan. Scan coordinate generation will be discussed further 

in Section 4.7.1.

Line 3: p o in t  is a running variable pointing to the current pixel in the 

scan. It is used as an index into the lookup tables.

Line 7: max and min are initialised, p o in t  is initialised to the first point 

in the quadrant.

Line 9: the current pixel is addressed by loading the fram e store coordi­
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Figure 4.4: Perform ance of QUAD-BACK-RECURS

nate  registers from the lookup table,

Line 10: max and min are updated  w ith the new pixel.

Line 11: the brightness spread is tested  against th r e s h .

Lines 13-24: if the spread is out of threshold, then block subdivision

starts .

Lines 16-22: each pass of the loop recursively calls the main function 

for subquadrants 1, 2 and 3, and tests the size of quadrant 0 . If quadrant 0 lies 

entirely w ithin the region scanned then the loop exits, else the process repeats 

w ith subquadrant 0 as the  new quadrant.

Line 26: if max-min is w ithin threshold , p o in t  is simply increm ented. 

Line 27: when p o in t  reaches l a s t ,  a  block has been successfully scanned 

and may be filled in (lines 32-37).

4.5 .2  Perform ance

Figure 4.4 shows the perform ance of algorithm  3 at various thresholds 

for ANB. The dotted line is the equivalent perform ance curve for algorithm  1.

As can be seen, algorithm  1 only becomes more efficient for thresholds 

g reater than  about 100, which results in quadtrees th a t hold too little  inform ation 

to  be useful for image processing or representation, as shown in Figures 4.5 and 

4.6.
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Figure 4.5: Q-image of ANB, threshold=100

Figure 4.6: Q-image of PEN, threshold=100
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For all useful cases, QUAD_BACK_RECURS is faster. T he storage re­

quirem ent depends, as ever, on the  level of recursion. The w orst case storage 

occurs when the second point in an image is out of threshold. In this case the 

loop in lines 16-22 descends through 6 leaf sizes, generating th ree recursive calls 

at each level until it reaches level 0, at which point line 23 generates a further 

call. W ith  the in itia ting  call from  the  main routine this gives a to ta l of 20 stacked 

calls, which is considerably g reater than  algorithm s 1 and 2 .

The run  tim e depends critically on the am ount of backtracking per­

formed. The worst case occurs for a sm ooth image w ith a single out-of-threshold 

point at the end of the z-scan. M axim al backtracking also generates the  m aximal 

num ber of pixel scans.

4.5.3 D iscu ssion

A lgorithm  3 produces b e tte r perform ance in all cases th a n  algorithm  2 by 

dispensing w ith the  large call tree and the associated movement of large am ounts 

of data. If the am ount of backtracking could be reduced the perform ance might 

be expected to  im prove. A lgorithm  4 is able to  reduce backtracking to  zero, but 

incurs a heavy penalty  in calculation overhead.

One significant inefficiency in this algorithm  lies in the z-scan generation. 

Most com puters have increm ent instructions which allow one to  be added to a 

variable quickly. A lgorithm s 1 and 2 exploit this through the use of a raster scan 

which only requires sim ple increm ent and test instructions. T he z-scan requires a 

shift and merge operation  which is not easily im plem ented on a PD P-11, and so a 

lookup tab le  is used instead . This will be exam ined in  more detail in Section 4.7.1.

4.6 A lgorithm  4 —  an optim al quadtree gener­

ator

A lgorithm  3 does not fully exploit the available inform ation wheii it 

encounters an out-of-threshold point. There is a unique p a tte rn  of leaves joining 

any two points A  and B  in  the z-scan. This pa tte rn  of leaves will consist of 

m axim al blocks of area  where a is a power of 2 , and each block will be aligned 

so th a t the  coordinates of its  top left corner modulo s is 0. T he area of the image 

traversed between points A  and  B  m ust be completely tiled by blocks. The proof 

th a t there is a unique p a tte rn  lies in the requirem ent th a t the  area  be tiled with 

m axim al blocks. Clearly, the  region could otherwise be tiled w ith  single pixel
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Figure 4.7: Calculation of leaves from discontinuities

sized blocks, b u t because of the maximal condition groups of four, it m ust merge 

and remerge un til th e  largest possible block appears.

Given th a t the  unique pa tte rn  exists, the values of A and B m ust contain 

all the necessary inform ation to deduce the leaf s tructu re of the quadtree between 

A and B. As no ted  in  C hapter 2 , in any d a ta  s tructu re some inform ation is 

explicit and cheap to  retrieve, and some is im plicit, either in the topology of the 

s truc tu re  or in the  coding of the da ta  in the nodes of the structure. Clearly 

an extrem ely com pact bu t im practical representation of the quadtree could be 

constructed m erely by enum erating the discontinuities in the z-scan. A lgorithm 

4 effectively converts th is representation to  the explicit q-image/ contour m ap 

representation used elsewhere in this chapter.

Consider th e  case where point A  is the origin. Figure 4.7 shows th a t if 

a discontinuity occurs a t the point B  =  59io (=  I I IO I I2), then 3 level 2 leaves, 2 

level 1 leaves and 3 level 0 leaves m ust be created. As will be seen this inform ation 

may be ex tracted  directly  from the binary value of the  discontinuity point num ber. 

By selecting ascending pairs of bits we have I I 2, IO2 and I I 2 or (decimal 3, 2 and 

3).

W hen poin t A  is not the origin, the situation  is more complex. In algo­

rithm  3, the m axim al block detection algorithm  required the origin to  be moved 

to  the first point of the  scan region (line 14). A sim ilar procedure is used here, 

except th a t the process of norm alisation is a  little  more subtle.

Figure 4.7 shows points A =  9 and  B  =  59. Here the leaf p a tte rn  falls 

into three sections. Points 9 to  15 inclusive m ap to  3 level 0 leaves and 1 level
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1 leaf; points 16 to 47 inclusive m ap to  2 level 3 nodes; and points 48 to  58 

inclusive m ap to 2 level 1 leaves and  3 level 0 leaves. These three regions can 

be characterised as (1) moving to  larger and  larger block sizes, (2) traversing up 

to  four maximal blocks and (3) moving to  sm aller block sizes. In general it is 

possible for any of these th ree regions to  be degenerate, and the case where A is 

the origin corresponds to  degenerate sections (1) and (2).

Interestingly, 59io — 48io =  l l io ,  or IO II2, which shows th a t section 3 

can be derived by moving the  origin to  the  end of the last m aximal block in the 

region. Also, I 610 —9io =  7io, or I I I 2 showing th a t a similar norm alisation can be 

used to  derive the leaf p a tte rn  in  section 1. Finally note th a t 59io — 9%o =  50io, or 

IIOOIO2. The highest occupied b it pair here corresponds to level 3 leaves, and this 

is the size of the m axim al block. The length  of the section constitutes a signature 

describing the leaf p a tte rn  w ith in  th a t section.

These observations can be used to  derive the entire leaf p a tte rn  between 

points A  and B  by direct calculation, reducing the scanning requirem ent to  a single 

pass over the data, pausing a t every discontinuity to calculate the next section 

of tree. This im plem entation colours leaves slightly differently to the o ther three 

algorithm s except for the  case of a b inary  image. However, the shape of the tree 

is always correct.

1 PROCEDURE q u a d_ opt ;
2 VAR
3 le a v e s ;  A R R A Y [0 . .7 ]  OF i n t e g e r ;
4  n o _ m ax_b lo cks , m a x _ s iz e , u p _ r e m a in d e r , d o w n _ re m a in d e r ,
5 m a x _ l e n g t h , f i r s t , s i z e , m a x , m i n , p o i n t , t e m p i , t e m p 2 : 0 . . 6 5 5 3 5 ;
6
7 BEGIN
8 p o i n t : = 1 ;  f i r s t : = 0 ;
9 REPEAT { s c a n  u n t i l  o u t o f  t h r e s h o l d }

10 m ax:=0; m i n : = 2 5 5 ;  p o i n t  : = p o i n t - l ;
11 REPEAT
12 p o i n t : = p o i n t + l ; x : = s c a n _ x [ p o i n t ] ; y : = s c a n _ y [ p o i n t ] ;
13 IF  pO m a x  THEN m ax:=pO; I F  pO<min THEN m in:=pO ;
14 UNTIL (m a x -m in > = th r e s h )  OR ( p o i n t = 1 6 3 8 3 ) ;
15 IF  p o in t= 1 6 3 8 3  THEN p o i n t  := 1 6 3 8 4 ;
16 m a x _ s iz e := 1 6 3 8 4 ;  te m p i  : = p o i n t - f i r s t ; m a x _ le n g th := 1 2 8 ;
17 WHILE te m p i  D IV  m a x _ s iz e = 0  DO { f i n d  s i z e  o f  m ax im a l b l o c k }
18 BEGIN
19 m a x _ le n g th ;= m a x _ le n g th  D IV  2;
20 m a x _ s iz e := m a x _ s iz e  D IV  4 ;
21 END;
22 u p ^ r e m a in d e r : = ( N O T ( f i r s t  MOD m a x _ s i z e ) + l )  MOD m a x _ s iz e ;
23 d o w n _ re m a in d e r := p o in t  MOD m a x _ s iz e ;
24 no_m ax_b locks: = ( te m p l -u p _ r e m a in d e r -d o w n _ r e m a in d e r )
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D IV  m a x .s iz e ;
25 s i z e : = l ;  { f i l l  s e c t i o n l }
26 FOR te m p i ; = 0  TO 7 DO
27 BEGIN
28 t e m p 2 : = s i z e * s i z e * ( u p _ r e m a in d e r  AND 3 ) ;
29 u p ^ re m a in d e r := u p _ r e m a in d e r  D IV  4 ;
30 WHILE tem p2>0 DO
31 BEGIN
32 X : = s c a n _ x [ f i r s t ] ; y : = s c a n _ y [ f i r s t ]  ; r O : = s i z e ;  

f i r s t : = f i r s t + l ;
33 te m p 2 := te m p 2 - l ;
34  END;
35 s i z e : = s i z e * 2 ;
36 END;
37 te m p 2 := m a x _ s iz e *n o _ m a x _ b lo c k s ;  { f i l l  s e c t i o n  2 }
38 WHILE temp2>0 DO
39 BEGIN
40 x : = s c a n _ x [ f i r s t ] ; y : = s c a n _ y [ f i r s t ]  ; r O := m a x _ le n g th ;
41 te m p 2 : = t e m p 2 - l ;  f i r s t : = f i r s t + 1 ;
42 END;
43 te m p 2 := d o w n _ re m a in d e r ;  { f i l l  s e c t i o n  3 }
44  FOR te m p i : = 0  TO 7 DO
45 BEGIN l e a v e s [ t e m p i ] : =temp2 AND 3 ; tem p 2:= te m p2 D IV  4 END;
46 s i z e : = 1 2 8 ;
47 FOR t e m p i : =7 DOWNTO 0 DO
48 BEGIN
49 t e m p 2 : = s i z e * s i z e * l e a v e s [ t e m p i ] ;
50 WHILE tem p2>0 DO
51 BEGIN
52 X : = s c a n _ x [ f i r s t ] ; y : = s c a n _ y [ f i r s t ] ; r O : = s i z e ;  

f i r s t : = f i r s t + l ;
53 t e m p 2 : = t e m p 2 - l ;
54 END;
55 s i z e : = s i z e  D IV  2;
56 END;
57 UN TIL  p o in t= 1 6 3 8 4
58 END;

4.6.1 C om m entary

Procedure Q U A D .O PT  assumes the use of a 128 x 128 im age, and there­

fore takes no param eters. The sm oothness threshold is passed as usual via global 

integer th r e s h .  Q U A D -O PT uses the same m echanism  as QUAD_BACK_RECURS 

to  generate th e  z-scan, i.e. two globally declared lookup tables scan_x and scan_y.

T he program  consists of one large loop containing a sm aller loop to 

actually scan the  pixels (lines 11-14) and a series of loops to  fill the three possible 

sections of the  tree between two breakpoints.



78

Lines 2-5: the  array  le a v e s  [0 . .7 ] is used to  hold the b it pairs derived 

during decom position of the section 1 and 3 signatures. no_max_blocks, m ax .size 

and m ax-leng th  hold the num ber, area and sidelength respectively of the maximal 

blocks found in section 2 . up_rem ainder and dow n_rem ainder hold the signatures 

for sections 1 and 3 respectively, f i r s t ,  max, min and p o in t  have the same 

meanings as in algorithm  3. Note tha t all simple variables are declared as subrange 

type 0 . .65535 ra th e r th a n  as type in te g e r .  This forces the  present compiler 

to  generate code for 16-bit unsigned arithm etic as opposed to  the 15-bit signed 

arithm etic im plied by type integer on a 16-bit com puter. This is necessary to 

prevent sign bit p ropagation  in the shift and merge sequences.

As an aside, note th a t this use of subranges to  force 16-bit arithm etic is 

sem antically unsound, since type 0 .  .6 5 5 3 5  is a subrange type of underlying type 

in t e g e r  [Coo83b], yet type integer on a 16-bit m achine ranges from -32768 to 

32767. Clearly 0 .  .6 5 5 3 5  can hardly be called a subrange of - 3 2 7 6 8 .  .32767!

Line 8 : p o in t  and  f i r s t  are initialised.

Line 10: max, min and p o in t are re-initialised after every fill operation.

Lines 11-14: as in algorithm  3, the im age is scanned in z-order until a 

discontinuity (out-of-threshold point) is found, or the end of the image is reached.

Line 15: norm ally the scan loop (lines 11-14) exits w ith p o in t  at the 

first point of the next scan (i.e. the out of threshold  point). A special case occurs 

when the end of the im age is reached in th a t point is at the last point of the 

area to be filled. Line 15 corrects p o in t  under these circum stances so as to be 

com patible w ith norm al processing.

Line 16: tem pi is set to p o i n t - f i r s t ,  which corresponds to  the distance 

between points A  and  B  in the terminology of Section 4.6. This value will be 

searched by b it pairs un til a maximal block is detected. m ax_size and m ax_length 

are initialised to  the ir largest possible value before in itia ting  the search for a 

m axim al block.

Lines 17-21: m a x .s ize  is stepped down through the  possible sizes of a 

m axim al block until tem pi DIV m ax .size  re tu rns non-zero. At this point the 

largest possible block lying between points A  and B  has been detected.

Lines 22-23: th e  signatures for sections 1 and 3 are derived.

Line 24: the num ber of m aximal blocks (between 0 and 4) is derived 

by subtracting  the length  of the sections 1 and 3 (i.e. their signatures) from the 

distance between points A  and R, and dividing the result by m ax_size.

Lines 25-36: section 1 is filled. The outer loop (lines 26-29, 35-36) 

selects a pair of bits from  the signature, and the inner loop (lines 30-34) fills in
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the corresponding blocks.

Lines 37-42: the m aximal blocks (section 2) are filled in.

Lines 43-56: section 3 is filled using the  same strategy as for section 1 

(lines 25-36) except th a t the bit pairs m ust first be unpacked into the le a v e s  

array  because the unpacking order is the reverse of the filling order.

4.6 .2  P erform ance

A lthough the order relation governing algorithm  4 is near optim al, the
I

constants of proportionality  on the PDP-11 im plem entation yield actual runtim es 

th a t are longer than  those of algorithm  1 over m uch of the range of possible 

thresholds. Figure 4.8 shows the usual run tim e curve against algorithm  1. Clearly, 

the scan tim e will be proportional to the num ber of pixels in the image since they 

are only scanned once. However, each discontinuity in the image will generate a 

sequence of complex (and slow) shift and select operations, and a series of leaf 

fill operations. The run  tim e will therefore be roughly -f dt^ 4- where 

is the num ber of pixels in the image, t ,  is the  scan tim e for one pixel, d is the 

num ber of discontinuities in the image, is the tim e taken to extract the leaf 

p a tte rn  using the shift and select loops and ty is the fill tim e. The num ber of 

discontinuities in the image will be approxim ately the num ber of leaves in the 

quadtree, and  since the calculations are so com putationally  intensive, the run  

tim e will be roughly proportional to the num ber of leaves. Figure 4.8 also shows 

the  num ber of leaves in the tree for each threshold. Even on a PDP-11 w ithout 

‘b it tw iddling’ instructions the algorithm  is fastest over a useful range of values 

(72-164). In  VAX machine code, the algorithm  would speed up significantly. (See 

discussion below).

4.6 .3  A ccuracy

A grey scale quadtree is defined by the d istribu tion  of nodes and the 

colour of the leaves. Q UA D -OPT correctly calculates the distribution of nodes 

{i.e. the shape of the tree) but cannot in general colour the leaves correctly, 

because the leaf colours cannot in general be calculated on the fly w ithout back­

tracking.

A max-min smoothness measure has been selected because it may 

be calculated and  tested in a  serial fashion, w hereas more desirable smoothness 

m easures such as the true  s tandard  deviation of the intensity  histogram  require a 

com plete quadran t to  be scanned before a test can be m ade. The first th ree algo-
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Figure 4.8: Performance of Q U A D .O FT

rithm s have defined the leaf colour as the mean of max and min. In Q U A D -O PT, 

values of max and min may be accum ulated across several leaves before a discon­

tinuity  is found so the individual max and min for each leaf are not available.

The max-min m easure is itself approxim ate, and is used for speed reasons 

and because it is ‘n a tu ra l’ for serial algorithm s. By the same argum ent, colouring 

leaves according to the (max-min)/DIV 2 in Q UA D -O PT is fast and natu ra l. 

The m axim um  error with respect to QUAD_TOP_RECURS occurs when a scan 

section includes a  pixel filled with pixel level i and quadrants containing pixels of 

level i- \- t  where t is the threshold. In such a case the leaves will be coloured with 

(2i 4- 1)/2  which is an error o f f / 2 .  The Q-images are usually indistinguishable by 

eye.

4.6.4 D iscussion

A lgorithm  4 clearly illustrates a m ism atch between an algorithm s and 

the PDP-11 architecture. There is in fact scope for im proving run  tim e by remov­

ing some redundan t operations and im proving the loop design of Q U A D -O PT. 

However, the fata l flaw of this im plem entation which leads to  the disappointing 

run tim es is the lack of b it field m anipulation instructions in  the  PD P-11. Most 

of the tim e associated w ith f j  is spent (a) finding the position of the highest set 

b it in tem pi (lines 17-21) and (b) extracting the b it pairs from  the section 1 and
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3 signatures and ro ta ting  them  down to the bitO/1 positions. This has had to be 

accomplished using a m ultip le ro ta te  and test algorithm . To m ake m a tte rs  worse, 

the  ro ta tion  can only be specified in Pascal syntax by using the  DIV operator, 

and unfortunately  the present compiler is not ‘sm art’ enough to  replace division 

by power-of-two constants w ith arithm etic shift instructions.

In contrast, the  VAX instruction set includes the FIND F IR S T in struc­

tion (also known as P R IO R IT IS E ) ,  the COMPARE FIELD instruction  and the EXTRACT 

FIELD instruction, Together, these would allow a very com pact m achine language 

im plem entation of a lgorithm  4 on the VAX. The problem  of specifying these in ­

struction  sequences to  a high level language compiler rem ains —  it would require 

ex traord inary  depth  of analysis in the compiler to  recognise th a t lines 16-21 m ean 

“find the highest set b it pa ir in te m p i” .

4.7 A lgorithm s +  A rchitectures =  Im plem enta­

tions

O rder analysis of algorithm s gives relations of p roportionality  between 

the  size of a problem  (in th is case the num ber of nodes in the  tree) and its ex­

ecution tim e. The constants of proportionality  are dependant on the particu lar 

im plem entation. This thesis is prim arily concerned with real im plem entations 

and how architectural features pertu rb  the run  tim e behaviour of an algorithm . 

Given th a t the abstrac t algorithm  is constant across im plem entations, com puter 

architecture may be defined as all those properties of a system  th a t can per­

tu rb  the behaviour of an algorithm . This specifically includes such properties 

as processor-mem ory bandw id th  and available addressing m odes, b u t excludes 

engineering details such as transm ission protocols and character coding schemes.

The m ism atch between algorithm  4 and the PDP-11 is great, whereas 

w ith a VAX algorithm  4 would be the most efficient. A lgorithm  3 would be more 

efficient on a system  w ith a  low bandw idth  channel between the  fram e store and 

the  processor. On the experim ental system , which uses a fram e store optim ised for 

image processing to be described in C hapter 5, algorithm  1 perform s surprisingly 

well.

4.7.1 Z-scan by b it tw ister

The calculations required to generate the z-scan im pose a large overhead 

on algorithm  3 and 4. Look up tables have been used to  speed access, bu t these
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binary(N) binary(X) binary(Y) X Y

14 0 0 0 0  0 000  000 0  1110 0000 0010  0000  0011  2 3

15 000 0  0 000  0 0 0 0  1111 0000 0011 0000 0011  3 3

16 000 0  0 000  0001 0 0 0 0  0000 0100  0000 0 0 0 0  4  0

yxyx yxyx yxyx yxyx xxxx xxxx yyyy yyyy

7 766  5544  3322  1100 7654 3210  7654 3 210

Figure 4.9: Z-scan and cartesian coordinate relationship

Figure 4.10: Bit tw ister

require 32K bytes of storage, which is half of the v irtual address space of a PD P- 

11. A little analysis shows th a t the X,Y coordinates of Z-scan poin t are em bedded 

in the binary representation  of N as shown in F igure 4.9.

Thus by separating  out alternate bits from the Z-scan num ber the X,Y 

coordinates may be directly obtained. The PD P-11 has to  use shift and test 

operations to ex trac t the  coordinates.

If the com puter is equipped with a parallel port, a  triv ial hardw are add­

on called a  b it tw ister can be used to  generate th e  coordinates in  two machine 

instructions. T he sixteen o u tp u t bits are cross connected to  the  16 in p u t bits as 

shown in F igure 4.10.

The processor moves the z-scan coordinate to the  o u tp u t register and 

then reads the  x,y coordinates back off the inpu t.
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4.8 D ata  com pression  using quadtrees

T raditional m ethods of signal transm ission use fixed bandw id th  sam ­

pling. Television signals require a full 5'.5MHz bandw idth  channel even though 

uniform  areas in an im age will no t exercise the available bandw idth . The situation  

here is analogous to D ijk stra’s m ultiplier [Dij76]:

“ ...during its lifetime the  m ultiplier will be asked to perform  only a 
negligible fraction of the  vast num ber of all possible m ultiplications it 
could do: practically  none of them! Funnily enough, we still require 
th a t it should do any m ultip lication correctly when ordered to  do so.
The reason underlying this fan tastic  quality requirem ent is th a t we do 
not know in advance, which are the negligibly few m ultiplications it 
will be asked to  perform .”

The television engineer has assum ed th a t he does not know which p a rts  of an 

im age will be busy and which will be sm ooth, so enough channel capacity has 

been allocated to allow for the worst case of a maximally busy image. If however 

a m easure of the busy-ness of an im age could be generated at the transm ission 

end and used to  dynam ically control the bandw idth  of the channel, say by varying 

the sam pling ra te , then  the channel could be engineered to  cope w ith average 

conditions. A m ore concrete exam ple is the use of slow scan TV  transm ission 

down voice grade telephone lines. If an im age is digitised to  128 X 128 eight- 

b it pixels then  16K bytes of d a ta  m ust be sent, which at a typical 1200 baud 

will take approxim ately 2.27 m inutes. In reality, five-bit pixels would be quite 

acceptable, so transm ission tim e reduces to  1.42 m inutes (assum ing no parity). 

Using a  quadtree representation , each leaf could be sent as a five-bit colour code 

com bined w ith a th ree-b it level code. If the  leaves are sent in  some predefined 

order (e.^. postorder as above) then  the  tree could be constructed unam biguously 

w ithout any explicit coordinate inform ation. The Q-image of ANB in Figure 4.11 

contains only 1636 leaves, and could be tran sm itted  in 13.6 seconds. The q-image 

has the norm al blocky appearance which m ay be unacceptable in some images. 

Low pass filtering may be applied to  produce a more aesthetically pleasing image. 

Figure 4.12 shows the result of applying a m edian filter to the Q-image, and for 

com parison. Figure 4.13 shows a  m edian filter of the original image.
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P i g n r e 4 . 1 1 ;  Q.
AN B at threshold 36

Figure 4.12; Medi
>un filtered Q-image
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Figure 4.13: M edian filtered original

4.9 Q uadtree controlled  im age processing oper­

ators

M any im age processing operators m anipulate the image according to  

busy-ness. A part from the sim ple edge detection and sm oothing operators, more 

subtle segm entation and region merging algorithm s may also be edge sensitive. 

Since quadtrees provide explicit inform ation about the busy-ness of an image at 

a point they can be used to  skim  over sm ooth areas in the image, restric ting full 

processing to  points of special in terest.

4.9.1 E dge d etec tio n

T he well known Sobel filter [DH73] is probably the most common edge 

detection operato r in use. It is em pirically known to  be accurate, and a paper by 

Davies [Dav84] has given a theoretical base on which to design families of Sobel 

like ‘circu lar’ operators. However the Sobel is expensive to im plem ent in full 

since it requires a square root operation to  derive the m agnitude of the intensity  

gradient. Typically this square root is calculated using a lookup tab le or one 

of several single iteration  approxim ations to  the square root. C heaper operators 

such as the R obert’s Cross are also in use, bu t these do not provide accurate 

estim ates of edge direction as opposed to  m agnitude, and are unsuitable for some 

algorithm s {e.g. the Hough Transform  based circle detector described in  C hapter 

9).

One approach to  speeding up the Sobel which has been used for indus­
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tria l vision in this laborato ry  is to apply simple in tensity  skimmers before the 

actual Sobel. Assume the  use of a high con trast im age [i.e. the  m ean foreground 

in tensity  should be a t least 30 grey levels away from  the m ean background in­

tensity) and sharp edges where the transition  from  m ean foreground to mean 

background intensities occurs over less th an  10 pixels. If high and low thresholds 

hi and lo are applied to  the image then only points w ith lo < intensity < hi will 

be passed to the Sobel. For simple images such as BISC (Figure 3.6) this gives a 

massive reduction in processing.

The application described in C hap ter 9 includes a circle detector th a t 

relies on the use of a good edge detector. It has been found th a t of the order 

of 100 points around the edge of a 30 pixel radius circle are sufficient to reliably 

locate the centre of a roughly circular food product, and this criterion has been 

used to  provide values for hi and lo in an online inspection system .

The problem s w ith simple skim m ing are (a) it only works for high con­

tra s t images, (b) it requires two thresholds to  be derived using a single setup cri­

terion and (c) intensity  thresholding is vulnerable to  changes in lighting level or 

appearance of the p roduct. All of these factors combine to reduce the robustness 

of the  technique, and can contribute to the  well known problem s of transferring 

laborato ry  techniques to  the real world. These problem s stem  from  the mism atch 

between the skimm ing process and the edge detector. Assum ptions are being 

m ade about the relationship between absolute intensities and the busy-ness of the 

im age. If a p art of the  im age is darker then  the lo threshold then  it is assumed 

sm ooth, and likewise for bright points.

It would be m uch better to  apply a busy-ness rela ted  skimmer to  the 

im age, such as preprocessing by a R obert’s Cross to  find the points of high gradient 

m agnitude, followed by application of a Sobel to  find the gradient directions. This 

involves the application of a single threshold (of gradient m agnitude) th a t is closely 

related  under all conditions with the quantity  under inspection.

The lowest leaves of a quadtree correspond to busy p arts  of the image, 

ie the  edges. F igure 4.14 shows the positions of all level 7 leaves in the Q-image 

of ANB for a threshold of 25. The results of applying a Sobel to  all corresponding 

points in ANB is shown in Figure 4.15 , and  for com parison a full Sobel of ANB 

is shown in Figure 4.16. The Sobel applied to the entire im age executed in 1.19s, 

w hilst w ith the help of the quadtree this decreased to 0.29s.
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Figure 4.14: Level 7 leaves in nuts and bolts

Figure 4.15: Level 7 leaves in nuts and bolts with Sobel data
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Figure 4.16: Full Sobel of nuts and bolts 

4.9 .2  S m ooth in g

Sm oothing is the process of low pass filtering to reduce the effect of high 

frequency noise. Sm oothing will, of course, also degrade edges, and m ust therefore 

be applied w ith care.

In general, each pixel is replaced by the average intensity  of its neigh­

bours, typically the m edian of a 3 x 3 region. The degree of sm oothing can be 

varied by adjusting th e  size of the region over which the average is calculated. If 

the region size is dynam ically varied, then the degree of sm oothing can be reduced 

near known edges.

It is possible to  use the quadtree contour m ap (i.e. the contents of r- 

space as generated by algorithm s 1-3 above) as a controller for the sm oothing 

operator. However, th e  quadtree is essentially an edge preserving representation, 

and sm ooth regions in  the  image may be distorted  (i.e. ‘blocky’). Because of 

th is, the quadtree controller should only modify the region size near known level 

7 leaves, since they are guaranteed to  be ‘real’ as opposed to  an artefact of the 

quadtree conversion process.

Figure 4.17 shows the pen picture of Figure 3.5 after application of a 3 

X 3 m edian filter. F igure 4.18 shows the position of all level 7 leaves in PEN  for 

a threshold of 20, and  the  effects of reducing the m edian’s window area to  the 

four-connected neighbours at level 7 pixels is shown in Figure 4.19. The writing 

is more readable using the  modified m edian, but background areas are still well 

sm oothed.
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Figure 4.17: M edian filter of PEN

Figure 4.18: Position of level 7 leaves in PEN
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Figure 4.19: M edian filter of PEN

4.10 C onclusions

Four quadtree generation algorithm s have been presented. The simple 

recursive algorithm  QUAD_TOP-RECURS works well on the experim ental system  

th a t includes a  high perform ance frame store. A bo ttom  up m erging algorithm  

Q U A D -M ERG E-RECU RS requires relatively few fram e store accesses and would 

be preferable when a low bandw idth  channel is used between the  processor and the 

fram e store. This is especially so on processors such as the VAX or 68000 th a t have 

efficient procedure call and stack frame generation instructions. Two sequential 

algorithm s, QUAD_MERGE_RECURS and Q U A D -O PT use backtracking and a 

serial scan of the image. QUAD_OPT, the best algorithm , is dom inated by the 

calculations required to  find the  leaf positions after a discontinuity has been found. 

T he PDP-11 lacks the necessary b it field instructions to perform  the calculations 

efficiently, bu t even so Q U A D -O PT performs better than  Q U A D -TO P RECURS 

over a useful range of conditions on a system optim ised for fram e store intensive 

operations. In VAX m achine code, QUA D -O PT is expected to  show significantly 

b e tte r  th roughput.

The algorithm s described in this chapter were all developed indepen­

dently by the au thor. B ottom -up algorithm s for quadtree generation are discussed 

in [SamS4].

A pplications of quadtrees to the global control of local image processing 

operations have been considered. Such use can lead to a significant speed up, bu t 

the  ra th e r coarse ‘globality’ inform ation they provide lim its the applicability of the 

technique, and the  tim e taken to  generate the representation can be significant.
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They can also be used to  adap t the range of a filtering operator around edges so 

as to  preserve sharpness, whilst removing noise from background areas.
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C hapter 5 

Fram estore design

5.1 Introduction

Low level image processing requires high bandw idth transfers between 

the  processor and its fram e buffer. M odern com puters such as the VAX or 68000 

w ith large v irtual address spaces may be able to  store complete images using 

m em ory m apped buffers, although the m ultiuser operating systems th a t support 

such m achines often require non-m em ory devices to be accessed via device drivers 

th a t im pose substan tial overheads. O lder m achines such as the PDP-11 rapidly 

run  out of v irtual address space, and therefore require some kind of memory 

m anagem ent un it which may be integral w ith  the frame store.

This chapter looks at the design of fram e stores specifically for image 

processing, as opposed to  graphics generation. Display generation, m em ory sub­

system s, digitisers and host fram e store com m unications are considered, and four 

fram e stores designed by the au thor are described. It is shown th a t direct m em ­

ory m apping of the fram e buffer may not be the best solution, even for those 

com puters th a t support it.

Software support for these devices is described in C hapter 6.

5.2 B asic frame stores

A video frame store is a block of m em ory into which digitised video d a ta  

may be w ritten , retained and subsequently read out for display. T he m em ory is 

sharable between the video circuitry and some processing circuitry, often a general 

purpose com puter. For image processing purposes, the frame store param eters are:

1. the spatial resolution of the fram e store.
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Figure 5.1; Fram e store block diagram

2. the grey scale resolution of the digitiser and the memory planes,

3. the ease and speed with which d a ta  may be retrieved from the  fram e store 

for processing.

Frame stores attached to  com puters are also used for graphics work and 

the display of user interfaces to complex program s. For such system s, the 

ability of the frame store to  m ain tain  m ultiple images, pan and zoom, and 

even draw graphics prim itives autonom ously, are im portan t. Therefore, for 

completeness we include:

4. the display form atting capabilities,

5. the graphics generation com m ands.

5.3 Frame store blocks

Figure 5.1 shows a block diagram  of a frame store.

The RAM may be addressed via the m ultiplexer from either the  host or 

the video address generation circuitry. T here are two prim ary d a ta  buses w ithin 

the frame store — the Pixel D ata  (PD ) bus which connects the video RAM to 

the analogue-to-digital and digital-to-analogue converters, and the  C ontrol D ata 

(CD) bus which connects the host to the  control and sta tu s registers. They are 

connected via the PD buffer. In operation, the host sets up control registers via
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Figure 5.2: Interlaced video signal

the CD bus which define the form of the display and whether fram e grabbing is 

active.

5.4 V ideo signal tim ing

The display generation hardw are is responsible for supplying the ad­

dresses to  the  memory array which define the way in which pixel d a ta  appears on 

the screen. The simplest display merely m aps a contiguous block of memory to 

a rectangle on the screen. More advanced features allow zooming into the image, 

scrolling and panning of the display area relative to  the stored image, windowing 

of the d a ta  to  allow both reduced apertu re  viewing and the presentation of several 

images on screen at once, the generation of cursors and cross hairs w ithout dis­

tu rb ing  the  memory contents, and the m apping of actual pixel values to  various 

on-screen colours.

5.5 B asic video tim ing

A part from exceptional cases where a very high on-screen resolution is 

required, a s tandard  video m onitor will be used as the display device. This will be 

able to display a m axim um  of around 800 x 600 pixels. W hen higher resolution 

is required, special high scan ra te  m onitors are available.

A standard  TV signal generates a raster scan with a 2:1 interlace and a 

4:3 aspect ra tio  [IB71] (Figure 5.2).

The line time is 64/xs, m ade up of 1.55/xs front porch, 4.7/26 sync pulse, 

5 .8 /2S  back porch and 51.95/2S of active video. ‘Black’ is 0.3V above sync level and
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Figure 5.3: Horizontal video tim ing

‘w hite’ 0.7V above black (Figure 5.3).

Each of the two fields is made up of 312.5 lines. Broad and equalising 

sync pulses are used to  trigger the vertical scan and differentiate between the odd 

and  even fields (F igure 5.4).

5.6 V ideo tim ing  generation

T he video tim ing will generate horizontal and vertical sync pulses and 

blanking signals along w ith addresses for the video RAM.

If less th an  300 vertical pixels are required, then the interlacing can 

be ignored, and  two identical fields generated. If the  signal is to  contain Phase 

A lteration Line (PAL) encoded colour inform ation, then a colour burst will be 

required. However, even for low resolution colour displays, PAL significantly 

degrades the displayed im age, so discrete red, green and blue (RGB) drives are 

usually used. A video cassette recorder will require PAL for colour recording.

The sim plest display is formed by m apping video RAM locations to  a 

single rectangle on the  screen as shown in Figure 5.5.

This m ay be achieved by using two counters, one for horizontal tim ­

ing clocked off a  m aster pixel clock, and another clocked off the HSYNC signal. 

Registers holding th e  display and sync s ta rt and end points in pixel coordinates 

are com pared w ith  th e  value of the counter a t each cycle and sync and blanking 

signals generated accordingly (Figure 5.6).

The following pseudo code describes the X-logic function. Note th a t the
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Figure 5.6: Simple display generation logic

RISING p ix c lk  DO construction indicates th a t the enclosed clauses should all be 

evaluated in parallel on every rising edge of the signal PIXCLK.

MODULE x _ lo g ic  
( IN  p ix c lk :  s ig n a l ;  

x .s c r e e n ,
x _ d is p la y _ s t a r t , x _ d is p la y _ e n d ,
x _ s y n c _ s ta r t , x_sy n c _ e n d : ARRAY[ 1 -.xw id th ] OF s ig n a l ;
OUT x _ s y n c ,x _ e n a b le :  s ig n a l ) ;

BEGIN x _ lo g ic  
RIS IN G  p ix c lk  DO 

BEGIN
IF  x _ s c r e e n = x _ d is p la y _ s ta r t  THEN x _ e n a b le := t r u e ;
IF  x _ s c re e n = x _ d is p la y _ e n d  THEN x _ e n a b le : = f a ls e ;
IF  x _ s c re e n = x _ s y n c _ s ta r t  THEN x _ s y n c := tr i ie ;
IF  x _ s c re e n = x _ s y n c _ e n d  THEN x _ s y n c := fa ls e ;

END
END x _ lo g ic ;

The logic block takes as inpu ts  the  x .s c re e n  counter contents, and values for 

display s ta rt and end together w ith sync s ta rt and end from the  corresponding 

latches. It generates x_enab le which is used to enable the o u tpu ts  of the video 

RAM and x .sync  which forms the horizontal sync pulse. A sim ilar logic block 

would be used for the y axis. In a fully program m able system , the position and 

size of the display window could be modified by updating the  la tch  contents.
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Figure 5.7: Advanced video tim ing

5.7 A dvanced v id eo  effects

By changing th e  m apping of video RAM addresses to  points on the 

screen, zoom, pan, scroll and  m ultiple window displays become possible. In the 

basic scheme above, th e  o u tp u ts  of the screen address counters are used directly 

to  address the video RA M . T he advanced scheme requires a separate x -a d d re s s  

counter, a zoom counter and x _ s ta r t  and x_zoom registers as shown in Figure 5.7.

The x_add ress counter is loaded by the horizontal sync pulse. The 

x_zoom counter is clocked from  the m aster pixel clock when x_en is active. The 

Ripple Carry O ut (R C O ) from  x_zoom is used to  clock x_address and to  reload 

x_zoom from its associated register.

The displayed im age can be zoomed by loading a zoom factor into 

x_zoom. This effectively divides down the clock rate to the x_address counter 

causing pixels to  be repeated  in adjacent display slots. Scrolling is achieved by 

changing the x _ s ta r t  address which will move the display window over the video 

RAM contents.

M ultiple windows m ay be displayed by replicating the logic of Figure 5.7 

and adding m ultiple screen _ x  registers to  the logic of Figure 5.6 to  enable the 

windows. A priority  encoder will be required to  resolve addressing conflicts be­

tween the m ultiple windows if more than  one is active at any point on the screen
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(i.e. when overlapping windows are present)

5.8 M em ory

Large am ounts of storage are required for high resolution images. G raph­

ics oriented fram e stores are available w ith on screen resolutions of 1024 x 1024 

24-b it pixels, and several separate image stores. However, for real tim e image pro­

cessing work it is preferable to use the lowest resolution com patible w ith solving 

a given problem , because of the increase in  processing tim e associated with high 

resolution images.

Most of the  work described in this thesis is based around 128 x 128 

eight-bit monochrom e images, and each of these requires 16K bytes of storage. 

It is useful to  have between four and sixteen images available simultaneously, 

and so between 64K and 256K bytes of m em ory are required. The number of 

sim ultaneous images required is independent of display resolution, so th a t for a 

1024 X 1024 24-bit colour system, between 12M and 48M byte (IM  =  1024K) are 

needed.

The cheapest way of im plem enting m em ory systems is to use dynamic 

RAMs (DRAM s) which are usually a generation ahead of sta tic  RAMs (SRAMs),

i.e. a t any one tim e equivalently priced DRAM s and SRAMs will differ in their 

capacity by a factor 4. However, 512 x 512 pixel tim ing requires memory cycle 

tim es below 70ns, and no commercially available DRAMs have such a short cycle 

(as opposed to  access) tim e.

The straightforw ard solution to this bandw idth  problem  is to  use static 

RAMs which are available w ith cycle tim es down to  40ns and below. Another 

advantage of using sta tic  RAMs (apart from their cycle tim e) is the lack of critical 

tim ing needed for refreshing dynamic RAMs, although in a video system  continual 

scanning of the m em ory array is already occurring, so refresh may not be much 

of an overhead.

Large sta tic  RAM arrays are uneconomic in term s of price and con­

sum ption of board real estate. Various m odifications to  the basic DRAM design 

have been m ade by m anufacturers to overcome the bandw idth  problems for video 

applications:

1. Page mode [Tex84]

Internally, dynam ic RAMs comprise square arrays of bit cells. Read-out 

occurs by precharging an entire set of column lines which are then condi-
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Figure 5.8: Dynamic RAM architecture

tionally discharged by a selected row of cells (see Figure 5.8). The resulting 

logic levels are sensed and latched in a row of sense amplifiers. The required 

bit is then steered to  the output via the column decoder. This is an in­

herently two phase operation which gives rise to  the fam iliar multiplexed 

row /colum n addressing mechanism of commercial DRAM s. However, once 

a row of bits has been latched in the sense amplifiers, fast single phase access 

to o ther bits in the  row is possible by latching new colum n addresses. This 

can double the bandw id th  of the device for the sequential type of access 

required for video display. Most new DRAMs support page mode.

2. Nibble mode [Inm84b]

M any dynam ic RAM s are internally organised as four separate  arrays. Four 

bits are accessed on each cycle, and two bits of the column address are 

decoded to  provide an  apparent single bit access. An access to any other 

b it, including one in the same nibble, requires a com plete memory cycle. 

INMOS m arket a device (IMS2600) [Inm84a] th a t has a tw o-bit presettable 

counter between the bo ttom  two column address inputs and the nibble-bit

decoder. This counter is loaded on the falling edge of CAS, and is clocked 

on the rising edge. Norm ally this device behaves as a s tandard  64K X 1-bit

DRAM , bu t by toggling CAS whilst RAS is low the counter will be updated 

and all four bits in  the  nibble may be sequentially accessed.

3. VRAM [Hit86]
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The previous two techniques exploit the organisation of DRAM s and  use 

a m inim um  of ex tra  on board  logic. No ex tra  pins are required for their 

operation. VRAM s (video RAMs) contain shift registers in parallel w ith 

the sense amplifiers which can load an entire row of bits in  one cycle and 

then  clock them  out th rough  a separate port under the control of a separate 

serial clock asynchronously with norm al operations on the random  access 

port. The norm al random  access p art of the device operates ju s t like a 

standard  64K x 1 D RAM , and can even support page mode operations.

4. S tatic column RAM  [Inm86]

Inmos have a DRAM  which has a 256-bit sta tic  RAM in parallel w ith the 

sense amplifiers. As in  the  VRAM, a com plete row may be loaded into the 

SRAM, after which full random  access operations can occur b o th  on the 

DRAM and the  SRAM . The disadvantage of this approach is the ex tra  pins 

required to support independent addressing on two arrays.

In the general case where com pletely random  access at high speed to  all pixel da ta  

is required, none of these techniques are helpful, since the linear address scan is 

no longer guaranteed. R andom  access may be required by high speed processors 

including a graphics processor. Of course, it is possible to  lim it the cycle tim e 

of the processor to allow for the full access tim e of the RAM s, bu t if this is 

not satisfactory there is no recourse bu t to a true  high bandw idth  device. As a 

compromise it may be viable to  m aintain ju st one display plane of sta tic  memory, 

and build a bulk array  of slower dynam ic RAM. A simple D irect M emory Access 

(DMA) unit consisting of th ree counters would be sufficient to  transfer blocks 

at high speed across th is two tier system. S tatic  column RAMs may be the 

forerunners of a whole family of devices th a t in tegrate  useful am ounts of static  

RAM and large am ounts of dynam ic RAM in a transparen t way onto one chip.

5.9 D igitiser

For image processing, the digitiser is the m ost critical p a rt of the  system , 

and it will often be the m ost expensive too. A 128 pixel line requires samples every 

400 ns (2.5 MHz) and a  768 pixel line every 66 ns (15MHz). At these frequencies 

a flash converter will be required. This comprises a set of m atched com parators 

connected to a resistive divider network. The ou tpu ts of the  com parators will 

usually be fed to  an on-board  encoder so th a t a binary (ra th e r th an  therm om e­

ter code) ou tpu t will be produced. These devices are expensive because of the
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difficulty of m atching the com parators and  resistors to  such an accuracy th a t the 

inherent non-linearity is less than  the resolution of the converter. The resolution 

increases exponentially w ith the num ber of b its  in the  ou tpu t, so an 8-bit converter 

will be much more expensive than  the 7-bit version. Only the most expensive of 

cam eras are capable of producing eight b its of inform ation, and so it is common 

to  find only seven or six-bit converters used. To resolve inform ation in the eighth 

b it, the  noise in the system  must be less th a n  1/256 of the m axim um  am plitude. 

This corresponds to a signal to noise ra tio  of b e tte r  than  48.2 dB. An expensive 

broadcast quality colour cam era (JV C KY-2000B) in use in this laboratory  has a 

S /N  ra tio  of 52dB. Generally available m onochrom e cameras suitable for indus­

tria l inspection would have a worse in trinsic S /N  ra tio  and be susceptible to  noise 

pickup from nearby machinery.

5.10 H ost interface

The most im portan t a ttr ib u te  of a  fram e store for real tim e image pro­

cessing is the d a ta  transfer speed between im age m em ory and the processor. One 

of three strategies may be adopted:

1. In tegrate the image memory directly into the  processor’s s tandard  memory 

architecture so th a t images appear as arrays in main memory.

2. A ttach the fram e store as a high speed peripheral, either via special I /O  

channels or via DMA links transferring  im age d a ta  into main memory. In



103

Main
memoryCPU MMU
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this case the images again appear as arrays in main memory, but access 

tim es will be long.

3. Use a special memory po rt th a t exploits the  special behaviour of image 

processing operators to increase th roughpu t.

5.11 M em ory architectures

Many older generation processors have severe lim its on their addressing 

range, and this may itself slow down fram e store accesses. F igure 5.10 shows a 

typical m inicom puter memory architecture.

The CPU has an address bus of lines. Thus the m axim um  num ber 

of addresses th a t may be accessed directly by a program  is 2“*. Typically a* 

ranges between 16 and 32, and the  address range is known as the virtual address 

space. The MMU provides two functions. For system s with a small virtual address 

space, access to  larger physical arrays is possible via expansion b its stored in MMU 

registers. On the P D P - l l/3 4 a  for instance, the  64K byte v irtual address space is 

split in to  eight pages, each with an associated Page Address Register (PAR). The 

PAR contains a 12-bit offset specifying the physical address of the first location 

in the page. Offsets m ust be aligned w ith a 32 byte boundary, th a t is the 12-bit 

offset forms the high 12 bits of an 18-bit address. During execution, this 18-bit 

address is added to the offset in to  the  page specified by the v irtual address to 

form  an 18-bit physical address. Extensions of th is arrangem ent allow P D P -l ls  

to  access up to 4M byte of m em ory using a  22-bit address.

The second function of m em ory m anagem ent is to  pro tect segments of
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code and d a ta  from  each other, and this is useful even on processors w ith large 

v irtual address spaces. Protection bits associated w ith v irtual pages may be used 

to  trap  illegal accesses, and m ultiple execution modes allow a hierarchy of software 

layers to be built up, w ith separate m appings for each. On most machines, certain 

instructions (such as HALT) are privileged, and  m ay only be executed in high 

priority  execution modes. Typically operating  system  functions will be executed 

in  kernel or supervisor mode, and applications in user mode.

Newer architectures (VAX, 68020) allow m em ory m anagem ent traps to 

be taken during  instruction  execution, a t which point the instruction  itself aborts, 

ra th e r th an  running  to  completion before entering the trap  service routine. This 

allows the generation of virtual machine  system s, in which a large v irtual address 

space is m apped  into a small physical address space (the reverse of the earlier 

m emory m anagem ent scheme). Only small p a rts  of a program  need to be memory 

resident sim ultaneously. If a reference to  a non-resident page of code is m ade, a 

page fault occurs which suspends instruc tion  execution whilst the relevant page is 

fetched from  backing store. The offending instruc tion  is then  restarted  w ithout 

any d isturbance to  the program ’s context.

Indiscrim inate use of v irtual m em ory may produce poor results. Many 

studies have been m ade into the optim um  size of page and the best algorithm  to 

use for reta in ing  pages in memory [Knu70]. The VAX 11/780 uses a page size of 

512 bytes. Efficiency of accesses to large arrays can vary significantly depending 

on the order in which the array  is accessed. Consider a 1024 x 1024 byte array 

which is to  be accessed via one 512 byte page (an extrem e exam ple). FORTRAN 

stores arrays by column, ra ther than  the  more na tu ra l row first ordering. If the 

array  is to  be ra s te r scanned in row order, then  each pair of references will be 

separated  by 1024 addresses, and so every single reference will cause a page fault. 

However, if the  array  is scanned in column order, a page fault will occur only 

when a page boundary  is crossed. Row order traversal thus generates 512 times 

as m any page faults in the worst case. For simple processing, page faulting may 

dom inate com putation  thus increasing execution tim e by greater than  two orders 

of m agnitude. Section 5.14 describes a m em ory m anagem ent approach th a t allows 

pixel windows to  be accessed via absolute addressing.

5.11.1 In tegration  into m ain m em ory arch itecture

If the host has a large v irtual address space, or if the  v irtual to  physical 

relocation is efficient and the physical address space is large, it may be possible
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to  place im age m em ory on the same bus as m ain memory. A contention s tra t­

egy will be needed to  resolve conflicts between video and host access. Usually 

this will m ean either making the processor wait un til video blanking time before 

allowing m em ory access, or allowing the processor to  in te rru p t video operations, 

thus causing on-screen hashing. Once the im age is available in memory, efficiency 

will be very dependent on the speed of indexed addressing on the host, and the 

algorithm  used to  calculate array offsets.

5.11 .2  A rray access techn iques

Access to  an element a ( i , j )  of a two dim ensional array  will be m apped 

to  an address:

base j  X imax  -f i

where base is the address of the first element in  the array  and imax is 

the  largest value taken  by i. Calculation of the product te rm  will dom inate the 

access tim e, especially on processors lacking hardw are multiply.

This m ultip lication overhead may be removed by the  process of vectoris­

ing, i.e. using an auxiliary vector v ( j )  th a t holds the s ta rt addresses of each of 

the j  rows. In th a t  case, access to  element a { i , j )  m aps to

v{ j)  +  t

T he space overhead is one column of pointers, which is usually the same as one 

column of integers.

M any high level language compilers autom atically  make use of vectored 

arrays for wide and  high dim ensional cases. The RT-11 FO RTRA N  IV compiler 

in use in  this labora to ry  vectors arrays if the ratio  of sizes between the array itself 

and the access vector is less than  25%. It always a ttem p ts to  vector the higher 

dim ensions, so it is good program m ing practice to declare a 5 X 100 array as 

a (1 0 0 ,5 )  not as a (5 ,1 0 0 )  since only 5 words of vector storage are required as 

opposed to  100.

5.11 .3  In d irect and indexed  addressing

B oth of the  above formulae for accessing array  elem ents require at least 

one addition  and  one indirection. Nearly all processors provide an indexed ad­

dressing m ode for th is purpose. In general, a constan t is added to  the contents 

of a register, and  th e  result used as the address of the  elem ent. Because of this,
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indexed addressing is slower th an  using the contents of a register as the  address 

directly, because the constan t m ust be fetched from memory and th e  addition 

perform ed before the effective address is available. On an MGS m em ory PD F 

11/34a , use of indexed addressing adds around 1.5/xs (dependent on instruction) 

to  execution tim e over sim ple indirection. Absolute addressing is equivalent to 

indexed addressing on the  program  counter, bu t if the address is known at com­

pilation tim e, the dereferencing of coordinates is not required. Thus accessing 

of array  elements, even using special addressing modes is slower th an  accessing 

absolute locations. '

5.11 .4  In tegration  in to  th e  peripheral sy stem

If the available physical or v irtual memory space of the processor is less 

than  th a t required for im age storage, then the image memory cannot be integrated 

w ith the m ain m em ory arch itecture. In this case, the frame store may be trea ted  as 

a form  of backing store, and  in tegrated  into the peripheral system . Some machines 

use specialised I /O  processors (called ‘channels’ in IBM installations) to  transfer 

d a ta  between peripherals and m ain memory. O ther smaller scale machines use 

simple DMA controllers, which typically consist of a word counter, a m ain memory 

address counter and a peripheral controller. A transfer is in itia ted  by loading the 

s ta rt address and the num ber of words to  be transferred to the relevant registers, 

and proceeds autonom ously to  com pletion or an error abort, at which point the 

host is in terrupted . In the  case of im age memory, the peripheral controller section 

can be as simple as a th ird  counter addressing the memory planes.

This form of connection is popular with fram e store m anufacturers be­

cause it requires the m inim um  disturbance to already existing hardw are and op­

erating  systems. The only hardw are m odification required is the addition of a 

small peripheral controller (ra the r th an  the rebuilding of the m em ory environ­

m ent required above), and  since all m odern operating systems im plem ent device 

independence through a device driver protocol, the only system  software required 

to  support the fram e store is a simple device driver to read and w rite blocks of 

data .

U nfortunately, th e  peripheral type connection brings no operational ad­

vantages to  the user, since the  d a ta , once transferred , merely appears in memory 

as an array just as in the  m em ory in tegrated  case. The transfer itself imposes an 

overhead, which m ay be significant since peripheral channels are only engineered 

to  cope w ith disc speed accesses and may not be able to  make use of the extra
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bandw idth  available from  the  fram e store.

5.11.5  Specia l purpose m em ory architectures

As noted above, im age memory requirem ents often ou tstrip  available 

v irtual or even physical addressing capabilities, and a common solution to  this is to 

a ttach  the  fram e store as a bulk storage peripheral. Another common solution is to 

use coordinate registers to  specify the required pixel, and a pixel register to  access 

the image planes. Four 128 x 128 byte wide planes could be accom m odated on a
I

PDP-11 with the use of only three 16-bit words: an X register, a Y register and a 

pixel register. This m ay be seen as a special purpose memory m anagem ent scheme, 

whereby the X and Y registers hold the offset into image memory (equivalent to  the 

PDP-11 PAR) and the  pixel register corresponding to  the v irtual page. N aturally, 

this arrangem ent is not very efficient, since in general a random  access to  any pixel 

will require three m em ory accesses, although m ultiple accesses to  the  same pixel 

will in fact be more efficient th a n  in the  array m apped case because as noted 

above, compile tim e calculated absolute or relative addressing is quicker than  

run tim e calculated indexed addressing. O verheads can be reduced by providing 

m ultiple pixel registers, thus increasing the size of the window into im age space. 

At this point a m em ory m anagem ent scheme th a t parallels the v irtu a l/ physical 

m apping has been created, except th a t address translation  occurs only for th a t 

block of addresses allocated to  the  pixel window.

M any of the im age processing operators do not access images random ly, 

bu t in a well defined scanning sequence. At each point in the sequence, a small area 

of the image surrounding the  central pixel is accessed. The memory m anagem ent 

units on frame stores bu ilt for this project m ap the central pixel and its neighbours 

to  a series of absolute locations in memory. This allows window operators to  use 

absolute or relative addressing to  access the window, rather than  the  complex 

indexed accesses used when the  im age d a ta  exists in main memory. Thus, although 

m emory m anagem ent is being used to  circum vent the  lim itations of the  processor, 

it actually provides significant im provem ents in efficiency. E x tra  speed can also be 

gained if a second set of window registers is provided tha t when accessed cause an 

au tom atic increm ent of the  window position to  the next location. For applications 

requiring a raster scan of the  im age this completely removes the coordinate update 

overhead.

This approach works well on a PD P-11. However, on the micro VAX, the 

peripheral devices on the  Q bus (including the  frame store) have much longer access
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tim es than  the processor’s m ain m em ory which is connected via a synchronous 

bus called the PM I (P rivate  Memory Interconnect). The speedup is due to  three 

factors:

1. the PM I runs synchronously w ith th e  processor removing de-skew overheads 

associated with the  Q-bus,

2. the  PM I da ta  bus is 32 bits wide w hereas the Qbus is only a 16-bit bus ,

3. the micro VAX Q-bus interface is optim ised for block mode DMA operations 

and is in fact slower th an  some PD P-11 im plem entations for program m ed 

I /O .

As a result, it is alm ost always best to  transfer d a ta  from  the frame 

store to  the micro VAX m ain memory for processing ra ther than  perform ing the 

processing ‘in the fram estore’. The exception is when m ain memory on the m i­

cro VAX is too small to  hold the process, in  which case paging will begin to occur.

In extrem e cases when m ultiple large processes are attem pting  to run , swapping 

of entire processes will occur and a significant degradation of perform ance will 

result.

The memory architecture described in th is section has been used to  good 

effect on the IPO FS and V I fram e stores described below. V2 which was designed 

for VAX hosts would not gain from such circuitry  and adopts a more conventional 

m em ory m apped approach. V3, which will also be used w ith PDP-11 hosts will 

have a memory m anagem ent unit.

5.12 IPO FS —  a com pact h igh perform ance frame 

store

The Image Processing O riented Fram e Store (IPO FS) is designed to 

be com patible w ith a fram e store in use in this laboratory  described by Cook 

[Coo83a]. Cook’s fram e store occupies a large p a rt of the address space of a PD P- 

11 bu t allows access to  a 256K byte im age address space using window m apping. 

IPO FS  is constructed using more m odern and com pact technology and offers 

several new features. It is m ore closely optim ised than  Cook’s fram estore for use 

w ith  PDP-11 systems in  th a t it has a fully asynchronous interface to  the  host 

and  it requires only IK  byte of address space. This is im portan t because PDP-11 

system s expect all peripherals to be located in an 8K byte section a t the top of 

th e  address space, and accessing devices outside th a t area causes problem s with
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the operating  system. Two software systems (P P L 2 [Coo83a] and P IP E  which 

are described in C hapter 6) have been developed to  overcome th is addressing 

difficulty, bu t neither would work on a basic PD P-11 lacking memory managem ent 

hardw are. T he new fram e store can operate w ith a m inim al single board PDP-11 

com puter.

5.13 IPO FS specification

IPO FS is capable of holding and displaying up to  eight 128 x 128 pixel 

im ages a t 8-bit resolution. It can acquire real tim e video d a ta  from a cam era 

digitised to  7 bits. Memory m anagem ent allows a  host processor direct access to 

points w ithin a  5 x 5 window centred on any pixel. Access to o ther parts of the 

im age requires the  updating  of a coordinate register.

The m ain  controller and host interface reside on a single quad-w idth Q- 

bus card. Up to  128K bytes of static  RAM m ay be used as the pixel memory. 

T he pro to type is based around 16K bit RAM chips and two boards the same size 

as the controller would be required to fully populate  the address space. Not all 

of the controller card is occupied at present, and if a  PCB were designed it would 

be possible to  include all 128K of RAM on board  using 64K x 1 static  RAMs.

In addition , a small digitiser board  is housed in a die cast box for im ­

proved noise im m unity; this passes digitised video to  the controller over a ribbon 

cable. T he controller and memory is designed to  reside inside a VT103 intelligent 

term inal along w ith a PD P-11/21, 11/23 or 11/73, disk interface, host memory 

and a real tim e clock card. This forms a very com pact system, and when coupled 

w ith a sm all disc drive provides a portable version of the m ain research mini­

com puter. A lgorithm s developed in laboratory  conditions can be tested in the 

factory, and only a small am ount of equipm ent needs to  be transported .

5.14 IPO FS theory o f operation

A block diagram  of IPO FS is shown in Figure 5.11. Since a 6845 CRTC is 

used to  generate the video tim ings, some display effects are achievable including 

scrolling, windowing and the display of a non-destructive cursor. A light pen 

in p u t is also available to  the frame store. A ROM  based window m apper is used 

in conjunction w ith X and Y coordinate registers to  speed access to the image 

data . T he size of the window is restricted to  32 elements so as to  reduce the 

dem ands on address space. Individual windows are available for each image, but
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Figure 5.11: IPOFS block diagram  

they are all linked to the same coordinates.

5.14.1 R eg ister  set

IPO FS occupies IK  bytes of the PDP-11 I /O  page which is split into 

two 512 byte pages, one for control registers (CONBLK) and the other filled with 

window registers (REG BLK ). There are 6 control registers as shown in Table 5.1.

T he CSR has four read only bits th a t re tu rn  the curren t sta tus of the 

synchronisation and blanking signals. V is the vertical sync, H the horizontal 

sync and B the blanking signal. In addition the C bit re tu rns the logical O R of 

the syncs, which supplies composite sync to the cam era. The CSR also has one 

read /w rite  b it (G ) th a t governs the state of the video acquisition and display cir­

cuitry. If G is high then the ADC will write d a ta  into memory giving a continuous 

fram e grab cycle. W hen G is reset, normal display of the stored image is resumed.

T he CRTC register is used to access the 6845, which contains 18 internal 

registers. R ather than  m apping these directly, which would require 18 words of 

address space, a  separate address register is used to  specify the  active in ternal 

register, which is then accessed via a ‘d a ta ’ pseudo register. As a result, only two 

bytes are used in an eight bit system. In IPO FS, this is fu rther reduced by using 

b it 8 of C R TC R  to  specify which pseudo register is to  be opened, and accessing
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Control and Status (CSR)

Cathode Ray Tube C ontroller (CRTCR)

X coordinate (X)

Y coordinate ( Y )

D isplay s e le c t  (DISP)

GRAB s e le c t  (GRAB)

CVHB--------------------- G>
  ----  ̂ cccc cccc>

  xxxx xxxx>

--------------  yyyy yyyy>
--------------  dddd dddd>

--------------  gggg gggg>

A ll b it s  are read /w rite , except CVH and B which are read on ly , and 
R which i s  w rite only.

Table 5.1: IPO FS register set

both  address and d a ta  registers through bits 0-7. To clear in ternal register 5, the 

following sequence is required:

MOV # 5 ,CRTC ;b it  8=0 for  address r eg is te r ; data = 5 

MOV #400,CRTC ;b it  8=1 for  data r e g is te r ;  data * 0

By m anipulating the in ternal registers, tim ing param eters can be set up and 

certain video effects can be generated such as scrolling and lim ited zoom and 

windowing. Because of the  constrained natu re  of the 6845, program m ing is quite 

difficult, and for fu rther details reference should be made to  [Mot81]. Usually, 

the  6845 will be initialised a t powerup using the supplied utility  IP IN IT , and not 

subsequently altered.

The X and Y registers together specify the centre point of the  window. 

These registers are eight b its  wide, w ith only the lower seven bits significant.

DISP specifies th e  num ber of the image to  be displayed. It is an eight b it 

register with the lower th ree  bits significant. If the G bit in the CSR is set, video 

acquisition is in progress, and  the display will show the ou tpu ts  of the digitiser.

GRAB is an eight-b it register — one bit for each of the  eight available 

images. W hen the corresponding bit is set, th a t plane is enabled for fram e grab­

bing, and will have video d a ta  w ritten in to  it when the G b it in the  CSR is set. 

In this way, m ultiple copies of an image may be acquired simultaneously. This is 

useful for serial algorithm s th a t destroy the original image during processing bu t 

need to  refer to the original in la ter stages.
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The other 512 byte page (REG BLK ) contains 8 sets of 32 window regis­

ters, one set per im age plane. These are allocated in a spiral fashion:

27 31 26

16 15 14 13 12

17 4 3 2 11
18 5 0 1 10 30

19 6 7 8 9

20 21 22 23 24

28 29 25

This provides a 5 X 5 window w ith some useful ex tra  points. T he num ­

bering is unfortunate since the spiral is not positively increasing (the origin is in 

the top left of an im age so as to  conform to  the conventional video ras te r scan) — 

this is to  retain  com patability  w ith Cook’s fram e store.

5.15 Internal operation

IPO FS has a controller board , one or two memory boards and a digitiser 

board  interconnected by ribbon  cables.

5.15.1 C ontroller board

The controller has three m ain in ternal sections: the Q -bus interface, the 

video tim ing logic, and the  registers and  m ultiplexers. A diagram  is shown in 

F igure 5.12.

Host access occurs via the  Q-bus, which is an asynchronous m ultiplexed 

bus. A ddress/da ta  lines, address and read /w rite  strobes, and the RPLY  hand­

shake line are buffered from  the Q -bus connector. Addresses are la tched  on the 

rising edge of the address strobe, and decoded to  s ta rt host cycles. REG BLK  

addresses are decoded to  give individual clocks for each of the onboard registers. 

A byte wide static RAM (called the shadow RAM or SHRAM) parallels all R E G ­

BLK addresses. On a w rite bo th  the register and the  RAM are updated . On a 

read, only the SHRAM is accessed. This allows read-back of all registers.

M aster tim ing is generated from a 20MHz crystal which is divided down 

to  give 2.5 and 3.3MHz pixel clocks for rectangular and square pixels respectively. 

In the prototype, only square pixel tim ing is used, bu t the addition of a  m ultiplexor
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Figure 5.12: IPO FS internal operation

under control of one of the unused CSR bits would provide software selectable 

square or rectangular pixels.

Sync signals, blanking and physical address signals are provided by the 

6845. At its maxim um  pixel frequency of 2.5MHz, the 6845 is not able to  generate 

a 128 X 128 square pixel display, so the CRTC is program m ed to provide a 64 

X 128 pixel display, and the least significant PX line is driven directly from the 

3.3MHz clock.

Video d a ta  from the digitiser or memory board is latched and passed to 

a fast DAC. The latch is cleared during blanking tim e. The o u tpu t of the DAC is 

mixed with sync pulses in a high ou tpu t gated-input differential amplifier, which 

drives 7511 loads directly.

An eight-bit la tch  is provided for each of the registers. The ou tpu ts of 

the X and Y registers are combined w ith the low 5 address bits from the host 

in two m apping PRO M S. These contain lookup tables for the  offsets required 

to  generate the spiral window. During host access to the memory board {i.e. 

CONBLK accesses) video addresses from  the  6845 are disabled and the memory 

bus is driven from the m apping PROM s.

CSR bit 0 (G ) governs the acquisition/display mode. D uring display 

m ode, the low three b its  of DISP are decoded to  select one of eight image address 

lines. During acquisition, these lines are driven by the ou tpu ts  of the GRAB
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register, and  w rite pulses are sent to the  m em ory board. The selected images will 

therefore have video d a ta  w ritten  into them .

5.15.2 M em ory board

T he m em ory board  holds 32 2K x 8 sta tic  RAMs arranged as four blocks 

of 16K bytes each. A 3-8 decoder provides chip selects w ithin a block, bu t m ultiple 

blocks m ay be sim ultaneously enabled for w riting.

5.15.3 D ig itiser  board

This board  is based around the TRW  1047, a 7-bit 20 MSPS convertor. 

Incoming video d a ta  is black level clam ped and dc coupled to  a high bandw idth 

inverting am plifier. Conversions occur on com m and from the video tim ing logic, 

and are m ultiplexed onto the im age d a ta  bus using tri-sta te  buffers.

5.16 Program m ing differences w ith C ook’s frame 

store

T here are several differences between IPO FS  and Cook’s fram estore th a t 

affect the po rtab ility  of software:

1. square/ rectangular pixels,

2. edge registers,

3. length  of coordinate registers,

4. fram e grabber sequencing,

5. no hexagonal tessellation.

The square pixels of IPO FS m ean th a t fram e store coordinates m ap directly to real 

world coordinates. W ith  Cook’s fram e store, a 4 /3  correction m ust be applied to 

all y coordinates to com pensate for the rectangular m apping used. W hen IPOFS 

is in rectangu lar mode, the m appings correspond. However, IPO FS rectangular 

mode is disabled in the prototype.

Cook’s fram e store has edge registers which are used to  catch window 

accesses m apping  to out of bounds addresses as for instance when x = y = 0  and an 

a ttem p t is m ade to access window element P2. IPO FS was designed with edge
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registers, bu t they are disabled on the p ro to type so th a t out of bounds accesses 

w rap round.

T he coordinate registers on Cook’s fram e store are seven bits long, i.e. 

the Pascal fragm ent x := 1 2 7 ;  x : = x + l ;  w r i t e l n ( x )  outpu ts zero. This is dan­

gerous, because the  host processor will assum e th a t the registers are byte-wide. 

An x-scan on Cook’s fram e store is typically generated with:

x := 0 ;  REPEAT { f u n c t io n } ;  x : = x + l  UNTIL x = 0 ;

An optim ising compiler will generate the  following m achine code: 

c l r  X

lo o p :

; fu n c t io n  

in c  X 

bne loop

W hen X is 127 the in c  instruction  will yield 128 in the processor’s internal 

ALU. W hen this resu lt is w ritten  back to the fram e store, the top b it will be 

discarded leaving a zero. The next increm ent instruction  will therefore yield 

a one. As a result the  ALU result will never be zero, so the loop will never 

te rm inate . The coordinate registers on IP O F S  are eight bits long and behave 

exactly as norm al m em ory locations.

Cook’s fram e store contains in ternal logic for sequencing the frame grab. 

IP O F S  requires the host to  m onitor the vertical synchronisation bit and enable 

and  disable grabbing directly.

Cook’s fram e store supports hexagonal m appings of the window registers. 

This is not available on IPO FS because it  was a very rarely used feature of the 

earlier fram e store. It could be added sim ply by pu tting  new addresses into the 

lookup ROMs.

5.17 V I

The project described in C hapter 9 is based on a real tim e MIMD m ulti­

processor system  called IM P (Imaging M ulti-Processor). A new fram estore called 

V I was designed based on IPO FS bu t w ith  a line-scan interface, a high speed 

m em ory m apped p o rt, VM E bus to  the  IM P backplane and using newer memo­

ries th a t provide a tru e  single board fram e store.

V I is in ternally  similar to  IPO FS w ith the  following differences:
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1. The Qbus in terface is replaced with a VM Ebus interface. It is intended 

to  be used w ith a  separate  Q-bus to VMEbus converter to  be described in 

C hapter 9.

2. High speed 16K x 1 sta tic  RAMS are used to  reduce the  physical size of 

the memory array.

3. Access to  a 7 x 7 window is supported  (5 x 5 on IPO FS).

4. V I has a novel line-scan interface.
)

5. V I has a m em ory m apped port in addition to  the ROM  m apped window 

port.

6. V I has a W IP E  reg ister which enables an image plane to  be initialised to  a 

constant value in  one fram e tim e w ithout processor intervention.

7. Sim ultaneous g rabb ing  to m ultiple image planes is not available as a result 

of buffer load problem s experienced with V I.

5.17.1 R eg ister  se t

V I occupies 1024 bytes of VM E bus address space, arranged  as eight 

blocks of 64 word reg isters. M ost of the  registers are eight-bit only, w ith the top 

eight bits of the word unused.

IPO FS has tw o separate  512 byte pages, one for window registers and 

the o ther for control registers. However, V I is accessed via the Qbus to VME 

bus protocol converter described in C hapter 9 which m aps 256 byte regions of 

V M Ebus space to Q bus space. To ensure th a t if only one page were available 

for m apping all the  V I control registers would be available, m ultiple copies of 

the control registers are available as shown in Figure 5.13. Each register block 

contains the elements shown in Table 5.2.

The window elem ent, x,y and display registers work as for IPO FS . CRTCR 

is identical to  the IP O F S  C R T C R  except th a t the R bit has been moved into the 

CSR. The GRAB register takes a three-bit num ber to select one of eight planes 

for fram e grabbing.

5.17.2  C ontrol and  sta tu s  register

The CSR on V I has ex tra  b its to  control the ex tra  fram e store features:
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Figure 5.13: V I register blocks

O f fs e t Name Mnemonic B its

0 A window e le m e n t 0 AO <---------------- aaaa aaaa>

2 A window e le m e n t 1 A1 <---------------- aaaa aaaa>

96 A window e le m e n t 48 A48 <---------------- aaaa aaaa>

98 C o n tr o l  and s ta tu s CSR <vhcb X -----  p q a l rdgs>

100 CRTC c o n t r o l CRTCR <---------------- cccc cccc>

100 W ipe WIPE <---------------- dddd dddd>

102 Expose EXPOSE <---------------- dddd dddd>

104 GRAB GRAB <---------------- --------- - g g g >

106 d is p la y  s e le c t D ISP <---------------- --------- -ddd>

108 y c o o r d in a te Y <---------------- dddd dddd>

110 X c o o r d in a te X <---------------- dddd dddd>

112 A edge r e g i s t e r EDGEA <---------------- dddd dddd>

114 B edge r e g i s t e r EDGEB <---------------- dddd dddd>

126 H edge r e g i s t e r EDGEH <---------------- dddd dddd>

Table 5.2: VI registers
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V -  r e t u r n s  s ta tu s  o f  v e r t i c a l  sync ( r e a d  o n ly )

h -  r e t u r n s  s ta tu s  o f  h o r iz o n t a l  sync ( r e a d  o n ly )

c -  c o m p o s ite  s y n c , { \e m  i . e . }  l o g i c a l  OR o f  h and v ( re a d  o n ly )  

b -  r e t u r n s  s ta tu s  o f  co m po site  b la n k in g  ( r e a d  o n ly )

X -  low  d u r in g  l in e - s c a n  a c t iv e  d a ta  t im e  ( re a d  o n ly )  

p -  p a r a l l e l  o u tp u t  p

q -  p a r a l l e l  o u tp u t  q

a -  acces s  speed i

1 -  l in e - s c a n  mode e n a b le  

r  -  CRTC r e g i s t e r  s e le c t  

d -  d i g i t i s e r / w i p e  s e le c t  

g -  g ra b  e n a b le  

s -  s q u a re  p i x e l  e n a b le

Parallel ou tpu ts  p and q are buffered and  routed off board via the VM E­

bus P2 connector. They are used to control lights, reject mechanisms etc.

T he a b it is used to  synchronise fram e store accesses w ith the onboard 

CRTC bus logic. Normally the frame store host interface runs asynchronously, 

providing very fast access to  the video memory. The 6845 requires slow syn­

chronous access.

5.17.3  W ip e  circu itry

T he wipe register on V2 is an eight-bit la tch  whose ou tpu ts are paralleled 

w ith the o u tp u ts  of the ADC. The CSR d bit selects between the ADC and the 

wipe register. If a grab sequence is perform ed w ith  the  wipe register active, the 

selected im age plane is initialised to the constant value in the wipe register.

5.17 .4  L ine-scan  interface

Line-scan cam eras consist of a line of photoreceptor sites paralleled by an 

analogue shift register. Typically two signals are required to  drive the sensor: an 

exposure clock X  and a transport clock T.  W hen the  sensor receives an active X  

edge, the charge accum ulated in the photoreceptors is transferred to  the analogue 

shift register and  clocked out under control of the  T  clock.

T he sensitivity of typical devices is low com pared to  some vidicon tubes, 

which m eans th a t they cannot be run at video speeds. The line-scan interface on

V I a ttem p ts  to  em ulate a true video signal as closely as possible by (a) providing
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Figure 5.14: V I line-scan interface

an exposure tim er program m able in units of 64/is (i.e. one video line tim e) and 

(b) clocking d a ta  out of the sensor at video speeds, i.e. T  is driven directly from 

the pixel m aster clock. The result of this is a ‘video’ signal composed of m ultiple 

blank lines followed by a single line of video speed data. There are no vertical 

sync pulses. Such a signal can be directly supplied to a video fram e store for 

for d ig itisation. T he host could then pack together the lines w ith valid da ta  by 

copying w ithin the  frame buffer. However, V I allows the host to  modify the y 

address of the currently  grabbed line in real tim e so th a t a packed line-scan image 

can be acquired w ith no tim e overhead.

A lthough the 6845 is designed to  generate norm al video tim ing, it was 

found th a t suitable program m ing of the internal registers could disable the vertical 

tim ing logic so th a t the device was providing continuous horizontal video lines w ith 

no vertical blanking or syncing. The grabber logic was modified so th a t during 

line-scan cycles d a ta  was only w ritten to  the image planes during the line after an 

X  pulse was generated. During other lines, the same data  is repeatedly read out 

and displayed. This gives a useful realtim e representation on the m onitor screen 

of the cam era ou tpu ts.

In practice, the integration tim e of the sensor (i.e. the period of the X  

waveform) will be locked to  the  speed of the conveyer belt being viewed. If a 

line-scan pixel subtends p  meters in the direction of belt travel, and the belt is
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moving at q m eters per second, then the X  period m ust be p /q  seconds. Typical 

exposure periods will be in the range 5-20ms for com mercial speed conveyers.

W hen the fram e store is in line-scan mode, the g rab /d isp lay  y address 

is taken from  the Y register ra ther than the 6845. The host increm ents Y after 

every line has been grabbed , thus providing a packed im age. T he following Pascal 

procedure grabs a line-scan image:

PROCEDURE Ig r a b ;  { g e t  l in e - s c a n  p i c t u r e }
BEGIN

c s r : = l ;   ̂ { s e t  l in e - s c a n  g ra b  mode}
y := 0 ;  { s t a r t  a c q u is i t io n  fro m  to p  o f  im a g e }
REPEAT

REPEAT UNTIL c s r  AND x=0; { w a i t  u n t i l  s t a r t  o f  X p u ls e }
REPEAT UN TIL c s r  AND x O O ; { w a i t  u n t i l  end o f  X p u ls e }
y : = y + l  { in c re m e n t l i n e  c o u n te r }

UNTIL y=256
c s r : = f ;  { s e t  norm al f r o z e n  v id e o  mode}

END

The pro to type V I was used for the factory tria l described in  C hapter 9 

and has since been in use for several years as a replacem ent for Cook’s fram e store 

which has now been decommissioned.

5.18 V2

The IM P system  described in C hapter 9 is currently  being developed 

to  support high speed m icrocoded processors. The new system  is downwards 

com patible w ith IM P and fram e stores may be interchanged between the  two 

system s. However, the  philosophy of the system  is different. IM P is a powerful 

system  containing special purpose hardw ired processors th a t are difficult to  use. 

This is partly  a result of its origins with low powered P D P - l ls  such as the single 

board  PD P  11/21. This encouraged the use of hardw are ‘w idgets’ to make up for 

the low perform ance of the soft processors in the system.

The new system  is intended mainly for use w ith VAX hosts and fast 

m icrocodable processors. T he emphasis is on a ‘soft’ system  com prising processors 

and large am ounts of m em ory with as little special purpose hardw are as possible. 

This is m ost noticable in the  design of the fram estore, where the display hardw are 

has been cut to  a m inim um . Program m able processors on the bus will be able 

to  transfer an entire im age in  less than  one frame tim e, and so special displays 

(such as multi-windowed zoom displays) can be created in near real tim e using 

software.
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Figure 5.15: V2 block diagram

As a result, V2 is an extremely simple frame store. It provides up to 

eight 256 x 256 pixel im age planes with square or rectangular pixels at eight-bit 

resolution. It will digitise RS170 video at eight-bit resolution. Host access is via 

a 0.5M byte memory m apped port. Image data  is packed two pixels to  the word, 

and so V2 appears to the host exactly like a 0.5M byte static  RAM card. Frame 

store control is via a single byte control and status register. M ultiple fram estores 

are available in a single cra te  and the system software (see C hapter 6) allows 

dynam ic allocation of resources in a m ultiuser environment.

5.18.1 V 2 theory  o f  operation

V2 has three m ain com ponents as shown on Figure 5.15: the memory 

subsystem , the video tim ing generator and the host interface. Unlike IPO FS , the 

design is fully synchronous and makes extensive use of Field P rogram m able Logic 

Sequencers (FPLS), fuse program m able devices from Signetics [CD83] th a t allow 

powerful Mealy type s ta te  machines [PW87] to be im plem ented on one chip.

5.18.2 M em ory su b sy stem

A lthough V2 generates 256 x 256 pixel displays, it was also intended as 

a testbed  for the techniques required in a 512 X 512 frame store. As a result the 

memory subsystem  has sufficient bandw idth to  supply a new pixel to  the  display 

logic every 66ns. This is achieved by providing a 100ns cycle tim e m em ory array
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th a t is two pixels (i.e. 16 bits) wide, and m erging the d a ta  stream s using grab 

and display pipelines as shown in Figure 5.16.

The registers on the MD bus are u p dated  every even pixel cycle, thus 

providing a double length memory cycle. In V2 square pixel mode the memory is 

cycled every 264ns. A full speed square pixel 512 x 512 system  will cycle memory 

every 132ns.

5.18.3  V ideo tim ing  su b system

The m aster pixel clock is a selectable 176ns/132ns cycle clock generated 

from a 22.125MHz m aster oscillator using a simple s ta te  machine th a t m onitors the 

s ta te  of the R  and G bits in  the CSR along w ith  the status of the host interface 

and generates the pixel m aster clock and w rite pulses for the video RAM (see 

Figure 5.17).

This s ta te  m achine is im plem ented in  one th ird  of a Signetics PLS105A 

FPLS, the rest of which contains the host interface controller. In s ta te  HI, if the
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Figure 5.18: Video tim ing logic

host requires write access to either or bo th  bytes of an image word or if grabbing 

is active then  write pulses are generated. In s ta te  L 0 2 ,  if the R  bit in the CSR 

is active an ex tra  wait sta te  is entered. A wait sta te  is also inserted for the last 

two cycles of a square mode video line to bring the line tim e up to  64/xs. The

sta te  m achine m onitors HCLR to detect the end of the line and inserts wait states 

accordingly.

The m aster clock drives an eight-bit counter which supplies the X dis­

play addresses. It corresponds directly to  the screen_x counter described in Sec­

tion 5.6. There is a second eight-bit counter driven by the horizontal sync pulse 

which corresponds to the s c re e n .y  counter. Sync pulses and clear pulses for the 

address counters are supplied by another FPLS which m onitors the contents of 

the address counters.

Internally, the video FPLS contains two similar s tate  m achines, one for 

each axis. T he display and sync s ta rt and end registers described in Section 5.6 are 

effectively em bedded in the FPLS — the s tate  machines wait for a preprogranuned 

num ber to  appear on the address counter ou tpu ts and then transition  accordingly 

causing a change in enable or sync outputs.

The X machine is complicated by the need for two sets of constants, one 

for square and one for rectangular pixel tim ing.

5.18 .4  H ost interface

The host interface consists of a set of buffers and an FPLS th a t performs 

address decoding and VM Ebus protocol handling.

On V I, host accesses are handled completely asynchronously with re­

spect to  the video tim ing logic. This can cause a problem  if the host attem pts 

to  access the im age buffers during a frame grab sequence. The fram e grab cycle
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will be aborted , bu t a race condition in the m emory controller could cause cor­

rup tion  of random  pixels. By and large this does not m a tte r since it is unusual 

to  want to  mix host accesses w ith frame grab cycles. However, the real time ob­

ject detecting routine described in C hapter 9 does require such a facility. V I was 

used successfully in spite of the race condition because the detection of an object 

triggered the updating  of 85% of the frame store memory and the probability of 

pixel corruption in a critical p art of the image was low. V2 has been rigorously 

designed using fully synchronous logic to  avoid such problem s.

The host FPLS contains two fully independent s ta te  machines, one for 

the m aster pixel clock (already described) and one for the host interface which 

also provides w rite control to the video RAM (Figure 5.21).

Access to  the CSR register always occurs w ithin 132ns. W hen the host 

requests access to  the video planes the s tate  m achine enters a synchronisation 

sta te  in which it waits for the pixel clock generator to  arrive at its HI state. The 

host m achine then  sequences to s tate  ACCESS, the ID /P D  buffer is then opened 

and the V M Ebus da ta  buffer enabled. The pixel clock state  machine senses tha t 

the host m achine is waiting to do an image plane access and generates write pulses 

if required. At the end of the next pixel clock m achine cycle the host machine 

perform s V M Ebus handshaking and display operations s ta rt again. In this way 

the pixel and host machines effectively ‘handshake’ to  provide guaranteed safe 

tim ing.

The PLS105A was not an ideal device to  im plem ent these sta te  machines. 

Specifically, the pixel clock machine has to  sense when the host m achine is in
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sta te  SYNC and m ore im portan tly  when it is not in s ta te  SYNC. This is difficult 

because the PLS devices use a sum  of products architecture. If a m achine has 

n sta tes a i . . .  and a  transition  is required for all states except (say) s ta te  

a i then  a  p roduct te rm  m ust be generated for each of the o ther term s. This 

rapidly consumes term s. In the current im plem entation, this has been overcome 

by using don’t care sta tes w ithin the sequencer. The critical ACCESS sta te  of the 

host m achine is allocated s ta te  num ber 8 and the other six states allocated to 

in ternal s ta te  num bers 2 to  7. S tate num bers 9 to  15 are unallocated, so simply 

by testing  bit 2 of the in ternal FPLS sta te  counter it is possible to  see w hether 

the  host is in  s ta te  ACCESS.

5.19 V 3 en hancem ents to  V2

V3, which is curren tly  under development, is a stepwise refinement of 

V2. M ost im portan tly  it provides 512 x 512 timing. The video d a ta  pipelining 

necessary to  support 512 X 512 tim ing has already been im plem ented on V2, so 

the prim ary  difference lies in the sync pulse generation. In addition, V3 has an 

Inm os colour look up tab le  to  provide colour ou tpu ts, a ROM port of the type 

used on V I, a line-scan interface and a genlock inpu t to  allow the fram e store to 

be sync locked to  an ex ternal source.
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C hapter 6 

A rchitectural issues for 

sequential im age processors

6.1 Introduction

In this chapter an  a ttem p t is m ade to  isolate the particular characteris­

tics of real tim e im age processing th a t m ight influence the design of a processor 

system . The discussion proceeds at two levels — the hardw are features th a t might 

im prove raw th roughpu t, and  the software environm ent th a t allows non-specialists 

to  ex tract the theoretical perform ance from  the system. In m any ways these two 

needs run  counter to each o ther. Recent controversy in the Com puter Science com­

m unity concerning the m erits of simplified processor design (the RISC philosophy) 

m ight be seen as a way b o th  to  im prove perform ance and simplify program m ing, 

bu t it is shown th a t regardless of the m erits or otherwise of RISC designs the 

key problem  in image processing system s is processor-memory bandw idth. Many 

RISC designs have large in ternal register sets which may contribute more tow ards 

the ir perform ance th an  th e  high th roughpu t of their simple instructions, bu t the 

d a ta  th roughput requirem ents of im age processing im mediately remove the ad­

vantages of a large register set because it is not possible to hold a useful am ount 

of an im age in in ternal registers.

The most obvious architectural a ttr ib u te  of many image processing sys­

tem s is their high degree of parallelism , bo th  the SIMD parallelism  of array 

processors and the M IMD parallelism  of m ultiprocessor systems. This chapter 

concentrates solely on the  a ttribu tes  of sequential Von Neumann type machines, 

and discussion of parallelism  along w ith non-Von Neum ann architectures such as 

dataflow machines and  systolic arrays is delayed until C hapter 7.
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6.2 H ardw are requirem ents for im age process­

ing

T raditional d a ta  processing can be characterised as either com putation­

ally bound or d a ta  bound. Typical scientific program m ing involves large am ounts 

of real arithm etic  calculation on relatively sm all d a ta  sets, sometimes smaller than  

the register set of the processor and alm ost always smaller than  the v irtual address 

space. Com m ercial program m ing typically involves collation and presentation of 

inform ation from very large databases — well beyond the v irtual address space 

of th e  processor. The database is however a  relatively fixed dataset in th a t it 

is unlikely to  change drastically w ithin the  execution time of a typical database 

operation . C alculation is more often integer or fixed point than  real, and string 

operations may dom inate arithm etic.

A lthough im age processing is often characterised as com putation inten­

sive, its  prim ary characteristics are the high volume and rapid  turnover of the 

d a ta  sets. Individual images are much larger th an  the internal register sets of 

curren t com puters bu t usually sm aller th a n  the v irtual address space except in 

the case of ou tda ted  designs such as the PD P-11. In addition, images can be 

generated  every 20ms, or in  20,000 instruc tion  cycles of a typical 1 MIPS mini­

com puter. Since there will be 256K pixels in a 512 x 512 image there may be only

0.1 instruc tion  cycles available in  which to  process each pixel, thus showing the 

futility  of a ttem pting  real tim e im plem entations for high resolution processing on 

conventional machines.

It is im portan t to  note th a t the size of an image is far in excess of the 

in ternal storage of current processors, and th a t m ost low level vision operations are 

extrem ely pixel intensive, th a t is nearly all the  d a ta  used is pixel data , either local 

to  a particu la r point for window type operations, or globally for transform  based 

operations. Transfer of pixels between fram e buffer and processor will therefore 

dom inate all processing and processor-m em ory bandw idth  is likely to  be the most 

accurate m etric of system  perform ance.

6.3 P rocessor design philosophy

Despite in terest in dataflow architectures [GKW85] and d istribu ted  logic 

[PFP85] approaches to  com puting, the Von N eum ann type architectures are still 

alm ost universally applied to  reed problem s, either as straightforw ard sequential 

m achines or in parallel configurations. It is possible to  discern trends in  Von
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N eum ann processor development, and in this section we exam ine their relevance 

to im age processing.

6.4 Language directed m achines

M ost commercial mainframes, and la tterly  minis and m icros, have evolved 

tow ards the  use of more complex instruction sets in an a ttem p t to  narrow  the ‘se­

m antic g ap ’ betw een the high level languages and machine code, the  intention 

being to im plem ent high level language constructs directly in the instruction  set. 

This tren d  has been most noticable in the area of procedure activation instruc­

tions. I t is now generally accepted th a t m odularisation and top  down design of 

software increases program m er productivity, bu t increased use of procedures slows 

execution over inline code because of the need to pass param eters and store return  

addresses for subrou tine linkage.

6.4.1 P ro ced u re  call instructions P D P -1 1 , 68000 and V AX

Some PD P-11 processors im plem ented an instruction  called MARK which 

was used instead  of a ReTurn from Subroutine (RTS) to clean up the stack on 

exit from  a procedure. The call convention required tha t R5 be stored on the 

stack, the stack poin ter updated  to  leave space for param eters and the  PC  at the 

point of call be stored in R5. This was all achieved using s tan d ard  instructions. 

The single in s truc tion  MARK N then restored the PC  from R5, removed N pa­

ram eters from  the  top  of the stack and popped the old value of R5, thus restoring 

the calling p rocedu re’s context [Dig79b]. This instruction is only available on the 

P D P -11 /34  and  la ter machines, and has never been widely used. Even commer­

cial com pilers do not use the MARK instruction , and the T-11 microprocessor 

PDP-11 im plem entation  does not recognise it.

T he 68000 has a very similar instruction called UNLINK and a partner 

called LINK which can be used to initialise the stack frame as p a rt of procedure 

entry. These instruc tions are used, no doubt because they were defined as part of 

the base p rocessor’s instruction  set. Any commercial PDP-11 software th a t did 

use the M ARK instruc tion  would not run on early processors.

T he VAX architecture continues this process by defining a single system- 

wide procedure calling convention. There are in fact two basic calling mechanisms 

im plem ented via th e  CALLS instruction for stack based param eter passing {e.g. 

for Pascal and  Algol) and CALLG for use with global param eter blocks {e.g. for
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FO R TRA N ). As weU as the usual PC and stack pointer, the  VAX designates two 

general purpose registers as the Frame pointer (F P ) and the argum ent pointer 

(A P). B oth the  CALL instructions assume th a t the first word of a procedure is 

an entry  m ask which specifies which registers are used and therefore need to be 

saved on the stack. In addition both  CALL instructions always save the old AP, 

F P  and PC  along w ith the current Processor S tatus W ord, the entry  mask itself 

(needed for stack clean up on exit) and a pointer to an exception handler th a t will 

be invoked if an  error is detected during procedure execution. Finally the F P  and 

AP are u p d a ted  to reflect the position of the procedure’s local d a ta , and control 

is passed to  the  procedure’s s ta rt address.

A particu la r feature of this system  is the inclusion of the user specified 

exception handler allowing multiple exception handlers to exist at different levels 

of the p rog ram ’s execution tree. Exception handling on the VAX involves the 

‘unw inding’ of successive stack frames until a handler is found th a t will service 

the  current exception. W hilst this is an extrem ely powerful feature for real tim e 

failsafe system s, it m ight be considered overkill for a general purpose minicom­

puter.

6.4 .2  O ther com plex  V AX in stru ctions

N on-prim itive instructions on the VAX include (a) those for floating 

point and packed arithm etic, (b) direct calculation of array subscripts, (c) the 

extrem ely useful bit field m anipulation instructions m entioned in the discussion 

of A lgorithm  4 in  C hapter 4, (d) case statem ent support, (e) queue instructions to 

directly support operating system  structures and  (f ) character string instructions 

powerful enough to  move a string in memory, transla ting  on the  fly and te rm inat­

ing if an out of range character is found. The increase in size of the  instruction 

set has im proved perform ance over th a t of the PD F -11: to  quote from [Str78]:

“F irst, despite the larger virtual address and instruction set support 
for m ore d a ta  types, compiler (and hand) generated code for VAX-11 
is typically sm aller than  the equivalent PDP-11 code for algorithm s 
operating  on datatypes supported by the PDP-11. Second, of the 243 
instructions in the instruction set, about 75 percent are generated by 
the VAX-11 FORTRAN compiler. Of the instructions not generated, 
most operate  on d a ta  types not part of the FORTRAN language.”
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6.5 B ig  fast and sim ple m achines

Large supercom puters such as the Cray series of machines are designed 

for extrem ely fast clock cycles. This requires the use of ECL and (in the  future) 

G allium  Arsenide devices, which consume large am ounts of chip area and  power. 

These high speed technologies usually only offer SSI and MSI com plexity parts. 

Seymour Cray, the principal designer of the Cray machines espouses a philosophy 

of ‘big fast and  sim ple’ which rejects clever use of complex instructions in favour 

of simple high speed design and the application of large scale pipelining. Such 

vector processors are considered in more detail in C hapter 7.

6.6 R eg ister  and stack based m achines

The trad itional Von N eum ann machine has a fixed set of in ternal regis­

ters each w ith  a unique address, and a large main memory which is also arranged 

as a vector of uniquely addressed cells. Work on compilers, especially for the 

Algol descended languages em phasised the naturalness of the stack structu re  for 

expression evaluation and  re-en tran t procedure calling. Coupled w ith the need 

for reen tran t and nestable in te rru p t service routines, this has forced almost every 

new com mercial arch itec tu re  since 1970 to have at least rudim entary  hardw are 

for stack im plem entation.

Some m achines, no tab ly  the Burroughs m ainfram es, take the concept 

a step fu rther and dispense w ith m ost visible in ternal registers, im plem enting a 

unified stack scheme th a t combines both  internal registers and m ain memory into 

a single stack. No absolute addressing is required since all variables are stored 

relative to  a Fram e Poin ter. Retrieval of non-local variables will require chaining 

back th rough  a series of stack fram es using the nested Fram e Pointers. W hen the 

in ternal register based stack is full, the hardw are autom atically w rites p art of it 

to  m ain memory. [Mye77]

Using a pure stack architecture in this way completely removes the reg­

ister allocation problem  which is possibly the m ajor concern of compiler writers. 

Indeed, the low level language C even provides the user w ith a directive th a t may 

be used to  w arn th a t a particu la r variable will be frequently accessed and should 

therefore be p u t in a register if possible.
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6.7 R ISC  m achines

6.7.1 IB M

T he first true  Com plex Instruction  Set Com puters (CISC) were probably  

the IBM 360 series of m ainfram es, th a t m ade extensive use of microcode to  provide 

powerful machine code instructions. As hardw are costs came down and  software 

production  became recognised as the real bottleneck to com puter developm ent, 

it was na tu ra l for m ore and more software functionality to be em bedded directly 

in the hardw are. T he average instruction  execution time may have risen, bu t 

th roughpu t increased.

In 1975, a team  a t IBM was developing a fast controller for a large tele­

phone exchange. Later the  controller was developed into the IBM 801 m achine 

(which was never sold com mercially). During the development of the  m achine the  

design team  had exam ined traces of executing program s on conventional m achines 

and avoided im plem enting rarely used instructions. They used a fixed instruc tion  

form at th a t allowed high speed decoding, and fast memory th a t allowed an in ­

struction  to  be executed for every machine cycle. The lack of m icrocode allows 

straightforw ard pipelining techniques to be im plem ented and can significantly im ­

prove in te rru p t response.

6.7 .2  B erkeley

The availability of VLSI CAD tools and fabrication facilities to  academ ic 

researchers has given rise to  m ost of the m ajor RISC developments. T he Berkeley 

RISC I and II machines were based on the IBM work. RISC I suffered from 

a design flaw and therefore did not meet design goals. The modified RISC II 

processor is a register based m achine fabricated in 2 micron NMOS. I t has 39 

opcodes, a 32-bit v irtual address space and supports 8, 16 and 32 b it datatypes.

A m ajor feature of the  processor is its overlapping window register a r­

chitecture. RISC I has 138 registers of which only 32 are visible a t any one tim e. 

The first ten  registers are always visible and are used for global d a ta  storage. Ten 

o ther registers are available in each window for local storage. A nother ten  are re­

ferred to  as ‘overlapping’ registers. Five of these contain param eters passed from 

the  procedure above and five for param eters to be passed to the procedure beloW. 

These overlapping windows are autom atically  updated at procedure activation 

and re tu rn .

This arrangem ent has two im portan t advantages over a typical processor
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w ith 32 fixed registers. F irstly  the large register set allows more d a ta  to  be held 

local to  the processor, significantly reducing m ain memory cycles. T he register is 

faster th an  a local d a ta  cache. Secondly, the overlapping windows reduce the  need 

to save registers in m ain m em ory at procedure entry, i.e. the calling procedure’s 

context is saved using a register level type of memory m anagem ent un it. This 

again has the  effect of reducing main m em ory cycles. RISC I procedure activation 

typically requires 2fis against the  20ps required by a VAX 11/780. This is critical 

for RISC m achines as the reduced instruc tion  set implies more use of procedures 

to  construct complex sequences out of prim itive instructions.

Several workers have suggested th a t the excellent perform ance of the 

RISC I and II machines is directly a ttr ib u tab le  to  this register arrangem ent.

“The Berkeley group has responded by agreeing th a t a significant po r­
tion of the speed is due to the overlapped register window. However, 
the group notes th a t critics have ignored a key point in the design — 
th a t a drop in control logic due to  the reduced set of instructions 
(from  50 percent to  6 percent) created space for the expanded num ber 
of registers in the  first place.” [M ar84]

In essence, their philosophy is to  trad e  off m icrocode ROM against p rogram  avail­

able register storage. However this is clearly unnecessary since the RISC I and 

II chips are not high density designs. RISC I is a 44,500 transisto r chip. Chips 

w ith 1,000,000 transistors on board  are w ithin the capabilities of current produc­

tion technologies — the m idrange T414 T ranspu ter contains 150,000 devices — so 

there would be no problem  in retain ing the  large control blocks needed for CISC 

designs and adding the novel large scale register sets.

T he Berkeley team  has also im plem ented a chip called SOAR (Sm alltalk 

On A RISC) and a symbolic processor called SPU R (Symbolic Processing Using 

R is e s )  designed to  form the basis of a m ultiprocessor LISP w orkstation. SPUR 

comprises a three chip set (cache controller, CPU and FPU ) fabricated in 2 micron 

CM OS. The CPU is sim ilar to  RISC II bu t w ith a 512 byte instruc tion  cache, a 

four stage pipeline, a coprocessor interface and support for tagged data .

6.7 .3  Stanford

A sim ilar early project at S tanford resulted in the M IPS (M icroprocessor 

w ithout Interlocked Pipeline Stages) processor. The em phasis in  M IPS is on 

pipelining and advanced compiler technology ra th e r than  large register banks. 

There is a five stage pipeline composed of instruction  fetch, instruc tion  decode.
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operand decode, operand sto re/execu te  and  operand fetch com ponents. Each 32- 

bit instruc tion  word may hold two instructions, and instructions typically require 

two cycles to execute. P ipelining com plicates the handling of non-linear sections of 

code such as jum ps, branches and procedure calls. A m ajor effort in the S tanford 

project was to  investigate the  reordering of code generated by the com pilers to 

im prove instruction  packing and to support ‘delayed branching’.

6.7 .4  Inm os T ransputer

The T ransputer is a stack based RISC. The T414 device contains 2K 

bytes of 50ns RAM which allows 10 M IPS operation and is also available for 

stack storage. The T ranspu ter can operate at up to  10 M IPS from this in ternal 

RAM because of the 20MHz processor-m em ory bandw idth. This reinforces the 

assertion th a t availability of opcodes and d a ta  at high speed is the critical factor, 

and the existence of a simplified instruc tion  set is merely a side effect of the need 

to reserve large parts  of the chip for memory. Since the T ransputer is stack based, 

the non-generalities of the Berkeley window register design, i.e. lack of overall 

storage space and inappropriate  register partition ing , are not present.

6.7.5 O ther com m ercia l design s

The M IPS project has yielded a  com mercial machine (also called M IPS) 

which has recently been adopted  by D igital Equipm ent Corp. for their work­

station  range. O ther com m ercial RISC processors include the IBM R T /P C , the 

HP Spectrum  range, the Inm os T ranspu ter [Whi85], the Acorn Rise M achine and 

Sun M icrosystem s SPARC architecture. Texas Instrum ents and CDC are jointly 

involved in  a DARPA pro ject to  produce a  rad ia tion-hard  G a As RISC processor 

w ith a clock speed of 200MHz.

6.8 R ISC  m achine com m on features

The discussion of M IPS ra te  in  Section 3.6 shows th a t a simple M IPS 

com parison across different architectures is dangerous, especially when the RISC 

m achines are specifically designed w ith very high execution rates bu t instructions 

w ith very low sem antic content.

It is difficult to  be exact about w hat constitutes a RISC architecture bu t 

the following features seem typical:

1. No microcode — all instructions are hardw are encoded
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2. L oad /sto re  architecture no memory to  register or memory to memory 

operations o ther than  d a ta  transfer

3. Large register sets necessary to  support efficient lo ad /sto re  architecture

4. P rim itive addressing modes as a result of load /s to re  architecture

5. Simple instruction  decoding, often fixed field

T here are exceptions to this list: the Inmos T ranspu ter is a stack based architec­

tu re  and  the  Stanford M IPS machines do not have especially large register sets 

bu t rely on large scale pipelining to im prove th roughpu t.

6.8 .1  S ingle in stru ction  per cyc le  ex ecu tio n

T he overall aim  of the RISC designer is to  produce a machine th a t exe­

cutes one instruc tion  per m ain memory cycle. Removal of m icrocode and complex 

instructions enables one instruction  per cycle operation to  be obtained using sim­

ple design techniques, bu t pipelining, the use of large register sets and powerful 

code generation techniques in compilers can all be applied to  complex machines so 

th a t they can also execute an instruction per cycle. The higher sem antic content 

of a CISC instruction  should then provide higher overall th roughput.

6.8 .2  P rocessor m em ory b and w idth

RISC machines can m atch the th roughpu t of more complex processors 

at lower cost and w ith less design tim e required, so they m ay trium ph for eco­

nomic reasons. U ltim ate high perform ance m ay be obtained by applying RISC 

type techniques (large register set, pipelining, reducing m ain memory accesses) 

to  CISC machines. The lim iting factor on perform ance will be the  speed w ith 

which operands can be fetched from relatively slow m ain memory, i.e. the pro­

cessor m em ory bandw idth . Although the  large RISC I type register sets have 

been dem onstrated  as sufficient for a variety of applications [Rob87] in an image 

processing environm ent, d a ta  fetching will still dom inate unless the processor has 

an in ternal register set two orders of m agnitude larger than  to d ay ’s RISCs.

6.9 Software requirem ents for im age processing

In her m onum ental work ‘Program m ing Languages: H istory and Funda­

m entals’ [Sam69] Jean  Sam m et mentions some 120 languages known to have been
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im plem ented, and th a t was only at the end of 1967. She was aw are of a t least 

as m any unim plem ented proposals, and in the intervening period it is likely th a t 

the ra te  of production of new systems has significantly increased. T here seems 

to  be a new language inside every systems program er try ing to  get out. W hen, 

in 1976 the US D epartm ent of Defense conducted a survey of the  program m ing 

languages in use for m ilitary  applications, they counted over 400. At the  tim e, 

they were spending over th ree billion dollars a year on software [Ich84]. It was 

this th a t spurred on the development of Ada.

There have been a ttem p ts to define ‘doom sday’ languages (eg. P L /1 ) 

which a ttem p t to  be all th ings to all people, not by im plem enting unified funda­

m ental concepts, bu t by layering features from  several language trad itions w ith 

possible overlap of s truc tu res. In the case of PL /1  this resulted in a language so 

large and cum bersom e th a t special subsets had to  be defined so th a t the  over^ 

worked program er could handle the complexity.

The m ajor requirem ent for safe and efficient program  design is disci­

pline. This should be coupled with program m ing tools th a t are as simple as is 

com m ensurate w ith the  job  in hand.

M ultiplication and  overlap of concepts and their im plem entation  w ithin a 

program m ing language provides more possibilities for side effects, i.e. unexpected 

behaviour of one p a rt of a program  due to  a breakdown in a com pletely different 

p a rt. This gives sym ptom s th a t show no simple connection w ith the ir cause, and 

makes the program  very difficult to debug.

6.10 O rthogonality

It is useful to  distinguish  between feature oriented and  unified system s. 

A lthough the hum an is capable of storing prodigious am ounts of inform ation, 

program m ing systems th a t require access to  m any facts and concepts appear to 

over weigh the program m er so th a t even experts rapidly get to  the  poin t th a t they 

cannot rem em ber the com m and for this or th a t operation. A lthough mnem onic 

or preferably English nam es help, it is desirable to minimise the  am ount of in­

form ation required to  use a  system . The only way to minimise the  load on the 

program m er w ithout restric ting  the utility  of the environm ent is to  unify various 

features into a more general com m and w ith natu ra l modifiers. [Hoa81] says:

“(This) m ethod is far m ore difficult. It dem ands the sam e skill, de­
votion, insight, and  even inspiration as the discovery of the  simple 
physical laws th a t underlie the complex phenom ena of na tu re . It also
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requires a willingness to  accept objectives which are lim ited by physi­
cal, logical, and technological constraints, and to accept a com prom ise 
when conflicting objectives cannot be m et. No com m ittee will ever do 
th is until it is too la te .”

6.11 Languages and program m ing environm ents

In the not too d is tan t past all program s were subm itted  in batch  form 

and there  was no direct in teraction  with the system. Any d a ta  had to  be included 

after the program  deck, and  lineprinter ou tpu t would be received back anything 

up to several days la ter. I t is not hard  to see why assembly language program ­

ming had  such a long developm ent cycle under such conditions. M uch of the 

h istory of program m ing system s since then has concerned the im provem ent of the 

developm ent cycle, bo th  by speeding the edit-com pile-run loop and by producing 

higher level languages in which to express the algorithm . This may be seen as the 

adap ta tion  of the m achine to  the thinking patterns of the hum an, ra th e r th an  the 

hum an having to accom m odate to the machine. Such operating system s and high 

level languages exist to  hide the inner workings of the processor from  the hum an, 

preferably w ithout in troducing  too many inefficiencies.

The second th ru s t of language development is the design of m ore pow­

erful no ta tions which actually  help the program m er’s thinking. T he whole of 

m athem atics may be viewed as the search for more elegant and com pact no ta­

tions for the  description of problem s, for w ithout a notation there is no well defined 

problem  statem ent.

“By relieving the  b ra in  of all unnecessary work, a good no ta tion  sets 
it free to concentrate on more advanced problem s, and in  effect in ­
creases the m ental pow er of the race. Before the in troduction  of the 
A rabic no ta tion , m ultiplication was difficult, and the division even of 
integers called in to  play the highest m athem atical faculties. P ro b a­
bly nothing in the m odern world would have more astonished a Greek 
m athem atic ian  th an  to  learn th a t ... a large proportion of the popu­
la tion  of W estern E urope could perform  the operation of division for 
the largest num bers. This would have seemed to him  a sheer im possi­
bility. ... O ur m odern power of easy reckoning w ith decimal fractions 
is the  alm ost m iraculous result of the gradual discovery of a perfect 
no ta tio n .” [W hill]

6.12 Im age processing w ith  conventional languages

Im age processing is extrem ely d a ta  intensive, and code often contains 

m any sm all loops. Even if these characteristics were radically different from  nor-
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mal program m ing, the  design of a new language would not be justified. Instead, 

s tan d ard  techniques for solving those problem s should be developed and built into 

existing languages, e ither in the form of a m acro preprocessor or procedure calls. 

If already existing language features or philosophy block this ‘stepwise refinem ent’ 

approach then a new language may be called for, although this may only indicate 

th a t the base language was a bad choice.

6.13 PPL 2

PPL2 is a special purpose im age processing language developed in this 

labora to ry  [Coo83a] and  syntactically based on Algol-68. A part from predeclared 

variables representing the  fram e store registers, the only novel program m ing struc­

tu re  of the  language was the use of a [[ . . .  ]] construct to  denote the application 

of a window operation  to  the image. In a  conventional language this would be 

specified using two nested  DO loops. The language was very small and did not con­

ta in  the  sem antic richness of Algol-68. Integer only arithm etic was available, the 

procedure call m echanism  was im plem ented via m acro text substitu tion w ithout 

param eter passing, variables were not predeclared with all the a ttendan t insecu­

rities this brings and  source code was lim ited to 8K byte of text w ith no linking 

to  o ther PPL2 program s or to  routines w ritten  in other languages. There was 

no file handling, and  screen I /O  was rudim entary. The storage space available 

for variables was also lim ited bu t more seriously the register allocation algorithm  

used for arithm etic expression evaluation could cause run tim e failures due to lack 

of spare PDP-11 registers.

The language was in terpreted  ap art from sections within a [[ . . .  ]] con­

s tru c t which were com piled and then  discarded at the completion of the scan. 

T he [ [ . . . ] ]  construct only supported  top left to  bo ttom  right and bottom  right to 

top left scans, which m eant th a t routines requiring one of the eight possible scans 

(e.g. convex hull p rogram s) had to be constructed out of DO loops anyway. Any 

program s w ritten  in  th e  language had to  be converted to a conventional high level 

language if a compiled speed im plem entation, or a portable one, was required.

One of the  m ost serious problem s w ith the language was th a t its im ple­

m entation  was dependent on Cook’s fram e store. Because of the unorthodox way 

in  which this was in terfaced to the host PD P-11, PPL2 had to  directly m anip­

u la te  the memory m anagem ent registers, risking disastrous interaction with the 

operating  system. As a  result, a complete rew rite of the system  would have been 

required even to  move it  on to  a Q-bus based PDP-11 containing an IPO FS or
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V I fram e store, which follow PDP-11 hardw are configuration rules.

Of these deficiencies, the lack of a recognisable procedure calling m echa­

nism  was the  m ost awkward. In spite of th is, PPL 2 was used extensively and suc­

cessfully for rap id  prototyping of image processing routines. A particu lar strength  

was the capability  to  experiment quickly on problem s brought to the laboratory 

by in dustria l and other visitors. PPL2 was highly interactive, containing its own 

simple ed itor and  run  tim e system. In use it was far be tte r than  the conventional 

m acro based languages available on com mercial image processing systems at th a t 

tim e (1980-83), such as the BRSL Autoview Viking m achine which is based on 

B atchelor’s work. This is because in spite of its lim itations PPL2 was a general 

program m ing language in which novel image processing algorithm s could be ex­

pressed, w hereas Autoview program s are constructed  by concatenating predefined 

operations w ith consequent lack of generality and efficiency.

T he case for a highly interactive program m ing system  which has pre­

defined knowledge of the available hardw are is clear, even though PPL2 was an 

unsatisfactory  im plem entation.

6.14 P IP E

P IP E  (Pascal Image Processing Environm ent) is a program m ing envi­

ronm ent designed and im plem ented by the au thor to  replace the PPL  system. 

A lthough it lacks the  interactive features of P P L , it gains by m aking use of s tan ­

dard  Pascal and conforming to operating system  protocols. P IP E  has been exten­

sively used in th is laboratory  and was used to  im plem ent the project described in 

C hap ter 9.

T he non-standard  hardw are interface of Cook’s frame store required pro­

gram s w ritten  in  conventional high level languages to  directly m anipulate the 

m em ory m anagem ent unit. P IP E  aims to hide these m anipulations from the 

user, and  to  ease the transition from PPL  program m ing to conventional large 

scale program m ing in Pascal. The Pascal compiler in use. Parallel Pascal [Uni81], 

includes the m ultitasking primitives of M odula [Wir77] which can be used in the 

program m ing of the  IM P system described in C hapter 9.

P IP E  comprises:

1. a  modified R un Time Library which initialises the fram estore and restores 

the  operating  system  environm ent at the end of a run,

2. a set of Pascal source preludes containing definitions of hardw are registers
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and  d a ta  types,

3. an  ob ject code lib rary  containing picture I /O  routines and tim er su ppo rt,

4. a  set of s tan d  alone u tility  program s which may be run  from  th e  operating  

system  com m and line,

5. a com m and file build  u tility  called NEW . This is used w ith  tem p la te  files to 

genera te  an  indirect com m and file th a t will ed it, com pile, link and  run  the 

cu rren t program .

T he facilities of th e  Pascal com piler and operating system  m ay be used to  m ain tain  

object code lib raries and  to  link w ith machine code and  FO R T R A N  routines.

P IP E  has been im plem ented for Cook’s fram e store, IP O F S  and V I. 

T he m odified ru n  tim e lib rary  is not required for IPO FS  and  V I since these 

do not require  m em ory m anagem ent m anipulations. A part from  the  hardw are 

p rogram m ing  differences noted in C hapter 5 P IP E  provides full po rtab ility  of 

source p rogram s betw een each of these systems. All the algorithm s in  C hap ter 4 

were originally  im plem ented  on Cook’s frame store and  were p o rted  to  V I simply 

by changing th e  coord inate  register loop counters to  take account of V i ’s eight-bit 

coord inate  reg isters.

A lthough  the  N EW  utility  autom ates the various steps in  the  building 

of a P IP E  p rog ram , the  system  lacks the interactive ‘feel’ of P P L  because the 

com pile-link stage can take several m inutes for large program s. However, P IP E  

suffers none of th e  operational lim itations of PPL . The [ [ . . .] ]  co nstruc t is available 

w ith th e  use of an  op tional preprocessor, bu t in practice th is has no t been used 

because users prefer to  insert the nested loops directly ra th e r  th a n  accept the 

com pile tim e overhead of the  preprocessor.

6.15 P IP E -3 2

T he V2 and  V3 fram estores described in C hapter 5 are su ppo rted  on 

the  VAX w ith  a  softw are package called PIPE-32 [Joh88a]. T his provides a full 

set of d a ta  types, fram estore control routines, transfer routines and  VMS utilities 

for the  fram esto re  user. Interlocked access to  m ultiple fram estores is suppo rted , 

and program s are dynam ically  reconfigurable from the com m and line for different 

fram estores.
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6.16 A specification  for interactive im age pro­

cessing

An in teractive image processing language system based on a large subset 

of Pascal is under developm ent. The P IP E  system provides a useful environm ent 

for eventual im plem entation  of algorithm s but is slow and unwieldy for simple 

experim ents and algorithm  development. This is partly  because the particu lar 

Pascal com piler in use is very slow (although it does produce efficient code) and 

partly  because of the batch  oriented edit-compile-run cycle.

In teractive program m ing has been available using the PPL2 system  de­

scribed above, bu t the  lack of file handling, procedures, local variables, library 

facilities and real arithm etic  coupled with the limited program  and variable space 

and the  fact th a t the  entire PPL  system must be resident for a program  to  run 

m eant th a t serious applications were difficult or impossible to  develop. Conver­

sion of program s to  a m ore norm al system is not easy because of the Algol-68 

derived syntax and especially the macro oriented calling convention.

W hat is required  is an interactive system th a t is com patible w ith a full 

blown language com piler, so th a t if a problem becomes too large for the system , 

the progranuner can transfer to the main compiler. A problem  could be broken 

down into subproblem s which may be individually program m ed interactively and 

then  gathered  together by the main compiler. This is an a ttem p t to  provide the 

‘best of bo th  w orlds’ w ithout the need to develop a completely new language.

The system  is called Pascal-I (for Pascal-Image processing) or P I and is 

conceived as a direct replacem ent for PPL. Syntactically it is a  stric t subset of ISO 

Pascal [Coo83b]. However the compiler recognises several system  procedures and 

reserved variable nam es th a t are not in the standard Pascal symbol table. These 

ex tra  variables and procedures may be thought of as being defined in a system 

prelude com piled in  front of the user’s program . PPL2 system  utilities will be 

im plem ented as P I procedures, available at program  level and interactively from 

the keyboard.

In teraction  will be provided through the use of an increm ental compiler 

and a screen editor outw ardly similar to  ED T, the VMS system  editor. P rogram s 

will be com piled one procedure at a tim e and stored for la te r execution. W hen 

not running  a  program , P I will present the user with a list of known procedure 

nam es. Any procedure declared at the global level is display able, along w ith the 

p rew ritten  routines. T he  user may run any of these procedures by placing the 

cursor over the nam e and  h itting  a non cursor key, or by explicitly entering the
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nam e in the system  p rom pt area.

T he present pro to type is based on W irth ’s Pascal-S [WirSl] w ith  the 

code generator modified to produce PDP-11 and subset VAX-11 machine code. 

The system  is being w ritten  in Pascal and is being developed on a Micro Vax II. 

In fu tu re  it is in tended to  add features to support parallel program m ing using 

the M odula-1 m odel, and features to support array processing for the NPL LAP 

machines [McC85] based on the Actus array  processor language [Per79].
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C hapter 7

Parallelism  in hardware

"... recollect th a t the m ultip lication of two num bers, consisting each 
of 20 figures, requires at the very u tm ost three m inutes.

... when a long series of identical com putations is to be perform ed, such 
as those required for the  form ation of num erical tables, the m achine 
can be brought into play so as to  give several results a t the same tim e, 
which will greatly abridge the whole am ount of the processes.”

General M enabrea on B abbage’s A nalytical Engine, 1842

7.1 Introduction

This chapter first reviews parallelism  from a structu ra l view point, th a t 

is from  a consideration of the  underlying hardw are. The next chapter looks at 

software constructs for the control of parallel machines.

7.2 Spatial parallelism  w ith in  the C P U

All real com puters exhibit some degree of parallelism . Usually th is is 

in the form of m ultiple b it A rithm etic and Logic Units (ALUs) w ith associated 

m ultiple bit memories. The w idth  of the ALU, memory and com m unication buses 

define the word size of the processor. However, parallelism  exists (a t least con­

ceptually) at an even lower level w ithin the ALU itself.

7.2.1 B it level parallelism

In the lim it the ALU may be only one b it wide, i.e. the processor is bit- 

serial. In the past some conventional com mercial machines have been bit-serial 

for cost reasons such as the PDP-8S and its  close cousin the Digico M16-S. Some 

specialised machines such as the PD P-14 [BM78], an industrial controller designed
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Figure 7.1: Parallelism  w ithin the full adder

to replace hardw ired relay logic controllers in an industria l environm ent, also used 

bit-serial processors.

W ith in  the one bit wide ALU a variety of configurations are possible. 

Typically a single full adder will be used, bu t it is clear th a t a single NAND gate 

and a controlling state  m achine would provide a general purpose processor since 

all logic equations may be im plem ented by a set of NAND gates or by feeding the 

term s through a single NAND gate w ith appropria te  sequencing and storage of 

in term ediate results. The use of a full adder provides parallelism  (F igure 7.1).

The com plexity of the ALU could be described in term s of NAND (or 

NOR) gate equivalents. This does not usually transla te  directly into a  gate count 

of the actual device since m ost in tegrated  circuit technologies provide logic prim ­

itives more complex than  a single NAND gate. In T T L  the m ultiple em itter 

transisto rs provide an n -inpu t NAND prim itive. ECL logic provides NO R and 

O R com plem entary ou tpu ts  a t the m ost basic level, and CMOS technology pro­

vides a rb itra ry  logic functions using 2n transisto rs for a simple n -inpu t gate, as 

well as ‘trick ’ circuits such as the transm ission XOR gate [SOA73] described in 

C hapter 10.

M ost array  processors (discussed below) use b it serial processing ele­

m ents to  reduce the  hardw are cost of the machine.

7.2.2 W ord level parallelism

As noted previously, the word size of the  processor’s ALU provides some 

parallelism . T he actual im plem entation of the ALU can also provide parallelism . 

In a  simple ripple carry  adder the bits are in a sense evaluated sequentially because
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F igure 7.2: The CDC 6600 processor

a high order bit cannot settle  until the carry has been produced from a low order 

bit. The carry p a th  can be speeded up using various adder designs such as the 

carry lookahead adder [FP87], the carry select adder [FP87] and  the  two stage 

adder [WE85]. For VLSI im plem entation the dynam ic M anchester carry adder 

[WE85] provides a fast MOS adder, and the b inary  lookahead carry  adder uses a 

b inary tree of adders to  provide carry propagation times p roportional to  log] of 

the adder size.

7.2.3 M u ltip le  fu n ction a l units

The processor m ay well contain other logic blocks to  augm ent the typical 

ALU operations of integer add  and subtract and bitwise logical operations. T yp­

ically these would include com binatorial m ultipliers, barrel shifters, and floating 

point units. Simple m achines do not usually allow concurrent operation  of these 

blocks due to problem s associated with synchronising the available resources and 

saving the machine s ta te  efficiently in the event of an in te rru p t or exception.

In some com puters, notably the CDC 6600 and 7600, m ultiple functional 

units are employed w ithin  th e  processor and may operate concurrently. T he 6000 

series machines used a status checkhoard to indicate the availability of resources. If 

an instruction required a  block th a t was already in use, the conflict was recorded 

in the checkhoard and the  instruc tion  queued for deferred execution. Instructions 

could be deferred several tim es. This m echanism provided a  hardw are interlock 

system . The CDC 6600 includes ten functional un its and 24 registers (F igure 7.2).
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7.2 .4  S eq u en cin g  and p ipelines

T he efficient use of a machine such as the  CDC 6600 depends on the 

availability of m any independent calculations em bedded in the  s tream  of m achine 

code. A calculation obviously cannot be started  until its operands are available. 

In the  w orst case, a sequence m ight require each functional un it in the processor in 

tu rn , w ith th e  operands at each stage of the calculation depending on the results 

of the  previous one. In th is case only one functional unit can be used at a time.

If however, such a  sequence is to be repeated m any tim es using different 

d a ta  then  the  functional units could be sequenced to  act as a pipeline. Consider 

the  following p rogram  fragm ent:

{ 1 }  FOR i : = l  TO m a x .a r r  DO 

{ 2 }  f : = ( 3 * a r r [ i ]

{ 3 }  + 7 )

{4} / j ;

This could be im plem ented using a pipeline of 3 units w ith d a ta  latches between 

each stage:

W ith  such an arrangem ent, lines 2-4 would execute in th ree cycles for 

a single da tum . W hen i  is 1, a r r [ l ]  is supplied to the inpu ts  of the m ultiplier 

during cycle 1. T he resu lt 3 * a r r [ l ]  is supplied to  the adder inpu t during cycle 

2, and w ithou t pipelining the m ultiplier would be idle. If, however, a r r [ 2 ]  is 

supplied to  th e  m ultip lier during cycle 2 then m ultiplication of the second array 

elem ent is overlapped w ith addition.

Clearly, if m ax_arr is greater than  or equal than  the  num ber of stages 

in the  pipe th en  there will be some time during the  execution of the loop when 

all un its are doing useful work. It is also clear th a t for an n -u n it pipe there will 

be 71 — 1 cycles a t the  beginning and n  — 1 a t the end when the pipe is filling 

or draining during  which some units will be idle. For an n  stage pipe and m
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operands all the d a ta  will have been processed after m  +  n  — 1 cycles. T here are 

n  X (m  -|- n  — 1) operation  slots available w ith n  function units in  m  +  n  — 1 cycles, 

so the functional un it u tilisa tion  is m /(m  -f n  — 1) which will be close to  1 for 

n.

Historically, pipelin ing was first used to speed instruc tion  and  operand 

fetches ra th e r than  w ith in  the  processor core itself. Typically p ipeline stages 

im plem ent in struc tion  fetch, in s truc tion  decode (including address m ode calcu­

lation), operand fetch, execution and  storage of results. On m ultip le address 

architectures ex tra  address calculation stages m ight be used. On linear sequences 

of code, the in struc tion  pipeline can be kept filled, bu t any branching  in  the  con­

trol flow will require the pipeline to  be flushed and refilled. This resu lts in  loss of 

th roughput. M odern com pilers for heavily pipelined machines such as the  S tan ­

ford M IPS RISC processor [Mar84] a ttem p t to  reorder the execution of loops so 

th a t calculations th a t do no t m odify the  loop decision operands are b rought to 

the end of the loop, and  th e  branch  decision is taken n cycles early w here n  is the 

num ber of cycles in the  pipe. In th is way w hat would have been w asted cycles 

during the pipe flush can perform  useful work. This allows in struc tion  pipes to 

approach 100% utilisation even in the  presence of branching code.

7.3 Vector processors

Machines w ith  a rithm etic  pipelines such as the CDC 7600 operate  at 

peak efficiency when supplied w ith highly repetetive sequences of instructions 

th a t m ap well onto the pipeline. Vector machines such as the CDC STAR 100, 

its  descendants the C Y B E R  203 and  C Y B ER  205, the TIA SC, th e  Cray series 

and the Fujitsu VP-200 provide explicit vector instructions w ith  associated vector 

registers. A single vector in s truc tion  replaces a whole sequence of scalar in s truc­

tions th a t need to  be repetitively  fetched from  program  store on th e  CDC 7600. 

The vector registers allow in term ed ia te  results to be held in the central processor 

ra th e r than  requiring m ain  m em ory transfers.

T he perform ance of vector processors is heavily dependent on the  m atch 

between the vector and  pipeline lengths. The perform ance of the Cray-1 can range 

from 2.5 to  153 Mflops [HJ81]. A rithm etic  u tilisation rises as the vector length 

approaches th a t of the p ipeline and  then  halves as the vector length  becomes 

l+[length of pipeline) due to  the  load and  flush phases. As a result th roughpu t 

rates show discontinuities where the  vector length is around a m ultip le of the 

pipeline length.
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7.4 Parallel processor classification

7.4.1 S tream  classification

T he previous levels of parallelism  have all been applicable to  the execu­

tion of a single program  on a single d a ta  stream . F lynn defined four categories of 

com puters in term s of the ir instruction  and  d a ta  stream s:

1. SISD — Single Instruction , Single D ata  s tream  com puters such as the VAX,

2. SIMD — Single Instruction , M ultiple D a ta  stream  com puters such as the 

ICL DAP [Red73],

3. MIMD — M ultiple Instruction , M ultiple D ata  stream  machines such as the 

IM P system  to be described in C hap ter 9,

4. MISD — M ultiple Instruction , Single D ata  stream  of which no practical 

exam ples exist.

Fountain  [Fou87] claims th a t F lynn designated pipelined systems as MISD because 

m ultiple instructions are being applied to the sam e d a ta  item s, bu t this seems no 

m ore valid than  claiming th a t a non-pipelined system  is MISD — each datum  is 

only being operated  by one functional un it a t a tim e whereas tru e  MISD implies 

th a t m ultiple instructions are operating on the  sam e datum  simultaneously. A 

dual po rted  cache m em ory m ight be in terp re ted  as a true MISD ‘processor’ in 

th a t m ultiple com parators m ight be testing the  sam e tag sim ultaneously, but the 

au tho r is not aware of any real im plem entations of such a device. Indeed Hockney 

and Jesshope [HJ81] say th a t the class seems to  be void, and Hwang and Briggs 

[HB85] say th a t “No real em bodim ent of th is class exists” . [HJ81] notes th a t 

the  original paper by F lynn [Fly72] “states th a t it includes specialised stream ing 

organisations using m ultiple instruction  stream s on a single sequence of data. 

However no examples are given” . M ost au thors prefer to consider pipelining as 

being different in natu re  to  the organisations described by F lynn ’s taxonomy. In 

this work the term  spatial parallelism will be used to describe the topological 

layout of processors as described by F lynn’s classification, and the te rm  temporal 

parallelism to  describe pipelining.

7.4.2 F unctional un it c lassification

F lynn ’s elegant classification into stream s which yields th ree useful classes 

is insufficiently detailed to  do o ther th an  sketch th e  architecture of a  real system.
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Shore [Sho73] described six classes of m achine based on the ir constituent parts 

and  in terconnection. M achine I corresponds to  the conventional Von Neumann 

arch itecture. M achine II reads a bit slice from  all words in m em ory and operates 

b it-serially ra th e r  than  fetching da ta  a word at a tim e. A rray processors such as 

the  ICL DAP and  CLIP-4 fall into this category. M achine III is a com bination of 

I and  II w ith separate  processors for words and bit slices. M achine IV has a single 

control un it bu t m ultiple processing units. However no inter-processor communi­

cation is provided except via the controller. A m achine such as the ILLIAC-IV 

would be type IV if all in ter-P E  com m unication paths were disabled. Machine V 

is the same as m achine IV bu t w ith in ter-P E  com m unication added. Machine VI 

corresponds to  th e  associative processors th a t will be described below. They are 

characterised  by having processor logic d is tribu ted  th roughout the memory.

Shore’s classification is not m uch more detailed th a n  F ly n n ’s and lacks 

the  elegance or m nem onic value of the class nam es. It does not address the issue 

of pipelining and  does not really address the  MIMD class. Indeed classes II to V 

are m erely subdivisions of F lynn ’s SIMD class.

Hockney and Jesshope [HJ81] developed a ra ther baroque notation for 

w riting detailed s tru c tu ra l descriptions of the  num ber of in struc tion , execution 

and m em ory un its  and the  m anner of their interconnection and  control. Intercon­

nections are represented  using a notation analogous to  th a t of a chemical formula. 

T he Backus N aur Form  [BBG*60] definition of their no ta tion  requires about two 

pages, and can be used to construct extrem ely complex expressions. The simplest 

exam ple is th a t of a von-N eum ann serial machine:

C = I[E -M ]

This defines the com puter C to  be a single in struc tion  processor I  con­

tro lling the  un it in  th e  brackets, being a single execution un it E connected by a 

single d a ta  p a th  to  a single memory bank. The no ta tion  is like a com bination of 

the  s tru c tu ra l no ta tio n  used by chemists and  the processor-m em ory-sw itch (PM S) 

no ta tion  of Bell and  Newell [BN71]. The advantage of this no ta tion  over the other 

classifications described here is th a t pipelining is explicitly represented.

7.5 A rray processors

An array  processor is usually taken to  be a system  of the strict SIMD 

type, i.e. a single control un it (CU) broadcasting instructions to  a  set of processing 

elem ents (PE s) w hich operate  in lockstep. The advantage of th is arrangem ent is
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th a t by definition all processors are synchronised so th a t there can be no memory 

contention or deadlock problem s. An array  processor could be thought of as a 

sim ple sequential m achine th a t includes unusual d a ta  types, such as the  bit slice 

vector or b it slice p lane, am ongst its base operands.

Some recent designs such as PASM [KS86] and C L IP -7 allow the array 

to  be partitioned  in to  a  num ber of autonom ous SIMD arrays. This is im portan t, 

because in a conventional SIMD machine the  only way of conditionally processing 

p a rts  of the  d a ta  set is to  disable the processing elements corresponding to the 

unprocessed p art. SIMD PE s are usually very simple bit-serial devices, and the 

th ro u g h p u t of the array  is sustained only through the high degree of parallelism .

Im age processing is one of the m ain  applications for such machines. For 

an a lgorithm  to execute efficiently on a SIMD processor it m ust (a) operate on 

d a ta  which is highly s tru c tu red  in a topology sim ilar to  th a t of the array itself, and 

(b) require only short range com m unication between processing elements. Small 

window operators such as the  Sobel edge detector working on square arrays of 

pixels fit these requirem ents exactly.

Fountain  identifies three active SIMD projects prior to  1975 — SOLOMON, 

the ILLIAC m achines and the early CLIP machines. The basis for these was 

U nger’s paper [Ung58] which described a com puter oriented tow ards spatial prob­

lems. His ab strac t m achine showed the classical SIMD features, nam ely broadcast 

of in struc tions from  a single Control Unit to  m ultiple lockstepped PE s, each of 

which had  its own local m em ory and was connected in a two dim ensional array.

The second generation of systems is characterised by machines such as 

the  ICL DAP [Red73], CLIP 4 [FG80] and the Goodyear M PP  [Bat80]. These 

are all large arrays of b it-serial PEs and have all been used extensively for image 

processing. They use m a tu re  technology and have been commercially successful. 

O ther in teresting  system s include the G A PP chip from NCR [NCR84], G E C ’s 

G RID  processor [RM82] and  the M IT Connection M achine [Hil85].

A th ird  generation of arrays th a t provide some local autonom y are cur­

ren tly  being developed. These include CLIP 7 [Fou85] and the P urdue University 

m achine PASM [KS86].

7.5.1 Solom on

In the  early 1960’s a machine called SOLOMON (Sim ultaneous Op­

era tion  Linked O rdinal M O dular Network) was described by workers from the 

W estinghouse C orporation  [SBM62,GM63]. Bit serial processing elements were
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arranged in  a four connected mesh with duplication of routing  functions so th a t 

each inp u t of th e  ALU could be connected independently  to  any of the available 

d a ta  sources. T he m axim um  array size was to  be 32 x 64, and  each P E  had 8K 

bits of storage (x.e. a to ta l of 16M bits for a m axim ally configured array). The 

control un it would accept variable length bit-parallel instructions such as m ultiply 

and divide and  generate the  necessary bit-serial operations for broadcast to  the 

array. It is not clear th a t SOLOMON was ever com pleted, and  the  m achine does 

not appear to  have been used for image processing. The design was clearly very 

am bitious, and  th is may have contributed to its demise.

7.5.2 ILLIA C  III and IV

T he ILLIAC III was a special purpose machine for analyzing bubble 

cham ber pho tographs to  aid the search for particle collisions. T he m achine de­

scribed in [McC63] had  an array of 32 x 32 special purpose P E ’s th a t could be 

eight or six-connected to  their nearest neighbours. The eight neighbour inputs 

were rou ted  via an  O R  gate to  an eight-bit shift register. The shift register ou tpu ts 

were ANDed together and passed to  the P E  ou tpu t for connection to  neighbours. 

One end of the  shift register was used for d a ta  I /O  to  the local m em ory which 

could act associatively. The prototype was dam aged in a fire and the project 

abandoned in 1967.

ILLIAC IV was the first machine in the world capable of sustaining 

average execution rates in excess of 20 Megaflops. It was designed and built 

by the U niversity of Illinois and the Burroughs corporation. Between 1972 and 

1982 it form ed one of the most powerful service nodes on A rpanet. The m achine 

was an am bitious ‘one off’ which never reached its full specification bu t which 

nevertheless has influenced all la ter supercom puter designs and perhaps more 

im portan tly  provided the test bed for several new ideas in program m ing languages 

and algorithm  design.

T he m achine provided an array of 64 PEs arranged as an 8 x 8 m atrix . 

The last P E  in each row could be connected to the first in the next row so as to 

form a 64 X 1 array  suitable for vector operations. Rem arkably, the PEs were 

powerful 64-bit processors capable of 8, 32 and 64-bit arithm etic w ith on-board 

barrel shifters and  floating point units, and 2K 64-bit words of local memory. 

This is in m arked con trast to  the simple bit-serial PEs used in m ost o ther array 

processors. W hen used in 32-bit mode, each P E  could operate on two independent 

d a ta  elem ents, providing a  128 element array. Basic local m em ory access tim e
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was 188ns, bu t contention between PEs for memory could raise th is to  350ns. 

A B urroughs B6500 was used as a front end for com pilation, loading and  d a ta  

transfer.

One of the streng th s of the ILLIAC-IV was its backing store. A fixed 

m ulti-head 20M byte disk was used w ith an average access tim e of 20ms and a 

500MHz transm ission bandw id th . A good program m er could m ain tain  a th ro u g h ­

pu t of more than  7 million words per second, allowing the disk to  be used as part 

of the  prim ary store.

ILLIAC-IV was a  very expensive machine. Development and  construc­

tion cost around $40 m illion. R unning costs were around $2 million per annum . 

One of the reasons for these high running costs was the absence of E rro r De­

tecting and C orrecting (EC D C ) circuitry. The entire system  contained around  6 

million com ponents, and  the M TB F was m easured in hours, not days. Extensive 

diagnostics were run  frequently and upon detection of an error the  relevant P E  

or control m odule was unplugged and subjected to  detailed test offline on a sep­

ara te  diagnostic m achine. New modules were available to  m ain tain  operations. 

This lack of ECDC and the  use of the (then) leading edge technologies such as 

256-bit sem iconductor m em ories m ust be seen as design weaknesses. C om pare the 

long development tim e w ith the four year development cycle of the Cray-1 vector 

processor [HJ81] which used conservative technologies throughout and which has 

been a m ajor com m ercial success.

As well as being a  SIMD array processor the machine could dem onstrate  

some concurrency. T he m aster control un it was more like a small com puter in  its 

own right, and the order code for ILLIAC-IV comprised two sets of instructions, 

one for execution in the control unit and one for the array. Processing of these 

two types of instructions could proceed concurrently.

Several program m ing languages were developed for use on ILLIAC-IV 

such as Actus [Per79], C lypnir and CFD [Ste75] (an array processor FO R TR A N ).

7.5.3 CLIP 1 -4

University College, London were also interested in detecting particle col­

lisions in bubble cham ber photographs and dem onstrated  a 20 x 20 array  called 

U C P R l [DJT67]. This sum m ed and thresholded 3 x 3  and 5 x 5  neighbourhoods 

and could find sharp changes in line orientation.

CLIP 1 [W at74] was a 10 x 10 four-connected mesh of very simple PEs 

w ith no local memory. T he P E  function set was lim ited to  ex traction  of closed
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loops of ones, extraction of ones connected to  the  image edge and extraction  of 

the  ou ter edge of blocks of solid ones. Inpu t was from a flying spot scanner via a 

shift register. The o u tp u ts  were displayed on an oscilloscope.

CLIP 2 [Fou87] which was com pleted in 1972 was a much more general 

system  comprising a 12 x 16 six-connected array  of PEs containing two one bit 

ALUs each capable of generating all 16 boolean functions of two variables. One 

processor provided the neighbourhood o u tp u t which was fed to  the six neighbours 

and  the o ther provided an o u tp u t which could be displayed or fed to  one of two 

im age memories for use by la ter processing. A lthough the processors were more 

general, there was no way of selecting d a ta  in p u t from  a particu lar direction since 

all neighbourhood inpu ts  were routed  via an OR gate.

CLIP 3 [DWFS73] replaced the  O R gate inpu t selector w ith gated  di­

rection inpu ts, so th a t the d a ta  source direction could be explicitly defined in 

the  m achine code. A 12 x 16 array  was built which supported  bo th  six and 

eight-connected meshes. Each P E  had  16 bits of local memory.

The early CLIPs were really only dem onstration machines. T heir appli­

cation  was lim ited due to  the  small array  size. CLIP 4 [FG80] was designed as 

a 96 X 96 array of processors w ith functionality  similar to  th a t of CLIP 3. A 

full custom  integrated circuit containing eight PEs using about 3000 gates was 

specified in 1974, bu t a full speed pro to type array was not available until 1983 

due to  a series of problem s w ith the chip fabrication. The CLIP 4 P E  is sim ilar to  

th a t of CLIP 3 w ith the  addition  of a carry b it to  assist in grey scale arithm etic. 

T he dual boolean processors were reta ined , and the local memory increased from 

16 to  32 bits. The CLIP 3 analogue threshold  gate was replaced by a simple OR 

gate since a digital th reshold  gate would have consumed as much silicon area as 

th e  rest of the processor.

CLIP 4 was available commercially from  Stonefield Electronics and there 

have been sales to the US military.

7.5 .4  CLIP 7

The CLIP 7 chip is designed to support varying degrees of local autonom y 

allowing some freedom from  the confines of SIMD processing [Fou87]. It is a 

word parallel device containing a 16-bit ALU capable of perform ing addition, 

sub trac tion  and all 16 bitwise functions of two variables, a 16 bit shift register to 

suppo rt logical and arithm etic  shifts and logical ro tates, four 16-bit registers, a 

16-bit C register th a t m ay be used for local function control or as a d a ta  register
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and an 8-bit D register for d a ta  I /O . N eighbourhood registers store d a ta  from the 

eight connected neighbours and com m unication is via bit serial connections so as 

to  reduce the p inout of the device.

A part from  its word parallel s tru c tu re , the m ain novelty of the CLIP 

7 chip is its ability to  locally modify the  broadcast instruction  stream  using the 

contents of the C register. An external pin is used to  set the operation mode as 

either global (in which case the C register is available for d a ta  storage and no 

control m odification occurs) or local. In local mode the contents of the C register 

are used to  control the  following modifications:

1. disable P E  — an activity bit can be set on carry, overflow, zero or sign and 

used to disable the PE.

2. ALU operation  — the carry inp u t can be either the previous carry ou tpu t 

or the o u tpu t of bit 2 (this is used for m odulo 8 arithm etic which is required 

for direction calculations).

3. register address — two bits of the C register may be used to  address one of 

the four d a ta  registers. This provides locally modifiable indexed addressing, 

although w ith such a small register set its usefulness m ust be lim ited in a 

single P E  array. The prototype system  uses two CLIP 7 chips per P E  with 

one dedicated to  local address generation.

4. connectivity control — eight bits of the C register are used to enable the 

eight-bit serial neighbourhood inpu ts. The bo ttom  three lines can be used in 

grey scale mode to  address one of the eight on-chip neighbourhood registers.

T he chips are being used to construct CLIP 7A, a 256 x 1 array of PEs. Each 

P E  uses two CLIP 7 chips, one to  generate addresses for the 64K byte of local 

m em ory and the o ther to  perform the pixel calculations. It is intended th a t CLIP 

7A will be the first of a series of machines th a t will be used to  investigate locally 

autonom ous arrays and  P E  interconnectivity.

7.5 .5  T h e ICL D A P

The DAP is an array processor add-on to  the ICL 2900 range of pro­

cessors. The production  system, first delivered in 1980, consists of a 64 x 64 

four-connected array. Each P E  contains a full adder, a carry b it, an activity bit 

th a t may be used to  disable PEs for conditional processing, a Q bit th a t latches 

the sum  o u tpu t of the full adder and 4k b it of local memory. The first description
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of the system  was in 1973 [Red73] and a p ro to type 32 x 32 array  built from MSI 

T T L  was available by 1976.

As well as th e  nearest neighbour connection netw ork, the  DAP has row 

and colum n buses which may be used to  b roadcast d a ta  and instructions to  large 

num bers of P E ’s simultaneously. The host 2900 sees the DAP as a norm al 2M 

byte m em ory array, and  the row bus is used to  access the  local m em ory of 64 PEs 

a t a tim e, appearing  as a  single 64-bit word fetch to  the 2900. This facility helps 

overcome the inheren t I /O  problem  of SIMD processor arrays.

The cost of a  DAP in 1980 was about i ’500,000 on top of the  cost of 

the  host 2900, bu t th e  ex tra  memory provided by the DAP would have cost a 

significant p a rt of th is  figure anyway [HJ81]. A VLSI im plem entation of the DAP 

is now available from  Active Memory Technology L td  in the form  of the M iniDAP 

add-on to  Sun and Vax hosts. It uses a CMOS full custom  chip. There is a  bipolar 

version of the design (M ILDAP) for m ilitary applications. The chips are intended 

for use in 32 X 32 arrays. There has also been a proposal for a bit slice word 

parallel processing elem ent, bu t it is not clear if th is design is going ahead.

7.5 .6  T h e G ood year M P P

The M assively Parallel Processor is designed to process LANDSAT-D 

satellite images a t real tim e speeds. This requires a processing ra te  in excess 

of 10® operations per second [HJ81]. A clustering benchm ark dem onstrated  by 

Coodyear has achieved processing rates about 1400 tim es faster th an  a VAX 

11/780. The m achine is a 128 x 128 four connected array  of DAP like processing 

elem ents [Bat80]. T here are no broadcast buses and  d a ta  I /O  is from  the  left 

edge to  the  right. D uring I /O  the M PP P E s act as 128, 128-bit shift registers. 

There is a global b roadcast facility. The m ajo r enhancem ent over the DAP P E  is 

the addition of a  program m able shift register (analogous to  the  Q -register in the 

2900 bit slice elem ent) which is used to im prove m ultip lication tim e using B ooth’s 

algorithm . The execution frequency of the array  is lOMHz (the DAP runs at 

5MHz, CLIP 4 a t 2.5M Hz) and it can perform  a 32-bit floating point m ultiply in 

60/i.s.

M PP is im plem ented using full custom  VLSI w ith eight processors per 

chip. Two external 4k b it RAM chips provide the  Ik  bit per P E  storage. Since 

the RAM is off chip, im provem ents in com mercial m em ory technology will allow 

increases in local storage. An interesting feature of the  M PP is the provision of 

four additional redundan t columns th a t can be switched in  after a failure in one of
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the norm al columns. This should significantly increase the M T B F of the  system.

7.5 .7  T h e N C R  G A P P  chip

N CR has produced the first in a series of array  P E  chips, the  Geom etrical 

A rray Parallel Processor (G A PP) [DT84,NCR84]. The processor is a simple full 

adder four-connected to its neighbours via a com prehensive sw itching network 

and to  128 bits of local on-chip memory. Connection to  ex ternal m em ory is 

possible, bu t external cycles will be at least an order of m agnitude slower than  

local accesses. T he first G A PP chip in tegrates 72 of these processors in  a  6 x 12 

m atrix . This very high level of in tegration  is expected to  increase to  a 2048 PE  

chip by the early 1990’s. 5MHz and lOMHz parts  are available.

7.5.8 T h e G EC  G R ID

The GEC R ectangular Image and D ata  processor (G R ID ) resu lted  from 

collaboration between Southam pton  University and the GEC H irst Research Cen­

tre  [RM82]. It is intended to  in tegrate  64 PEs (requiring some 50,000 transisto rs) 

onto a single chip which will run  at lOMHz. The P E  is essentially conventional 

w ith a single b it ALU and a block of local memory. The novel aspects of the 

GRID concern its connectivity features. F irstly  the local RAM  is dual ported , 

thus speeding two operand calculations. Secondly the individual PE s m ay be ad­

dressed using X-Y addressing to access a single P E  and row /colum n broadcast 

as in the DAP. Thirdly, although the array  is basically four connected, the carry 

b it can be rou ted  to  diagonal neighbours thus providing a lim ited eight connected 

pathway. F inally  a h istogram  bit H is present in each P E  wired across the chip 

as a shift register.

7.5.9 T h e M IT  con n ection  m achine

T he Connection M achine [Hil85] p ro to type contains 65536 P E s arranged 

as a 12 dim ensional n-cube. The a ttractive  p roperty  of the n-cube connection is 

th a t for a hypercube of dim ensionality N  each node is connected to  N  o thers and 

the m axim um  num ber of links between two nodes is N .  Each chip contains 16 

PE s, and stric tly  speaking the hypercube connectivity is only present a t the chip 

level, i.e. betw een the 4096 chips (note th a t 4096 is 2^^). W ith in  each chip 4 x 4  

array  of single b it PEs is connected via a message passing rou ter chip. T he rou ter 

can accept four messages per cycle, and will direct the messages off chip in to  the



157

hypercube network if necessary. T he m achine is being com mercially developed by 

the Thinking M achines C orporation .

7.6 Systolic arrays

The te rm  systolic array  was coined by K ung and associates a t Carnegie- 

Mellon University [KL79]. In  its purest and m ost generally understood  form a 

systolic array  comprises a two dim ensional array of non-program m able processors 

acting like a two dim ensional pipeline. The only control signal required is a clock. 

D ata  is fed in at the edges of the array  and passes through being transform ed 

en route. The technique is especially applicable to  algorithm s th a t require long 

range calculations in the  resu lt such as m atrix  m ultiplication. T he array  needs 

to be filled and flushed like any o ther pipeline, and as a result th e  technique 

is m ost useful when high speed repetitive calculations are required. T he term  

systolic refers to the ‘p u m p e d ’ na tu re  of the d a ta  pathways and is a reference to 

the pum ping action of th e  heart.

Recently, workers have produced more and more complex system s with 

locally autonom ous processors, inter-processor queues and local d a ta  loops. These 

system s, typified by W A RP [Kun84], are not easily distinguishable from  more 

general pipeline processors and  it would perhaps be best to re ta in  the te rm  systolic 

for the sim pler non-program m able devices.

Simple systolic arrays are very am enable to  VLSI im plem entation. The 

prim ary  constrain ts on any VLSI project are (a) transisto r count, (b) pinout 

and (c) routing requirem ents. In a macroscopic design active circuit elements 

(transisto rs) are expensive and  interconnect (wire) low cost. At the silicon level 

the two dim ensional n a tu re  of the m edium  along w ith the large relative size of 

interlayer contacts m eans th a t w iring can consume a considerable area  (typically 

60% in a m odern m icroprocessor [WE85]). Long distance wiring on the chip also 

slows the cycle tim e of the  device. To propagate a signal across a lO^mm die 

such as th a t used for the device described in C hapter 10 can take m ore than  10 

transisto r switch tim es. T he  sim ple systolic array can be constructed  from  small 

cells th a t b u tt together w ith  no global wiring — a so-called tiling architecture. 

Systolic arrays are also p rim e candidates for im plem entation using W afer Scale 

In tegration  (W SI) when th a t  becom es technically feasible.

G EC at the H irst Research C entre in association w ith the R SR E are 

producing a set of bit serial systolic arrays including a correlator and a convolver 

[MM82]. W orkers at P u rd u e  and  Carnegie Mellon [Kun84] have shown how various
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classes of algorithm s m ay be au tom atically  m apped onto systolic array  architec­

tures.

7.6.1 W arp and P S C

Recent systolic work at Carnegie Mellon has concentrated on two more 

general pipelined system s —  the W ARP pipeline processor and Program m able 

Systolic Chip (PSC).

W arp consists of a  linear pipeline of 32-bit processors buffered by FIFO  

queues. Each P E  contains a W eitek W TL1032 m ultiplier and  a W TL1033 ALU 

[Wei84b,Wei83b,Wei83a]. These are 32-bit IE E E  standard  floating point chips 

which use a five stage in terna l pipeline to  produce a new result every two clock 

cycles. E xternal pipeline registers are connected via a crossbar switch to  a 4k X 32- 

bit d a ta  RAM which can store in term ediate  results and lookup table coefficients.

The ten cell p ro to type is capable of lOOMFLOPS. A 5 x 5 convolution 

kernel can be pipelined at the  ra te  of one every microsecond, and a 512 x 512 

im age can be processed in  about 250ms. The use of the W eitek units and the 

F IFO s to sm ooth d a ta  transfer make W arp a very high perform ance scientific 

processor which can perform  pipelined com plex F F T s at the  ra te  of one every 

615/xs. However, the excellent (and  expensive) floating point capability is probably 

overkill for m ost im age processing applications.

The PSC device is in tended to  be used in two dim ensional arrays th a t 

are much closer to the original systolic concept th a n  in the case of W arp. Each 

chip contains an 8-bit ALU, an 8-bit in p u t/1 6 -b it ou tpu t m ultip lier/accum ulator, 

th ree 8-bit d a ta  inpu t po rts  and three 8-bit d a ta  ou tpu t po rts  [FKM*83]. The 

m ost intriguing feature of th e  chip is the provision of a 64 word w ritable microcode 

store and an associated stack based sequencer w ith  a 64 word register block for 

d a ta  storage. This allows the  processor to  locally execute its  own program , and 

therefore is much more general th an  the CLIP 7 chip which only effectively allows 

for local address m odification and carry in p u t control. In CLIP 7A all control flow 

is still centralised in the classical SIMD fashion, although fu tu re versions of the 

system  may be partitionab le  in a m anner sim ilar to  th a t of PASM (see below).

7.7 M IM D  m ultiprocessors

It is difficult to  p resent a system atic survey of MIMD systems because the 

available degrees of freedom  provide a very large space of possible configurations.
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In particu lar;

1. the processing elements are not usually  lim ited  to the simple bit-serial de­

vices th a t array  processors favour,

2. m ore general interconnection schemes are used,

3. varying degrees of coupling exist betw een the  processing elements.

In an array  the  PEs are in lockstep, i.e. they  all share the same instruction  

stream . This is the case even in the case of CLIP 7A where the instruction  stream  

is only locally modifiable by address m ode and  ALU function. In a close coupled 

m ultiprocessor the processing elements are executing at similar rates and share 

some m em ory so th a t d a ta  may be exchanged synchronously and at high speed. 

Loose coupled m ultiprocessors provide (possibly asynchronous) com m unication 

channels betw een processors, and da ta  in terchange is by message passing modelled 

on the trad itional I /O  read and write operations.

In  th is section the early Carnegie M ellon m ultiprocessors C .m m p and 

CM* are described, followed by the im age processing com puters P IC A P and 

PASM and finally a brief review of cone and  pyram id  architectures.

7.7.1 C om m u nication  netw orks for m ultiprocessors

The m ultiprocessor systems described so far have used provided local 

connections to  four, eight or six neighbours. In some cases row joining is available 

(ILLIAC IV, GRID  histogram  network), o ther m achines provide broadcast facili­

ties a t the  row or column level (DAP and G R ID ) and  in one case (the Connection 

M achine) a  long range hypercube network is p resent to  allow global interchange 

of data . Low level window based image processing operations fit such machines 

well. However, real vision problem s require considerably more complex processing 

th an  th a t provided by window operators, and th a t this often takes the form of 

gathering  together inform ation from d isparate  p a rts  of an image, in o ther words 

long range com m unication is required.

One way of providing such capability  is to  provide a conventional sequen­

tia l host which can access the local m em ory of the  PE s. The ICL DAP and NPL 

LAP 2 [McC85] adopt this approach. This im poses a hierarchy on the system  and 

the program m er has two system s (supporting  two completely different program ­

ming paradigm s) to  control. Some high level language compilers (such as ACTUS 

and D A P-FO R TRA N  which will be discussed below) provide a unified notation, 

bu t it is a ttrac tiv e  to  consider the  design of a system  w ithout hierarchy where the
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PE s can com m unicate over long distances and m ay be highly autonom ous, i.e. 

MIMD system s in F ly n n ’s taxonomy.

Considerable research effort has been expended on the investigation of 

com m unication networks for m ultiprocessors. For small num bers of processors it 

may be possible to  provide com plete interconnection such th a t every processor is 

connected to each of its  neighbours. The cost of the interconnect rises as and 

the  size of the processing element is also likely to  rise as n  for large n  because the 

m ultiple interfaces will dom inate over the processing circuitry itself. At the other 

extrem e all processors may be connected to  a single bus. This provides to tal 

interconnectivity  w ith  no routing overhead bu t will suffer from  bus contention 

since only one processor-processor com m unication may be in progress at a time. 

A m odern bus specification will however have a high bandw idth  relative to  the 

in struc tion  execution frequency of conventional serial processors, so for algorithm s 

requiring lim ited intercom m unication the bus may be just as fast as a  m axim ally 

connected network. T he commercial ELXSI m ultiprocessor [Ste87] adopts this 

approach by in terconnecting up to 12 fast processors over a 320M byte per second 

64-bit databus.

In particu la r cases, either of the above extrem es may provide the best 

com prom ise between perform ance and cost. However, for system s containing large 

num bers of processors (say >  10) neither is likely to  be very satisfactory — on 

the  one hand a bus will probably be reaching satu ration , and on the o ther the 

cost of (say) 90 in terprocessor buses may well be greater th an  the cost of the ten 

processors. A cost effective solution is likely to  lie w ithin the space of partially  

connected networks.

7.7 .2  Logical and physical netw orks

The bus is logically equivalent to  the maxim ally connected net in th a t 

there  is a direct connection between all processors in the system. Segm enting the 

bus architecture into m ultiple buses implies the need for routers to  connect proces­

sors on independent segm ents. Given th a t routers exist to connect all sub-buses 

together then the segm ented bus is logically equivalent to a physical m axim ally 

connected net, bu t w ith  a tim e overhead. If some parts  of the processor m atrix  

were isolated then some processors would be unable to  intercom m unicate.

If two bus structu res are logically equivalent then they are able to  sim­

u la te  each other, bu t usually there will be a tim e penalty. Given a network 

com prising nodes th a t m ay process and route, the degree of a netw ork is defined
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as the num ber of links connected to each node and the diam eter of the network 

is defined as the  m axim um  num ber of links separating two nodes. For a given 

num ber of nodes, increasing the degree will reduce the num ber of steps required 

to  rou te  a  m essage between processors on opposite sides of the  network. Routing 

will absorb  resources a t the routing node and delay the p ropagation  of messages. 

T he bus is degree one, d iam eter one. A m axim ally connected net of n  processors 

is degree n  — 1, d iam eter one. A hypercube of 2” processors has degree n  and 

d iam eter n  and  provides a good compromise between cost and  routing  overhead.

7.7 .3  C .m m p

T he C .m m p system  [WC72], com prised 16 PD F  11/40E  processors con­

nected to  16 shared m em ory modules via a crossbar switch. T he to ta l physical 

address space was 32M bytes. The 11/40E processors were modified to  make user 

execution of instruc tions such as HALT, R ESET and RTI (re tu rn  from  in terrup t) 

illegal, to  allow bounds checking on the stack pointer, and to provide an extended 

w ritable control store. Backing store, in the form  of four 40M byte disk drives, 

was a ttached  to  the  U nibus of specific processors. A processor could not in itia te 

I /O  on a drive th a t was not connected to  its  own Unibus, i.e. peripherals were 

not shared.

As well as the  processor-m em ory crossbar, an interprocessor bus was used 

to  provide a com mon clock and common interprocessor control. The clock lines 

provided a 60-bit clock counter updated  at 250kHz which was m ultiplexed onto 

a 16-bit datapa thw ay  and read into four sixteen bit registers on each processor. 

T he operating  system  (called H ydra) made extensive use of th is clock counter to 

generate unique nam es w ithin the system. The top four bits of th e  m ost significant 

local clock register were set to the address of the processor. T he interprocessor 

bus also provided in terprocessor in terrup ts and control. Each processor could 

h a lt, in te rru p t, continue or s ta r t any processor, including itself.

T he v irtual address range of a PDP-11 is lim ited to  64K bytes, and this 

was one of the  m ajor lim itations of the C .m m p. The already ra th e r baroque 

m em ory m anagem ent scheme of the 11/40 was m ade even more complex with 

the  provision of a 25-bit shared address space accessed via th e  crossbar which 

autom atically  queued m em ory requests when contention occurred. It was planned 

to  add caches to  each of the processors, bu t this was not in fact im plem ented.

T he basic intercom m unication m echanism  in H ydra was the channel — 

an I /O  like link between two processes analogous to the m ailbox in VMS and
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the message queue (M Q ) device in RT-11. This was im plem ented using the  same 

protocols as for I /O  processing, providing a unified program m ing environm ent for 

interprocessor and periphera l com m unication. Since this message passing protocol 

was inefficient for transferring  large blocks of d ata , locks and sem aphores were also 

provided to  control access to  shared memory.

7.7 .4  CM *

CM* [FOR*78] is also constructed out of PD P-11’s — in this case the 

LSI-11 chip set. Unlike C .m m p, the processor-memory s truc tu re  is hierarchical, 

and as a result a large system  w ith m any processing elements could be practically  

considered. However, each processor can directly address all of the available main 

m em ory bu t not a t uniform ly fast speeds. The basic P E  (called a C om puter 

M odule or CM) com prised an LSI-11 with local memory and I /O  devices on a 

local Q-bus. Essentially th e  only difference between a CM and norm al LSI-11 

processor was the in sertion  of a switch between the processor and the Q -bus th a t 

could either route addresses to  the Q-bus with relocation, or route to  a m ap 

bus. Each m ap bus connected up to  14 CM ’s to a K m ap. This ensemble was 

referred to as a cluster, and  m ultiple clusters could be used in a single system . 

The K m aps were ra th e r  complex microcoded processors each com prising some 

750 MSI chips on six cards. The reason for all this complexity was to  enable CM* 

to sim ulate m any arch itectu res easily, and in particu lar to research th e  v irtual 

addressing and m em ory pro tection  requirem ents of m ultiprocessor system s.

CM* has been used for speech recognition [JCD*78], solution of partia l 

differential equations by finite differences [Bau76] and to im plem ent a subset of Al­

gol 68 w ith extensions to  allow concurrent execution of tasks and synchronisation. 

The Algol 68 system  has been used to  investigate the autom atic decom position of 

tasks.

7.7.5 P IC A P  I and  II

PIC A P-I and II [KDC82] are processors specifically designed for image 

processing at Linkoping University.

A prelim inary P IC A P  I prototype was completed in 1973 bu t the  final 

system  was not ready un til 1975. It was fundam entally a SIMD m achine operating 

on 64 X 64 arrays of four-b it pixels. The 64 x  64 array was m appable w ithin a 

TV  fram e containing 512 x  640 square pixels. Crey scale range and sam pling 

density were program m able, so a full screen 64 X 64 image could be obtained  or
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a high resolution sub-im age. Nine im age planes were available.

The P IC A P-I instruc tion  set breaks down into four categories:

1. 3 X 3 convolution,

2. pointwise arithm etic  between separate  im age planes,

3. tem plate m atch,

4. I /O .

The convolution m ultiplies each elem ent in a 3 x 3 window by a coefficient, sum s 

the  results and norm alises by dividing by an appropriate power of 2 (t.e. by 

shifting the sum  right).

The pointwise arithm etic in struc tion  replaces the nine window elem ent 

inpu ts  of the convolver w ith pixels from  each of the nine image planes and then  

perform s the transform ation  as for convolution.

The tem plate  m atch employs an associative m atch un it to search through 

up to  eight supplied tem plates. The tem plates are 3 x 3  arrays of integers, 

and during the associative search each tem plate  element is com pared against its 

corresponding picture elem ent. The less th an , greater than , equal to and don’t 

care relations are all available.

The above array  operations may also be applied sequential to the  im age 

in a top-left to bo ttom -righ t scan.

Finally, a set of hardw are counters are provided th a t (a) collect grey-level 

h istogram  d a ta  and give the m axim um , m inim um  and average of the d istribu tion , 

(b) count the num ber of hits on each of the  eight tem plates and (c) track the m ax­

im um  and m inim um  coordinates of tem plate  h its, thus providing the m inim um  

rectangle enclosing all hits in an image.

PIC A P-I has been used to  inspect prin ted circuit boards, fingerprints 

and  to  detect m alaria parasites.

PIC A P-II is a bus based m ultiprocessor w ith a 40M b y te /s  bandw idth  

synchronous bus. M ultiple m em ory m odules are used with interleaving, i.e. m em ­

ory words w ith consecutive addresses are located  in different modules. A m ax­

im um  of 4M byte of error-correcting m em ory is available. Four m ain processor 

blocks are available along w ith video I /O  and  graphics display:

1. filter processor, a  generalisation of the  convolution operator available in 

P IC A P-I to  neighbourhoods of any size.
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2. logical processor, a generalisation of the PIC A P-I tem plate  search instruc­

tions to allow eight-bit pixels and allow virtually any logical com bination of 

neighbourhood pixels,

3. binary logical processor, a fast processor dedicated to logical operations on 

packed binary im ages,

4. m easurem ent and region processor, which looks for connected regions and 

m easures perim eter, ex ten t and area for each of them . It can label each 

region uniquely and produce chain code of their outlines. N ested regions are 

handled correctly and connectivity graphs can be produced of prelabelled 

regions.

An Algol like language called P P L  has been designed to program  th e  system . It 

has an editor, increm ental com piler to  in term ediate code and an in te rp re te r which 

together provide an in teractive program  development system.

7.7.6 PA SM

PASM (P artitionab le  SIM D /M IM D ) [KS86], is a proposal for a large 

scale SIMD machine in w hich p a rts  of the SIMD array (referred to  as partitions) 

may conditionally execute from  different control units. This is m ore general than  

the  CLIP 7A design which allows conditional local modification of the  in struc tion  

stream  from a single control un it.

A PASM system  com prises a Parallel C om putation U nit (P C U ), a set 

of m icrocontrollers which provide the instructions stream s for the  PC U , a set of 

backing store devices controlled by a m em ory m anagem ent system  and a host 

com puter.

The PCU contains iV =  2" processors, N  memory m odules and  an in ­

terconnection network. The N  PC U  processors are controlled by Q =  2’ m icro­

controllers (M C). Each MC controls N / Q  processors which defines the  size of a 

processor partition . Each p a rtitio n  has an independent control un it, so PASM 

may be considered a MIMD system  where the processors are sm all SIMD arrays. 

PASM can sim ulate larger SIMD arrays by loading the same code in to  m ultiple 

partitions, i.e. into m ultiple control units. Possible values for N  and  Q are 1024 

and 16 respectively.

Com m unication between processors is achieved via the  switching ne t­

work which allows m em ory to  be shared am ongst various processors. The m em ­

ory modules are double buffered to  allow sim ultaneous processor and  file system
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access.

7.8 Cone and pyram id architectures

It is clear th a t a (possibly ill-defined) hierarchy exists in the classical 

p a tte rn  recognition process. At the lowest level we have sim ple pixel level oper­

ations such as edge enhancem ents and sm oothing th a t are applied right across 

an image. The results of such operations which do not differentiate between the 

p arts  of the im age are then  processed to  detect local features such as corners and 

p arts  of edges, a t which point large parts  of the  original im age are discarded in 

favour of a higher level representation. Local features may be grouped in to  more 

global features and so on until the representation of the im age is in  term s of a 

specific classification.

Simple SIMD machines are useful at the lower levels, bu t become in ­

creasingly inefficient a t the higher levels. A SIMD machine in which one processor 

handles each pixel will become progressively idle as more and  more of the picture 

is discarded, and eventually a single SIMD P E  will be operational. Since SIMD 

P E ’s are usually slow and simple devices, the m achine will run  slowly com pared 

to  a conventional sequential processor.

Several m achines have been proposed and built which incorporate ex­

plicit hierarchy in an effort to  sm ooth the transition  from space parallel to  se­

quential processing.

[Uhr78] described a recognition cone structu re  which com prised a series 

of 2-D d a ta  memories interconnected by transform  layers. A transform  layer took 

the d a ta  from the m em ory below, processed it in some way and passed it up 

to  the memory above. The transform  layer was conceptually a SIMD processor 

operating on all of the points in the layer below. At each stage resolution could 

be reduced, giving a cone of layers converging at the ou tpu t term inal. This cone 

could be thought of as a pipeline of SIMD processors. The th roughpu t of the cone 

would be lim ited by the slowest processing layer, as norm al for a pipeline.

Hanson and R isem an [HR74] described a generalisation of U hr’s recogni­

tion cone called a processing cone. In this structu re , the transform  layers perm it 

la tera l d a ta  movement and  d a ta  flow down the cone, in addition  to  movement up 

the cone.

Cone architectures call for m ultiple connections to  each processing ele­

m ent in the transform  layer because the resolution reduction properties require 

the use of 5 x 5 or larger inpu t windows. A more restric ted  class of machines
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called pyram id machines [TK80], [Dye82] restric t the local interconnections to 

either four or eight la teral neighbours, four sons and a father. They are believed 

to  be as general as the processing cone, and  are m anifestly m ore economically 

feasible.

P yram id  m achine may be used to  m ap various d a ta  s tru c tu re  representa­

tions of n im age onto hardw are such as the quadtree, the roped quadtree [HS79b], 

overlapped quad tree, and colour, edge and tex tu re  pyram ids [Lev80]. These rep­

resentations have been used for region analysis, hierarchical searches and image 

com pression for transm ission.

A particu la r feature of pyram id m achines is th a t they  are able (due to 

their very regular architecture) to exploit VLSI technology, bu t they overcome the 

lim itations of trad itio n a l SIMD arrays, i.e. lack of long distance connections and 

high degree of parallelism  which is unsuitable for m ore sequential algorithm s. Long 

range com m unication in a pyram id m achine may be sim ulated by propagating up 

the tree and then  back down to the working layer.

7.8.1 P C L IP

The P C L IP  machine [Tan83] is a sim ulation of a 32 x 32 base pyram id 

running on a VAX processor. The sim ulated bit-serial P E ’s accept inputs from 

th irteen  neighbours and  process them  using boolean p a tte rn  m atching. There are 

three 1-bit registers per cell and a local m em ory of 128 bits. The Propagation 

Register is accessible to  neighbours, the C ondition Register is used as an activity 

flag, causing the P E  to ignore all instructions except those causing a transfer of 

da ta  into the condition register. The Target Register receives the  result of a m atch 

instruction .

M atch instructions compare a vector of 15 bits from  the controller to 

the 13 neighbourhood inputs plus the local T  and P bits. A second 15-bit vector 

(called the m ask) is used to  indicate don’t care positions.

A lgorithm s have been described for pyram id form ation, selection and 

segm entation and  region colouring. In particu lar the region colouring algorithm  

requires 0[logJ9] steps on the PCLIP and 0[D]  steps on a conventional SIMD 

array such as CLIP-4.
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Figure 7.4: A dataflow machine

D ata flow processors

Von N eum ann architectures and the Non-Von N eum ann m achines de­

scribed so far all belong to  the class of control flow com puters, in which the pro­

gram  has complete control over instruction sequencing. D ata  flow com puters do 

not have explicit instruction  stream s. Instead, instruction  packets are constructed 

containing an op code and the ‘address’ of operands, and a central controller ex­

am ines these packets. W hen the operands for an instruction  become available, 

then  the packet is routed  to  a functional unit which perform s the  com putation. 

T here is no shared memory, which m ean th a t side effects resulting from assignm ent 

to  global variables are elim inated. D ata flow com putation is purely functional. 

O perands are passed directly as tokens instead of addressed variables and dataflow 

com putations have no far reaching effects, they are inherently local. O peration 

is inherently  asynchronous, and this coupled with local com putation  and the un­

derlying functional program m ing model make such machines very am enable to  

parallel im plem entation. In principle, the addition of ex tra  functional un its and 

routing  paths will autom atically  allow the system  to  make use of the available 

parallelism  within the algorithm .

A data  flow com puter comprises a ring connecting memory, processors, 

rou ters and token m atching sections. The processors are fixed functional units 

perform ing the trad itional arithm etic and logical functions. In this respect the 

processing section is rem iniscent of the CDC 6600 CPU  where m ultiple functional 

un its are allocated to  the in struc tion  stream  using a hardw are interlock called the 

s ta tu s  checkboard.

W hen an instruc tion  is enabled by the  availability of its operands, it is
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routed via th e  a rb itra tio n  netw ork to  a processor. After execution by a processor 

the results are routed  back to  m em ory by the  d a ta  d istribu tion  network. If m ulti­

ple instruction  packets require the  results, then  m ultiple copies of the  d a ta  m ust 

be m ade. C onditional execution is handled using a set of condition evaluators 

th a t are analagous to  th e  processors. The results from the condition evaluators 

are control packets ra th e r  th a n  d a ta  packets, and are inserted  in to  the memory 

units by the control d is trib u tio n  network.

T he processors, evaluators and d istribu tion  networks operate  as a pipeline 

connected together by packet switching networks. The delay th rough  this packet 

switching network is a p rim ary  source of potential inefficiencies in  a dataflow 

com puter.

The critics of dataflow  m achines point out th a t norm al program s gener­

ally have very low levels of im plicit parallelism  and th a t there is little  real speed 

advantage to  be gained on general applications. It may well be th a t the  highly 

structu red  n a tu re  of low level im age processing does lend itself to  dataflow m a­

chines.

A nother real problem  w ith  functional im plem entations in  general is th a t 

the lack of shared m em ory requires replication of operands. In the  case of large 

arrays (which are typical in im age processing) this can cause very large am ounts 

of processor tim e to be absorbed  in array copying.

7.10 G raph red u ction  processors

Data-flow m achines are d a ta  driven, and operation packets can be exe­

cuted as soon as their operands become available. In a graph reduction m achine, 

an operation is only evaluated when the  result is required as in p u t for some other 

operation. G raph reduction  m achines also have an underlying functional repre­

sentation which requires the  use of languages w ithout side effects (i.e. functional 

languages).

Proponents of g raph  reduction m achines claim  th a t complex d a ta  s truc­

tures are more easily suppo rted  and  th a t replication of large d a ta  s tructu res is 

reduced.

A graph  reduction  m achine comprises a pool (m em ory un it) which holds 

the operation packets, and  interconnection un it and a series of processors which 

individually are conventional Von N eum ann processors. In operation  the  proces­

sors run  asynchronously in  parallel taking packets from  the pool, processing them  

and return ing  the results to  the  pool. T he overall arch itecture is dem and driven
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Figure 7.5: G raph reduction processor

by the ready sta tu s  of the packets in the  pool.

The overall block d iagram  is very sim ilar to th a t of a general MIMD 

processor. It is the way in  which the processors interact w ith each o ther (via 

the s ta tu s fields of the packets, ra th e r th an  via explicitly program m ed shared 

variables) th a t characterise the  m achine as a graph reduction processor.

7.11 A ssocia tive  processors

The ILLIAC III and P IC A P processors incorporated associative capa­

bilities. The te rm  ‘associative’ is applied to  m emory systems w ith some inbuilt 

p a tte rn  m atching capability. C onventional memories provide an array  of unique 

locations th a t may be addressed by location, or coordinate. An associative, or 

content addressable m em ory provides an array  of locations th a t may be addressed 

by content, th a t is a d a ta  word can be presented to  the associative m em ory and 

it will re tu rn  a list of locations containing th a t d a ta  word.

C onceptually each word in  an associative memory chip com prises a con­

ventional memory location n  b its wide and an n-b it com parator which checks the 

contents of the word against the test d a ta  word. The outputs of all the com para­

tors are available at the o u tp u t of the chip, and a full search of the  contents of 

the chip may be perform ed in tim e ty. -f tc, where tr is the read access tim e of the 

memory and tc is the p ropagation  tim e of the com parator. T heir m ost common 

application is in cache m em ories for conventional processors, and direct support 

in the form of special cache-tag RAMs is now available from some m anufacturers 

[IDT86].

Large associative mem ories are prohibitively expensive because of the 

silicon area consum ed by the  com parators and  the  num ber of pins required to  carry
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the m atch inform ation (in principle one per com parator). As a result com parators 

are assigned to  a range of d a ta  words and  ex ternal logic sequences the conventional 

address inpu ts  to  perform  a linear search of the  range. In this case an exhaustive 

search of the stored d a ta  may be perform ed in n(ty. 4- tf.) where n  is the size of the 

range of addresses assigned to  each com parator.

7.11.1 Staran

STARAN [Pot82] is a SIMD array  of b it serial P E ’s each of which con­

ta ins an X register, a Y register and a 16 function boolean processor. An activity 

b it called the  M register allows conditional execution of code sections. The local 

m em ory is 256 bits wide.

STARAN can have up to  32 arrays of 256 processors each. The arrays 

and P E ’s are assigned a unique num ber, so th a t every processor is location ad­

dressable.

In operation , the P E ’s perform  local searching (t.e. bit-serial com par­

isons) in their local d a ta  space. The results are loaded into the Y register. An 

external resolver then  associatively re tu rn s the address of the first P E  by ordinal 

num ber of array  and P E  to  be generated in an in ternal register of the common 

control unit, and this inform ation can be used to  access the P E  for fu rther pro­

cessing. Essentially this perform s an associative parallel to serial conversion.

7.12 H ardw are sum m ary

Im age processing architectures have been dom inated by the use of geo­

m etric arrays and  even M IMD type system s show SIMD features. PASM is an 

array  of SIMD m achines. The pyram id m achines are pipelines of SIMD proces­

sors running a t successively lower resolution. T he use of associative processors 

and techniques is of great im portance in database  applications and in pa tte rn  

recognition proper, bu t is of m arginal in terest in image processing. More general 

MIMD systems are difficult to  program  and m ay be unable to exploit the available 

geom etric parallelism  im plicit in low level im age processing.

The particu la r problem  in im age processing is th a t the simple natu re  of 

the com putation coupled w ith the very high d a ta  rates and tight coupling between 

adjacent parts  of the im age yield a com putational problem  th a t is data , not com­

p u ta tio n , dom inated. Pixel bandw idth  rates dom inate over com pute operations. 

A 3 X 3 convolution requires nine pixel fetches and only simple accum ulation
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w ithin the  ALU since no in term ediate  term s are generated. Even the Sobel only 

requires one in term ediate result to  be held. This heavy dependence on global 

m em ory accesses ra ther than  in ternal tem porary  register accesses means th a t the 

processor cycle will be lim ited to  the pixel read cycle. MIMD machines usually 

rely on loose coupling between processors (i.e. low com m unication rates relative 

to  com putation) and this makes them  unsuitab le for low level image processing.

On the  o ther hand , it is clear th a t the simple processors used in arrays 

are unsu itab le  for higher level algorithm s, and  th a t the perform ance of simple 

processor arrays drops sharply as the degree of geometric parallelism  is reduced. 

M achines such as PASM and CLIP 7A a ttem p t to  remedy this by partition ing  by 

providing sophisticated conditional execution capabilities w ithin the array  bu t a 

more useful solution m ight be a MIMD system , one or two processors of which 

were them selves SIMD im age processors.
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C hapter 8

P arallelism  in softw are

“If we wish to succeed in building large concurrent program s which are 
reliable, we m ust use program m ing languages th a t are so well s truc­
tu red  th a t a com piler can catch m ost tim e-dependent errors (because 
nobody else can ).” [BH77]

8.1 In troduction

It is not currently  (and may never be) practical to design program m ing 

system s capable of catching all parallelism  rela ted  errors, bu t a variety of program ­

ming constructs have been proposed and im plem ented w ith a view to  reducing 

the  error ra te  in concurrent program s. This is analagous to  the development of 

s tru c tu red  program m ing constructs in sequential languages.

This section reviews the fundam ental problem s of concurrency, and then 

describes the semaphore^ monitor  and rendezvous constructs. M uch of the dis­

cussion involves generalised MIMD type processors. Array processors are by def­

in ition synchronised and  therefore m any in teresting concurrency problem s do not 

arise. Of course, the penalty  for this is the loss of generality leading to  low ef­

ficiency (in term s of actual, as a fraction of poten tial th roughpu t) when array 

processors are applied to  problem s th a t do not exhibit a m atching space paral­

lelism. T he chapter concludes with a discussion of Very Long Instruction  Word 

(VLIW ) m achines th a t present a compromise between array and full MIMD sys­

tem s. A special com pilation technique useful on VLIW  and pipelined RISCs 

known as trace scheduling holds the prom ise of being able to  ex tract high levels 

of parallelism  from ord inary  sequential scientific program s.
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8.2 T he concurrency problem

On a m ultiprocessor system , or a timesliced uniprocessor, m ultip le tasks, 

or processes may be runn ing  simultaneously. S trictly speaking, the  uniproces­

sor runs processes sequentially, switching contexts under the control of a central 

scheduler or by program m ed transfer between jobs. Since the scheduler is driven 

by an external clock, the  tim e slicing behaviour of the system  is effectively inde­

te rm inate , and it is convenient to  think of the system  as a set of tasks running  on 

their own processors. ,

If two tasks share no d a ta  (or other resources such as tap e  drives or 

fram e stores) they are said to be disjoint. Execution of the tasks m ay progress 

w ith no synchronisation betw een them  and at no point is the correctness of the 

system  reliant on concurren t properties of the program s. The correctness of the 

system  may be shown by showing the correctness of the two tasks in isolation.

In general, however, tasks need to cooperate. This m ay involve dis­

ciplined access to  a peripheral such as a frame store, updating  of a  common 

d a ta  base, or transm ission of inform ation between processes. All of these activ­

ities require synchronisation, and optionally da ta  transfer. If two tasks are in 

a producer-consum er rela tionship  then it is necessary for the consum er to  wait 

until the producer has generated  the next da ta  frame. In a shared  database 

environm ent, it is reasonable for m ultiple processes to be reading the database 

sim ultaneously, bu t only one process may write at a time. In addition , whilst a 

w riter is active, all readers m ust be blocked. Failure to ensure th is m ay result in 

a reader reading d a ta  which is being updated.

8.2.1 M u tual ex c lu sio n

The most fundam ental problem  in concurrency is th a t of m utual ex­

clusion to  shared data . T his includes access to o ther shared resources such as 

peripherals.

Two processes P I  and P 2  access shared data . Only one process at a 

tim e is allowed to access the  data . If the other process a ttem p ts access, then  it is 

blocked, th a t is execution is suspended pending release of the data .

T he part of the process in which the shared d a ta  is accessed is called 

the  critical section of the da ta . A protocol is required th a t allows a process to 

request en try  to its critical section and to  signal successful com pletion of the 

critical section.

A solution to  th e  m utual exclusion problem  m ust not only ensure th a t
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th e  two processes do not clash, it m ust ensure th a t deadlock cannot occur ( th a t is 

b o th  processes w ait endlessly for the o ther before continuing. It is also desirable 

th a t the solution be fair, th a t is a process wishing to enter its critical section will 

eventually be allowed to  do so. A synchronisation scheme is fair if no process is 

delayed indefinitely w aiting on a condition th a t happens infinitely often.

Fairness is especially difficult to ensure when several processes are coop­

erating . Two processes may ‘conspire’ together to lock a th ird  process ou t of a 

critical section by passing control between themselves. In reality, it is often nec­

essary to use protocols th a t are deliberately unfair, e.g. p rioritisation  of in terrup t 

requests. In this case, a rapidly  in terrup ting  process at a high priority  will block 

out low priority  tasks.

8.3 H istorical overview

C oncurrent program m ing problem s first arose in the design of m ultitask­

ing operating system s w ith batch  and spooling facilities. Interactive m ultitasking 

and user w ritten  in te rru p t service routines for real time program m ing were sup­

ported  using operating  system  calls and a m onolithic executive th a t perform s all 

tim e critical operations. The FO R K  and JO IN  program m ing constructs [Ben82j 

are im plem ented in  m any operating system s such as RT-11 [Dig82] and Unix.

The need for s tru c tu re  in sequential program m ing gave rise to  a family 

of structured p rogram m ing constructs, typified by the D -structures th a t are single 

entry, m ultiple exit control structures. In concurrent program m ing, the tim e di­

m ension requires special structu ring  constructs. FO RK  and JO IN  are analagous 

to  the  GOTO in th a t they allow com pletely random  creation and destruction  of 

parallel control flows. T he CO BEG IN-COEND  construct allows controlled execu­

tion and destruction of processes. Synchronisation of processes may be achieved 

using shared m em ory variables, although the solution to the  m utual exclusioti 

problem  using shared variables is non-trivial. As a result, a variety of synchroni­

sation prim itives have been designed. These fall into two classes: shared m emory 

constructs which rely on the  existence of high speed memory shared between co­

operating  processes, and message passing constructs which reflect a d istribu ted  

view of m ultiprocessor systems where common memory may not be available.

The sem aphore [Dij68] is bo th  powerful and elementary, and has become 

the  s tandard  by which o ther synchronisation prim itives are judged. The solution 

to  the m utual exclusion problem  is triv ial w ith semaphores. M any languages 

including Algol-68 , M odula and Parallel Pascal im plem ent sem aphores.
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The operating system  concept of a centralised executive controlling all 

tim e critical operations has been generalised by Hoare into the  m onitor program ­

ming construct. A m onitor is a package of sharable d a ta  and the routines required 

to m anipulate it. M utual exclusion is provided by ensuring th a t only one pro­

cess may enter the m onitor (i.e. be executing a m onitor procedure) at a tim e. 

M onitors may use sem aphores in ternally  and m ay have synchronisation code dis­

tr ib u ted  w ithin them . M onitors have been im plem ented in m any languages includ­

ing C oncurrent Pascal [BH77], Pascal-P lus and M odula-2. F urther s tructu ring  of 

the  m onitor concept yields the path  s tru c tu re  [CH74], a m onitor like construct 

in which all concurrency constrain ts are defined in one place. P aths have been 

im plem ented in P a th  Pascal.

Recently the message passing paradigm  has become increasingly im ­

p o rtan t bo th  theoretically and practically due to  the arrival of networked asyn­

chronous com puter system s such as w orkstation networks and tran sp u te r system s. 

The m ost im portan t message passing construct is the rendezvous which provides 

synchronisation and (optional) transfer of inform ation between processes. The 

rendezvous forms the basis of H oare’s C om m unicating Sequential Processes (CSP) 

[Hoa85] and has been im plem ented in its m ost pure form in Occam, and in an 

extended form using rem ote procedure call sem antics in Ada.

8.4 C oroutines

On a uniprocessor control is trad itionally  transferred using program m ed 

jum ps, subroutine calls and  in terrup ts , which m ay be viewed as externally trig ­

gered prioritised subroutines. The subroutine has an im plied hierarchy built in 

which does not m atch the sem antics of concurrent execution even though in te rru p t 

service routines are a prim e exam ple of concurrent program m ing. In operation, 

the contents of the program  counter at the point of subroutine call are stored and 

control is transferred to  the  subroutine. At com pletion, the old value of the PC  is 

restored. This allows a subroutine to  be coded w ithout knowledge of the re tu rn  

jum p address. However, the subroutine m ust run  to com pletion before control is 

re tu rned  to  the main line routine and in th a t sense the subroutine is a slave to 

the m ainline routine.

The coroutine generalises this m echanism  to provide a non-hierarchical 

call-and-return  m echanism . Each coroutine has a local P rogram  Counter. The 

statem ent TR A N SFE R (R O U TIN E) suspends execution of the  current routine and 

res tarts  execution of R O U T IN E at the poin t of last suspension.
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C oroutines autom atically  provide m u tual exclusion between routines. 

T here is no preem ptive suspension of routines, so each routine is guaranteed  sole 

access to  shared  da ta  structures until it explicitly executes a T R A N SFE R () to a 

nam ed routine.

However, this determ inistic switch in control severely lim its the useful­

ness of a  pure coroutine im plem entation. Consider the classical bounded buffer 

problem . A buffer is required between two processes — the consum er and the 

producer. T he producer inserts item s in to  the  buffer, and the consum er removes 

them  for processing. The whole point of the buffer is th a t the processes should 

be decoupled — the only tim e a consum er should block is if the buffer is em pty, 

and the only tim e a producer should block is if the  buffer is full. W ith  coroutines, 

the  processes are constrained to taking stric t tu rn s  to  access the buffer and so the 

processes are not decoupled.

It is possible to use coroutines to  construct queueing and ring scheduling 

m echanism s [Wir83] so th a t for a uniprocessor coroutines can sim ulate sem aphores. 

However, the  sem antics of coroutines do not adequately describe the operation  of 

a true  m ultiprocessor since by definition only one coroutine can be executing at 

a tim e.

8.5 T h e com m on m em ory arbiter and busy w ait­

ing

Processes may synchronize by setting  and  unsetting  flags in common 

memory. Inheren t in such mechanisms is some idea of a hardw are interlock called 

a common m em ory arbiter th a t ensures th a t the  results of two processes w riting 

to  the  sam e location sim ultaneously are consistent w ith the result of them  w riting 

sequentially. This means th a t if P I  a ttem p ts  to write a  1 to a location and 

P 2  a ttem p ts  to  write a 0 then  the result should be either a 1 or a 0, not some 

corrupted  value such as -1. This is ensured by the underlying hardw are. The 

execution order of the processes access is unknown.

It tu rn s  out th a t correct solutions to  the m utual exclusion problem  using 

simple access to  shared variables is non-triv ial. T he most well known solution is 

D ekker’s algorithm  [Ben82] which requires a flag variable for each process and an 

a rb itra tio n  variable. It has been generalised for N  processes by D ijkstra.

A sim pler solution is provided by P ete rson ’s algorithm  [Ben82]. Lam ­

p o r t’s algorithm s [Lam74] have the useful p roperty  th a t the flag variables need
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only be w ritten  by one process which m ay reduce m em ory contention tim e.

The com m on feature of all these algorithm s is th a t a blocked process 

cycles waiting for a shared variable to  change sta te . This is referred to  as busy- 

waiting, or spinning, and naturally  consumes processor resources. In an envi­

ronm ent where each process has its own processor this still im plies a  loss of 

th roughpu t because busy waiting will consume shared m em ory bandw idth . The 

sem aphore and m onitor constructs im plem ent queueing of blocked processes which 

does not consume processor cycles unnecessarily.

As well as consum ing processor cycles by busy-w aiting, these solutions 

are difficult to  use in  practice because of the com plexity of their working and 

because there is not necessarily a clear d istinction between process variables for 

synchronisation and  norm al da ta  storage. Hence busy-w aiting algorithm s are 

unstruc tu red  both  in term s of control and d a ta  structu res.

8.6 Sem aphores

A sem aphore is a variable th a t can take positive integer values and zero. 

The only operations allowed on a sem aphore are in itia lisation, w a it ( s )  and s ig ­

n a l s )  [Dij68]

The operations are defined as follows:

w a i t ( s )  IF  s > 0  THEN s : = s - l  ELSE (su spen d  c a l l i n g  p ro c e s s )  

s ig n a l(s )  IF  (a  p ro c e s s  P has been suspended by a p re v io u s  w a it  

on t h i s  sem aphore) THEN (re s u m e (P ))  ELSE s := s + l

In use a sem aphore is associated w ith each synchronisation condition. 

Typically one sem aphore is required per critical section. M utual exclusion with 

sem aphores is trivial. T he following exam ple dem onstrates m u tual exclusion be­

tween two processes A and B with critical sections criticaLA and criticaLB:

s: SEMAPHORE;
PROCEDURE A;

BEGIN 
REPEAT 

w a i t ( s ) ; 
c r i t i c a l _ A ;  
s i g n a l ( s ) ;
{  o th e r  n o n - c r i t i c a l  code }

UNTIL f a l s e ;
END;

PROCEDURE B;
BEGIN
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REPEAT 
w a i t ( s ) ; 
c r i t i c a l _ B ;  
s i g n a l ( s ) ;
{  o th e r  n o n - c r i t i c a l  code }

UNTIL f a l s e ;
END;

BEGIN
s : = l ;  { i n i t i a l i s a t i o n  o f  sem aphore}
COBEGIN 

A; B;
COEND

END.

The synchronisation details are hidden by the im plem entation , freeing the pro­

gram m er to think abou t the  higher level aspects of the problem .

. w a i t  and s ig n a l are prim itive (unin terrup tib le) operations and there­

fore exclude each o ther. M any com puters such as the  IBM 360/370 and the 68000 

have un in terrup tib le  test-and-set instructions th a t can perform  sem aphore im ple­

m entations and directly ensure m utual exclusion of sem aphore variable m anipu­

lations. More advanced machines such as the  VAX have un in terrup tib le  enqueue 

and dequeue instructions. Test and set instructions can handle the mechanics of 

m anipulating  the sem aphore variable correctly bu t offer little  assistance in the 

im plem entation of su spend / resume mechanisms. The description of signal and 

w ait above has deliberately been couched in term s of process suspension. A more 

trad itional definition of the sem aphore operations is 

w a i t ( s )  REPEAT UN TIL s>0; s : = s - l ;  

s ig n a l(s )  s : = s + l ;

The behaviour of these prim itives is equivalent to  the earlier defini­

tion  bu t implies busy-w aiting which is undesirable. Real im plem entations of 

sem aphores associate a  queue of processes w ith each sem aphore. A process per­

form ing a w a it(s )  pu ts  itself on the queue for s if s is zero and relinquishes 

control of the processor. A process perform ing a s ig n a l( s )  activates a process if 

the queue is non-em pty, otherw ise it simply increm ents the sem aphore variable. 

This ensures th a t a suspended process consumes no processor tim e. The only 

overhead is the m em ory required to  hold one process control block per blocked 

process. The VAX enqueue and dequeue instructions ensure m utual exclusion of 

sem aphore queue updates.
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8.7 M onitors

A m onitor [Hoa74] is a m odule th a t packages the definition of a share­

able resource and the operations th a t m anipulate  it. Condition synchronisation 

w ithin the m onitor can be achieved using sem aphores or one of a variety of o ther 

synchronisation prim itives. T he synchronisation prim itives are not available o u t­

side m onitor blocks. A m onitor contains a set of sta tic  variables which are only 

accessible to  routines w ith in  the m onitor, a set of callable procedures for m anip­

ulating  them  and a m ainline routine th a t is executed as in itia lisation code by the 

run  tim e system  at s ta r tu p . All m onitors are initialised before the user’s m ain 

line program  s ta rts  executing. T he callable procedures may have param eters th a t 

are in s tan tia ted  at call tim e. M onitor routines are m utually  exclusive by defini­

tion, hence interleaved execution of m onitor routines need not be considered when 

establishing the correctness of a concurrent system  using m onitors.

M onitors are derived from  the operating  system  executive concept wherein 

all tim e dependent activities are perform ed by the executive on receipt of a system  

call. M any systems use synchronous in te rru p ts  or traps to  activate these services 

allowing a centralised despatcher to  field bo th  systems calls and external in te r­

rup ts . Such an executive is term ed  a monolithic monitor. Since there is only one 

m onitor controlling all resources, two processes vying for use of, say, a disk drive 

may block a process requiring m em ory allocation. The m onitor itself becomes a 

bottleneck since unrela ted  synchronisation activities are coupled together. This 

is a practical problem  in uniprocessors, and becomes absolutely unacceptable in 

m ultiprocessor systems.

H oare’s m onitors are d is tribu ted , and in general one m onitor will be 

used to  control each independent resource. This allows decoupling between con­

curren t processes. The m onitor concept lends itself well to im plem entation via the 

software packaging m echanism s present in m any m odern languages such as Mesa 

[MMS79] and M odula-2. Indeed W irth ’s s tan d ard  library  [Wir83] for M odula- 

2 includes a im plem entation of m onitors and  semaphores th a t requires almost 

no extensions to  the base language. In M odula-2 a m onitor is simply a m od­

ule w ith a priority, giving a very elegant and sparse syntax. M onitors were first 

im plem ented in C oncurrent Pascal [BH77], a Pascal like language th a t included 

extensions th a t included p ro c e s s ,  m o n i to r  and c la ss  types. Synchronisation 

w ithin m onitors was perform ed using prim itives called d e la y  and c o n tin u e  oper­

ating  on q u e u e  types. T he c la ss  type allowed encapsulation of d a ta  and routines 

in a way analagous to  the  c la ss  construct of Simula-67 and m o d u le  construct of
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M odula-2.

8.8 D istr ib u ted  system s and m ailboxes

A m onitor encapsulates a single copy of the synchronisation control d a ta  

as well as the shared resource. It relies on sem aphores (or sim ilar prim itives) 

and these rely on common memory arb itra tion . This becomes more and more 

expensive as the  degree of physical parallelism  in system  increases. On systems 

w ith m ultiple buses, shared m em ory techniques rapidly  become prohibitive. The 

lim iting case is th a t of a network where self contained com puters are connected 

over relatively slow com m unications links.

Such system s require synchronisation prim itives based on messages passed 

around  the system . This gives rise to an in p u t/o u tp u t model of synchronisation 

ra th e r th an  the  shared variable model used previously. Several au thors (notably 

[Hoa85]) have argued forcefully th a t this model is easier to program  with cor­

rectly, as well as being necessary for d is tribu ted  systems. Im plem entation of 

message passing on a uniprocessor, or on a tigh tly  coupled m ultiprocessor w ith 

shared memory, is less efficient than  the use of shared variables.

It is im p o rtan t to note th a t no tim ing can be guaranteed between sending 

and receiving messages. Messages may pass each o ther in transit and there is no 

central arb iter. Protocols m ust be self enforcing, to  allow individual processes to 

decide on the ir own in itia tive when to proceed. This is analagous to the busy 

w aiting solutions because there is no central agent th a t can wake a process up. 

T his con trasts  w ith the  sem aphore and m onitor solutions which are designed to 

wake up o ther processes. Message passing protocols assume th a t there is no 

way of rem otely m anipulating  the execution p a th  of another process by aborting 

it, suspending it or res tarting  it. In general, messages are sent and  received 

asynchronously. After a s e n d  the transm itting  process usually continues. The 

receiving process will not usually be ready to  im m ediately process the message 

which im plies th a t it m ust be tem porarily  stored in a system  area known as a 

m ailbox.

A significant problem  with mailboxes is deciding on their size. Small 

mailboxes m ay require messages to  be split up in to  m any sub messages, and long 

mailboxes will be under-utilised  by short messages. Variable length mailboxes 

require ex tra  protocol overhead to define their size and  im ply the use of variable­

sized m em ory allocation routines th a t will generate the usual heap m anagem ent 

problem s and require periodic garbage collection.
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M essage passing has been used in operating system s applications for 

m any years. M ost operating system s support the  use of mailboxes which allow 

producer-consum er in teraction between processes. Unix uses an elegant notation 

to  allow interconnection of producers and consum ers using pipes which act as 

mailboxes betw een program s. This feature is very powerful because the Unix I /O  

system  trea ts  pipes and I /O  devices as files in a completely unified way. This 

m eans th a t a user program  can be w ritten  using simple file I /O  and can then 

be connected to  files, ou tp u t devices such as prin ters or piped to  o ther program s 

by supplying the  correct com m ands at run  tim e. R T -IT  provides sim ilar unified 

I /O  and m ailbox system  requests bu t does not allow the flexible com m and line 

redirection of Unix, so m ailbox transfers tend  to  be ‘hardw ired’ in to  user processes. 

VMS also provides explicit m ailbox services.

8.9 R endezvous

M ailbox com m unication, even with fixed length m ailboxes, is inefficient. 

T he rendezvous is an a ttem p t to im prove the  efficiency of m ailbox schemes by 

rem oving generality. A rendezvous m ay be considered as a m ailbox transfer w ith 

a zero sized m ailbox. This implies th a t there is no buffering, and therefore th a t the 

first process arriv ing a t the  rendezvous m ust w ait for the other process to  catch up. 

Hence the rendezvous is inherently self synchronising. At the point of rendezvous, 

d a ta  may be transferred  between processes. Since each datum  requires a separate 

rendezvous and  each rendezvous implies a context switch on a uniprocessor (since 

the  first process arriving will suspend itself) efficient uniprocessor im plem entation 

of the  rendezvous relies on a low context switch overhead. This approach is 

exemplified by the  Inmos T ranspu ter which is designed to  support rendezvous 

com m unication and which can context switch by updating  only two registers which 

can potentially  be perform ed in only four instruction  cycles.

It tu rn s  out th a t as well as being more efficient, the sim plicity of the 

rendezvous allows rigorous m athem atical trea tm en t. H oare’s Com m unicating Se­

quential Processes (C SP) [Hoa85] is a m athem atical no ta tion  for analyzing con­

currency problem s. The Occam  language is heavily based on CSP.

8.9 .1  T h e O ccam  rendezvous

The Occam  rendezvous is program m ed as an explicit I /O  transfer using 

nam ed channels between processes. Channels are unidirectional and only one
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w riter and  one reader process is allowed per channel. Processes in Occam are 

unnam ed because there  are potentially  a very large num ber of them . In contrast to 

conventional concurrent languages such as C oncurrent Pascal and  M odula-2 which 

support concurrency a t th e  procedure level, Occam allows individual statem ents to 

be evaluated concurrently. Use of nam ed channels ra th e r th a n  nam ed processes is 

un fortunate  from the po in t of view of correct program  struc tu re . The one w riter 

and one reader per channel restriction has to  be checked by the compiler. If 

channels were declared w ith  nam ed source and sink processes then  the  syntax of 

the declaration would au tom atically  enforce the restriction.

In use, the syn tax  ch an l ! v a r ia b le  transm its the  contents of variable 

down the nam ed channel ch an l. The syntax chan l ? temp reads a datum  off 

channel ch an l into variable temp. If the writing process arrives at the send com­

m and before the reading process arrives at the receive com m and then  the w riter 

is suspended. W hen rendezvous is achieved the w riter is awakened and  the da ta  

transfer takes place. T his simple syntax is elegant and easy to use. Potentially 

each statem ent in O ccam  is a process in its own right and the ! and ? operators 

form two of the five basic processes, the others being : = (assignm ent), STOP (a pro­

cess th a t never te rm inates and  performs no useful work) and SKIP (a process th a t 

term inates im m ediately and  perform s no useful work). Read-only shared variables 

are allowed between processes, although real im plem entations will usually forbid 

this when the processes are executing on different processors.

8.9.2 T h e A d a rend ezvous

A da uses an extended rendezvous in which two way com m unication of 

d a ta  is allowed in a single rendezvous. The program m er’s m odel of the  rendezvous 

uses the concept of rem ote procedure activation ra ther than  explicit I /O  transfer 

as in Occam. As a resu lt the  syntax is ra ther unwieldy, and difficult to  use.

An Ada process is called a task. Each task is a package containing 

routines th a t may be rem otely called by other processes as well as internally 

called routines and sta tic  da ta . Ada packages have a specification p a rt and an 

im plem entation p a rt called the  body. The specification p a rt nam es the identifiers 

th a t may be accessed from  outside the package. In a task specification, procedure 

nam es indicate po ten tial en try  points. Shared variables are allowed by nam ing in 

the  specification p a rt. T he actual entry points are defined w ith a c c e p t statem ents 

in the body of the task . T he following example shows an A da task  th a t takes an 

integer param eter from  th e  calling process and returns a running  average, along
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w ith two calling processes:

PROCEDURE taskdem o IS  
n u m b e ro fp ro c e s s e s : CONSTANT:=2 ;

TASK TYPE p ro c e s s ;
TASK ru n n in g a v e ra g e  IS  

ENTRY c o m p u te (x : IN  in t e g e r ;  a v e ra g e : OUT i n t e g e r ) ;
END ru n n in g a v e ra g e ;
TASK BODY p ro c e s s  IS  

i ,  r e tu r n e d a v e r a g e : in t e g e r ;

BEGIN
LOOP

i : = ra n d o m n u m b e rfu n c tio n ; —  e x t e r n a l ly  d e c la r e d  
c o m p u te ( i , r e t u r n e d a v e r a g e ) ;

END LOOP 
END p ro c e s s ;

TASK BODY ru n n in g a v e ra g e  IS  
n , t o t a l :  i n t e g e r ;

BEGIN 
n := 0 ;  t o t a l : = 0 ;
LOOP

ACCEPT c o m p u te (x : IN  in t e g e r ;  a v e ra g e : OUT in t e g e r )  DO 
n: = n + l ;
t o t a l : = t o t a l + x ; 
a v e ra g e  : = a v e r a g e / t o t a l  

END com pute;
END LOOP;

END ru n n in g a v e ra g e ;

P: A R R A Y d . .n u m b e ro fp ro c e s s e s ) OF p ro c e s s ;

BEGIN
NULL;

END taskdem o;

8.9 .3  N o n -d eterm in a cy  in rendezvous system s

Simple use of the  rendezvous implies a tigh t coupling between consumer 

and producer processes w hich causes problem s sim ilar to those of the coroutine 

im plem entations above. A process can not proceed beyond a rendezvous point 

until synchronisation is achieved w ith its p artner. Buffering between processing 

is im possible: even w ith a  separate  process controlling the buffer contents it will 

still be constrained to  giving alternate  access to  the producer and consumer. This 

Occam fragm ent outlines a  buffer process w ith channels called pu t and get for use
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by the producer and consum er:

CHAN OF IN T  p u t ,  g e t :
SEQ

IN T  h i ,  l o ,  i te m s :
VAL s iz e  IS  100 :
[ s i z e ] IN T  b u f f e r  —  c i r c u l a r  b u f f e r
SEQ

ite m s := 0 ;  h i : = 0 ;  lo : = 0  
WHILE TRUE

p u t ? b u f f e r [ h i ] ; ite m s  : = i t e m s + l ; h i :  = ( h i + i )  REM s iz e  
g e t  ! b u f f e r [ l o ] ; ite m s  : = i t e m s - l ; l o :  = ( l o + l )  REM s iz e

W hat is required is some way of allowing the buffer process to  exam ine the s ta te  

of the  two channels and rendezvous w ith whichever is ready. This is supported  in 

Occam by the  use of the a l t  constructor and in Ada w ith the se le c t statem ent:

CHAN OF IN T  p u t ,  g e t :
SEQ

IN T  h i ,  l o ,  ite m s :
VAL s iz e  IS  100 :
[ s i z e ] IN T  b u f f e r  —  c i r c u l a r  b u f f e r
SEQ

ite m s := 0 ;  h i : = 0 ;  lo : = 0  
WHILE TRUE 

ALT
ite m s < s iz e  & p u t ? b u f f e r [ h i ]  —  g u a rd  1 

SEQ
ite m s := ite m s + l ;  h i : = ( h i + l )  REM s iz e  

ite m s > 0  & g e t ! b u f f e r [ l o ]  —  i l l e g a l  g u a rd  2
SEQ

ite m s  : = i t e m s - l ; l o :  = ( l o + l )  REM s iz e

W hen the buffer process reaches the a l t  s tatem ent the guards are eval­

uated . In general a guard can comprise a boolean expression and a channel read 

(?). If the boolean evaluates t r u e  and there is a da tum  waiting to  be read on the 

inpu t channel then  the guard  is said to be open. If several guards in an a l t  are 

open, then the program  decides arb itrarily  which guarded process to  execute. If 

no guards are open then  a run  tim e error results.

The above exam ple is not legal occam because ou tpu t operations are not 

allowed in guards (as in guard  2). The reason for this is th a t if bo th  inpu t and 

o u tp u t operations on the same channel were part of guarded com m ands in separate 

processes, the  choice of alternative m ade in one process would have to  result on the 

choice of alternative m ade in the o ther process and vice versa. Resolution could 

only be achieved by sequentially evaluating the ALT statem ents. This would be
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extrem ely difficult to  im plem ent especially in a d istribu ted  system . The problem  

may be overcome by constructing ano ther process th a t fields the G ET channel 

and makes a request to the m ain buffer process using an auxiliary channel. This 

effectively im plem ents handshaking between the buffer processes and allows the 

logic of the G ET channel to be inverted.

8.10 Array processor language features

, The above sections have dealt w ith language extensions for the program ­

ming of explicit parallelism  on MIMD type system s. There exists another class 

of language extensions targeted  at vector and  array  processors. D AP-FO RTRA N  

[ICL79], ILLIAC IV CFD [Ste75] and ACTUS [Per87] fall into this class. T yp­

ically, extensions are provided th a t modify array  declarations so as to  declare 

operands th a t will be operated on using spatia l parallelism , as well as parallel op­

erators for element selection, loop control and  parallel decision evaluation. [PZ86] 

provides a useful review of these languages.

8.11 A utom atic d etection  o f parallelism  and VLIW  

architectures

The design of correct parallel algorithm s is non-trivial. M any a ttem pts 

have been made to produce compilers th a t will allow the program m er to  use a 

sequential no tation  and autom atically  detect parallelism  and m ap it on to  h ard ­

ware. T he most successful of these have been the  vectorising compilers such as 

Cray O FT [Res82] and the GDC Cyber 200 FO RTRAN  [Cor82] for the Cyber 

205. The process of vectorisation essentially involves exam ining the contents of 

DO loops to  find sequences of sta tem ents th a t may be executed by a  pipeline 

of vector functional units. Use of G O TO s, IF  statem ents, subroutines and I/O  

w ithin the DO loop natura lly  preclude vectorisation.

A completely different approach to  the autom atic parallélisation of al­

gorithm s is provided by the use of functional program m ing languages running 

on graph reduction and data-flow architectures. In principle the absence of side 

effects in a functional language coupled w ith  the  d a ta  driven evaluation of these 

non-Von Neum ann processors should allow any parallelism  existing in the problem  

to be autom atically exploited. O pponents of th is approach claim th a t sequentially 

constructed  code simply does not contain enough parallelism  to provide a signif-
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leant speed up. Of course, functional languages m ay be used in an explicitly 

parallel way to  program  the underlying hardw are in much the same way th a t the 

im perative languages described above may, b u t th a t is beyond the scope of this 

thesis.

An in teresting recent development known as Very Long Instruction  Word 

processing combines elements of RISC technology, array processing and MIMD 

procedural program m ing. A VLIW m achine is a collection of RISC processors 

w ith a large num ber of parallel, pipelined functional units bu t a single control 

s tream  [E1186). It is sim ilar to an array  processor in th a t there is a single in ­

s truction  stream  bu t each ‘processing elem ent’ is a general processor w ith its own 

control fields in  the instruction  word. A VLIW  m achine m ight more usefully be 

thought of as a  microcoded machine w ith a very large flat in struc tion  word control­

ling m any functional units. A practical m achine would have an instruc tion  word of 

the  order of 1000 bits or more, hence the te rm  Very Long Instruction  W ord. The 

instruc tion  word also controls a switching m atrix  th a t connects functional units 

to  banks of memory, allowing swapping of operands between functional units.

M anual program m ing of such a system  would be all bu t im possible, and 

the  power of the system  can only be exploited using high level languages and so­

phisticated  com pilers. VLIW  technology has its origins in the ELI project a t Yale 

University [Fis82], [Jos83] and a com pilation technique known as trace scheduling. 

Parallelising com pilers for machines such as the CDC 6600 and the scalar p a rt of 

the Grays operate  by compiling basic blocks w ith associated register storage and 

then  a ttem p ting  to  allocate such blocks w ith different resource requirem ents on 

to  a fixed set of processors. Experim ents have shown th a t one could expect at 

m ost a two or th ree times speed-up by parallelising basic blocks [FR72]. However 

la te r experim ents showed th a t many scientific program s contained fine grained 

parallelism  averaging a factor 90 [NF81].

Trace scheduling operates by tracing  execution pa th s through blocks 

and a ttem p ting  to  predict the most likely execution pa th . Ellis’s compiler (called 

Bulldog) uses program m er supplied hints to  aid in  this process. The compiler 

also analyses operand  references to allow instruc tion  stream s to  be allocated to 

processors and  operands to be allocated to m em ory in such a way as to  minimise 

horizontal interdependencies. Sometimes an operand would be copied into several 

m em ory banks.

Bulldog has been tested on m a trix  m ultiply, E F T  and o ther scientific 

calculations. It is claimed th a t Bulldog can find significant parallelism  and gen­

era te  order of m agnitude speed-ups using conventional technology. The system  is
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being commercially exploited by Multiflow Inc.

The com bination of detection-of-parallelism  compilers and  massively p a r­

allel hardw are of a synchronised array type (ra th e r than  an unsynchronised MIMD 

type) suggests th a t the  techniques may yield great re tu rns in im age processing 

much of which resembles scientific processing w ith its em phasis on repetetive cal­

culation on large d a ta  sets.

8.12 C onclusions

The wide variety of available constructs for concurrent program m ing 

indicates th a t a concensus has not yet been reached concerning the  ideal pro­

gram m ing paradigm . T here is a trend  tow ards rendezvous based synchronisation 

prim itives as evidenced by A da and Occam, bu t these do not address the require­

m ents of shared m em ory system s. The em phasis on message passing is a result of 

the  greater security offered to the program m er, and their am enability  to  form al 

analysis. Image processing MIMD systems are likely to  continue to  be dom inated 

by shared memory processors because of the very high d a ta  rates th a t would be 

required in a message passing system  where images are the p rim ary  data .
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C hapter 9 

T he IM P  system

“im p [imp] n. m inor dem on; mischievous goblin, sprite e tc .”

9.1 In troduction

This chapter describes the au th o r’s Im age-handling M ultiprocessor (IM P) 

and its application to  a realtim e grey-scale industrial inspection problem .

IM P is a MIMD system  which allows norm al com puters, hardw ired pro­

cessor boards, micro coded CPU s and fram e stores to  be connected together over 

a 16-bit d a ta  bus capable of sustaining 6.6MHz transfers. This allows a complete 

addressing cycle to be com pleted in one 256 x 256 square pixel tim e. Since the 

d a ta  bus is sixteen bits wide, a  byte packed frames tore like the V2 board  described 

in C hapter 5 can provide pixels at 512 x 512 pixel rates. T he com m unications 

s tan d ard  is an upw ards com patible im plem entation of the com mercially available 

V M Ebus [VIT85]. This m eans th a t the critical electrical com ponents (backplane, 

drivers etc.) are com m ercially available and th a t the various protocols involved 

are supported  by custom  in teg rated  circuits.

9.2 D erivation  o f IM P architecture

The original in ten tion  was to upgrade IPO FS to 256 X 256 pixel images 

and add bus m ultiplexing to  allow another port into the im age memory. This 

ex tra  po rt would be used as a coprocessor bus. E x tra  lines on the coprocessor bus 

would control the operation  of the  processors themselves, and these lines would be 

controlled by the host PD P-11 via ex tra  control registers in the  IPO FS CONBLK 

area. Since the control signals for 256 X 256 video are already available w ithin 

the  IPO FS controller, only the  addressing scheme and the window m apper circuit
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would need to  be expanded.

A lthough this new system  would be com paratively simple to  im plem ent, 

it would have several disadvantages and problem s:

1. the window m apper hardw are which is the m ajor feature of IPO FS  would 

only be available to  the  host processor,

2. all synchronisation and control of coprocessors would have to  be perform ed 

by software in the host and this could become the m ajor bottleneck,

3. all d a ta  transfers betw een coprocessors would have to be routed  th rough  the 

host, since there  is no inter-processor bus,

4. the backplane would have to be very well engineered to  cope w ith the high 

frequency signals generated  during a processing pass.

In a system  com prising the  host PDP-11 and a series of small hardw are modules 

im plem enting simple p arts  of an algorithm , these restrictions would not be too 

severe. For instance a m edian filter, Sobel operator, threshold sequence m ight be 

im plem ented w ith each p a rt of the sequence a separate hardw are m odule s ta rted  

up in tu rn  by the host. Assum ing th a t a pixel could be read from  m em ory in 150ns 

then  the processing tim e for a m odule would be approxim ately n  fram e tim es, 

where n  is the num ber of m em ory accesses required per pixel. For a threshold  this 

would be 2 (one read  and one w rite), and 10 for a straightforw ard im plem entation 

of a 3 X 3 Sobel operato r. It is possible to  speed up the Sobel by reta in ing  some 

p arts  of a window for the next operation  [Lee83,Pic84]. In th is case an average 

of only one read and one w rite are required per pixel, and therefore the  to ta l 

execution tim e would again be 2 fram e tim es. The address generation circuitry  

required to  do th is is quite complex, and  it would need to be replicated on each 

m odule. Ideally resources such as th is would be centralised and available to  all 

processors.

9.2.1 C oprocessor bus

Since all control registers would reside on the m ain controller card, all 

control inform ation would have to  be provided by the ex tra  lines on the copro­

cessor bus. The best way to  do this is to  provide an ex tra  low speed address and 

d a ta  bus from which the  host can dow nload d a ta  into the coprocessors. Thus two 

separate buses are provided, a pixel access bus and a processor bus.

The system  as described is highly hierarchical, in th a t the host has abso­

lu te  control, and all d a ta  transfers between coprocessors m ust proceed th rough  it.
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Ideally, coprocessors would be allowed to  com m unicate directly w ith each other. 

A hybrid  approach m ight be for the m essage sending coprocessor to  leave the d a ta  

to  be com m unicated in an im age space, relinquish control of the pixel bus, and 

rely on the host to  in itia te  receipt of the d a ta  by another processor. In th is case, 

only a rb itra tio n  transactions are required on the processor bus, and d a ta  transfer 

occurs a t hardw ired speeds, ra ther th an  host speeds.

A be tte r solution is to  allow the  coprocessors themselves to become m as­

ters on the  coprocessor bus, and to d irectly  address the other coprocessors. No 

in teraction  is required by the host, bu t some central arb itra tion  scheme is required. 

Given th a t the coprocessor bus is to  be a rb itra te d  centrally, it makes sense to  arb i­

tra te  the  pixel bus at the  same point. If these arb itra tion  functions are perform ed 

in hardw are, then coprocessor operations will all proceed very quickly, and the 

role of the host can be reduced to  m onitoring the  buses, and initial preloading of 

the system . Since it will not have to w aste tim e transferring d a ta  and a rb itra t­

ing buses, it will be free to perform  background tasks such as trend  analysis and 

s ta tis tica l reporting  of the line under inspection.

9.2 .2  U n ification  o f  m ultip le  bus schem e

It is clear th a t there is significant redundancy in the two bus scheme. 

In general, a coprocessor will be using either the pixel bus or the coprocessor 

bus. T he two buses will require a large num ber of backplane lines each, and it is 

likely th a t the addressing and d a ta  range of the buses will be restrictive for an 

econom ically viable scheme. It is useful to  have between four and sixteen im age 

spaces available, and so the  pixel bus will need to  access between 256K and IM  

locations, which requires 20 address lines. A 16-bit d a ta  bus, read /w rite  and  valid 

address strobes will require another 18 lines. All of these lines will require buffers 

on each coprocessor board , and if two buses are to  be im plem ented, then  these 

will have to  be duplicated. 10 twenty pin IC packs will be required for this alone, 

and  when two a rb itra to r interfaces are required along with control logic it is clear 

th a t the real-estate overhead on each board  is significant.

If the coprocessor and pixel buses are not to  be used concurrently, then  

it would be much m ore sensible to  com bine the two into one large address range 

d a ta  bus. Pixel m em ory and coprocessor registers can be allocated addresses 

th roughou t the address m ap, and a m uch m ore unified (and economic) design 

results.

T he final m odification to  be m ade to  the  simple expanded IPO FS  model
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is to  provide centralised m em ory m anagem ent resources, so th a t address genera­

tion for, say, 3 x 3  window operations can be done by one piece of hardw are for 

all processors. The bus m ust provide a m echanism  for a bus m aster to  relinquish 

the addressing section and allow the m em ory m anagem ent unit to  fetch the data .

Several design exercises were conducted, m ainly centering on the a rb itra ­

tion s tru c tu re  and  the physical design of the backplane. It was quickly recognised 

th a t an electrically robust bus requires very high engineering standards, and th a t 

the developm ent of a dedicated backplane for IM P might be a lengthy job. Elec­

trical problem s become m ore im portan t as the num ber of loads in a system  and 

the  operating  frequency becom e greater. Clearly, the backplane is the  potential 

Achilles heel of a system , since it will probably  have the greatest loading, and is 

subject to  variable loading depending on the card configuration, so ‘single case’ 

specification is not possible.

Real tim e industria l control is a growing m arket, and several m anufactur­

ers have defined bus s tandards for m ultiprocessor systems. The IM P bus requires 

very high th roughpu t and m em ory m anagem ent facilities considerably in excess 

of those norm ally found in industria l system s, bu t a survey was m ade of existing 

buses to  see if one could be adap ted  for use in  IM P. A daptation  could be at one 

of th ree levels:

1. Use of m anufactu rer’s backplane as the physical substra te  for IM P, bu t w ith 

an IM P-specific allocation of lines and protocol,

2. Use of m anufac tu rer’s bus s tan d ard  w ithout modification,

3. Use of m anufactu rer’s bus s tandard  w ith IM P-specific enhancem ents, prefer­

ably not conflicting w ith m anufactu rer’s standard .

Level 2 (no ad ap ta tion ) would obviously be ideal, allowing work to  commence at 

once on the functional parts  of IM P.

9.2 .3  C om m ercia l m ultip rocessor buses

Any real com puter bus will be a collection of several logical buses sup­

porting  the d istribu tion  of power and different kinds of signals such as:

1. d a ta  transfer between processors and memories (which m ay reside w ithin 

o ther processors),

2. a rb itra tio n .
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3. in te rru p t inform ation,

4. system  wide control, such as reset signals and m aster clocks.

These logical buses may be tim e m ultiplexed onto one set of wires, in which case 

there is only one physical bus, or they may be im plem ented as separate physical 

groups of lines. There may even be m ultiple physical buses for one logical func­

tion — for instance two d a ta  transfer buses to speed m em ory access. The use of a 

separate  1 /O bus falls in to  this category, where transfers between processors and 

m em ory m ay occur concurrently w ith transfers between processors and backing 

store over two sets of wires. W ithin each physical bus fu rther m ultiplexing may be 

used, for instance between addresses and data . Each operation on a bus is called 

a transac tion , and may be a complete a rb itra tion  cycle, an in terrup t-in terrup t 

acknowledge sequence or the fetching of one word of data.

A bus may be evaluated in term s of economics and perform ance m ea­

surem ents. For instance a 16 line m ultiplexed ad d ress /d a ta  bus running at a 

m axim um  square wave frequency of lOMHz can support up to 128K bytes of 

m em ory which can be accessed at a m axim um  frequency of 20M byte per second. 

It will require 17 lines feind buffers (one ex tra  line is needed for dem ultiplexing) 

and for m any applications at least 16 latches will be required. An arb itra tion  bus 

will be able to  support varying num bers of prioritised  requests depending on the 

num ber of lines dedicated, and similarly for the in terrup t bus. The arb iter may 

prioritise requests using a preset priority scheme or a round robin scheme which 

will ensure th a t all m asters get a fair share of the bus.

Bus transactions fall natura lly  into two classes — asynchronous and syn­

chronous. These describe the natu re  of the transfer protocol. In a synchronous 

bus, all transactions occur at fixed times governed by a centrally generated clock. 

M ost small com puters use this kind of bus, and  w ith the addition of some arb i­

tra tio n  logic, a m ultiprocessor bus can be constructed. In an asynchronous bus, 

all transactions are handshaked. A bus m aster w riting to  the d a ta  bus asserts 

address, d a ta  and cycle type inform ation on the bus, waits for the bus to  settle 

and then  asserts a strobe th a t tells the slave to  begin address decoding and da ta  

accessing. W hen the slave has acquired (write cycle) or fetched (read cycle) the 

da ta , an acknowledge signal is returned  to  the  m aster, which then  removes the 

strobe and o ther data . A rb itration  and in te rru p t transactions may be similarly 

handshaked.

Asynchronous transactions have the advantage th a t they autom atically 

adap t to  different speed m asters and slaves. In a synchronous system  some de-
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cision has to  be m ade concerning the base frequency. Devices which run  faster 

m ust have some m eans of idling while the bus responds. Slower slaves will be 

unusable for reads, and will require front end synchronisation latches for writes. 

Any fu ture im provem ents in technology allowing faster operation will be difficult 

to  incorporate. In a mixed hardw ired/ conventional com puter environm ent such 

as IM P there are bound to  be at least two basic operating speeds — the hardw ired 

accesses will probably  operate at near video pixel rates (say 150ns per access), 

and the com puter will operate at around 1/xs per access. An asynchronous system 

will be able to  cope w ith th is w ithout > requiring any hardw are overhead on the 

individual boards.

T he review was restricted to widely d istribu ted  buses, on the  basis th a t 

the economic advantages of adopting a m anufactu rer’s bus would be lost if th a t 

bus were an obscure one. The systems considered included CAMAC, the DEC 

om nibus. U nibus, Q-bus family, the synchronous SBI used in the VAX 11/780 

m em ory subsystem , the STD and STE buses, the M otorola Versabus and VM E­

bus, and  the  In tel M ultibus and M ultibus II.

9.2 .4  C onclu sion s

Of the  buses considered, only V M Ebus and M ultibus II are capable of 

providing pixel ra te  th roughputs at small system  cost. It is clear th a t VM Ebus 

is more applicable to  IM P because it can adap t gracefully to the different access 

rates required, and  most im portan tly  of all it provides a m eans of specifying spe­

cial cycles and  protocols in an upwards com patible way through the use of address 

modifiers. Since slaves m ust only respond to  address modifiers th a t they under­

stand , m aking use of the user defined codes will autom atically  disable commercial 

and non-IM P slaves. This allows IM P-specific and com mercial boards to  be mixed 

in a single system  w ith no contention. As a bonus, the  protocol is sim ilar to  the 

Unibus and Q -bus protocols and this eases the  design of a DEC to VM E interface. 

This makes up for the im possibility of building the IM P system  directly onto the 

Q-bus host. Finally, a series of VLSI bus protocol chips to handle functions such 

as bus a rb itra tio n  and in te rru p te r/in te rru p t servicing are appearing, and 68000 

family peripheral chips will interface directly.
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Figure 9.1: IM P block diagram

9.3 A rchitectural overview

Figure 9.1 shows a block diagram  of IM P at the backp lane/board  level. 

F igure 9.2 is a photograph of the pro to type. This is based around a 6U E urocard 

crate w ith a 9 slot VME backplane m ounted in the upper connector position. A 

250W power supply is m ounted a t the rear for the main logic supply. A sm aller 

power supply for the analogue circuitry  is bolted to one end, along w ith a die 

cast box containing the digitiser logic. Each circuit board is of double extended 

E urocard  size w ith the lower connector available for I /O  specific to  th a t board.

The system  controller card provides bus arb itration  and m em ory m an­

agem ent, power up and m anual resets, and a bus watchdog th a t will tim e out any 

bus transac tions th a t are not acknowledged w ithin 16 microseconds. A 16 MHz 

clock is also provided for com patability  w ith o ther VM E system s, although this 

is of lim ited  use in IMP.

T he Q -bus link is a two board  set providing transm ission between Q -bus 

and V M Ebus backplanes over a 20-way tw isted pair cable driven to  the RS-422 

electrical standard . The protocol used is a slightly modified version of the Q -bus 

protocol which may be generated w ith some fu rther m ultiplexing of the Q-bus 

lines, and  a single flip-flop for in te rru p t latching. The electrical and protocol 

s tan d ard  form another bus specification called the Asynchronous Bus In terconnect 

(A BI). The smaller Q-bus card carries RS-422 transceivers, Q -bus buffers and a 

small am ount of m ultiplexing logic. The m ain p a rt of the protocol conversion is 

perform ed on the larger VME card.



Figure 9.2: IM P prototype

The industria l inspection system  described in Section 9.10 used the VI 

fram estore described in  C hap ter 5 and a PD P 11/23 host. C urren t versions of 

the system  use the V2 fram estore and PD P 11/73 or Micro Vax II hosts. Three 

system s have been constructed  and are in daily use in the M achine Vision G roup’s 

Laboratories.

9.4 P roject m anagem ent

IM P is a po tentially  large system, and the pro to type im plem entation 

described here involves some 250 in tegrated  circuits d istribu ted  over four boards. 

Large projects can rapidly  becom e unm anageable, bu t significant efforts have been 

m ade to m aintain  a disciplined docum entation system  from th e  s ta r t . A com plete 

description of all com ponent positions and interconnections is m ain tained  in m a­

chine readable form using a suite of program s w ritten by the au thor. These 

program s generate wiring lists, autom atically  flagging some sim ple errors. Board 

m aps can be produced on a norm al prin ter. There is also an interface to  the Racal 

R edboard PCB layout system  and the combined system  has been used for the im ­

plem entation of a com m ercial high-density peripheral card and  the  pro to type of 

the  NPL LAP2 array  processor.

W hen the paper design of a board  has been com pleted, a  prototyping 

card is selected and the com ponents laid out as desired. T he type of the  board, 

the com ponents and the pin  1 coordinates are typed into a com ponent listing 

file. P rogram  CADEXP then  expands this listing using two databases containing
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descriptions of the various pro to typing  boards and IC types. T he result is a 

listing of all IC pins on th e  board  w ith the ir coordinates and electrical types (e.ÿ. 

to tem  pole o u tp u t, open collector o u tp u t, bidirectional tri-s ta te  etc.), as well as 

the function of each chip and pin. Signal nam es are then taken from  the paper 

design and added beside each pin nam e. A nother program  called CADSIG then  

goes through the file collecting references to  signals and collecting them  together 

in alphabetical order so as to  form a wiring list. Errors such as the connection 

of two ou tpu ts  together are caught a t this stage. The board  is wired directly 

from this list on a coordinate to coordinate basis. W iring up is thus reduced to 

a mechanical task which does not require constan t reference to  the com ponent 

side of the board  to check th a t the correct IC has been located. This has reduced 

the  incidence of wiring errors (as opposed to  logical design errors) to  negligible 

proportions. W iring errors were extrem ely common whilst building IPO FS , and 

th is was exacerbated by the ‘design it on the b o a rd ’ approach.

The m achine readable wiring lists can be used to  generate tapes for 

au tom atic  wire w rapping m achines which may provide cheaper fabrication for 

small production  runs (say less than  10) than  using a PC B , especially since a 

complex board  like V I would require a m ulti plane board, or segm entation onto 

two separate PCBs.

W ith in  each generation, a board  may go through m any changes as it 

is debugged or enhanced. These small Engineering Change O rders (ECO s) are 

accum ulated on a hard  copy listing of the b o a rd ’s last dum ped sta te , or m arked 

in a disk file. At intervals, a block of ECOs will be applied to the b o a rd ’s source 

file, and new wiring lists will be generated. This constitutes a new revision of the 

board . Therefore under this system  a b o a rd ’s s ta te  at any tim e will be given in a 

file tagged by PR O JE C T /B O A R D -R E V ISIO N -E C O , e.g. IM P /V l-E -B .

Since this software is running on the  IM P host com puter, it is available 

for use on the bench, and has proved an extrem ely powerful debugging aid. If a 

signal is found to be showing unexpected behaviour, the system  editor can very 

rapidly find all pins a ttached  to  th a t signal, and which is the  ou tp u t. Since all 

changes are recorded, unexpected side effects are avoided. D uring the develop­

m ent of IPO FS the situation  often arose where a m odification to  one part of the 

circuit generated unexpected behaviour in a completely unrela ted  p a rt, because 

a common interconnection had  been overlooked, or because a signal line had not 

been com pletely restored after the removal of one link. This kind of bug, where 

the  sym ptom  does not have a clear causal connection with the real problem  is 

the m ost difficult to track down, being highly analogous to  the  bugs found in
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parallel software systems. Having a m achine-checked list of every pin, wire and 

connection on the board  has removed th is problem , and allows debugging to  pro­

ceed in a far more linear and structu red  way. A lthough originally conceived as a 

docum entation aid to reduce the costs of PC B  production, the system  has tu rned  

out to  be v ital during development. The curren t docum entation for the prototype 

IM P occupies some 300K bytes of disk space and it would clearly be impossible 

to  carry even a small am ount of th a t type of inform ation in the  head. Since the 

software autom ates working practices th a t had  evolved during the development 

of IPO FS , little  or no adap tation  has been required to make use of it: however it 

has im posed more discipline, which u ltim ately  reduces design tim e and costs.

9.5 U se o f th e V M E bus in IM P

IM P adheres closely to the V M Ebus stan d ard . W ith in  the lim its of the  

stan d ard  two kinds of ‘custom isation’ are possible. F irstly  there are various op­

tions concerning the w idth of d a ta  and address buses; the kind of bus arb itra tion  

provided; the d istribu tion  of in te rru p t fielding processors; and the kinds of bus 

cycles supported. Secondly, user definable address modifier codes are available for 

the  specification of unusual d a ta  transfer cycles. In IMP, a centrally controlled 

mem ory m anagem ent protocol has been designed and synchronous transfer modes 

defined th rough the use of address modifiers. These additions to the basic V M E­

bus cycle types will be im plem ented on a fu tu re  bus controller card. The VM Ebus 

specification allows boards th a t are addressed w ith cycle types th a t they do not 

recognise to  re tu rn  an error signal, thus m ain tain ing  the integrity  of the system .

A technical overview of VM E protocols is presented here to  provide the 

reader w ith enough inform ation to  unders tan d  the  detailed operation of the  IM P 

boards. A fuller reference is [VIT85].

9.5.1 V M E bus lines

The 82 signal (i.e. non-power) lines on the  upper (P I)  Eurocard connec­

to r divide into four separate buses. These are: a 16-bit d a ta /2 4 -b it address D ata  

Transfer Bus (DTB); a seven level in te rru p t bus (IN T); a four level DTB arb i­

tra to r  w ith selectable priority  or round robin  scheduler algorithm s (ARB); and a 

miscellaneous system  utility bus (UTL) carrying a 16MHz clock signal, reset and 

power m onitor lines, an error line for boards to  indicate failure of self-tests, and 

a low speed serial link for in terboard  com m unication and synchronisation. The
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signals are sum m arised below: 

DTB

A 01-A 23 a d d re s s  bus P r im a ry  a d d re s s
D 00-D 15 d a ta  bus P r im a ry  d a ta
AM0-AM5 a d d re s s  m o d if ie r s DTB c y c le  c o n t r o l
LWORD* lo n g  word Used w ith  3 2 - b i t  e x te n s io n
WRITE* w r i t e
AS* a d d re s s  s tro b e
DSO* d a ta  s tro b e  low low  b y te  a c ces s
D S l* d a ta  s tro b e  h ig h h ig h  b y te  a cces s
DTACK* d a ta  ackn ow ledg e Handskake fro m  s la v e
BERR* bus e r r o r Bus p r o to c o l  e r r o r

ARB

B R 0*-B R 3* bus re q u e s t fo u r  l e v e l  r e q u e s t  bus
B G 0 IN *-B G 3 IN * bus g ra n t  in bus g ra n t  d a is y  c h a in s
BGO0UT*-BG30UT* bus g r a n t  o u t
BBSY* bus busy m a s te r  has bus
BCLR* bus c le a r m a s te r  w an ts  bus

IN T

IR Q 1 * -IR Q 7 * i n t e r r u p t  r e q u e s t i n t e r r u p t  re q u e s t  bus
lACK* ackn ow ledg e
lA C K IN * ackn o w led g e  in d a is y c h a in e d  ackn ow ledg e
lACKOUT* ackn o w led g e  o u t

UTL

ACFAIL* AC f a i l u r e pow er f a i l  im m in en t
SYSRESET* system  r e s e t
SYSFAIL* system  f a i l f a i l e d  s e l f  t e s t
SYSCLK system  c lo c k 16 MHz c lo c k
SERDAT s e r i a l  d a ta low  speed s e r i a l  l i n e
SERCLK s e r i a l  c lo c k

9.5 .2  A rb itration  bus

IM P uses a four level priority  a rb itra tion  scheme, allocated as follows:

(h ig h e s t  p r i o r i t y )3 -  E x e c u t iv e  p ro c e s s o r  

2 -  H a rd w ire d  c o p ro c e s s o rs  

1 -  S o ftw a re  based c o p ro c e s s o rs  

0 -  V id e o  a c q u is i t io n  and d is p la y ( lo w e s t  p r i o r i t y )
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Only one video coprocessor is allowed in the system . Note th a t the fram estores 

described in this thesis are video slaves which do not qualify as a coprocessors. A 

graphics processor, or sync locked DMA transfer processor would be examples of 

true  coprocessors. N orm ally there  will be only one executive processor, although 

it is conceivable th a t a  second level 3 processor m ight be used in some applications.

The executive processor is in overall charge of the  system . It is able to 

initialise, s ta rt and  stop all o ther coprocessors, and in the p ro to type  im plem enta­

tion is able to m onito r all bus activity above the level of ind iv idual d a ta  transfers, 

and so can be used as a  sort of ‘software logic analyzer’ in the  debugging of target 

coprocessors. N aturally  it has the  highest priority so th a t it can usu rp  an erran t 

coprocessor which is tying up  the bus.

The next highest priority  is reserved for hardw ired coprocessors. It is 

assum ed th a t such m achines will not in general be able to save the ir system  state  

easily (i.e. they are un in terrup tib le  in th a t they will not be able to  recover after 

an in te rru p t, except via a general reset). Below these are the  level 1 software con­

trolled coprocessors based around  conventional microprocessors and  com puters.

W hen there  is no o ther activity on the bus, and when no requests are 

ou tstand ing , the  a rb itra to r  gives control to the video subsystem . This allows 

the video board  to  display im ages from V M Ebus memory, or to  w rite digitised 

video or o ther d a ta . W hen a coprocessor requests the bus, video display from 

the bus will be suspended. This will cause ‘hashing’ on the screen. However, all 

p lanned video boards also have onboard local memory from  which displays may 

be m ain tained  even w hen th e  video board is locked off the  bus. V I uses local 

m em ory exclusively, and  therefore never needs to  become a V M Ebus m aster. The 

V I onboard m em ory is accessible through two blocks of V M E addresses — as a 

m apped set of registers form ing a superset of the IPO FS registers, and as a simple 

block of RAM filling 128K contiguous locations.

W ithin  each level, bus grants are daisychained so as to  provide an ex tra 

level of prio ritisation  based on physical proxim ity to  the a rb itra to r.

9.5 .3  A rb itra tion  p ro toco l

In IM P, there  is always a bus m aster. If no coprocessors or executives 

are active, control defaults to  the video system . A simple bus request and grant 

sequence is illu s tra ted  in  F igure 9.3.

1. A level 2 hardw ired  coprocessor needs the  bus and asserts BR2*. The bus 

request lines are open collector, so several requests m ay be pending simul-
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Figure 9.3: IM P bus arb itration

taneously.

2. W hen the a rb itra to r  receives a request of higher priority than  the last posted  

grant, it asserts BCLR* to order the current bus m aster to  release the bus.

3. In this case, the  video board  will tri-sta te  its bus drivers and release the 

BBSY* line.

4. The positive going edge of BBSY* is a signal to the a rb itra to r to  issue a 

grant to the next eligible m aster, in this case on level 2.

5. The grant will p ropagate  down the backplane being exam ined and be passed 

on by all boards un til it reaches the requesting m aster where the  g ran t is 

blocked.

6. The new m aster asserts BBSY* and the arb itra to r responds by removing 

the grant (this im plies th a t gran ts m ust be latched on the m aster).

This completes the a rb itra tio n  transac tion , and the new m aster will re ta in  bus 

ownership until either it has finished, or the executive processor requests the bus, 

in which case a BCLR* signal will be generated.

It is possible for a rb itra tio n  to  be overlapped w ith D TB transactions. A 

m aster may release BBSY* after the s ta r t of its last DTB cycle. The new m aster 

will then receive a g ran t before the  address and d a ta  strobes have been released. 

N aturally, the new m aster m ust wait until no strobes are present before activating 

its own bus drivers. T his early release of BBSY is optional. Boards providing this 

feature are called type P re  RElease (P R E ) m asters.
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Figure 9.4: IM P d a ta  transfer

9 .5 .4  D a ta  Transfer B us

The basic DTB comprises 16 d a ta  lines, 23 address lines, one address 

and two d a ta  strobes, a write line, a norm al and an error acknowledge; and  six 

address modifiers which may be used to  specify multiple address spaces (e.g. 

kernel, supervisor and user space) or to  specify special address cycle types. If the 

second connector (P2) and backplane are fitted  then  the DTB is extended to  32 

d a ta  lines w ith another 8 address lines. A line LWORD* is used on the m ain 

backplane to specify a 32 bit access. This extension is not used in the pro to type 

IM P, so it is lim ited to an address space of 8M word of 16 bits.

9.5 .5  D a ta  transfer p ro toco l

The IM P d a ta  transfer cycle is shown in Figure 9.4.

1. After having taken possession of the  bus (see above), the m aster asserts AOl- 

A23, AM0-AM5 and W R ITE* w ith their required levels for this transaction .

2. The m aster waits for 35ns to allow for 25ns deskew and 10ns setup tim e at 

the slave, and then asserts AS*.

3. For a w rite cycle, either concurrently  w ith the  assertion of the addresses, or 

afterw ards, D00-D15 are asserted as required.

4. The d a ta  strobes are asserted as required either concurrently w ith or after 

the  assertion of the address strobe. On a write cycle, 35ns deskew and 

setup tim e m ust elapse after d a ta  assertion before da ta  strobes are asserted.
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There is one d a ta  s trobe for each byte in the word. This is in contrast to the 

U nibus/Q -bus protocol which uses a dedicated ‘B Y T E ’ line, which m ust be 

decoded w ith AO to  access the correct byte.

5. After fetching or accepting the d a ta , the slave asserts DTACK*. If at any 

tim e the slave detects a protocol error, it asserts BERR*. Both acknowledges 

may be asserted b u t BERR* takes priority.

6. Upon receipt of an acknowledge, the m aster releases all strobes, thus sig­

nalling the end of the  transac tion . '

7. W hen the slave detects all strobes high, it releases the acknowledge lines.

The IM P controller carries an 8-bit counter driven by the 16MHz SYSCLK signal 

th a t is reset to  0 when the  d a ta  strobes are high. The counter overflow also drives 

B ERR*, so th a t if 256 16MHz cycles (i.e. 16/xs) into a DTB da ta  transfer no 

acknowledge has been received, the transac tion  will be ‘tim ed o u t’ and a protocol 

erro r reported . W ithout this feature, the addressing of non-existent m em ory 

would cause a system  hang.

9.5 .6  U se o f address m odifiers

The six address m odifier lines allow one of 64 modes to be specified along 

w ith the m ain address. These modifiers are decoded along w ith the address itself, 

and slaves will respond only to  the modes they recognise. (Typical commercial 

system s decode the address m odifiers in  a 64 word PROM  which may be modified 

by the  custom er in line w ith any special needs.) There are 16 modes reserved 

for user application (num bers 1 0 - lF  hexadecim al). A lthough this feature will 

probably  be rarely used in conventional VM E com puters, it provides the key to 

upgrading the bus in a safe way. As long as the strobe and interlock protocol is 

adhered to, any special protocol can be designed, because assertion of any of the 

16 user modes will disable all ‘no rm al’ slaves in the system.

9.5 .7  In terrupt bus

D uring the early design of this system  an a ttem p t was m ade to  unify 

and  condense the bus as m uch as possible — hence there is only one d a ta  bus 

over which all transfers w hether DMA, I /O  or program m ed occur. However an 

in te rru p t mechanism  is also required. If the executive is to  m anage the system  

it m ust be inform ed when a coprocessor has com pleted an operation, or requires



203

atten tion  of some kind. It is not possible for the executive to  poll the coproces­

sor by reading its s ta tu s  over the DTB because as m entioned above, hardwired 

processors especially are unlikely to to lerate in terrup tion , and the executive will 

need to  gain bus m astersh ip  to perform  the poll.

One way to  avoid using a separate com m unication channel for this status 

inform ation would be to  get the coprocessor to w rite to  a special location which 

generates an in te rru p t in  the executive. (This is ju s t how the in te rru p t protocol on 

the U nibus works, except th a t a special IRQ line is used to  address the in terrup t 

fielder ra th e r  th an  a  particu la r location. As a result no separate  in terrup t bus 

is required.) However, since the single executive fields all in te rru p ts , and since 

there may be m any in terrup ters , it makes sense to m inim ise the logic required 

on the in te rru p te r a t the  expense of a more complex in te rru p t fielder. A single 

in te rru p t line on the backplane activated at the end of a process is much simpler to 

im plem ent th an  the  logic required to address and w rite to  a special bus location. 

A nother problem  w ith  U nibus style in te rrup t protocols is th a t m asters th a t are 

not in  possession of the  bus have no way of asking the executive for service. 

Specifically the video circuitry  in IM P can be used to  supply tim ing inform ation 

to the executive based on its  frame and line tim ing. However, the video circuitry 

can never cause a coprocessor to relinquish the bus because it has a lower priority, 

and the a rb itra to r  will sim ply ignore any requests.

As a  result all 7 in terrup t levels on the V M Ebus are used for parallel 

com m unications. All in te rru p t lines are open collector, and so m ultiple requests 

on each line are possible. T he 7 levels are defined as:

7 —  Executive processor (reserved)

6 —  H ardw ired coprocessor error 

5 —  H ardw ired coprocessor completion 

4 —  Software coprocessor error 

3 —  Software coprocessor completion 

2 —  Video coprocessor error 

1 —  Video coprocessor completion

Level 7 is reserved for any future im plem entation th a t may have more 

th an  one executive level processor. In such a case, one will still have to  be desig­

nated  the in te rru p t fielder and will therefore be the m ain system  controller. The 

subsidiary executives, which may be controlling com plete IM P systems of their 

own will com m unicate w ith  the executive using level 7 in terrup ts . One appli­

cation would be to  wide production lines, which due to  optical and throughput 

lim itations could not be m onitored with one system.



204

The o ther 6 levels are allocated equally to  the o ther 3 processor lev­

els. For each, a com pletion and an error in terrup t are provided to  signal correct

te rm ination  and  erro r abo rts  of an operation.

9.5 .8  U tility  bus

T he u tility  bus provides power m onitoring, reset and clock facilities. In 

the  pro to type the power m onitoring lines are not used. The reset line is asserted 

on power up and  under software control from the host. The clock provides a 

16MHz 50% du ty  square wave in line w ith the VM E specification. In fact a 

20MHz clock would be more useful since the pixel tim ing for b o th  square and 

rectangular im ages can be derived simply from this. The SYSFAIL* line provides 

a way of a lerting  the  executive th a t a coprocessor has failed its self test. The 

serial lines SERCLK  and SERDAT are not used in IMP.

9.6 Q -bus to  V M E bus link

T he p ro to type executive processor is a Q-bus based PD P-11. PD P

11/03, 11/21 (Falcon), 11/23, 11/73 and Micro VAX II hosts have been used

successfully. The interface link was designed to  be electrically robust so th a t 

operation  in an electrically noisy environm ent such as a factory would not be 

im paired. T he executive is also provided w ith a comprehensive bus m onitoring 

capability.

Transm ission between buses is over a 20-way tw isted pair cable driven 

to  the RS-422 electrical standard . This allows operation a t frequencies of up 

to  lOMHz over distances of up to  10m. The cable may be extended up to  1km, 

bu t w ith greatly  dow ngraded frequency perform ance (50kHz m axim um  at 1000m) 

[Dev81a,Dev81b]. T he receivers can discrim inate against up to  25V of common 

m ode noise, and  th is allows complete decoupling of the chassis grounds between 

the Q-bus m achine and IM P. The protocol is a modified Q-bus scheme using 

additional m ultiplexing to  reduce the num ber of signal lines to  20. T he electri­

cal and protocol s tandards together constitu te another bus stan d ard  called the 

Asynchronous Bus Interconnect (ABI).

9.6.1 QQ card

The QQ card is essentially ju s t a buffer board  between the Q -bus and 

the ABI. A block d iagram  and a photograph of QQ are shown in F igure 9.5 and
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Figure 9.5: QQ block diagram

9.6 respectively.

The following lines are buffered from the Q-bus:

DALO-15 16 Data Address Line M ultiplexed data/address
BS7 1 Bank S e le c t 7 I/O page decode
WTBT 1 WRite/ByTe M ultiplexed w rite /b y te
SYNC 1 SYNChronise Bus cy c le  in  progress
DIN 1 Data IN Read strobe
DOUT 1 Data OUT Write strobe
RPLY 1 RePLY Slave handshake
lACKI 1 in terru p t ACKnowledge In Acknowledge daisy  chain
lACKO 1 in terru p t ACKnowledge Out Acknowledge daisy chain
IRQ4 1 in terru p t ReQuest Request ( lo  p r io r ity )
IRQ5 1 in terru p t ReQuest
IRQ6 1 in terru p t ReQuest
IRQ7 1 in terru p t ReQuest Request (h i p r io r ity )

These lines are used in two ways:

1. D ata transfer cycles between the PDP-11 host and the ABI.

2. In terrup t requests and  acknowledges.

The Q-bus protocol for these transactions will now be described. Note th a t IM P 

does not use the DMA capability  of the Q -bus, therefore the description below 

is not a complete descrip tion of Q-bus operation, bu t only an overview of those 

parts  relevant to IM P. Fuller details may be found in [Dig79a].
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Figure 9.6: QQ prototype

9.7 Q-bus protocols

9.7 .1  D a ta  transfer cyc les

The DTB transac tion  is shown in Figure 9.7

1. The m aster asserts DALO-15 w ith the required address. If the  address is 

w ithin the  I /O  page (the  top 8K byte of the memory m ap), it asserts BS7. 

If the cycle is a w rite, it asserts W TB T. After waiting 150ns m inim um , the 

m aster asserts SYNC. This allows 75ns de-skew and 75ns setup tim e a t the 

slave.

2. On the rising edge of SYNC, the slave latches the address, and  if necessary 

W T B T .

3. After waiting a fu rther 100ns m inim um , the m aster removes the address 

from DALO-15 and negates W TB T. This allows at least 25ns of hold tim e 

at the slave.

4. For a w rite, the m aster asserts DALO-15 with the required data . If the cycle 

is a byte w rite, it asserts W T B T . After waiting at least 100ns, it asserts 

DOUT. This allows at least 25ns of setup tim e at the slave.

5. For a read, the m aster asserts DIN.

6. W hen ready, the  slave asserts RPLY. At least 150ns will elapse a t the  slave 

between the assertion of RPLY and the negation of the  strobe (DIN or
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Figure 9.7: Qbus d a ta  transfer

D O U T).

7. For a read, d a ta  is latched at the m aster on the falling edge of the strobe. 

Because of setup tim e requirem ents, d a ta  m ust be presented by the slave 

not m ore than  125ns after the assertion of RPLY (i.e. this is an early 

acknowledge protocol). W TB T will rem ain  valid at the slave for a t least 

25ns after the negation of the strobe.

8. For a w rite, d a ta  is guaranteed to  be present at the slave buffers for at least 

25ns after the negation of the strobe. W T B T  also m aintains its  value for at 

least 25ns.

9. If this is a w rite-after-read cycle, SYNC will rem ain asserted  and the da ta  

p a rt of a write cycle will be perform ed. O therw ise SYNC will be negated.

10. SYNC m ust remain negated for at least 200ns. This m eans th a t a t least 

50ns dead time m ust occur before DALO-15 can be asserted  with the next 

address.

The m inim um  read tim e for Q-bus is 550ns -f- Try and for w rites 650ns -f- T^, 

where Tr is the  response tim e of the slave. W ith  current fast memories, it is 

quite possible to  produce slaves th a t do all in te rn a l accesses during the allowed 

setup tim es of the protocol, and therefore appear to  have zero response time. In 

this case Tr will consist of the time required for the  strobe (DIN or DOUT) to 

p ropagate  down the bus, be turned  around onto  RPLY  and propagate  back up. At 

a  m inim um , this would be two bus p ropagation  tim es plus one gate propagation
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tim e, say 50ns on a heavily loaded bus. This yields a m axim um  bus frequency of 

1.67MHz for continuous reads ( i.e. a bandwidth o f 3.3Mbyte 1.43MHz for 

continuous writes and 0.84MHz for continuous w rite-after-reads.

9.7 .2  In terrup t p rotoco ls

The in te rru p t protocol has three phases: in te rru p t request; in terrup t 

acknowledge and a rb itra tion ; and vector read.

9.7 .3  In terrup t request phase

A device may assert an in terrup t request a t any tim e. Several devices 

may be requesting service at once because the  request lines are open collector. 

The request codes are som ew hat com plicated by the  need to m ain ta in  comp at a- 

bility across two versions of the Q-bus. Originally only one level of in te rru p t was 

provided, bu t w ith the release of the LSI 11/23 processor this was upgraded to

4. The earlier scheme supported  only the lowest level (IRQ4) and  so all higher 

requests m ust also assert IRQ4 to warn off earlier single level devices. To ease in 

decoding during in te rru p t acknowledgement, level 7 IRQs m ust also assert IRQ6. 

The full list of codes is:

4 IRQ4
5 IR Q 4 ,IR Q 5
6 IR Q 4 ,IR Q 6
7 IR Q 4 ,IR Q 6 ,IR Q 7

These lines rem ain asserted until the request is acknowledged.

9.7 .4  In terrup t acknow ledge phase

At the end of each instruction , the m aster exam ines the s ta te  of the IRQ 

lines and com pares the priority  of any pending requests w ith its own execution 

priority  as defined by the Processor S tatus W ord (PSW ). A request a t a higher 

priority  than  the processor’s will in itia te an in te rru p t acknowledge transaction .

1. The m aster asserts DIN and at least 225ns la te r asserts lA CK O . Note th a t 

SYNC is not asserted , and this may be used to  differentiate between DTB 

read and in te rru p t acknowledge cycles.

2. The device electrically closest to the m aster receives the acknowledge on its 

lA CK I receiver.
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3. If not requesting an in te rru p t, the device asserts its lA CK O  line and thus 

propagates the  acknowledge to  the next device in the daisychain.

4. If the device is requesting an in te rru p t, it checks the  IRQ lines to  see if a 

higher level device is also requesting.

5. If no higher level request is present, the  device blocks the acknowledge. (This 

is done by using th e  leading edge of DIN to clock a flip flop th a t disables 

the lACKO tran sm itte r.)  A rb itration  is won, and the vector transfer phase 

s ta rts .

6. If a higher level request exists, the device disqualifies itself (by clearing the 

blocking flip flop) and  the acknowledge propagates to the next device.

9.7 .5  V ector read phase

W hen a rb itra tio n  has been successfully won, the device asserts RPLY, 

and w ithin 150ns supplies an in terrup t vector on DALO-15. The m aster then  

reads the vector, and negates DIN and lA CK O . The device then  negates RPLY 

and w ithin lOOns removes the  vector. The m aster then uses the vector as the 

address of a two word area in memory containing the address of the  device’s 

service routine which is loaded into the program  counter, and a new sta tu s word 

which is loaded to  the PSW .

9.7 .6  Q -bus in terrup t p rotoco l hazard

The Q-bus in te rru p t protocol is in teresting  because it effectively requires 

the  device itself to  perform  priority  a rb itra tion . This is a sort of halfway house 

between the Unibus and  V M Ebus schemes. T he Unibus requires the in te rru p te r 

to  become a bus m aster, and therefore all a rb itra tio n  is done by the DTB arb i­

tra to r. The Q-bus requires the in terrup ter to  decide for itself w hether a received 

acknowledge is for it or ano ther in terrup ter. The VM Ebus in te rru p t fielder tells 

the in terrup ter which p rio rity  it is responding to  by pu tting  out a three-b it code 

on the address lines, so all the in terrup ter has to  do is wait for an lA C K I w ith a 

m atching code on A2-A0. In fact the Q-bus protocol could also do this because 

not all 16 DAL lines are used for the vector (vectors are only allowed in the 512 

bytes of memory, so only 9 DAL lines are needed for vector specification).

Because of the  serial n a tu re  of the arb itra tio n  on the Q -bus, a potentially  

fata l race condition exists wherein a low prio rity  in terrup ter near to the in te rru p t 

fielding processor may ‘s tea l’ a  vector fetch cycle from a high priority  in te rru p te r
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Figure 9.8: QV block diagram

further away. This is resolved by ensuring th a t high priority  in te rrup ters  are 

geographically close to  the in te rrup ter.

9.8 QV card

The QV card forms the  VM Ebus end of the ABI link. The full design 

has been modified in la ter versions to  remove the in terrup t generation circuitry 

which tu rned  out to  be overkill for the current project.

QV provides controller functions for the VM Ebus, such as clock gen­

eration and bus tim e-out w atchdog, m em ory m anagem ent hardw are to  convert 

Q-bus addresses to full 24-bit VM Ebus addresses, and in te rru p t fielding on the 

V M Ebus. The Q-bus d a ta  transfer and in te rru p t service protocols are converted 

to  V M Ebus protocols. A block diagram  of th e  QV board is shown in F igure 9.8.

9.8.1 Q V  op eration

9.8 .2  A ddress and W T B T  la tch es

The ABI DAL signals are buffered and passed to  the address latches 

where the ad d re ss /d a ta  inform ation is dem ultiplexed under the control of ZA- 

SYNC. The ZW TBT line is buffered and  latched in one half of a  dual D -type 

flip-flop. A simple la tch  (such as those used for the DAL lines) is not sufficient 

because the latched read will need to  be changed to  a w rite signal at the end of 

the d a ta  strobe (DSYNC) during  read-m odify-w rite cycles. T he o ther half of the
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D -type is clocked by the  falling edge of DSYNC and clears the W R IT E  flip-flop.

9.8 .3  A dd ress d ecod in g

T here are 32 m em ory m anagem ent and 8 in terrup t service registers on 

the  board . In ternal addresses are decoded by PRO M  and random  logic.

A further block of 4K bytes (usually the bottom  half of the  Q -bus I /O  

page) is reserved for VM E bus access. This space is divided up in to  16 windows 

of 256 bytes each.

9.8 .4  V M E  bus access

W hen an address w ithin a V M Ebus window is detected, a request is sent 

to  the on-board  V M Ebus requester and  when a grant is received the V M Ebus 

buffers are enabled. Bits 1 to  seven inclusive of the Q-bus address (corresponding 

to  the address w ithin the window) are connected directly to  the low seven bits 

of the  VM E bus buffers. The W T B T  line is decoded with bit zero of the Q-bus 

address to  generate the correct set of d a ta  strobes for the V M Ebus.

Bits eight th rough  eleven are applied to  the pair of 74LS621 address 

m appers which access in ternal registers to supply 24 bits of ex tra  addressing 

inform ation. This is connected to  V M E lines A8-23, AMO, LWORD* and lACK*.

9.8 .5  In terrup t su b sy stem

In terrup ts  are la tched  by two AMD 9519A Universal In te rru p t Controller 

chips. These sophisticated  devices allow program m able edge detection on eight 

independent prioritised inpu ts  and  can be preloaded with vector inform ation for 

the host. W hen an active edge is sensed by one of the in te rrup t controllers it sets 

an in ternal flag b it and asserts an open collector In terrup t Request line. This 

generates an in te rru p t cycle on the  ABI. T he host processor will read  the vector 

inform ation from the controllers autom atically . Hence sixteen independently  vec­

tored  in te rru p ts  are available. These are connected to (in decreasing priority  or­

der) SYSRESET*, SYSFAIL*, BCLR* BG3*-BG0*, IRQ 7*-IRQ l* and  BERR*. 

Using these in terrup ts , the  host m ay m onitor all transactions on the VM Ebus 

above the level of individual d a ta  transfers (i.e. in terrup ts, system  failures and 

bus m aster transfers).
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Figure 9.9: A rb itrato r s ta te  diagram  

9.8 .6  B u s serv ices

QV provides an arb itra to r, a bus tim e-out watchdog and a system  clock. 

These subsystem s are completely independent of the other functions on the board 

and could be disabled if the Q-bus machine was to  be used w ith a proprietary  bus 

controller card.

The 16MHz clock is generated from a crystal oscillator and buffered 

directly onto the V M Ebus. The clock is divided down by an eight-bit counter to 

provide a 16/is tim er th a t is enabled at the s ta rt of each V M Ebus address strobe. 

If a DTACK has not been received w ithin th a t tim e, the counter asserts BERR* 

to indicate a bus tim e out.

The 16MHz clock drives the a rb itra to r which is a finite s ta te  machine im ­

plem ented in a 85S105A Field Program m able Logic Sequencer. The sta te  diagram  

is shown in Figure 9.9.

9.8 .7  Softw are access to  th e  V M E bu s

The program m er’s model of the Q-bus to VM Ebus m em ory m anagem ent 

is shown in Figure 9.10.

The sixteen V M Ebus windows each have an associated VME Address 

Register (VAR), labelled VARO-15. Each VAR is 24 bits long and is accessed 

via two Q-bus words. VARnLO holds b its 0-11 of the extension word, corre­

sponding to  VM E b its  A 8-19. VARnHI holds bits 12-23 of the extension word 

corresponding to  V M E bits A20-23, AMO-5, LWORD* and JACK*.
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Figure 9.10: M emory m anagem ent program m er’s model

The sixteen windows may therefore be independently  m apped to any 256 

byte area on the  VM Ebus starting  a 256 byte boundary. Any address modifier 

may be associated w ith the window.

As an exam ple, suppose the Q-bus host needs to access a sixteen-bit 

word at VM Ebus address A9B115i6 with address modifier 3Cig, and th a t the first 

two V M Ebus windows are already m apped.

In this case LWORD* and lACK* will be low, so the full 32-bit address 

will be 3CA9B115i8. This address is divided in to  three fields — the top twelve 

b its, the m iddle twelve bits and the bo ttom  eight b its, i.e. 3CAi6, 9Blig and 

15i 6. The twelve bit fields are loaded into VAR2HI and VAR2L0 respectively. 

T he Q-bus address is then b a se  + n x 256 + o f f s e t ,  where b ase  is the first 

location of VARO, n is the num ber of the VAR and  o f f s e t  is the eight-bit field 

from  the full VM Ebus address.

9.8 .8  Q -bus addressing conflicts

The QQ-QV board  set occupies a large p a rt of the Q-bus I /O  page, and 

some care is required when configuring the system  to avoid conflicts w ith other 

installed peripherals. On PDP-11 systems this is not usually a problem  because 

when the L S I ll /0 3  system  was designed DEC allocated the bo ttom  4K bytes of 

the I /O  page for ex tra  m em ory (i.e. the LSI 11/03 had 60K of memory ra ther 

than  the usual 56K). As a resu lt all s tandard  DEC peripherals are allocated space 

in the  top half of the Q -bus to  ensure comp at ability w ith the 11/03. Assuming 

the host processor is not an  11/03 therefore QV can safely use the 4K I /O  space.
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O n an 11/03, sm aller windows m ust be used. However th is is not a practical 

restric tion  as the  11/03 is now obsolete.

On micro VAX system s the situation is less favourable. There is no re­

quirem ent for downwards com patability  w ith the 11/03 and therefore some s tan ­

dard  peripheral addresses have been moved down into the lower half of the I /O  

page. In particu lar, the  D H V ll octal m ultiplexer (which is s tan d ard  equipm ent 

on m ulti-user micro VAXes) falls w ithin the VAR2 space. In practice, this m eans 

th a t any a ttem p t to  m ap VAR2 to active VM Ebus memory will result in a m achine 

check and reboot of the VAX because of m ultiple address clashes.

A future protocol converter will resolve this problem  by m aking use of 

the Q-bus memory space and  thus relieving pressure on I /O  space. The micro VAX 

accesses its m ain m em ory in a separate address space th a t does not require Q- 

bus allocation, so there  is some 4M bytes of free address space for m apping to  the 

V M Ebus. This will significantly increase th roughput as rem apping of registers will 

not be required unless m ore than  4M bytes of VM Ebus space m ust be accessed. 

T he curren t design works w ith a s tandard  micro VAX II as long as VAR2 is not 

m apped to  populated  V M E locations.

9.9 B A SE  card

To ease interfacing to  the V M Ebus, a standard  bus foundation module 

was designed which provides full buffering, a bus requester, an in te rru p t requester, 

and a simple synchronous bus slave protocol handler. Fuller details may be found 

in [Joh85]. Most of th e  functionality  of the  board  is im plem ented in  two 85S105A 

Field Program m able Logic Sequencers.

As well as being used to interface the hardw ired coprocessors used in the 

factory application described below, the BASE circuitry has been incorporated  

in to  the SIPP  [Edm88j, S P l and SP2 [Joh88b] microcoded processors. The slave 

protocol handler is also used in the V2 and V3 frame stores.

9.10 An industria l in sp ection  application

A UK based food m anufacturer approached the research group w ith a 

view to  im proving quality  control on their production lines. A vision system  

was required th a t would gather sta tistics on product variability and remove bad 

p roducts from the line. C entral to  the project was the requirem ent for 100% 

inspection of the line.
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The resulting collaborative pro ject between RHC, U nited B iscuits L td 

and Unilever Central Research L td provided much of the funding for the  work 

described in this chapter. It was decided early on th a t a difficult problem  be 

selected and a dem onstrator system  constructed  and run  on a real p roduction  line 

for a realistic period. The ta rge t processing ra te  was three products per second. In 

the event the system  operated  successfully for two weeks at a th roughpu t of four 

per second using a PD P 11/23 host. This was using a single fram e store so th a t 

processing and image acquisition were not overlapped. Pipelining the acquisition 

and  processing stages by using a second fram estore and replacing the 11/23 w ith 

an 11/73 host would raise the  th roughpu t to over ten  per second.

9.10.1 T h e prob lem

The product to be inspected was a circular chocolate coated sponge 

w ith a circular jam  insert. An exam ple is shown in Figure 3.6. The equipm ent 

was required to check for overall circularity, radius of the product, rad ius and 

concentricity of the jam  insert, goodness of chocolate cover and gross failure, 

such as upside-down or broken products. Inspection of the jam  d istribu tion  was 

particu larly  difficult because the chocolate coating was already in place.

9.10 .2  W ho did w h at

Dr E. R. Davies designed the  algorithm s to perform  the inspection on 

s ta tic  products which will be described below. He also designed two hardw ired 

coprocessors at the block diagram  level th a t im plem ented key parts  of the  algo­

rith m  a t high speed. These processors were built by Dr M. A rain, and  tested  

and  debugged using routines w ritten  by E. R. Davies. The au thor designed and 

constructed  the m ultiprocessor system  th a t housed these coprocessors, th e  fram e 

stores and cam era hardw are, the host protocol link and the interface for the  h ard ­

ware coprocessors to his system . He developed the image acquisition software 

th a t allowed rapidly moving objects to  be captured  and supplied to  the rest of 

the  system  at a norm alised position w ithin the  frame buffer in real-tim e. He also 

designed and im plem ented the  system  software, integrated the coprocessors and 

the  software algorithm s, and w rote the software to  control the system  in the  fac­

tory  which provided a front panel display and graphics to help dem onstrate  the 

system  to  m anagem ent. T he design decisions th a t resulted in this particu la r mix 

of software and hardw are techniques are described in [DJ86] (a copy of which is 

bound in at the end of this thesis) and [DJ89]. As p a rt of the evaluation process
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the au tho r w rote software sim ulators for the  hardw are coprocessors th a t may be 

dropped into the  factory package as a direct replacem ent for the hardw are control 

code. T he au th o r’s factory package comprises some 3500 lines of code overall.

9.11 T he algorithm

The algorithm  comprises six phases: object detection and acquisition, 

thresholded edge detection, circle centre detection using a Hough Transform , 

showthrough (holes in the chocolate) inspection, jam  inspection and pass/fail de­

cision m aking.

9.11.1  O b ject d e tec tio n

The V I fram estore allows host accesses during image acquisition. W hen 

used w ith a line scan cam era, the line update  counter is held at line 20 during 

object detection. The host m onitors the horizontal flyback bit and reads the 

central p a rt of the line during flyback. If it detects a dark  area then  the host 

begins the line counter until a whole object has been grabbed. The top edge of 

the object will therefore be fixed at line 20.

9.11 .2  E dge d e tec tio n

A Sobel operator is applied to the im age. The results are thresholded so 

th a t (typically) about 100 points are m arked as being strong edge points.

9.11.3  C entre d e tec tio n

S tarting  a t each edge point from the  phase two list, the end point of a 

vector r  (the radius of the circle) pixels along the norm al to the direction of the 

edge is m arked in an alternate  edge space. At the end of this process, there will 

be a peak corresponding to  the centre of the circle in Hough space, as shown in 

Figure 9.12.

9.11 .4  Show through  in sp ection

The calculated centre is used to position a circular mask over the  p rod­

uct. All points falling w ithin this m ask are thresholded against a low and a high 

value. T he high values show light patches which can be in terp reted  as holes in the 

chocolate (although there will be some contribution from specular reflection of the
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Figure 9.11: Jam  inspection

lighting on the  shiny chocolate). The dark area is used to  control in terpreta tion  

of the radial histogram .

9 .11.5  Jam  in sp ection

Inspection of the jam  layer under the chocolate is difficult even for hu­

m ans. However, Dr Davies observed th a t if the  product is lit from  above with a 

parallel light beam  then  the fiat area of the product reflects light straight back 

to  the cam era. However the bevelled edges of the jam  layer refiect light away 

from  the cam era. The result of this is th a t the m achine ‘sees’ a dark ring on the 

p roduct corresponding to  the edge of the  jam  layer.

This ring is indistinct, so the Hough transform  technique used to  locate 

the p roduct itself is not useful for the jam  disc. Instead the rad ia l grey scale 

h istogram  is collected. This will show a dip at the radius of a well formed jam  

layer. If the jam  is not concentric w ith the product, or if some of the jam  is 

m issing then  the  dip will be sm oothed out.

The histogram  is correlated against a stored tem plate  for the ‘ideal’ 

p roduct to  provide an overall figure of m erit for the jam  position and size.

C orrelation is perform ed by sum m ing the pointwise products of the his­

togram  bins over the range of the actual histogram , after the actual histogram  

has been norm alised about the  m ean intensity.

9.11.6  D ecision  m aking

M anagem ent-supplied thresholds are supplied for circularity tolerance, 

radius, chocolate cover, jam  figure of m erit and dark  ring area. P roducts are 

required to  pass all these tests to proceed to the packing station . In a real sys-
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tern, bad product would be blown off the line w ith a com pressed air je t. In the 

dem onstra to r system , red and green lights were used to indicate pass/fail.

9.12 R eal tim e im plem entation

The frame store provided some hardw are assistance for the  object loca­

tor.

H ardware coprocessor P I perform ed the Sobel calculation on the image. 

U nfortunately, P I only re tu rned  a list of coordinates th a t m arked strong edges. 

T he Hough transform  requires the X and Y edge vectors so as to  calculate the 

norm al direction to  the  edge and these had  to  be recalculated by th e  host since P I  

d iscarded the inform ation. This incurred significant overhead (%24ms). A VLSI 

chip th a t can calculate Sobel com ponents will be described in the  next chapter.

H ardware coprocessor P2 provided a software controlled circular tem ­

p la te  used to  specify the area of the im age covered by the p roduct. W ith in  this 

area, light area, dark area and radial histogram  inform ation was collected in a 

single pass over the im age. The tem plate  was also correlated on the  fly during 

th is scan.

The rest of the program  was im plem ented in Pascal on the  host, along 

w ith user interface functions.

9.13 Factory trial

The system  was used on-line for two weeks. D uring this tim e there  were 

visits by senior m anagem ent and Unilever C entral Research L td  com m issioned a 

short video showing the system  in operation. The perform ance exceeded specifi­

cation and we were able to gather useful statistics on product variability  th a t had 

not been available using the existing batch  sam pling techniques.

9.14 C onclusions

This chapter has described a video-speed MIMD system  and an applica­

tion in the food processing industry. The system  hardw are has been in regular use 

for th ree years w ith modified versions running  on VAX processors. A repo rt com­

m issioned by United Biscuits L td indicated th a t the com mercial cost of producing 

the system  would be in the  range of £10,000 per un it. This would allow real tim e 

processing of grey scale im ages a t the ra te  of around ten a second (depending
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on the application). This is an advance on commercially available system s th a t 

are typically restric ted  to  b inary  real-tim e processing after th reshold ing  of the 

original grey scale im age.

As well as im proving quality control, systems such as IM P can control 

costs where expensive coatings such as chocolate are in use. Given th a t there will 

be variability of chocolate thickness due to  environm ental factors, the  m anufac­

tu re r m ust ensure th a t the worst case chocolate cover is still acceptable by the 

consum er. To do th is, the  m ean of the d istribution  m ust be increased un til the  tail 

lies above the m inim um  acceptable level. Therefore, on average, chocolate cover 

will be b e tte r than  required and  this can be very expensive (a t the  tim e of the 

factory tria l, processed chocolate cost around T2000 per ton). However, if sys­

tem  like IM P can guaran tee to  inspect every product and remove those th a t have 

th in  chocolate coating then  the  m ean of the d istribution can be moved down to 

the point where chocolate w astage due to  product removal m atches the  increased 

costs of thickening the chocolate layer.

9.15 C onclusions

A system  capable of supporting  real-tim e grey scale im age processing 

has been designed and successfully dem onstrated  in a real factory environm ent. 

The system  is easily expandable using commercial and in-house boards, and  has 

been used as the foundation for o ther projects not described in th is thesis.

Figure 9.12: Centre detection
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C hapter 10

A full custom  VLSI SOBEL filter

10.1 Introduction

Edge enhancem ent is one of the most com mon operations in im age pro­

cessing. This chapter concerns the design and im plem entation of a VLSI Sobel 

filter (called SOBS-1) which can calculate differential gradient com ponents w ith 

an in ternal propagation  tim e of less than  10ns. It is designed to  be used w ith an 

external lookup tab le in ROM which generates edge m agnitude data .

10.2 E dge m easurem ent operators

Edge m easurem ent requires the calculation of bo th  the m agnitude and 

the gradient of the edge. The work described in the previous chapter recognised 

circles in th e  im age using a Hough transform  based algorithm . A fundam ental 

requirem ent of such algorithm s is a realtim e edge detector w ith high angular 

accuracy. Several classes of edge enhancem ent opera to r have been developed:

1. tem plate  m atching [Pre70,Rob77,NB80],

2. differential gradient calculation, [DH73,Rob65],

3. use of orthonorm al basis functions [Hue71,Heu73],

4. difference of gaussians [MH80].

T he tem plate  m atching operators use a set of predeterm ined p ro to type edge masks 

and approxim ate the edge direction to th a t of the  m ask w ith the best m atch. To 

accurately approxim ate the edge direction, a large num ber of slightly different 

m asks would be needed, however this implies elongated processing tim es. Here, 

speed m ilitates against accuracy.
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Hueckel’s operato rs  and  the M arr-H ildreth edge detectors are compu- 

ta tionaly  intensive. [Hue71,Heu73] quotes runtim es of the order of 1.5 m inutes 

on a D EC -10 for a 297 x 231 pixel array. The M arr-H ildreth  operators require 

neighbourhoods of a t least 35 x 35 pixels. Both classes of operato r are currently  

uneconomic for realtim e industria l applications.

The differential gradient operators a ttem p t to  calculate the  x  and y 

com ponents of the grad ien t directly by convolving w ith X  and  Y  m asks and  then 

taking the norm alised root of the sum  of the squares to find the edge m agnitude. 

Essentially the operators a ttem p t to  fit a plane to the pixel in tensities in the 

neighbourhood. This m ethod  is especially attractive for direction related  applica­

tions as it directly provides the direction com ponents. [HarSO] suggests th a t the 

masks equivalent to  the  P rew itt operator are optim al for a th ree by th ree window, 

and th a t sim ilar m asks apply for larger areas, e.g. for a 5 x 5 neighbourhood:

M ,

1 - 2 - 1 0 1 2 ^  ̂ 2 2 2 2 2 ^

- 2 - 1 0 1 2 1 1 1 1 1

- 2 - 1 0 1 2 My  : 0 0 0 0 0

- 2 - 1 0 1 2 - 1 - 1 - 1 - 1 - 1

 ̂ “ 2 - 1 0 1 2 J 1 - 2 - 2 - 2 - 2 - 2 /

In practice the Sobel operato r seems to  be preferred. [Dav84] suggests circularity 

as a criterion for testing  the  angular accuracy of differential grad ient operators. 

O ptim al (real num ber) m ask coefficients are obtained by weighting according to 

the area of each pixel included w ithin a circle enclosing the  neighbourhood. Ac­

cording to this analysis, the  angular response of the Sobel operato r is op tim al for 

masks w ith integer coefficients. The theory is a ttractive  b o th  because it offers a 

theoretical basis for th e  popularity  of the Sobel operator and  because it provides 

a rationale for the design of optim al edge operators using larger neighbourhoods 

which provide an increase in accuracy over the basic Sobel.

10.3 The P lessey  edge detector

Plessey Sem iconductors Ltd m arket an edge detection device (PDSP16401 

[Sem86]) which uses tem p la te  m atching against the following four tem plates:

1 1 1

0 0 0

- 1  - 1  - 1

\
( l 0 - 1  ^

/

1 0 - 1
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2 1 0
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The first two masks are norm alised by a factor 1.5 in an a ttem p t to take account 

of the fact th a t the four-connected pixels are a factor \/2  closer to  the centre of 

the neighbourhood than  the eight-connected pixels. N orm alisation by 1.5 is of 

course only an approxim ation which eases the arithm etic im plem entation.

In operation, th ree ten-b it values representing the three lines of the cur­

ren t window are presented to  the chip. P resum ably  the ten bits are in tended to 

represent three three-bit pixels w ith one spare bit. Four separate F IR  filters pass 

video d a ta  associated w ith the  o rien tation  of each mask. The ou tpu ts  are then 

sorted to  produce a three-b it word giving a one-of-eight approxim ation to  the edge 

direction. The 13-bit o u tp u t of the filter generating the strongest o u tp u t is avail­

able at the chip ou tpu ts, and  the m ost significant ten bits are com pared against 

an externally  provided threshold . If the o u tp u t exceeds the threshold  level, a chip 

o u tp u t goes high. The chip can cycle at 15MHz, fast enough to process 1024 x 

1024 pixel images in real tim e, bu t 20 cycles are required to  process each set of 

results. This twenty cycle pipeline delay will com plicate im age buffer addressing.

A lthough the chip is fast and provides an on-chip com parator (thus sav­

ing one external package), it is based on theoretically unsound principles, and 

only calculates approxim ate norm alised convolutions. Even assum ing th a t the re­

sulting responses are accurate, the one-of-eight direction ind icator introduces an 

angular error of up to 22.5°. Convolution errors when the actual edge direction is 

midway between masks will add to  this error. The chip processes pixels to  only 

eight grey-level accuracy and  does not provide in ternal pipelining of pixel fetches 

(as opposed to the processing pipeline), so considerable external support circuitry 

will be required.

10.4 SOBS-1 d esign  derivation

The architecture of the SOBS-1 chip is derived from th a t of the P2 h ard ­

ware processor designed by E R Davies for the  IM P system  application described 

in the last chapter. The chip im plem ents a large array  of adders along w ith a three 

by three stage pixel pipeline. Unlike the P2 im plem entation, SOBS-1 m aintains 

full arithm etic  precision th roughout and generates 10-bit com ponent ou tpu ts. Of 

itself this would be accurate enough for Hough transform  circle detection to be 

perform ed for circles up to 2048 pixels in d iam eter in  ideal conditions of zero noise. 

The P2 im plem entation is lim ited to 128 pixel d iam eter circles. To fully exploit 

the available precision a square root lookup tab le  is required w ith a address lines 

where a is the  num ber of significant b its taken  from  the adders. To fully exploit
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the available precision a IM  x 10-bit lookup tab le is required, bu t in  general a 

2( i o g n ) + i  y ^  b it tab le will be required for circles of d iam eter 2n pixels.

SOBS-1 also provides a prefetch stage on the inpu t pipeline allowing a 

column of pixels to be preloaded before cycling the pipeline.

The full P2 system  includes a set of com parators for detecting points 

in the im age w ith large edge m agnitudes and a coordinate RAM which is loaded 

during a p icture scan w ith a list of the coordinates of such out-of-threshold points. 

These functions are not included in the present design, m ainly due to  chip pinout 

restrictions.

10.5 SO BS-1 arithm etic section

The Sobel convolution masks are:

f - 1 0 1^ ( 1 2 l \
5x : - 2 0 2 Sy : 0 0 0

. - 1 0 1 J 1 - 1 - 2 - 1  J

If we num ber the pixels thus:

P4 PS P2 

P5 PO P I  

P6 P7 P8

then  the mask equations are

=  P 2 - \ - 2 x P l + P S - ( P 4 + 2 x P b + P 6 ) S y  =  P 4 - h 2 x P 3 + P 2 - (P 6 - f -2 x P 7 + P 8 )

These m ay be generated using two trees of adders and sub tracters. The 

m ultiply by two is simply a shift left. In a com binatorial im plem entation, a shift 

left is obtained  simply by connecting the adders w ith a one b it offset.

10.6 P ix e l p ipelin ing

A note by Lee [Lee83] w ith la ter expansion by P icton [Pic84] describes 

elim ination of redundan t arithm etic operations in the Sobel filter. If the  simple 

Sobel convolutions are applied across an entire im age then  some term s are calcu­

la ted  more th an  once. An obvious exam ple is the lower (negative) partia l sum in 

Sy for line y = n  which will be the same as the  upper (positive) p artia l sum  in 

Sy for line y  = n  2. T hroughput on a conventional sequential processor would
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Figure 10.1: SOBS-1 arithm etic  trees

be increased if these term s were stored and retrieved when necessary rather than  

being recalculated. However, the arithm etic  s tru c tu re  in SOBS-1 calculates all 

term s com binatorially in parallel, and there is very little  speed to be gained by 

storing in term ediate results for la ter operations. T he overhead in storage and 

sequencing would be high.

Given th a t SOBS-1 calculates results when needed, a bottleneck exists at 

the inpu ts where (potentially) nine pixel fetches are required from  the fram estore 

for each operation. This is unacceptable because the  fram estore access time is 

likely to  be of the order of 50-100ns, and  so a com plete filter operation (with 

subsequent w riting of results to an ou tpu t fram e buffer) will require 0.5-1/is. This 

is a gross m ism atch with the speed of the  a rithm etic  trees (~10ns). However, it 

should be rem em bered th a t Sobel m agnitudes m ust be fetched from a ROM lookup 

table which will also lim it the actual system  speed. Large EPRO M s and ROMs 

are widely available at speeds of around 250ns, and th is provides the target speed 

for the pixel fetch circuitry.

Pixel I /O  may be reduced by buffering of im age lines. If two complete 

lines +  3 pixels are stored in shift registers in ternal to  the chip then  only one pixel 

read from  the fram e store is required per filter operation . This scheme requires a 

great deal of on-chip storage and produces a design th a t requires expensive high 

speed ROM s to  m ake use of the ex tra  speed. A b e tte r  m atch to  the ROM speed 

is obtained using a  simple window-column buffer com prising three separate three
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2n + 3 bytes storage, two fs accesses per window

Figure 10.2: Pixel line buffer

12 bytes storage, four fs accesses per window

Figure 10.3: W indow-column buffer

pixel-pipelines.

Three pixel reads are now required for each operation. Together w ith the 

o u tp u t write this requires four fram e store cycles, i.e. 268ns for a 67ns access tim e 

fram e store (i.e. 512 x 512 square pixel speed). This m atches the 250ns access 

tim e of the ROM  well, and provides com pact VLSI im plem entation. This scheme 

is used in SOBS-1. In a  system  with two fram e buffers or one where the  results 

are being w ritten  to  a different space, the write cycle may be fu rther overlapped 

w ith one of the read  cycles giving a 201ns overall cycle. N aturally  a faster ROM 

would be required in th is case.

10.7 O peration  p ipelin ing

The propagation  delay of the adder circuitry is negligible com pared with 

the cycle tim e of the system , so no in ternal pipelining is required. However, 

prefetch buffering of the next column of pixels is required so th a t fram e store 

accesses may be fully overlapped with the ROM  lookup. One way of im plem enting 

this would be to  la tch  the  two tw enty-bit differential gradient ou tpu ts  a t the 

inpu ts  to  the ROM . However, to  m aintain  m axim um  th roughpu t the o u tp u t latch 

would need to  be activated  exactly when the  ou tpu ts  from  th e  arithm etic  tree
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first stabilised. This will vary from sample to  sample of the chip, and in any 

case is likely to  be of the  order of 10ns after loading of the last pixel in the new 

column. A ccurate generation of 10ns delays on-chip would be difficult and in 

practice the whole system  would have to be slowed down to  allow for variations 

due to  tem pera tu re  and  processing factors.

The solution is to pu t the operation pipeline latch at the inpu ts to the 

device and an o u tp u t la tch  after the ROM. The filter chip works on a four phase 

cycle. D uring phases one, two and three the pixels th a t will form P2, P I  and P8 

of the next calculation are loaded into the prefetch latches. D uring phase four 

the prefetch la tch  and  the  th ree level pipelines are connected as four-pixel shift 

registers and d a ta  shifted across one column. At the beginning of phase four, 

the ROM  o u tp u t la tch  is clocked to load the result of the current operation and 

during phase four th is value is w ritten  back to  the frame store.

M any bus interfaces include ou tpu t d a ta  latches in the o u tp u t buffers, 

and  this provides the SOBS-1 ou tpu t latch ‘for free’.

10.8 TTL equivalent chip count

SOBS-1 contains twelve 8-bit latches and ten 11-bit adders along w ith a 

small am ount of clock driver circuitry. Allowing for the fact th a t two of the 11-bit 

adders could be im plem ented as 8-bit adders w ithout loss of arithm etic  accuracy, 

SOBS-1 is roughly equivalent to  twelve 74LS374 octal latches, sixteen 74LS83A 

four-bit adders and a buffer {e.g. 74LS245) to  provide clock drive.
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10.9 V LSI im p lem en tation

SOBS-1 is bu ilt in 2 micron CMOS using European Silicon S tructures 

(ES2) e-beam  processing. I t requires about 4,200 transistors (not counting I /O  

buffers). It fits on a lO^mm die, which is small by m odern s tandards and should 

therefore exhibit high yield. (Yield decreases w ith increasing die size due to  the 

higher probability  of including a crystal defect w ithin a given chip).

The chip was designed using the ISIS software m arketed by Racal-Redac 

[Rac87] which is a com m ercial version of the software developed by Inmos and 

used in-house for the design of the T ranspu ter and other advanced devices. ISIS 

was selected by the Alvey d irectorate as one of the preferred tools on the Alvey 

VLSI projects and is regarded  as one of the most advanced toolsets available for 

full custom  VLSI design.

ISIS com prises a H ardw are D escription Language (HDL) used to  de­

scribe the in terconnectiv ity  of transistors and higher level m odules, a sim ulator 

called Hylas (H Ybrid Logic and  Analogue Sim ulator) which supports mixed mode 

sim ulation, and a layout package called BED (Hierarchical E D itor). The system  

im poses a s tric t hierarchy on the design process and in general a ttem p ts  to ap ­

ply the techniques of large scale software engineering to the process of hardw are 

design.

10.10 ISIS concep ts

ISIS HDL is a B C PL  like language used to describe the network of el­

em ents and wires th a t makes up the chip. It is effectively a  d a ta  description 

language, not an executable program m ing language. For exam ple, an HDL DO- 

loop Specifies the in s tan tia tio n  of m ultiple copies of a piece of hardw are, not the 

repeated  execution of one step in an algorithm .

Blocks of hardw are in HDL are represented using a M ODULE which 

roughly corresponds to a procedure in a program m ing language. Some modules 

are prim itives supplied by th e  system  such as transistors and resistors. P rim itive 

m odules are not decom posable in much the same way th a t FO RTRA N intrin- 

sics or Pascal predefined routines are monolithic. O ther m odules are formed by 

connecting m odules together in a hierarchical fashion.

Each HDL m odule has a param eter list which describes the connections 

to  the m odule. HDL m odules m ap onto rectangular, non-overlapping areas of 

silicon a t layout tim e. All th e  com ponents (and their interconnects) listed in the
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Figure 10.5: Inverter representations

HDL module m ust be contained w ithin the layout module. Connections to the 

m odule correspond to wires crossing the boundaries of a layout module and these 

are often referred to  as ‘b ristles’.

Interconnection is established in HDL by associating actual signal vari­

ables w ith the formal param eters in a m odule’s list of bristles. The global (system ) 

signals GND and Vdd are available th roughout the  circuit for power supply con­

nections.

This example shows the schem atic, HDL and symbolic layout represen­

ta tions for a simple CMOS inverter. The HDL calls two modules NE (N-channel 

Enhancem ent) and P E  (P-channel enhancem ent) which are prim itives supplied 

by the system:

10.11 SOBS-1 H D L im plem entation

10.12 Leaf cells

An ISIS design comprises a hierarchy of modules and routing buffers 

which provide interconnection at the different levels of the hierarchy. At the 

bo ttom  of the hierarchy are cells containing only prim itives w ith no calls to non­

prim itive modules. These are called leaf cells because they correspond to  the 

leaves of the hierarchy tree. SOBS-1 contains only three types of leaf cell: a D- 

type latch, a  full adder and  an inverter. T he basic inverter has been described 

above. The inverters used in SOBS-1 are m ore complex than  th a t described 

above because they are essentially acting as buffers and contain an array of scaled



229

D

LD
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transisto rs: space precludes a detailed description of the design principles. In 

th is section the  modules containing logic transisto rs only will be described, and 

analogue engineering details will be om itted .

10.12.1 D -ty p e  latch

CMOS perm its the design of com pact latches using analogue switches 

and inverters ra ther than  the conventional cross-coupled NAND gates. T he d- 

type used in this design is a s tandard  eight transisto r circuit [WE85].

W hen Id is true then transm ission gate D  is open and transm ission gate 

F  is closed. D ata  flows through inverter D  and the ou tpu t follows the  inpu t. 

W hen Id is false, transm ission gate D  closes and F  opens forming a feedback loop 

th rough the two inverters which latches the  data .

The HDL representation of th is circuit is:

/ /  Transmission gate D la tch  
MODULE d_type(IN Id, Idbar, d, OUT q)

SIGNAL id ,  qbar 
id=UPE fp (Id, q) 
id=UNE fn  (Idbar, q) 
id=UPE dp (Idbar, d) 
id=UNE dn (Id, d)
PE i l p  ( id ,  Vdd, qbar)
NE i l n  ( id ,  qbar, Gnd)
PE i2p (qbar, Vdd, q)
NE i2n (qbar, q,Gnd)
END d_type

T he D -types are combined into an octal d -type module. The prefetch and pipeline 

blocks are bu ilt from master-slave sections com prising two octal d-types.

MODULE octal_d_type(IN Id, Idbar, d [0 :7 ] ,  OUT q [0 :7 ])
FOR i= [0 :7 ]  DO
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BEGIN b i t  
d _ t y p e ( l d ,  I d b a r ,  d [ i ] ,  q [ i ] )

END b i t  
END o c t a l _ d _ t y p e

MODULE o c t a l _ m a s t e r _ s l a v e ( I N  I d ,  I d b a r ,  d [ 0 : 7 ] ,  OUT q [ 0 : 7 ] )  
SIGNAL q i n t e r n a l [ 0 : 7 ]
o c t a l _ d _ t y p e  m a s t e r  ( I d ,  I d b a r ,  d [ 0 : 7 ] ,  q i n t e r n a l [ 0 : 7 ] )  
o c t a l _ d _ t y p e  s l a v e  ( I d b a r ,  I d ,  q i n t e r n a l [ 0 : 7 ]  , q [ 0 : 7 ] )
END o c t a l _ m a s t e r _ s l a v e

/ /  T h re e  o c t a l  ms D - t y p e s  t o  h o l d  inco m in g  d a t a

MODULE p r e f e t c h _ l a t c h
( I N  l d [ 0 : 2 ] ,  I d b a r [ 0 : 2 ] ,  d [ 0 : 7 ] ,  OUT q [ 0 : 2 3 ] )  

o c t a l _ m a s t e r _ s l a v e  low ( l d [ 0 ] , I d b a r [ 0 ] ,  d [ 0 : 7 ] ,  q [ 0 : 7 ] )  
o c t a l _ m a s t e r _ s l a v e  mid ( l d [ l ] , I d b a r [ l ] ,  d [ 0 : 7 ] , q [ 8 : 1 5 ] )  
o c t a l _ m a s t e r _ s l a v e  h i  ( l d [ 2 ] , I d b a r [ 2 ] ,  d [ 0 : 7 ] , q [ 1 6 : 2 3 ] )  

END p r e f e t c h _ l a t c h

/ /  T h r e e  by t h r e e  window p i p e l i n e

MODULE p i p e l i n e ( I N  I d ,  I d b a r ,  d [ 0 : 2 3 ] ,
OUT p i  [ 0 : 7 ] ,  p 2 [ 0 : 7 ] ,  p 3 [ 0 : 7 ]  , p 4 [ 0 : 7 ] ,  

p 5 [ 0 : 7 ] ,  p 6 [ 0 : 7 ] ,  p 7 [ 0 : 7 ] ,  p 8 [ 0 : 7 ] )
SIGNAL p 0 [ 0 : 7 ]  

o c t a l _ m a s t e r _ s l a v e  p 4 1 a t c h ( l d , I d b a r , p 3 [ 0 : 7 ]  , p 4 [ 0 : 7 ] )  
o c t a l _ m a s t e r _ s l a v e  p 3 1 a t c h ( l d , I d b a r , p 2 [ 0 : 7 ] , p 3 [ 0 : 7 ] ) 
o c t a l _ m a s t e r _ s l a v e  p 2 1 a t c h ( l d , I d b a r , d [ 1 6 : 2 3 ] , p 2 [ 0 : 7 ] )  
o c t a l _ m a s t e r _ s l a v e  p 5 1 a t c h ( l d , I d b a r , p O [ 0 : 7 ] , p 5 [ 0 : 7 ] )  
o c t a l _ m a s t e r _ s l a v e  p 0 1 a t c h ( l d , I d b a r , p l [ 0 : 7 ]  , p 0 [ 0 : 7 ] ) 
o c t a l _ m a s t e r _ s l a v e  p l l a t c h ( l d , I d b a r , d [ 8 : 1 5 ] , p l [ 0 : 7 ] )  
o c t a l _ m a s t e r _ s l a v e  p 6 1 a t c h ( l d , I d b a r , p 7 [ 0 : 7 ] , p 6 [ 0 : 7 ] ) 
o c t a l _ m a s t e r _ s l a v e  p 7 1 a t c h ( l d , I d b a r , p 8 [ 0 : 7 ] , p 7 [ 0 : 7 ] )  
o c t a l _ m a s t e r _ s l a v e  p 8 1 a t c h ( l d , I d b a r , d [ 0 : 7 ] , p 8 [ 0 : 7 ] )

END p i p e l i n e

/ /  C e n t r a l  r e g i s t e r  b l o c k  w i t h  p r e f e t c h  and window

MODULE r e g i s t e r s  ( I N  l d [ 0 : 3 ] ,  I d b a r [ 0 : 3 ] ,  d [ 0 : 7 ] ,
OUT p i  [ 0 : 7 ] ,  p 2 [ 0 : 7 ] ,  p 3 [ 0 : 7 ]  , p 4 [ 0 : 7 ] ,  

p 5 [ 0 : 7 ] ,  p 6 [ 0 : 7 ] ,  p 7 [ 0 : 7 ] ,  p 8 [ 0 : 7 ] )
SIGNAL i d [ 0 : 2 3 ]

p r e f e t c h _ l a t c h ( l d [ 0 : 2 ] ,  I d b a r [ 0 : 2 ] ,  d [ 0 : 7 ] ,  i d [ 0 : 2 3 ] )  
p i p e l i n e ( l d [ 3 ] , I d b a r [ 3 ] ,  i d [ 0 : 2 3 ] ,

p i  [ 0 : 7 ] ,  p 2 [ 0 : 7 ] ,  p 3 [ 0 : 7 ] ,  p 4 [ 0 : 7 ] ,  
p 5 [ 0 : 7 ] ,  p 6 [ 0 : 7 ] ,  p 7 [ 0 : 7 ] ,  p 8 [ 0 : 7 ] )

END r e g i s t e r s
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A exor B A e x o rB

not(A exor B) su m carrynot(A exor B)

Figure 10.7: TransmisBion gate adder

Vdd

, TGATE ,

A

ABAR

A EXORB

Figure 10.8: Transm ission XOR gate 

10.12.2 Full adder

The full adder is based on a transm ission gate adder reported  in [SOA73]. 

It uses a novel transm ission XOR gate and a pair of m ultiplexers connected as 

shown in Figure 10.7

In a full adder, the following relations are true:

W hen A X O R B is true: sum  =  N O T C, CARRY =  C 

W hen A X O R  B is false: sum  =  C, CARRY =  B

The XOR gate is also based on transm ission gates bu t uses an unusual 

form  of pseudo-inverter.

The circuit com prises two inverter structu res followed by a transm ission 

gate. The second inverter s tructu re  is connected between the  signals A and N O T  

A instead  of between th e  supply rails as is norm al. The in p u t to  this inverter is 

B.
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Sum

Carry

A

Figure 10.9: T ransistor schem atic of full adder

W hen A  is tru e , N O T  A  will be connected to GND and the second 

inverter will behave norm ally, producing N O T  B  at its ou tpu t. The same com­

bination of signals ensures th a t the transm ission gate if off, hence A  X O R  B  =  

N O T  B when A is true.

W hen A  is false, A B A R  will be true  and the ‘supply’ connections to the 

second inverter s truc tu re  will be reversed. This effectively disables the inverter 

and no ou tpu t is produced. T he transm ission gate switches on, hence A  X O R  B 

=  B  when A is false.

An XNOR gate m ay be constructed by reversing the connections of A  

and N O T  A to the second ‘inverte r’.

The com plete full adder requires 24 transistors.

A ‘T T L ’ style CM OS adder (i.e. direct im plem entation of F igure 7.1) 

w ith active low ou tpu ts  m ay be constructed in CMOS using 24 transisto rs but 

the  present circuit provides tru e  ou tpu ts and has a balanced propagation  delay 

through the carry and sum  paths. The conventional adder has a longer delay 

th rough  the carry pa th .

The HDL for the  adder is sim ply a block of 24 transistors:

/ /  M o n o l i t h i c  t r a n s m i s s i o n  g a t e  a d d e r
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MODULE f u l l _ a d d  (  I N  a ,  b ,  c i n ,  OUT sum, sumbar,  c o u t  ) 
SIGNAL a b a r ,  b b a r ,  c i n b a r ,  c o u t b a r ,  a x o r b ,  axnorb  

c i n ,  vdd ,  c i n b a r  ) 
c i n ,  gnd,  c i n b a r  ) 
a x o r b ,  c i n b a r ,  sumbar ) 
a x n o r b ,  c i n b a r ,  sumbar ) 
a x n o r b ,  c i n ,  sumbar ) 
a x o r b ,  c i n ,  sumbar ) 
a x o r b ,  a b a r ,  c o u t b a r  ) 
a x n o r b ,  a b a r ,  c o u t b a r  ) 
a x n o r b ,  c i n b a r ,  c o u t b a r  ) 
a x o r b ,  c i n b a r ,  c o u t b a r  ) 
sumbar,  v d d ,  sum ) 
sumbar,  gnd ,  sum ) 
c o u t b a r ,  v d d ,  c o u t  ) 
c o u t b a r ,  g n d ,  c o u t  ) 
a ,  vdd,  a b a r  )
a ,  gnd,  a b a r  )
b ,  a ,  a x o rb  ) 
b ,  a x o r b ,  a b a r  )

PE p i c  (  b , a b a r ,  a x n o r b  ) 
b ,  a x n o r b ,  a ) 
a ,  a x o r b ,  b ) 
a b a r ,  a x o r b ,  b )

PE p l 2  (  abeur, a x n o r b ,  b ) 
a ,  a x n o r b ,  b )

END f u l l . a d d

PE p i
NE n l
PE P2
NE n2
PE p3
NE n3
PE p4
NE n4
PE p5
NE n5
PE p6
NE n6
PE P7
NE n7
PE p8
NE n8
PE p9
NE n9
PE plO
NE nlO
PE p l l
NE n i l
PE p l 2
NE n l 2

The adders are combined in to  a universal 11-bit adder. This may be used as an 

11-bit sub tracter by inverting one set of inpu ts and setting the least significant 

carry-in to  1. Com plem entary ou tp u ts  are available from the adder to  assist in 

th is function. The next higher m odule (M O D U LE one_two_one) im plem ents the 

X 4- 2 X Y 4- Z function needed for each Sobel partia l sum.

/ /  S t a n d a r d  e l e v e n  b i t  a d d e r

MODULE a d d _ l l ( I N  a [ 0 : 1 0 ] ,  b [ 0 : 1 0 ] ,  c i n ,  OUT s u m [ 0 : 1 0 ] ,  
sumbar [ 0 : 1 0 ] )

SIGNAL i c [ - l : 1 0 ]

i c [ - l ] = c i n  
FOR i = [ 1 0 : 0 ]  DO 

BEGIN a d d e r
f u l l _ a d d ( a [ i ] , b [ i ] , i c [ i - l ] , s u m [ i ] , s u m b a r [ i ] , i c [ i ] )

END a dder
END a d d _ l l

/ /  a + 2 *b + c  f u n c t i o n
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MODULE o n e _ t w o _ o n e ( IN  a [ 0 : 7 ] , b [ 0 : 7 ] , c [ 0 : 7 ] , OUT sum[ G ; 1 0 ] ,
su m ba r [ 0 : 1 0 ] )

SIGNAL i s u m [ 0 : 1 0 ]
a d d . l l  o n e . tw o  ( [ a [ 0 : 7 ] , GND,GND,GND], [G ND,b [ 0 : 7 ] , GND,GND], 

G N D , is u m [ 0 : 1 0 ]  
a d d . l l  one ( i s u m [ 0 : 1 0 ] ,  [ c [ 0 : 7 ] , GND,GND,GND], GND, 

sum[ 0 : 1 0 ] , su m bar [ 0 : 1 0 ] )
END one_two_one

10.13 G lobal in terconnection

T he top level of th e  chip hierarchy im plem ents the block d iagram  of 

Figures 10.1 and 10.3. T he m odule partition ing  is not in tu itive in the HDL. 

The register block is grouped w ith the D* partia l sum  blocks (».e. instances of 

M ODULE one_two_one). T he next level up includes the Dy p artia l sum  blocks 

and the top-m ost level (M O D U LE sobs) incorporates the sub tracters th a t provide 

the final and Dy results. T he hierarchy is arranged this way to  ease the  global 

routing on the silicon. T he ISIS routing tools work best when connecting small 

num bers of blocks in a very hierarchical fashion and the present arrangem ent 

reflects the spatial relationship  of the layout modules.

MODULE r e g s _ a n d _ d x ( l d [ 0 : 3 ] , I d b a r [ 0 : 3 ] ,  d [ 0 : 7 ] ,
p 4 [ 0 : 7 ] ,  p 3 [ 0 : 7 ] ,  p 2 [ 0 : 7 ] ,  
p 6 [ 0 : 7 ] ,  p 7 [ 0 : 7 ] ,  p 8 [ 0 : 7 ] ,  
d x _ h i _ b u s [ 0 : 1 0 ] ,  d x _ l o _ b u s _ b a r [ 0 : 1 0 ] )

SIGNAL p 5 [ 0 : 7 ] ,  p i  [ 0 : 7 ]

r e g i s t e r s  ( l d [ 0 : 3 ] ,  l d b a r [ 0 : 3 ] ,  d [ 0 : 7 ] ,
p i  [ 0 : 7 ] ,  p 2 [ 0 : 7 ] ,  p 3 [ 0 : 7 ] ,  p 4 [ 0 : 7 ] ,  
p 5 [ 0 : 7 ] ,  p 6 [ 0 : 7 ] ,  p 7 [ 0 : 7 ] ,  p 8 [ 0 : 7 ] >  

one_two_one d x _ h i  ( p 2 [ 0 : 7 ] , p l  [ 0 : 7 ] , p 8 [ 0 : 7 ] ,
d x _ h i _ b u s [ 0 : 1 0 ] , [ ? , ? , ? , ? , ? , ? , ? , ? , ? , ? , ? ] )  

one_two_one d x _ l o  C p 6 [ 0 : 7 ] , p 5 [ 0 : 7 ] , p 4 [ 0 : 7 ] ,
[ ? , ? , ? , ? , ? , ? , ? , ? , ? , ? , ? ] , d x _ l o _ b u s _ b a r [ 0 : 1 0 ] )

END re g s _ a n d _ d x

MODULE r e g s _ a n d _ d y ( l d [ 0 : 3 ] , I d b a r [ 0 : 3 ] ,  d [ 0 : 7 ] ,
d y _ h i _ b u s [ 0 : 1 0 ] ,  d y _ l o _ b u s _ b a r [ 0 : 1 0 ] ,  
d x _ h i _ b u s [ 0 : 1 0 ] ,  d x _ l o _ b u s _ b a r [ 0 : 1 0 ] )

SIGNAL
p 4 [ 0 : 7 ] ,  p 3 [ 0 : 7 ] ,  p 2 [ 0 : 7 ] ,  
p 6 [ 0 : 7 ] ,  p 7 [ 0 : 7 ] ,  p 8 [ 0 : 7 ]

r e g s _ a u d _ d x ( l d [ 0 : 3 ] ,  I d b a r [ 0 : 3 ] ,  d [ 0 : 7 ] ,
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p 4 [ 0 : 7 ] ,  p 3 [ 0 : 7 ] ,  p 2 [ 0 : 7 ] ,  
p 6 [ 0 ; 7 ] ,  p 7 [ 0 : 7 ] ,  p 8 [ 0 : 7 ] ,  
d x _ h i _ b u s [ 0 : 1 0 ] ,  d x _ l o _ b u s _ b a r [0 ; 1 0 ] )  

one_two_one d y _ h i  ( p 4 [ 0 : 7 ] , p 3 [ 0 : 7 ] , p 2 [ 0 : 7 ] ,  
d y _ h i _ b u s [ 0 : 1 0 ] ,  

one_two_one d y _ l o  ( p 8 [ 0 : 7 ] , p 7 [ 0 : 7 ] , p 6 [ 0 : 7 ] ,
, d y _ l o _ b u s _ b a r [ 0 : 1 0 ] )

END r e g s _ a n d _ d y

/ / M a i n  f u n c t i o n  b l o c k

MODULE s o b s ( I N  d [ 0 : 7 ] .  I d [ 0 : 3 ] ,  OUT d x [ 0 : 1 0 ] ,  d y [ 0 : 1 0 ] )  
SIGNAL 

I d b a r [ 0 : 3 ] ,
d x _ h i _ b u s [ 0 : 1 0 ] ,  d x _ l o _ b u s _ b a r [ 0 : 1 0 ] ,  
d y _ h i _ b u s  [ 0 : 1 0 ] ,  d y _ l o _ b u s _ b a r [ 0 : 1 0 ]

/ /  FOR i = [ 0 : 3 ]  DO I d b a r [ i ] = i n v e r t ( I d [ i ] ) 
r e g s _ a n d _ d y ( l d [ 0 : 3 ] , I d b a r [ 0 : 3 ] ,  d [ 0 : 7 ] ,

d y _ h i _ b u s [ 0 : 1 0 ] ,  d y _ l o _ b u s _ b a r [ 0 : 1 0 ] ,  
d x _ h i _ b u s [ 0 : 1 0 ]  , d x _ l o _ b u s _ b a r [ 0 : 1 0 ] )  

a d d _ l l  dx_sub ( d x _ h i _ b u s [ 0 : 1 0 ]  , d x _ l o _ b u s _ b a r [ 0 : 1 0 ] ,  Vdd,  
d x [ 0 : 1 0 ] , [ ? , ? , ? , ? , ? , ? , ? , ? , ? , ? , ? ] )  

a d d . l l  d y . s u b  ( d y . h i . b u s [ 0 : 1 0 ] ,  d y . l o . b u s . b a r [ 0 : 1 0 ] ,  Vdd,  
d y [ 0 : 1 0 ] ,  [ ? , ? , ? , ? , ? , ? , ? , ? , ? , ? , ? ] )

END sobs

10.14 S im ulation  results

SOBS-1 has been extensively sim ulated a t full circuit level. Switch level 

sim ulators have difficulty handling transm ission gate intensive circuits where the 

direction of current flow through the gate m ay change. The Suzuki adder is 

particu larly  troublesom e. As a result, full analogue sim ulation was required to 

get realistic results. M ODULE sobs (i.e. the  whole chip less the clock drivers) 

requires approxim ately 9 cpu m inutes on a micro VAX IT to sim ulate Ins of realtim e 

operation. It tu rn s  out th a t the propagation tim e of the chip is about 12.5ns and 

therefore 128 x 128 x 12.5 =  204/xs of real-tim e sim ulation would be needed to 

process a com plete im age. This would require abou t 3.5 CPU years.

The sim ulator o u tpu t below shows a com plete sim ulation for the four 

adjacent pixels B l, B2, B3 and B4 shown in Table 10.1.

Sim ulator o u tp u t for SOBS-1 follows tab le  10.1
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0 0 0 27 140 240 A

0 0 0 127 250 229 B row

0 0 0 255 135 5 C

Table 10.1: SOBS-1 test d a ta

d[TiO] »ob i.d [7 iO ]

ld [3 :0 ] B o b i.ld [3 :0 ]

ld b a r [3 :  io b i . ld b a r [3 ;0 ]

ld [T :0 ] io b : . ie g :_ a n d _ d y .rc g # _ m n d ^ % .ic g l:* e r :. :d [7 :0 )

id[15!B] s o b s . r e g s ^ n d .d ; . r e g f ^ n d - d x . i e g i s l e r i . i d [ l 5 ; 8 ]

id [3 3 :1 6  io b i . r e g i - a n d .d ; . r e g B .a a d .d x . r e g i i i e r i . i d [ 3 3 ;1 8 ]

p 8[7 i0 ] :o b B .i« g i_ a n d _ d y .rc g # _ a m d ^ x .re g i» le rB .p !p e I in « .p 8 [7 :0 ]

p i  [7:0] l o b i . t e g t ^ n d - d y . r e g i - a n d .d x . r e g i s  t e n . p ip e l in e .p l  [7:0]

p3[7 :0 ] B o b :.re g # -a n d  _dy.regm _m nd.dx.regi» le iB .p ip e lin e .p 3 [7 :0 ]

p 7[7 :0 ] Bobm. rcg B -an d -d y .re g B -a n d -d x .re g iB  te rm .p ip e lin e .p 7 [7 :0 ]

p0[7 :0 ] Bobm.rcgB .a n d .d y .re g B .a n d .d x .re g iB te rB .p ip e lin e .p 0 [7 :0 ]

p3[7 :0 ] Bobm.regB-an d -d y .re g B -an d -d x .re g im te rB .p ip e lin e .p 3 [7 :0 ]

p 6 [7 :0 ] B o b B .rc g B -a n d .d y .reg B _ an d .d x .reg iB le rB .p ip e lin e .p 6 [7 :0 ]

p 6[7 :0 ] B o b m .reg B -an d -d y .reg B -an d -d x .reg im le rB .p ip e lin e .p 5 [7 :0 ]

p4[7 :0 ] B obB .rcgB _and_dy .regB _and_dx .rcg lB *crB .p ipcllne .p4[7 :0 ]

iB um [lO : Bobs.rcgB a n d  dy.regm  a n d .d x .d x .h i . iB n m [10:0]

iB nm [lO : B obB .rcgB _and_dy .regB _and_dx .dx_ lo .i:nm [lO :0]

iB n m [l0 : B obB .rcgB _and_dy.dy-hi.iB nm [10:0]

imnm [10: Bobm .regB-and _dy .d y _ lo .iB n m [l0 :0 ]

d x - h i- b n  B o b B .d x -h l-b n B [l0 :0 ]

d x J o - b n  Bobm .dx-lo-bnm  b a r [ l0 :0 ]

d y  -h i b n  mobm.dy _ h i.b n B [l0 :0 ]

d y - lo -b n  B obB .dy-lo .bnB _bar[lO :0 ]

d x [1 0 :0 ] Bobm.dx[10:0]

d y [ l0 :0 ]  B obm .dy[l0:0]
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d 1 1 I i i p p p p p p p p p i 1 1 1 d d d d d d

( d  d d d d 8 1 3 7 0 3 6 5 4 . . X y J X y

7 ( b I ( ( ( ( [ [ [ [ ( ( ( • - - - - ( (

> 3 a 7 1 3 7 7 7 7 7 7 7 7 7 m k 1 h 1 1 1

0 I t < 5 3 1 1 1 1 1 1 : : 1 I [ ( [ i O I o 0 0

] 0 I 0 . I 0 0 0 0 0 0 0 0 0 1 1 1 1 - - - - . .

] 3  1 8 1 ) ] ] 1 1 ] ] ] ] 0 0 0 0 b b b b 0 0

• 1 6 , . : : a a a o ] ]

0 .0 0 0 0 L L L L  H H H H 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5 0 0 .0 0 0 0 p 0 L L L L  H H H H 0 0 0 0 0 0 0 0 0 0 0 0  3047  3047 3047 3047 3047 0 3047 0 3046 3046

1.000000m 0 L L L L  H H H H 0 0 0 0 0 0 0 0 0 0 0 0  3046 3046 3046 3046 Î T IÎ  3044 ÎTÎT 3044 0 0

1.500000m 0 L L L L  H H H H 0 0 0 0 0 0 0 0 0 0 0 0  3046 3046 3046 3046 3 3044 3 3044 0 0

2.000000m 0 L L L L  H H H H 0 0 0 0 0 0 0 0 0 0 0 0 Î Î Î 7 T ÎÎÎ TTÎÎ Î Î Î Î Î Î Î Î 7 7 7 7 7 7 7 7 7 7 7 7 0 0

3 .5 0 0 0 0 0 b 0 L L L L  H H H H 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 7 7 7 7 3 7 7 7 7 0 0

3.000000m 0 L L L L  H H H H 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 7 7 7 7 6 7 7 7 7 0 0

3 .500000m 0 L L L L  H H H H 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 7 7 7 0 7 7 7 7 0 0

4.000000m 0 L L L L  H H H H 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3033 Î Î ! ?  3033 7 7 7 7 0 0

4 .500000m 0 L L L L  H H H H 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 : 7 7 3 0 4 7  7777 3047 0 0

6.000000m 0 L L L L  H H H H 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3047 0 2 047 0 0

5 .500000m 0 L L L L  H H H H 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3047 0 3 047 0 0

O.OOOOOOn 0 L L L L  H H H H 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 047 0 3047 0 0

6 .5 0 0 0 0 0 n 0 L L L L  H H H H 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 047 0 2047 0 0

T.OOOOOOn 0 L L L L  H H H H 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3047 0 3047 0 0

7 .500000m  355 L L L L  H H H H 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 047 0 3047 0 0

a.OOOOOOn 355 H L L H  L H H L 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 304 7 0 304 7 0 0

8.500001m  355 H L L H  L H H L 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 047 0 304 7 0 0

O.OOOOOOn 365 H L L H  L H H L 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3047 0 3047 0 0

9 .5 0 0 0 0 0 n  355 H L L H  L H H L 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 047 0 3047 0 0

lO.OOOOOn 355 H L L H  L H H L 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 047 0 3047 0 0

1 0 .5 0 0 0 0 n  355 L L L L  H H H H 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 047 0 3047 0 0

ll.OOOOOn 355 L L L L  H H H H 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 047 0 3047 0 0

1 1 .5 0 0 0 0 n  355 L L L L  H H H H 355 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3047 0 3047 0 0

1 3 .0 0 0 0 0 n  355 L L L L  H H H H  365 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3047 0 30 4 7 0 0

1 3 .50000m 137 L L L L  H H H H  355 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3047 0 3047 0 0

13.00000m  1 3 7 L L H L  H H L H  355 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3047 0 3047 0 0

13.50000m  137 L L H L  H H L H  366 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3047 0 3047 0 0

14.00000m  137 L L H L  H H L H  365 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3047 0 3047 0 0

14.50000m  137 L L H L  H H L H  255 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3047 0 3 047 0 0

15.00000m  127 L L H L  H H L H  355 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3047 0 3047 0 0

1 5 .50000m 137 L L L L  H H H H  355 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 047 0 3047 0 0

16.00000m  127 L L L L  H H H H  355 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 047 0 3 047 0 0

16.50000m  137 L L L L  H H H H  355 127 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3047 0 3047 0 0

17.00000m  137 L L L L  H H H H  355  127 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3047 0 2047 0 0

17.50000m 37 L L L L  H H H H  255 137 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3047 0 3047 0 0

18.00000m 37 L H L L  H L H H  355 137 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3047 0 3047 0 0

18.50000m 37 L H L L  H L H H  365 137 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3047 0 3047 0 0

10.00000m 37 L H L L  H L H H  356 137 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3047 0 3047 0 0

19.50000m 37 L H L L  H L H H  355 137 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3047 0 3047 0 0
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30.50000m  37 L L L L  H H H H  355 137 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3047 0 3047 0 0

31.00000m  37 L L L L  H H H H  355 137 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3047 0 3047 0 0

31.60000m  37 L L L L  H H H H  355 137 37  0 0 0 0 0 0 0 0 0 0 0 0 0 0 3047 0 3047 0 0

33.00000m  37 L L L L  H H H H  3 55  127 27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3047 0 3047 0 0

33.50000m  135 L L L L  H H H H  355 137 37 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3047 0 3047 0 0

33.00000m  135 H L L H  L H H L  355 137 37 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3047 0 2047 0 0

33.50000m  135 H L L H  L H H L  355 137 37 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3047 0 3047 0 0

34.00000m  135 H L L H  L H H L  355 137 37 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3047 0 304 7 0 0

3 4 .50000m 135 H L L H  L H H L  355 137 37 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3047 0 3047 0 0

35.00000m  135 H L L H  L H H L  355 137 37  0 0 0 0 0 0 0 0 0 0 0 0 0 0 3047 0 3047 0 0

25.50000m  135 L L L L  H H H H  355 137 37 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 3047 0 3047 0 0

36.00000m  135 L L L L  H H H H  355 137 37 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3047 0 3047 0 0

36.50000m  135 L L L L  H H H H  135 137 27 ÎT ! 127 77T 0 0 0 0 0 0 0 0 0 0 0 3047 0 3047 0 0

37.00001m  135 L L L L  H H H H  135 137 37 355 137 37 0 0 0 0 0 0 0 0 0 0 0 3047 0 3047 0 0

37.50000m  350 L L L L  H H H H  135 137 37 355 137 37 0 0 0 0 0 0 338 0 0 0 0 3047 0 3047 0 0

3 6 .00000m 350 L L H L  H H L H  135 137 37 355 137 37 0 0 0 0 0  0 339 0 0 7777 7777 3047 37 3047 0 0

36.50000m  250 L L H L  H H L H  135 137 37 355 137 37 0 0 0 0 0 0 339 0 0 365 355 3047 37 3047 0 0

39.00000m  260 L L H L  H H L H  135 137 37 265 137 37 0 0 0 0 0 0 193 0 0 355 7777 3047 37 2047 7777 37

39.50001m  260 L L H L  H H L H  135 137 27 355 127 37 0 0 0 0 0 0 309 0 0 355 63 3047 37 7777 355 37

30.00000m  350 L L H L  H H L H  135 137 37 355 137 37 0 0 0 0 0 0 7777 0 0 355 190 3047 37 36

30.50000m  360 L L L L  H H H H  135 137 37 355 127 37 0 0 0 0 0 0 7777 0 0 355 444 3047 37 1793 191 36

31.00000m  250 L L L L  H H H H  135 ÎT Î 37 255 127 37 0 0 0 0 0 0 153 0 0 355 7777 304 7 37 1793 190 0

31.60000m  250 L L L L  H H H H  135 350 37 355 127 37 0 0 0 0 0 0 35 0 0 355 493 3047 37 1793 446 7777

31.99999m  250 L L L L  H H H H  135 350 37 355 137 37 0 0 0 0 0 0 35 0 0 355 456 3047 37 1793 444 300

33.50000m  140 L L L L  H H H H  135 350 37 355 137 37 0 0 0 0 0 0 35 0 0 355 7777 3047 37 1793 493 300

33.99999m  140 L H L L  H L H H  135 350 37 355 137 37 0 0 0 0 0 0 7777 0 0 355 393 3047 37 1793 456 7777

33.49999m  140 L H L L  H L H H  135 350 37 355 137 37 0 0 0 0 0 0 381 0 0 355 408 2047 37 1793 456 838

3 3 .99996m 140 L H L L  H L H H  135 350 37 355 137 37 0 0 0 0 0  0 381 0 0 355 408 304 7 27 1793 456 838

34.49999m  140 L H L L  H L H H  135 350 37 255 137 37 0 0 0 0 0 0 381 0 0 355 380 3047 37 1793 408 1830

34.99999m  140 L H L L  H L H H  135 350 37 355 137 27 0 0 0 0 0 0 381 0 0 355 380 3047 37 1793 408 1830

35.49998m  140 L L L L  H H H H  135 350 37 355 137 37 0 0 0 0 0  0 381 0 0 355 34 3047 37 1793 7777 1830

35.99998m  140 L L L L  H H H H  135 350 ÎT ! 255 137 37 0 0 0 0 0 0 381 0 0 355 34 3047 37 1793 380 1830

36.49998m  140 L L L L  H H H H  135 350 140 355 137 37 0 0 0 0 0 0 381 0 0 355 34 3047 37 1793 380 1830

36.99998m  140 L L L L  H H H H  135 250 140 355 127 37 0 0 0 0 0 0 381 0 0 355 7777 30 4 T 37 1793 34 1830

37.49998m  5 L L L L  H H H H  135 350 140 355 127 37 0 0 0 0 0 0 381 0 0 355 536 3047 37 1793 34 1830

37.99997m  5 H L L H  L H H L  135 350 140 355 137 37 0 0 0 0 0  0 381 0 0 355 536 3047 37 1793 34 1830

38.49997m  6 H L L H  L H H L  135 350 140 355 137 27 0 0 0 0 0 0 281 0 0 355 536 2047 37 1793 536 1830

38.99997m  5 H L L H  L H H L  135 350 140 355 127 37 0 0 0 0 0 0 281 0 0 355 536 3047 37 1793 536 1830

39.49996m  5 H L L H  L H H L  135 250 140 265 127 27 0 0 0 0 0 0 281 0 0 255 536 3047 27 1793 536 1830

39.99996m  5 H L L H  L H H L  135 350 140 355 127 27 0 0 0 0 0 0 381 0 0 355 536 304 7 37 1793 536 1830

40.49996m  5 L L L L  H H H H  135 350 140 255 127 37 0 0 0 0 0 0 381 0 0 355 536 2047 37 1793 536 1830

4 0 .90997m 5 L L L L  H H H H  135 350 140 255 127 27 0 0 0 0 0 0 281 0 0 355 536 304 7 37 1793 536 1830

41.49996m  5 L L L L  H H H H  5 250 140 255 ??? 7?T 355 137 37 0 0 0 381 0 0 355 536 3047 37 1793 536 1820

41.09996m  5 L L L L  H H H H  5 260 140 ! ! ?  350 777 355 1 3 7 3 7 0 0 0 381 0 0 255 536 3047 37 1792 536 1830

4 2 .49996m 119 L L L L  H H H H  5 250 140 135 250 140 355 137 37 0 0  0 381 0 7777 7777 536 3047 37 1793 536 1830

43.90996m  110 L L H L  H H L H  5 350 140 135 350 140 355 137 3 7 0 0 0 7777 0 54 7777 536 3047  7777 1793 536 1830

4 3 .4 9 9 9 6 n  119 L L H L  H H L H  5 350 140 135 350 140 355 137 37 0 0 0  ???? 0 54 135 7 7 7 7 3 0 4 7 158 1793 536 1830

43.99995m  110 L L H L  H H L H  5 350 140 135 350 140 355 137 3 7 0 0 0 640 0 54 i i r 553 2047  7777 1930 536 1830



239

44.4000611 l i e  L L H L  H H L H  5 350 140 135 350 140 355 137 37  0  0 0 640 0 54 117 800  3047  186 1033 536 1048 

44.0990511 119 L L H L  H H L H  5 350 140 135 350 140 355 137 37  0 0  0 640 0 54 T!TT 809 2047 178 1930 553 1821 

45 .40995=  l i e  L L L L  H H H H  5 250 140 135 350 140 355 137 37  0 0 0  640  0 54 613 811 3047 178 1930 T7TT 1853 

45 .99905=  119 L L L L  H H H H  5 TTT 140 135 350 140 355 137 37  0 0 0 640 0 54 ?7TT 811 3047 178 T7?? 809 1597

46 .49995=  119 L L L L  H H H H  5 119 140 135 350 140 355 137 3 7  0 0 0 640 0 54 581 779 3047 163 7777 811 1597

46 .99994=  119 L L L L  H H H H  5 119 140 135 350 140 355 137 37  0 0 0 640 0 54 581 783 3047 183 7777 811 1597

4 7 .49994=  340 L L L L  H H H H  5 119 140 135 350 140 255 137 2 7  0 0 0  640 0 54 517 783 3047 130 1466 7777 1085 

4 7 .99994=  340 L H L L  H L H H  5 119 140 135 250 140 355 137 37  0 0 0  640 0 54 517  7777 3047 130 1466 783 1597 

48 .49994=  340 L H L L  H L H H  5 119 140 135 250 140 355 137 37  0 0 0 640 0 54 517 775 3047 130 7777 783 1597

4 8 .99993=  340 L H L L  H L H H  5 119 140 135 350 140 355 137 37  0 0 0  640 0 54 845 775 3047 194 1530 783 1507

4 0 .49994=  340 L H L L  H L H H  5 119 140 135 350 140 355 1 3 7 3 7  0 0 0 640 0 54 645 775 3047 194 1530 775 1597

49 .99993=  340 L H L L  H L H H  5 119 140 135 350 140 355 137 3 7  0 0 0 640 0 54 645 775 3047  194 1530 775 1597

It will be seen th a t the overall p ropagation  tim e of the circuit is around 

12.5ns from  receipt of a Id  [3] going low (which in itia tes d a ta  transfer into the 

register bank) to  results appearing on the  ou tp u ts  of the dx and dy adders. This 

does not im ply th a t the overall chip propagation  tim e will be so fast because 

delays through the I /O  pads are liable to  be of the order of tens of nanoseconds. 

However an overall perform ance of 20MHz (i.e. 50ns propagation tim e) would 

seem atta inable .

10.15 Leaf cell layout

There are only two leaf cells in th is design — the d-type latch and the 

full adder. These modules are connected hierarchically to  form  the full system. 

T he hierarchical connections will be considered in the next section.

The cells are arranged with power connections in 8/i m etal 1 running 

horizontally and signal connections (usually in  m etal 2 and polysilicon) running 

vertically. This allows cells to  be ab u tted  for power connection w ith horizontal 

signal routing  buffers between cell blocks.

10.15.1 D -ty p e  latch

The d-type is 70/i x 50/i. The Id  and  Id b a r  connections are in polysili­

con on the  left of the cell. They swap over in ternally  so th a t two d-types stacked 

vertically form a m aster-slave pair w ith the control lines correctly wired by abu tt- 

m ent. Similarly, the D and Q outputs are aligned so th a t the m aster will feed the 

slave directly.
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Figure 10.10: D-type latch layout

10.15.2 Full adder

The full adder cell is 115/x x 127.5/i. The Cin and Cout connections are 

available at the sides and at the top of the cell so th a t ripple carry  adders may be 

constructed  by horizontal abutm ent. The a, b, sum and sumbar connections are 

available a t the top  and the bo ttom  of the cell to ease global routing.

10.16 Chip floorplan

The chip floorplan is shown with global routing removed in Figure 10.12

The d-bus runs from the I /O  pads at the top of the chip to  the tops of the 

registers block. The first layer of the registers block contains the  prefetch latch 

and  d a ta  flows down through the register block on successive cycles. The four 

Sobel partia l sum s are calculated using two 11-bit adders each in the one_two_one 

m odules d istribu ted  around the register block. The final dx and dy com ponents 

are calculated in outerm ost blocks of the chip and routed to the I /O  pads.

10.17 Test resu lts

The first fuU SOBS-1 prototype will be fabricated in  A utum n 1988 with 

silicon expected back a t about the beginning of M arch 1989. However, the leaf cell
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Figure 10.11: Full adder layout
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samples have been individually  fabricated  by borrow ing spare area on underg rad ­

uate  studen t designs fabricated  as p a rt of the th ird  year VLSI course a t RHBNC 

which is taugh t by the au thor. The full adder and a m aster-slave flip-flop were 

functionally perfect and perform ed as expected. In the absence of sophisticated

test equipm ent it is im possible to accurately m easure the speed of the devices 

which is in the nanosecond range. However, these results give confidence th a t the 

full chip will operate correctly.

10.18 C onclusions

A Sobel edge detector has been sim ulated and laid out for fabrication 

in 2 micron CMOS. Exam ples of the leaf cells have been fabricated and  shown 

to work, and this gives confidence th a t the  full chip will operate correctly. The 

design is com pact and could be produced in m edium  volumes at low cost. This 

work indicates the m ajor changes in im plem entation technology th a t would be 

expected were the inspection project described in  the previous chapter s ta rted  in 

1989 ra th e r th an  1982. Availability of sophisticated CAD tools allows very high 

perform ance designs to be im plem ented w ith sim ulation replacing the  trad itional 

breadboarding techniques.
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C hapter 11

C onclusions

11.1 Introduction

This thesis has presented novel techniques in algorithm s, system s and 

com ponents for real-tim e im age processing.

11.1.1 A lgorithm s

Four algorithm s for quadtree generation from array  representations were 

presented in C hapter 4. The m atch between algorithm s and architectures was 

explored especially in term s of the ‘b it-tw iddling’ instructions required for algo­

rith m  four. The quadtrees were used to  control simple im age processing operators 

such as edge detectors and sm oothers. It was shown th a t a quadtree controlled 

skim m er applied as a preprocessor to  an edge detector provided b e tte r results 

th an  a simple threshold skimm er.

11.1.2 S ystem s

Three fram estore designs (IPO FS, V I and V2) were described in C hap­

te r 5. These com pact designs provided a high level of perform ance w ith special 

features (such as the ROM  m apper and the  wipe register) aimed at PD P-11 based 

system s. The differing constrain ts of the m em ory subsystem s for VAX and PD P  

system s were shown to favour in-store processing on P D P-11’s and m ain memory 

processing on VAXes, especially Q-bus based m achines such as the  Micro VAX II.

These fram estores have been used in  the IM P system  described in C hap­

te r 9 — a VME bus based MIMD m ultiprocessor w ith hardw ired co-processors 

running  at near-video speeds. A micro VAX or PDP-11 m ay partic ipa te  in  the 

MIMD system  via a Q-bus to VM E bus protocol converter, and acts as over­
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all controller in the  system , as well as providing software developm ent and user 

interface functions. T he IM P system has been used w ith com m ercial 68000 pro­

cessor and m em ory boards as well as several m icrocoded processor designs. A 

dem onstrato r system  was constructed th a t perform ed au tom atic  inspection of six 

products per second on a real industrial p roduction  line. T he system  performed 

well during a two week tria l,

11.1.3 C om p on en ts

Extensive use has been m ade of program m able logic devices in the sys­

tem s described here. S tandard  sync pulse generator, V M Ebus arb itra to r, re­

quester, in te rru p te r and  slave protocol handlers have been im plem ented.

The last chap ter described a VLSI Sobel filter capable of analysing 20 

million windows per second, or about 76 full 512 x 512 pixel im ages per second. 

The leaf cells for this device have been fabricated  and  shown to  conform to sim­

ulated  perform ance. T he full version of the chip is going forw ard for fabrication 

in A utum n 1988.

11.2 R ev iew

This thesis includes review of basic results concerning im age representa­

tions, algorithm  analysis, sequential processor design, asynchronous m ultiproces­

sor design, synchronous processor design and the design of program m ing language 

features to  exploit such machines.

11.3 Further work

W ork in the areas described in this thesis has continued. A microcoded 

processor called S P l was developed and has now been superceded by SP2, a com­

pact 20MHz processor. This is designed to work in bo th  pipelined and VLIW 

configurations. High level language support for th is  processor is currently  under 

developm ent w ith the  assistance of postraduate  students supervised by the au­

thor. An array  processor designed at the NPL has been in tegrated  into the IM P 

architecture w ith a com piler for a high level array  processor language. A sepa­

ra te  pro ject under the  direction of E R  Davies has been investigating theoretical 

results from  the earlier collaboration w ith U nited Biscuits and Unilever, and the 

microcoded processors will be used as the  im plem entation vehicle for algorithm s
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SYNOPSIS T h is  p a p e r  p r e s e n t s  a n  a l g o r i t h m  f o r  t h e  r a p i d  i n s p e c t i o n  o f  s m a ll  p r o d u c t s ,  a n d  c o n s i d e r s  
i t s  o p t i m a l  i m p le m e n ta t io n .  S p e e d  a n d  c o s t  l i m i t s  c o n s t r a i n  o p t i m i s a t i o n  r e l a t i v e l y  s im p ly ,  b u t  
c o n c u r r e n c y  m ak es t h e  s i t u a t i o n  c o n s i d e r a b l y  m o re  c o m p le x . H ow ever, a n  i n s p e c t i o n  s y s te m  t h a t  m akes 
p a r t i c u l a r l y  e f f i c i e n t  u s e  o f  a  s e t  o f  h a r d w a r e  p r o c e s s o r s  h a s  b e e n  d e s ig n e d .  The h o s t  CPU i s  n o t  
m e r e ly  u s e d  f o r  c o n t r o l  an d  d a t a  l o g g i n g ,  b u t  t a k e s  a n  i n t e g r a l  r o l e  i n  t h e  m a in  im a g e  a n a l y s i s  
t a s k .  T h e  e m p h a s is  o f  t h e  p a p e r  i s  o n  r e m o v in g  a r b i t r a r i n e s s  i n  t h e  d e s i g n  o f  h a r d w a r e  f o r  
i n d u s t r i a l  i n s p e c t i o n  s y s te m s .

1 INTRODUCTION

The p a s t  d e c a d e  h a s  s e e n  e n o rm o u s g ro w th  i n  t h e  
a p p l i c a t i o n s  o f  c o m p u te rs  t o  m a n u f a c t u r i n g  
e n g i n e e r i n g .  A u to m ate d  a s s e m b ly  an d  a u to m a te d  
i n s p e c t i o n  a r e  b ecom ing  m a tu re  t e c h n o l o g i e s :  
b o th  c u s t o m a r i l y  u s e  v i s i o n ,  s i n c e  s e n s o r s  s u c h  
a s  TV a n d  l i n e s c a n  c a m e ra s  a r e  c a p a b le  o f  
p r o v i d i n g  p r o d i g i o u s  q u a n t i t i e s  o f  r e l e v a n t  
i n f o r m a t i o n  a t  h ig h  d a t a  r a t e s ,  an d  a l g o r i t h m s  
a r e  know n w h ic h  w i l l  a n a l y s e  m uch o f  t h i s  d a t a  
s u f f i c i e n t l y  r e l i a b l y  f o r  t h e  p u r p o s e  o f  
c o n t r o l .  I n  a u to m a te d  a s s e m b ly ,  v i s i o n
p r o v i d e s  d a t a  o n  t h e  p o s i t i o n s  a n d  o r i e n t a t i o n s  
o f  p r o d u c t s ,  an d  c a n  a t  t h e  sam e t im e  c h e c k  
them  f o r  d e f e c t s .  I n  a u to m a te d  i n s p e c t i o n ,  t h e  
im m e d ia te  p u r p o s e  i s  t h a t  o f  d i m e n s i o n a l  
c h e c k in g  and  q u a l i t y  c o n t r o l .  M ore s p e c i f i c ­
a l l y ,  i t  a im s  ( a )  t o  i d e n t i f y  an d  r e j e c t  
p r o d u c t s  c o n t a i n i n g  d e f e c t s ,  (b )  t o  p r o v i d e  
f e e d b a c k  o n  p r o d u c t  c h a r a c t e r i s t i c s  ( s u c h  a s
s i z e  o r  s u r f a c e  t e x t u r e )  so  a s  t o  k e e p
m a n u f a c tu r e  w i t h i n  s p e c i f i e d  t o l e r a n c e s ,  a n d  
( c )  t o  p r o v i d e  s t a t i s t i c s  o n  m a n u f a c t u r i n g  
p a r a m e t e r s  ( 1 ) .

T h e r e  a r e  tw o im p o r t a n t  t r e n d s  i n
m a n u f a c t u r i n g :  o n e  i s  t h a t  p r o d u c t s  a r e
b eco m in g  i n c r e a s i n g l y  co m p lex  an d  s o p h i s t ­
i c a t e d ;  t h e  o t h e r  i s  t h a t  t h e  c o n su m e r  i s
b eco m in g  s i g n i f i c a n t l y  m ore d e m a n d in g  w i t h  
r e g a r d  t o  q u a l i t y .  As a r e s u l t  t h e r e  i s  a  m ove 
to w a r d s  1 0 0  p e r  c e n t  i n s p e c t i o n  o f  p r o d u c t s .

I f  t h e r e  i s  t o  b e  100  p e r  c e n t  c o n t r o l  o f  
q u a l i t y  a t  a  t im e  when p r o d u c t s  a r e  b e co m in g  
i n c r e a s i n g l y  c o m p le x , t h i s  n e c e s s a r i l y  th r o w s  a 
h e a v y  l o a d  o n  c o m p u tin g  m a c h in e r y .  I n d e e d ,  t h e  
e n o rm o u s  a m o u n ts  o f  d a t a  i n  t y p i c a l  im a g e s ,  
c o u p le d  w i t h  t h e  h ig h  th r o u g h p u t  r a t e s ,  m ean 
t h a t  s p e c i a l  e l e c t r o n i c  h a r d w a re  i s  n e e d e d  f o r  
v i s u a l  i n s p e c t i o n .  S uch  h a r d w a r e  i s  c o s t l y ,  
and t h e r e  a r e  tw o b a s i c  s t r a t e g i e s  f o r  
p r o v i d i n g  i t :  t h e  f i r s t  i s  t o  m a i n t a i n
g e n e r a l i t y  b y  b u i l d i n g  m u l t i - p r o c e s s o r  s y s te m s  
c o n t a i n i n g  ( f o r  e x a m p le )  l a r g e  n u m b e rs  o f  
m i c r o p r o c e s s o r s ;  t h e  o t h e r  i s  t o  em p lo y  s p e c i a l  
d e d i c a t e d  h a r d w a r e  s y s te m s  w h ic h  a r e  l e s s

a d a p t a b l e  b u t  may be  c o n s i d e r a b l y  c h e a p e r  i n  
i n d i v i d u a l  a p p l i c a t i o n s .  T h is  p a p e r  s t u d i e s  
t h e s e  b a s i c  s t r a t e g i e s  a n d  a n a l y s e s  t h e  
s p e e d / c o s t  t r a d e o f f s  i n  h a r d w a re  f o r  a u to m a te d  
v i s u a l  i n s p e c t i o n .  I n  a d d i t i o n ,  i t  d e s c r i b e s  
t h e  r e a l - t i m e  sy s te m  we h a v e  d e s ig n e d  t o  
i n s p e c t  p r o d u c t s  su c h  a s  b i s c u i t s  a t  c o s t s  
c o m p a t ib le  w i th  t h e  lo w  p r o f i t  m a r g in s  o f  
fo o d p r o d u c t  m a n u f a c tu r e .

2 ALGORITHMS FOR PRODUCT INSPECTION

Many i n s p e c t i o n  p ro b le m s  in v o lv e  t h r e e  m ain  
t a s k s :  ( 1 )  im age  a c q u i s i t i o n ,  ( 2 )  p r o d u c t
l o c a t i o n ,  and  (3 )  p r o d u c t  s c r u t i n y  an d  
m e a s u re m e n t.  I n  t h i s  s e c t i o n  we b y p a s s  t h e  
p ro b le m  'o f  a c q u i s i t i o n  an d  c o n c e n t r a t e  on  
p r o d u c t  l o c a t i o n  an d  s c r u t i n y .

To l o c a t e  p r o d u c t s  i n  a g r e y - s c a l e  im ag e  
i t  i s  v e r y  common t o  t h r e s h o l d  t h e  i n t e n s i t y  
an d  t h u s  o b t a i n  a  b i n a r y  im ag e  fro m  w h ic h  
o b j e c t s  c a n  be  l o c a t e d  w i th  r e l a t i v e l y  l i t t l e  
f u r t h e r  p r o c e s s i n g .  T h is  schem e i s  o n ly  
s u i t a b l e  i f  t h e  l i g h t i n g  s y s te m  i s  c a r e f u l l y  
c o n f ig u r e d  an d  p r o d u c t s  a p p e a r  s i l h o u e t t e d  
e . g .  a s  d a r k  o b j e c t s  a g a i n s t  a  l i g h t  b a c k ­
g r o u n d ,  s o  t h r . t  t h e  i n t e n s i t y  h i s t o g r a m  i s  
b im o d a l .  Many i n s p e c t i o n  s y s te m s  h a v e  b e e n  
d e s ig n e d  o n  t h i s  b a s i s ,  b u t  a t t e n t i o n  i s  now 
s h i f t i n g  to w a r d s  m ore c o m p lex  p r o d u c t s  f o r  
w h ic h  t h i s  a p p r o a c h  i s  u n l i k e l y  t o  be  
s u c c e s s f u l .  F o r  t h i s  r e a s o n  we c o n c e n t r a t e  
h e r e  o n  s y s te m s  b a s e d  on  e d g e  d e t e c t i o n .  T h is  
a p p r o a c h  i s  g e n e r a l l y  much m ore r o b u s t ,  b e in g  
a b l e  t o  n e g o t i a t e  p ro b le m s  d u e  t o  sh a d o w s , 
o v e r l a p p in g  p r o d u c t s ,  e t c .

One common a p p ro a c h  t o  o b j e c t  l o c a t i o n  i s  
t o  u s e  a  s im p le  e d g e  d e t e c t o r  t o  l o c a t e  t h e  
b o u n d a r ie s  o f  o b j e c t s ,  an d  t h e n  t o  l i n k  b ro k e n  
e d g e s  i n  o r d e r  t o  c r e a t e  c o m p le te  ( c o n n e c te d )  
o u t l i n e s  o f  o b j e c t s .  H av in g  o b t a i n e d  c o m p le te  
o b j e c t  o u t l i n e s ,  t h e s e  c a n  be  t h in n e d  down t o  
s i n g l e  p i x e l  w i d t h ,  and  a  t r a c k i n g  a l g o r i t h m  
c a n  b e  u s e d  t o  f o l lo w  t h e  o u t l i n e s  o f  
i n d i v i d u a l  o b j e c t s ,  h e n c e  g e n e r a t i n g  a  s e t  o f
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p o l a r  ( r , 8 )  p l o t s  ( 1 , 2 ) .  E f f i c i e n t  o n e  
d i m e n s i o n a l  p a t t e r n  m a tc h in g  a l g o r i t h m s  c a n  
t h e n  b e  u s e d  t o  i d e n t i f y  o b j e c t s ,  a t  t h e  sam e 
t im e  d e t e r m i n i n g  t h e i r  o r i e n t a t i o n  by f i n d i n g  
how much t h e  o b s e r v e d  p r o f i l e  n e e d s  t o  be  
s h i f t e d  b e f o r e  i t  m a tc h e s  a  s t a n d a r d  t e m p l a t e .  
I t  i s  w o r th  n o t in g  t h a t  o b j e c t  s c r u t i n y  c a n  
t h e n  p r o c e e d ,  a t  l e a s t  i n  p a r t ,  by  c h e c k in g  how 
c l o s e  t h e  m a tc h  w i th  t h e  s t a n d a r d  t e m p l a t e  i s .

T h is  a p p r o a c h ,  w h ic h  we s h a l l  c a l l  
A lg o r i th m  A, h a s  t h e  d i s a d v a n t a g e  t h a t  im age  
n o i s e ,  an d  th e  n a t u r e  o f  th e  o b j e c t s  and  t h e  
l i g h t i n g ,  t o g e t h e r  w i th  p o s s i b i l i t i e s  o f  
o v e r l a p p i n g  o b j e c t s  and  o t h e r  a r t e f a c t s ,  c a n  
m ake i t  d i f f i c u l t  t o  l i n k  b ro k e n  e d g e s  
t o g e t h e r .  I n d e e d ,  t h e r e  a r e  a r g u m e n ts  t h a t  
i n d i c a t e  t h a t  i t  i s  n o t  i n  g e n e r a l  p o s s i b l e  t o  
p e r f o r m  t h i s  f u n c t i o n  s u c c e s s f u l l y :  i n  a n y  c a s e  
we h a v e  fo u n d  many p r a c t i c a l  i n s t a n c e s  o f  
f a i l u r e .  H ow ever, i n  t h e  r e s t r i c t e d  s e t  o f  
c a s e s  i n  w h ic h  t h e  a lg o r i t h m  c a n  b e  u s e d ,  i t  
o p e r a t e s  e x t r e m e ly  r a p i d l y ,  s i n c e  t h e  t r a c k i n g  
a l g o r i t h m  n e ed  n o t  v i s i t  e v e r y  p i x e l  b u t  c a n  
b y - p a s s  m uch o f  t h e  im a g e . An u n f o r t u n a t e  
c o n s e q u e n c e  o f  t h i s  i s  t h a t  t h e  a l g o r i t h m  d o e s  
n o t  t a k e  i n  en o u g h  d a t a  t o  b e  p a r t i c u l a r l y  
r o b u s t .  I n  o u r  w o rk , we h a v e  a im ed  a t  h ig h  
a c c u r a c y  an d  e x t r e m e ly  h ig h  l e v e l s  o f  
r o b u s t n e s s ,  s i n c e  t h e s e  a r e  t h e  q u a l i t i e s  we 
h a v e  fo u n d  p a r t i c u l a r l y  i n  demand i n  i n d u s t r i a l  
a p p l i c a t i o n s  o f  v i s i o n :  we h a v e  t h e r e f o r e
a v o id e d  t h e  t r a c k i n g  sch em es u se d  by 
A lg o r i th m  A.

An a l t e r n a t i v e  a p p r o a c h  w h ic h  we s h a l l  
c a l l  A lg o r i th m  B a l s o  i n v o lv e s  e d g e  d e t e c t i o n ,  
b u t  i n s t e a d  o f  l i n k i n g  b ro k e n  e d g e s  t o g e t h e r  
d i r e c t l y  i t  p r o c e e d s  w i th  t h e  H ough t r a n s f o r m  
s t r a t e g y  o f  l o c a t i n g  o b j e c t s  by a c c u m u la t in g  
( a t  a r e f e r e n c e  p o i n t  w i t h i n  e a c h  o b j e c t )  t h e  
e v id e n c e  t h a t  i s  a v a i l a b l e  f o r  t h e i r  e x i s t e n c e  
( 3 , 4 ) .  T h is  g i v e s  a p a r t i c u l a r l y  r o b u s t  
s t r a t e g y  f o r  l o c a t i n g  o b j e c t s ,  th o u g h  i t  i s  n o t  
s o  f a s t  a s  A lg o r i th m  A. H ow ever, A lg o r i th m  B 
i s  s t i l l  h i g h l y  e f f i c i e n t ,  s i n c e  f u l l  u s e  i s  
m ade o f  l o c a l l y  a v a i l a b l e  e d g e  o r i e n t a t i o n  
i n f o r m a t i o n  to  co m p u te  c a n d i d a t e  p o s i t i o n s  f o r  
o b j e c t  r e f e r e n c e  p o i n t s .  H ere  we i l l u s t r a t e  
t h i s  t e c h n i q u e  by r e f e r e n c e  t o  c i r c u l a r  o b j e c t  
l o c a t i o n .  F o r  a c i r c u l a r  o b j e c t ,  e a c h  ed g e  
p i x e l  t h a t  i s  fo u n d  p e r m i t s  c o m p u ta t io n  o f  a 
c a n d i d a t e  c e n t r e  p o i n t  a d i s t a n c e  e q u a l  t o  R 
( t h e  r a d i u s )  a lo n g  t h e  e d g e  n o rm a l i n  
'p a r a m e t e r  s p a c e ' ( 4 ) .  ( I n  t h i s  a p p l i c a t i o n  
p a r a m e t e r  s p a c e  i s  i s o m o r p h ic  t o  im ag e  s p a c e . )  
When a l l  e d g e  p i x e l s  i n  an  im ag e  h a v e  b e e n  
p r o c e s s e d ,  i t  i s  o n ly  n e c e s s a r y  t o  s e a r c h  
p a r a m e t e r  s p a c e  f o r  c l u s t e r s  o f  c a n d i d a t e  
c e n t r e  l o c a t i o n s  an d  t o  a v e r a g e  th em  t o  f i n d  
a c c u r a t e  p o s i t i o n s  f o r  t h e  c e n t r e s  o f  c i r c u l a r  
o b j e c t s .

O nce p r o d u c t s  h a v e  b e en  fo u n d  u s in g  
A lg o r i th m  B , t h e y  may c o n v e n i e n t l y  be  
s c r u t i n i s e d  u s in g  t h e  r a d i a l  h i s to g r a m  m e th o d , 
w h ic h  i n v o l v e s  c o m p u tin g  a n  a v e r a g e  r a d i a l  
i n t e n s i t y  p r o f i l e  o f  t h e  p r o d u c t ,  an d  m a tc h in g  
t h i s  a g a i n s t  a  s u i t a b l e  t e m p l a t e  ( 5 , 6 ) .  T h is  
i s  a g a i n  a  o n e - d im e n s io n a l  a p p r o a c h ,  and  i s  
a n a lo g o u s  t o  t h a t  o f  m a tc h in g  o n e - d im e n s io n a l  
s h a p e  p r o f i l e s  i n  A lg o r i th m  A, th o u g h  i t  a im s  
t o  p r o v i d e  i n f o r m a t io n  o n  p r o d u c t  r e f l e c t i v i t y  
a n d  s i z e  r a t h e r  t h a n  s h a p e  ( 5 - 7 ) .  N a t u r a l l y ,  
A lg o r i th m  A c o u ld  a l s o  be  au g m en ted  b y  t h e  u s e

o f  r a d i a l  i n t e n s i t y  h i s t o g r a m s ,  i f  t h i s  w ere  
a p p r o p r i a t e .

T h e s e  a rg u m e n ts  show t h a t  A lg o r i th m  B 
s h o u ld  be c o n s i d e r a b ly  m ore r o b u s t  an d  a c c u r a t e  
f o r  o b j e c t  l o c a t i o n  th a n  A lg o r i th m  A. He h a v e  
m ade e x t e n s i v e  p r a c t i c a l  t e s t s  o f  th e  
s i t u a t i o n ,  p a r t i c u l a r l y  f o r  t h e  l o c a t i o n  o f  
ro u n d  f o o d p r o d u c t s  su c h  a s  b i s c u i t s ,  and  hav e  
v e r i f i e d  t h a t  t h i s  i s  s o .  S p e c i f i c a l l y ,  
A lg o r i th m  B h a s  b e e n  fo u n d  t o  b e  e x c e p t i o n a l l y  
t o l e r a n t  o f  b ro k e n  and  o v e r la p p in g  p r o d u c t s ,  
and  th o s e  h a v in g  o t h e r  sh a p e  d e f e c t s  su c h  a s  
p r o t u b e r a n c e s  a ro u n d  t h e i r  e d g e s  ( 5 ) .  I n  w hat 
f o l lo w s  we assu m e t h a t  A lg o r i th m  B i s  t o  be 
u se d  b e c a u s e  o f  i t s  s u p e r i o r  r o b u s t n e s s  and 
a c c u r a c y .

3 THE SPEED PROBLEM

F o r  o u r  t e s t s  on  b i s c u i t  i n s p e c t i o n .  
A lg o r i th m  B was au g m en ted  t o  i n c l u d e  a s s e s s m e n t  
u n d e r  f o u r  m ain  h e a d in g s  -  r o u n d n e s s ,  r a d i u s ,  
am oun t o f  c h o c o la t e  c o v e r ,  an d  g e n e r a l  a c c e p t ­
a b i l i t y  a c c o r d in g  t o  a r a d i a l  i n t e n s i t y  
c o r r e l a t i o n  c o e f f i c i e n t .  T he i n i t i a l  v e r s i o n  
o f  t h i s  a lg o r i t h m  to o k  a b o u t  o n e  m in u te  t o  r u n  
on  a PD P-11 /34À . S u b s e q u e n t  o p t i m i s a t i o n  o f  
t h e  a lg o r i t h m  s t r a t e g y  b r o u g h t  t h e  e x e c u t io n  
t im e  down t o  "~5 s e c o n d s ,  w i th o u t  r e s o r t i n g  to  
h an d  m assa g e  o f  m ac h in e  c o d e .  A l th o u g h  th e  
o r i g i n a l  a lg o r i t h m  was w r i t t e n  i n  P a s c a l ,  i t  
becam e c l e a r  t h a t  a t t e m p t s  t o  o p t im i s e  th e  
m ac h in e  co d e  would ( f o r  t h i s  a l g o r i t h m )  r e s u l t  
i n  a sp e e d u p  f a c t o r  o f  l e s s  t h a n  tw o : a
3 se c o n d  o v e r a l l  e x e c u t i o n  t im e  a p p e a r e d  t o  be 
a l i m i t i n g  c a s e .  T h is  i s  t o  b e  e x p e c te d  f o r  
t h e  f o l lo w in g  r e a s o n s .  The e d g e  d e t e c t i o n  p a r t  
o f  A lg o r i th m  B r e q u i r e s  some 16 im ag e  a c c e s s e s  
f o r  e a c h  p i x e l  i n  t h e  128x128  im a g e . A lth o u g h  
t h e  a c c e s s  t im e  o f  t h e  f r a m e s t o r e  i s  a ro u n d  
1 m ic r o s e c o n d ,  i n s t r u c t i o n  f e t c h e s  and 
o v e r h e a d s  w i t h in  t h e  p ro g ram  l o o p s  r e d u c e  th e  
a v e r a g e  th r o u g h p u t  to  a ro u n d  100000 
p i x e l s / s e c o n d .  As a r e s u l t  t h e  minimum 
e x e c u t i o n  t im e  o f  t h e  ed g e  d e t e c t o r  i s  o f  th e  
o r d e r  o f  2 .6  s e c o n d s .  P r o d u c t  s c r u t i n y  th e n  
r e q u i r e s  some 4 -5  a c c e s s e s  o v e r  t h e  r e l e v a n t  
a r e a  ( a b o u t  3000 p i x e l s  i n  o u r  a p p l i c a t i o n ) ,  
w h ic h  w i l l  t a k e  a t  l e a s t  a n o th e r  0 .1  s e c o n d s .  
The Hough t r a n s f o r m  c a l c u l a t i o n s  a r e  o n ly  
a p p l i e d  t o  some 200 p o i n t s ,  b u t  t h e i r  h ig h  
c o m p u ta t io n a l  c o s t  w i l l  add a n o t h e r  0 .1  s e c o n d s  
t o  t h e  t o t a l  e x e c u t i o n  t im e .  C l e a r l y  e v e n  w i th  
i d e a l  co d e  g e n e r a t i o n  t h e r e  i s  a lo w e r  bound  on 
t h e  o v e r a l l  p r o c e s s in g  t im e  o f  a b o u t  2 .8  
s e c o n d s .  C h a n g in g  t o  a  68000 o r  o t h e r  commonly 
a v a i l a b l e  m ic r o p r o c e s s o r  w ould  n o t  a f f e c t  t h i s  
s u b s t a n t i a l l y .

A t b e s t ,  s o f tw a r e  o p t i m i s a t i o n  i s  s u b j e c t  
t o  s e v e r e l y  d im in i s h in g  r e t u r n s ,  a n d  f u r t h e r  
sp e e d u p  m u st r e l y  o n  e n h a n c e m e n t o f  t h e  
h a rd w a re  im p le m e n ta t io n .  As s t a t e d  i n  
s e c t i o n  1 ,  t h i s  h a s  t o  be  o b t a i n e d  e i t h e r  by 
u s e  o f  s e v e r a l  c e n t r a l  p r o c e s s o r  u n i t s  (CPUs) 
o r  by  s p e c i a l l y  d e s ig n e d  d e d i c a t e d  e l e c t r o n i c  
h a r d w a r e .  To i n s p e c t  b i s c u i t s  a t  t y p i c a l  r a t e s  
o f  1 0 -2 0  p e r  s e c o n d , a sp e e d u p  f a c t o r  '^100 m ust 
b e  a t t a i n e d .

F o r  i n d u s t r i a l  a p p l i c a t i o n s ,  c o s t  h a s  t o  
b e  k e p t  lo w , and  i t  i s  u s e f u l  t o  s e e  how 
g e n e r a l i t y  c a n  be m a in ta in e d  s u b j e c t  t o  t h i s
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c o n s t r a i n t .  W ith  t h i s  i n  m ind we e x a m in e  a 
n u m b er o f  a l t e r n a t i v e  p r o c e s s i n g  a r c h i t e c t u r e s .

4 MULTIPROCESSOR SYSTEM DESIGN

4 .1  SIM P a r c h i t e c t u r e

When c o n s i d e r i n g  f a s t  h a rd w a re  f o r  im ag e  
a n a l y s i s  a p p l i c a t i o n s ,  i t  i s  n a t u r a l  t o  s t a r t  
w i t h  t h e  SIMD m a c h in e , s i n c e  t h i s  a r c h i t e c t u r e  
w o u ld  a p p e a r  t o  m a tc h  t h e  h a rd w a re  t o  t h e  
a l g o r i t h m  m o s t a c c u r a t e l y  ( 8 ) .  The SIMD ( o r  
'S i n g l e  I n s t r u c t i o n  M u l t ip l e  D a t a ')  a r c h i ­
t e c t u r e  w hen a p p l i e d  t o  im age  a n a l y s i s  i d e a l l y  
i n v o l v e s  u s e  o f  o n e  p r o c e s s i n g  e le m e n t  (PE ) p e r  
p i x e l ,  t h e  PEs b e in g  a r r a n g e d  i n  a n  a r r a y  
i s o m o r p h ic  w i th  t h e  im age  b e in g  p r o c e s s e d .  
S u c h  a  m a c h in e  i s  a b l e  ( f o r  ex am p le ) t o  i n v e r t  
o r  t h r e s h o l d  a n  im ag e  i n  o n e  i n s t r u c t i o n  c y c l e ,  
s i n c e  a l l  p r o c e s s o r s  o p e r a t e  s i m u l t a n e o u s ly  o n  
t h e i r  r e s p e c t i v e  p i x e l s .  T h is  ty p e  o f  m a c h in e  
I s  a l s o  a b l e  t o  o p e r a t e  r a p i d l y  on im a g e s  t o  
re m o v e  n o i s e  by l o c a l  a v e r a g in g ,  o r  t o  f i n d  
e d g e  p i x e l s  r a p i d l y  by  o p e r a t i o n s  w i t h i n  3x3  
n e ig h o u r h o o d s .  I n  a d d i t i o n ,  i t  c a n  e f f i c i e n t l y  
b u i l d  u p  d i s t a n c e  f u n c t i o n s  o r  f i n d  o b j e c t  
s k e l e t o n s  by  s e q u e n c e s  o f  3x3 n e ig h b o u rh o o d  
o p e r a t i o n s .  A t y p i c a l  SIM ) m ach in e  ( 9 )  i s  a b l e  
t o  p e r f o r m  t h e s e  3x3 o p e r a t i o n s  e f f i c i e n t l y  
s i n c e  e a c h  p r o c e s s i n g  c e l l  h a s  d i r e c t  l i n k s  
w i t h  i t s  8  n e ig h b o u r s  ( o n ly  4 i n  t h e  c a s e  o f  
som e m a c h in e s  su c h  a s  t h e  ICL DAP ( 1 0 ) ) ,  so  t h e  
r e q u i r e d  d a t a  i s  im m e d ia te ly  a v a i l a b l e .

M o st SIMD a r r a y s  i n c l u d e  a n  a c t i v i t y  b i t  
f o r  e a c h  PE w h ic h  a l lo w s  s e l e c t i v e  a p p l i c a t i o n  
o f  p r o c e s s i n g  s t e p s  t o  d i f f e r e n t  a r e a s  o f  t h e  
im a g e  b y  d i s a b l i n g  i n d i v i d u a l  P E s. H ow ev er, 
t h i s  c l e a r l y  w a s te s  t h e  pow er o f  t h e  SIMD 
m a c h in e .  U n f o r t u n a t e ly ,  a l l  b u t  t h e  lo w e s t  
l e v e l  im a g e  p r o c e s s i n g  o p e r a t i o n s  r e q u i r e  
s e l e c t i v e  p r o c e s s i n g  o f  t h e  im a g e . T he Hough 
t r a n s f o r m  c a l c u l a t i o n s  r e q u i r e d  f o r  A lg o r i th m  B 
fo rm  a n  i n t e r e s t i n g  e x tre m e  c a s e  i n  w h ic h  
a r o u n d  2 0 0  s p e c i a l  im ag e  p o i n t s  (e d g e  p i x e l s )  
t r i g g e r  a  f l o a t i n g  p o i n t  c a l c u l a t i o n ,  a t  t h e  
e n d  o f  w h ic h  a s i n g l e  p o i n t  i n  p a r a m e te r  s p a c e  
m u s t  b e  a c c e s s e d .  I n  p r i n c i p l e  t h e  f l o a t i n g  
p o i n t  c a l c u l a t i o n  c o u ld  b e  p e r fo rm e d  a t  e v e r y  
p o i n t  b y  t h e  SIM ) a r r a y ,  b u t  t h e  o n ly  a v a i l a b l e  
way o f  p e r f o r m in g  th e  s u b s e q u e n t  random  a c c e s s  
o f  t h e  p a r a m e te r  p l a n e '  i s  by p r o p a g a t io n  
t e c h n i q u e s  ( 9 ) .  T y p ic a l l y  40 p r o p a g a t io n  
c y c l e s  p e r  p o i n t  w ould  be r e q u i r e d  i n  t h i s  
a p p l i c a t i o n  f o r  e a c h  o f  t h e  16384 p i x e l s  i n  t h e  
im a g e .  (N o te  t h a t  a n  a t t e m p t  t o  r e - o r g a n i s e  
A lg o r i th m  B s o  t h a t  p r o p a g a t io n  r o u t i n e s  a r e  
u s e d  t o  l o c a t e  c i r c l e  c e n t r e s  l e a d s  t o  
s i g n i f i c a n t  l o s s  o f  g e n e r a l i t y ,  s i n c e  
A lg o r i th m  B i t s e l f  i s  im m e d ia te ly  g e n e r a l i s a b l e  
t o  d e t e c t  a n y  o b j e c t  sh a p e  ( 4 ) . )  A c o n v e n ­
t i o n a l  s e q u e n t i a l  p r o c e s s o r  w ould  be  s lo w  a t  
c a l c u l a t i n g  t h e  e d g e  im a g e , b u t  c o u ld  t h e n  
e f f i c i e n t l y  e x e c u te  t h e  200 f l o a t i n g  p o i n t  
c a l c u l a t i o n s  an d  d i r e c t l y  a c c e s s  t h e  p a r a m e te r  
s p a c e .  I n  a d d i t i o n ,  t e c h n o lo g y  c o n s t r a i n t s  
d i c t a t e  t h e  u s e  o f  s im p le  b i t - s e r i a l  p r o c e s s o r s  
i n  c u r r e n t  SIMD m a c h in e s ,  an d  t h e s e  w ou ld  
r e q u i r e  many c y c l e s  t o  e x e c u te  t h e  r e q u i r e d  
f l o a t i n g  p o i n t  c a l c u l a t i o n .  C l e a r l y ,  t h e  p u r e  
SIMD s o l u t i o n  w ou ld  be  much l e s s  e f f i c i e n t .

An a l t e r n a t i v e  h y b r id  s t r a t e g y  w ou ld  b e  t o  
p e r f o r m  t h e  e d g e  c a l c u l a t i o n  i n  t h e  SIMD a r r a y .

a n d  t h e n  t o  r e a d  t h e  r e s u l t s  o u t  s e q u e n t i a l l y  
i n t o  a c o n v e n t io n a l  p r o c e s s o r  w h ic h  w ould  
p e r f o r m  t h e  f l o a t i n g  p o i n t  c a l c u l a t i o n  an d  
u p d a te  t h e  p a r a m e te r  s p a c e .  The e c o n o m ic s  o f  
t h i s  a p p r o a c h  w ou ld  be  d i c t a t e d  by  t h e  r e l a t i v e  
c o s t s  o f  t h e  S IM ) and s e q u e n t i a l  m a c h in e s  an d  
t h e  b a n d w id th  o f  t h e  c o m m u n ic a tio n  c h a n n e l .  
C u r r e n t  SIMD a r r a y s  a r e  s t i l l  r a t h e r  e x p e n s iv e  
d e v i c e s ,  w h ic h  d i s c o u n te d  t h e i r  u s e  i n  o u r  
a p p l i c a t i o n .

T h is  a n a l y s i s  shows t h a t  SIMD a r c h i t e c t ­
u r e s  a r e  o f  l i m i t e d  u s e  f o r  p r o c e s s i n g  t a s k s  
t h a t  c a n n o t  e f f i c i e n t l y  e x p l o i t  t h e i r  r e g u l a r  
t o p o lo g y .  T he s i m p l i c i t y  o f  t h e  i n d i v i d u a l  
P E s , a n d  t h e  a b s e n c e  o f  lo n g  d i s t a n c e  commun­
i c a t i o n  l i n k s  w i t h in  t h e  im ag e  make them  
p a r t i c u l a r l y  u n s u i t a b l e  f o r  g e o m e t r i c a l  
c a l c u l a t i o n s  o n  o b j e c t  f e a t u r e s .  T hus t h e  SIMD 
a r c h i t e c t u r e  i s  c u r r e n t l y  i n a p p r o p r i a t e  f o r  
many t a s k s  o f  im age a n a l y s i s  t h a t  m ig h t  b e  
n e e d e d  i n  i n d u s t r i a l  i n s p e c t i o n ,  e v e n  th o u g h  i t  
m ig h t  b e  w e l l  a d a p te d  t o  v a r i o u s  im ag e  
p r o c e s s i n g  t a s k s  i n  a g e n e r a l  im a g in g  
e n v i r o n m e n t .

4 . 2  M u l t i - p r o c e s s o r  sy s te m s

G e n e r a l  m u l t i - p r o c e s s o r  s t r u c t u r e s  p r o v id e  
r e s o u r c e s  t h a t  may be u se d  c o n c u r r e n t l y  i n  a n  
u n r e s t r i c t e d  f a s h i o n ,  u n l ik e  t h e  SIMD m a c h in e  
w h e re  a l l  r e s o u r c e s  o p e r a t e  i n  l o c k s t e p .  As 
w i th  a l l  fo rm s  o f  p a r a l l e l  im p le m e n ta t io n ,  t h e  
e f f i c i e n c y  o f  a  m u l t i - p r o c e s s o r  s y s te m  w i l l  be 
d i c t a t e d  by t h e  e f f e c t i v e n e s s  o f  t h e  f u n c t i o n a l  
p a r t i t i o n s .  I n t e r a c t i o n s  b e tw e e n  f u n c t i o n s  
w i l l  r e q u i r e  e i t h e r  t r a n s m i s s i o n  o f  d a t a  
b e tw e e n  p r o c e s s e s  o r  a c c e s s  t o  s h a r e d  memory 
s p a c e s .  I n  t h e  o n e  c a s e  t h e r e  i s  a  p o t e n t i a l  
d a t a  b o t t l e n e c k  d u e  t o  l a c k  o f  b a n d w id th  i n  t h e  
c o m m u n ic a tio n s  c h a n n e l ,  and  i n  t h e  o t h e r ,  
p r o c e s s e s  may s t a l l  d u r in g  c o n t e n t i o n  f o r  
s h a r e d  m em ory. T h e r e f o r e  t h e  sp e e d  o f  a 
m u l t i - p r o c e s s o r  sy s te m  c o n ta i n in g  N p r o c e s s o r s  
i s  n e v e r  i n c r e a s e d  by t h e  i d e a l  f a c t o r  N u n l e s s  
t h e r e  i s  no  p r o c e s s  i n t e r a c t i o n ,  w h ic h  i s  
u n l i k e l y  t o  b e  t h e  c a s e  i n  a  s y s te m  d o in g  
u s e f u l  w o rk . H ig h  e f f i c i e n c y  w i l l  be  o b t a in e d  
by  m in im is in g  p r o c e s s  i n t e r a c t i o n .  N a t u r a l l y ,  
t h e r e  i s  t h e  r i s k  t h a t  a s y s te m  c o n ta i n in g  
N p r o c e s s o r s  an d  c a p a b le  o f  i n c r e a s i n g  sp e e d  by 
t h e  f a c t o r  "lU O  n o te d  i n  s e c t i o n  3 w i l l  be 
r a t h e r  a n  e x p e n s iv e  s o l u t i o n .

4 .3  P i p e l i n e d  p r o c e s s in g  s y s te m s

P i p e l i n e d  p r o c e s s in g  s y s te m s  fo rm  a n  
i n t e r e s t i n g  s u b - c l a s s  o f  m u l t i - p r o c e s s o r  
s y s te m s  w h ic h  c a n  b e  u s e f u l  f o r  t h e  r e p e t i t i v e  
e x e c u t i o n  o f  a  g iv e n  s e t  o f  o p e r a t i o n s .  T h is  
i s  t y p i c a l l y  t h e  c a s e  f o r  i n d u s t r i a l  i n s p e c t i o n  
s y s te m s ,  w h e re  t h e  same a lg o r i t h m  i s  a p p l i e d  t o  
e a c h  f ra m e  o f  d a t a  a s  i t  com es o f f  t h e  c a m e ra .  
I n  a  p i p e l i n e ,  i n d i v i d u a l  f r a m e s  o f  d a t a  a r e  
p a s s e d  a lo n g  a c h a in  o f  p r o c e s s o r s  so  t h a t  i n  
a n  N - p r o c e s s o r  sy s te m , N d i f f e r e n t  d a t a  s e t s  
a r e  b e in g  p r o c e s s e d  a t  an y  o n e  t im e .

S in c e  a l l  p r o c e s s o r s  p a s s  t h e i r  c o m p le te d  
d a t a  s e t  o n  u p  t h e  c h a in  a t  t h e  en d  o f  a  f i x e d  
t im e  s l o t ,  p i p e l i n e s  a r e  o n ly  a s  f a s t  a s  t h e  
s l o w e s t  p r o c e s s o r  i n  t h e  c h a i n .  To b e  o p t im a l ,  
a l l  p r o c e s o r s  s h o u ld  c o m p le te  i n  t h e  sam e 
am o u n t o f  t im e .  F o r  a  v id e o - b a s e d  s y s te m , a n  
o b v io u s  a p p r o a c h  w ould b e  t o  e x e c u te  i n
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i n t e g r a l  n u m b ers  o f  TV f r a m e s .  F o r  h ig h  l e v e l  
p a r t s  o f  t h e  a l g o r i t h m ,  s u c h  a s  t h e  Hough 
t r a n s f o r m  c a l c u l a t i o n s ,  s u b d i v i s i o n  i n t o  e q u a l  
e x e c u t i o n  t im e  p r o c e s s e s  w o u ld  be  v i r t u a l l y  
i m p o s s i b l e  t o  a c h i e v e .  F i n a l l y ,  t h e  a p p ro a c h  
r e q u i r e s  s i g n i f i c a n t  b u s  s w i t c h in g  l o g i c  and  
l o c a l  m em ory, a s  w e l l  a s  t h e  h a rd w a re  p r o c ­
e s s o r s ,  w h ic h  a r e  t h e m s e lv e s  l i a b l e  t o  be 
c o s t l y .  T hus p i p e l i n e d  s y s te m s  p o s e  a s e r i o u s  
p a r t i t i o n i n g  p r o b le m , an d  i n  a d d i t i o n  t o  
l a c k i n g  g e n e r a l i t y  a r e  l i k e l y  t o  c o n s t i t u t e  a 
r a t h e r  e x p e n s iv e  s o l u t i o n  t o  t h e  sp e e d  p ro b le m .

4.4  G e n e r a l  p r o c e s s i n g  c a p a b i l i t y

We h a v e  c o n c lu d e d  i n  o u r  w ork  t h a t ,  c o n t r a r y  t o  
m any o f  t h e  s u p p o s i t i o n s  a b o u t  im ag e  a n a l y s i s  
( b a s e d  o n  w h a t i s  f r e q u e n t l y  v a l i d  i n  im age  
p r o c e s s i n g  p e r  s e ) ,  t h e  i d e a l  ty p e  o f  
p r o c e s s i n g  s y s te m  i s  a  h i g h l y  g e n e r a l  m u l t i ­
c o m p u te r  s y s te m , w h ich  i s  a b s t r a c t  i n  t h e  s e n s e  
o f  n o t  b e in g  t i e d  t o  a n y  s p e c i f i c  im a g in g  
r e p r e s e n t a t i o n .  A g a in  t h i s  i s  n o t  a c h i e v a b l e  
w i t h i n  t h e  b u d g e t  o f  m o st i n d u s t r i a l  i n s p e c t i o n  
s y s t e m s .  F o r  a lg o r i t h m s  su c h  a s  A lg o r i th m  B, 
t h e  b e s t  co m p ro m ise  seem ed t o  be  t o  make 
o p tim u m  u s e  o f  a  s i n g l e  CPU by l i n k i n g  i t  w i th  
a  s e t  o f  h a rd w a re  a c c e l e r a t o r s  s e l e c t e d  f o r  
m a x im a l g e n e r a l i t y  c o u p le d  w i th  a p p l i c a b i l i t y  
t o  t h e  p ro b le m  i n  h a n d . I n  t h i s  c o n te x t .  
A lg o r i th m  B w as s e e n  a s  c o n s t i t u t i n g  a u s e f u l  
c a s e  s tu d y  i n  a lg o r i t h m  a n a l y s i s  and  m u l t i ­
p r o c e s s o r  s y s te m  d e s i g n ;  t h i s  w i l l  b e  d i s c u s s e d  
i n  m o re  d e t a i l  b e lo w .

5 FURTHER ANALYSIS OF ALGORITHM B AND ITS 
IMPLEMENTATION

T a b l e  1 g i v e s  a b reak d o w n  o f  t h e  f u n c t i o n s  i n  
A l g o r i th m  B. The 'd e s c r i p t i o n '  i n d i c a t e s  t h e  
s i z e  o f  t h e  n e ig h b o u rh o o d  e m p lo y e d  i n  im a g in g  
o p e r a t i o n s .  I t  a l s o  i n d i c a t e s  t h o s e  p r o c e s s e s  
t h a t  a r e  o n e - d im e n s io n a l :  t h e s e  a r e  m arked
s i n c e  t h e y  in v o lv e  l o o p s  c o n t a i n i n g  a s i g n i f ­
i c a n t  num ber o f  o p e r a t i o n s ,  b u t  n o t  a s  many a s  
f o r  tw o - d im e n s io n a l  im ag e  p r o c e s s i n g  i n  1x1 o r  
3 x 3  n e ig h b o u r h o o d s .

The tw o o t h e r  h e a d in g s  i n  t h e  t a b l e ,  t im e  
f o r  e x e c u t i o n  i n  s o f tw a r e  o n  a n  L S I - 1 1 /2 3  and  
c o s t  o f  h a rd w a re  i m p le m e n ta t io n ,  a r e  som ew hat 
n o t i o n a l  s i n c e  i t  i s  d i f f i c u l t  t o  d i v i d e  t h e  
a l g o r i t h m  r i g o r o u s l y  i n t o  c o m p le te ly  s e g r e g a t e d  
s e c t i o n s .  F o r  e x a m p le ,  i t  h a s  b e e n  assum ed  
t h a t  v a r i o u s  o v e rh e a d  c o s t s  s u c h  a s  t h a t  o f  a 
b a c k p l a n e ,  r a c k  and  p o w er s u p p ly  h a v e  a l r e a d y
b e e n  c o v e r e d :  we s h a l l  l a r g e l y  i g n o r e  su c h
c o m p l i c a t i o n s  i n  w h a t f o l l o w s .  O v e r a l l ,  t h e  
f i g u r e s  p r e s e n t e d  h e r e  s h o u ld  be  s u f f i c i e n t l y  
a c c u r a t e  t o  fo rm  th e  b a s i s  f o r  u s e f u l  d e c i s i o n s  
o n  c o s t  e f f e c t i v e n e s s  o f  h a r d w a r e .  F i n a l l y ,  
c o s t s  a r e  b a s e d  o n  c h ip  an d  o t h e r  co m p o n en t 
p r i c e s ,  an d  d o  n o t  i n c l u d e  l o g i c  d e s i g n  o r
p . c . b .  l a y o u t .  H ow ever, o n  t h e  w h o le  t h e  c o s t  
o f  d e s i g n  an d  l a y o u t  w ork i s  p r o p o r t i o n a l  t o  
t h e  n u m b er o f  c o n n e c t i o n s ,  w h ic h  i s  i t s e l f
r o u g h l y  p r o p o r t i o n a l  t o  c o m p o n en t c o s t .  T h is  
m e a n s  t h a t  o u r  r e s u l t s  w i l l  b e  s u b s t a n t i a l l y  
c o r r e c t ,  s i n c e  t h e  a n a l y s i s  b e lo w  i s  
i n d e p e n d e n t  o f  s c a l i n g .

As a  s im p le  s t a r t i n g  a p p r o x im a t io n ,  a n y  
f u n c t i o n  t h a t  i s  im p le m e n te d  i n  f a s t  h a rd w a re  
w i l l  b e  a ssu m ed  t o  r u n  i n  z e r o  t im e .  To f i n d

t h e  m o st c o s t - e f f e c t i v e  m eans o f  s p e e d in g  up 
t h e  s y s te m ,  we s h o u ld  t h e r e f o r e  c o n s i d e r  a
se q u e n c e  o f  o p t i o n s  i n  e a c h  o f  w h ich  o n e
a d d i t i o n a l  f u n c t i o n  i s  im p le m e n te d  i n  h a rd w a re ,  
s u c c e s s i v e l y  r e d u c in g  t h e  l o a d  o n  t h e  h o s t  CPU. 
To a c h ie v e  t h i s  s y s t e m a t i c a l l y ,  we sh o u ld  
ex am in e  t h e  s p e e d - c o s t  p r o d u c t  ( o r  c o s t / t i m e
r a t i o )  o f  e v e r y  f u n c t i o n ,  an d  i n  s u c c e s s iv e  
o p t io n s  im p le m e n t i n  h a rd w a re  t h e  f u n c t io n  
c u r r e n t l y  h a v in g  t h e  l o w e s t  v a lu e  o f  t h i s  
p a r a m e te r :  t h e  r a t i o n a l e  f o r  t h i s  i s  t o
p r e f e r e n t i a l l y  r e p l a c e  i n  h a rd w a re  th o s e  
f u n c t i o n s  t h a t  a r e  s lo w  an d  w hose c o s t  i s  
r e l a t i v e l y  s m a l l ,  b y  a p p ly in g  a c r i t e r i o n  
f u n c t i o n  w i th  s u i t a b l e  w e ig h t in g  v a lu e s .

T h is  s im p le  p r o c e d u r e  i s  made som ewhat 
m ore  co m p lex  by t h e  s i g n i f i c a n t  econcxn ies t h a t  
a r e  p o s s i b l e  when im p le m e n t in g  f u n c t i o n s  6 -1 0 , 
e . g .  by u s in g  coimnon p i x e l  s c a n n in g  c i r c u i t r y .  
S p e c i f i c a l l y ,  an y  s u b s e t  o f  t h e  f u n c t i o n s  6 -1 0  
c a n  o p e r a t e  w i th  a  s i n g l e  i n t e r f a c e ,  s c a n n in g  
c i r c u i t  an d  r a d i a l  p o s i t i o n  lo o k u p  t a b l e  (w h ich  
g i v e s  a v a lu e  f o r  r a d i a l  p o s i t i o n  o n c e  x and  y 
d i s p l a c e m e n ts  r e l a t i v e  t o  t h e  c i r c l e  c e n t r e  a r e  
kn o w n ). On th e  o t h e r  h a n d ,  a n y  s u b s e t  o f  th e s e  
f u n c t i o n s  t h a t  i s  n o t  im p le m e n te d  i n  h a rd w a re  
e n g e n d e r s  a  t im e  o v e rh e a d  i n  s o f t w a r e .  A f u l l  
a n a l y s i s  o f  th e  p ro b le m  w ou ld  r e q u i r e  a l a r g e  
num ber o f  f u n c t i o n a l  p a r t i t i o n s  t o  be  exam ined 
i n  o r d e r  t o  f i n d  t h e  op tim um  s y s te m  c o n f ig ­
u r a t i o n .  H ow ever, t h i s  e x h a u s t iv e  s e a r c h  
p r o c e d u r e  n e ed  n o t  be  p e r fo rm e d  i n  t h i s
i n s t a n c e  s i n c e  t h e  t im e  o v e rh e a d  i s  much
g r e a t e r  t h a n  th e  sum o f  t h e  s o f tw a r e  t im e s  f o r  
f u n c t i o n s  6 - 1 0 .  T h is  m eans t h a t  o n c e  th e  
i n i t i a l  c o s t  o v e rh e a d  h a s  b e en  p a id  i t  w i l l  
c l e a r l y  b e  o p tim a l*  t o  im p le m e n t a l l  o f  th e s e  
f u n c t i o n s  i n  h a r d w a r e .  F o r  t h i s  r e a s o n  we 
g ro u p  f u n c t i o n s  6 -1 0  t o g e t h e r  i n  t h e  r e m a in d e r  
o f  t h i s  p a p e r .  T a b le  2 su m m arise s  th e
p o s i t i o n .

T a b le  2 show s t h a t  t h e  c o s t / t i m e  r a t i o s  
d i v i d e  th e m s e lv e s  i n t o  f o u r  m ain  c a t e g o r i e s :
(1 )  t h o s e  o f  th e  o r d e r  o f  1 £ /m s v d iich  a r e  
c l e a r l y  w o r th  im p le m e n t in g  i n  h a rd w a re ;
(2 )  t h o s e  b e tw ee n  ~ 5  £ /m s an d  25 £/m s w hich  
w i l l  a l s o  h a v e  t o  b e  im p le m e n te d  i n  h a rd w a re  t o  
g e t  a  r e a s o n a b l e  sp e e d  s y s te m ; (3 )  t h o s e  a ro u n d  
100 £ /m s w h ic h  i t  w o u ld  b e  w o r th  im p le m e n tin g  
i f  a  v e r y  much f a s t e r  s y s te m  w ere  n e e d e d ;  and
(4 )  t h o s e  ab o v e  1 0 0 0  £ /m s w h ic h  i t  would 
p r o b a b ly  n e v e r  be  e c o n o m ic a l  t o  im p lem en t i n  
h a rd w a re .  I f  o p t io n  1 w ere  c h o s e n ,  t h e  t o t a l  
c o s t  o f  t h e  s y s te m  w ou ld  b e  £9000  and  th e  
a lg o r i t h m  w ould r u n  i n  0 .7  s e c o n d s ;  i f  o p t io n  2 
w ere  u s e d ,  t h e  s y s te m  w ou ld  c o s t  £13700 and 
w ould  r u n  i n  0 .1  s e c o n d s ;  i f  o p t io n  3 w ere  
c h o s e n , t h e  sy s te m  w ou ld  c o s t  £23700  and  would 
r u n  i n  0 .0 0 2  s e c o n d s ,  w h e re a s  w i th  o p t io n  4 th e  
s y s te m  w ould  c o s t  £277 0 0  an d  w ould  r u n  i n  z e ro  
t im e  ( i n  t h e  c u r r e n t  a p p r o x im a t i o n ) .  H e re  we 
h a v e  assu m ed  t h a t  t h e  b a s e  c o s t  o f  co m p u te r 
p l u s  c a m e ra , f ra m e  s t o r e ,  b a c k p la n e ,  pow er 
s u p p ly ,  e t c  i s  som e £6000  an d  t h a t  t h i s  w i l l  
p e r m i t  t h e  a lg o r i t h m  t o  r u n  i n  ' '5 . 0  s e c o n d s  a s  
i n d i c a t e d  i n  T a b le  2 .

I n  t h e  ab o v e  a n a l y s i s  we assu m ed  t h a t  
t h o s e  f u n c t i o n s  im p le m e n te d  i n  e l e c t r o n i c  
h a rd w a re  r u n  i n  z e r o  t im e .  T h is  w i l l  n o t  be 
e n t i r e l y  v a l i d  i n  p r a c t i c e ,  an d  t h e  m ost 
s e r i o u s  e r r o r s  w i l l  b e  f o r  im ag e  n e ig h b o u rh o o d  
o p e r a t i o n s  -  p a r t i c u l a r l y  t h o s e  f o r  n e ig h ­
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b o u r h o o d s  o f  s i z e  3 x 3 . T a k in g  1 5 0  n s e c  a s  t h e  
f a s t e s t  t im e  f o r  p i x e l  a c c e s s  ( a s  w i t h  o u r  
i m p l e m e n t a t i o n  u s in g  th e  VME b u s ) ,  we s e e  t h a t  
a 3 x 3  n e ig h b o u rh o o d  o p e r a t i o n  i n  a 128x 1 2 8  
im a g e  t a k e s  some 25 m sec . W ith  s u i t a b l e  l o c a l  
s t o r a g e  t h i s  c o u ld  b e  re d u c e d  t o  " 8  m sec o r  
e v e n  t o  " 3  m se c . F o r  a 1x1 n e ig h b o u r h o o d ,  
p i x e l  a c c e s s  t im e s  w ould be  "3  m se c . N e x t ,  l e t  
u s  a s su m e  t h a t  t h e  a c t u a l  p r o c e s s i n g  i s  c a r r i e d  
o u t  b y  TTL c i r c u i t r y  i n  some t e n s  o f  n a n o ­
s e c o n d s  p e r  p i x e l  l o c a t i o n ;  t h e n  t h e  p r o c e s s i n g  
t im e  w i l l  b e  l e s s  t h a n  1 m se c . T hus q u i t e  
s t r a i g h t f o r w a r d  c i r c u i t r y  c o u ld  be  u s e d  t o  
im p le m e n t  e a c h  f u n c t i o n  i n  t im e s  a s  s h o r t  a s  
3 - 4  m s e c :  t h i s  g o e s  some way t o  j u s t i f y i n g ,  an d  
e x t e n d i n g ,  t h e  a p p r o x im a t io n  we m ade e a r l i e r .

He now i n t e r p r e t  o u r  f i n d i n g  t h a t  t h e  
c o s t / t i m e  r a t i o s  f a l l  i n t o  f o u r  m ain  
c a t e g o r i e s .  B r o a d ly ,  t h e  f i r s t  c a t e g o r y  
( c o s t / t i m e  T l  £ /m s) a r i s e s  f o r  im a g in g  
o p e r a t i o n s  i n  3x3 n e ig h b o u r h o o d s ,  w h ic h  a r e  
w e l l  w o r th  im p le m e n tin g  i n  h a r d w a r e .  T he 
s e c o n d  c a t e g o r y  ( c o s t / t i m e  i n  t h e  r a n g e  
5 t o  2 5  £ /m s )  a r i s e s  f o r  f a s t e r  im a g in g  
o p e r a t i o n s  i n  1x1 n e ig h b o u r h o o d s .  The t h i r d  
c a t e g o r y  a r i s e s  f o r  o n e - d im e n s io n a l  o p e r a t i o n s  
w h ic h  i n v o l v e  l e s s  p r o c e s s i n g ,  an d  c e r t a i n  
r a t h e r  t im e -c o n s u m in g  f l o a t i n g  p o i n t  
o p e r a t i o n s .  And t h e  f o u r t h  c a t e g o r y  i s  a 
g e n e r a l  d a t a  p r o c e s s in g  c a t e g o r y  w i th  
n o n - r e p e t i t i v e  o p e r a t i o n s  t h a t  r u n  s o  f a s t  th e y  
a r e  u n l i k e l y  t o  be w o r th  im p le m e n t in g  i n  
d e d i c a t e d  h a r d w a r e .  S p e c i f i c a l l y ,  f u n c t i o n s  
5 , 1 2 ,1 3 , 1 4  r e q u i r e  t e d i o u s  l o g i c  a n d /o r  
f l o a t i n g  p o i n t  a r i t h m e t i c ,  w h ich  m ean s t h a t  o n e  
i s  c o m p e t in g  w i th  th e  c o s t - e f f e c t i v e n e s s  o f  
m a s s - p r o d u c e d  CPUs i f  o n e  im p le m e n ts  th em  i n  
h a r d w a r e :  i n  g e n e r a l  i t  i s  n o t  w o r th  d o in g  
t h i s .

F u n c t io n  4 i s  a t  t h e  h i g h  end  o f  
c a t e g o r y  2 s i n c e  i t  i n v o lv e s  r e l a t i v e l y  few  
p i x e l s  a n d  i s  e s s e n t i a l l y  a o n e - d im e n s io n a l  
r a t h e r  t h a n  a n  im a g in g  o p e r a t i o n :  i n  a d d i t i o n ,  
i t s  c o s t  i s  r a t h e r  h ig h  b e c a u s e  i t  p e r fo r m s  
q u i t e  c o m p le x  a r i t h m e t i c .

5 .1  M ore r i g o r o u s  i n v e s t i g a t i o n  o f  h a r d w a r e -  
s o f t w a r e  t r a d e o f f s

We now a t t e m p t  a  m ore r i g o r o u s  a n a l y s i s  o f  t h e  
e f f e c t i v e n e s s  o f  im p le m e n tin g  t h e  v a r i o u s  
f u n c t i o n s  i n  h a rd w a re .  A c o m p le te  b re ak d o w n  o f  
t h e  o v e r a l l  c o s t / t i m e  r a t i o  s e q u e n c e  i s  g iv e n  
i n  T a b le  3 .  t  an d  c a r e  t h e  t im e s  a n d  c o s t s  o f  
t h e  f u n c t i o n s .  A ssum ing an  o v e r h e a d  c o s t  o f  
£ 6 0 0 0  ( s e e  a b o v e ) ,  T and  C a r e  t h e  o v e r a l l  
t im e s  a n d  c o s t s  r e s u l t i n g  from  im p le m e n t in g  i n  
h a r d w a r e  a l l  f u n c t i o n s  down t o  t h e  o n e  
i n d i c a t e d :  t h e  minimum v a lu e  o f  T i s  t a k e n  a s  
0 .0 3 0  s e c o n d s  an d  i s  b a se d  on r e a l i s t i c  v a lu e s  
f o r  t h e  im a g in g  and  1-D  o p e r a t i o n s ,  a s  
d i s c u s s e d  e a r l i e r .  L o o k in g  a t  t h e  C*T p r o d u c t  
s h o u ld  now g i v e  a n  i n d i c a t i o n  o f  t h e  o p t im a l  
t r a d e o f f  b e tw e e n  h a rd w a re  a n d  s o f t w a r e :  t h i s  
o c c u r s  f o r  13  f u n c t i o n s  im p le m e n te d  i n  
h a r d w a r e .

I t  i s  i m p o r t a n t  t o  r e a l i s e  t h a t  m in im is in g  
t h e  C*T p r o d u c t  o n ly  g iv e s  a g e n e r a l  i n d i c a t i o n  
o f  t h e  r e q u i r e d  h a r d w a r e - s o f tw a r e  t r a d e o f f .  
A l o t  d e p e n d s  o n  t h e  o r i g i n a l  s p e c i f i c a t i o n  f o r  
t h e  i n s p e c t i o n  sy s te m : i t  m ig h t  b e  t h a t  t h e  
m a in  a im  i s  t o  m eet a c e r t a i n  c o s t  o r  sp e e d

r a t h e r  t h a n  t o  p ro d u c e  a  'b a r g a i n  p a c k a g e ' t h a t  
m ig h t  d o  w e l l  i n  t h e  m a rk e t  p l a c e .  I n  o u r  
w o rk , we h av e  aim ed p a r t i c u l a r l y  a t  f o o d p r o d u c t  
i n s p e c t i o n ,  w h ere  I t  seem ed  t o  b e  v i t a l  t o  
m in im is e  c o s t s  w h ile  k e e p in g  s p e e d s  m o d e r a te ly  
h ig h  ( 5 ) .  F o r  t h i s  r e a s o n ,  we a im ed  a t  a n  
o v e r a l l  c o s t  o f  l e s s  th a n  £ 1 0 0 0 0 . By im plem ­
e n t i n g  f u n c t i o n s  1 ,3 ,6 - 1 1  i n  h a r d w a r e ,  we fo u n d  
we c o u ld  g e t  w i th in  a f a c t o r  3 .6  o f  t h e  o p t im a l  
t r a d e o f f  (C*T p r o d u c t ) .  H o w ev er, a n o th e r  
i m p o r t a n t  f a c t o r  a r o s e  i n  t h i s  a n a l y s i s :  t h a t  
was t h e  d e c l i n i n g  c o s t  o f  f a s t e r  CPUs. T a b le  4 
show s t h e  same C*T c a l c u l a t i o n  f o r  a n  L S I - 1 1 / 73 
h o s t  p r o c e s s o r  r e p l a c i n g  a n  L S I - 1 1 / 2 3 .  I n  t h i s  
c a s e  t h e  optim um  t r a d e o f f  a g a i n  o c c u r s  f o r  
13 f u n c t i o n s  im p lem en ted  i n  h a r d w a r e .  H ow ever, 
o u r  co m p ro m ise  o f  im p le m e n t in g  o n ly  f u n c t i o n s
1 . 3 .6 - 1 1  i n  h a rd w a re  i s  now w i t h i n  a  f a c t o r  1 .8  
o f  t h e  o p t im a l  t r a d e o f f .  I t  seem s f a i r  t o  
a ssu m e t h a t  t h e s e  f a c t o r s  w i l l  becom e e v e n  m ore 
a t t r a c t i v e  w i th  f u t u r e  CPUs.

5 .2  F u r t h e r  f a c t o r s  i n  h a rd w a re  d e s i g n

Some f u r t h e r  im provem en t i n  p e r fo r m a n c e  was 
o b t a i n e d  b y  m aking u s e  o f  t h e  f a c t  t h a t  t h e  
h o s t  p r o c e s s o r  and  th e  d e d i c a t e d  h a rd w a re  c a n  
o p e r a t e  c o n c u r r e n t l y .  ( I d e a l l y  we w ould  g a in  a 
f a c t o r  tw o i n  sp eed  by  u s in g  tw o p r o c e s s o r s ,  
b u t  i t  i s  c l e a r  t h a t  o u r  d e s i g n  c r i t e r i a  
i n v o lv e  m a n d a to ry  p a r t i t i o n s  i n  t h e  a lg o r i t h m  
w h ich  a r e  i n im i c a l  t o  s u c h  a l a r g e  g a in  i n  
s p e e d . )  I n  p a r t i c u l a r ,  we fo u n d  t h a t  
f u n c t i o n  2 c a n  ru n  i n  t h e  h o s t  CPU w h i le  
f u n c t i o n  3 r u n s  i n  h a r d w a r e ,  and  f u n c t i o n  13 
c a n  r u n  o n  th e  CPU w h i le  f u n c t i o n s  6 -1 1  r u n  
c o n c u r r e n t l y  i n  h a rd w a re .  F i g u r e  1 g i v e s  an  
e x e c u t i o n  map o f  o u r  im p le m e n ta t io n ,  sh o w in g  
t h a t  o u r  f i n a l  a l l o c a t i o n  o f  f u n c t i o n a l i t y  t o  
h a rd w a re  and  s o f tw a r e  i s  a b l e  t o  make 
s i g n i f i c a n t  g a in s  i n  e f f i c i e n c y  and  s p e e d .  
T h is  f u r t h e r  j u s t i f i e s  im p le m e n t in g  r e l a t i v e l y  
few  f u n c t i o n s  i n  h a rd w a re .

I n  o u r  im p le m e n ta t io n  o f  A lg o r i th m  B , we 
h a v e  a c h ie v e d  25 m sec f o r  f u n c t i o n  3 ( e d g e  
d e t e c t i o n ) ,  and 10 m sec f o r  f u n c t i o n s  6 - 1 1 :  we
a r e  c u r r e n t l y  u p g ra d in g  t h e s e  t o  r o u g h ly  d o u b le  
t h e  s p e e d s .  A t t h a t  s t a g e  t h e  t im in g s  w i l l  be 
a s  i n d i c a t e d  i n  F ig u re  1 ,  an d  a t  a t o t a l  c o s t  
o f  £12500  ( u s in g  an  L S I - 1 1 /7 3  w i t h  f u n c t i o n s
1 . 3 .6 - 1 1  i n  h a rd w a re )  we w i l l  h a v e  a  s y s te m  
c a p a b le  o f  i n s p e c t i n g  1 1 -1 2  p r o d u c t s / s e c o n d  
u s in g  A lg o r i th m  B.

5 .3  G e n e r a l i t y  o f  th e  f u n c t i o n s  im p le m e n te d  i n  
h a rd w a re

A lg o r i th m  B was p a r t i t i o n e d  i n t o  s e c t i o n s  t h a t  
c o r r e s p o n d  t o  a s i g n i f i c a n t  d e g r e e  o f  
g e n e r a l i t y .  F i r s t ,  ed g e  d e t e c t i o n  i t s e l f  i s  a 
h i g h l y  g e n e r a l  im age a n a l y s i s  f u n c t i o n  ( 1 1 ) ;  
s e c o n d ,  t h e  Hough t r a n s f o r m  p r o c e d u r e  u s e d  f o r  
o b j e c t  l o c a t i o n  i s  g e n e r a l i s a b l e  t o  a  v a r i e t y  
o f  s h a p e s  ( 4 ) ;  t h i r d ,  t h e  r a d i a l  h i s to g r a m  
a p p r o a c h  h a s  t h e  p o t e n t i a l  f o r  b e in g  u s e d  e v e n  
i n  c a s e s  w h ere  c y l i n d r i c a l  sy m m etry  d o e s  n o t  
e x i s t ,  s i n c e  i t  c an  b e  u s e d  t o  p r o v id e  a 
r o t a t i o n a l l y  i n v a r i a n t  ' s i g n a t u r e '  c h a r a c t e r ­
i s t i c  o f  o n e  o r  o t h e r  p a r t  o f  a n  o b j e c t  i n  t h e  
r e g i o n  o f  a n  e a s i l y  l o c a t a b l e  f e a t u r e .  
F i n a l l y ,  c e r t a i n  t h r e s h o l d i n g  o p e r a t i o n s  
( e . g .  c o u n t in g  t h e  num ber o f  p i x e l s  d a r k e r  o r  
l i g h t e r  th a n  c e r t a i n  t h r e s h o l d  v a lu e s )  a r e  
e x c e p t i o n a l l y  e a s y  t o  im p le m e n t y e t  g e n e r a l l y
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u s e f u l  f o r  o b j e c t  s c r u t i n y .

C l e a r l y ,  f u n c t i o n  g e n e r a l i t y  i s  a  c r u c i a l  
f a c t o r  w h ic h  w i l l  f r e q u e n t l y  o v e r r i d e  t h e  C*T 
c r i t e r i o n  i n  d e c i d i n g  o n  t h e  p r i o r i t i e s  f o r  
b u i l d i n g  d e d i c a t e d  h a rd w a re .  He h a v e  k e p t  t h i s  
i n  M ind w h i le  d e c id in g  w h ic h  f u n c t i o n s  t o  
im p le m e n t i n  h a rd w a re  i n  o u r  v i s u a l  i n s p e c t i o n  
w o rk .

6 CONCLUSION

T h i s  p a p e r  h a s  p r e s e n t e d  a n  a lg o r i t h m  f o r  t h e  
r a p i d  i n s p e c t i o n  o f  s m a ll  p r o d u c t s  s u c h  a s  
b i s c u i t s .  I t  h a s  a n a ly s e d  how t h i s  a lg o r i t h m  
may o p t i m a l l y  be  p a r t i t i o n e d  b e tw e e n  d e d ic a t e d  
h a r d w a r e  an d  s o f t w a r e .  D e t a i l e d  s p e c i f i c a t i o n s  
s u c h  a s  s t r i c t  sp e e d  o r  c o s t  l i m i t s  h a v e  b e en  
s e e n  t o  c o n s t r a i n  t h e  b a s i c  o p t i m i s a t i o n
p r o c e d u r e ,  an d  f u n c t i o n  g e n e r a l i t y  i s  a l s o  a 
c r i t i c a l  f a c t o r .  I n  a d d i t i o n ,  i t  h a s  b e en  
f o u n d  d i f f i c u l t  t o  d e c id e  s y s t e m a t i c a l l y  t h e  
b e s t  w ays o f  i n c o r p o r a t i n g  c o n c u r r e n c y  i n t o  t h e  
d e s i g n  when p r o c e s s o r s  t a k e  r a d i c a l l y  d i f f e r e n t  
f o r m s :  h o w e v e r , we h a v e  b e e n  a b l e  t o  d e s i g n  an  
i n s p e c t i o n  s y s te m  t h a t  m akes e f f i c i e n t  u s e  b o th  
o f  t h e  h o s t  CPU and  o f  a l i m i t e d  nu m b er o f  
h a r d w a r e  p r o c e s s o r s .  The a p p r o a c h  we h av e  
a d o p te d  seem s som ew hat u n u s u a l  i n  t h a t  we h a v e  
p r o v e d  i t  b e s t  t o  r e t a i n  u s e  o f  t h e  h o s t  CPU 
f o r  a p r o p o r t i o n  o f  t h e  p r o c e s s i n g  r a t h e r  th a n  
t o  s e t  a b o u t  b u i ld i n g  e v e r y t h in g  i n  d e d ic a t e d  
h a r d w a r e :  s p e c i f i c a l l y ,  t h e  h o s t  CPU i s  n o t
m e r e ly  u s e d  f o r  c o n t r o l  and  g e n e r a l  d a t a  
l o g g i n g ,  b u t  i s  u s e d  t o  t a k e  an  i n t e g r a l  r o l e  
i n  t h e  m ain  im ag e  a n a l y s i s  t a s k .  U l t i m a t e l y ,  
t h e  a im  o f  o u r  w ork i s  t o  d e v e lo p  t h e  
m e th o d o lo g y  o f  d i g i t a l  h a rd w a re  d e s i g n  f o r  
i n d u s t r i a l  i n s p e c t i o n  a p p l i c a t i o n s ,  a n d  a t  t h e  
sam e t im e  t o  a r r i v e  a t  o p t im a l  d e s i g n s  r a t h e r  
t h a n  o n e s  t h a t  c o n ta i n  a r b i t r a r y  s e t s  o f  ad  h o c  
p r o c e s s o r s .
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Table 1 Breakdown of algorithm B

c / t
f u n c t i o n  d e s c r i p t i o n t im e c o s t r a t i o

( s e c ) (£ ) (£ /m s )

1 . a c q u i r e  im age 1x1 _ 1000 -

2 . c l e a r  p a r a m e te r  s p a c e 1x1 0 .0 1 7 200 1 1 .8
3 . f i n d  e d g e  p o i n t s 3x3 4 .2 6 5 3000 0 .7
4 . a c c u m u la te  p o i n t s  i n  p a r a m e t e r  s p a c e 1x1 0 .0 8 6 2000 2 3 .3
5 . f i n d  a v e r a g e d  c e n t r e - 0 .0 2 0 2000 1 0 0 .0
6 . f i n d  a r e a  o f  p r o d u c t 1x1 0 .0 1 1 100 9 .1
7 . f i n d  l i g h t  a r e a  (n o  c h o c o l a t e  c o v e r ) 1x1 0 .0 1 9 200 1 0 .5
8 . f i n d  d a r k  a r e a  ( s l a n t  o n  p r o d u c t ) 1x1 0 .0 2 1 200 9 .5
9 . com pute  r a d i a l  i n t e n s i t y  h i s t o g r a m 1x1 0 .0 0 7 400 5 7 .1
1 0 . com p u te  r a d i a l  h i s to g r a m  c o r r e l a t i o n 1-D 0 .0 1 3 400 3 0 .8
1 1 . o v e r h e a d s  f o r  f u n c t i o n s  6 -1 0 - 0 .4 1 5 1200 2 .9
1 2 . c a l c u l a t e  p r o d u c t  r a d i u s 1-D 0 .0 4 7 4000 8 5 .1
1 3 . t r a c k  p a r a m e te r s  an d  lo g - 0 .0 3 7 4000 1 0 8 .1
1 4 . d e c id e  i f  r e j e c t i o n  i s  w a r r a n t e d 0 .0 0 2 4000 2 0 0 0 .0

t im e  f o r  w h o le  a lg o r i t h m 4 .9 6 0

Table 2 Revised breakdown of algorithm B

c / t
f u n c t i o n  d e s c r i p t i o n t im e c o s t r a t i o

( s e c ) (£ ) (£ /m s )

1 . a c q u i r e  im age 1x1 - 1000 -

2 . c l e a r  p a r a m e te r  s p a c e 1x1 0 .0 1 7 200 1 1 .8
3 . f i n d  e d g e  p o i n t s 3x3 4 .2 6 5 3000 0 .7
4 . a c c u m u la te  p o i n t s  i n  p a r a m e te r  s p a c e 1x1 0 .0 8 6 2000 2 3 .3
5 . f i n d  a v e ra g e d  c e n t r e - 0 .0 2 0 2000 1 0 0 .0
6 - 1 1 . s e t  o f  f u n c t i o n s  w i th  sam e o v e r h e a d 1x1 0 .4 8 6 2500 5 .1
1 2 . c a l c u l a t e  p r o d u c t  r a d i u s 1 -D 0 .0 4 7 4000 8 5 .1
1 3 . t r a c k  p a r a m e te r s  and  lo g - 0 .0 3 7 4000 1 0 8 .1
1 4 . d e c id e  i f  r e j e c t i o n  i s  w a r r a n t e d

■

0 .0 0 2 4000 2 0 0 0 .0

tim e  f o r  w h o le  a lg o r i t h m 4 .9 6 0

Table 3 Speed-cost trade-off figures for LSI-11/23 based system

o r d e r f u n c t i o n t c T C C*T

( s e c ) (£ ) ( s e c ) ( £ ) ( £ - s e c )

0 6000 4 .9 9 0 6000 29940
1 3 4 .2 6 5 3000 0 .7 2 5 9000 6530
2 6 -1 1 0 .4 8 6 2500 0 .2 3 9 11500 2750
3 2 0 .0 1 7 200 0 .2 2 2 1 1 7 0 0 2600
4 4 0 .0 8 6 2000 0 .1 3 6 13 7 0 0 1860
5 12 0 .0 4 7 40 0 0 0 .0 8 9 17 700 1580
6 5 0 .0 2 0 2 000 0 .0 6 9 19700 1360
7 13 0 .0 3 7 4 0 0 0 0 .0 3 2 23700 760
8 14 0 .0 0 2 4000 0 .0 3 0 2 7 700 830
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Table 4 S peed-cost trade-off figures for LSI-11/73 based system
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o r d e r f u n c t i o n t c T C C*T g a in

( s e c ) (£ ) ( s e c ) (£ ) ( £ - s e c )

0 - - 7000 2 .1 5 4 7000 15080 1 .9 9
1 3 1 .8 3 5 3000 0 .3 1 9 1 0 0 0 0 3190 2 .0 5
2 6 -1 1 0 .2 0 7 2500 0 .1 1 2 1 2 500 1400 1 .9 6
3 2 0 .0 0 6 200 0 .1 0 6 1 2 700 1350 1 .9 3
4 4 0 .0 3 5 2000 0 .0 7 1 14700 1040 1 .7 9
5 12 0 .0 1 7 4000 0 .0 5 4 18700 1010 1 .5 6
6 13 0 .0 1 6 4000 0 .0 3 8 22700 860 1 .5 8
7 5 0 .0 0 7 2000 0 .0 3 1 24700 770 0 .9 8
8 14 0 .0 0 1 4000 0 .0 3 0 28700 860 0 .9 7

T he l a s t  co lum n i n  t h i s  t a b l e  show s t h e  o v e r a l l  g a in  i n  sp e e d  
r e l a t i v e  t o  t h e  c o r r e s p o n d in g  L S I -1 1 /2 3  o p t i o n  i n  T a b le  3 .

12 3 5 7 1 7 16 1 m s e c

Fig 1 Execution map of algorithm B showing its implementation, making use of:

(a) pipelining of image acquisition and algorithm execution;
(b) simultaneous execution in hardware and software;
(c) sharing of scanning overhead and data I/O for functions six to  ten.
Also indicated are the execution times of individual processes totalling 88 ms

□  operations involving host CPU 
O  operations executed in dedicated hardware
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