
NEW X
COLLEGE %]

_ l ib r a r y

ASPECTS OF LOCAL LINEAR COMPLEXITY

BY

GLYN DAVID CARTER

Thesis submitted to the University
of London for the degree of Doctor
of Philosophy, 1989.

Royal Holloway and Bedford New College,
University of London.

— 1 —

ProQuest Number: 10096244

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest.

ProQuest 10096244

Published by ProQuest LLC(2016). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code.

Microform Edition © ProQuest LLC.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

ABSTRACT

The concept of linear complexity is important in
cryptography, and in particular in the study of stream
ciphers. There are two varieties of linear complexity;
global linear complexity, which applies to infinite
periodic binary seguences, and local linear complexity,
which applies to binary sequences of finite length.
This thesis is concerned primarily with the latter.

The local linear complexity of a finite binary sequence
can be computed using the Berlekamp-Massey algorithm.
Chapter 2 deals with a number of aspects of this
algorithm.

The Berlekamp-Massey algorithm also yields the linear
complexity profile of a binary sequence. Linear
complexity profiles are discussed in Chapter 3, and a
number of associated enumeration results are obtained.

In Chapter 4 it is shown that if the bits of a binary
sequence satisfy certain conditions, expressible as a
set of linear equations, then the linear complexity
profile of the sequence will be restricted in some way.
These restrictions take the form of conditions on the
heights of the jumps in the profile.

— 2 —

The final chapter deals with the randomness testing of
binary sequences. Statistical tests for randomness
based on linear complexity profiles are derived, and it
is demonstrated how these tests can identify the
non-randomness in the sequences discussed in the
preceding chapter.

— 3 —

CONTENTS

ABSTRACT

CONTENTS

ACKNOWLEDGEMENTS

1. AN INTRODUCTION TO LINEAR COMPLEXITY 8

1.1. Introduction 9
1.2. Stream ciphers 10
1.3. Linear feedback shift registers 2 0
1.4. Global linear complexity 30
1.5. Local linear complexity 42

2. THE BERLEKAMP-MASSEY ALGORITHM 47

2.1. Introduction 48
2.2. Some preliminary results 50
2.3. The Berlekamp-Massey algorithm 54
2.4. Proof of the validity of the algorithm 60
2.5. The multiplicity of the connection

polynomial 66
2.6. Extended form of the algorithm 71

— 4 —

3. LINEAR COMPLEXITY PROFILES 84

3.1. Introduction 85
3.2. Examples of linear complexity profiles 87
3.3. Properties of linear complexity profiles 94
3.4. Some enumeration results 98

4. SOME CONDITIONS ON THE LINEAR COMPLEXITY
PROFILES OF CERTAIN BINARY SEQUENCES 112

4.1. Introduction 113
4.2. Two fundamental lemmas 115
4.3. The perfect profile characterization

theorem and an extension 125
4.4. Sequences which satisfy a different set

of linear equations 141
4.5. A more general theory 150

5. STATISTICAL TESTS FOR RANDOMNESS 171

5.1. Introduction 172
5.2. Some well-known statistical tests 175
5.3. The number of sequences with a given

number of jumps in their linear complexity
profiles 180

- 5 -

5.4. The mean and variance of the number of
jumps 189

5.5. A statistical test based on the number of
jumps 2 00

5.6. Statistical tests based on the
distribution of jump heights 2 08

REFERENCES 219

- 6 -

ACKNOWLEDGEMENTS

I would like to thank my supervisor, Fred
Piper, for all his advice and guidance in the
past few years. Thanks also to Chris Mitchell
and Tony Bromfield, both for their help and
ideas in the past and for their comments on
earlier versions of this thesis.

I am also grateful to Steve Babbage for his
careful proof-reading of and helpful comments
on the manuscript. Finally, I would like to
thank Racal Comsec Ltd. for their support over
the past four years.

— 7 —

CHAPTER 1

AN INTRODUCTION TO
LINEAR COMPLEXITY

- 8 -

1.1. INTRODUCTION

The title of this thesis is "Aspects of Local Linear
Complexity" and, as might be expected, local linear
complexity is the central theme of the work. This first
chapter introduces the reader to the concept of linear
complexity, where "linear complexity" includes both
"global linear complexity" and "local linear
complexity". Note from the outset that global linear
complexity applies to infinite periodic binary
sequences, while local linear complexity relates to
binary sequences of finite length.

This chapter begins with some basic definitions and a
brief discussion on stream ciphers, before moving on to
the subject of linear feedback shift registers. The
concept of global linear complexity is then defined and
discussed, and the chapter concludes with an
introduction to the central theme of this thesis, local
linear complexity.

— 9 —

1.2. STREAM CIPHERS

A cipher system provides a mechanism by which
information can be disguised in such a way that it is
intelligible to an authorised person but not to an
unauthorised person. The information which is to be
disguised is known as the plaintext (or message) , the
process of disguising the plaintext is known as
enciphering, and the enciphered plaintext (i.e. the
disguised information) is known as the ciphertext (or
cryptogram).

The enciphering process is controlled by information
known as a key. To encipher the plaintext, the
plaintext and the key are input to an algorithm; the
output from this algorithm is the ciphertext. The
(enciphering) algorithm is the set of rules used to
encipher the plaintext, while the (enciphering) key
determines the exact transformation used. In other
words, the (enciphering) key selects the enciphering
transformation from the set of possibilities.

The process of retrieving the the plaintext from the
ciphertext is known as deciphering, and is also
controlled'by a key (the deciphering key), which will
often be the same as the enciphering key. Knowledge of
the deciphering key allows the plaintext to be obtained

— 10 —

from the ciphertext, and thus this key must be kept
secret from unauthorised persons if the security of the
cipher system is to be maintained.

enciphering
key

deciphering
key

plaintext enciphering
algorithm

ciphertext
 > deciphering

algorithm
plaintext

>

Figure 1.2.1. A cipher system

In this thesis we will be concerned with symmetric (or
conventional) cipher systems, in which the deciphering
key is the same as (or can be easily derived from) the
enciphering key. Thus, in a symmetric cipher system the
enciphering key as well as the deciphering key must be
kept secret. A cipher system in which it is
computationally infeasible to compute the deciphering
key from the enciphering key, so that the enciphering
key can be made public, is known as an asymmetric (or
public key) cipher system.

One example of a symmetric cipher system is the one-time
pad shown in Figure 1.2.2. In the one-time pad a
message consists of at most n characters. To encipher a
message m^m^. . a random sequence of characters

- 11 -

kQk^...k^_^ (the key) from the same character set is
mixed, character by character, with the message to
produce the cryptogram * * * ̂ n-1 ’ decipher the
cryptogram the same random sequence kQk^...k^_^ is mixed
with * *^n-l' again on a character by character
basis but this time using the inverse mixing operation.

random

^0^1 •••%n-l
MIXER

message
0 1 n-1

Figure 1.2.2. The

cryptogram

In a common form of the one-time pad, the message, the
key and the cryptogram are all binary sequences, while
both mixing operations are modulo 2 addition. Thus, in
this system

Ci = mi + k^ (mod 2) for i = 0,1,...,n-1.

The one-time pad is theoretically unbreakable in the
sense that a cryptanalyst (i.e. someone who is trying to
break the system) obtains no information from
intercepted ciphertext (see, for example, [2]).
However, using the system often presents severe
practical problems, due to the fact that the amount of

— 12 —

key material needed is at least as large as the amount
of plaintext to be enciphered. Nevertheless, the
one-time pad is still used in certain situations where
the ultimate in security is required.

In applications where the one-time pad is either
unnecessary, impractical or both, its principles are
often imitated by using what is known as a stream
cipher. In a stream cipher system a key ^o^l’*‘̂ m-l
input to a sequence generator, which uses the key as a
seed for the generation of a sequence of characters
^0^1^2**‘ known as the enciphering sequence. The
plaintext m^m^m^... is enciphered by being mixed,
character by character, with the enciphering sequence.
As in the one-time pad, decipherment proceeds in the
same way as encipherment except that the inverse mixing
operation is used. The sequence generator is often
referred to as the kevstream generator, a term which
relates to the fact that the pseudo-random enciphering
sequence (or keystream) used in a stream cipher system
is emulating the random enciphering sequence (or key)
used in the one-time pad.

- 13 -

key

enciphering

sequence ^0^1^2’••
generator

MIXER

plaintext

^ ciphertext

Figure 1.2.3. A stream cipher

In this thesis we will deal only with stream ciphers in
which the plaintext, the ciphertext and the enciphering
sequence are all binary sequences, and in which the
mixing operation, both for enciphering and deciphering,
is modulo 2 addition. A large proportion of the stream
ciphers in use today are of this form, and some authors,
when defining stream ciphers, do not mention those which
use other character sets. Henceforth, when mention is
made of stream ciphers they will by assumption use
binary sequences and modulo 2 addition as described
above.

— 14 —

In a stream cipher, if m^m^mg... is the plaintext,
^0^1^2**‘ the ciphertext and s^s^Sg... the enciphering
sequence (m^,c^,s^ = 0 or 1 for i = 0,1,2,...), then

Cf = mf + s^ (mod 2) for i = 0,1,2,....
We will henceforth omit the "(mod 2)" and write

Ci = mi + s^ for i = 0,1,2,....

More generally, whenever in this thesis we are summing a
number of bits b^,b2 ,...,b^ the sum will also be a bit,
and so we will often write b^+ b 2 + ... + b^ instead of
bi+ b 2+ ... + b^ (mod 2).

One important property of stream ciphers is that they do
not propagate errors. In other words, if a single
ciphertext bit is received in error, this will cause
only one bit of recovered plaintext to be incorrect.
This property is particularly important when the
ciphertext is being transmitted over a poor quality
channel, as in this situation any error propagation
would increase the (already high) bit error rate and
thus probably reduce the effectiveness of the system.

When designing a cipher system it is important to
consider the knowledge and capabilities of a
cryptanalyst trying to attack the system. It has become
customary to assume that such a cryptanalyst has the
following :-

— 15 —

(i) A complete knowledge of the cipher system
(ii) A considerable amount of ciphertext
(iii) The plaintext corresponding to a certain

amount of ciphertext.
These assumptions are often referred to as the worst
case conditions. The exact definitons of "considerable"
and "certain" will depend on the situation under
consideration.

Under the worst case conditions given above, a
cryptanalyst trying to attack a stream cipher will know
the enciphering and deciphering algorithms (i.e. he will
have a complete knowledge of the sequence generator) and
will know part of the enciphering sequence (since he
will have the plaintext corresponding to a certain
amount of ciphertext). Thus it is important that
knowledge of a section of the enciphering sequence does
not enable a cryptanalyst to determine the entire
sequence (or the key, which would allow the entire
sequence to be generated).

In most practical stream ciphers the enciphering
sequence will be periodic. An infinite binary sequence
^0^1^2’’’ is said to be periodic if there exists an
integer p > 0 such that s^^^ = s^ for i = 0,1,2,..., and
the least such value of p is called the period of the

- 16 -

sequence. Any subsequence of the form s^s^^^...s^^p_^
for some integer k > 0 is called a cycle of s^s^s^.../
and SgS^...Sp_^ is called the generating cycle.

If a cryptanalyst obtains p consecutive bits from an
enciphering sequence of period p then he will be able to
construct the entire sequence. Thus, it is essential
for the security of a stream cipher that the enciphering
sequence has a large period. As an absolute minimum,
this period should be at least as long as any message
which will be enciphered. However, a large period does
not ensure that the entire enciphering sequence cannot
be obtained by a cryptanalyst from a relatively small
section of the sequence. We will return to this subject
in the subsequent sections of this chapter.

A further requirement of an enciphering sequence is that
it should "appear to be" random. The aim of this
requirement is two-fold; firstly, to ensure that any
statistical properties of the plaintext are not
reflected in the ciphertext, and secondly, to prevent a
cryptanalyst who knows a section of the enciphering
sequence from successfully predicting subsequent bits of
it. No infinite sequence generated by a sequence
generator using a finite key can be truly random; the
best that can be hoped for is that any subsequence of
length less than or equal to the period should be

- 17 -

"indistinguishable" from a random sequence of the same
length. Such a sequence is loosely termed a
pseudo-random sequence.

One possible definition of a pseudo-random binary
sequence was suggested by Golomb [7]. He defines a
PN-seauence ("pseudo-noise" sequence) to be a binary
sequence of period p which satisfies the following three
randomness postulates :-

(i) The number of ones and the number of zeros in
a cycle of the sequence differ by no more
than 1.

(ii) In a cycle of the sequence, half the runs have
length 1, a quarter have length 2, an eighth
have length 3, and in general, for any k for
which there are at least 2^^^ runs in a cycle,
1 k(—) of the runs have length k. Moreover, for

each of these lengths there are equally many
runs of ones and zeros.
(A run of length r is a string of r identical
bits which is both preceded and succeeded by
the opposite bit)

(iii) The sequence has a two-valued autocorrelation
function.
(The autocorrelation function C(r) of a binary
sequence s^s^s^... of period p is defined by

C(r) Alrl_=_DiTl,
where A(r) is the number of bit positions in

- 18 -

which SQS^...Sp_^ and SYSr+l'''Sr+p-l agree,
and D(r) is the number of positions in which
they disagree)

We will return to Golomb's postulates in Section 1.3.

The above randomness postulates apply to a complete
cycle of an enciphering sequence. Indeed, in many cases
the only theoretical results that can be proved about
the randomness properties of the output from a sequence
generator will be concerned with "global" randomness
properties (i.e. properties of an entire enciphering
sequence). However, in most stream cipher systems a
complete cycle of an enciphering sequence will never be
used. Thus, although the global randomness properties
should not be overlooked, they are probably of less
importance than the "local" randomness properties of the
sequence (i.e. properties of shorter subsequences of the
sequence). Often the only way to test the local
randomness of an enciphering sequence is by applying
statistical tests to sections of the sequence. The
statistical testing of binary sequences will be dealt
with in more detail in Chapter 5.

- 19 -

1.3. LINEAR FEEDBACK SHIFT REGISTERS

A device often used in the generation of binary
sequences is the linear feedback shift register. In
this section we discuss linear feedback shift registers
and the properties of the sequences which they generate.
We begin by giving a more general definition of a shift
register :-

An n-staae shift register consists of n storage elements
or stages . . . , which are connected in series.
The contents of these stages at a given time t is known
as the state of the register and is denoted by
Sq (t),s^(t),...,s^_^(t). Periodically, the contents of
the register are shifted so that the contents of are
transferred into for i = 1,2,...,n-1. At the same
time, the new contents of is formed by combining
the old contents of Sq ,S^,...S^_^ using a feedback
function f. In other words.

Si+i(t) (i = 0,1,...,n-2)
f (SgCt) ,s^(t) ,...) (i = n-1)

Figure 1.3.1 below shows such a shift register. Note
that, in the general case shown, an input is modulo 2
added to the result of the feedback function before it
enters S^_^. However, in this thesis we will always
take this input to be all zeros, and so we will omit it

— 2 0 —

in future. The output sequence generated by the
register is the infinite binary sequence SgS^Sg...,
where s^ = s^ft) for t = 0,1,2,.... The state of the
register S q (0) , s ^ (0) , — time 0 is known as
the initial state of the register.

I—<— inputoutput < < —< < — *-<-

feedback function f

So s. n-1

Figure 1.3.1. An n-staoe shift register

In a linear feedback shift register or LFSR the feedback
function f is a linear function. If we denote the state
of the register by SQ,s^,...,s^_^, then f can be written
in the form f(s^,s^,...,s^_^) = c^s^ + c^s^ + ...
... + c^_^s^_^, where c^ = 0 or 1 for i = 0,1,...,n-1
and the additions (as always in the case of bits) are
modulo 2. The constants c_,c_,...,c ̂ are called the0' 1' ' n-1
feedback coefficients.

- 21 -

Figure 1.3.2 below shows an n-stage linear feedback
shift register. The feedback coefficients
CQ,c^,...,c^_^ are represented by switches; if c^ = 1
then the corresponding switch is closed, while if c^ = 0
then the switch is open. Note that the ”©" symbol
indicates modulo 2 addition.

n-1h-2

output < — <̂- << < < —

^n-2 ^n-1

Figure 1.3.2. A linear feedback shift register

Any linear feedback shift register can be uniquely
described by what is known as its characteristic
polynomial. The characteristic polynomial f(x) of the
n-stage LFSR with feedback coefficients c^,c^...,c^_^ is
defined by

f(x) := c_ + c-x + c_x^ + ... + -x^ ̂+ x^.' ' 0 1 2 n-1

— 22 —

Example 1.3.1.

As an example of a linear feedback shift register,
consider the 4-stage LFSR with characteristic polynomial
1 + X + x^, as illustrated below :-

— > — ()— ----------------- >

- 4V*

If this register was to be loaded with the initial state
1101 (i.e. Sq(0) = 1, s^(0) = 1, SgfO) = 0, 2^ (0) = 1)
then the sequence of states would be as follows : -

t=0 1101
t=l 1010
t=2 0101
t=3 1011
t=4 0111
t=5 1111

t=6 1110
t=7 1100
t=8 1000
t=9 0001
t=10 0010
t=ll 0100

t=12 1001
t=13 0011
t=14 0110
t=15 1101
t=16 1010

etc.
and the output sequence generated would be
11010111100010011---

In the case of a linear feedback shift register, the
successive states of the register are derived from the
initial state using the following relationships :-

n-1
Sn-l(t+l) = I Ci=i(t)

i=0 (1.3.1)
s%(t+l) = sk+1 (t) (k — 0,1,...,n—2)

- 23 -

Hence it can be seen that the output sequence s^s^Sg...
generated by the n-stage LFSR with characteristic
polynomial c^ + c^x + CgX^ + ... + c^_^x^ ̂+ x^ must
satisfy the following linear recurrence relation :-

n-1
^ ^i^t+i (̂ " 0,1,2,...) (1.3.2)
i=0

The first n bits of the output sequence are given in
terms of the initial state by

s^ = s^(0) (t = 0,l,...,n-l) (1.3.3)

Consider an n-stage LFSR with a characteristic
polynomial in which the coefficient c^ of x^ is equal
to 0. Let d be the least integer such that c^ = 1
(i.e. CQ = c^ = ... = = 0 / = 1). Then equation
(1.3.2) can be rewritten as

n-1
St+n = I =i®t+i (t = 0,1,2,...)

i=d
n-d-1

=> St+n-d = I °i+d®t+i (t = d,d+l,d+2,...)
i=o

Hence, ••• can be considered as the output
sequence from an (n-d)-stage LFSR with characteristic
polynomial c^ + c^^^x + ... + + x^”^. The
situation is illustrated in Figure 1.3.3 below.

— 24 —

--- >— (1— >— (i ffl >

< < -

(

-<- —

'd+i ': 1
'd+2 °n-lL - - _ [Q _

^0 ^d-1 ®d+l ®n-l

Fiaure 1.3.3. An n-staae LFSR with c_ = 0

For this reason, in many situations it is convenient to
consider only linear feedback shift registers for which
the coefficient c^ of in the characteristic
polynomial is equal to 1 (see, for example, [2]). In
this thesis, however, we will not make this restriction;
when considering local linear complexity, for instance,
we will be interested in LFSRs with c^ = 0 as well as
those with Cq = 1 (see Section 1.5).

The set of all infinite binary sequences which can be
generated using the LFSR with characteristic polynomial
f(x) is often denoted by U(f). It can be shown (see
[16]) that, if f(x) has degree n, then 0(f) is an
n-dimensional vector space.

— 25 —

We now go on to look at some properties of sequences
generated using linear feedback shift registers. We
begin by establishing an upper bound for the period of
such sequences :-

Theorem 1.3.1.

Any infinite binary sequence generated using an n-stage
LFSR must be ultimately periodic, with period at most
2^ - 1 .

(A sequence SgS^Sg... is ultimately periodic if
s^s^^^s^^2 '"' is periodic for some integer k)

Proof

If any n-stage LFSR is loaded with the state consisting
of n zeros, then all subsequent states will also consist
of n zeros and so all subsequent output bits generated
will be zeros. Hence if, during the generation of a
sequence using an LFSR, the state of the register ever
becomes all zeros, then the resulting sequence will be
ultimately periodic with period 1.

Now consider the generation of an infinite sequence
using an n-stage LFSR, and suppose that the state of the
register never becomes all zeros. As soon as the state
of the register is one which has already occurred the
sequence of states (and hence the output sequence) will
begin to repeat. But since there are only 2^-1 possible

— 26 —

states which the register can take, the sequence of
states (and hence the output sequence) must be
ultimately periodic, with period at most 2^-1.

□

Theorem 1.3.2.

Any infinite binary sequence which can be generated
using an n-stage LFSR with c^ = 1 is periodic, with
period at most 2^-1.

Proof

Let s^s^Sg... be an infinite sequence generated using an
n-stage LFSR with c^ = 1. Then Theorem 1.3.1 says that,
for some integer k > 0, s^s^^^s^^g*"' is periodic, with
period at most 2^-1. It is shown in [2] that the
condition c^ = 1 is sufficient to ensure that k = 0.

□

A sequence of period 2^-1 which can be generated using
an n-stage LFSR is known as an m-seauence. For
instance, the sequence generated by loading the initial
state 1101 (or any other non-zero state) into the
4-stage LFSR with characteristic polynomial 1 + x +
(see Example 1.3.1) has period 15 and so is an
m-sequence. The following result yields a
characterisation of m-sequences : -

- 27 -

Theorem 1.3.3.

Let f(x) be a polynomial over GF(2) of degree n, and let
^0^1^2’*‘ a non-zero sequence generated using the
n-stage LFSR with characteristic polynomial f(x). Then
®0^1^2’*’ has period 2^-1 if and only if f(x) is
primitive.

(An irreducible polynomial of degree n over GF(2) is
said to be primitive if 2^-1 is the least positive
integer e such that f(x) divides 1 + x®)

Proof

See [2].

□

Theorem 1.3.3 shows that by carefully choosing our
characteristic polynomials we can generate binary
sequences with large periods (e.g. m-sequences) from
relatively short linear feedback shift registers. In
addition, m-sequences can also be shown to have a number
of desirable randomness properties. These properties
are summarised in the following theorem :-

- 28 -

Theorem 1.3.4.

Any m-sequence is a PN-sequence

Proof

See [2].

□

Although it was for many years widely conjectured to be
true, it is not true that every PN-sequence is either an
m-sequence or the complement of an m-sequence (i.e. an
m-sequence with all its zeros changed to ones and ones
to zeros). There are known to be at least two binary
sequences of period 127 which are PN-sequences but
neither m-sequences nor complements of m-sequences
(see [4]).

Theorem 1.3.4 states that any m-sequence conforms to one
possible definition of a pseudo-random sequence (i.e. it
satisfies Golomb's randomness postulates, as given in
Section 1.2), while by definition an m-sequence of large
period can be generated using a relatively short LFSR.
This, coupled with the fact that LFSRs are easily
implemented, might suggest that LFSRs with primitive
characteristic polynomials are good candidates for use
as sequence generators in stream cipher systems.
However, a system with such a sequence generator can be
easily attacked under the worst case conditions, as will
be shown in the next section.

- 29 -

1.4. GLOBAL LINEAR COMPLEXITY

In the previous section we discussed the generation of
binary sequences using linear feedback shift registers.
In fact, any periodic binary sequence can be generated
in such a way, as the following theorem shows :-

Theorem 1.4.1.

Any periodic binary sequence can be generated using a
linear feedback shift register.

Proof

Consider a periodic binary sequence s^s^s^... of
period p. If SQS^...Sp_^ is loaded into the p-stage
LFSR with characteristic polynomial 1 + x^, then the
output sequence will consist of repetitions of
s^s^...Sp_^, and hence s^s^s^... will be generated.

□

The global linear complexity of a periodic binary
sequence s^s^Sg... is defined to be the length of the
shortest LFSR on which the sequence can be generated.
Theorem 1.4.1 shows that, for any periodic binary
sequence, the global linear complexity exists.

- 30 -

Moreover, it can be seen from the proof of the theorem
that if SgS^Sg... has period p then its global linear
complexity cannot exceed p.

What we refer to here as "global linear complexity" is
referred to by a variety of names in the literature, and
in particular by "linear equivalence", "recursion
length", or simply "linear complexity". However, each
of these terms invites confusion between "global linear
complexity" as defined above, which applies to infinite
periodic sequences, and "local linear complexity", which
we shall meet in Section 1.5 and applies to finite
binary sequences. Hence, we will always retain the word
"global".

The global linear complexity of a sequence can be
computed from knowledge of its period and its generating
cycle. Before we describe how this can be done,
however, we introduce some further terminology and state
an interesting intermediate result : -

If SgS^Sg... is any infinite sequence, then the
generating function S(x) of s^s^s^... is defined to be

00
V i S(x) := ^ s^x .
i=0

- 31 -

If SgS^Sg... is a binary sequence of period p then the
period polynomial s(x) of s^s^Sg... is defined by

2 Ü 1s(x) := Sq + s^x + s^x + ... + Sp_^x^

It can easily be shown that the generating function and
period polynomial of a periodic binary sequence are
related by the following equation : -

S(X) = s(x) / (1 + xP) (1.4.1)

Now let h(x) = 11q + h^x + + ... + _^x^ ^ + x^
be any polynomial (of degree d) over GF(2). Then the

*reciprocal polynomial h (x) of h(x) is defined by
h*(x) ;= x^.h(^)

= 1 + h^_^x + ... + h^x^ ^ + hgX^.
*Note that h(x) and h (x) have the same degree

*(i.e. deg h(x) = deg h (x) = d) if and only if h^ = 1;
*otherwise h (x) has degree less than d.

Theorem 1.4.2.

Let S(x) be the generating function of a binary sequence
^0^1^2‘*’ which can be generated using the n-stage LFSR
with characteristic polynomial f(x). Then

S(x) = ÿ(x) / f*(x)
for some polynomial 0(x) of degree less than n.

— 32 —

Proof

See [2].
Note that the result quoted in [2] insists that the
coefficient c^ of in f(x) is equal to 1. However,
the proof follows through without this restriction.

□

The proof of Theorem 1.4.2 yields an explicit expression
for ÿ(x) in terms of the feedback coefficients and the
initial state of the LFSR used in the generation of the
sequence (see Section 2.6). Furthermore, for any given
polynomial f(x) of degree n there is a one-to-one
correspondence between the 2^ sequences which can be
generated using the n-stage LFSR with characteristic
polynomial f(x) (i.e. one for each initial state) and
the 2^ polynomials 0(x) over GF(2) with degree less
than n.

We now show how the global linear complexity of a
periodic binary sequence can be found : -

- 3 3 -

Theorem 1.4.3.

Let SQS^Sg... be a non-zero periodic binary sequence
with period p and period polynomial s(x). Then the
global linear complexity L of s^s^s^... is the degree of
the polynomial f(x) given by

l±xP 1*f (x)
= [:(s(x),l+xP)J

Furthermore, f(x) is the characteristic polynomial of
the unique L-stage LFSR on which s^s^Sg... can be
generated (i.e. f(x) is the minimal polvnomial of the
sequence).

Proof

See [2].
(Note that (a(x),b(x)) denotes the greatest common
divisor of the polynomials a(x) and b(x))

□

Example 1.4.1.

As an example of the use of Theorem 1.4.3, consider the
sequence 101001010010100..., which has period 5 and
period polynomial 1 + x . Therefore, in this example
we have

l+xP 1+x^
(s(x),l+xP) (l+x^,l+x^)

— 34 —

fl+x) . d+x+x^+x^+x"^)
1+x

P 3 4= 1 + X + X + X + X ,

and thus, by Theorem 1.4.3, the sequence
101001010010100... has global linear complexity 4, and
the unique 4-stage LFSR on which this sequence can be
generated has characteristic polynomial

2 3 41 + X + x^ + X + X .

We now come on to consider the subject raised at the end
of Section 1.3, namely the security (or lack of
security) of a stream cipher system in which the
sequence generator is a linear feedback shift register.
In fact, the system we shall consider will be more
general than this; we will consider any sequence
generator which produces a periodic enciphering
sequence. We begin by demonstrating how the
relationships between successive states of an LFSR can
be expressed in terms of vectors and matrices : -

Consider an n-stage LFSR with characteristic polynomial
f(x) = Cq + C^X + CgX^ + ... + c^^^x^"^ + x^.
Suppose that this register is loaded with the initial
state Sq (0),s^(0),...,s^_^(0), and let s^s^s^... be the

— 3 5 —

output sequence generated. Then, from equations (1.3.1)
and (1.3.3), the state vector s^ at time t is the
n-vector given by

% :

So(t) St
-

St+1

St+n-1

(1.4.2)

Further, from equation (1.3. 2) it can be seen that

St+1 ^t+1
®t+2 ^t+2
.

-t+1 •
^t+n-1 ^t+n-1
^t+n ^ ^O^t + ••• + ^n-l^t+n-1

and so St+i = C.s^ (1.4

where C is the nxn matrix given by

0 1 0 ... 0
0 0 1 1 . . . 0

C = 1 • ; I

0 0 0 ___ 1
"=0 =1 =2 --- ^n-1

The next theorem shows how the state vectors of a
sequence generated using an LFSR can be used to test the
global linear complexity of the sequence : -

- 36 -

Theorem 1.4.4.

Let ... be a binary sequence generated using an
n-stage LFSR. Then the following three statements are
equivalent :-

(i) SqS^S2 has global linear complexity n;
(ii) there exists a set of n consecutive state

vectors which are linearly independent;
(iii) every set of n consecutive state vectors is

1inearly independent.

Proof

See [2].

□

Example 1.4.2.

Consider again the sequence 101001010010100... of
Example 1.4.1. By Theorem 1.4.1, this sequence can be
generated using the 5-stage LFSR with characteristic
polynomial 1 + x^. However, the 5 possible state
vectors (1,0,1,0,0), (0,1,0,0,1), (1,0,0,1,0),
(0,0,1,0,1) and (0,1,0,1,0) sum to zero, and so it is
impossible to find 5 consecutive state vectors which are
linearly independent. Thus, by Theorem 1.4.4, the
sequence cannot have global linear complexity 5, and
therefore it must be possible to generate it on a
4-stage LFSR. Now, the 4 consecutive state vectors
(1,0,0,1), (0,0,1,0), (0,1,0,1) and (1,0,1,0) are

- 37 -

linearly independent, and thus, reapplying Theorem
1.4.4, the global linear complexity of
101001010010100... must be 4.

As previously stated. Theorem 1.4.3 yields a method for
finding the global linear complexity and the minimal
polynomial of a periodic binary sequence. However, this
method requires the entire generating cycle of the
sequence to be known, and so computing the global linear
complexity in this way will be infeasible if the
sequence has a sufficiently large period.

On the other hand, if a sequence SgS^Sg... which can be
generated using an L-stage LFSR has global linear
complexity L, then this fact can be established using
Theorem 1.4.4 from knowledge of 2L-1 consecutive bits of
the sequence. Although, unlike Theorem 1.4.3, Theorem
1.4.4 does not yield the minimal polynomial of the
sequence, this minimal polynomial can be obtained from
knowledge of 2L consecutive bits of the sequence, as we
shall now demonstrate : -

Let s^s^Sg... be a periodic binary sequence with global
linear complexity L, and suppose that 2L consecutive
bits s^s^^^...s^^2 L-i the sequence are known. By
equation (1.3.2) we have

- 38 -

% + L

^k+L
®k+L+l

^O^k + ••• ^ ^L-l^k+L-1
^O^k+1 + ^L-l^k+L

^k+2L-l ^O^k+L-1 + • • • ^L-l®k+2L-2^

and so % + l = S.c

where S is the LxL matrix given by

S =

and c =

'k+1
*k+l
'k+2

'k+L-1
’k+L

L-1

(1.4.4)

®k+L-l ^k+L --- ^k+2L-2

is the vector of feedback
coefficients for an L-stage LFSR
on which s^s^s^... can be
generated.

By Theorem 1.4.4 the rows of S are linearly independent,
and thus S is non-singular and invertible. And, by
assumption, the elements of s^^^ and S are all known.
Hence we can compute the feedback coefficients
Cq ,c ^,...,c^_^ of an L-stage LFSR on which s^s^s^... can
be generated by computing the vector ç = S these
are the coefficients of the (unique) minimal polynomial
of the sequence. Having obtained the feedback
coefficients and a particular state s^s^^^...s^^^_^ of
the L-stage LFSR on which s^s^s^... can be generated we
can obviously generate all subsequent output bits

- 39 -

Moreover, from Theorem 1.4.3 it can be
seen that the minimal polynomial of a periodic sequence
always divides 1 + x^, and so the coefficient c^ of x^
is always equal to 1. This in turn means that the
matrix C in expression (1.4.3) is invertible, so that
(1.4.3) can be rewritten as

= C

where C =

(1.4.5)

L-1

If the minimal polynomial of SqS^S2 ... and a particular
state of the corresponding LFSR are known (as is the
case here) then expression (1.4.5) can be used to find
the previous states of the register, and thus the
remaining k bits s^s^...s^_^ of the sequence can be
found. Thus we have proved the following result : -

Theorem 1.4.5.

Let SqS^S2 -.. be a periodic binary sequence with global
linear complexity L. Then the entire sequence SqS^S2 ...
can be obtained from knowledge of any 2L consecutive
bits.

n

- 40 -

Let us now look at Theorem 1.4.5 from a cryptanalytic
viewpoint. Suppose that a cryptanalyst trying to attack
a stream cipher system has obtained the plaintext
corresponding to m bits of ciphertext. Then this
attacker will be able to obtain m bits of enciphering
sequence by simply modulo 2 adding the plaintext and the
ciphertext. If m > 2L, where L is the global linear
complexity of the enciphering sequence, then Theorem
1.4.5 says that the entire enciphering sequence can now
be computed. The preceding discussion shows that this
process involves the inversion of an LxL binary matrix,
a relatively easy task which can be performed in

P O'!0(L ') operations (see [1]). Hence, if the global
linear complexity of the enciphering sequence is not
sufficiently large then the cipher system is vulnerable
to a "known plaintext attack".

In particular, consider a stream cipher system in which
the sequence generator consists of a single n-stage
linear feedback shift register. Then, by definition,
the enciphering sequence will have global linear
complexity at most n, and so the attack described above
will almost certainly be feasible.

— 41 —

1.5. LOCAL LINEAR COMPLEXITY

In Section 1.4 we discussed global linear complexity.
The global linear complexity of a periodic binary
sequence was defined to be the length of the shortest
LFSR on which the entire infinite sequence could be
generated. However, in practice a message will have
only finite length, and so in a stream cipher system
only a finite section of enciphering sequence will be
used to encipher a given message. Moreover, in the
majority of cases the length of the sections used will
be significantly shorter than the period of the
enciphering sequence. For this reason the "global"
properties of the enciphering sequence are perhaps less
important than its "local" properties, and hence we
define the "local linear complexity" of a finite binary
sequence as follows : -

The local linear complexitv of an n-bit binary sequence
SqS^...Sĵ _^ is the length of the shortest linear
feedback shift register on which SqS^...s^_^ can be
generated. Note that the local linear complexity of the
sequence 00...0 consisting of n zeros is defined to be 0
(since the input to any LFSR is taken to be all zeros;
see Section 1.3).

If we consider any n-bit sequence SqS^...s^_^, then this
sequence can be generated using any n-bit LFSR by
loading the register with SqS^...s^_^ as its initial

— 42 —

State and taking the first n output bits. Thus, the
local linear complexity exists for any n-bit sequence
and is at most n. Further, if we consider any periodic
binary sequence s^s^s'... for which s^s^...s^_^ =
s_s_...s _, then we know that any LFSR which can be0 1 n-1'
used to generate s^s^s'... can also be used to generate
SqS^. . . Hence, the local linear complexity of
SqS^...s^_^ must be less than or equal to the global
linear complexity of any infinite periodic sequence
which has s_s_...s_ _ as its first n bits.0 1 n-1

Example 1.5.1.

As an example, consider the 6-bit sequence 101001.
These are the first 6 bits of the periodic sequence
101001010010100... of Examples 1.4.1 and 1.4.2, which
has global linear complexity 4. Hence, 101001 has local
linear complexity at most 4. However, 101001 can also
be generated using the 3-stage LFSR illustrated below
(i.e. the LFSR with characteristic polynomial
1 + x^ + x^) by loading it with the initial state 101.

< - <

- 43 -

There are no 2-stage LFSRs on which 101001 can be
generated, and thus this 6-bit sequence has local linear
complexity 3.

In the case of an infinite periodic binary sequence, the
shortest LFSR on which the sequence can be generated
must have a characteristic polynomial in which the
coefficient c^ of is equal to 1. In the case of a
finite binary sequence, however, this is not the case,
as the following example illustrates :-

Example 1.5.2.

Consider the 7-bit sequence 0111111. The shortest LFSR
on which this sequence can be generated is the 2-stage

2LFSR with characteristic polynomial x + x , as
illustrated below :-

<

Note that this is the only 2-stage LFSR on which 0111111
can be generated (see Section 2.5).

We now consider what happens when we apply cryptanalytic
techniques similar to those described in Section 1.4 to
a message which has been stream ciphered using an n-bit

- 44 -

section of enciphering sequence SqS^...s^_^ with local
linear complexity L. By the definition of local linear
complexity, there must exist an L-stage LFSR (R, say)
which could be used to generate SqS^...s^_^. Thus,
s_s_...s . must be the first n bits of an infinite0 1 n-1
binary sequence SgS^Sg... that could be generated
using R. By Theorem 1.3.1, s^s^s^... must be ultimately
periodic.

Suppose that f(x) = Cq + c^x + ... + c^^^x^"^ + x^ is
the characteristic polynomial of the L-stage LFSR R. If
Cq = 1 then SQS^Sg... is periodic (by Theorem 1.3.2) and
has global linear complexity L (since s^s^s^... can be
generated using an L-stage LFSR and s^s^...Sj^_^ cannot
be generated using a shorter LFSR), and so, by Theorem
1.4.5, SqS^...Sĵ _^ can be obtained from knowledge of any
2L consecutive bits of the enciphering sequence (i.e.
from knowledge of the plaintext corresponding to 2L
consecutive bits of ciphertext).

If Cq = 0, let d be the least integer such that c^ = 1
(i.e. Cq = c^ = ... = c^_^ = 0 , c^ = 1). Then, from
Section 1.3, SyS^^^...s^_^ can be generated using the
(n-L)-stage LFSR with characteristic polynomial
1 + c^^^x + ... + ^ ̂+ x^ Thus, by a similar
argument to that used in the previous paragraph for the

— 45 —

case c_ = 1, sus.,T...s_ _ can be obtained from 0 d d+1 n-1
knowledge of 2L-2d consecutive bits of the enciphering
sequence.

By combining the two cases above it can be seen that if
an n-bit message is stream ciphered using a section of
enciphering sequence with local linear complexity L,
then a cryptanalyst who knows the plaintext
corresponding to any 2L consecutive bits of ciphertext
will be able to decipher the entire message (with the
possible exception of the first few bits).

- 4 6 —

CHAPTER 2

THE BERLEKAMP-MASSEY ALGORITHM

— 47 —

2.1. INTRODUCTION

In Section 1.5 we defined the local linear complexity of
a finite binary sequence to be the length of the
shortest linear feedback shift register on which the
sequence could be generated. In this chapter we
consider an algorithm for computing the local linear
complexity L of an n-bit sequence SgS^...s^_^. This
algorithm is known as the Berlekamo-Massev algorithm.
The Berlekamp-Massey algorithm also yields an L-stage
register on which SqS^...s ^̂ _̂ can be generated.

The L-stage linear feedback shift register produced by
the Berlekamp-Massey algorithm is described in terms of
its connection polynomial. The L-stage linear feedback
shift register in Figure 2.1.1 below has connection
polynomial C(x) defined by

C(x) := 1 + c^_^x + c_ _x^ + ... + c,x^” ̂+ c_x^L-2 O'

L-2 L-1

< << - < -<-

Fiaure 2.1.1. An L-staae linear feedback shift register

- 48 -

The connection polynomial C(x) as defined above should
be compared with the characteristic polynomial f(x) of
the same LFSR, defined by

f(x) := Cq + c^x + CgX^ + ... + c^_^x^ ̂+ x^
Notice that the degree of the characteristic polynomial
is always equal to the length L of the register, whereas
the degree of the connection polynomial is equal to L if
and only if c^ = 1. Notice also that C(x) = f*(x), but
f(x) = C*(x) if and only if c^ = 1. (Recall from
Section 1.4 that the polynomials f (x) and C (x) are the
reciprocal polynomials of f(x) and C(x) respectively).

The Berlekamp-Massey algorithm was first described as a
means of finding the shortest LFSR capable of generating
a given finite binary sequence by Massey in [11],
although an equivalent algorithm had earlier been
published by Berlekamp [3] for decoding BCH codes.

Note that the Berlekamp-Massey algorithm is not the only
algorithm that can be used to compute the local linear
complexity of an n-bit binary sequence; the Euclidean
algorithm can also be used for the same purpose [17].

— 49 —

2.2. SOME PRELIMINARY RESULTS

Before we discuss the Berlekamp-Massey algorithm we
first prove some preliminary results which will be used
when establishing the validity of the algorithm :-

Lemma 2.2.1.

Let L(N) be the local linear complexity of the N-bit
sequence s^s^. . . and let L(N+1) be the local linear
complexity of the N+l-bit sequence SqS^...Sĵ.
Then L(N+1) > L(N).

Proof

Since L(N+1) is the local linear complexity of
SqS^...Sĵ , there exists an L(N+1)-stage LFSR on which
SqS^...s^ can be generated.

But SqS^...Sĵ _^ can also be generated using this
register, and L(N) is the length of the smallest LFSR on
which SgS^...s^_^ can be generated.
Therefore L(N) < L(N+1).

□

— 50 —

Lemma 2.2.2.

Let L(N) be the local linear complexity of the N-bit
sequence S q S ^ . . . s ^ _ ^ , let L(N+1) be the local linear
complexity of the N+l-bit sequence S q S ^ . . . S j ^ , and
suppose that there exists an LFSR of length L(N) which
can be used to generate S q S ^ . . . S j ^ _ ^ but not S q S ^ . . . s ^ ^ .

Then L(N+1) > N+1 - L(N).

Proof

If N = 0 then the conditions of the lemma imply that
S q = 1 , so that
L(N+1) = L(l) = 1 = 1 - L(0) = N+1 - L(N).
Thus we can assume that N > 1.

From Section 1.5 we know that L(N) < N.
If L(N) = N then N+1 - L(N) = 1,
and L(N+1) > L(N) = N > 1.
Thus the result holds when L(N) = N.

Now consider the case L(N) < N.
Let C,,(x) = 1 + c,,M\ nX + ... + be theN' ' L(N)-1 0
connection polynomial of an L(N)-stage LFSR that can be
used to generate S q S ^ . . . S j ^ _ ^ but not S q S ^ . . . s ^ , let

^M+l(*) = 1 + ^L(N+1)-1* + ••• + <̂ 0̂ ̂ ̂ "the

— 51 —

connection polynomial of an L(N+1)-stage LFSR that can
be used to generate s^s^.-.s^, and suppose that
L(N+1) < N+1 - L(N), so L(N+1) < N - L(N). (2.2.1)

By hypothesis, since the L(N)-stage LFSR with connection
polynomial C^(x) can be used to generate s^s^...Sj^_^ but
not SqS^...Sjj, and the L(N+1)-stage LFSR with connection
polynomial C^^^(x) can be used to generate SgS^...s^, we
have (from equation (1.3.2))

L(N)-1
L ^i^j-L(N)+i
i=0

s. (j = L(N),...,N-1) ̂ (2 .2 .2)
Sj + 1 (j = N)

L(N+1)-1I =k®j-L(N+l)+k = (j = L(N+1),...,N) (2.2.3)
k=0

L(N)-1
Therefore \ <=iSN-L(N)+i

i=0
L(N)-1 L(N+1)-1

_ V V ,
A ^i L ^k^N-L(N)-L(N+l)+i+k

i=0 k=0
by (2.2.3), since L(N+1) < N-L(N) by (2.2.1),
and so (N-L(N)+i : i = 0,1,...,L(N)-1}

= (N-L(N),N-L(N)+1,...,N-1)
is a subset of (L(N+1),L(N+1)+1,...,N).

L(N+1)-1 L(N)-1
^ C ^ c sA k A ^i N-L(N)-L(N+l)+i+k

k=0 i=0

— 52 —

L(N+1)-1 V
L ^k®N-L(N+l)+k

k=o
by (2.2.2), since L(N) < N-L(N+1) by (2.2.1),
and so {N-L(N+l)+k : k = 0,1,...,L(N+1)-1}

= (N-L(N+1),N-L(N+1)+1,...,N-1}
is a subset of (L(N),L(N)+1,...,N-1).

L(N)-1I ^i^N-L(N)+i ^ (2.2.3))
i=0

L(N)-1
But (2.2.2) gives \ <=iSN-L(N)+i = ^

i=0
and thus we have a contradiction,
proving that L(N+1) > N+1 - L(N) in the case
L(N) < N.

□

Combining Lemmas 2.2.1 and 2.2.2 above we obtain the
following result : -

Corollary 2.2.3.

Let L(N) be the local linear complexity of the N-bit
sequence s^s^. . .Sj^_^, let L(N+1) be the local linear
complexity of the N+l-bit sequence SgS^...s^, and
suppose that there exists an LFSR of length L(N) that
can be used to generate SgS^...s^_^ but not SqS^...s^.
Then L(N+1) > max(L(N),N+1-L(N)).

□

— 53 —

2.3. THE BERLEKAMP-MASSEY ALGORITHM

As previously mentioned, the Berlekamp-Massey algorithm
computes the local linear complexity L(n) of an n-bit
binary sequence SqS^...s ^̂ _̂ and the connection
polynomial C^(x) of an L(n)-stage LFSR on which
SqS^...s^_^ can be generated. As a consequence of the
way in which the algorithm works it also yields, for
values of k from 0 up to n-1, the local linear
complexity L(k) of the first k bits SqS^...Sĵ _^ of the
sequence and the connection polynomial
C%(X) = 1 + + ... + c(k)xL(k)-l + c(k)%L(k)
of an L(k)-stage LFSR on which SgS^...s^_^ can be
generated.

The aim of this section is to introduce the reader to
the Berlekamp-Massey algorithm. A statement of the
algorithm will be given, and this will be followed by a
brief discussion on the algorithm and an example of its
use. The proof of the validity of the algorithm,
however, will be left until Section 2.4.

The above-mentioned statement of the algorithm can be
found overleaf.

— 54 —

The BerlekairiD-Massev alaorithm

L(0) := 0
Cq (x) := 1
B(x) := 1
a := 1

FOR k := 1 TO n DO
L(k-1)-1

d •- s + c(k-l)s ^ •“ ^k-l + A ®k-L(k-l)+i-l
i=0

IF d = 0 THEN
L(k) := L(k-l)
C%(x) :=
a := a + 1

END IF

IF d = 1 AND 2.L(k-l) > k-1 THEN
L(k) := L(k-l)
C%(X) := C%_^(x) + x®B(x)
a := a + 1

END IF

IF d = 1 AND 2.L(k-l) < k-1 THEN
L(k) := k - L(k-l)
Cĵ (x) := C%_^(x) + x^B(x)
B(x) := Cj^_i(x)
a := 1

END IF
END DO

— 55 —

As can be seen, the algorithm is an iterative one, in
which one iteration of a loop is performed for each bit
of the sequence. After k-1 iterations of the loop the
local linear complexity L(k-l) of the first k-1 bits
s^s^...s^ _ 2 of the sequence and the connection
polynomial C^^^(x) of an L(k-l)-stage LFSR that could be
used to generate SqS^...Sj^_2 will be known. On the next
pass through the loop the k^^ bit s^_^ of the sequence
will be considered, and knowledge gained during previous
iterations of the loop, together with knowledge of the
value of s^_^, will be used to compute the local linear
complexity L(k) of SgS^...s^_^ and the connection
polynomial of an L(k)-stage LFSR that could be
used to generate this subsequence.

Each iteration of the loop begins by computing a value
d , where

L(k-1)-1
d *= s + ^ c^^”^^sk-1 6 i ®k-L(k-l)+i-l

1=0

If L(k-l) = 0 then d will simply be set to the value of
s^_^, the k^^ bit in the sequence.
If L(k-l) > 0, let UqU^U2 ... be the sequence of output
from the L(k-l)-stage LFSR with connection polynomial
Ck-i(x) when loaded with the initial state
s -s _...St ,, _. _. Then we know that u. = s. for0 1 L(k-1)-1]]

— 56 —

j = 0,1,...,k-2, since the above-mentioned LFSR
generates s^s^. . . Sĵ _2 . Therefore,

L(k-1)-1
V c(k-l)sL ^i ®k-L(k-l)+i-l
i=0

L(k-1)-1
- c(k-l)u = u" A ^i ^k-L(k-l)+i-l *k-l'

i=0
and thus d = s^_^ + u^_^, so that d will be set to
0 or 1 according to whether or not s^_^ would be the
k^^ bit output from the L(k-l)-stage LFSR with
connection polynomial C^_^(x) if it was initially loaded
with

Depending on the values of d and L(k-l) one of three
different actions is then taken. If d = 0 then the
L(k-l)-stage LFSR with connection polynomial C^_^(x) can
be used to generate SgS^...s^_^, and so the local linear
complexity and the connection polynomial remain
unchanged (i.e. L(k) := L(k-l) and •= C%_i(x)).

If d = 1 then the above-mentioned LFSR cannot be used to
generate s^s^. . . and so a new LFSR must be found,

k—1If L(k-l) > then the local linear complexity
remains unchanged (i.e. an L(k-1)-stage LFSR can be
found which can be used to generate not only
SqS^...Sj^_2 but also SgS^...s^_^). However, if d = 1

— 57 —

and L(k-l) < then the local linear complexity
increases (i.e. L(k) := k - L(k-l)); no L(k-l)-stage
LFSR exists which could be used to generate SQS^...s^_^

It can be seen from the above remarks that if
L(k-l) > then the local linear complexity cannot
increase on the k^^ iteration of the loop (we already
know from Lemma 2.2.1 that it cannot decrease). If
L(k-l) < then the local linear complexity will
increase or remain unchanged according to whether
d = 1 or 0. Also, if the local linear complexity does
increase on the k^^ iteration of the loop then its new
value must be k - L(k-l). These results follow from
the proof of the validity of the Berlekamp-Massey
algorithm (Section 2.4).

Example 2.3.1.

As an example of the use of the Berlekamp-Massey
algorithm, consider the 11-bit sequence SqS^...s ^q =
01111011010. We demonstrate how the algorithm might be
used to compute the local linear complexity of this
sequence by means of the table shown below. The "k = 0"
row of the table contains the initial values assigned to

— 58 —

the variables used in the algorithm, while the "k = K"
row (K = 1,2,...,11) shows the assignments made to these
variables during the iteration of the loop.

k d L(k) Ck(x) B(x) a

0 - 0 1 1 1
1 0 0 1 1 2
2 1 2 l+x2 1 1
3 1 2 1+x+x^ 1 2
4 1 2 1+x 1 3
5 0 2 1+x 1 4
6 1 4 41+x+x 1+x 1
7 0 4 41+x+x 1+x 2
8 1 4 2 3 4

1 + X + X +X +X 1+x 3
9 1 5 1 + X + X ^

2 3 4
1 + X + X ^ + X ^ + X 1

10 0 5 1 + X + X ^ 2 3 4 1 + X + X + X + X 2
11 1 6 1+x+x^+x^+x^+x^ 1+x+x^ 1

Hence the 11-bit sequence 01111011010 can be generated
using the 6-stage LFSR with connection polynomial
1 + X + x^+ x^+ x^+ x^ (i.e. the LFSR shown below).

> — ©

< < << <

- 59 -

2.4. PROOF OF THE VALIDITY OF THE ALGORITHM

We now justify the use of the Berlekamp-Massey algorithm
in computing the local linear complexity L(n) of the
n-bit binary sequence SgS^...s^_^ and the connection
polynomial C^(x) of an L(n)-stage LFSR on which
SqS^...s^_^ can be generated.

First we show that the algorithm works for n = 1.
In this case only one iteration of the loop is required
(the iteration with k = 1), and k = 1 gives d := s^.
If Sq = 0 then d := 0, giving

L(l) := L(0) = 0
c^fx) := Cq (x) = 1

If Sq = 1 then d := 1, and since 2.L(0) < 0 this
gives

L(l) := 1 - L(0) = 1
C^(x) := Cq (x) + x^.B(x) = 1 + X

The 1-bit sequence s^ = 1 obviously has local linear
complexity L(l) = 1, and can be generated using any
1-stage LFSR, including the one with connection
polynomial C^(x) = 1 + x.
And, by definition, the 1-bit sequence s^ = 0 has local
linear complexity L(l) = 0 and connection polynomial
C^(x) = 1.
Thus, the algorithm works for n = 1.

— 60 —

Now assume that the algorithm works for n = N. We will
show that the algorithm also works for n = N+1.
Since the algorithm works for n = N we know that, for
any N-bit sequence s^s^.. ,Sĵ _̂ , it gives the correct
local linear complexity L(N) and the connection
polynomial C^(x) of an L(N)-stage LFSR on which
SqS^...Sĵ _^ can be generated.

If the L(N)-stage LFSR with connection polynomial C^(x)
also generates s^s^...s^ then d := 0 and so the
algorithm gives

L(N+1) ;= L(N)

Hence the algorithm works for n = N+1 in this case,
since C^(x) is the connection polynomial of an
L(N)-stage LFSR on which SqS^...Sĵ can be generated, and
L(N) must be the local linear complexity of SqS^...s^
since, by Lemma 2.2.1, the local linear complexity of
SqS^...s^ is no less than that of s^s^...s^_^.

If the L(N)-stage LFSR with connection polynomial Cĵ (x)
cannot be used to generate SqS^...Sĵ then d := 1.
In this case the algorithm gives L(N+1) := L(N) if
2.L(N) > N and L(N+1) := N+1 - L(N) if 2.L(N) < N.
i.e. the algorithm gives

L(N+1) := max(L(N),N+1-L(N)).

- 61 -

The algorithm also gives
c^+ifx) := Cjj(x) + x®B(x)

regardless of whether 2.L(N) > N or 2.L(N) < N.

If no change has occurred in the local linear complexity
during the first N iterations of the loop then L(N) = 0,
Cĵ (x) = 1 , B(x) = 1 and a = N+1, since B(x) only alters
when the local linear complexity alters and a is
incremented once on each pass through the loop unless
the local linear complexity changes.
Thus, in this case the algorithm gives

L(N+1) := N+1
N+1CN+i(x) := 1 + x^+^

But L(N) = 0 implies that s^s^...Sj^_^ = 00... 0, and
s^ = 1 since the L(N)-stage LFSR with connection
polynomial C^(x) cannot be used to generate SqS^...Sĵ,
so that SqS^...Sĵ = 00...01. Any N+l-bit sequence can
be generated using any N+l-stage LFSR, and 00...01
cannot be generated using a shorter register (of
length M, say), since to generate SqS^...Sĵ _^ the
register would have to be loaded initially with M zeros
and so its output would always be zeros. Therefore the
local linear complexity of SQS^...s^ is N+1 and the
algorithm works for n = N+1 in this case.

Having dealt with the above case we can assume that at
least one change has occurred in the local linear
complexity during the first N iterations of the loop.

- 62 -

Suppose that the last such change occurred during the
iteration with k = M. Then after the first N iterations
of the loop we have B(x) = and a = N-M+1, so
that the algorithm gives

By Corollary 2.2.3 we know that
L(N+1) > max(L(N),N+1-L(N)).
Therefore it is sufficient to prove that the L-stage
LFSR with connection polynomial C^(x) + x^
can be used to generate SqS^...Sĵ , where
L := max(L(N),N+1-L(N)).
[Note that deg(Cjj(x) + (x))
< max(deg(Cjj(x)) ,N-M+l+deg(C^_^(x)))
< max(L(N),N-M+1+L(M-1)) = L, since
L(N) = L(M) = M-L(M-l) and L = max(L(N),N+1-L(N)).
Thus C^(x) + (x) is a valid connection
polynomial for an L-stage LFSR.j

Let C^(x) + xH^M+lc^_^(x) =
1 + c, ,x + ... + c.x^“ ̂+ c_x^.L-1 1 0

Then it is sufficient to prove that
L-1I '=i®j-L+i = j = L,L+1,...,N
1=0

If we let
Cj,(x) = 1 + + ••• + c^xL(N)-l+ c^xL(H), and

C„_i(x) = 1 + + ... + c%xL(M-l)-l+ c%xL(M-l)

— 63 —

then 1 + + — + c^x

^ ^ °L(N)-l^ + ... + CgX
+ cgxN-M+l+L(M-l)

and so
L-1V
1=0

L-1 Y ,
L ^i-L+L(N)®j-L+i

i=L-L(N)

+
L-N+M-2 V

L ’̂ i-L+N-M+l+L (M-1) “ j -L+i
i=L-N+M-l-L(M-l)

^j-N+M-1

L(N)-1I CiSj_L(N)+i
i=0

L(M-1)-1Y
L ^i^j-N+M-l-L(M-l)+i ^j-N+M-1
i=0

But the L(N)-stage LFSR with connection polynomial C^(x)
can be used to generate SqS^...Sĵ _^ but not SqS^...Sĵ ,
and therefore
L(N)-1

V c'sL i j-L(N)+i
1=0

=i
Sj + 1 (j = N)

And the L(M-1)-stage LFSR with connection polynomial
Cm-i(x) can be used to generate SqS^...Sj^_2 but not
SqSi .-.Sm -i , so

L(M-1)-1
L ^i^j-N+M-l-L(M-l)+i

i=0

^j-N+M-1
(j = L(M-1)+N-M+1,

...,N-1)

^j-N+M-1 ^ (j = N)

— 64 —

But L(N) < L and L(M-1)+N-M+1 = N+1-L(N) < L, since
L = max(L(N),N+1-L(N)) and L(N) = M-L(M-l).
Therefore

g f ĵ"*" ®j-N+M-l'*‘ ®j-N+M-l (i ^ L,
i£o°i^j-L+i I Sj+ 1 + S._x+M_l+ 1 + Sj-N+M-l (i =

= Sj (j = L,L+1,...,N)

and hence we have shown that the L-stage LFSR with
connection polynomial C^(x) + x^ can be
used to generate SqS^...Sĵ, as required.

□

Thus we have shown that the Berlekamp-Massey algorithm
works (i.e. it correctly computes the local linear
complexity L(n) of SqS^...s^_^ and the connection
polynomial of an L(n)-stage LFSR on which SqS^...s^_^
can be generated).

— 65 —

2.5. THE MULTIPLICITY OF THE CONNECTION POLYNOMIAL

In Section 2.3 it was noted that if, in the
iteration of the loop in the Berlekamp-Massey algorithm,
d = 1 and L(k-l) > then, although the
L(k-l)-stage LFSR with connection polynomial
cannot be used to generate SgS^...s^_^, another
L(k-l)-stage LFSR can be found which can be used to
generate s^s^. . . Sj^_^. Since both registers can be used
to generate s^s^. . . Sĵ _2 , the register given by the
algorithm is not the only L(k-l)-stage LFSR on which
SgS^...s^ _ 2 can be generated. More precisely, the
following is true :-

Theorem 2.5.1

Let L(N) be the local linear complexity of the N-bit
sequence s^s^. . .s^^_^, and let Ĉ (̂x) , B(x) and a be the
values produced when the Berlekamp-Massey algorithm is
applied to SQS^...s^_^.
Then

(i) If L(N) < ^ then C^(x) is the connection
polynomial of the unique L(N)-stage LFSR on which
SqS^...Sĵ _^ can be generated.

(ii) If L(N) > ^ then there are ^fN)-stage
LFSRs on which SqS^...Sĵ _^ can be generated, whose
connection polynomials are given by

(C^(x) + q(x).x^B(x) : deg(q(x)) < 2L(N)-N).

— 66 —

Proof

(i) Suppose that an L(N)-stage LFSR with
connection polynomial C(x) = 1 + '"0X + ...+ c^x

N
L(N)

can be used to generate s^s^. . .Sĵ _̂ , where L(N) < — .
Then

L(N)-1I °i®j-L(N)+i "
i=0

and in particular

(j = L(N) , . . . ,N-1)

L(N)-1I °i®j-L(N)+i ^ (i = L(N) , . . . ,2L(N)-1)
i=0

i.e. S.c = sL(N)
where S is the L(N)xL(N) matrix given by

(2.5.1)

^0 Si --- ®L(N)-1
--- ^L(N)

s — : :

®L(N)-1 ^L(N) --- ®2L(N)-2

Ç and £̂ L(N) the vectors given by
/• ^
®L(N)

=1 ®L(N)+1
Ç = j ^L(N) =

‘̂ L(N)-1 ^2L(N)-1

Let SqS^s ^... be the infinite binary sequence generated
by loading the L(N)-stage LFSR with connection
polynomial C(x) with the initial state s^s^. . .

- 67 -

Then SQS^Sg... has global linear complexity L(N), since
SqS^...Sĵ _^ has local linear complexity L(N) and so
cannot be generated using a shorter register.

But the rows of the matrix S in (2.5.1) represent L(N)
successive states of the above-mentioned LFSR when used
to generate the sequence s^s^s^.... Hence, by Theorem
1.4.4, the rows of S are linearly independent and so S
is invertible.

Therefore equation (2.5.1) has a unique solution ç given
by Ç = hence there exists a unique
L(N)-stage LFSR which can be used to generate
SqS^. . .Sĵ _̂ . But the Berlekamp-Massey algorithm gives
the connection polynomial C^(x) of an L(N)-stage LFSR on
which the sequence can be generated. Therefore C^^x) is
the connection polynomial of the unique L(N)-stage LFSR
which can be used to generate s^s^. . . Sj^_^.

(ii) Now suppose that L(N) > so 2.L(N) > N.
If we append 2L(N)-N bits to the sequence SqS^...s ^̂ _̂ to
obtain the 2L(N)-bit sequence s^s^...s^^^^^_^ (where
s^s^...s^_^ = SqS^...s^_^), then the Berlekamp-Massey
algorithm tells us that the local linear complexity of
s^s^. . . is L(N) , since the local linear
complexity cannot change during the k^^ iteration of
the loop in the algorithm unless 2.L(k-l) < k-1. Thus,
by (i) above there is a unique L(N)-stage LFSR on which

-1 generated.

— 68 —

SmST...s^ _ can be extended in N ways, and0 1 N —1
in each case we obtain an L(N)-stage LFSR which can be
used to generate s^s^.. . s ' , and hence can also be
used to generate s^s^. . . Sĵ _̂ . But if an L(N)-stage LFSR
can be used to generate SQS^...s^_^ then it can also be
used to generate a sequence with
s's' s' . = s_s_— s.. - , and thus there are exactly0 1 N-1 0 1 N-1'
22L(N)-N L(N)-stage LFSRs on which SQS^...s^_^ can be
generated.

Now consider the use of the Berlekamp-Massey algorithm
to find the local linear complexity of one of the
above-mentioned 2L(N)-bit sequences. For such a
sequence, L(N) = L(N+1) = ... = L(2L(N)), and on the
iterations of the loop with k = N+l,N+2,...,2L(N) one of
the first two conditions holds (i.e. either d := 0, or
d := 1 and 2.L(k-l) > k-1).
Thus, at each of these iterations the connection
polynomial of the L(k)-stage LFSR given by the algorithm
either remains unchanged or is modified by adding x^B(x)
to it, where B(x) = C^^^(x), a = k-m, and m is the
greatest integer such that L(m-l) < L(N).
Therefore, any L(N)-stage LFSR which generates a
sequence s^s'...s'^(H)_i with s's^...s^_^ = s^s^...s^_^
must have connection polynomial of the form

Cjj(x) + (SqX + ... + &2L(N)-N-1* ̂ ̂)^m-l(^)
= Cĵ (x) + (&0 + ... +
for some values 8^ (5^ = 0 or 1, i = 0,1,...,2L(N)-N-1).

- 69 -

But there are 2^^^^ ^ such polynomials, given by
(C^fx) + q(x).xN-m+lc^_i(x) : deg q(x) < 2L(N)-N),

and so each of these is the connection polynomial of an
L(N)-stage LFSR that can be used to generate SgS^...s^_^
(since we have already shown that there are exactly
2 &(N)-N L(N)-stage LFSRs on which SqS^...Sj^_^ can be
generated).

Hence, since N-m+1 and C _(x) are the values of a andm-1' '
B(x) produced when the Berlekamp-Massey algorithm is
applied to SgS^...s^_^, we have proved part (ii) of the
theorem.

□

- 70 -

2.6. EXTENDED FORM OF THE ALGORITHM

The Berlekamp-Massey algorithm as stated in Section 2.3
computes the local linear complexity L(n) of an n-bit
sequence SQS^...s^_^ and the connection polynomial of an
L(n)-stage LFSR on which s^s^— ®n-l generated.
In this section we will extend the Berlekamp-Massey
algorithm so that it also computes a polynomial P^(x)
(of degree less than L(n)), where P^(x) is the image of
the initial state of the LFSR (when used to generate
SqS^...s^_^) under a particular one-to-one mapping
(given by (2.6.3) below) from the possible states of the
register onto the set of polynomials over GF(2) of
degree less than L(n). The polynomial P^(x) will be
used extensively in Chapter 4.

Firstly, recall from Section 2.1 that the L-stage LFSR
shown below has connection polynomial C(x) given by

C(x) = 1 + c^_^x + c^^2 %^ + ... + c^x^ ̂+ c^x^*

<

> — © ---- >

< -

> — © — — — — © >

L<- <

^L-2 ^L-1

<-i

Let SqS^S2 -.. be an infinite binary sequence that can be
generated using the above L-stage register, and define
S(x) to be the generating function of SqS^S2 ..., i.e.

S(x) := Sq + s^x + SgX +

- 71 -

Then
C(x)S(x)

where
= Po + P i ^ + P 2 ^ +

L-1
S] + I ^i^j-L+i (i

i=L-j
L-1

S] + I ^i®j-L+i
1=0

But since s^s^Sg... can be generated using the L-stage
LFSR with connection polynomial C(x),

L-1= I CiSj-L+i i > ^
1=0

and thus
C(x)S(x) = Pq + P^x + PgX^ + ... + Pl _^x ^ ^

L-1Ywhere Pj = Sj + ^ ^i^j-L+i (Î = 0,1,...,L-1)
i=L-j (2.6.1)

Note that the polynomial p^ + p^x + ... + p^^^x
above is the polynomial ^(x) of Theorem 1.4.2.

L-1

Now consider the finite n-bit sequence s^s^. . . s^^_^, and
let

S„(x) := Sq + s^x + SgX^ + ... +
Suppose that SqS^...s ^̂ _̂ can be generated using the
L(n)-stage LFSR with connection polynomial

Cn(x) = 1 + + ... + c'x

- 72 -

Then
Cn(x)Sn(x) = Po + PiX + PgX^ + ... + Pl (i,)
where

Pj : =

L(n)-l+ I ci=i-L(n)+i (i = 0 ,l,...,L(n)-l)
i=L(n)-j
L(n)-1

®j I ‘̂ i®j-L(n)+i (i L(n),... ,n-l)
i=0

n+L(n)—1—jI cl=i-L(n)+i (i = " n+L(n)-l)
1=0 (2 .6.2)

But since SQS^...s^_^ can be generated using the
L(n)-stage LFSR with connection polynomial C^(x),

L(n)-1
= I °i®j-L(n)+i L(n) < j < n-1

i=0
and thus
Cn(x)Sn(x) = p^ + p^x + ... + Pl (u)-1 ^ ^ ^ ^ ^ (mod x*)

L(n)-1
where py = Sj + ^ ^i^j-L(n)+i 0,l,...,L(n)-l)

i=L(n)-j (2.6.3)
(c.f. (2.6.1))

Let

Then
Cn(x)Sn(x) = P^fx) (mod x")

=> Cn(x)Sn(x) = Pn(x) + x "g ^(x) (2.6.4)
for some polynomial G^(x)

— 7 3 —

=> S^fx) = (Pn(x) + X^G^fx)) / C^(X) (2.6.5)
for some polynomial G^(x)

(c.f. Theorem 1.4.2).

For a given L(n)-stage LFSR, (2.6.3) defines a
one-to-one mapping from the possible initial states of
the register onto the set of polynomials over GF(2) of
degree less than L(n). Under this mapping, the initial
state SqS^. . . is mapped onto the polynomial
P„(x).

Earlier in this chapter we described the
Berlekamp-Massey algorithm and showed that it can be
used to compute the local linear complexity L(n) of an
n-bit sequence SQS^...s^_^ and the connection polynomial
of an L(n)-stage LFSR which can be used to generate
SqS^...s^_^. We now show how the Berlekamp-Massey
algorithm can be extended so that it also computes the
corresponding polynomial P^(x). We first state the
extended form of the algorithm :-

— 74 —

The Berlekamp-Massev Algorithm (Extended form)

L(0) := 0
Cq (x) := 1 Pq (x) := 0
B(x) := 1 Q(x) := x"^
a := 1

FOR k := 1 TO n DO
L(k-1)-1

^ •“ ^k-1 ^ L ^k-L(k-l)+i-l
i=0

IF d = 0 THEN
L(k) := L(k-l)
C%(x) := C%_^(x) P%(x) :=
a := a + 1

END IF

IF d = 1 AND 2.L(k-l) > k-1 THEN
L(k) := L(k-l)
C%(X) := C%_i(x) + x®B(x) P%(x) := P%_i(x) + x^Q(x)
a := a + 1

END IF

IF d = 1 AND 2.L(k-l) < k-1 THEN
L(k) := k - L(k-l)
c%(x) ;= C%_^(x) + x^B(x) P%(x) := Pj^.^Cx) + x^Q(x)
B(x) := C]^_i(x) Q(x) := P%_^(x)
a := 1

END IF
END DO

— 75 —

We now justify the use of this algorithm to calculate
the polynomial P^(x). We will use an inductive proof to
show that, at each iteration of the loop in the
algorithm, the polynomial P^X%) generated has the
property that Pĵ (x) = Cj^(x)Sj^(x) (mod x)

Suppose that the first increase in local linear
complexity occurs on the a(l)^^ iteration of the loop in
the algorithm (i.e. L(l) = L(2) = _ L(a(l)-1) = 0,
L(a(l)) = a(l) , ^0^1'■ ' ̂ a (1)-1 00...01). Then the
Berlekamp-Massey algorithm gives the following sequence
of polynomials :-

k Cĵ (x) P%(x) L(k)

0 1 0 0
1 1 0 0
2 1 0 0

a(l)-l 1 0 0
a(l) 1 + x^(^) a(l)

Thus, for k < a(l), the algorithm gives
C%(X) = 1, P%(X) = 0, s%(x) = 0,

so Cj^(x)Sj^(x) (mod x^) = 0 = Pĵ (x)
and thus the algorithm produces the correct value of
Pĵ (x) in this case.

— 76 —

For k = a(l) the algorithm gives
C%(x) = 1 + x3(l), P%(x) = x3(l)-l, s%(x) =

so C%(x)S%(x) (mod x'̂) = (1 + x^^^^) (mod x^(^))
=

= P%(x)
and thus the algorithm produces the correct value of
Pĵ (x) in this case too.

Now assume the algorithm produces the correct value of
Pĵ (x) (i.e. assume there exists a polynomial G^^x) such
that Cj^(x)Sj^(x) = P%(x) + x*G^(x), where
deg P^(x) < L(k)) for k = 1,2,...,N, where N > a(l).
Consider the N+1^^ iteration of the loop in the
algorithm (i.e. the iteration with k = N+1).

If d ;= 0 in this iteration of the loop then the
algorithm gives

^N+1^*^ *~ ^N ^N+1^*^ *~ ^N ̂ ^̂
N+1so Ĉ +i(x)Sĵ _j.3̂ (x) (mod X)

= C^(x) (Sjj(x) + Sĵ x*̂) (mod x^+l)

= Pj,(x) + x^Gj^(x) + Sj,x*̂ Cjj(x) (mod x*+l)
2for some G^(x) = g^+ g^x + g^x + ... ,
where deg P^(x) < L(N)

Thus CN+i(x)S^+^(x) (mod x^^^)
= P^fx) + (9o +

(since C^(x) = 1 + + ... + c^x^fN)
for some coefficients CQ,c^,...,c^^^^_^)

- 77 -

But since C^^x)S^(x) = P^(x) + %^G^(x),
where deg P^(x) < L(N) < N,

L(N)-1
9o = coefficient of in Cjj(x)Sj^(x) = ^ '^i^N-LCNj+i

i=0
(by (2.6.2))

And since the L(N)-stage LFSR with connection polynomial
C^(x) can be used to generate SqS^...s^,

L(N)-1
V

®N L ^i®N-L(N)+i
i=0

Thus = Sjj,
and so C^^^(x)S^+^(x) (mod x^^^) = Pj,(x) = P^j+^Cx)
(i.e. the algorithm gives the correct value of Pj^^^(x)
in the case d := 0).

If d := 1 then the algorithm gives
Cw+i(x) := c^(x) + x&B(x), P^+ifx) := P%(x) + x^Q(x)

If the last increase in local linear complexity occurred
on the m^^ iteration of the loop then, at the end of the

iteration,
B(x) = C^_i(x), Q(x) = P^_g^(x) , and a = N-m+1,

N+1so C^^^(x)S^+i(x) (mod X)

= (Cjj(x) + x'̂ "“‘̂ ^C^_^(x)) (Sjj(x) + ŝ x*̂) (mod x^+l)

= Cjj(x)Sjj(x)+ x^"™+^C^_i(x)S%(x) + s^x^C^^x) (mod x^+l)
(since N-m+1 > 1)

- 78 -

= P„(x) + x % (x) + x"-*+"Cm_i(x)(So+ ... +
+ s^x^Cjj(x) (mod x^+l)

2for some G^(x) = g^+ g^x + g^x + ... ,
where deg P^(x) < L(N)

N+1Thus CN+l(*)SH+i(x) (mod x)
= Pn (x) + (9o + Sn)-x”

+ x*-m+lCm_i(x)(S^_i(x) + (mod x^+l)
(since C^(x) = 1 + + ••• + c^x^fN)

for some coefficients CQ,c^,...c^^^^_^)

= P^(x) + (gg + s^j.xH + xN-m+l(P^_i(x) + (x))
+ Sm-lX^Cm_i(x) (mod x^+l)

for some G^_^(x) = g^+ g^x + g'x^ + ... ,
where deg ^ L(m-l)

N+1=> CN+l(x)SN+l(x) (mod X)
= Pn (x) + (9o + + 96 +

(2.6.6)

(since C^_i(x) = 1 + + ... + c^x^(™"^))
for some coefficients c^,c^,...,c^^^_^j_^)

But since C^^x)S^(x) = Pjj(x) + x̂ Gj^(x) ,
where deg P^(x) < L(N) < N,

L(N)-1
9o = coefficient of x*̂ in Cĵ (x)Sjj(x) = ^

i=0
(by (2.6.2))

- 79 -

And since d = 1, the L(N)-stage LFSR with connection
polynomial Cĵ (x) cannot be used to generate

L(N)-1
and so Sjj = I (CiSH_L(N)+i) + ^

i=0
Thus g^ + Sĵ = 1. (2.6.7)
similarly, since C^^i(x)S^_^(x) = P^_i(x) + x™ ^G^^^(x),
where deg Pm-l^*) ^ L(m-l) < m-1,

g' = coefficient of x^“ ̂ in C^^^(x)S^_^(x)
L(m-1)-1= I ‘=i=m-l-L(m-l)+i (2.6.2))

i=0
And since L(m) > L(m-l), the L(m-l)-stage LFSR with
connection polynomial G^_^(x) cannot be used to generate

®0®1‘•'^m-l'
L(m-1)-1

and so = I (CiSm-l-L(m-l)+i) + ^
i=0

Thus, + s^^i = 1. (2.6.8)

Combining (2.6.6), (2.6.7) and (2.6.8) we have
Cn +i (x)Sn +i (x) (mod x*+l) = Pjj(x) + x^"*+lPm_i(x)

= PN+i(x)
and so the algorithm gives the correct value of Pj^^^(x)
in the case d := 1.

- 80

Thus we have shown that, for any integer n > 1, the
extended form of the Berlekamp-Massey algorithm produces
a polynomial P^(x) of degree less than L(n) such that

Pn(x) = Cg(x)Sn(x) (mod x")

□

We now prove a relationship between the local linear
complexity L(n) of the n-bit sequence SQS^...s^_^ and
the polynomials C^(x) and P^(x) produced when the
Berlekamp-Massey algorithm is applied to this
sequence :-

Theorem 2.6.1.

Let L(n) be the local linear complexity of the n-bit
sequence s^s^. . . and let C^(x) and P^(x) be the
polynomials produced when the Berlekamp-Massey algorithm
(in its extended form) is applied to s^s^. . . s^^_^.
Then

L(n) — max (deg C^(x), 1 + deg P^(x))

Proof

Let C^(x)

and P^(x) = P,
L(n)-1

+ p^x + ... + pL(n)-1X
L(n)-1

(recall that deg P^(x) < L(n)-l)

- 81 -

If Cq = 1 then deg C^^x) = L(n)
=> max (deg C^(x), 1 + deg P^(x)) = deg C^(x) = L(n)
and so the theorem holds in this case.
If PL(n)-i " 1 then deg P^(x) = L(n)-1
=> max (deg C^^x), 1 + deg Pg(x)) = 1 + deg P^(x) = L(n)
and so the theorem holds in this case too.
We will show that if c^ = 0 then PL(n)-l ^ ^, and so
one of the two cases above must hold.

Since the L(n)-stage LFSR with connection polynomial
C^(x) can be used to generate s^s^. . . s^^_^,

L(n)-1
Sj = I ■=i®j-L(n)+i tor j = L(n),...,n-1.

i=0
Suppose that c^ = 0.
Then

L(n)-1
= I °i^j-L(n)+i tor j = L(n) n-1.

i=l
And from equation (2.6.3),

L(n)-1
V

PL(n)-l “ ^L(n)-1 L ^i^i-1
i=l

L(n)-1=> =L(n)-l = I =1=1-1 tt PL(n)_i = 0
i=l

- 82 -

Thus, if PL(n)-i “ ° then
L(n)-1

=j = I =i®j-L(n)+i tor j = L(n)-l,...,n-l.
i=l

=> generated using the
(L(n)-l)-stage LFSR with connection polynomial C^(x)

=> SqS^...s^_^ has local linear complexity < L(n)-1.

But, by definition, SqS^...Sĵ _^ has local linear
complexity L(n), giving us a contradiction.

Thus, if Cq = 0 then PL(n)-l ^

□

- 83 -

CHAPTER 3

LINEAR COMPLEXITY PROFILES

- 84 -

3.1. INTRODUCTION

The Berlekamp-Massey algorithm described in Chapter 2 is
usually thought of as an algorithm for computing the
local linear complexity L(n) of an n-bit binary sequence
SqS^. . . However, it can be seen from Chapter 2
that this algorithm also computes, in the course of
computing L(n), the local linear complexities L(l),
L(2), ..., L(n-l) of the subsequences s^, s^s^, ...,
s_s_...s _ of s_s_...s_ _. Thus, the Berlekamp-Massey0 1 n-2 0 1 n-1
algorithm can be used to generate an n-vector
(L(l),L(2),...,L(n)), which we call the linear
comolexitv profile of s^s^. . . s^^_^.

Alternatively, we can consider the linear complexity
profile as a graph. For a given n-bit sequence
SnS_...s_ -, consider the function L from the set of 0 1 n-1'
integers {1,2,...,n) into itself, where L(k) is defined
to be the local linear complexity of the first k bits
s^s^...s^_^ of SqS^...s^_^ (k = 1,2,...,n). The linear
complexity profile of s^s^. . . can be thought of as
the graph of the function L. Strictly speaking, when
this graph is plotted a point should be placed at
(k,L(k)) for k = 1,2,...,n and no other points should be
plotted, since the function L is defined only for the
integers 1,2,...,n. However, in practice we will plot
the linear complexity profile as if it was a step
function defined for all real values in the interval
[0,n], by taking the value y of the function at the

— 85 —

point X to be the local linear complexity L(k) of the
subsequence s^s^. . . s^^_^, where k = L%J, the greatest
integer not exceeding x.

We will use the term "linear complexity profile" to
denote both the vector (L(l),L(2),...,L(n)) and the
graph of the corresponding step function. Note,
however, that in some texts, including [15], the graph
of the step function is referred to as a "staircase
profile".

The above definition applies to finite binary sequences.
In a similar way, we can define the linear complexity
profile of an infinite binary sequence s^s^Sg... to be
either the vector (L(1),L(2),L(3),...) or the graph of
the corresponding step function, where L(k) is the local
linear complexity of the k-bit subsequence s^s^. . . .

— 86 —

3.2. EXAMPLES OF LINEAR COMPLEXITY PROFILES

Example 3.2.1.

As a first example of a linear complexity profile,
consider the 20-bit sequence 01111011010011010000. This
sequence has linear complexity profile (0,2,2,2,2,4,4,4,
5,5,6,6,6,6,6,10,10,10,10,10), as illustrated below.
Note that the local linear complexities of the first 11
subsequences were computed in Section 2.3 using the
Berlekamp-Massey algorithm.

y = L(k)
12
10

0 2 4 6 8 10 12 14 16 18 20
X (k=LXj)

We say that the linear complexity profile of a sequence
"jumps" with the bit in the sequence if
L(k) > L(k-l), and we define the height of the jump to
be the difference L(k) - L(k-l). For instance, the

- 87 -

linear complexity profile in the above example jumps
with the 2^^, 6^^, 9^^, 11^^ and 16^^ bits in the
sequence, and these jumps have heights 2, 2, 1, 1 and 4
respectively. We describe a horizontal section of the
profile as a step. Thus, there is a step of length 4
between the first two jumps in the example above.

Example 3.2.2.

For any integer n > 0, consider the n-bit sequence
00...01. For k = 1,2,...,n-1, the k-bit sequence
00...0 has local linear complexity L(k) = 0; and the
entire n-bit sequence has local linear complexity n,
since to generate the beginning of this sequence any
LFSR of length less than n would have to be loaded with
all zeros and so would generate an all zeros output
sequence. Thus, the sequence has linear complexity
profile (0,0,...,0,n), as illustrated below, and is in
fact the only n-bit sequence with this profile.
Moreover, 00...01 is the only n-bit sequence with local
linear complexity n.

— 88 —

y = L(k)
n -

n-2 -

4 -
2 -

0 I I I I I r
2 4 6

I I I
n-4 n-2

X (k= LXJ)
n

Example 3.2.3.

Consider the infinite periodic sequence
101110010111001011100..., which has period 7 and global
linear complexity 3. The linear complexity profile of
this sequence is (1,1,2,2,3,3,3,3,3,3,...), as
illustrated below.

y = L(k)
8
6
4
2
0

8 10 12 14 160 2 4 6
----------X (k= LXJ)

- 89 -

More generally, consider any infinite periodic sequence
SqS^s^... with global linear complexity L. Then the
linear complexity profile of s^s^Sg... will increase to
L by the point (2L,L), after which it will remain
horizontal, as the following result shows :-

Theorem 3.2.1.

Let s^s^Sg... be a periodic binary sequence with global
linear complexity L, and let L(k) be the local linear
complexity of the k-bit subsequence SqS^...Sĵ _^ of

®0^1®2---
Then L(k) = L for k > 2L.

Proof

Since SgS^Sg... has global linear complexity L,
SgS^...s^_^ can be generated using an L-stage LFSR for
any integer k > 0, and so SgS^...s^_^ has local linear
complexity L(k) < L.

Now assume k > 2L,
and suppose that L(k) < L.
Then there exists an L'-stage LFSR (R, say) on which
SqS^...Sĵ _^ can be generated, where L' < L.
Let s^s^s'... be the infinite binary sequence generated
by loading the initial state s^s^. . . ŝ ,̂ into the
register R. Then s^ = s^ for i = 0,1,...,k-1, and
Sj 5»̂ s(for some j > k.

— 90 —

Now consider the infinite sequence sjjs^s^... formed by
modulo 2 adding s^s^Sg... and s^s^s^.... From the above
discussion we know that sV = 0 for i = 0,1,...,k-1, and
sV = 1 for some j > k. Thus, sjjsîjŝ ... cannot be
generated using a k-stage LFSR (c.f. Example 3.2.2), and
hence sjjs^s^... has global linear complexity
L" > k. (3.2.1)

Recall from Section 1.3 that Q(f) is the set of all
infinite binary sequences that can be generated using
the LFSR with characteristic polynomial f(x). From the
results in [20] it can easily be seen that any infinite
binary sequence which is the modulo 2 sum of a sequence
in 0(f) and a sequence in 0(g) is in 0(fg). Hence, an
infinite binary sequence which is formed by modulo 2
adding two other such sequences, one of which can be
generated using the m-stage LFSR with characteristic
polynomial f(x) and the other using the m'-stage LFSR
with characteristic polynomial g(x), can be generated
using the (m+m')-stage LFSR with characteristic
polynomial f(x)g(x).
Thus, sjjsîjŝ ... can be generated using an (L+L')-stage
LFSR, and so has global linear complexity
L" < L+L' < 2L < k. (3.2.2)

But (3.2.2) contradicts (3.2.1),
and thus L(k) = L for k > 2L.

□

- 91 -

Example 3.2.4.

As a final example of a linear complexity profile,
consider the 20-bit sequence 10111011001000101001. This
sequence has the linear complexity profile
(1,1,2,2,3,3,...,9,9,10,10) , as illustrated below. Such
a profile is commonly known as a "perfect" linear
complexity profile.

y = L(k)
12
10

8 10 12 14 16 18 204 60 2

More generally, an n-bit binary sequence is said to have
a perfect linear complexity profile if

L(k) = rk/2~l for k = 1,2,...,n,
where is the least integer greater than or equal
to k/2.
(i.e. if it has linear complexity profile
(1 , 1 , 2 , 2 , 3 , 3 , , rn/2l).

- 92 -

similarly, an infinite binary sequence has a perfect
linear complexity profile if

L(k) = l"k/2T for k = 1,2,3,---
We will return to the subject of perfect linear
complexity profiles in Chapter 4.

— 93 —

3.3. PROPERTIES OF LINEAR COMPLEXITY PROFILES

In this section we look at some properties of linear
complexity profiles. We begin by returning to the
Berlekamp-Massey algorithm, as described in Chapter 2,
and interpret some of the results from that chapter in
terms of linear complexity profiles.

The first point to notice is that, by Lemma 2.2.1, the
graph of the linear complexity profile of a binary
sequence must be non-decreasing.

Now consider the remarks towards the end of Section 2.3.
It was there stated that "if L(k-l) > then the local
linear complexity cannot increase on the k^^ iteration
of the loop". Translated into the language of linear
complexity profiles, this statement says that, if the
linear complexity profile of a sequence is above the
line y = x/2 at the point (k-1,L(k-l)), then the profile
cannot jump with the k^^ bit in the sequence (i.e. it

k-1cannot jump at x = k) . Similarly, "if L(k-l) < then
the local linear complexity will increase or remain
unchanged according to whether d = 1 or 0" means that,
if the linear complexity profile is on or below the line
y = x/2 at the point (k-1,L(k-l)), then the profile will
jump or not with the k^^ bit in the sequence, according
to the value of that bit.

— 94 —

Further, "if the local linear complexity does increase
then its new value must be k-L(k-l)" implies that, if
the linear complexity profile does jump at x = k, then
it jumps from L(k-l) to k-L(k-l), and so the jump has
height k - 2L(k-l). But | - L(k-l) = (k-L(k-l)) -
and hence the profile jumps the same distance above the
line y = x/2 as it was below the line before it jumped.

To illustrate the above points, consider the linear
complexity profile in Example 3.2.1. This profile is
redrawn in Figure 3.3.1 below, this time with the line
y = x/2 added.

y = L(k)
12
10

8 10 12 14 16 18 202 60 4

Figure 3.3.1. An example of a linear complexity profile

- 95 -

Immediately before the first jump in the above profile,
the profile is a distance of 1 below the line y = x/2.
Thus, given that the profile jumps, it jumps to a
distance of 1 above the line y = x/2 (i.e. to the point
(2,2)). The profile cannot jump with the 3^^ or 4^^
bits in the sequence, as the profile is above the line
y = x/2 at y = 2 and y = 3, and it does not jump at
y = 5, even though L(4) < 4/2. The jump at y = 6 also
has height 2, as the profile is again a distance of 1
below the line y = x/2 immediately before the jump. The
next jump, however, which occurs with the 9^^ bit in the
sequence, only has height 1, as the profile is only a
distance of ^ below the line y = x/2 immediately before
the jump.

A number of properties of linear complexity profiles
were derived by R.A. Rueppel in his D.Sc. thesis [14]
and later reproduced in [15]. Rueppel considers the
linear complexity profile of a random binary sequence,
and shows that the expected height of a jump is 2 and
the expected length of a step is 4. He also derives
explicit expressions for the mean and variance of the
local linear complexity L(n) of the first n bits of a
random sequence. These results are quoted in Theorems
3.3.1 and 3.3.2 below

- 96 -

Theorem 3.3.1.

Let E(n) be the expected local linear complexity of a
random n-bit binary sequence. Then

E(n) =
I + I - 2-"(Ç + h3

-n ,n
(3 + 9)

(n even)

(n odd)

Theorem 3.3.2.

Let V(n) be the variance of the local linear complexity
of a random n-bit binary sequence. Then

2

V(n) =
86
81
86

-n,14n
27

-2n,n 4n 4
9 27 81

-n,13n 80 -2n,n .4n
0l - 2 (1̂ + FT) - 2 (q +ÏÏT)27 81 27 81

(n even)

(n odd)

- 97 -

3.4. SOME ENUMERATION RESULTS

In this section we will prove a number of enumeration
results which are connected with linear complexity
profiles. We will concern ourselves only with profiles
which are "possible" in the sense that, for each
possible linear complexity profile, there exists at
least one binary sequence which has that profile. The
set of possible linear complexity profiles is restricted
by the fact that each one must satisfy the properties
derived in Section 3.3 from the Berlekamp-Massey
algorithm. More precisely, for the linear complexity
profile (L(l),L(2),...,L(n)) to be possible, the
following two conditions must hold for each integer k
such that 1 < k < n :-

(i) if L(k-l) > then L(k) = L(k-l)

(ii) if L(k-l) < then
either L(k) = L(k-l) or L(k) = k-L(k-l).

We say that a linear complexity profile
(L(l),L(2),...,L(n) is valid if it satisfies the above
conditions. In Theorem 3.4.2 it will be shown that any
valid linear complexity profile is possible; hence, the
adjectives "possible" and "valid" are synonomous when
applied to linear complexity profiles.

- 98 -

The first of the results in this section gives an
expression for the number of n-bit sequences which have
a given linear complexity profile. We begin by proving
a lemma ;-

Lemma 3.4.1.

Consider a given valid linear complexity profile
(L(l),L(2),...,L(n)).
There exist precisely 2^ distinct n-bit sequences which
have this profile, where

M = I{k : L(k) > k/2, 1 < k < n-1)|.

(Note that M is the number of points in the profile
which are above the line y = x/2, excluding the point
(n,L(n)).)

Proof

We will consider what happens when we attempt to
generate an n-bit sequence SqS^...s ^̂ _̂ with the given
linear complexity profile (L(l),L(2),...,L(n)).
We begin by generating the first bit s^ of the
sequence.
If Sq = 0 then L(l) = 0
and if s^ = 1 then L(l) = 1.
Therefore L(l) defines s^ uniquely.

- 99 -

Now suppose that we have generated a k-bit subsequence
SqS^...Sĵ _^ with linear complexity profile
(L(l),L(2),...,L(k)) (1 < k < n-1).
Consider the generation of s^.
If L(k) < k/2 then, by Theorem 2.5.1, there exists a
unique L(k)-stage LFSR (R, say) which can be used to
generate s^s^...s^_^.
Let u^ be the (k+1)^^ bit generated by R when it is
loaded with the initial state SQS^...s^^^^_^.

By the Berlekamp-Massey algorithm, if L(k) < k/2 then
either (i) L(k+1) = L(k)

or (ii) L(k+1) = k+1 - L(k).
(i) L(k+1) = L(k)

=> SqS^...Sĵ can be generated using R

=> ^k = "k-
(ii) L(k+1) = k+1 - L(k)

=> s^s^...s^ cannot be generated using R

= *k + 1
Therefore, if L(k) < k/2 then L(k+1) defines ŝ ̂

uniquely, given s^s^. . .Sj^_^.

If L(k) > k/2 then, by the Berlekamp-Massey algorithm,
L(k+1) = L(k), independent of s^. Thus, in this
situation we have two choices for s^.

By combining the cases L(k) < k/2 and L(k) > k/2 above,
it can be seen that the algorithm given below can be
used to generate an n-bit sequence SqS^...s^_^ with

- 100 -

linear complexity profile (L(l),L(2),...,L(n)). By
repeatedly using the algorithm we can construct the set
of all binary sequences with this profile. The
algorithm is as follows :-

Sq := L(l)
FOR k = 1 TO n-1 DO

IF L(k) < k/2
THEN

IF L(k+1) = L(k)
THEN := u^
IF L(k+1) = k+1 - L(k)
THEN Sy, := u^ + 1

END IF
IF L(k) > k/2
THEN Choose s^ to be either 0 or 1

END DO

The number of n-bit sequences with the given valid
linear complexity profile (L(l),L(2)...,L(n)) is exactly
the number of different sequences that can be generated
by the above algorithm.
But in the algorithm, Sĵ is fixed when L(k) < k/2, and
when L(k) > k/2 there are 2 choices for s^.

- 101 -

Hence, the number of n-bit sequences with linear
complexity profile (L(l),L(2),,,,,L(n)) is 2^, where
M is the cardinality of the set
{k : L(k) > k/2, 1 < k < n-1}.

□

We next use Lemma 3.4.1 to obtain our explicit
expression for the number of n-bit sequences with linear
complexity profile (L(l),L(2),...,L(n)) :-

Theorem 3.4.2.

Consider a given valid linear complexity profile
(L(l),L(2),...,L(n)).
There exist precisely 2^ distinct n-bit sequences which
have this profile, where

M = min(L(n),n-L(n)).

Proof

It is sufficient to prove that
I{k : L(k) > k/2, 1 < k < n-1)| = min(L(n),n-L(n))

for n > 1,
as the proof then follows by Lemma 3.4.1.

— 102 —

In other words, we will prove that the number of points
in the profile which are above the line y = x/2,
excluding the last point, is min(L(n),n-L(n)).

The proof is by induction.
The result is true for n = 1 trivially,
since L(l) = 0 or 1.

Suppose the result is true for n = N
(i.e. |(k : L(k) > k/2, 1 < k < N-l)| =

min(L(N),N-L(N))).
We will show that the result also holds for n = N+1
(i.e. I(k : L(k) > k/2, 1 < k < N)| =

min(L(N+l),N+1-L(N+1))).

We consider 3 cases, which cover all possibilities :-

(i) L(N) > N/2 (so L(N+1) = L(N)) :
I{k : L(k) > k/2, 1 < k < N)|

= |{k : L(k) > k/2, 1 < k < N-1)| + 1
= min(L(N),N-L(N)) + 1
= min(L(N),N-L(N)+1) (since N-L(N) < L(N))
= min(L(N+l),N+1-L(N+1)).

- 103 -

(ii) L(N) < N/2, L(N+1) = L(N) :
I(k : L(k) > k/2, 1 < k < N)|

= |{k : L(k) > k/2, 1 < k < N-l}|
= min(L(N),N-L(N))
= min(L(N),N-L(N)+l) (since L(N) < N-L(N))
= min(L(N+l),N+1-L(N+1)).

(iii) L(N) < N/2, L(N+1) = N+1-L(N) :
I(k : L(k) > k/2, 1 < k < N)I

= |(k : L(k) > k/2, 1 < k < N-1)|
= min(L(N),N-L(N))
= min(L(N),N-L(N)+l) (since L(N) < N-L(N))
= min(N+l-L(N+l),L(N+l)).

Combining the 3 cases above we see that
I(k : L(k) > k/2, 1 < k < N)| = min(L(N+l),N+1-L(N+1))
and hence, by induction,
I{k : L(k) > k/2, 1 < k < n-1)| = min(L(n),n-L(n))
for all n > 1.

□

Since the value M in the statement of the above theorem
is non-negative, for each valid linear complexity
profile there exists at least one binary sequence which
has that profile. Thus, every valid linear complexity
profile is possible and, since we already know that a

- 104 -

profile must be valid if it is possible, we have shown
that a linear complexity profile is possible if and only
if it is valid.

It can be seen from Theorem 3.4.2 that, for a given
integer n, the number of n-bit sequences with a
particular valid linear complexity profile
(L(l),L(2),...,L(n)) depends only on the final value
L(n) of the profile, and is independent of the values
L(l),L(2),...,L(n-l). For example, for even values of n
there are equally many n-bit sequences with a perfect
linear complexity profile (see Example 3.2.4) as there
are n-bit sequences with linear complexity profile
(0,0,...,0,^,^,...,^). The number of sequences in each
case is, in fact, 2^^^. These two profiles are
illustrated in Figure 3.4.1 below for n = 10.

6
4
2
0

8 100 2 4 6

6 4
4
2
0

+
+ +
I I I r

0 2 4

-+

+ +

1 I I I r
6 8 10

Figure 3.4.1. Two profiles with the same final value

— 105 —

As a corollary of Theorem 3.4.2 we can write down an
expression for the number of n-bit sequences with a
perfect linear complexity profile (i.e. with linear
complexity profile (1,1, 2 , 2, 3 , 3 , . . . , rn/2"l) : -

Corollary 3.4.3.

The number of n-bit sequences with a perfect linear
complexity profile is 2^, where

M = in/2j .

□

Having enumerated the number of sequences with a given
profile, we now derive an expression for the number of
different profiles with the same final value :-

Theorem 3.4.4.

Let (L(l),L(2),...,L(n)) denote the linear complexity
profile of an n-bit binary sequence.
For a given value K of L(n) (0 < K < n) there exist
exactly 2^ different valid linear complexity profiles
which have L(n) = K, where

0 if K = 0
M =

min(K-l,n-K) if 1 < K < n

- 106 -

Proof

The proof is by induction.

Let #(L(n) = K) denote the number of distinct valid
linear complexity profiles (L(l),L(2),...,L(n)) with
L(n) = K.

The result is true for n = 1 trivially,
since the only possible 1-bit sequences, 0 and 1, have
linear complexity profiles (0) and (1) respectively,
and thus #(L(1) = 0) = 1 and #(L(1) = 1) = 1.

Suppose the result is true for n = N.
Then #(L(N) = K) = 2^, where

M =
0 if K = 0
min(K-l,N-K) if 1 < K < N

We will show that the result also holds for n = N+1
(i.e. that #(L(N+1) = K) = 2^, where

M =
0 if K = 0
min(K-l,N+l-K) if 1 < K < N+1).

- 107 -

We consider 4 cases :-

(i) K = 0 ;

L(N+1) = 0 => L(N) = 0.
Therefore

#(L(N+1) = 0) = #(L(N) = 0)
= 1 •

(ii) 0 < K < :

L(N+1) < => L(N+1) = L(N)
(since (N+1,L(N+1)) is on or below the line y = x/2)

Therefore
#(L(N+1) = K) = #(L(N) = K)

= 2«
where M = min(K-l,N-K)

= min(K-l,N+l-K). (since K < N+l-K)

(iii) < K < N :

N+1If < L(N+1) < N then
either L(N+1) = L(N) or L(N+1) = N+1-L(N)

(since (N+1,L(N+1)) is above the line y = x/2)

- 108 -

Therefore
#(L(N+1) = K)

= #(L(N) = K) + #(L(N)

= 2^(1) + 2^(2)
where M(l) = min(K-l,N-K)
and M(2) = min(N-K,K-l).

Therefore #(L(N+1) = K) = 2
where M = min(K-l,N-K) + 1

= min(K-1,N+l-K).

M

N+l-K)
(since K N+l-K)

(since N-K < K-1)

(iv) K = N+1 :

L(N+1) = N+1 => L(N)' = 0 (see Example 3.2.2).
Therefore

#(L(N+1) = N+1) = #(L(N) = 0)
= 1.

By combining the 4 cases above it can be seen that
#(L(N+1) = K) = 2^, where

0 if K = 0
min(K-1,N+l-K) if 1 < K < N+1

Hence the result holds for n = N+1,
and therefore the result holds for all n > 1 by
induction.

M =

□

- 109 -

By combining Theorems 3.4.2 and 3.4.4 we can obtain an
expression for the number of n-bit sequences with local
linear complexity L. This result was proved by Rueppel
[15] by a different route.

Theorem 3.4.5.

The number of n-bit binary sequences with local linear
complexity L (L = 0,1,...,n) is 2^, where

r 0 if L = 0
M = <{

L min(2L-l,2n-2L) if 1 < L < n

Proof

By Theorem 3.4.2, for a fixed value of L(n), the number
of n-bit sequences with linear complexity profile
(L(l),L(2),...,L(n)) is the same for all possible values
of L(l),L(2),...,L(n-l) for which the profile is valid.
Thus, the number of n-bit sequences with local linear
complexity L is the product of the number of sequences
with a given valid linear complexity profile
(L(l),L(2),...,L(n)), where L(n) = L, and the number of
distinct valid linear complexity profiles with L(n) = L.

- 110 -

Hence, by Theorems 3.4.2 and 3.4.4, the number of n-bit
sequences with local linear complexity L

=

where M(l) = min(L,n-L) for L = 0,1,...,n
0 for L = 0
min(L-l,n-L) for L = 1,2,...,n

and M (2) =

But 2M(1).2»(2) = 2«, Where
min(L,n-L) for L = 0
min(L,n-L) + min(L-l,n-L) for L = 1,2,...,n

M =

0 for L = 0
min(2L-l,2n-2L) for L = 1,2,...,n

□

- Ill -

CHAPTER 4

SOME CONDITIONS ON
THE LINEAR COMPLEXITY PROFILES OF

CERTAIN BINARY SEQUENCES

- 112 -

4.1. INTRODUCTION

In Chapter 3 the linear complexity profile of an n-bit
sequence SqS^...s^^_^ was defined to be the vector
(L(l),L(2),...,L(n)), where L(k) is the local linear
complexity of SgS^...s^_^ (k = 1,2,...,n). The
"perfect" linear complexity profile was then defined to
be the linear complexity profile (1,1, 2 , 2 , 3 , . . . , fn/2~l) ,
the profile which is "closest" to the line y = x/2 .

In 1984 Rueppel conjectured in his thesis [14] that the
sequence 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 ..., defined by

Si : =
1 if i = 2 ^ - 1 for some r > 0

0 else
has the perfect linear complexity profile. This
conjecture was later proved to be true by Dai [5]. In
1986 Wang and Massey extended the result by
characterizing the set of binary sequences having the
perfect linear complexity profile; in [18] they showed
that an n-bit sequence SqS^...s^_^ has the perfect
profile if and only if s^ = 1 and s ^ = ^2i-i ^i-l
for 1 < i < We will refer to this result as the
"perfect profile characterization theorem", and return
to it in Section 4.3.

In this chapter we generalise the result first proved in
[18] to show that, if the bits of a binary sequence
satisfy certain linear equations of a similar type to

- 113 -

those in the statement of the perfect profile
characterization theorem, then the linear complexity
profile of that sequence will be constrained in some
way.

- 114 -

4.2. TWO FUNDAMENTAL LEMMAS

In this section we will prove two results that will
themselves be used repeatedly when proving results later
in this chapter. Note that most of the notation used
was introduced in Chapter 2. In particular, recall that
if the Berlekamp-Massey algorithm is applied to a binary
sequence s^s^...s^_^ then, after k iterations the loop,
the algorithm will have produced the connection
polynomial C^/x) of an L(k)-stage LFSR that could be
used to generate s^s^. . . Sj^_^, where L(k) is the local
linear complexity of s^s^...Sĵ _^. Recall also that the
extended form of the algorithm given in Section 2.6 also
produces a polynomial P^(x) of degree < L(k) such that

P%(X) = C%(x)S%(x) (mod
where S^Xx) := + s^x + ... + s^^^x^

We now proceed to the first of our two results :-

Lemma 4.2.1.

Let Cĵ (x) be the connection polynomial produced by the
Berlekamp-Massey algorithm after k iterations of its
loop, and let P^/x) be as defined in Section 2.6.

Suppose that two consecutive jumps in the linear
complexity profile of a binary sequence occur with the
a(r)^^ and a(r+l)^^ bits in the sequence.

— 115 —

Then
Pa(r)-l(x)Ck(x) + Pk(x)Ca(r)_i(x) = (4.2.1)

for a(r) < k < a(r+l)

Proof

The proof is by induction.
Firstly, assume that the first and second jumps occur
with the a(l)^^ and a (2)^^ bits in the sequence
respectively. (We will assume throughout that the i^^
jump in the profile occurs with the a(i)^^ bit in the
sequence). Then the Berlekamp-Massey algorithm as
described in Section 2.6 gives the following sequence of
polynomials :-

C%(x) P%(x) L(k)

0 1 0 0
1 1 0 0

2 1 0 0

a(l)-l 1 0 0

a(l) 1 + x^(l) a(l)

a(2)-l Ca(2)-i(x) ^ a(l)
a(2) Ca(2)(x) a(2)-a(l)

— 116 —

Thus it can be seen that, for a(l) < k < a(2),

Pa(l)-l(x)Ck(x) + Pk(x)Ca(i)_i(x) = O.C%(x) + xa(l)-l.l
=

Hence, (4.2.1) holds for r = 1.

Now suppose (4.2.1) holds for r = R-1 (R > 2)
We will prove that (4.2.1) also holds for r = R.

Let a(R) < k < a(R+l).
From the Berlekamp-Massey algorithm as stated in
Section 2.6 it can be seen that, if a(R) < k < a(R+l),

c%(x) = C%_i(x) + 5.x®B(x)

and P%(x) = P%_i(x) + 5.x®Q(x)
for some 5 = 0 or 1 ,

where B(x) = Q(%) = ^a(R)-l^^^
and a = k-a(R).

Hence it can be seen that, if a(R) < k < a(R+l),

c%(x) = Ca(R)(x) + (g^x + + ...
+ 8 X^”^)Q*k-a(R)X ̂ a(R)-l

and P%(x) = Pg(R)(x) + (5^x + + ...
+ 8 x ^ ~ ^)p*k-a(R)X J^a(R)-l

for some ^^ 2 '‘ '^k-a(R) = ̂ °r 1.

- 117 -

Thus, for all k such that a(R) < k < a(R+l),

CfcCx) = Ca(R)(x) + F(x)C^^2)_i(x)

and P%(x) = Pa(R)(x) + P(x)Pa(R)_i(x)

for some polynomial F(x).
(F(x) = 0 if k = a(R))

Similarly, C^(r)_i (x) = Ca(R_i)(%) + G(x)Ca(R_i)_i(x)

^a(R)-l(*) ^ ^a(R-l)(*) G(x)Pa(R-l)-l(*)
for some polynomial G(x). (4.2.2)

Thus, c%(x) = C^(R)(X) + F(x)Ca(R_i)(x)
+ F(x)G(x)Ca(R_i)_i(x)

and P%(x) = Pa(R)(X) +
+ F(x)G(x)Pa(R_i)_i(x)

Therefore, Pa(r)-i + Pk(*)Ca(R)_i(x)

^ [ca(R)(x) + F(x)Ca(p_i)(x) + F(x)G(x)C^^j,_j^j_j^(x) j .

(Pa(R-l)(x) G(x)Fa(R-l)-l(*)]

+ [Pa(R)(x) + f(x)Pa(R-l)(x) + f(x)G(x)Pa(R-l)-l(x)]'
[ca(R-l)(x) + G(x)C^^2 _^)_^(x)j

- 118 -

[Pa(R-l)(x)Ca(R)(x) + Pa(R)(x)Ca(2 _i)(x)j

+ F(x)[Pa(R-l)(x)Ca(R-l)(x) ■'■ Pa(R-l)(*)Ca(R_i)(x)j

+ F(x)G(x)|Pa(R-l)-l(*)Ca(R_i)(x)
^a(R-l)(*)Ca(R_i)_i(x) + Pa(R-l)(x)Ca(R_i)_i(x)

^a(R-l)-l(x)Ca(R_i)(x)j

+ G(x)(Pa(R-l)-l(x)Ca(R)(x) + Pa(R)(*)C^(R-l)-l(x)]

+ F(x)G (x)^Pa(R-l)-l(*)Ca(R_i)_i(x)

Pa(R-l)-l(x)Ca(R_i)_i(x)]

[^a(R-l)(*)Ca(R)(x) + Pa(R)(x)Ca(R_i)(x)j

+ G(x)^P2(p_i)_i(x)Ca(2)(x) + Pa(R)(x)Cg^g_i)_^(x)j

[^a(R-l)(*)Ca(R)(x) + Pa(R)(x)Cg(2 _i)(x)j

+ G(x)
(since (4.2.1) holds for r = R-1)

From the Berlekamp-Massey algorithm as given in
Section 2.6 it can also be seen that

^h(R)(*) Ca(R)_i(x) + X ̂ ̂ ̂ ^Ca(R_i)_i(x)

^a(R)(*) ^ ^a(R)-l(x) + x ̂ ̂ ̂ ^^a(R-1)-1

— 119 —

Therefore,
^a(R)-l(*)C%(x) + Pk(x)C^^2)_i(x)

(Pa(R-l)(x)Ca(R)_i(x) + Pa(R)-i(^)Ga(R_i)(x)j

+ x a (*) - a (* - l) [P a (R _ i) (x) (x)

^a(R-l)-l(x)Ca(R_i)(x)j

+ G(x)

[^a(R-l)(x)Ca(p_i)(x) + Pa(R-l)(*)Ca(p_i)(x)]

+ G(x)|Pa(R-l)(x)Ca(%_i)_i(x) + Pa(R-l)-l(*)Ca(R_i)(x)j

+ xa(*)-a(*-l)[Pa(R_i)(x)Ca(R_i)_i(x)

^a(R-l)-l(x)Ca(R_i)(x)j

+ G(x).x^(^ ̂ (by equation (4.2.2))

= G(x).xa(*-1)-1 + xa(R)-a(R-l) ^a(R-l)-!
+ G(x)

(since (4.2.1) holds for r = R-1)

= xa(*)-l

Therefore (4.2.1) holds for r = R.

□

- 120 -

We now move on to our second lemma :-

Lemma 4.2.2.

Let C^(x) be the connection polynomial produced when the
Berlekamp-Massey algorithm is applied to the n-bit
sequence SqS^...s^_^, and let P^(x) be as defined in
Section 2.6.

s(x) := =0 + s^x + S2x 2 + ... ,

T(x) •= =0 + + + -- ,

U(x) := + S3X + = 5%^ +
Suppose that

x“a(x)T(x^) + x^B(x)U(x^) + x'>'c(x)S(x^) s S (mod x™)
where m < min(o:+n,y9+n-l,7 +2 n)

for some polynomials A(x), B(x), C(x), and some integers
a, 7 > 0 and 5 = 0 or 1 .
Then

x7c(x)p2(x) + x*A(x)Pn(x)C^(x)
+ (x*+lA(x) + x^B(x))[Pj^(x)Cj^(x)]'

+ 5 c^(x) = 0 (mod X™).

Proof

We begin by expressing S(x^), T(x^) and U(x^) in terms
of S(x) :-

S(x^) = Sq + s^x^ + SgX^ + ...
= (Sq + S^X + SgX^ + ...)^

= S^(X)

- 121 -

T(x^) = Sq + SgX^ + s^x^ + ...
2 3 5= (Sq + S^X + S^X +) + (S^X + S^X + SgX + ...)
2 2 = (Sq + S^X + S^x + . . .) + X(SQ + s^x + s^x + ...)'

= S (X) + xS' (x)

U(x^) = + SgX^ + SgX^ + ...
= (Sq + S^X + SgX^ + ...)'

= S'(X)

By supposition,
x“a(x)T(x^) + x^B(x)U(x^) + x'’'c(x)S(x^) = S (mod x“)

Thus,
x“a (x)(S(x) + XS'(X)) + x^B(x)S'(x) + x‘>'c(x)S^(x)

= S (mod x^)
and so

x^C(x)S^(x) + x^A(x)S(x) + (x^^^A(x) + x^B(x))S'(x)
= 8 (mod x^) (4.2.3)

Now consider the n-bit sequence SqS^...s^_^
n— 1and recall that S: (x) := s_ + s_x + ... + s_ _xn' ' 0 1 n- 1

By inspection it can be seen that
x'>'c(x)S^(x) + x“a (x)S(x) + (x°^lA(x) + x^B(x))S'(x)
= x^C(x)S^(x) + x“a (x)Sĵ (x) + (x°^^A(x) + x^B(x))S^(x)

(mod xmin(a+n,^+n-l,T+2 n))

Hence, since m < min(a+n,^+n-l,7 + 2 n), (4.2.3) gives
x^C(x)s2(x) + x“a (x)Sĵ (x) + (X^+lA(X) + X^B(X))S^(X)

= 8 (mod x^) (4.2.4)

- 122 -

But from equation (2.6.5),
Sn(x) = (Pn(x) + x"G^(x)) / C^(x)

for some polynomial G^(x)
= D^(x) / C^(x)

where D^^x) = P^^x) + x^G^(x).

Therefore
S^fx) = (P„(x) + x"G^(x))2 / c2(x)

= (p2 (x) + x 2 "g2 (x)) / c2 (x)
(since the coefficients of our polynomials are in GF(2))

= En(x) / c2 (x)
where E^(x) = P^(x) + x^"g^(x),

and
S^(x) = [(Pj^(x) + ’x "g ^(x)) / C^(x)]'

= (C^(x)[P^(x) + x"G^(x)]'
+ cy(x) (P^(x) + x"G^(x)))

= (Cn(x)P^(x) + nx""^Cj^(x)G^(x) + x"c^
/ c2 (x)
(X)G^(X)

+ C^(x)P^(x) + x"c^(x)Gn(x)) / c2 (x)
= Fn(x) / c2 (x).

Thus, (4.2.4) gives
x'>'c(x)Ej^(x)/c2 (x) + x“a(x)Djj(x)/C|3 (x)

+ (x*+lA(x) + x^B(x))Fj^(x)/C^(x) ^ S (mod x^)
and so

x7c(x)E^(x) + X*A(X)D^(X)C^(X)
+ (x“'*‘̂ A(x) + X^B(X))Fj^(x) + 5c^(x) = 0 (mod x^)

- 123 -

But D^(x) = P^fx) (mod x"),
E^fx) - P^(x) (mod x2"),
Fn<x) = Pj|(x)C^(x) + P^(x)Cj^(x) (mod x”"^) .

Hence, since m < min(a+n,y0+n-l,7 + 2 n) ,
x^C(x)p2(x) + x"A(x)P^(x)C^(x)

+ (x*+lA(x) + x^B(x))[P^(x)Cn(x)]' + 5C^(x)
= 0 (mod x^)

□

- 124 -

4.3. THE PERFECT PROFILE CHARACTERIZATION THEOREM AND AN
EXTENSION

The perfect profile characterization theorem states that
a binary sequence SqS^...s^_^ has the perfect linear
complexity profile if and only if s^ = 1 and

= ^2i-i ®i-i 1 < i < In this section we
present a new proof of this theorem (it was originally
proved in [18]), and extend the result by considering
also those sequences with s^ = 0 and
^2 i ~ ®2i“l ^ ^i-1’ Thus, we consider all sequences for

2 i = =2 i-l + Si- 1which s^. = s^j ̂ + s. , for i > 1 .

We begin by proving a lemma which is a more general
version of Lemma 3 of [18] : -

Lemma 4.3.1.

Let C^(x) be the connection polynomial produced when the
Berlekamp-Massey algorithm is applied to the n-bit
sequence s^s^. . . , and let P^(x) be as defined in
Section 2.6.
If Sq = 5 and s ^ = ^2i~l ^i- 1 1 < i <
then x2p2(x) + P^(x)C^(x) + (x+x^) [P̂ (̂x) (x)] '

+ 5c^(x) = 0 (mod x^)

- 125 -

Proof

Consider the infinite binary sequence s^s^Sg...
and let S(x) := s^ + s^x + + . . . ,

T(x) := Sq + s^x + 8 4 %^ + ...
and U(x) := s^ + s^x + 8 5 x2 + ...

2 iThen the coefficient of x in
T(x^) + x^U(x^) + x^S(x^) is

Sq if i = 0

=2 i + S2 i- 1 + =i-l if i > 1

Thus, if Sq = 5 and ®2 i--1 + Si-
for 1 < i < n- 1

then T(x^) + x^U(x^)*+ x^S(x^) = 5 (mod x^)

We now invoke Lemma 4.2.2, taking a = 0, ^ = 2 , 7 = 2 ,
A(x) = B(x) = C(x) = 1 and m = n.
Hence, if s^ = 5 and = ^2i-i ^i-l

then
for 1 < i < n- 1

2

X^p2(x) + Pn(x)Cj^(x) + (x+x^) [P^(x)Cj^(x)]' + 6c 2(x)
= 0 (mod x*̂)

□

— 126 —

We now present a new proof of the perfect profile
characterization theorem, using Lemmas 4.2.1 and 4.3.1.
Note that in this proof (and henceforth) we will often,
for simplicity, write and instead of and
Pk(x).

Theorem 4.3.2.

An n-bit sequence SqS^...s^_^ has the perfect linear
complexity profile if and only if Sq = 1 and

=21 = =21-1 + =1-1 for 1 < 1 < Bel.

Proof

Suppose that Sq = 1 and s ^ = ^2i-i ^i-1
n- 1
2 •

Then, since Sq = 1, the first jump in the linear
complexity profile of SqS^...Sj^_^ has height 1 .

From Section 3.3 it can be seen that, if two consecutive
jumps (the r^^ and (r+1)^^, say) in the linear
complexity profile of SqS^...s^^_^ occur with the a(r)^^
and a(r+l)^^ bits in the sequence, then there exists an
integer m with a(r) < 2m < a(r+l) and L(2m) = m.
Let a(r+l) = 2m+j,
so L(a(r+1)) = a(r+l) - L(a(r+1)-1) = 2m+j - m = m+j
=> the (r+1)^^ jump in the profile has height j.

- 127 -

Assume that the first r jumps in the profile all have
height 1 , and in particular that the r^^ jump has
height 1 ,
so L(a(r)) = a(r) - L(a(r)-1)
=> m = a(r) - (m-1)
=> a(r) = 2m-l.
We will show that j = 1 , so that, by induction, all the
jumps in the profile have height 1 .

Since 2.L(2m+i-l) < 2m+i-l for 1 < i < j, the
Berlekamp-Massey algorithm as described in Section 2.6
gives the following sequence of polynomials :-

k Cĵ (x) P%(x) L(k)

^2m-2 ^2 m- 2 “"f
*̂211-1 ^2m-l ®

2“ <=2^ Pgm ™
2 m+l C 2^ Pzm

_Slti ^2 m ™
2 m+j C2 m+ xi+"c2 m _ 2 P2 m+

- 128 -

Czm+j = + xi+lc2 m _ 2

^2m+j ^ ^2m '*' 2̂in-2

Since Sq = 1 and = ^2i-l ®i-l 1 < i <

^"^L+j + P2m+j^2m+j + (%+%') [P2m+iC2m+j]' + ^L+j
= 0 (mod (by Lemma 4.3.1)

=> x'(P2m + %i^'P2 m-2)'

■*■ ^^2 m ■'■ ^2 m-2 ̂ f^m-2)

+ (%+%') [(P2m + xi+'P2 m-2)(C2m + ^ ^ ^ S m - 2)]'

+ (C2m + m 0 (mod x 2m+i)

=> x'P2m + P2m^2 m + [P2 m^2m] ' +

+ X ̂ (X P2m-2 ■*' f’2m-2*'2m-2 ̂̂ ^2m-2^2m-2 ̂ ’

j.l " ":m-2)
+ (P2 mC2m - 2 + P2m-2 <=2 m)

+ (x+x2)[xi+l(P2mC2m _ 2 + P2m-2 Sm)]'
= 0 (mod x^m+i) (4.3.1)

But by Lemma 4.3.1,

x'f2m + P2m S m + (^ + ^ ') [V 2ml' + ^^m = °
And by Theorem 2.6.1,
max (deg 1 + deg Pg^) = L(2m) = m
and so either deg = 1 + deg P^^ = m

deg = m > 1 + deg Pg^
or 1 + deg ™ > "̂ ĝ

- 129 -

If deg = 1 + deg = m then

deg (x2 p2 ^ + PzmCzm + (%+%') [PzmCgm]' + ^ L) =
and the same result also holds if
deg = m > 1 + deg P^^ or if

1 Pgm = m > (̂ =9 Cgm-

Therefore x^P^^ + Pzmfzm +

Also by Lemma 4.3.1,

^ ^2m - 2 ^2m-2 ^2m - 2 ̂ ^2m-2 ^2m - 2 ̂ ^2m - 2

= 0 (mod x 2 m-2)
And by Theorem 2.6.1,

max (deg 1 + deg Pg^.g) = L(2 m-2) = m - 1

so that deg (x P2m _ 2 + ^2m-2 S m - 2)[^2 m-2 ^2 m-2]'
+ C2 m-2 > < 2m - 2

Therefore x ^p ^^,^ + P2^_2Sm-2 + tP2m-2Sm-2l '

+ C2 m - 2 = °
(= o:x2 ™”2 ̂ say, where a = 0 or 1)

By Lemma 4.2.1, P2mf2m-2 f2m-2^2m = x2 ”>-2

Therefore equation (4.3.1) gives

x2m ^ x2j+2.ax2m-2 + xJ+V™"^ + (x+x^) [x^+V""2) '
= 0 (mod x^™^i)

=> x 2m + x2 m+i-l + (x+x2)(j-l)x2 m+i- 2 = 0 (mod x^m+i)

=> x2 “ + j.x2“+i-f m 0 (mod x 2™+i)

=> j = 1

- 130 -

Thus we have shown that if Sq = 1 and
^2 i “ ^2 i-l ®i-l 1 < i < then all the jumps
in the linear complexity profile of SqS^...Sj^_^ have
height 1 .
But if all the jumps in the linear complexity profile of
a binary sequence have height 1 then that sequence must
have the perfect linear complexity profile, and thus
SqS^...Sj^_^ has the perfect linear complexity profile.

To complete the proof we use a counting arguement :-
The number of n-bit sequences with Sq = 1 and

= ^2i-l ^i- 1 1 < i < is since
these equations fix all the even-indexed bits in the
sequence but none of the odd-indexed ones.

And by Corollary 3.4.3, the number of n-bit sequences
with the perfect linear complexity profile is also
2 .

Thus, every sequence SqS^...s^_^ which has the perfect
profile must satisfy the equations Sq = 1 and

= 2 1 = =2 1 - 1 + =1 - 1 for 1 < 1 <

□

- 131 -

We now move on to consider sequences with
S2 i = S2 i_i + ®i-l' iri Theorem 4.3.2, but with
Sq = 0 instead of Sq = 1. Firstly we prove that the
linear complexity profiles of such sequences can only
have jumps of certain heights :-

Theorem 4.3.3.

Let SqS^...s^_^ be an n-bit sequence with Sq = 0 and

= 2 1 = =2 1 - 1 + =1 - 1 for 1 < 1 <
Then the linear complexity profile of SqS^...s^^_^ has
no jumps of odd height > 1 .

Proof

The sequence SQS^...s^_^ = 00...0 satisfies the theorem
trivially, since its linear complexity profile has no
jumps.
For any other sequence satisfying the given equations
the first jump in the profile must have even height,
since it must occur with bit s_. _ (i.e. the 2 i^^ bit in21-1
the sequence) for some integer i, and thus it must have
height 2 i.

Suppose that two consecutive jumps in the linear
complexity profile of So^l*’*^n-l (^he r^^ and (r+1)^^,
say) occur with the a(r)^^ and a(r+l)^^ bits in the
sequence.
From Section 3.3 it can be seen that there exists an
integer m with a(r) < 2m < a(r+l) and L(2m) = m.

- 132 -

Let a(r+l) = 2m+j,
so L(a(r+1)) = a(r+l) - L(a(r+1)-1) = 2m+j - m = m+j
=> (r+1)^^ jump has height j .
And let a(r) = 2m-h,
so L(a(r)) = a(r) - L(a(r)-1)
=> m = 2m-h - L(a(r)-1)
=> L(a(r)-1) = m-h
=> jump has height h.

Since 2.L(2m+i-l) < 2m+i-l for 1 < i < j, the
Berlekamp-Massey algorithm as described in Section 2 .6

gives the following sequence of polynomials :-

k C^Xx) P%(x) L(k)

1 ^2 m-h-l ^2 m-h-l ^ ^
C2 m-h ^2m-h

f S m - 1 ^ 2m-l ™
2 ™ ^2^ Pzm “

2 m+l C 2m ^21,

- 133 -

ThuS' Czm+i = S m +

^2m+j ^ f’2m 'f f’2 m-h-l

By Lemma 4.3.1,
since s^ = 0 and s ^ = ^2i-l ^i- 1 1 < i <

x'P2m+i + P2 m+j^2 m+j + [P2m+j^2m+j^ '

= 0 (mod x2m+i)

=> x'(P2 m + %i+^P2m-h-l)'

+ (P2m + ^^■'Sm-h-l) (C2 m +

+ (x+x")[(P2m + xi+^P2m-h-l)(C2 m + ^^^‘'Sm-h-l) ̂ '
= 0 (mod

=> x'p'm + V 2m + (%+%') [P2 mC2m]'

+ x"i+:h(x2 p^m-h-l + P2m-h-lSm-h-l

+ (x+x) [P2iti-h-lSm-h-l^ ’ ̂
f ^^2 m‘̂2m-h-l f ^2m-h-l'^2m^

+ (x+x2)[xi+h(P2mC2m_h_l + P2m-h-lC2m)]'
s 0 (mod x2™+i) (4.3.2)

But by Lemma 4.3.1,

x'P2m + ^2m S m + [P2m S m l ' " °
And by Theorem 2.6.1,
max (deg 1 + deg Pg^) = L(2m) = m

so that deg (x^P^^ + P^m^Zm + [P2 m S m ^ ' > < ^m

- 134 -

Therefore + Pz^Cgm + [P2m^2m]'
= 0 or (= ax^^, say, where a = 0 or 1)

Also by Lemma 4.3.1,

^ ^2m-h-l ■'■ ^2m-h-lf^2m-h-l ̂[^2 m-h-l‘22m-h-l^ ’
= 0 (mod x^^ ^

And by Theorem 2.6.1,
max (deg 1 + deg P^m-h-l) = L(2m-h-l) = m-h

so that deg (x2 p2 ^_j^_^ + P2m-h-1 ^2 m-h-l

+ (x+x")[P2m-h-lC2m-h-l]') < 2m-2 h

Therefore x2p2^_^_^ + P2m-h-iC2m-h-l
+ (x+x)[P2m-h-1 ^2m-h-l^’

0 or x^^ ̂ if h = 1
(= /3x^^ ^ , say, where ^ = 0 or 1)

if h > 1

2 n\“h " 1
By Lemma 4.2.1, P2mC2m-h-l + P2m - h -lSm = ^

Therefore equation (4.3.2) gives

j+h^2 m-h-l (x+x2)[xi+hx2 m-h-l]' + ax^®
x^i+Z ^%2m - 2 _ 0 (mod x^”''̂)̂ if h = 1
0 = 0 (mod x^™^i) if h > 1

X

= >
x2m+j-l + (x+x2)(i-l)x2m+i- 2 + ox^™ +

= 0 (mod if h = 1

x2 m+j-l + (x+x2)(i-l)x2m+i- 2 + ax 2m

— 13 5 —

=> x2 m+j-l ^) + ax 2m

= 0 (mod)

=>].x2 m+i-l + ex2m _ o (mod x^m+î)

> either j is even
or j = 1

□

Having shown that the only odd height jumps that the
linear complexity profile of sequences of this type can
have are of height 1 , we now show that no two
consecutive jumps can have height 1 :-

Theorem 4.3.4.

Let SqS^...Sĵ _^ be an n-bit sequence with s^ = 0 and

=2 i = =2 1 - 1 + =1 - 1 1 < 1 <
Then the linear complexity profile of SqS^...s^_^ cannot
have two consecutive jumps of height 1 .

Proof

Since s^ = 0, the first jump cannot have height 1.
Assume that the linear complexity profile of SqS^...s^_^
has two consecutive jumps of height 1 (the r^^ and
(r+1)^^ jumps, say), and that these jumps occur with the
a(r)^^ and a(r+l)^^ bits in the sequence.

— 13 6 —

Then, from Section 3.3 it can be seen that there exists
an integer m such that a(r) < 2m < a(r+l) and
L (2m) — m .
Also L(a(r)) = a(r) - L(a(r)-1) => m = a(r) - (m-1)
=> a(r) = 2m-l,
and L(a(r+1)) = a(r+l) - L(a(r+1)-1)
=> m+ 1 = a(r+l) - m => a(r+l) = 2m+l
Assume also that these are the first two consecutive
jumps of height 1 , and that the (r-1)^^ jump had height
h > 1 .
Then L(a(r-1)) = a(r-l) - L(a(r-1)-1)
=> m - 1 = a(r-l) - (m-h-1)
=> a(r-l) = 2m-h- 2 t
By Theorem 4.3.3, h is even.

Now 2.L(2m-2) < 2m-2, 2.L(2m-l) > 2m-l and
2.L(2m) < 2m, and thus the Berlekamp-Massey algorithm as
described in Section 2.6 gives the following sequence of
polynomials :-

- 137 -

C]̂ (x) P%(x) L(k)

2m-h-3 ^2m-h-3 ^2m-h-3 m h 1
2 m-h- 2 C2m-h- 2 ^2 m-h- 2

C2 m - 2 f’2 m - 2 “"f
C2m-2* ^ Sm-h-3 ^2m-2+ ^ ^2m-h-3 “

^xC2m - 2 ^2m-l'*' ^^^2m-2 “
2 m+l C2 ^+ x'c2 m _ 2 P2 m+ x'P2 m - 2

where 5 = 0 or 1

Thus, + X C2m-2

*̂2in *̂2111-1 ■*■ ^*^2m - 2

C = C +^2m-l 2m-2 2m-h-3

and therefore + SxC^ ^ _ 2 + x^C^^.g

= (x2 + 5x + 1)C2^_2 + xh+lc2m_h_3

Similarly P^m+i = (%" + + D P 2m - 2 + %^^^P2m-h-3

By Lemma 4.3.1,
since Sq = 0 and s ^ = ^2i-l '*’ ^i- 1 1 < i <

^ ^2m+l ^2m+1 ^2m+l ̂•̂ 2̂m+ 1 ^2m+l^ '
= 0 (mod %2 m+lj

- 138 -

=> x 2((x 2+5x +1)P2^_2 + xh+lp2m_h_3)2

+ ((x"+;x+l)P2 m _ 2 + x'^lP2m-h-3)((x'+Cx+l)C2m-2

+ (X+x2).[((x 2+5x+1)P2m_2 + x^+^P2m-h-3)•
((x 2+5x+1)C2^_2 + xh+lc2m_h_3)]'

= 0 (mod xfrn+l)

=> (x2+5x+l)2(x2p2^_2 + P2 m_2 C2m _ 2

+ (x+x2)[P2m_2C2m_2]')
^ ^2m-h-3 'f ^2m-h-3^2m-h-3

+ (x+x2)[P2m-h_3C2m-h-3]')
+ (X +5x+l)x (P2m-2^2m-h-3 ^ ^2m-h-3*^2m-2^

+ (x + x 2) [(x 2 + g x + l) % h + l (P 2 m _ 2 C 2 m _ h - 3 + P 2 m - h - 3 ^ m - 2)] '

= 0 (mod x^M+l) (4.3.3)

But by Lemma 4.3.1,

x'P2 m - 2 + ^2m-2 S m - 2 + [P2 m-2 S m - 2 ̂ '
= 0 (mod

And by Theorem 2.6.1,
max (deg 1 + deg P2m-2'̂ = L(2m-2) = m-1

so that deg (x ^2m-2 ^2m-2 ^2m - 2 ̂l̂ 2̂m-2 ^2m - 2 ̂ ^
 ̂ 2m — 2

Therefore x^P^^,^ + P2m-2C2m-2 + > [P2m-2Sm-2^ '
= ax^^"^, where a = 0 or 1 .

Also by Lemma 4.3.1,

^ ^2m-h-3 ^2m-h-3^2m-h-3 ̂ ^2m-h-3^2m-h-3 ̂ '
- 0 (mod x2m-h-3)

- 139 -

And by Theorem 2.6.1,
max (deg ̂+ deg Pjm-h-S^ = L(2m-h-3) = m-h-1

so that deg + P2n,-h-3‘=2m-h-3
+ (x+x2)[P2m_h_3C2m_h-3]') < 2m-2h-2 < 2m-h-4

Therefore x2p2^_h_3 + P2m-h-3^2m-h-3
+ (x+x) [P2m-h-3Sm-h-3^ " ^ °

Also, by Lemma 4.2.1,
P C + P C = y2m—h—32m—2 2m—h—3 2m—h—3 2m—2

Therefore equation (4.3.3) gives

(x^+Sx+l)^QX^”'“ ̂ + (x^+gx+ljxh+fx^M-h-S
+ (x+x2)[(x2 +gx+l)xh+lx2 ™"h-3 j, _ Q (mod x^^+l)

=> (x^+5 x^+l).ax^”*"̂ + (x^+Sx+ljx^™” ̂ + (x+x^)5 x^“”^
s 0 (mod x^m+l)

=> 05x2™ + ax2 ™ - 2 + x 2™ + 5x2™-! + x2 m - 2 + gx2m-l
+ 5 x 2™ _ 0 (mod x 2™+!)

=> (a + l).x2™-2 + (o5 + 1 + 5).x2™ = 0 (mod x2™+!)
=> a + 1 = 0 and olS + 1 + 5 = 0

=> a = 1 and 5 + 1 + 5 = 0

= > 1 = 0 !

Thus we have a contradiction, so the linear complexity
profile of SQS^...s^_^ cannot have two consecutive jumps
of height 1 .

□

- 14 0 -

4.4. SEQUENCES WHICH SATISFY A DIFFERENT SET OF LINEAR
EQUATIONS

Section 4.3 dealt with n-bit sequences s^s^...s^_^ which
satisfy the equation ^2i ~ ^2 i-l ^i- 1
for 1 < i < In this section we will consider
sequences which satisfy a different set of linear
equations - we will consider n-bit sequences s^s^...s^_^
for which s^^^^ “ ^2 i “̂i 1 < i < Note that
a sequence of this type can be formed by taking a
subsequence consisting of the first n- 1 bits of one of
the sequences discussed in Section 4.3 and adding an n^^
bit to the beginning of it.

As in Section 4.3 we begin by proving a lemma :-

Lemma 4.4.1.

Let C^(x) be the connection polynomial produced when the
Berlekamp-Massey algorithm is applied to the n-bit
sequence SQS^...s^_^, and let P^(x) be as defined in
Section 2.6.
If s^ = 5 and 3^^+^ = + s^ for 1 < i <
then p2(x) + Pj^(x)Cj^(x) + (1+x) [P^(x)C^(x)]'

+ 5c2(x) = 0 (mod X™"!)

- 141 -

Proof

Consider the infinite binary sequence s^s^s^
let S(X) := =0 + SiX + =2%^ + . . .

T(X) •= =0 + =2'' + =4%^ + . . .
and U(x) := + S3 X + s^x2 + . . .

2 iThen the coefficient of x in
U(%2) + T(%2) + S(%2) is

= 1 + = 0 + = 0 = = 1 if ! = 0
=2 1 + 1 + = 2 1 + = 1 if i > 1

Thus, if s^ = 5 and ^2i+l ^ ^2i ^i 1 < i <

then U(x^) + T(x^) f S(x^) = 5 (mod x^ .

We now invoke Lemma 4.2.2, taking a = = 7 = 0,
A(x) = B(x) = C(x) = 1 and m = n-1.
Hence, if s^ = 5 and ^2i+l ^ ^2i ^i

n- 2
2

for 1 < i <
then

n- 2
2

Pn(x) + Pn(x)Cn(x) + (1+x) [Pĵ (x) Cĵ (x)] ' + Sc^^x)
s 0 (mod X™ i)

□

Having proved Lemma 4.4.1 we will now use it to show
that if a binary sequence So^l’**^n-l satisfies
s_.,_ = s_. + s. for 1 < i < then the linearA 1"T A1 1 At
complexity profile of SqS^...s ^̂ _̂ can only have jumps of

- 142 -

certain heights. We will treat the sequences with
s^ = 0 and s^ = 1 separately. Firstly we consider
the case s^ = 0 :-

Theorem 4.4.2.

Let SqS^...s^__^ be an n-bit sequence with s^ = 0 and

=2 i+l = = 2 1 + = 1 1 < i <
Then the linear complexity profile of SqS^...s ^̂ _̂ has no
jumps of even height.

Proof

The n-bit sequence 00...0 satisfies the theorem
trivially, since its linear complexity profile has no
jumps.
For any other sequence SqS^...s ^̂ _̂ satisfying the given
equations the first jump in the profile must have odd
height, since it must occur with bit (i.e. the
(2 i+l)^^ bit in the sequence) for some integer i, and
thus it must have height 2 i+l.

Suppose that two consecutive jumps in the linear
complexity profile of SqS^...s^^_^ (the r^^ and (r+1)^^,
say) occur with the a(r)^^ and a(r+l)^^ bits in the
sequence.
From Section 3.3 it can be seen that there exists an
integer m with a(r) < 2m < a(r+l) and L(2m) = m.

— 14 3 —

Let a(r) = 2m-h and a(r+l) = 2m+j.
Then, as in the proof of Theorem 4.3.3, the r^^ and
(r+1)^^ jumps have heights h and j respectively, and the
Berlekamp-Massey algorithm as described in Section 2 .6

gives

^2m+j ^ ^2m ^2m-h-l
^2 m+j ^2m ^2m-h-l

By Lemma 4.4.1,
n- 2

1 - " "2 i+l “ "2 i ' "i """" " ̂ ̂ 2 'since s„ = 0 and s^j.^ = s^j + s. for 1 < i <

Pzm+i + Pam+jSm+j + [P2m+jSm+j ̂ '
= 0 (mod

=> (P2m + %i^^P2m-h-l)'

+ (P2m + (Czm +

+ (!+%)[(?2 m + xi+^P2 m-h-l)(C2 m + ̂'
= 0 (mod x2™+i-!)

=> p L + V 2m + (! + ^) [V 2m^'
+ x2j^2b,p2 + p C

2m-h— 1 2m-h— 1 2m—h — 1

+ (l+x)[P2m-h-1 ^2m-h-l^^
^2m-h-l^2 m^

+ (l+x)[xi+h(P2mC2m-h-l + P2m-h-1^2m)]'

= 0 (mod x^^^i (4.4.1)

But by Lemma 4.4.1,

+ V 2 m + (!+%)[P2 mC2m]' " ° (™°d

— 144 —

And by Theorem 2.6.1,
max (deg 1 + deg = L(2m) = m

so that deg + P^^C^^ + d+x)[P 2^C2 ^] ') < 2m-l

Therefore P^^ + Pz^Cza + d+^>[P 2mC2 m]'
= 0 or x^^~^ (= ax^^“ ,̂ say, where a = 0 or 1)

Also by Lemma 4.4.1,

^2 m-h-l "P !*2in-h-1^2iti-h-l (l+xiCPgQ.h-iCgm-h-l]'
= 0 (mod x^^ ^

And by Theorem 2.6.1,
max (deg Cg^-h-i' ̂ + deg P^m-h-l) L(2m-h-l) = m-h

so that deg (P^m-h-l ^2m-h-1 ^2m-h-l

Therefore Pg^-h-i + P2m-h-1^2m-h-l
+ (l+x)[P2m-h-lC2m-h-l]') < 2m-2 h-l

-h- 1
+ (l+x)[P2^^h-lC2m-h-l]'

0 or x^^ ̂ if h = 1
(= 0 x^^ ^, say, where y0 = 0 or 1)

if h > 1

2m-h-lBy Lemma 4.2.1, ^2m^2m-h-l ^2m-h-1^2m = X

Therefore equation (4.4.1) gives

0 x 2™-! + xi+h^Zm-h-l + (i+x)[x3+V™-^-!]'

x2 i+2 ^x2™-! s 0 (mod x^m+j-l^ h = 1

0 = 0 (mod x2 ™+]-!) if h > 1
+ ■*

- 145 -

+

=> 0x2™ - ! ^ x2m+j-l + (i+x).(j-l).x2™+j-2

/9x2™+2j-l ^ 0 (mod %2™+i-!) if h = 1
0 5 0 (mod x2™+i-!) if h > 1

;> o%2 ™-! + (i_i).x2™+i- 2 - 0 (mod x2 ™+^-!)
> j is odd

□

Having dealt with sequences with ^2i+l ~ ^2i ^i
s^ = 0 , we now consider sequences with

=2 i+l = =2 i + =i ="■! = 1 = ! :-

Theorem 4.4.3.

Let SqS^...s^_^ be an n-bit sequence with s^ = 1 and

=2 i+l = =2 i + =i for 1 < i <
Then the linear complexity profile of SqS^...s^^_^ has no
jumps of even height > 2 .

Proof

Since s^ = 1, the linear complexity profile of any
sequence satisfying the given equations must have at
least one jump.
For any sequence which satisfies the given equations,
the first jump in the profile must occur either with bit
Sq (if Sq = 1) or with bit s^ (if Sq = 0), and thus it

- 146 -

must have either height 1 (if Sq = 1) or height 2 (if
Sq = 0). Hence the first jump in the profile does not
contradict the theorem.

Suppose that two consecutive jumps in the linear
complexity profile of SqS^...s^_^ (the r^^ and (r+1)^^,
say) occur with the a(r)^^ and a(r+l)^^ bits in the
sequence.
From Section 3.3 it can be seen that there exists an
integer m with a(r) < 2m < a(r+l) and L(2m) = m.
Let a(r) = 2m-h and a(r+l) = 2m+j.
Then, as in the proof of Theorem 4.3.3, the r^^ and
(r+1)^^ jumps have heights h and j respectively, and the
Berlekamp-Massey algorithm as described in Section 2 .6

gives

C2m+i ^2 m

P2m+j = ^2m +

By Lemma 4.4.1,
since s^ = 1 and for 1 < i <

^2m+j !“2m+j^2in+j ^ '^^2m+j‘̂ 2m+j ̂ ^ f̂ 2m+j
= 0 (mod x^™^i)̂

(^2 m ^2m-h-l)

+ (P2m + (C2 m + ^^^^^2 in-h-l)

+ (!+%)[(Pzm + xi+^P2m-h-l)(C2m + ̂'

+ (C2m + " ° (™°d

- 147 -

=> 4 m + V 2m + (l+x)[P2 mC2m]' + 4 m

+ y2 j+2 h,p2 _|_ p Q
2m—h — 1 2m—h— 1 2m—h — 1

+ (l+xiLPgm-h-l^Zm-h-l]' ^2 m-h-l^

+ x^ !’2 m-h-1 ^2 m^

+ (l+x)[xi+h(P2mC2m_h_l + P2m-h-lSm)] '
= 0 (mod (4.4.2)

But by Lemma 4.4.1,

4 m + V 2m + (!+x)[P2mC2m]' ^ 4 m ^ ° (™°d x^™'!)
And by Theorem 2.6.1,
max (deg 1 + deg Pg^) = L(2m) = m
so that deg (P^^ + P^^C^^ + (!+%) [92*^2%]' + ^ L) <

Therefore P^^ + P2mC2m + (!+^>

= Q^x^^ + where and = 0 or 1 .

Also by Lemma 4.4.1,

f’2 m-h-l "P !’2m-h-lSm-h-l (l+x)[P2 m-h-1 ^2m-h-l]'
+ c'm-h-l - ° (™°a x 2 ™-h- 2)

And by Theorem 2.6.1,
max (deg ! + f^m-h-l' = L(2m-h-l) = m-h

so that deg (P^m-h-i + P’2m-h-1 ^2m-h-l

+ (l+x)[P2 m_h-lC2m-h-l]' Sm-h-l^ ̂ 2 m-2h

- 148 -

Therefore

^2m-h-l ^2m-h-1 ^2in-h-l ̂ •̂ 2̂m-h-1 ^2m-h-l^ '

+ C2m—h — 1 ySĵ x

0

2m-4
l ' ^ 2

if h= 2 (yŜ = 0 or 1)

if h> 2

By Lemma 4.2.1, Pzmfzm-h-l + P2m-h-1^2m = ^2 m-h-l

Therefore equation (4.4.2) gives

a.x"'*“ + + xi+^x2m h - 1 (i+x)]̂ '2m 2m*1^ ■ -2

x2 j+2 (^^x2®-2 + ^^x2 ™“2) s 0 (mod x^M+i"!) if h=l

= 0 (mod x^™*] !) if h= 2

= 0 (mod x2 ™^i !) if h > 2

x2i+4^^x2m-4

=> o^x^™ + OgX^™ ! + (i-l)x2™+i 2 = 0 (mod x 2™+i !)

=> either j is odd
or j = 2

□

- 149 -

4.5. A MORE GENERAL THEORY

In Sections 4.3 and 4.4 we concerned ourselves, for each
theorem, with sequences which satisfied a certain set of
linear equations. In this section we will derive more
general results in the sense that, for each theorem, we
will consider a class of sets of linear equations rather
than a specific set of equations. The previous two
sections involved sequences in which every other bit was
the sum of the preceding bit and a bit approximately
"half way back". In the more general theory of this
section we will be concerned with sequences in which,
roughly speaking, every other bit is the sum of a number
of the preceding few bits and a number of bits
approximately "half way back". It will be shown that
the linear complexity profile of a sequence of the
appropriate type is restricted in the sense that its
profile can have no jumps of a certain parity above a
certain height.

We will deal with the sequences in two groups, according
to whether their "fixed" bits (i.e. the ones which can
be expressed as a sum of previous bits) are the ones
with odd or even indices. We begin with the sequences
whose fixed bits have odd indices :-

— 150 —

Lemma 4.5.1.

Let C^(x) be the connection polynomial produced when the
Berlekamp-Massey algorithm is applied to the n-bit
sequence SqS^...s^_^, and let P^(x) be as defined in
Section 2.6.

®2 i+l-2w
®2 i+l-2 x(l) ^2 i+l-2 x(2) + s2 i+l-2 x(a)
^2 i-2 y(l) ®2 i-2y(2) ^ + ^2 i-2 y(b)
®i-z(l) ^i-z(2) ^ ^i-z(c)

for min(w,z(l)) < i < min(^+w-l,n+z(1)-1)
where s^ := 0 for ^ < 0

(w < x(l) < x(2) <
w < y(l) < y (2) < .

< x(a),
< y(b), z(l) < z(2) < ... < z(c),

a > 0 , b > 0 , c > 0)
then

+ (x2 y(i)+x2 y(2)+

(3j2 z(1)̂ ĵ 2 z(2)^ ... +x2 z(c))p2 (x)

.. +x2 y(b))p^(x)C^(x)

+x2 x(a)
+%2y (!)+!+ +x2 y(b)+l)[P^(x)C^]

+ (x2 w+x2 x(l) +

n
- 0 (mod %min(2w+n-l,2 z(l)+2 n))

Proof

the infinite binary sequence s^s^s^.
S(x) = = ^ 0 + S f X + S2 %: + ...

T(x) = = = 0 + ^2 ^ + 3 4 %^ + ...

U(x) := + S 3 X + + ...

- 151 —

2 iThen the coefficient of x in

(x2"+x2 x(l)+x2 %(2)+ ... +x2 x(a))U(x2)
+ (x2y(l)+x2y(2)+ ... +x2y(b))T(x2)
+ (x2z(l)+x2z(2)+ ... +x2z(C))S(x2) is

®2 i+l-2w‘‘' ^^i+l-2 x(l)+ ^^i+l-2 x(2)+ ... + 32i+l-2x(a)
S2 i-2 y(l)+ G^i-2 y(2)+ ••• + ®2 i-2 y(b)
Gi-z(i)+ ®i-z(2)'̂ ••• ®i-z(c)

Therefore, if the conditions of the lemma hold
then

(x2w+x2 x(l)+x2 x(2)^ +x2 x(a))U(%2)
+ (x2y(l)+x2y(2)+ _ + x ^ y) T (x ^)
+ (x2 z(l)+x2 %(2)+ ... +x2 z(c))s(x2)

- 0 (mod xmin(2w+n-l,2 z(l)+2 n))

We now invoke Lemma 4.2.2, taking
a = 2y(l) / P = 2 w, 7 = 2 z (1), 5 = 0 ,
A(x) = 1 + ^ 2y(2)-2 y(l) + ^2y(b)-2 y(l) ̂

B(x) = 1 + x 2 x(1)-2w ^ ^ 2 x(a)-2w ^ /
C(x) = 1 + ^ 2 z(2)-2 z(l) ^ + 2 z(c)-2 z(l)^ t

and m = min(2w+n-l,2 z (1)+ 2 n) (< min(a+n,0 +n-l,7 + 2 n))

— 152 —

Hence, if the conditions of the lemma hold
then

(x2 z(l)+x2 z(2)+ ... +x2 :(c))p2 (x)

+ (x2y(i)+x2 y(2)+ ... +x2 y(b))p^(x)c^(x)
+ (x2w+x2 x(l)+ ... +x2 x(a)

+x^y(l)+l+ ... +x2 y(b)+lj^p^^x)c^(x)]'

^ 0 (mod xmin(2 w+n-l,2 z(l)+2 n))

□

Theorem 4.5.2.

Let SqS^...S ĵ _^ be an n-bit sequence with

®2 i+l-2w ^ ®2 i+l-2 x(l) ®2 i+l-2 x(2) + ••• + ®2 i+l-2 x(a)
* ®2 i-2y(l) ^2 i-2 y(2) + ••• + ®2 i-2 y(b)

®i-z(l) ®i-z(2) + ••• + ®i-z(c)
for min(w,z(l)) < i < min(^+w-l,n+z(1)-1),

where s^ := 0 for £ < 0

(w < x(l) < x(2) < ... < x(a),
w < y(l) < y (2) < — < y(b), z(l) < z(2) < ... < z(c),

a > 0 , b > 0 , c > 0) .

Then the height j of any jump in the linear complexity
profile of SgS^...s^_^ must satisfy either (i) or (ii)
below :-

(i) j odd
(ii) j < max(2 z(c)-2w,2y(b)-2w+l,2 x(a)-2w)

- 153 -

Proof

The n-bit sequence 00...0 satisfies the theorem
trivially since its linear complexity profile has no
jumps.
For any other sequence SqS^...s^_^ satisfying the given
equations the first jump in the profile must have odd
height, since it must occur with bit s ^ (i . e . the
(2 i+l)^^ bit in the sequence) for some integer i, and
thus it must have height 2 i+l.

Suppose that two consecutive jumps in the linear
complexity profile of SqS^...s^_^ (the r^^ and (r+l)^^,
say) occur with the *a(r)^^ and a(r+l)^^ bits in the
sequence.
From Section 3.3 it can be seen that there exists an
integer m with a(r) < 2m < a(r+l) and L(2m) = m.
Let a(r) = 2m-h and a(r+l) = 2m+j.
Then, as in the proof of Theorem 4.3.3, the r^^ and
(r+1)^^ jumps have heights h and j respectively, and the
Berlekamp-Massey algorithm as described in Section 2 .6

gives

^2m+j “ ^2 m ^ ^ ^2m-h-l

P2 m+j = P2m + %i+^P2m-h-l

— 154 —

By Lemma 4.5.1, if the conditions of the theorem hold
then

(x2 :(l)+x2 :(2)+ ...
+ (x2 y(l)+x2 y(2)+ ... +X=y(b))p2^+.C2^^.
+ (x2"+x2 x(l)+ ... +x2 x(a)

+x2 y(l)+l+ ... +x2 y(b)+l)[P2^^.C2m+j]'
= 0 (mod xmin(2z(l)+4m+2j,2w+2m+j-l)j

-> ...

+ ... +x2 y'bi,

+ (x2w+x2x(l)+ ... +x2x(a)+x2y(l)+l+ ... +x2y(^)+l)

• [(P2 m+ %i+^P2m-h-l) (C2m+ ^̂ "'''=2m-h-l)] '
= 0 (mod xmin(2z(l)+4m+2i,2w+2m+j-l))

=> A(x) + B(x) + C(x) + D(x)
- 0 (m o d x “ i " (2 z (l) + 4 m + 2 j , 2 w + 2 m + j - l) j (4 . 5 . 1)

where

A(x) = (x2z(l)+ ... +x2z(c))p2^

+ (x2 y(i)+ ... +x2 y(b))p^^c2 m

+ (x2 "+x2 x(l)+ ... +x2 x(a)
+ x 2 y (l) + l + . . . + x 2 y (b) + l) [P 2 ^ C 2 ^] '

B(x) = x2i+2h((x2z(l)+ ... +x2z(c))p2^

+ (x2 y(l)+ ... +x^^<‘=^)P2m - h - l % - h - l
+ (x2"+x2 x(l)+ ... +x2 x(a)+x2 y(l)+l+ ... +x2y(b)+l)

• l ^ ^ 2 m - h - 1 ^ 2 m - h - l ^ ' ^

- 155 -

C(x) = (x2y(l)+ ... +%2 y(b))
^2m-h-1^2in^

and
D(x) = (x2"+x2x(l)+ ... +x2x(a)

+ x2y(i)+i+ ... +x:y(b)+i)

But by Lemma 4.5.1
A(x) - 0 (mod xmin(2z(l)+4m,2w+2m-l))

And by Theorem 2.6.1,
max (deg 1 + deg Pg^) = L(2 m) = m
SO that

deg A(x) < max,(2z (c)+2m-2 , 2y (b)+2m-l, 2x(a)+2m-2)

Therefore, A(x) =
^ ^min(2z(l)+4m,2w+2m-l)
^ ^ min(2z(1)+4m,2w+2m-l)+1 ,' Q! 2 I • • •

, ^ max(2 z(c)+2m-2 ,2 y(b)+2m-l,2 x(a)+2 m-2)# * * I QîpX

for some fOt̂ = 0 or 1. (4.5.2)

Also by Lemma 4.5.1,
B(x) / x^i+Zh = 0 (mod x™in(2z(l)+4m-2h-2,2w+2m-h-2))

=> B(x) m 0 (mod x”i"(2z(l)+4m+2j-2,2w+2m+2j+h-2)J

=> B(x) = ^^^min(2z(l)+4m+2j-2,2w+2m+2j+h-2) 4. _ _
, n min(2z (1)+4m+2j—1,2w+2m+j—2)... + P g X

(mod x m i n (2 z (l) + 4 m + 2 j , 2 w + 2 m + j - l) ^

for some = 0 or 1. (4 . 5 . 3)

— 156 —

By Lemma 4.2.1, Pzmfzm-h-l + f^m-h-l^zm =

Hence C(x) = (x^y^^^+ ... +x2y(b))xi+hx2m-h-l (4 .5 .4)

and D(x) = (x2"+x2x(l)+ ...
+x2 y(l)+l+ ... +x2 y(b)+l).[xi+hx2 m-h-l]'

(4.5.5)

Combining equations (4.5.1) to (4.5.5) we obtain

^ ^min(2z (1)+4m, 2w+2m-l) _j_
, ^ max(2 z(c)+2m-2 ,2 y(b)+2m-l,2 x(a)+2m-2)

• • • ”T" w XJr
. n min(2z(l)+4m+2j-2,2w+2m+2j+h-2) ,t ^ J^X i e * *

, n min(2z(1)+4m+2j-1,2w+2m+j-2)... -h PgX

+ (x2 y(l)+ ... +x2 y(b))x2m+i-l

+ (x2"+x2 x(l)+ ... +x2 x(a)
+x2y (!)+!+ ... +x2 y(b)+l).(i_i).x2m+i- 2

^ 0 (mod x™i"(2z(l)+4m+2j,2w+2m+j-l))

=> a^x™i"(2 2 (l)+2m,2w-l) +

... + a x™3x(2z(c)-2,2y(b)-l,2x(a)-2)

n min (2 z (1)+2 m+ 2 j- 2 , 2wH-2 j+h— 2)"t* yD̂ X “i • • •
, n min(2 z (1)+ 2m+2 j-1 ,2w+j-2). . . -h P q X

+ (x2 y(i)+ ... +x2 y(b)).j.xj-i

+ (x2"+x2x(l)+ ... +x2x(a)).(i-l).xi-2
^ 0 (mod x™i"(2 z(l)+2m+2 j,2w+j-l)j

- 157 -

=> e^xmin(2 z(l)+2m,2w-l) ^ _

+ a xmax(2 z(c)-2 ,2 y(b)-l,2 x(a)-2)
P

^ ^ ^min(2 z (1)+ 2m+2 j-2 ,2w+2 j+h-2) ^
n min(2 z(l)+2m+2 j-l,2w+j-2)... + P g X

+ (j-l).x2 «+i- 2 ^ 0 (mod xmln(2 z(l)+2m+2 i,2w+i-l))

(since w < x(l) < ... < x(a)
and w < y(l) < ... < y(b))

Thus, by considering the x^^^i ̂ term it can be seen
that j must satisfy either (i), (ii) or (iii) below :-

(i) j odd
(ii) min(2 z (1)+ 2m,2 w-l) < 2w+j- 2

< max(2 z(c)-2 ,2 y(b)-l,2 x(a)-2)
(=> j < max(2 z(c)-2w,2 y(b)-2w+l,2 x(a)-2wj)

(iii) min(2 z (1)+ 2m+2 j-2 ,2w+2 j+h-2) < 2w+j- 2
< min(2 z (1)+ 2m+2 j-1 ,2w+j-2)

(=> 2m+j < 2w-2 z(l), since 2w+2 j+h- 2 > 2w+j-2)

But if (iii) is true, then 2m+j < 2(w-z(l))
and so w-z(l) > 0 (i.e. z(l) < w).
Hence, if (iii) is true then :-

2 i+l-2w < 0 for min(w,z(l)) = z(l) < i < w;
2 i+l-2 x(k) < 0 (k = 1 ,2 ,...,a)

for min(w,z(l)) = z(l) < i < w
(since w < x(l) < x(2) < ... < x(a));

2 i-2 y(k) < 0 (k = 1 ,2 ,...,b)
for min(w,z(l)) = z(l) < i < w

(since w < y(l) < y (2) < ... < y(b)).

- 158 -

and thus, since s^ := 0 for ê < 0

®2 i+l-2w " ° for min(w,z(l)) = z(l) < i < w;
®2 i+l-2 x(k) " ° = 1 ,2 ,...,a)

for min(w,z(l)) = z(l) < i < w;

=2 i-2 y(k) = ° = 1 ,2 ,...,b)
for min(w,z(l)) = z(l) < i < w.

Therefore, from the conditions of the theorem it can be
seen that, since i-z(l) > i-z(2) > ... > i-z(c),

^i-z(l) ~ ̂for min(w,z(l)) = z(l) < i < w;
i.e. s^ = 0 for 0 < i < w-z(l).

Thus, the first jump in the linear complexity profile of
Sq S^...s^_^ must have height at least w-z(l)+l, so that
m = L(2m) = L(a(r)) > L(a(l)) > w-z(l)+l.
Hence 2m+j > 2m > 2w-2z(l)+2, which contradicts
"2m+j < 2w-2 z(l)", and so j cannot satisfy (iii).

Therefore j must satisfy either (i) or (ii) below :-

(i) j odd
(ii) j < max(2 z(c)-2w,2 y(b)-2w+l,2 x(a)-2wj

□

— 159 —

We now deal with sequences whose fixed bits have even
indices :-

Lemma 4.5.3.

Let C^(x) be the connection polynomial produced when the
Berlekamp-Massey algorithm is applied to the n-bit
sequence SqS^...s^_^, and let P^(x) be as defined in
Section 2.6.

®2 i-2w
" ®2 i+l-2 x(l) ®2 l+l-2 x(2) + ••• + ®2 i+l-2 x(a)

®2 i-2 y(l) ^2 i-2y(2) + ••• + ®2 i-2 y(b)
®i-z(2) ••• ®i-z(c)

for min(w,z(l)) < i < min(^^^+w,n+z(l)-l)
where s^ := 0 for £ < 0

(w < x(l) < x(2) < ... < x(a),
w < y(l) < y(2) < ... < y(b), z(l) < z(2) < ... < z(c),

a > 0 , b > 0 , c > 0)

then (x2 z(l)+x2 2 (2)+ ... + x ^ ^)P^(x)

+ (x2w+x2 y(i)+x2 y(2)+ ... +%2y(b))Pn(x)Cn(x)

+ (x2"+l+x2 x(l)+ ... +x2 x(a)
+x2y(l)+l+ _ +x2 y(b)+l)[p^(x)c^]'

= 0 (mod xmin(2w+n,2 z(l)+2 n))

— 160 —

Proof

Consider the infinite binary sequence s^s^Sg
and let S(x) := Sq + s^x + :2 X= +

T(x) := Sq + s^x + 4- . . .
and U(x) := s^ + s^x + Sgx2 + . . .

Then the coefficient of x^^ in

(x2"+x2 y(l)+x2 y(2)+ ... +x2 y(b))T(x2)
+ (x2 x(l)+x2 x(2)+ ... +x2 x(a))U(x2)
+ (x2 :(l)+x2 :(2)+ ... +x2 :(c))S(x2)

S2 i-2w+ ®2 i-2 y(l)'^ ®2 i-2 y(2)'*' ••• + ^2 i-2 y(b)
®2 i+l-2 x(l)'*' s^i+l-2 x(2)+ ... + 32i+l-2x(a)

+ =i-z(l)+ ®i-z(2)+ ••• + Si-z(c)

Therefore, if the conditions of the lemma hold
then

(x2 *+x2 y(i)+x2 y(2)+ ... +x2 y(b))T(x2)
+ (x2 x(l)+x2 %(2)+ ... +x2 x(a))U(x2)
+ (x2 :(l)+x2 :(2)+ ... +x2 :(c))S(x2)

- 0 (mod xmin(2w+n,2 z(l)+2 n)

We now invoke Lemma 4.2.2, taking
a = 2w, /3 = 2 x(l) , 7 = 2 z(l), 5 = 0 ,
A(X) = 1 + x2y(l)-2" + ... + x2y(b)-2w,
B(x) = 1 + x 2^(2)-2x (1) ^ ^ x2x(a)-2x(l)^
C(x) = 1 + x 2"(2)-2z (1) + + x2z(c)-2z(l)^

and m = min(2w+n,2 z (1)+2 n) (< min(a+n,^+n-l,7 + 2 n)).

— 161 —

Hence, if the conditions of the lemma hold
then

(x2 z(l)+x2 z(2)^ ... +x2 z(C))p2 (x)
+ (x^*+x2 y(i)+x2 y(^)+ ... +x^y(^))p^(x)c^(x)
+ (x2"+l+x2x(l)+...+x2x(a)

+x2 y(l)+l+,, .+x2 y(b)+l) [P^(x)Cj^(x)] '

- 0 (mod xmin(2w+n,2 z(l)+2 n))

□

Theorem 4.5.4.

Let SqS^...Sĵ _^ be an n-bit sequence with

®2 i-2 w ^ ®2 i+l-2 x(l) ^2 i+l-2 x(2) + ••• + ^2 i+l-2 x(a)
®2 i-2 y(l) ®2 i-2y(2) + ••• + ®2 i-2 y(b)

* ®i-z(l) ®i-z(2) + ••• + ®i-z(c)
for min(w,z(l)) < i < min(^^^+w,n+z (1)-1) ,

where s^ := 0 for £ < 0

(w < x(l) < x(2) < ... < x(a),
w < y(l) < y(2) < ... < y(b), z(l) < z(2) < ... < z(c),

a > 0 , b > 0 , c > 0).

Then the height j of any jump in the linear complexity
profile of SqS^...s ^̂ _̂ must satisfy either (i) or (ii)
below : -

(i) j even
(ii) j < max(2 z(c)-2w-l,2y(b)-2w,2 x(a)-2w-l)

- 162 -

Proof

The n-bit sequence 00...0 satisfies the theorem
trivially, since its linear complexity profile has no
jumps.
For any other sequence s^s^... s^^^ satisfying the given
equations the first jump in the profile must have even
height, since it must occur with bit ^2i-i the
2 i^^ bit in the sequenc
it must have height 2 i.
2 i^^ bit in the sequence) for some integer i, and thus

Suppose that two consecutive jumps in the linear
complexity profile of SqS^...s^^_^ (the r^^ and (r+1)^^,
say) occur with the a(r)^^ and a(r+l)^^ bits in the
sequence.
From Section 3.3 it can be seen that there exists an
integer m with a(r) < 2m < a(r+l) and L(2m) = m.
Let a(r) = 2m-h and a(r+l) = 2m+j.
Then, as in the proof of Theorem 4,3.3, the r^^ and
(r+1)^^ jumps have heights h and j respectively, and the
Berlekamp-Massey algorithm as described in Section 2 .6

gives

^2m+j ^ ^2m ^2m-h-l

^2mtj = ^2m + xi+^P2m-h-l

- 163 -

By Lemma 4.5.3, if the conditions of the theorem hold
then

(x2 z(l)+x2 z(2)+ ... +x2 z(c))p2^^j

+ (x ^ v y (l) + x ^ y (^) + ... +x^^(^')P2 m+3 C2 m+j

+ (x2*+l+x2 x(l)+ ... +x2 x(a)
+x2 y(l)+f+ ... +x2 y(b)+l)[P2^+.C2 ^+j]'
= 0 (mod xmin(2z(l)+4m+2j,2w+2m+i))

=> (x2 :(l)+ ... +x2 :(c))(P2m+ ^ ^ ^ S m - h - l) "

+ (x2 w+x2y(l)+ ... +x2 y(b))
• (^2m+ ^2m-h-l^ (^^m+ ‘̂2 m-h-l^

+ (x2 "+l+x2 x(l)+ ... +x2 x(a)+x2y (!)+!+ ... +x2y(b)+l)
• [(2̂ m+ ^^^Sm- h - l) (C2 m+ ^ ^ ^ S m - h - l > ̂ '

^ 0 (mod x™i"(2z(l)+4m+2j,2w+2m+i))

=> A(x) + B(x) + C(x) + D(x)
- 0 (mod x’"i*^(2z(l)+4m+2j,2w+2m+j)j (4 .5 .6)

where

A(X) = (x2=(l)+ ... +x2z(C))p2^

+ (x2"+x2y(l)+ ... +x2y(b))p2^C2m

+ (x2"+l+x2 x(l)+ ... +x2 x(a)
+x2 y(l)+l+ ... +x2 y(b)+l)(P2 ^C2^]'

B (X) = x2]+2h((x2z(l)+ ... +x^^^‘"^)PL-h-l

+ ...
+ (x2"+l+x2x(l)+ ... +x2x(a)+x2y(!)+!+ ... +x2y(b)+lj

^ ^ 2 m — h — 1 ^ 2 m — h — 1^

— 164 —

c(x) = (x2*+x2 y(i)+ ...
^2in-h-1^2m^

and
D(x) = (x2"+l+x2x(l)+ ... +x2x(a)

+x2 y(l)+l+ ... +x2 y(b)+l)

-[xi+^(P2mC2 m-h-l + P2m-h-lC2 m)]'

But by Lemma 4.5.3
A(x) . 0 (mod xmin(2z(l)+4m,2w+2m))

And by Theorem 2.6.1,
max (deg 1 + deg = L(2m) = m
so that

deg A(x) < ma%(2z(c)+2m-2,2y(b)+2m-l,2x(a)+2m-2)

Therefore, A(x) =
^ min(2z(1)+4m,2w+2m) , ^ min(2 z (1)+4m,2w+2m) + 1

“T 0 2̂^ "T * . .

, ^ max(2 z(c)+2m-2 ,2y(b)+2m-l,2 x(a)+2m-2)
• • • I Q!pX

for some f • • •/Q̂ p = 0 or 1. (4.5.7)

Also by Lemma 4.5.3,
B(x) / x2J+2h ^ 0 (mod xmin(2z(l)+4m-2h-2,2w+2m-h-l))

=> B(x) = 0 (mod xmin(2z(l)+4m+2i-2,2w+2m+2j+h-l))

=> B(x) = ^ j^min(2z(l)+4m+2j-2,2w+2m+2j+h-l) ^
a min(2z(l)+4m+2j-l,2w+2m+j-l)... -i- PgX
(mod xmin(2z(l)+4m+2i,2w+2m+i)j

for some = 0 or 1. (4.5.8)

— 165 —

By Lemma 4.2.1, + P2m-h-1^2m = x^m-h-l

Hence C(x) = (x^^+x^yd)^ ... +x^y (̂))
(4.5.9)

and D(x) = (x^^^^+x^*(^)+ __ +x^*(^)
+x:y(i)+i+ ... +x2 y(b)+i)

. , (4.5.10)

Combining equations (4.5.6) to (4.5.10) we obtain

^ ^min(2z(1)+4m,2w+2m) ^
^ ^ ^max(2 z(c)+2m-2 ,2 y(b)+2m-l,2 x(a)+2m-2)

, o min(2z (1)+4m+2j—2,2w+2m+2j+h—1)
* • • •

n min(2z(l)+4m+2j-l,2w+2m+j-l)... t- PgX

+ (x2"+x2 y(l)+ ... +x2 y(b))%2m+i-l

+ (x2"+l+x2x(l)+...+x2x(a)+x2y(l)+l+...+x2y(b)+l)
.(i-l).x2 ™+i- 2

= 0 (mod xmin(2z(l)+4m+2j,2w+2m+i)j

=> ce^x^in(2 z(l)+2m,2w) ^

+ a xmax(2 z(c)-2 ,2 y(b)-l,2 x(a)-2)

+ P ĵ inin(2z (1)+2m+2 j-2 , 2w+2j+h-l) ^

, n min(2z(1)+2m+2j-1,2w+j-1)... 1- PqX

+ (x2"+x2y(i)+ ... +x2y(b)).j.xi-i
+ (x2 x(l)+ ... +x2 x(a)).(i-i).xi" 2

= 0 (mod xmin(2z(l)+2m+2j,2w+i))

— 166 —

=> a xmin(2 z(l)+2m,2w) +
^ ... + a xmax(2 z(c)-2 ,2 y(b)-l,2 x(a)-2)

, n min(2 z (1)+2 m+2 j-2 ,2 w+2 j+h“l) ,
I “r • • •

. n min(2 z (1)+ 2in+ 2 j-1 , 2w+j-l)... -I- PgX

+ j.x2w+i-l - 0 (mod xmin(2 z(l)+2m+2 j,2w+j))

(since w < x(l) < ... < x(a)
and w < y(l) < ... < y(b))

Thus, by considering the x^^+j-l term it can be seen
that j must satisfy either (i), (ii) or (iii) below :-

(i) j even
(ii) min(2 z (1)+2m,2w) < 2w+j-l

< max(2 z(c)-2 ,2 y(b)-1 ,2 x(a)-2)
(=> j < max(2 z(c)-2w-l,2y(b)-2w, 2 x(a)-2w-l)

(iii) min(2 z (1)+2 m+2 j-2 ,2w+2 j+h-1) < 2w+j-l
< min(2 z (1)+2m+2 j-1 ,2w+j-l)

(=> 2m+j < 2w-2 z(l)+l, since 2w+ 2 j+h- 1 > 2w+j-l)

But if (iii) is true, then 2m+j < 2(w-z(l))+l
and so w-z(l) > 0 (i.e. z(l) < w) .
Hence, if (iii) is true then : -

2 i-2w < 0 for min(w,z(l)) = z(l) < i < w;
2 i+l-2 x(k) < 0 (k = 1 ,2 ,...,a)

for min(w,z(l)) = z(l) < i < w
(since w < x(l) < x(2) < ... < x(a));

2 i-2 y(k) < 0 (k = 1 ,2 ,...,b)
for min(w,z(l)) = z(l) < i < w

(since w < y(l) < y (2) < ... < y(b)).

— 167 —

and thus, since s^ := 0 for £ < 0 i-
®2 i-2w ^ ® for min(w,z(l)) = z(l) < i < w;
^2 i+l-2 x(k) ^ ° 1,2,...,a)

for min(w,z(l)) = z(l) < i < w;
®2 i-2 y(k) ° (k = 1 ,2 , . . . ,b)

for min(w,z(l)) = z(l) < i < w.
Therefore, from the conditions of the theorem it can be
seen that, since i-z(l) > i-z(2) > ... > i-z(c),

^i-z(l) ^ ® for min(w,z(l)) = z(l) < i < w;
i.e. s^ = 0 for 0 < i < w-z(l).

Thus, the first jump in the linear complexity profile of
SgS^...s^_^ must have height at least w-z(l)+l, so that
m = L(2m) = L(a(r)) > L(a(l)) > w-z(l)+l.
Hence 2m+j > 2m > 2w-2z(l)+2, which contradicts
"2m+j < 2w-2 z(l)+l", and so j cannot satisfy (iii).

Therefore j must satisfy either (i) or (ii) below :-

(i) j even
(ii) j < max(2z(c)-2w-l,2y(b)-2w,2x(a)-2W“1)

□

- 168 -

Example 4.5.1.

As an example of the way in which the general theory of
this section can be applied to a binary sequence which
satisfies a particular set of linear equations, consider
an n-bit sequence Sq S^...s^_^ which satisfies the
following conditions :-

s^ = 0

®2 i+l = =2 i-l + Si + s._i for 1 < i < f-1.
If we let s^ := 0 for £ < 0, then the above conditions
can be simplified to :-

=2 i+l = =2 1 - 1 + = 1 + =1 - 1 ° i < §- 1 -
But if we take a = 1, b = 0, c = 2, w = 0, x(l) = 1 ,
z(l) = 0 and z(2) = ‘1 in Theorem 4.5.2, then we see
that the conditions of the theorem are exactly the
conditions above.
Hence, by Theorem 4.5.2, if s^ = 0 and
®2 l+l " =2 1 - 1 + 3i + Sf-i for 1 < 1 < |- 1 , then
the linear complexity profile of SQS^...s^_^ has no
jumps of even height greater than 2 .

The results in this section go some way towards
generalising the results obtained in Sections 4.3 and
4.4 of this chapter. The question remains as to whether
further generalisations are possible. For instance,
might it be possible to obtain a more general version of
Theorem 4.3.4? Or are there any restrictions on the

— 169 —

linear complexity profiles of sequences which satisfy
linear equations such as s^^^^ = s^^ + s^,
s^ ^ ^ 2 ~ ®4 i ®3i+l' etc. These and other such
questions remain to be answered.

- 170 -

CHAPTER 5

STATISTICAL TESTS FOR RANDOMNESS

- 171 -

5.1. INTRODUCTION

In Section 1.2 the need to perform statistical testing
on sections of enciphering sequence for use in stream
cipher systems was established. For a sequence
generator to be suitable for use in a stream cipher
system, it is important that sections of output from the
generator should be indistinguishable from randomly
generated sequences of the same length. Thus,
statistical tests for local randomness must be performed
on sections of sequence generator output to check
whether or not this is the case.

An important property of any such statistical test for
randomness is that a certain percentage of random binary
sequences should pass the test. If we denote this
percentage by (1 0 0 -a)%, then a% is known as the
significance level of the test and is the percentage of
random binary sequences that would "fail" the test.

To derive a statistical test for local randomness, a
test statistic which reflects some property of a
sequence is found, with the property that the
distribution of the test statistic is known for the set
of all binary sequences. A critical region is then
defined such that, for (1 0 0 -#)% of all binary sequences,
the test statistic lies outside the critical region. In
order to perform the test on a given sequence the test
statistic is computed. The sequence is said to have

- 172 -

failed the test if the computed statistic lies inside
the critical region; otherwise the sequence is said to
have passed the test at the a% significance level.

It is important to note that, even if a sequence
generator has the desired statistical properties (i.e.
its output sequences are indistinguishable from randomly
generated sequences), a% of all output sequences will
fail any given statistical test. Hence, if a single
output sequence happens to fail the test, then this does
not necessarily imply a weakness in the generator. Thus
it can be seen that the term "fail" is perhaps rather
misleading when used in this context.

In this final chapter of the thesis we discuss the
statistical testing of binary sequences. We begin by
briefly reviewing some previously published statistical
tests for local randomness. We then derive an
expression for the number of n-bit sequences with a
given number of jumps in their linear complexity
profiles, and use this expression to compute the mean
and variance of the number of jumps in the profile of a
random n-bit sequence. Next we describe a statistical
test for randomness based on the number of jumps in the
linear complexity profile of a binary sequence, before
moving on to discuss further tests based on the
distribution of jump heights.

- 173 -

Note that the idea of using the linear complexity
profile of a sequence to construct statistical tests for
randomness was also suggested by Niederreiter in [13].
However, the ideas in this thesis were developed in
parallel with and completely independently of the work
of Niederreiter.

- 174 -

5.2. SOME WELL-KNOWN STATISTICAL TESTS

Before we go on to develop some new statistical tests
for randomness, we first review some of the tests which
have previously been published in the literature :-

5.2.1. Frequency Test

In a randomly generated n-bit sequence we would expect
approximately half of the bits in the sequence (i.e.
approximately n/ 2 bits) to be ones and approximately
half to be zeros. The frequency test checks that the
number of ones in the sequence is not significantly
different from n/2 , the expected value.

The frequency test is normally stated in the form of a
goodness of fit test. In general, goodness of fit tests
are used to test whether a set of observations conform
to a particular distribution. In order to do this the
observations are divided into a number (M, say) of
classes, and for each class the expected number of
observations in the class (e^^ say) is computed for
k = 1,2,...,M. Care must be taken to ensure that the
expected frequency e^ for each class is at least a
certain value; this minimum value is commonly taken to
be 5.

- 175 -

The observed frequency say) for each class is also
computed, and the test statistic S is calculated, where

M
s := I (̂ k - 2%)2/

k=l
The goodness of fit test is passed at the a%

2 2significance level if and only if S < x / where % is
the upper a%-point of the % distribution with M-1
degrees of freedom (i.e. the point such that a% of the

2distribution lies above %).

The frequency test tests the hypothesis that zeros and
ones are equally likely to occur in the sequence being
tested. Under this ‘null hypothesis, the expected number
of zeros and the expected number of ones will both be
n/2. If we let the number of zeros and ones in the
sequence be n^ and n^ respectively (so n^ + n^ = n) then
the test statistic S is as follows :-

S = (n̂ - n/2) 2/ (n/2) + (n̂ - n/2) V (n/2)
= (n^ - n^)2 / n.

The frequency test is passed at the a% significance
2 2level if and only if S < % , where % is the upper

a%-point of the % distribution with 1 degree of
freedom.

It could be argued that the frequency test should use a
continuity correction (see [19]). However, this section
is intended as a review of published tests; the

- 176 -

frequency test quoted in [2] and [9] does not use a
continuity correction, and so we will omit to use one
here.

5.2.2. Serial Test

The serial test checks that the frequencies of the
different transitions in a binary sequence (i.e. 0 0 , 0 1 ,
10 and 11) are approximately equal. By so doing the
serial test gives an indication as to whether or not the
bits in the sequence are independent of their
predecessors.

Let Hq q , n^Q and n^^ be the number of occurrences
of 0 0 , 0 1 , 1 0 and 1 1 respectively in the n-bit sequence
under test, and let n^ and n^ be the frequencies of 0

and 1 respectively. It can be shown (see [8]) that the
statistic S is approximately distributed according to
the X distribution with 2 degrees of freedom, where

(n.^ - (n-l)/4)2 _ Y (n. - n/2)^
(n-l)/4 / q n/2

1 1V V
L Li=0 j=0

- 177 -

Hence, the serial test is passed at the a% significance
2 2level if and only if S < x / where x is the upper

2a%-point of the x distribution with 2 degrees of
freedom.

5.2.3. Poker Test

In a poker test the n-bit sequence being tested is
divided into F non-overlapping m-bit blocks, where F =
Ln/mj, the greatest integer not exceeding n/m. If the
sequence is random then these blocks are independent,
and so the frequencies of the 2 ^ possible blocks should
be approximately equal. Thus we can apply a goodness of
fit test (see 5.2.1 above) to check whether the observed
frequencies of the different types of block conform to
the expected uniform distribution. We call such a
goodness of fit test a poker test of block size m.

More precisely, let f^ be the number of occurrences of
the k^^ block (k = 0,1,...,2^-1) in the sequence. Then
our test statistic is

2̂ -̂lS = # . I (fk -
k= 0

and the poker test is passed at the a% significance level
2 2if and only if S < x / where x is the upper a%-point of

the x^ distribution with 2 ^ - 1 degrees of freedom.

- 178 -

As mentioned in 5.2.1 above, care must be taken to
ensure that the expected frequencies (—m for all k in
this case) are all large enough. If this is not the
case then a variant of the poker test may be used, in
which the different block types are grouped into classes
in such a way that the expected frequency for each class
attains the minimum value.

5.2.4. Runs Test

The runs test checks that the distribution of the
lengths of runs of ones and zeros in a binary sequence
conforms to that which would be expected for a randomly
generated sequence. The theory underlying the runs test
was established by Mood in [12]. In [12], two cases are
considered; one in which the numbers of ones and zeros
in the sequence are fixed, and the other in which they
are randomly (i.e. binomially) distributed. We will not
describe the runs test in detail here, as both the test
and the theory behind it are rather complex.

The statistical tests for randomness described above
represent only a selection from those described in the
literature. Details of other such tests can be found in
[2], [9] and [10].

- 179 -

5.3. THE NUMBER OF SEQUENCES WITH A GIVEN NUMBER OF
JUMPS IN THEIR LINEAR COMPLEXITY PROFILES

In Chapter 3 the linear complexity profile of a binary
sequence was discussed. In this section we will derive
an expression for the number of n-bit binary sequences
with a given number of jumps in their linear complexity
profiles. Before we do this, however, we prove an
intermediate result : -

Theorem 5.3.1.

Let f(n,L,J) be the number of n-bit sequences with local
linear complexity L 'and J jumps in their linear
complexity profiles. Then

f(n,0 ,0) = 1

f(n,L,J) = Jmin(L-l,n-L)j_2 inin(L,n-L)

if 1 < L < n and 1 < J < min(L-1,n-L)+1
f(n,L,J) = 0 else

Proof

The n-bit sequence 00...0 is the only n-bit sequence
with local linear complexity L(n) = 0.
Therefore f(n,0,0) = 1

and f(n,0,J) = 0 for J > 1 (5.3.1)
since the linear complexity profile of 0 0 . . . 0 has no
jumps.

— 180 -

For any n-bit sequence, the local linear complexity L(n)
< n, since any n-bit sequence can be generated using any
n-stage LFSR.
Therefore f(n,L,J) = 0 if L > n. (5.3.2)

Also, if the local linear complexity of a sequence is
positive then its linear complexity profile must have at
least one jump,
and therefore f(n,L,0) = 0 for L > 1. (5.3.3)

For any n-bit sequence, the local linear complexity L(n)
of the sequence must be no less than the number of jumps
J in its linear complexity profile, since each jump must
have height at least 1 .
And 1 < L < => min (L-1, n-L)+1 = L.
Therefore for any n-bit sequence with 1 < L(n) <
J < L(n) = min(L(n)-l,n-L(n)) + 1.

Also, < L < n => min(L-l,n-L)+l = n-L+1.
And if the last jump in the linear complexity profile of
an n-bit sequence occurs with the m^^ bit in the
sequence then, from Section 2.3, L(m) = m - L(m-l),
so L(m-l) = m - L(m) = m - L(n) < n - L(n),
and hence the number of jumps J in the profile is at
most n-L(n)+l.
Therefore for any n-bit sequence with < L(n) < n,
J < n-L(n)+l = min(L(n)-l,n-L(n)) + 1.

- 181 -

Thus
f(n,L,J) = 0 (5.3.4)

if 1 < L < n and J > min(L-1,n-L)+1

Combining equations (5.3.1) to (5.3.4), we have now
shown that f(n,L,J) = 0 "else".

We now use induction to show that

f(n,L,J) = Jmin(L-l,n-L)j_2inin(L,n-L) (5 .3 .5)

if 1 < L < n and 1 < J < min(L-1,n-L)+1

Consider an n-bit sequence So^l’*’^n-l' let J be the
number of jumps in its linear complexity profile and
L(k) be the local linear complexity of the first k bits
of the sequence.

n = 1 => either L(n) = 1 and J = 1
or L(n) = 0 and J = 0

Thus f(1,1,1) = 1, and so (5.3.5) holds for n = 1.

Now suppose that (5.3.5) holds for n = N

so that f(N,L,J) = [min(L-l,N-L)j_2inin(L,N-L)

if 1 < L < N and 1 < J < min(L-1,N-L)+1

- 182 -

We will show that

f(N+l,L,J) = |^min(L-l^N+l-L)j _2Ïftin(L,N+l-L)

if 1 < L < N+1 and 1 < J < min(L-l,N+l-L)+1
(i.e. that (5.3.5) holds for n = N+1).

We split the values of L = L(N+1) into 4 cases :-

(i) 1 < L < I :

No jump could have occurred with the (N+1)^^ bit in the
sequence (since L(N+1) < ^^^) / and half of all the
N+l-bit sequences with L(N) = L will have local linear
complexity L(N+1) = L (since L < ^ ; the other half will
have local linear complexity L(N+1) = N+l-L).

Therefore, since the number of N+l-bit sequences with
L(N) = L is twice the number of N-bit sequences with
L(N) = L,

f(N+l,L,J) = f(N,L,J)
fmin(L-l,N-L)l _min(L,N-L)

- [J-l J-2
fmin(L-l,N+l-L)] _min(L,N+l-L)

- [J-l J-2

- 183 -

(ii) L = ^ :

No jump could have occurred with the (N+1)^^ bit in the
sequence (since L(N+1) < t and all of the N+l-bit
sequences with L(N) = will have local linear
complexity L(N+1) = (since L(N) > .

Therefore f(N+l,L,J) = 2.f(N,L,J)
= 2 |min((N-l^/2,(N-l)/2)j 2min((N+l)/2,(N-l)/2)

= j'(N-l)/2] 2(N+1)/2
J-l J

fmin(L-l,N+l-L)] _min(L,N+l-L)
■ I J-l J'2

(iii) < L < N :

Either there was no jump with the (N+1)^^ bit in the
sequence, or there was a jump from N+l-L to L (since
L(N+1) > ^^^) . All of the N+l-bit sequences with
L(N) = L have local linear complexity L(N+1) = L
(since L > ^) , and half of those with L(N) = N+l-L will
have L(N+1) = L (since N+l-L < |) .

Therefore f(N+l,L,J) = 2.f(N,L,J) + f(N,N+l-L,J-l)
2 |’inin(L-l,N-L) j 2min(L,N-L)

, fmin(N-L,L-l)] ^min(N+l-L,L-1)I J-2

- 184 -

. (A)]
fmin(L-1,N+l-L)] _min(L,N+l-L)

- [J-l J-2

(iv) L = N+1 :

There must have been a jump from 0 to N+1 with the
(N+1)^^ bit in the sequence (see Example 3.2.2). There
is only one N+l-bit sequence whose linear complexity
profile has such a jump, namely 00...01.

Therefore f(N+l,L,J) = 1 if J = 1 (and 0 if J ^ 1)
and |^min(L-l^N+l-L)j _2B>in(L,N+l-L) _ ^ for J = 1

so f(N+l,L,J) = Jmin(L-1,N+l-L)j_2 min(L,N+l-L)

for 1 < J < min(L-l,N+l-L)+l = 1

□

Now let N(n,J) be the number of n-bit sequences with J
jumps in their linear complexity profiles. Notice that

n
N(n,J) = ^ f(n,L,J) (5.3.6)

L=0
We will derive an explicit expression for N(n,J) :-

— 18 5 —

Theorem 5.3.2.

Let N(n,J) be the number of n-bit sequences with J jumps
in their linear complexity profiles. Then

N(n,J) =

3.
(n/2)-l V

L
i=J-l

3.
(n-3)/2 V

L
i=J-l

if J = 0

if 1 < J < ^ and n even

if 1 < J < and n odd

if J > n+1

Proof

By equation (5.3.6), N(n,J) =
n
\ f(n,L,J)

L=0

J = 0 => f(n,L,J) = 1 if L = 0 (and 0 if L ^ 0)
(by Theorem 5.3.1)

=> N(n,0) = 2 f(n,L,0)
L=0

= 1.

J > => J > min (L-1, n-L)+1 for 1 < L < n
=> f(n,L,J) = 0 for 1 < L < n

(by Theorem 5.3.1)
n

=> N(n,J) = \ f(n,L,J) = 0.
L=0

- 186 -

Now consider the case 1 < J < n+1
2 •

Notice that
l < L < n , 1 < J < min(L-1,n-L)+1 if and only if

1 < J < L < n-J+1.
n

Thus N(n,J) = ^ f(n,L,J)
L=0

n—J+1 V■ L
L=J

|’min(L-l,n-L) j 2min(L,n-L) (5 .3 .7)

for 1 < J < (by Theorem 5.3.1)

We now consider the odd and even values of n separately.

1 < J < — and n even :

From equation (5.3.7)
(n/2)-l

L=J

L=(n/2)+l
(n/2)-lV

L
i=J

(fci) *
(n/2)-l n/2V

L
i=J-l i=J

(n/2)-l
3- I

i=J-l
[A W

- 187 -

1 < J < and n odd :

From equation (5.3.7)
(n-l)/2 n-J- I . I * [5]

L=J L=(n+l)/2

(n-l)/2V
L
i=J

(n-l)/2 ̂ (n-l)/2V
L

i=J-l ' i=J

(n-3)/2

1=J-1

□

- 188 -

5.4. THE MEAN AND VARIANCE OF THE NUMBER OF JUMPS

In this section we use Theorem 5.3.2 to obtain explicit
expressions for both the mean and variance of the number
of jumps in the linear complexity profile of a random
n-bit binary sequence. We begin with the mean :-

Theorem 5.4.1.

Let J^ be the random variable representing the number of
jumps in the linear complexity profile of a random n-bit
binary sequence, and let := E(J^) be the mean number
of jumps in the linear complexity profile of such a
sequence.
Then

4 + 3 - 3 ^ "

- + — - — n 4 12 3.2"

if n is even

if n is odd

Proof

n
nI i- i)

j=0
But P(J^ = j) = (number of n-bit sequences with j jumps

in their profiles) / (total number of n-bit sequences)

= N(n,j) / 2n

- 189 -

n
Therefore ^ j . (N(n,j) / 2 ")

j=0
(n+l)/2

= %]. (N(n,j) / 2 ") (5.4.1)
j=l

since, by Theorem 5.3.2, N(n,j) = 0 for j >

We consider odd and even values of n separately :-

n even

By equation (5.4.1),
n/2= i". I j-N(,n,j)
j=l

n/2 (n/2)-l
3„ V

= 2 ". L j. ^ (by Theorem 5.3.2)
j=l i=j-l

(n/2)-l i+1

i=0 j=l
= 2". L

^since l < j g-1 if and only if
0 < i < |-1, 1 < j < i+1i+l]

(n/2)-l i= I". I 2\ \
i=0 j=0

(n/2)-l
= |n ^ 2^.(i.2^“ ̂ + 2^)

i=0
r

[since \ [k).k = r.2'"“3 and \ [̂) = 2^)
k=0 k=0

190 -

(n/2)-l (n/2)-l
= #n.[2. I 1-4! + I 4I]

i=0 i=0

- 1 " . [i . (f
+ [4"/2_ ij /

c
^since ^ i.x^ = (c.x^^^- (c+1).x^^^+ x) / (x-1)^

1 = 0 c ^
and ^ 1) / (x-l)j

1=0

= #".[36.[("-2).2"+2 - n.2" + s] + Y.[2" - 1)]

= J^n [n.2"+2 _ 2 " + 3 _ n . 2" + 8 + 1 2 .2" - 12^

= 4 + 3 " 3~2^

n odd ;

By equation (5.4.1),
(n+l)/2

^n = 2 ". I i-N(n,j)
j=l

(n+l)/2 (n-3)/2
= h. I i- I [i^i)-:'

j=l i=j-l
(n+l)/2

j=l
(by Theorem 5.3.2)

— 191 —

(n-3)/2 i+1 (n+l)/2' ' I [+.].) * I ['Y-Kl)
1=0 j=l j=l

= 2". L

since 1 < j < j-l < 1 < if and only If

0 < 1 < , 1 < j < 1+lj

(n-3)/2 1
= 2 ". I 2 ^. \ (j]-(j+l)

^=° (n-l)/2
+ (jj("+l)/2 ^ [("-l)/2].(j + l)

j=0
(n-3)/2

= |n ^ 2^. (i.2^'’̂ + 2^)
i=0

[since \ [k]-’̂ = ^.2^-1 and \ [̂] = 2^]
k=0 k=0

(n-3)/2 (n-3)/2- I * V * I
1=0 i=0

= #n.[i . [2 = 3. 4 (n+l) / 2 - 5=1.4(n-l)/2 + 4] / 9

[4 (n-l)/2 - 1] / 3] + 5 ^ + 1+
c

.c+1. ..V / . V 2^since ^ i.x^ = (c.x^^^- (c+l).x^'^+ x) / (x-1)
i=0 c

and y x^ = (x^+l- i) / (x-1)1
1=0

- 192 -

- i
12 ^n.2 "+l- 3.2^^1- n.2 " 2 ""^+ 8 + 6 .2 "- 1 2 ^

n . _i _ _ L „4 12 3 .2 "

□

We now compute the variance of the number of jumps in the
linear complexity profile of a random n-bit sequence :-

Theorem 5.4.2.

2Let be the variance of the number of jumps in the
linear complexity profile of a random n-bit binary
sequence.
Then

8 ~ 9 ^ 6 .2 " ^ 3.2^ 9.2^^ even

8 " 8 6 .2 " 1 8 .2 " ” 9.2^"

- 193 -

Proof

Firstly we note that

a2 = E(j 2) - E(J^)2

= E(j 2) - (5.4.2)

n
and E(j 2) = ^ j2. p(j^= j)

j=0
n

= I j^.(N(n,j)/2")
j=0
(n+l)/2

= I j2.(N(n,i)/2") (5.4.3)
j=l .

since, by Theorem 5.3.2, N(n,j) = 0 for] > 2 •

As in Theorem 5.4.1, we consider odd and even values of
n separately :-

n even :

By equation (5.4.3)
n/2

E(Jn) = 1". I i^-N(n,j)
j=l

n/2 (n/2)-l
= h.l I [j-l]-2^ (by Theorem 5.3.2)

j=l i=j-l

(n/2)-l i+1= I 2 \ I
i=0 j=l

— 194 —

(n/2)-l i" I”. I 2̂ . % [j] • (j+1)^
1=0 j=0

(n/2)-l
= |n ^ 2^.(i.(i+1).2^"2 + i.2^ + 2)̂

i=0

[since ^ = r. (r+l) .2 ^ " 2 , ^ [^j.k = r.2^"3

0 - 1

k=0 k=0 ^
and I

, (n/2)-l (n/2)-l (n/2)-l (n/2)-l= |5 .(i I + i I i-4 ̂ + I i-4 ̂ + I 4I]
1=0 i=0 i=0 i=0

= §n [[(Q ^) 2 .4 (n+2) / 2 _ (g. (5/) 2+ 2.(5/) - 1).4*^/2

+ (Q)2.4(n-2)/2 _ sj / 27

+ | _ [n / . 4 (n+2) / 2 _ n 4 n/ 2 + 4] / 9

+ [4^/2 - ij / sj

(since Y i2x^ = x.(c2%c+2- (2 c 2 + 2 c-l)xC+l

+ (c+l)^x^- X - 1) / (x-1)-’,

1 i . x ^ = (c . x C + 2 _ (c + l) . x ° 4 1 + X) / (x-1)2
i=0 c

and 'I W = (x^+l- 1) / (X
i=0

-1)]

- 195

= I”.[108.(nf-4n+4).2"+2 _ (n2-2n-2).2^

+ - Y# + 7#.("-2)'2"^' - 7#."-2"

9 . (n2-4n+4) - / (n2-2n-2) + % ^ _ n 2 - + f . (n-2)

- 24." + 3T2" + 1 - 2"

16 4" 24 ” 9 9.2" (5.4.4)

Therefore, combining equations (5.4.2) and (5.4.4) with
the result of Theorem 5.4.1, we get

‘’n = 16 + §4 - 9 + Wti" - [4 + 3 - 3 ^ " Y

^ 8 ” 9 6 .2 " 4- 3 .2 " “ 9.22"

n odd :

By equation (5.4.3)
(n + l) / 2

E (j 2) = / 'I j 2 . N (n , j)

j = l

(n+l)/2 (n-3)/2
3„ V

= 2 ". L i’-I (A) - ’
j = l i = j - l

(n + l) / 2

j=l
(by Theorem 5.3.2)

- 196 -

(n-3)/2 i+1 (n+l)/2I (j W I ('Y-K'] j'
i=0 j=l j=l

= 2". L

(n-3)/2 i= 1". I 2̂' I
^=° (n-l)/2

+ (l)("+l)/2 % [("-|)/2].(i+l)2
j=0

(n-3)/2
= |n ^ 2^.(i. (i+1).2^”2 + + 2^)

i=0
+ (1) (n+l)/2|'n^ n±l 2(n-5)/2 n%l 2(n-l)/2 + 2(n-l)/2j

[since ^ [k] " r . (r+1) . 2 ’̂ "2 , ^ [̂ j .k = r.2^“3

W = '1
k=0 ' k=0 ^

and \
k=0

 ̂ (n-3)/2 (n-3)/2 (n-3)/2 (n-3)/2

1—0 1—0 1—0 1—0
(n-1)(n+1) n-1 1

32 4 2

- 197 -

= [[(Q/) 2 . 4 (n+1)/2 _ (g. (5/)^

+ 2 . (5 /) - 1) . 4 ^ 5 “ 3)/2 + (ü /) 2 _ 4 (n - 3) / 2 _ sj / 27

+ & [m/. 4 ("+l)/2 _ n / . 4 (n-l)/2 + 4] / g

+ [4 ("-l) / 2 - 1] / 3] + <"-3>(5±1X + 5 / 4 1

[since ̂ i^x^ = x. (c^x^'^^- (2 c2 +2 c-l)
i=0 + (c+l)2x°- X - 1) / (x-1)3,

c
y i.%i = (c.x^+Z- (c+l).xC+l+ X) / (x-1)2
1=0 c

and y x^ = (x^^^- 1) / (x-1)1
i=o J

(n2-6n+9).2"^3 _ -1 (n2-4n+l).2" ^= 3 r _i_2 . 108.

+ ÏY8.(""-2n+l).2"-3 - Y# + Y#.("-3)-2"+^

- Y#.(n-1)-2""^+ I + i.(2""l-l)]
(n-1)(n+1) , n%l 1

32 4 2

Ï ? . (n 2 - 6 n + 9) - (n 2 - 4 n + l) + ^ { W - 2 n + l) - / y "

+ if.(n-3) - %§.(n-1) + jfjn + f " Y" + 32.(n^+8n+7)

16 4' 3 + 144 + 9.2" (5.4.5)

- 198 -

Therefore, combining equations (5.4.2) and (5.4.5) with
the result of Theorem 5.4.1, we get

= 1 6 + 3 + 1 % % + 9^2" - [4 + 12 - 3T 2 "

= 8 - 8 + 672" + 1 8 ^ " - 9 7 7 2 "

□

- 199 -

5.5. A STATISTICAL TEST BASED ON THE NUMBER OF JUMPS

We now go on to describe a statistical test for
randomness which checks the number of jumps in the
linear complexity profile of a binary sequence. This
test relies on the fact that the distribution of the
number of jumps is approximately normal for large n, and
so we begin by justifying this claim.

We first recall a result from Chapter 3 :-

Let M(n,L) be the set of all n-bit binary sequences with
local linear complexity L, and denote the cardinality of
this set by m(n,L). Thus, m(n,L) is the number of n-bit
sequences with local linear complexity L. Then Theorem
3.4.5 can be rephrased to give the following result :-

m(n,L) = "
1 if L = 0
2inin(2L-l,2n-2L) i < l < n

0 if L > n

Consider the set M(n,L) of n-bit binary sequences with
local linear complexity L. Let ^ be the random
variable representing the number of jumps in the linear
complexity profile of a sequence chosen at random from

— 2 00 —

M(n,L). Then, using Theorems 3.4.5 and 5.3.1 it can be
seen that, if 1 < L < n, ^ has the following
distribution :-

P(Jn , L = j)

if j = 0

[min(L-l,n-L)l _min(L,n-L) , _min(2L-l,2n-2L) j-1 J-2 / 2
if 1 < j < min(L-l,n-L)+1

if 3 ^ min(L—1,n—L)+1

(since " i) = f(n,L,j) / in(n,L))

P(Jn,L- 1 = i) =

rmin(L-l,n-L)l ,1.min(L-1,n-L)
I i J.'2)

if 0 < j < min(L-l,n-L)

else

and so 1 is distributed according to the
binomial distribution B(min(L-1,n-L),^).
(A random variable X is distributed according to the
binomial distribution B(r,p) if
P(X = k) = |^^.pk(i-p)f-k for k = 0,1,...,r)

Note also that for large values of r the binomial
distribution B(r,-) is approximately N(-,~), where
N(jLi,a) is the normal distribution with mean n and

2variance o (see, for example, [6]).

- 201 -

Hence, for large values of min(L-1,n-L), 1 is
approximately N(min(L-1,n-L)/2,min(L-1,n-L)/4).

Now consider the set M(n,*) (of cardinality 2^) of all
n-bit binary sequences. By Theorem 3.4.5, if a sequence
is chosen at random from M(n,*) then, if 1 < L < n,

P(sequence has local linear complexity L)
2min(2L-l,2n-2L)y

Thus, if we let J denote the random variable ' n
representing the number of jumps in the linear
complexity profile of a sequence chosen at random from
M(n,*), then the distribution of the random variable
J^-1 is given by

P(J^-1 = j) = P(Jn =
nY= ^ P(sequence has j+1 jumps | sequence has

L=1 local linear complexity L)
.P(sequence has local linear comlexity L)

= ^ (2™i"(2L-l,2n-2L)y 2 ") . P(J^ ^ = j+1)
L=1
n
y ^2™l"(2L l<2n 2L)y 2 ") . P(J 1 = j)
Li n / j-j

L=1

- 202 -

= ^ l,2n-2L)y . b(min(L-1,n-L),^)
L=1

where b(r,p) = ^?j.pi(l-p)^ ̂ is the probability that,
if X is a random variable with the binomial distribution
B(r,p), then X = j .

Therefore, for n even,

P(Jn-l = j)

= (i)"“^.b(0,|) + (|)""^.b(l,|) + ...

+ + TT.b(^^,l) + ...2 '2' 16 ' 2 '2' 64 ' 2 '2

+ (2)" (2^” -'^(°'o)

+ . . .2 '2' 16 ' 2 '2' 64 ' 2 '2

2“ .+ ^n-2 b(l,^) + ^n b(0,^j

But for large values of n the terms towards the right
hand end of the above expression are insignificant,
while the binomial distributions towards the left hand
end are approximately normal
(since B(r,^) ~ N(|-,J) for large r) .

- 203 -

Thus, for large n,

P(Jn-l = J) -

+ + •••

=> P(J„ = j) - +

+ + • • •

2where ÿ(^,a) is the probability density function of the
2normal distribution with mean ji and variance o ,

evaluated at j .

By Theorems 5.4.1 and 5.4.2 respectively, for n even

= E(Jn) = ? +,f - 3 3 "

°'n ^ “ 8 " 9 6 .2 " 3 .2 " ” 9.2^"

2Therefore, if we denote these values by /z and a
respectively, we have

P((Jn-^)/^ = j) - (^) / a ^)

16 '4 r / / g

+ + ...

4^"' ̂ 9n-16''9n-16' 16'^' '' ' 9n-16^ ' 9n-16
_1 j, r // 2 , 9n-54
64*0(5.y(gn-i6)'9n-16

Thus, for large n, P((J^-/i)/a = j) ~ ÿ(0,l)

- 204

The same result can also be established for odd values
of n in a similar fashion.

Thus we have established that, for large n, the random
variable is approximately distributed according
to the standard normal distribution N(0,1). This fact
can be used in the construction of a statistical test
for randomness (Test 5.5.1 below), which checks that the
number of jumps in the linear complexity profile of an
n-bit sequence is not significantly different from the
expected value. Hence, a sequence will fail Test 5.5.1
if its linear complexity profile has too many jumps
(e.g. if it has the perfect linear complexity profile),
or if its profile has too few jumps (e.g. if too many of
its jumps are excessively large). The test proceeds as
follows : -

Test 5.5.1.

Step 1. Compute the number of jumps J in the linear
complexity profile of the sequence using, for
example, the Berlekamp-Massey algorithm.

Step 2. Compute the mean value jjL of using
Theorem 5.4.1.

2Step 3. Compute the variance a of using
Theorem 5.4.2.

- 205 -

step 4. Compute the test statistic S = (J-jjL)/a.

Step 5. The test is passed at the a% significance level
if and only if -C < S < C, where C is the upper
^%-point of the standard normal distribution
N(0,1).

Alternatively, Steps 4 and 5 above can be replaced by
Step 4' below :-

Step 4'. The test is passed at the a% significance level
if and only if ji-Ca < J < jjl+Co , where C is the
upper ^%-point of the standard normal
distribution N(0,1).

To illustrate the use of Test 5.5.1, 100 8000-bit
sequences were generated. For each sequence
SQS^...s^ggg, the 4000 odd-indexed bits s^,Sg,...,s^ggg
were randomly generated, while the 4000 even-indexed
bits Sq,s^,...,s^ggg were generated using the equations
Sg = 1 and + s^_^ for i = 1,2,...,3999.
By Theorem 4.3.2, these sequences all have the perfect
linear complexity profile, and therefore the profile of
each sequence contains J = 4000 jumps. Hence, all 100
sequences clearly failed Test 5.5.1; for example, at the
5% significance level the test would be passed if and
only if 1939 < J < 2062.

— 2 06 —

The above-mentioned 100 sequences were also subjected to
the statistical tests described in Section 5.2, and the
following results were obtained :-

Number of sequences passing
at 5% significance level

Frequency test 97

Serial test 95

Runs test 99

Poker test
block size 97

94
96
95
98
94
98

Note that, if the sequences being tested had been
randomly generated then, for any given test, the
expected number of passes would have been 95, and there
would have been a probability of approximately 0.972
that 91 or more of the sequences passed the test.

The above results suggest that Test 5.5.1 is capable of
identifying in binary sequences non-randomness which
would not be detected using established statistical
tests for randomness.

- 207 -

5.6. STATISTICAL TESTS BASED ON THE DISTRIBUTION OF
JUMP HEIGHTS

If a binary sequence passes Test 5.5.1 above then we
know that the number of jumps in its linear complexity
profile is not significantly different from the expected
number of jumps in the profile of a randomly generated
sequence of the same length. However, this does not
necessarily imply that the linear complexity profile of
this sequence is not substantially different from that
which might be expected of a randomly generated
sequence. The following example illustrates this
point : -

Example 5.6.1.

Consider an n-bit binary sequence which has linear
complexity profile (L(l),L(2),...,L(n)) =
(0 , 2 , 2 , 2 , 2 , 4 , 4 , 4 , 4 , 6 , . . . , ^ - 2 , as shown below.
For convenience we assume that n is a multiple of 4.

y = L(k)

n
2

8
4
0

0 4 8 12 n-4 n
X (k=LXj)

- 208 -

This profile has exactly ^ jumps, which is approximately
the expected number for a random n-bit sequence (see
Theorem 5.4.1), and hence the sequence would certainly
pass Test 5.5.1. However, all ^ of these jumps have
height 2, and so the distribution of jump heights in
this profile would be unlikely to be obtained from a
randomly generated sequence.

In this section we will discuss statistical tests for
randomness which check that the distribution of the
heights of the jumps in the linear complexity profile of
a binary sequence is .not significantly different from
the expected distribution of jump heights for a randomly
generated sequence. We begin by discussing the
distribution of jump heights :-

In the case of a random binary sequence s^s^. . . s^^_^, the
m^^ bit in the sequence is equally likely to be a
0 or 1, whatever the value of s_s_...s _. In otheru 1 m—2
words, 0) = P(s^_^= 1) = 2 ' independently of
SqS^...s^_2 - From Section 3.3, the linear complexity
profile of SqS^...s^^_^ can only jump with if
L(m-l) < if this inequality holds then the
profile will jump or not according to whether or not

would be the m^^ bit output from the (unique)

- 209 -

L(m-l)-stage LFSR on which SqS^...s^ _ 2 can be generated
if this register was loaded with the initial state
SqSi . . -1"

Now suppose that the r^^ jump in the linear complexity
profile of a binary sequence occurs with the a^^ bit in
the sequence. Then L(a) > and so a jump cannot occur
with the (a+1)^^ bit in the sequence. In fact, the next
opportunity for a jump to occur will be with the
(2L(a)+l)^^ bit in the sequence, since L(i) = L(a) > ^
for a < i < 2L(a)-l.

From the above two paragraphs it can be seen that the
linear complexity profile of a random binary sequence
will jump at the first opportunity after the r^^ jump
(i.e. with the (2L(a)+l)^^ bit in the sequence) with
probability — . Similarly, if the profile does not jump
at the first opportunity then it will jump at the second
opportunity (i.e. with the (2L(a)+2)^^ bit in the
sequence) with probability and in general if the
profile does not jump at any of the first k-1
opportunities after the r^^ jump then it will jump at
the k^^ opportunity (i.e. with the (2L(a)+k)^^ bit in
the sequence) with probability Thus, since the bits
in the sequence are independent of each other, the

- 210 -

probability that the (r+1)^^ jump in the profile occurs
at the opportunity after the r^^ jump (i.e. with the
(2L(a)+k)^^ bit in the sequence) is (^j^.

If the r^^ jump in the linear complexity profile of a
binary sequence occurs with the a^^ bit in the sequence
and the (r+1)^^ jump occurs with the (2L(a)+k)^^ bit,
then the (r+1)^^ jump in the profile will have height
L(2L(a)+k) - L(a). But L(2L(a)+k) = 2L(a)+k - L(a)
= L(a)+k (from Section 2.3), and so the (r+1)^^ jump has
height L(a)+k - L(a) = k in this case. Thus, the
probability that the (r+1)^^ jump has height k is (^j^.

Similarly, the probability that the first jump in the
linear complexity profile of a random binary sequence

1 khas height k is (—) , since the first jump in the linear
complexity profile of SqS^...s^_^ has height k if and
only if SgS^...s^_^ = 00...01.

For a random binary sequence, the height of each jump is
independent of the height of all other jumps. Thus it
can be seen from the above discussion that the heights
of the jumps in the linear complexity profile of a
random binary sequence are independent, identically
distributed random variables with distribution G(^j,
where G(p) is the geometric distribution with
parameter p.

- 211 -

(A random variable X is distributed according to the
geometric distribution G(p) if P(X = k) = (l-p)^"’̂ .p
for k = 1,2,3,...)

The above result can be used to construct a randomness
test (Test 5.6.1 below) based on the heights of the
jumps in the linear complexity profile of a binary
sequence. This test considers the first F jumps in the
profile, where F is fixed for a given sequence length n,
and checks whether the heights of these jumps conform to
the geometric distribution with parameter Hence, the
test is capable of identifying non-randomness such as
that displayed in Example 5.6.1.

Test 5.6.1 is a goodness of fit test (see Section 5.2).
In the test, the jumps are divided into M classes
according to their heights. Each of the first M-1
classes contains all the jumps of height k for some k
(1 < k < M-1), while the M^^ class contains all the
jumps of height > M, where M is the lowest integer such
that the expected number of jumps of height M is less
than 5. The expected frequency e^ for each class is
F.Pj^, where p^ is the probability of a given jump in the
linear complexity profile of a random binary sequence
being in class k. Hence, since the jump heights for a
random binary sequence are distributed according to the
geometric distribution G(^), p^ = (^)^ for
k = 1,2,...,M-1 and = (^)“ + + ... =

- 212 -

Given a binary sequence So^l’*‘^n-l test proceeds
as follows

Test 5.6.1.

Step 1. Compute the linear complexity profile of
SqS^...s^_^ using, for example, the
Berlekamp-Massey algorithm.

Step 2. Compute F = f̂i-Câ , the least integer greater
than or equal to ii-Co, where C, ^ and a are as
in Test 5.5.1. If a sequence passes Test 5.5.1
then we know that its linear complexity profile
must contain,at least F jumps.

Step 3. Define M to be the smallest value of k such
that F. < 5.
For k = 1,2,...,M compute f^, where

fĵ := number of jumps of height k in first
F jumps of profile (k = 1,2,...,M-1)

f^ := number of jumps of height > M in
first F jumps of profile.

Step 4. Compute the test statistic
M

s := I [(fk - F-Pk)'/ f-Pk:
k=l

where p, : =
(k = 1,2,

(k = M)

.,M-1)

- 213 -

step 5. The test is passed at the a% significance level
2 2if and only if S < x , where % is the upper

a%“point for the % distribution with M-1
degrees of freedom.

If a single n-bit sequence SqS^...s ^̂ _̂ is being tested
for randomness then, strictly speaking. Test 5.6.1 can
only be performed if the linear complexity profile of
SqS^...s^_^ contains at least F jumps. However, if the
profile has less than F jumps then the sequence will
already have failed Test 5.5.1 if that test has been
performed. Also, if it is a sequence generator that is
being tested rather than a single sequence, then it
might be possible to generate subsequent output bits
^n^n+l^n+2* * * until the required F jumps have been
obtained.

An alternative approach to testing the distribution of
jump heights is to apply the theory established by
Mood in [12], as was used in the runs test (see Section
5.2) :-

Consider the n-bit sequence SqS^...s^_^ with linear
complexity profile (L(l),L(2),...,L(n)), and assume that
the profile contains R jumps and that the r^^ jump
occurs with the a(r)^^ bit in the sequence (r =
1,2,...,R). Think of the first jump in this profile (of

- 214 -

height L(a(l))) as a run of ones of length L(a(l)).
Similarly, think of the second jump in the profile (of
height L(a(2)) - L(a(2)-1)) as a run of zeros of length
L(a(2)) - L(a(2)-1), the third jump (of height
L(a(3)) - L(a(3)-1)) as a run of ones of length
L(a(3)) - L(a(3)-1), etc. In general, think of the r^^
jump in the profile as a run of ones or zeros (according
to whether r is odd or even) of length
L(a(r)) - L(a(r)-1). By considering the jumps in the
linear complexity profile as runs of ones and zeros in
this way, the entire profile can be thought of as a
binary sequence '^o^l*’‘̂ L(n)-1 length L(n) which
contains *̂ R/2̂ runs of ones and iR/2j runs of zeros.

If SqS^...s^_^ is a random sequence then, by a similar
argument to that given in the preamble to Test 5.6.1, it
can be seen that "^o^l‘ ’^L(n)-1 also be thought of
as a random sequence of bits (with the possible
exception of the last run, which must have length at
least 2.(L(n)-|) if L(n) > |) .

Hence, the distribution of the heights of jumps in the
linear complexity profile of SqS^...s ^̂ _̂ can be tested
by applying the theory in [12] to the L(n)-bit binary
sequence tQt^...t^^^^_^. In particular. Corollary 5 of
Section 5 of [12] and Corollary 4 of Section 8 of [12]
would seem to be particularly relevant, as these results

— 215 —

group together runs of ones and zeros of a given length.
As in Section 5.2, however, we will not give details of
the tests here, as these details are rather complex.

To illustrate the use of Test 5.6.1, 100 8000-bit
sequences were again generated. This time, for each
sequence s^s^. . .s^^g^g the 4000 odd-indexed bits were
randomly generated, while the even-indexed bits were
generated so that the equations s^ = 0 and

’2i+2 = .̂ + s^ for i = 0,1,...,3998 were all
satisfied. By Theorem 4.5.4, the linear complexity
profiles of these sequences have no jumps of odd height
greater than 1 (i.e. they have no jumps of heights
3,5,7,...). Hence, if we perform Test 5.6.1 on any of
these sequences, then the contribution to the test
statistic S from the k=3 term is (f^ - F.p^)^/ F.p^
~ 2 42.4 (since f^ = number of jumps of height 3 = 0 ,
F = 1939 from Section 5.5, and p^ = (^) ̂ = g), and this
alone is sufficient to ensure that the test is failed at
the 5% significance level, since M = 9 and the upper
5%-point of the dis
freedom is only 15.51.

25%-point of the % distribution with 8 degrees of

- 216 -

The above-mentioned 100 sequences were also subjected to
the statistical tests described in Section 5.2, and to
Test 5.5.1. The following results were obtained :-

Number of sequences passing
at 5% significance level

Frequency test 97

Serial test 98

Runs test 97

Poker test
block size 95

93
97
94
94
96
94

Test 5.5.1 92

These results suggest that Test 5.6.1 is also capable of
detecting non-randomness in sequences which would remain
undetected if the sequences were tested using
established statistical tests. More generally, the
statistical tests based on linear complexity profiles
described in this chapter would be capable of detecting

- 217 -

the non-randomness in most of the sequences discussed in
Chapter 4, and indeed in other sequences in which
non-random structure in the sequences was reflected in
their linear complexity profiles.

- 218 -

REFERENCES

[1] Aho, A.V., Hopcroft, J.E. and Ullman, J.D., 'The

Design and Analysis of Cumputer Algorithms',

Addison-Wesley, Reading, Mass., (1974).

[2] Beker, H.J. and Piper, P.O., 'Cipher Systems: The

Protection of Communications', Van Nostrand
Reinhold, London, (1982).

[3] Berlekamp, E.R., 'Algebraic Coding Theory',

McGraw-Hill, New York, (1968).

[4] Cheng, U., 'Properties of Sequences', Ph.D.
Thesis, University of Southern California, (1981).

[5] Dai, Z.D., 'Proof of Rueppel's Linear Complexity
Conjecture'. To appear.

[6] Feller, W., 'An Introduction to Probability Theory

and its Applications', Volume 1, 3rd edition,
Wiley, New York, (1968).

[7] Golomb, S.W., 'Shift Register Sequences', revised
edition, Aegean Park Press, Laguna Hills, Cal.,
(1982) .

- 219 -

[8] Good, I.J., 'The serial test for sampling numbers
and other tests for randomness', Proc. Camb. Phil.
Soc., 49, (1953), pp 276-284.

[9] Kimberley, M.E., 'Statistics in Cryptology',

M.Sc. Dissertation, Brunei University, (1986).

[10] Knuth, D.E., 'The Art of Computer Programming,
Volume 2: Seminumerical Algorithms', 2nd edition,
Addison-Wesley, Reading. Mass., (1981).

[11] Massey, J.L., 'Shift register synthesis and BCH
decoding', IEEE Trans. Information Theory, IT-15,
(1969), pp 122-127.

[12] Mood, A.M., 'The distribution theory of runs',
Ann. Math. Statist., 11, (1940), pp 367-392.

[13] Niederreiter, H., 'The probabilistic theory of
linear complexity'. Advances in Cryptology:
Proceedings of Eurocrypt 88, Springer-Verlag,
Berlin, (1988), pp 191-209.

[14] Rueppel, R.A., 'New Approaches to Stream Ciphers',
D.Sc. Dissertation, Swiss Federal Institute of
Technology, Zurich, (1984).

- 220 -

[15] Rueppel, R-A., 'Analysis and Design of Stream
Ciphers', Springer-Verlag, Berlin, (1986).

[16] Selmer, E.S., 'Linear Recurrence Relations over
Finite Fields', University of Bergen, (1966).

[17] Sugiyama, Y., Kasahara, M., Hirasawa, S. and
Namekawa, T., 'A method for solving key equation
for decoding Goppa codes'. Information and
Control, 27, (1975), pp 87-99.

[18] Wang, M.Z. and Massey, J.L., 'The characterization
of all binary sequences with perfect linear
complexity profiles'. Presented at Eurocrypt 86.

[19] Wetherill, G.E., 'Elementary Statistical Methods',
3rd edition, Chapman and Hall, London, (1982).

[20] Zierler, N., 'Linear recurring sequences', J.

Soc. Ind. Appl. Math., 7, (1959), pp 31-48.

- 221 -

