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ABSTRACT

The concept of linear complexity is important in 
cryptography, and in particular in the study of stream 
ciphers. There are two varieties of linear complexity; 
global linear complexity, which applies to infinite 
periodic binary seguences, and local linear complexity, 
which applies to binary sequences of finite length.
This thesis is concerned primarily with the latter.

The local linear complexity of a finite binary sequence 
can be computed using the Berlekamp-Massey algorithm. 
Chapter 2 deals with a number of aspects of this 
algorithm.

The Berlekamp-Massey algorithm also yields the linear 
complexity profile of a binary sequence. Linear 
complexity profiles are discussed in Chapter 3, and a 
number of associated enumeration results are obtained.

In Chapter 4 it is shown that if the bits of a binary 
sequence satisfy certain conditions, expressible as a 
set of linear equations, then the linear complexity 
profile of the sequence will be restricted in some way. 
These restrictions take the form of conditions on the 
heights of the jumps in the profile.
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The final chapter deals with the randomness testing of 
binary sequences. Statistical tests for randomness 
based on linear complexity profiles are derived, and it 
is demonstrated how these tests can identify the 
non-randomness in the sequences discussed in the 
preceding chapter.
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CHAPTER 1

AN INTRODUCTION TO 
LINEAR COMPLEXITY
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1.1. INTRODUCTION

The title of this thesis is "Aspects of Local Linear 
Complexity" and, as might be expected, local linear 
complexity is the central theme of the work. This first 
chapter introduces the reader to the concept of linear 
complexity, where "linear complexity" includes both 
"global linear complexity" and "local linear 
complexity". Note from the outset that global linear 
complexity applies to infinite periodic binary 
sequences, while local linear complexity relates to 
binary sequences of finite length.

This chapter begins with some basic definitions and a 
brief discussion on stream ciphers, before moving on to 
the subject of linear feedback shift registers. The 
concept of global linear complexity is then defined and 
discussed, and the chapter concludes with an 
introduction to the central theme of this thesis, local 
linear complexity.
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1.2. STREAM CIPHERS

A cipher system provides a mechanism by which 
information can be disguised in such a way that it is 
intelligible to an authorised person but not to an 
unauthorised person. The information which is to be 
disguised is known as the plaintext (or message) , the 
process of disguising the plaintext is known as 
enciphering, and the enciphered plaintext (i.e. the 
disguised information) is known as the ciphertext (or 
cryptogram).

The enciphering process is controlled by information 
known as a key. To encipher the plaintext, the 
plaintext and the key are input to an algorithm; the 
output from this algorithm is the ciphertext. The 
(enciphering) algorithm is the set of rules used to 
encipher the plaintext, while the (enciphering) key 
determines the exact transformation used. In other 
words, the (enciphering) key selects the enciphering 
transformation from the set of possibilities.

The process of retrieving the the plaintext from the 
ciphertext is known as deciphering, and is also 
controlled'by a key (the deciphering key), which will 
often be the same as the enciphering key. Knowledge of 
the deciphering key allows the plaintext to be obtained
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from the ciphertext, and thus this key must be kept 
secret from unauthorised persons if the security of the 
cipher system is to be maintained.

enciphering
key

deciphering
key

plaintext enciphering
algorithm

ciphertext
 > deciphering

algorithm
plaintext

>

Figure 1.2.1. A cipher system

In this thesis we will be concerned with symmetric (or 
conventional) cipher systems, in which the deciphering 
key is the same as (or can be easily derived from) the 
enciphering key. Thus, in a symmetric cipher system the 
enciphering key as well as the deciphering key must be 
kept secret. A cipher system in which it is 
computationally infeasible to compute the deciphering 
key from the enciphering key, so that the enciphering 
key can be made public, is known as an asymmetric (or 
public key) cipher system.

One example of a symmetric cipher system is the one-time 
pad shown in Figure 1.2.2. In the one-time pad a 
message consists of at most n characters. To encipher a 
message m^m^. . a random sequence of characters
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kQk^...k^_^ (the key) from the same character set is 
mixed, character by character, with the message to 
produce the cryptogram * * * ̂ n-1 ’ decipher the
cryptogram the same random sequence kQk^...k^_^ is mixed 
with * *^n-l' again on a character by character
basis but this time using the inverse mixing operation.

random

^0^1 •••%n-l
MIXER

message
0 1 n-1

Figure 1.2.2. The

cryptogram

In a common form of the one-time pad, the message, the 
key and the cryptogram are all binary sequences, while 
both mixing operations are modulo 2 addition. Thus, in 
this system

Ci = mi + k^ (mod 2) for i = 0,1,...,n-1.

The one-time pad is theoretically unbreakable in the 
sense that a cryptanalyst (i.e. someone who is trying to 
break the system) obtains no information from 
intercepted ciphertext (see, for example, [2]).
However, using the system often presents severe 
practical problems, due to the fact that the amount of
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key material needed is at least as large as the amount 
of plaintext to be enciphered. Nevertheless, the 
one-time pad is still used in certain situations where 
the ultimate in security is required.

In applications where the one-time pad is either 
unnecessary, impractical or both, its principles are 
often imitated by using what is known as a stream 
cipher. In a stream cipher system a key ^o^l’*‘̂ m-l 
input to a sequence generator, which uses the key as a 
seed for the generation of a sequence of characters 
^0^1^2**‘ known as the enciphering sequence. The 
plaintext m^m^m^... is enciphered by being mixed, 
character by character, with the enciphering sequence. 
As in the one-time pad, decipherment proceeds in the 
same way as encipherment except that the inverse mixing 
operation is used. The sequence generator is often 
referred to as the kevstream generator, a term which 
relates to the fact that the pseudo-random enciphering 
sequence (or keystream) used in a stream cipher system 
is emulating the random enciphering sequence (or key) 
used in the one-time pad.
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key

enciphering

sequence ^0^1^2’••
generator

MIXER

plaintext

^  ciphertext

Figure 1.2.3. A stream cipher

In this thesis we will deal only with stream ciphers in 
which the plaintext, the ciphertext and the enciphering 
sequence are all binary sequences, and in which the 
mixing operation, both for enciphering and deciphering, 
is modulo 2 addition. A large proportion of the stream 
ciphers in use today are of this form, and some authors, 
when defining stream ciphers, do not mention those which 
use other character sets. Henceforth, when mention is 
made of stream ciphers they will by assumption use 
binary sequences and modulo 2 addition as described 
above.
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In a stream cipher, if m^m^mg... is the plaintext, 
^0^1^2**‘ the ciphertext and s^s^Sg... the enciphering 
sequence (m^,c^,s^ = 0 or 1 for i = 0,1,2,...), then 

Cf = mf + s^ (mod 2) for i = 0,1,2,....
We will henceforth omit the "(mod 2)" and write 

Ci = mi + s^ for i = 0,1,2,....

More generally, whenever in this thesis we are summing a 
number of bits b^,b2 ,...,b^ the sum will also be a bit, 
and so we will often write b^+ b 2 + ... + b^ instead of 
bi+ b 2+ ... + b^ (mod 2).

One important property of stream ciphers is that they do
not propagate errors. In other words, if a single
ciphertext bit is received in error, this will cause 
only one bit of recovered plaintext to be incorrect.
This property is particularly important when the 
ciphertext is being transmitted over a poor quality 
channel, as in this situation any error propagation 
would increase the (already high) bit error rate and 
thus probably reduce the effectiveness of the system.

When designing a cipher system it is important to 
consider the knowledge and capabilities of a 
cryptanalyst trying to attack the system. It has become 
customary to assume that such a cryptanalyst has the 
following :-
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(i) A complete knowledge of the cipher system
(ii) A considerable amount of ciphertext
(iii) The plaintext corresponding to a certain 

amount of ciphertext.
These assumptions are often referred to as the worst 
case conditions. The exact definitons of "considerable" 
and "certain" will depend on the situation under 
consideration.

Under the worst case conditions given above, a 
cryptanalyst trying to attack a stream cipher will know 
the enciphering and deciphering algorithms (i.e. he will 
have a complete knowledge of the sequence generator) and 
will know part of the enciphering sequence (since he 
will have the plaintext corresponding to a certain 
amount of ciphertext). Thus it is important that 
knowledge of a section of the enciphering sequence does 
not enable a cryptanalyst to determine the entire 
sequence (or the key, which would allow the entire 
sequence to be generated).

In most practical stream ciphers the enciphering 
sequence will be periodic. An infinite binary sequence 
^0^1^2’’’ is said to be periodic if there exists an 
integer p > 0 such that s^^^ = s^ for i = 0,1,2,..., and 
the least such value of p is called the period of the
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sequence. Any subsequence of the form s^s^^^...s^^p_^ 
for some integer k > 0 is called a cycle of s^s^s^.../ 
and SgS^...Sp_^ is called the generating cycle.

If a cryptanalyst obtains p consecutive bits from an 
enciphering sequence of period p then he will be able to 
construct the entire sequence. Thus, it is essential 
for the security of a stream cipher that the enciphering 
sequence has a large period. As an absolute minimum, 
this period should be at least as long as any message 
which will be enciphered. However, a large period does 
not ensure that the entire enciphering sequence cannot 
be obtained by a cryptanalyst from a relatively small 
section of the sequence. We will return to this subject 
in the subsequent sections of this chapter.

A further requirement of an enciphering sequence is that 
it should "appear to be" random. The aim of this 
requirement is two-fold; firstly, to ensure that any 
statistical properties of the plaintext are not 
reflected in the ciphertext, and secondly, to prevent a 
cryptanalyst who knows a section of the enciphering 
sequence from successfully predicting subsequent bits of 
it. No infinite sequence generated by a sequence 
generator using a finite key can be truly random; the 
best that can be hoped for is that any subsequence of 
length less than or equal to the period should be
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"indistinguishable" from a random sequence of the same 
length. Such a sequence is loosely termed a 
pseudo-random sequence.

One possible definition of a pseudo-random binary 
sequence was suggested by Golomb [7]. He defines a 
PN-seauence ("pseudo-noise" sequence) to be a binary 
sequence of period p which satisfies the following three 
randomness postulates :-

(i) The number of ones and the number of zeros in 
a cycle of the sequence differ by no more 
than 1.

(ii) In a cycle of the sequence, half the runs have
length 1, a quarter have length 2, an eighth
have length 3, and in general, for any k for
which there are at least 2^^^ runs in a cycle, 
1 k(— ) of the runs have length k. Moreover, for 

each of these lengths there are equally many 
runs of ones and zeros.
(A run of length r is a string of r identical 
bits which is both preceded and succeeded by 
the opposite bit)

(iii) The sequence has a two-valued autocorrelation 
function.
(The autocorrelation function C(r) of a binary
sequence s^s^s^... of period p is defined by 

C(r) Alrl_=_DiTl,
where A(r) is the number of bit positions in
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which SQS^...Sp_^ and SYSr+l'''Sr+p-l agree, 
and D(r) is the number of positions in which 
they disagree)

We will return to Golomb's postulates in Section 1.3.

The above randomness postulates apply to a complete 
cycle of an enciphering sequence. Indeed, in many cases 
the only theoretical results that can be proved about 
the randomness properties of the output from a sequence 
generator will be concerned with "global" randomness 
properties (i.e. properties of an entire enciphering 
sequence). However, in most stream cipher systems a 
complete cycle of an enciphering sequence will never be 
used. Thus, although the global randomness properties 
should not be overlooked, they are probably of less 
importance than the "local" randomness properties of the 
sequence (i.e. properties of shorter subsequences of the 
sequence). Often the only way to test the local 
randomness of an enciphering sequence is by applying 
statistical tests to sections of the sequence. The 
statistical testing of binary sequences will be dealt 
with in more detail in Chapter 5.
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1.3. LINEAR FEEDBACK SHIFT REGISTERS

A device often used in the generation of binary 
sequences is the linear feedback shift register. In 
this section we discuss linear feedback shift registers 
and the properties of the sequences which they generate. 
We begin by giving a more general definition of a shift 
register :-

An n-staae shift register consists of n storage elements 
or stages . . . , which are connected in series.
The contents of these stages at a given time t is known 
as the state of the register and is denoted by 
Sq (t),s^(t),...,s^_^(t). Periodically, the contents of 
the register are shifted so that the contents of are 
transferred into for i = 1,2,...,n-1. At the same
time, the new contents of is formed by combining
the old contents of Sq ,S^,...S^_^ using a feedback 
function f. In other words.

Si+i(t) (i = 0,1,...,n-2)
f (SgCt) ,s^(t) ,... ) (i = n-1)

Figure 1.3.1 below shows such a shift register. Note 
that, in the general case shown, an input is modulo 2 
added to the result of the feedback function before it 
enters S^_^. However, in this thesis we will always 
take this input to be all zeros, and so we will omit it

— 2 0 —



in future. The output sequence generated by the 
register is the infinite binary sequence SgS^Sg..., 
where s^ = s^ft) for t = 0,1,2,.... The state of the 
register S q ( 0 ) , s ^ ( 0 ) , — time 0 is known as 
the initial state of the register.

I—<— inputoutput < < —< < — *-<-

feedback function f

So s. n-1

Figure 1.3.1. An n-staoe shift register

In a linear feedback shift register or LFSR the feedback
function f is a linear function. If we denote the state
of the register by SQ,s^,...,s^_^, then f can be written
in the form f(s^,s^,...,s^_^) = c^s^ + c^s^ + ...
... + c^_^s^_^, where c^ = 0 or 1 for i = 0,1,...,n-1
and the additions (as always in the case of bits) are
modulo 2. The constants c_,c_,...,c  ̂ are called the0' 1' ' n-1
feedback coefficients.
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Figure 1.3.2 below shows an n-stage linear feedback 
shift register. The feedback coefficients 
CQ,c^,...,c^_^ are represented by switches; if c^ = 1 
then the corresponding switch is closed, while if c^ = 0 
then the switch is open. Note that the ”©" symbol 
indicates modulo 2 addition.

n-1h-2

output < — <̂- << < < —

^n-2 ^n-1

Figure 1.3.2. A linear feedback shift register

Any linear feedback shift register can be uniquely 
described by what is known as its characteristic 
polynomial. The characteristic polynomial f(x) of the 
n-stage LFSR with feedback coefficients c^,c^...,c^_^ is 
defined by

f(x) := c_ + c-x + c_x^ + ... + -x^  ̂+ x^.' ' 0 1 2 n-1
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Example 1.3.1.

As an example of a linear feedback shift register, 
consider the 4-stage LFSR with characteristic polynomial 
1 + X + x^, as illustrated below :-

— > — ()— ----------------- >

- 4V*

If this register was to be loaded with the initial state 
1101 (i.e. Sq(0) = 1, s^(0) = 1, SgfO) = 0, 2^ ( 0 ) = 1) 
then the sequence of states would be as follows : -

t=0 1101
t=l 1010 
t=2 0101
t=3 1011
t=4 0111
t=5 1111

t=6 1110
t=7 1100
t=8 1000
t=9 0001
t=10 0010 
t=ll 0100

t=12 1001
t=13 0011
t=14 0110
t=15 1101
t=16 1010

etc.
and the output sequence generated would be 
11010111100010011---

In the case of a linear feedback shift register, the 
successive states of the register are derived from the 
initial state using the following relationships :-

n-1
Sn-l(t+l) = I Ci=i(t) 

i=0 (1.3.1)
s%(t+l) = sk+1 (t) (k — 0,1,...,n—2)
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Hence it can be seen that the output sequence s^s^Sg...
generated by the n-stage LFSR with characteristic
polynomial c^ + c^x + CgX^ + ... + c^_^x^  ̂+ x^ must
satisfy the following linear recurrence relation :- 

n-1
^ ^i^t+i (̂  " 0,1,2,...) (1.3.2)
i=0

The first n bits of the output sequence are given in 
terms of the initial state by

s^ = s^(0) (t = 0,l,...,n-l) (1.3.3)

Consider an n-stage LFSR with a characteristic
polynomial in which the coefficient c^ of x^ is equal
to 0. Let d be the least integer such that c^ = 1
(i.e. CQ = c^ = ... = = 0 /  = 1). Then equation
(1.3.2) can be rewritten as 

n-1
St+n = I =i®t+i (t = 0,1,2,...)

i=d
n-d-1

=> St+n-d = I °i+d®t+i (t = d,d+l,d+2,...)
i=o

Hence, ••• can be considered as the output
sequence from an (n-d)-stage LFSR with characteristic 
polynomial c^ + c^^^x + ... + + x^”^. The
situation is illustrated in Figure 1.3.3 below.
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--- >— (1— >— (i ffl >

< < -

(

-<- —

'd+i ': 1
'd+2 °n-lL - - _ [ Q _

^0 ^d-1 ®d+l ®n-l

Fiaure 1.3.3. An n-staae LFSR with c_ = 0

For this reason, in many situations it is convenient to 
consider only linear feedback shift registers for which 
the coefficient c^ of in the characteristic 
polynomial is equal to 1 (see, for example, [2]). In 
this thesis, however, we will not make this restriction; 
when considering local linear complexity, for instance, 
we will be interested in LFSRs with c^ = 0 as well as 
those with Cq = 1 (see Section 1.5).

The set of all infinite binary sequences which can be 
generated using the LFSR with characteristic polynomial 
f(x) is often denoted by U(f). It can be shown (see 
[16]) that, if f(x) has degree n, then 0(f) is an 
n-dimensional vector space.
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We now go on to look at some properties of sequences 
generated using linear feedback shift registers. We 
begin by establishing an upper bound for the period of 
such sequences :-

Theorem 1.3.1.

Any infinite binary sequence generated using an n-stage 
LFSR must be ultimately periodic, with period at most 
2^ - 1 .

(A sequence SgS^Sg... is ultimately periodic if 
s^s^^^s^^2 '"' is periodic for some integer k)

Proof

If any n-stage LFSR is loaded with the state consisting 
of n zeros, then all subsequent states will also consist 
of n zeros and so all subsequent output bits generated 
will be zeros. Hence if, during the generation of a 
sequence using an LFSR, the state of the register ever 
becomes all zeros, then the resulting sequence will be 
ultimately periodic with period 1.

Now consider the generation of an infinite sequence 
using an n-stage LFSR, and suppose that the state of the 
register never becomes all zeros. As soon as the state 
of the register is one which has already occurred the 
sequence of states (and hence the output sequence) will 
begin to repeat. But since there are only 2^-1 possible

— 26 —



states which the register can take, the sequence of 
states (and hence the output sequence) must be 
ultimately periodic, with period at most 2^-1.

□

Theorem 1.3.2.

Any infinite binary sequence which can be generated 
using an n-stage LFSR with c^ = 1 is periodic, with 
period at most 2^-1.

Proof

Let s^s^Sg... be an infinite sequence generated using an 
n-stage LFSR with c^ = 1. Then Theorem 1.3.1 says that, 
for some integer k > 0, s^s^^^s^^g*"' is periodic, with 
period at most 2^-1. It is shown in [2] that the
condition c^ = 1 is sufficient to ensure that k = 0.

□

A sequence of period 2^-1 which can be generated using 
an n-stage LFSR is known as an m-seauence. For 
instance, the sequence generated by loading the initial 
state 1101 (or any other non-zero state) into the 
4-stage LFSR with characteristic polynomial 1 + x + 
(see Example 1.3.1) has period 15 and so is an 
m-sequence. The following result yields a 
characterisation of m-sequences : -
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Theorem 1.3.3.

Let f(x) be a polynomial over GF(2) of degree n, and let 
^0^1^2’*‘ a non-zero sequence generated using the 
n-stage LFSR with characteristic polynomial f(x). Then 
®0^1^2’*’ has period 2^-1 if and only if f(x) is 
primitive.

(An irreducible polynomial of degree n over GF(2) is 
said to be primitive if 2^-1 is the least positive 
integer e such that f(x) divides 1 + x®)

Proof 

See [2].

□

Theorem 1.3.3 shows that by carefully choosing our 
characteristic polynomials we can generate binary 
sequences with large periods (e.g. m-sequences) from 
relatively short linear feedback shift registers. In 
addition, m-sequences can also be shown to have a number 
of desirable randomness properties. These properties 
are summarised in the following theorem :-
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Theorem 1.3.4.

Any m-sequence is a PN-sequence

Proof 

See [2].

□

Although it was for many years widely conjectured to be 
true, it is not true that every PN-sequence is either an 
m-sequence or the complement of an m-sequence (i.e. an 
m-sequence with all its zeros changed to ones and ones 
to zeros). There are known to be at least two binary 
sequences of period 127 which are PN-sequences but 
neither m-sequences nor complements of m-sequences 
(see [4]).

Theorem 1.3.4 states that any m-sequence conforms to one 
possible definition of a pseudo-random sequence (i.e. it 
satisfies Golomb's randomness postulates, as given in 
Section 1.2), while by definition an m-sequence of large 
period can be generated using a relatively short LFSR. 
This, coupled with the fact that LFSRs are easily 
implemented, might suggest that LFSRs with primitive 
characteristic polynomials are good candidates for use 
as sequence generators in stream cipher systems.
However, a system with such a sequence generator can be 
easily attacked under the worst case conditions, as will 
be shown in the next section.
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1.4. GLOBAL LINEAR COMPLEXITY

In the previous section we discussed the generation of 
binary sequences using linear feedback shift registers. 
In fact, any periodic binary sequence can be generated 
in such a way, as the following theorem shows :-

Theorem 1.4.1.

Any periodic binary sequence can be generated using a 
linear feedback shift register.

Proof

Consider a periodic binary sequence s^s^s^... of 
period p. If SQS^...Sp_^ is loaded into the p-stage 
LFSR with characteristic polynomial 1 + x^, then the 
output sequence will consist of repetitions of 
s^s^...Sp_^, and hence s^s^s^... will be generated.

□

The global linear complexity of a periodic binary 
sequence s^s^Sg... is defined to be the length of the 
shortest LFSR on which the sequence can be generated. 
Theorem 1.4.1 shows that, for any periodic binary 
sequence, the global linear complexity exists.
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Moreover, it can be seen from the proof of the theorem 
that if SgS^Sg... has period p then its global linear 
complexity cannot exceed p.

What we refer to here as "global linear complexity" is 
referred to by a variety of names in the literature, and 
in particular by "linear equivalence", "recursion 
length", or simply "linear complexity". However, each 
of these terms invites confusion between "global linear 
complexity" as defined above, which applies to infinite 
periodic sequences, and "local linear complexity", which 
we shall meet in Section 1.5 and applies to finite 
binary sequences. Hence, we will always retain the word 
"global".

The global linear complexity of a sequence can be 
computed from knowledge of its period and its generating 
cycle. Before we describe how this can be done, 
however, we introduce some further terminology and state 
an interesting intermediate result : -

If SgS^Sg... is any infinite sequence, then the 
generating function S(x) of s^s^s^... is defined to be

00
V i S(x) := ^ s^x .
i=0

- 31 -



If SgS^Sg... is a binary sequence of period p then the 
period polynomial s(x) of s^s^Sg... is defined by

2 Ü 1s(x) := Sq + s^x + s^x + ... + Sp_^x^

It can easily be shown that the generating function and 
period polynomial of a periodic binary sequence are 
related by the following equation : -

S(X) = s(x) / (1 + xP) (1.4.1)

Now let h(x) = 11q + h^x + + ... + _^x^ ^ + x^
be any polynomial (of degree d) over GF(2). Then the

*reciprocal polynomial h (x) of h(x) is defined by
h*(x) ;= x^.h(^)

= 1 + h^_^x + ... + h^x^ ^ + hgX^.
*Note that h(x) and h (x) have the same degree

*(i.e. deg h(x) = deg h (x) = d) if and only if h^ = 1; 
*otherwise h (x) has degree less than d.

Theorem 1.4.2.

Let S(x) be the generating function of a binary sequence 
^0^1^2‘*’ which can be generated using the n-stage LFSR 
with characteristic polynomial f(x). Then 

S(x) = ÿ(x) / f*(x) 
for some polynomial 0(x) of degree less than n.
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Proof 

See [2].
Note that the result quoted in [2] insists that the 
coefficient c^ of in f(x) is equal to 1. However, 
the proof follows through without this restriction.

□

The proof of Theorem 1.4.2 yields an explicit expression 
for ÿ(x) in terms of the feedback coefficients and the 
initial state of the LFSR used in the generation of the 
sequence (see Section 2.6). Furthermore, for any given 
polynomial f(x) of degree n there is a one-to-one 
correspondence between the 2^ sequences which can be 
generated using the n-stage LFSR with characteristic 
polynomial f(x) (i.e. one for each initial state) and 
the 2^ polynomials 0(x) over GF(2) with degree less 
than n.

We now show how the global linear complexity of a 
periodic binary sequence can be found : -
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Theorem 1.4.3.

Let SQS^Sg... be a non-zero periodic binary sequence 
with period p and period polynomial s(x). Then the 
global linear complexity L of s^s^s^... is the degree of 
the polynomial f(x) given by

l±xP 1*f (x)
= [:(s(x),l+xP)J

Furthermore, f(x) is the characteristic polynomial of 
the unique L-stage LFSR on which s^s^Sg... can be 
generated (i.e. f(x) is the minimal polvnomial of the 
sequence).

Proof 

See [2].
(Note that (a(x),b(x)) denotes the greatest common 
divisor of the polynomials a(x) and b(x))

□

Example 1.4.1.

As an example of the use of Theorem 1.4.3, consider the 
sequence 101001010010100..., which has period 5 and 
period polynomial 1 + x . Therefore, in this example
we have

l+xP 1+x^
(s(x),l+xP) (l+x^,l+x^)
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fl+x) . d+x+x^+x^+x"^)
1+x

P 3 4= 1 + X + X + X + X ,

and thus, by Theorem 1.4.3, the sequence
101001010010100... has global linear complexity 4, and
the unique 4-stage LFSR on which this sequence can be
generated has characteristic polynomial

2 3 41 + X + x^ + X + X .

We now come on to consider the subject raised at the end 
of Section 1.3, namely the security (or lack of 
security) of a stream cipher system in which the 
sequence generator is a linear feedback shift register. 
In fact, the system we shall consider will be more 
general than this; we will consider any sequence 
generator which produces a periodic enciphering 
sequence. We begin by demonstrating how the 
relationships between successive states of an LFSR can 
be expressed in terms of vectors and matrices : -

Consider an n-stage LFSR with characteristic polynomial 
f(x) = Cq + C^X + CgX^ + ... + c^^^x^"^ + x^.
Suppose that this register is loaded with the initial 
state Sq (0),s^(0),...,s^_^(0), and let s^s^s^... be the
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output sequence generated. Then, from equations (1.3.1) 
and (1.3.3), the state vector s^ at time t is the 
n-vector given by

%  :

So(t) St
-

St+1

St+n-1

(1.4.2)

Further, from equation (1.3. 2) it can be seen that

St+1 ^t+1
®t+2 ^t+2
.

-t+1 •
^t+n-1 ^t+n-1
^t+n ^ ^O^t + ••• + ^n-l^t+n-1

and so St+i = C.s^ (1.4

where C is the nxn matrix given by

0 1 0 ... 0
0 0 1 1 . . . 0

C = 1 • ; I

0 0 0 ___  1
"=0 =1 =2 ---  ^n-1

The next theorem shows how the state vectors of a 
sequence generated using an LFSR can be used to test the 
global linear complexity of the sequence : -
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Theorem 1.4.4.

Let ... be a binary sequence generated using an
n-stage LFSR. Then the following three statements are 
equivalent :-

(i) SqS^S2   has global linear complexity n;
(ii) there exists a set of n consecutive state 

vectors which are linearly independent;
(iii) every set of n consecutive state vectors is 

1inearly independent.

Proof 

See [2].

□

Example 1.4.2.

Consider again the sequence 101001010010100... of 
Example 1.4.1. By Theorem 1.4.1, this sequence can be 
generated using the 5-stage LFSR with characteristic 
polynomial 1 + x^. However, the 5 possible state 
vectors (1,0,1,0,0), (0,1,0,0,1), (1,0,0,1,0),
(0,0,1,0,1) and (0,1,0,1,0) sum to zero, and so it is 
impossible to find 5 consecutive state vectors which are 
linearly independent. Thus, by Theorem 1.4.4, the 
sequence cannot have global linear complexity 5, and 
therefore it must be possible to generate it on a 
4-stage LFSR. Now, the 4 consecutive state vectors 
(1,0,0,1), (0,0,1,0), (0,1,0,1) and (1,0,1,0) are
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linearly independent, and thus, reapplying Theorem 
1.4.4, the global linear complexity of
101001010010100... must be 4.

As previously stated. Theorem 1.4.3 yields a method for 
finding the global linear complexity and the minimal 
polynomial of a periodic binary sequence. However, this 
method requires the entire generating cycle of the 
sequence to be known, and so computing the global linear 
complexity in this way will be infeasible if the 
sequence has a sufficiently large period.

On the other hand, if a sequence SgS^Sg... which can be 
generated using an L-stage LFSR has global linear 
complexity L, then this fact can be established using 
Theorem 1.4.4 from knowledge of 2L-1 consecutive bits of 
the sequence. Although, unlike Theorem 1.4.3, Theorem
1.4.4 does not yield the minimal polynomial of the 
sequence, this minimal polynomial can be obtained from 
knowledge of 2L consecutive bits of the sequence, as we 
shall now demonstrate : -

Let s^s^Sg... be a periodic binary sequence with global 
linear complexity L, and suppose that 2L consecutive 
bits s^s^^^...s^^2 L-i the sequence are known. By 
equation (1.3.2) we have
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% + L

^k+L
®k+L+l

^O^k + ••• ^ ^L-l^k+L-1 
^O^k+1 + ^L-l^k+L

^k+2L-l ^O^k+L-1 + • • • ^L-l®k+2L-2^

and so % + l = S.c

where S is the LxL matrix given by

S =

and c =

'k+1
*k+l
'k+2

'k+L-1
’k+L

L-1

(1.4.4)

®k+L-l ^k+L ---  ^k+2L-2

is the vector of feedback
coefficients for an L-stage LFSR
on which s^s^s^... can be 
generated.

By Theorem 1.4.4 the rows of S are linearly independent, 
and thus S is non-singular and invertible. And, by 
assumption, the elements of s^^^ and S are all known. 
Hence we can compute the feedback coefficients 
Cq ,c ^,...,c^_^ of an L-stage LFSR on which s^s^s^... can 
be generated by computing the vector ç = S these
are the coefficients of the (unique) minimal polynomial 
of the sequence. Having obtained the feedback 
coefficients and a particular state s^s^^^...s^^^_^ of 
the L-stage LFSR on which s^s^s^... can be generated we 
can obviously generate all subsequent output bits
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Moreover, from Theorem 1.4.3 it can be 
seen that the minimal polynomial of a periodic sequence 
always divides 1 + x^, and so the coefficient c^ of x^ 
is always equal to 1. This in turn means that the 
matrix C in expression (1.4.3) is invertible, so that
(1.4.3) can be rewritten as 

= C

where C =

(1.4.5)

L-1

If the minimal polynomial of SqS^S2 ... and a particular 
state of the corresponding LFSR are known (as is the 
case here) then expression (1.4.5) can be used to find 
the previous states of the register, and thus the 
remaining k bits s^s^...s^_^ of the sequence can be 
found. Thus we have proved the following result : -

Theorem 1.4.5.

Let SqS^S2 -.. be a periodic binary sequence with global 
linear complexity L. Then the entire sequence SqS^S2 ... 
can be obtained from knowledge of any 2L consecutive 
bits.

n
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Let us now look at Theorem 1.4.5 from a cryptanalytic 
viewpoint. Suppose that a cryptanalyst trying to attack 
a stream cipher system has obtained the plaintext 
corresponding to m bits of ciphertext. Then this 
attacker will be able to obtain m bits of enciphering 
sequence by simply modulo 2 adding the plaintext and the 
ciphertext. If m > 2L, where L is the global linear 
complexity of the enciphering sequence, then Theorem
1.4.5 says that the entire enciphering sequence can now 
be computed. The preceding discussion shows that this 
process involves the inversion of an LxL binary matrix, 
a relatively easy task which can be performed in

P O'!0(L ' ) operations (see [1]). Hence, if the global
linear complexity of the enciphering sequence is not 
sufficiently large then the cipher system is vulnerable 
to a "known plaintext attack".

In particular, consider a stream cipher system in which 
the sequence generator consists of a single n-stage 
linear feedback shift register. Then, by definition, 
the enciphering sequence will have global linear 
complexity at most n, and so the attack described above 
will almost certainly be feasible.
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1.5. LOCAL LINEAR COMPLEXITY

In Section 1.4 we discussed global linear complexity.
The global linear complexity of a periodic binary 
sequence was defined to be the length of the shortest 
LFSR on which the entire infinite sequence could be 
generated. However, in practice a message will have 
only finite length, and so in a stream cipher system 
only a finite section of enciphering sequence will be 
used to encipher a given message. Moreover, in the 
majority of cases the length of the sections used will 
be significantly shorter than the period of the 
enciphering sequence. For this reason the "global" 
properties of the enciphering sequence are perhaps less 
important than its "local" properties, and hence we 
define the "local linear complexity" of a finite binary 
sequence as follows : -

The local linear complexitv of an n-bit binary sequence 
SqS^...Sĵ _^ is the length of the shortest linear 
feedback shift register on which SqS^...s^_^ can be 
generated. Note that the local linear complexity of the 
sequence 00...0 consisting of n zeros is defined to be 0 
(since the input to any LFSR is taken to be all zeros; 
see Section 1.3).

If we consider any n-bit sequence SqS^...s^_^, then this 
sequence can be generated using any n-bit LFSR by 
loading the register with SqS^...s^_^ as its initial
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State and taking the first n output bits. Thus, the
local linear complexity exists for any n-bit sequence
and is at most n. Further, if we consider any periodic
binary sequence s^s^s'... for which s^s^...s^_^ =
s_s_...s _, then we know that any LFSR which can be0 1 n-1'
used to generate s^s^s'... can also be used to generate
SqS^. . . Hence, the local linear complexity of
SqS^...s^_^ must be less than or equal to the global
linear complexity of any infinite periodic sequence
which has s_s_...s_ _ as its first n bits.0 1 n-1

Example 1.5.1.

As an example, consider the 6-bit sequence 101001.
These are the first 6 bits of the periodic sequence
101001010010100... of Examples 1.4.1 and 1.4.2, which 
has global linear complexity 4. Hence, 101001 has local 
linear complexity at most 4. However, 101001 can also 
be generated using the 3-stage LFSR illustrated below 
(i.e. the LFSR with characteristic polynomial 
1 + x^ + x^) by loading it with the initial state 101.

< - <
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There are no 2-stage LFSRs on which 101001 can be 
generated, and thus this 6-bit sequence has local linear 
complexity 3.

In the case of an infinite periodic binary sequence, the 
shortest LFSR on which the sequence can be generated 
must have a characteristic polynomial in which the 
coefficient c^ of is equal to 1. In the case of a 
finite binary sequence, however, this is not the case, 
as the following example illustrates :-

Example 1.5.2.

Consider the 7-bit sequence 0111111. The shortest LFSR
on which this sequence can be generated is the 2-stage

2LFSR with characteristic polynomial x + x , as 
illustrated below :-

<

Note that this is the only 2-stage LFSR on which 0111111 
can be generated (see Section 2.5).

We now consider what happens when we apply cryptanalytic 
techniques similar to those described in Section 1.4 to 
a message which has been stream ciphered using an n-bit
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section of enciphering sequence SqS^...s^_^ with local
linear complexity L. By the definition of local linear
complexity, there must exist an L-stage LFSR (R, say)
which could be used to generate SqS^...s^_^. Thus,
s_s_...s . must be the first n bits of an infinite0 1 n-1
binary sequence SgS^Sg... that could be generated
using R. By Theorem 1.3.1, s^s^s^... must be ultimately
periodic.

Suppose that f(x) = Cq + c^x + ... + c^^^x^"^ + x^ is 
the characteristic polynomial of the L-stage LFSR R. If 
Cq = 1 then SQS^Sg... is periodic (by Theorem 1.3.2) and 
has global linear complexity L (since s^s^s^... can be 
generated using an L-stage LFSR and s^s^...Sj^_^ cannot 
be generated using a shorter LFSR), and so, by Theorem
1.4.5, SqS^...Sĵ _^ can be obtained from knowledge of any 
2L consecutive bits of the enciphering sequence (i.e. 
from knowledge of the plaintext corresponding to 2L 
consecutive bits of ciphertext).

If Cq = 0, let d be the least integer such that c^ = 1 
(i.e. Cq = c^ = ... = c^_^ = 0 ,  c^ = 1). Then, from 
Section 1.3, SyS^^^...s^_^ can be generated using the 
(n-L)-stage LFSR with characteristic polynomial 
1 + c^^^x + ... + ^  ̂+ x^ Thus, by a similar
argument to that used in the previous paragraph for the
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case c_ = 1, sus.,T...s_ _ can be obtained from 0 d d+1 n-1
knowledge of 2L-2d consecutive bits of the enciphering 
sequence.

By combining the two cases above it can be seen that if 
an n-bit message is stream ciphered using a section of 
enciphering sequence with local linear complexity L, 
then a cryptanalyst who knows the plaintext 
corresponding to any 2L consecutive bits of ciphertext 
will be able to decipher the entire message (with the 
possible exception of the first few bits).
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CHAPTER 2

THE BERLEKAMP-MASSEY ALGORITHM
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2.1. INTRODUCTION

In Section 1.5 we defined the local linear complexity of 
a finite binary sequence to be the length of the 
shortest linear feedback shift register on which the 
sequence could be generated. In this chapter we 
consider an algorithm for computing the local linear 
complexity L of an n-bit sequence SgS^...s^_^. This 
algorithm is known as the Berlekamo-Massev algorithm.
The Berlekamp-Massey algorithm also yields an L-stage 
register on which SqS^...s ^̂ _̂  can be generated.

The L-stage linear feedback shift register produced by 
the Berlekamp-Massey algorithm is described in terms of 
its connection polynomial. The L-stage linear feedback 
shift register in Figure 2.1.1 below has connection 
polynomial C(x) defined by

C(x) := 1 + c^_^x + c_ _x^ + ... + c,x^”  ̂+ c_x^L-2 O'

L-2 L-1

< << - < -<-

Fiaure 2.1.1. An L-staae linear feedback shift register
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The connection polynomial C(x) as defined above should 
be compared with the characteristic polynomial f(x) of 
the same LFSR, defined by

f(x) := Cq + c^x + CgX^ + ... + c^_^x^  ̂+ x^
Notice that the degree of the characteristic polynomial
is always equal to the length L of the register, whereas
the degree of the connection polynomial is equal to L if 
and only if c^ = 1. Notice also that C(x) = f*(x), but 
f(x) = C*(x) if and only if c^ = 1. (Recall from 
Section 1.4 that the polynomials f (x) and C (x) are the 
reciprocal polynomials of f(x) and C(x) respectively).

The Berlekamp-Massey algorithm was first described as a 
means of finding the shortest LFSR capable of generating 
a given finite binary sequence by Massey in [11], 
although an equivalent algorithm had earlier been 
published by Berlekamp [3] for decoding BCH codes.

Note that the Berlekamp-Massey algorithm is not the only 
algorithm that can be used to compute the local linear 
complexity of an n-bit binary sequence; the Euclidean 
algorithm can also be used for the same purpose [17].
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2.2. SOME PRELIMINARY RESULTS

Before we discuss the Berlekamp-Massey algorithm we 
first prove some preliminary results which will be used 
when establishing the validity of the algorithm :-

Lemma 2.2.1.

Let L(N) be the local linear complexity of the N-bit 
sequence s^s^. . . and let L(N+1) be the local linear 
complexity of the N+l-bit sequence SqS^...Sĵ.
Then L(N+1) > L(N).

Proof

Since L(N+1) is the local linear complexity of 
SqS^...Sĵ , there exists an L(N+1)-stage LFSR on which 
SqS^...s^ can be generated.

But SqS^...Sĵ _^ can also be generated using this 
register, and L(N) is the length of the smallest LFSR on 
which SgS^...s^_^ can be generated.
Therefore L(N) < L(N+1).

□
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Lemma 2.2.2.

Let L(N) be the local linear complexity of the N-bit 
sequence S q S ^ . . . s ^ _ ^ ,  let L(N+1) be the local linear 
complexity of the N+l-bit sequence S q S ^ . . . S j ^ ,  and 
suppose that there exists an LFSR of length L(N) which 
can be used to generate S q S ^ . . . S j ^ _ ^  but not S q S ^ . . . s ^ ^ .  

Then L(N+1) > N+1 - L(N).

Proof

If N = 0 then the conditions of the lemma imply that 
S q  =  1 ,  so that
L(N+1) = L(l) = 1 = 1 -  L(0) = N+1 - L(N).
Thus we can assume that N > 1.

From Section 1.5 we know that L(N) < N.
If L(N) = N then N+1 - L(N) = 1, 
and L(N+1) > L(N) = N > 1.
Thus the result holds when L(N) = N.

Now consider the case L(N) < N.
Let C,,(x) = 1 + c,,M\ nX + ... + be theN' ' L(N)-1 0
connection polynomial of an L(N)-stage LFSR that can be 
used to generate S q S ^ . . . S j ^ _ ^  but not S q S ^ . . . s ^ ,  let

^M+l(*) = 1 + ^L(N+1)-1* + ••• + <̂ 0̂   ̂  ̂ "the
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connection polynomial of an L(N+1)-stage LFSR that can
be used to generate s^s^.-.s^, and suppose that
L(N+1) < N+1 - L(N), so L(N+1) < N - L(N). (2.2.1)

By hypothesis, since the L(N)-stage LFSR with connection 
polynomial C^(x) can be used to generate s^s^...Sj^_^ but 
not SqS^...Sjj, and the L(N+1)-stage LFSR with connection 
polynomial C^^^(x) can be used to generate SgS^...s^, we 
have (from equation (1.3.2))

L(N)-1
L ^i^j-L(N)+i 
i=0

s. (j = L(N),...,N-1) ̂ (2 .2 .2) 
Sj + 1 (j = N)

L(N+1)-1I =k®j-L(N+l)+k = (j = L(N+1),...,N) (2.2.3)
k=0

L(N)-1
Therefore \ <=iSN-L(N)+i

i=0
L(N)-1 L(N+1)-1

_ V V ,
A ^i L ^k^N-L(N)-L(N+l)+i+k

i=0 k=0
by (2.2.3), since L(N+1) < N-L(N) by (2.2.1), 
and so (N-L(N)+i : i = 0,1,...,L(N)-1}

= (N-L(N),N-L(N)+1,...,N-1) 
is a subset of (L(N+1),L(N+1)+1,...,N).

L(N+1)-1 L(N)-1
^ C  ^ c sA k A ^i N-L(N)-L(N+l)+i+k

k=0 i=0
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L(N+1)-1 V
L ^k®N-L(N+l)+k

k=o
by (2.2.2), since L(N) < N-L(N+1) by (2.2.1), 
and so {N-L(N+l)+k : k = 0,1,...,L(N+1)-1}

= (N-L(N+1),N-L(N+1)+1,...,N-1} 
is a subset of (L(N),L(N)+1,...,N-1).

L(N)-1I ^i^N-L(N)+i ^ (2.2.3))
i=0

L(N)-1
But (2.2.2) gives \ <=iSN-L(N)+i = ^

i=0
and thus we have a contradiction,
proving that L(N+1) > N+1 - L(N) in the case
L(N) < N.

□

Combining Lemmas 2.2.1 and 2.2.2 above we obtain the 
following result : -

Corollary 2.2.3.

Let L(N) be the local linear complexity of the N-bit 
sequence s^s^. . .Sj^_^, let L(N+1) be the local linear 
complexity of the N+l-bit sequence SgS^...s^, and 
suppose that there exists an LFSR of length L(N) that 
can be used to generate SgS^...s^_^ but not SqS^...s^. 
Then L(N+1) > max(L(N),N+1-L(N)).

□
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2.3. THE BERLEKAMP-MASSEY ALGORITHM

As previously mentioned, the Berlekamp-Massey algorithm 
computes the local linear complexity L(n) of an n-bit 
binary sequence SqS^...s ^̂ _̂  and the connection 
polynomial C^(x) of an L(n)-stage LFSR on which 
SqS^...s^_^ can be generated. As a consequence of the 
way in which the algorithm works it also yields, for 
values of k from 0 up to n-1, the local linear 
complexity L(k) of the first k bits SqS^...Sĵ _^ of the 
sequence and the connection polynomial 
C%(X) = 1 + + ... + c(k)xL(k)-l + c(k)%L(k)
of an L(k)-stage LFSR on which SgS^...s^_^ can be 
generated.

The aim of this section is to introduce the reader to 
the Berlekamp-Massey algorithm. A statement of the 
algorithm will be given, and this will be followed by a 
brief discussion on the algorithm and an example of its 
use. The proof of the validity of the algorithm, 
however, will be left until Section 2.4.

The above-mentioned statement of the algorithm can be 
found overleaf.
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The BerlekairiD-Massev alaorithm

L(0) := 0
Cq (x ) := 1
B(x) := 1
a := 1

FOR k := 1 TO n DO
L(k-1)-1

d •- s + c(k-l)s ^ •“ ^k-l + A ®k-L(k-l)+i-l
i=0

IF d = 0 THEN
L(k) := L(k-l)
C%(x) :=
a := a + 1

END IF

IF d = 1 AND 2.L(k-l) > k-1 THEN
L(k) := L(k-l)
C%(X) := C%_^(x) + x®B(x)
a := a + 1

END IF

IF d = 1 AND 2.L(k-l) < k-1 THEN
L(k) := k - L(k-l)
Cĵ (x) := C%_^(x) + x^B(x)
B(x) := Cj^_i(x)
a := 1

END IF
END DO
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As can be seen, the algorithm is an iterative one, in 
which one iteration of a loop is performed for each bit 
of the sequence. After k-1 iterations of the loop the 
local linear complexity L(k-l) of the first k-1 bits 
s^s^...s^ _ 2  of the sequence and the connection 
polynomial C^^^(x) of an L(k-l)-stage LFSR that could be 
used to generate SqS^...Sj^_2 will be known. On the next 
pass through the loop the k^^ bit s^_^ of the sequence 
will be considered, and knowledge gained during previous 
iterations of the loop, together with knowledge of the 
value of s^_^, will be used to compute the local linear 
complexity L(k) of SgS^...s^_^ and the connection 
polynomial of an L(k)-stage LFSR that could be
used to generate this subsequence.

Each iteration of the loop begins by computing a value 
d , where

L(k-1)-1
d *= s + ^ c^^”^^sk-1 6 i ®k-L(k-l)+i-l

1=0

If L(k-l) = 0 then d will simply be set to the value of 
s^_^, the k^^ bit in the sequence.
If L(k-l) > 0, let UqU^U2 ... be the sequence of output
from the L(k-l)-stage LFSR with connection polynomial
Ck-i(x) when loaded with the initial state
s -s _...St ,, _. _. Then we know that u. = s. for0 1 L(k-1)-1 ] ]
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j = 0,1,...,k-2, since the above-mentioned LFSR 
generates s^s^. . . Sĵ _2 . Therefore,

L(k-1)-1
V c(k-l)sL ^i ®k-L(k-l)+i-l
i=0

L(k-1)-1
- c(k-l)u = u" A ^i ^k-L(k-l)+i-l *k-l'

i=0
and thus d = s^_^ + u^_^, so that d will be set to 
0 or 1 according to whether or not s^_^ would be the 
k^^ bit output from the L(k-l)-stage LFSR with 
connection polynomial C^_^(x) if it was initially loaded 
with

Depending on the values of d and L(k-l) one of three 
different actions is then taken. If d = 0 then the 
L(k-l)-stage LFSR with connection polynomial C^_^(x) can 
be used to generate SgS^...s^_^, and so the local linear 
complexity and the connection polynomial remain 
unchanged (i.e. L(k) := L(k-l) and •= C%_i(x)).

If d = 1 then the above-mentioned LFSR cannot be used to
generate s^s^. . . and so a new LFSR must be found, 

k—1If L(k-l) > then the local linear complexity
remains unchanged (i.e. an L(k-1)-stage LFSR can be 
found which can be used to generate not only 
SqS^...Sj^_2 but also SgS^...s^_^). However, if d = 1
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and L(k-l) < then the local linear complexity
increases (i.e. L(k) := k - L(k-l)); no L(k-l)-stage 
LFSR exists which could be used to generate SQS^...s^_^

It can be seen from the above remarks that if 
L(k-l) > then the local linear complexity cannot
increase on the k^^ iteration of the loop (we already 
know from Lemma 2.2.1 that it cannot decrease). If 
L(k-l) < then the local linear complexity will
increase or remain unchanged according to whether
d = 1 or 0. Also, if the local linear complexity does
increase on the k^^ iteration of the loop then its new 
value must be k - L(k-l). These results follow from 
the proof of the validity of the Berlekamp-Massey 
algorithm (Section 2.4).

Example 2.3.1.

As an example of the use of the Berlekamp-Massey 
algorithm, consider the 11-bit sequence SqS^...s ^q = 
01111011010. We demonstrate how the algorithm might be 
used to compute the local linear complexity of this 
sequence by means of the table shown below. The "k = 0" 
row of the table contains the initial values assigned to
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the variables used in the algorithm, while the "k = K"
row (K = 1,2,...,11) shows the assignments made to these 
variables during the iteration of the loop.

k d L(k) Ck(x) B(x) a

0 - 0 1 1 1
1 0 0 1 1 2
2 1 2 l+x2 1 1
3 1 2 1+x+x^ 1 2
4 1 2 1+x 1 3
5 0 2 1+x 1 4
6 1 4 41+x+x 1+x 1
7 0 4 41+x+x 1+x 2
8 1 4 2 3 4 

1 + X + X  +X +X 1+x 3
9 1 5 1 + X + X ^

2 3 4 
1 + X + X ^ + X ^ + X 1

10 0 5 1 + X + X ^ 2 3 4 1 + X + X  + X + X 2
11 1 6 1+x+x^+x^+x^+x^ 1+x+x^ 1

Hence the 11-bit sequence 01111011010 can be generated 
using the 6-stage LFSR with connection polynomial 
1 + X + x^+ x^+ x^+ x^ (i.e. the LFSR shown below).

> — ©

< < << <
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2.4. PROOF OF THE VALIDITY OF THE ALGORITHM

We now justify the use of the Berlekamp-Massey algorithm 
in computing the local linear complexity L(n) of the 
n-bit binary sequence SgS^...s^_^ and the connection 
polynomial C^(x) of an L(n)-stage LFSR on which 
SqS^...s^_^ can be generated.

First we show that the algorithm works for n = 1.
In this case only one iteration of the loop is required
(the iteration with k = 1), and k = 1 gives d := s^.
If Sq = 0 then d := 0, giving

L(l) := L(0) = 0 
c^fx) := Cq (x ) = 1 

If Sq = 1 then d := 1, and since 2.L(0) < 0 this
gives

L(l) := 1 - L(0) = 1 
C^(x) := Cq (x ) + x^.B(x) = 1 + X

The 1-bit sequence s^ = 1 obviously has local linear 
complexity L(l) = 1, and can be generated using any 
1-stage LFSR, including the one with connection 
polynomial C^(x) = 1 + x.
And, by definition, the 1-bit sequence s^ = 0 has local 
linear complexity L(l) = 0 and connection polynomial 
C^(x) = 1.
Thus, the algorithm works for n = 1.
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Now assume that the algorithm works for n = N. We will 
show that the algorithm also works for n = N+1.
Since the algorithm works for n = N we know that, for 
any N-bit sequence s^s^.. ,Sĵ _̂ , it gives the correct 
local linear complexity L(N) and the connection 
polynomial C^(x) of an L(N)-stage LFSR on which 
SqS^...Sĵ _^ can be generated.

If the L(N)-stage LFSR with connection polynomial C^(x) 
also generates s^s^...s^ then d := 0 and so the 
algorithm gives

L(N+1) ;= L(N)

Hence the algorithm works for n = N+1 in this case, 
since C^(x) is the connection polynomial of an 
L(N)-stage LFSR on which SqS^...Sĵ can be generated, and 
L(N) must be the local linear complexity of SqS^...s^ 
since, by Lemma 2.2.1, the local linear complexity of 
SqS^...s^ is no less than that of s^s^...s^_^.

If the L(N)-stage LFSR with connection polynomial Cĵ (x) 
cannot be used to generate SqS^...Sĵ then d := 1.
In this case the algorithm gives L(N+1) := L(N) if
2.L(N) > N and L(N+1) := N+1 - L(N) if 2.L(N) < N.
i.e. the algorithm gives

L(N+1) := max(L(N),N+1-L(N)).
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The algorithm also gives
c^+ifx) := Cjj(x) + x®B(x) 

regardless of whether 2.L(N) > N or 2.L(N) < N.

If no change has occurred in the local linear complexity 
during the first N iterations of the loop then L(N) = 0, 
Cĵ (x) = 1 ,  B(x) = 1  and a = N+1, since B(x) only alters 
when the local linear complexity alters and a is 
incremented once on each pass through the loop unless 
the local linear complexity changes.
Thus, in this case the algorithm gives

L(N+1) := N+1
N+1CN+i(x) := 1 + x^+^

But L(N) = 0 implies that s^s^...Sj^_^ = 00... 0, and 
s^ = 1 since the L(N)-stage LFSR with connection 
polynomial C^(x) cannot be used to generate SqS^...Sĵ, 
so that SqS^...Sĵ = 00...01. Any N+l-bit sequence can 
be generated using any N+l-stage LFSR, and 00...01 
cannot be generated using a shorter register (of 
length M, say), since to generate SqS^...Sĵ _^ the 
register would have to be loaded initially with M zeros 
and so its output would always be zeros. Therefore the 
local linear complexity of SQS^...s^ is N+1 and the 
algorithm works for n = N+1 in this case.

Having dealt with the above case we can assume that at 
least one change has occurred in the local linear 
complexity during the first N iterations of the loop.
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Suppose that the last such change occurred during the 
iteration with k = M. Then after the first N iterations 
of the loop we have B(x) = and a = N-M+1, so
that the algorithm gives

By Corollary 2.2.3 we know that 
L(N+1) > max(L(N),N+1-L(N)).
Therefore it is sufficient to prove that the L-stage 
LFSR with connection polynomial C^(x) + x^ 
can be used to generate SqS^...Sĵ , where 
L := max(L(N),N+1-L(N)).
[Note that deg(Cjj(x) + (x) )
< max(deg(Cjj(x) ) ,N-M+l+deg(C^_^(x) ) )
< max(L(N),N-M+1+L(M-1)) = L, since
L(N) = L(M) = M-L(M-l) and L = max(L(N),N+1-L(N)).
Thus C^(x) + (x) is a valid connection
polynomial for an L-stage LFSR.j

Let C^(x) + xH^M+lc^_^(x) =
1 + c, ,x + ... + c.x^“  ̂+ c_x^.L-1 1 0

Then it is sufficient to prove that
L-1I '=i®j-L+i = j = L,L+1,...,N
1=0

If we let
Cj,(x) = 1 + + ••• + c^xL(N)-l+ c^xL(H), and

C„_i(x) = 1 + + ... + c%xL(M-l)-l+ c%xL(M-l)
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then 1 + + —  + c^x

^ ^ °L(N)-l^ + ... + CgX
+ cgxN-M+l+L(M-l)

and so
L-1V
1=0

L-1 Y ,
L ^i-L+L(N)®j-L+i 

i=L-L(N)

+
L-N+M-2 V

L ’̂ i-L+N-M+l+L (M-1) “ j -L+i 
i=L-N+M-l-L(M-l)

^j-N+M-1

L(N)-1I CiSj_L(N)+i
i=0

L(M-1)-1Y
L ^i^j-N+M-l-L(M-l)+i ^j-N+M-1
i=0

But the L(N)-stage LFSR with connection polynomial C^(x) 
can be used to generate SqS^...Sĵ _^ but not SqS^...Sĵ , 
and therefore
L(N)-1 

V c'sL i j-L(N)+i 
1=0

=i
Sj + 1 (j = N)

And the L(M-1)-stage LFSR with connection polynomial 
Cm-i(x) can be used to generate SqS^...Sj^_2 but not
SqSi .-.Sm -i , so

L(M-1)-1
L ^i^j-N+M-l-L(M-l)+i 

i=0

^j-N+M-1
(j = L(M-1)+N-M+1,

...,N-1)

^j-N+M-1 ^ (j = N)
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But L(N) < L and L(M-1)+N-M+1 = N+1-L(N) < L, since 
L = max(L(N),N+1-L(N)) and L(N) = M-L(M-l).
Therefore

g f ĵ"*" ®j-N+M-l'*‘ ®j-N+M-l (i ^ L,
i£o°i^j-L+i I Sj+ 1 + S._x+M_l+ 1 + Sj-N+M-l (i =

= Sj (j = L,L+1,...,N)

and hence we have shown that the L-stage LFSR with 
connection polynomial C^(x) + x^ can be
used to generate SqS^...Sĵ, as required.

□

Thus we have shown that the Berlekamp-Massey algorithm 
works (i.e. it correctly computes the local linear 
complexity L(n) of SqS^...s^_^ and the connection 
polynomial of an L(n)-stage LFSR on which SqS^...s^_^ 
can be generated).
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2.5. THE MULTIPLICITY OF THE CONNECTION POLYNOMIAL

In Section 2.3 it was noted that if, in the 
iteration of the loop in the Berlekamp-Massey algorithm, 
d = 1 and L(k-l) > then, although the
L(k-l)-stage LFSR with connection polynomial 
cannot be used to generate SgS^...s^_^, another 
L(k-l)-stage LFSR can be found which can be used to 
generate s^s^. . . Sj^_^. Since both registers can be used 
to generate s^s^. . . Sĵ _2 , the register given by the 
algorithm is not the only L(k-l)-stage LFSR on which 
SgS^...s^ _ 2  can be generated. More precisely, the 
following is true :-

Theorem 2.5.1

Let L(N) be the local linear complexity of the N-bit 
sequence s^s^. . .s^^_^, and let Ĉ (̂x) , B(x) and a be the 
values produced when the Berlekamp-Massey algorithm is 
applied to SQS^...s^_^.
Then

(i) If L(N) < ^ then C^(x) is the connection 
polynomial of the unique L(N)-stage LFSR on which 
SqS^...Sĵ _^ can be generated.

(ii) If L(N) > ^ then there are ^fN)-stage 
LFSRs on which SqS^...Sĵ _^ can be generated, whose 
connection polynomials are given by

(C^(x) + q(x).x^B(x) : deg(q(x)) < 2L(N)-N).
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Proof

(i) Suppose that an L(N)-stage LFSR with
connection polynomial C(x) = 1 + '"0X + ...+ c^x

N
L(N)

can be used to generate s^s^. . .Sĵ _̂ , where L(N) < — . 
Then

L(N)-1I °i®j-L(N)+i "
i=0

and in particular

(j = L(N) , . . . ,N-1)

L(N)-1I °i®j-L(N)+i ^ (i = L(N) , . . . ,2L(N)-1)
i=0

i.e. S.c = sL(N)
where S is the L(N)xL(N) matrix given by

(2.5.1)

^0 Si ---  ®L(N)-1
---  ^L(N)

s — : :

®L(N)-1 ^L(N) ---  ®2L(N)-2

Ç and £̂ L(N) the vectors given by
/• ^
®L(N)

=1 ®L(N)+1
Ç = j ^L(N) =

‘̂ L(N)-1 ^2L(N)-1

Let SqS^s ^... be the infinite binary sequence generated 
by loading the L(N)-stage LFSR with connection 
polynomial C(x) with the initial state s^s^. . .
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Then SQS^Sg... has global linear complexity L(N), since 
SqS^...Sĵ _^ has local linear complexity L(N) and so 
cannot be generated using a shorter register.

But the rows of the matrix S in (2.5.1) represent L(N) 
successive states of the above-mentioned LFSR when used 
to generate the sequence s^s^s^.... Hence, by Theorem 
1.4.4, the rows of S are linearly independent and so S 
is invertible.

Therefore equation (2.5.1) has a unique solution ç given 
by Ç = hence there exists a unique
L(N)-stage LFSR which can be used to generate 
SqS^. . .Sĵ _̂ . But the Berlekamp-Massey algorithm gives 
the connection polynomial C^(x) of an L(N)-stage LFSR on 
which the sequence can be generated. Therefore C^^x) is 
the connection polynomial of the unique L(N)-stage LFSR 
which can be used to generate s^s^. . . Sj^_^.

(ii) Now suppose that L(N) > so 2.L(N) > N.
If we append 2L(N)-N bits to the sequence SqS^...s ^̂ _̂  to 
obtain the 2L(N)-bit sequence s^s^...s^^^^^_^ (where 
s^s^...s^_^ = SqS^...s^_^), then the Berlekamp-Massey 
algorithm tells us that the local linear complexity of 
s^s^. . . is L(N) , since the local linear
complexity cannot change during the k^^ iteration of 
the loop in the algorithm unless 2.L(k-l) < k-1. Thus, 
by (i) above there is a unique L(N)-stage LFSR on which 

-1 generated.
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SmST...s^ _ can be extended in N ways, and0 1 N —1
in each case we obtain an L(N)-stage LFSR which can be
used to generate s^s^.. . s ' , and hence can also be
used to generate s^s^. . . Sĵ _̂ . But if an L(N)-stage LFSR
can be used to generate SQS^...s^_^ then it can also be
used to generate a sequence with
s's' s' . = s_s_— s.. - , and thus there are exactly0 1 N-1 0 1 N-1'
22L(N)-N L(N)-stage LFSRs on which SQS^...s^_^ can be 
generated.

Now consider the use of the Berlekamp-Massey algorithm 
to find the local linear complexity of one of the 
above-mentioned 2L(N)-bit sequences. For such a 
sequence, L(N) = L(N+1) = ... = L(2L(N)), and on the 
iterations of the loop with k = N+l,N+2,...,2L(N) one of 
the first two conditions holds (i.e. either d := 0, or 
d := 1 and 2.L(k-l) > k-1).
Thus, at each of these iterations the connection 
polynomial of the L(k)-stage LFSR given by the algorithm 
either remains unchanged or is modified by adding x^B(x) 
to it, where B(x) = C^^^(x), a = k-m, and m is the 
greatest integer such that L(m-l) < L(N).
Therefore, any L(N)-stage LFSR which generates a 
sequence s^s'...s'^(H)_i with s's^...s^_^ = s^s^...s^_^ 
must have connection polynomial of the form

Cjj(x) + (SqX + ... + &2L(N)-N-1*  ̂  ̂ )^m-l(^)
= Cĵ (x) + (&0 + ... +
for some values 8^ (5^ = 0 or 1, i = 0,1,...,2L(N)-N-1).
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But there are 2^^^^ ^ such polynomials, given by
(C^fx) + q(x).xN-m+lc^_i(x) : deg q(x) < 2L(N)-N), 

and so each of these is the connection polynomial of an 
L(N)-stage LFSR that can be used to generate SgS^...s^_^ 
(since we have already shown that there are exactly 
2 &(N)-N L(N)-stage LFSRs on which SqS^...Sj^_^ can be 
generated).

Hence, since N-m+1 and C _(x) are the values of a andm-1' '
B(x) produced when the Berlekamp-Massey algorithm is 
applied to SgS^...s^_^, we have proved part (ii) of the 
theorem.

□
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2.6. EXTENDED FORM OF THE ALGORITHM

The Berlekamp-Massey algorithm as stated in Section 2.3 
computes the local linear complexity L(n) of an n-bit 
sequence SQS^...s^_^ and the connection polynomial of an 
L(n)-stage LFSR on which s^s^— ®n-l generated.
In this section we will extend the Berlekamp-Massey 
algorithm so that it also computes a polynomial P^(x)
(of degree less than L(n)), where P^(x) is the image of 
the initial state of the LFSR (when used to generate 
SqS^...s^_^) under a particular one-to-one mapping 
(given by (2.6.3) below) from the possible states of the 
register onto the set of polynomials over GF(2) of 
degree less than L(n). The polynomial P^(x) will be 
used extensively in Chapter 4.

Firstly, recall from Section 2.1 that the L-stage LFSR 
shown below has connection polynomial C(x) given by 

C(x) = 1 + c^_^x + c^^2 %^ + ... + c^x^  ̂+ c^x^*

<

> — © ---- >

< -

> — © —  —  —  — ©  >

L<- <

^L-2 ^L-1

<-i

Let SqS^S2 -.. be an infinite binary sequence that can be 
generated using the above L-stage register, and define 
S(x) to be the generating function of SqS^S2 ..., i.e.

S(x) := Sq + s^x + SgX +
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Then
C(x)S(x)

where
=  Po +  P i ^  +  P 2 ^  +

L-1
S] + I ^i^j-L+i (i

i=L-j
L-1

S] + I ^i®j-L+i 
1=0

But since s^s^Sg... can be generated using the L-stage 
LFSR with connection polynomial C(x),

L-1= I CiSj-L+i i > ^
1=0

and thus
C(x)S(x) = Pq + P^x + PgX^ + ... + Pl _^x ^ ^

L-1Ywhere Pj = Sj + ^ ^i^j-L+i ( Î  = 0,1,...,L-1)
i=L-j (2.6.1)

Note that the polynomial p^ + p^x + ... + p^^^x 
above is the polynomial ^(x) of Theorem 1.4.2.

L-1

Now consider the finite n-bit sequence s^s^. . . s^^_^, and 
let

S„(x) := Sq + s^x + SgX^ + ... +
Suppose that SqS^...s ^̂ _̂  can be generated using the 
L(n)-stage LFSR with connection polynomial

Cn(x) = 1 + + ... + c'x
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Then
Cn(x)Sn(x) = Po + PiX + PgX^ + ... + Pl (i,)
where

Pj : =

L(n)-l+ I ci=i-L(n)+i (i = 0 ,l,...,L(n)-l)
i=L(n)-j
L(n)-1

®j I ‘̂ i®j-L(n)+i (i L(n),... ,n-l)
i=0 

n+L(n)—1—jI cl=i-L(n)+i (i = " ..... n+L(n)-l)
1=0 (2 .6.2)

But since SQS^...s^_^ can be generated using the
L(n)-stage LFSR with connection polynomial C^(x),

L(n)-1
= I °i®j-L(n)+i L(n) < j < n-1

i=0
and thus
Cn(x)Sn(x) = p^ + p^x + ... + Pl (u )-1 ^ ^ ^ ^ ^ (mod x*)

L(n)-1
where py = Sj + ^ ^i^j-L(n)+i 0,l,...,L(n)-l)

i=L(n)-j (2.6.3)
(c.f. (2.6.1))

Let

Then
Cn(x)Sn(x) = P^fx) (mod x")

=> Cn(x)Sn(x) = Pn(x) + x "g ^(x ) (2.6.4)
for some polynomial G^(x)
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=> S^fx) = (Pn(x) + X^G^fx)) / C^(X) (2.6.5)
for some polynomial G^(x)

(c.f. Theorem 1.4.2).

For a given L(n)-stage LFSR, (2.6.3) defines a 
one-to-one mapping from the possible initial states of 
the register onto the set of polynomials over GF(2) of 
degree less than L(n). Under this mapping, the initial 
state SqS^. . . is mapped onto the polynomial
P„(x).

Earlier in this chapter we described the 
Berlekamp-Massey algorithm and showed that it can be 
used to compute the local linear complexity L(n) of an 
n-bit sequence SQS^...s^_^ and the connection polynomial 
of an L(n)-stage LFSR which can be used to generate 
SqS^...s^_^. We now show how the Berlekamp-Massey 
algorithm can be extended so that it also computes the 
corresponding polynomial P^(x). We first state the 
extended form of the algorithm :-
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The Berlekamp-Massev Algorithm (Extended form)

L(0) := 0
Cq (x ) := 1 Pq (x ) := 0
B(x) := 1 Q(x) := x"^
a := 1

FOR k := 1 TO n DO
L(k-1)-1

^ •“ ^k-1 ^ L ^k-L(k-l)+i-l
i=0

IF d = 0 THEN 
L(k) := L(k-l)
C%(x) := C%_^(x) P%(x) :=
a := a + 1 

END IF

IF d = 1 AND 2.L(k-l) > k-1 THEN
L(k) := L(k-l)
C%(X) := C%_i(x) + x®B(x) P%(x) := P%_i(x) + x^Q(x)
a := a + 1 

END IF

IF d = 1 AND 2.L(k-l) < k-1 THEN
L(k) := k - L(k-l)
c%(x) ;= C%_^(x) + x^B(x) P%(x) := Pj^.^Cx) + x^Q(x)
B(x) := C]^_i(x) Q(x) := P%_^(x)
a := 1 

END IF 
END DO
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We now justify the use of this algorithm to calculate 
the polynomial P^(x). We will use an inductive proof to 
show that, at each iteration of the loop in the 
algorithm, the polynomial P^X%) generated has the 
property that Pĵ (x) = Cj^(x)Sj^(x) (mod x )

Suppose that the first increase in local linear 
complexity occurs on the a(l)^^ iteration of the loop in 
the algorithm (i.e. L(l) = L(2) = _ L(a(l)-1) = 0,
L(a(l)) = a(l) , ^0^1'■ ' ̂ a (1)-1 00...01). Then the
Berlekamp-Massey algorithm gives the following sequence 
of polynomials :-

k Cĵ (x) P%(x) L(k)

0 1 0  0
1 1 0  0 
2 1 0  0

a(l)-l 1 0  0
a(l) 1 + x^(^) a(l)

Thus, for k < a(l), the algorithm gives 
C%(X) = 1, P%(X) = 0, s%(x) = 0,

so Cj^(x)Sj^(x) (mod x^) = 0 = Pĵ (x)
and thus the algorithm produces the correct value of 
Pĵ (x) in this case.
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For k = a(l) the algorithm gives
C%(x) = 1 + x3(l), P%(x) = x3(l)-l, s%(x) =

so C%(x)S%(x) (mod x'̂ ) = (1 + x^^^^ ) (mod x^(^))
=

= P%(x)
and thus the algorithm produces the correct value of 
Pĵ (x) in this case too.

Now assume the algorithm produces the correct value of 
Pĵ (x) (i.e. assume there exists a polynomial G^^x) such 
that Cj^(x)Sj^(x) = P%(x) + x*G^(x), where 
deg P^(x) < L(k)) for k = 1,2,...,N, where N > a(l). 
Consider the N+1^^ iteration of the loop in the 
algorithm (i.e. the iteration with k = N+1).

If d ;= 0 in this iteration of the loop then the 
algorithm gives

^N+1^*^ *~ ^N ^N+1^*^ *~ ^N ̂ ^̂
N+1so Ĉ +i(x)Sĵ _j.3̂ (x) (mod X )

= C^(x) (Sjj(x) + Sĵ x*̂ ) (mod x^+l)

= Pj,(x) + x^Gj^(x) + Sj,x*̂ Cjj(x) (mod x*+l)
2for some G^(x) = g^+ g^x + g^x + ... ,
where deg P^(x) < L(N)

Thus CN+i(x)S^+^(x) (mod x^^^)
= P^fx) + (9o +

(since C^(x) = 1 + + ... + c^x^fN)
for some coefficients CQ,c^,...,c^^^^_^)
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But since C^^x)S^(x) = P^(x) + %^G^(x),
where deg P^(x) < L(N) < N, 

L(N)-1
9o = coefficient of in Cjj(x)Sj^(x) = ^ '^i^N-LCNj+i

i=0
(by (2.6.2))

And since the L(N)-stage LFSR with connection polynomial
C^(x) can be used to generate SqS^...s^,

L(N)-1
V

®N L ^i®N-L(N)+i
i=0

Thus = Sjj,
and so C^^^(x)S^+^(x) (mod x^^^) = Pj,(x) = P^j+^Cx)
(i.e. the algorithm gives the correct value of Pj^^^(x) 
in the case d := 0).

If d := 1 then the algorithm gives
Cw+i(x) := c^(x) + x&B(x), P^+ifx) := P%(x) + x^Q(x)

If the last increase in local linear complexity occurred
on the m^^ iteration of the loop then, at the end of the

iteration,
B(x) = C^_i(x), Q(x) = P^_g^(x) , and a = N-m+1,

N+1so C^^^(x)S^+i(x) (mod X )

= (Cjj(x) + x'̂ "“‘̂ ^C^_^(x)) (Sjj(x) + ŝ x*̂ ) (mod x^+l)

= Cjj(x)Sjj(x)+ x^"™+^C^_i(x)S%(x) + s^x^C^^x) (mod x^+l)
(since N-m+1 > 1)
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= P„(x) + x % ( x )  + x"-*+"Cm_i(x)(So+ ... +
+ s^x^Cjj(x) (mod x^+l)

2for some G^(x) = g^+ g^x + g^x + ... ,
where deg P^(x) < L(N)

N+1Thus CN+l(*)SH+i(x) (mod x )
= Pn (x ) + (9o + Sn )-x”

+ x*-m+lCm_i(x)(S^_i(x) + (mod x^+l)
(since C^(x) = 1 + + ••• + c^x^fN)

for some coefficients CQ,c^,...c^^^^_^)

= P^(x) + (gg + s^j.xH + xN-m+l(P^_i(x) + (x) )
+ Sm-lX^Cm_i(x) (mod x^+l)

for some G^_^(x) = g^+ g^x + g'x^ + ... ,
where deg ^ L(m-l)

N+1=> CN+l(x)SN+l(x) (mod X )
= Pn (x ) + (9o + + 96 +

(2.6.6)

(since C^_i(x) = 1 + + ... + c^x^(™"^))
for some coefficients c^,c^,...,c^^^_^j_^)

But since C^^x)S^(x) = Pjj(x) + x̂ Gj^(x) ,
where deg P^(x) < L(N) < N, 

L(N)-1
9o = coefficient of x*̂  in Cĵ (x)Sjj(x) = ^

i=0
(by (2.6.2))
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And since d = 1, the L(N)-stage LFSR with connection 
polynomial Cĵ (x) cannot be used to generate 

L(N)-1
and so Sjj = I (CiSH_L(N)+i) + ^

i=0
Thus g^ + Sĵ  = 1. (2.6.7)
similarly, since C^^i(x)S^_^(x) = P^_i(x) + x™ ^G^^^(x), 
where deg Pm-l^*) ^ L(m-l) < m-1,

g' = coefficient of x^“  ̂ in C^^^(x)S^_^(x)
L(m-1)-1= I ‘=i=m-l-L(m-l)+i (2.6.2))

i=0
And since L(m) > L(m-l), the L(m-l)-stage LFSR with 
connection polynomial G^_^(x) cannot be used to generate

®0®1‘•'^m-l'
L(m-1)-1

and so = I (CiSm-l-L(m-l)+i) + ^
i=0

Thus, + s^^i = 1. (2.6.8)

Combining (2.6.6), (2.6.7) and (2.6.8) we have
Cn +i (x )Sn +i (x ) (mod x*+l) = Pjj(x) + x^"*+lPm_i(x)

= PN+i(x)
and so the algorithm gives the correct value of Pj^^^(x) 
in the case d := 1.
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Thus we have shown that, for any integer n > 1, the 
extended form of the Berlekamp-Massey algorithm produces 
a polynomial P^(x) of degree less than L(n) such that 

Pn(x) = Cg(x)Sn(x) (mod x")

□

We now prove a relationship between the local linear 
complexity L(n) of the n-bit sequence SQS^...s^_^ and 
the polynomials C^(x) and P^(x) produced when the 
Berlekamp-Massey algorithm is applied to this 
sequence :-

Theorem 2.6.1.

Let L(n) be the local linear complexity of the n-bit 
sequence s^s^. . . and let C^(x) and P^(x) be the
polynomials produced when the Berlekamp-Massey algorithm 
(in its extended form) is applied to s^s^. . . s^^_^.
Then

L(n) — max (deg C^(x), 1 + deg P^(x))

Proof

Let C^(x)

and P^(x) = P,
L(n)-1 

+ p^x + ... + pL(n)-1X
L(n)-1

(recall that deg P^(x) < L(n)-l)
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If Cq = 1 then deg C^^x) = L(n)
=> max (deg C^(x), 1 + deg P^(x)) = deg C^(x) = L(n)
and so the theorem holds in this case.
If PL(n)-i " 1 then deg P^(x) = L(n)-1
=> max (deg C^^x), 1 + deg Pg(x)) = 1 + deg P^(x) = L(n)
and so the theorem holds in this case too.
We will show that if c^ = 0 then PL(n)-l ^ ^, and so
one of the two cases above must hold.

Since the L(n)-stage LFSR with connection polynomial 
C^(x) can be used to generate s^s^. . . s^^_^,

L(n)-1
Sj = I ■=i®j-L(n)+i tor j = L(n),...,n-1.

i=0
Suppose that c^ = 0.
Then

L(n)-1
= I °i^j-L(n)+i tor j = L(n) n-1.

i=l
And from equation (2.6.3),

L(n)-1
V

PL(n)-l “ ^L(n)-1 L ^i^i-1
i=l

L(n)-1=> =L(n)-l = I =1=1-1 tt PL(n)_i = 0
i=l
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Thus, if PL(n)-i “ ° then 
L(n)-1

=j = I =i®j-L(n)+i tor j = L(n)-l,...,n-l.
i=l

=> generated using the
(L(n)-l)-stage LFSR with connection polynomial C^(x)

=> SqS^...s^_^ has local linear complexity < L(n)-1.

But, by definition, SqS^...Sĵ _^ has local linear 
complexity L(n), giving us a contradiction.

Thus, if Cq = 0 then PL(n)-l ^

□
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CHAPTER 3

LINEAR COMPLEXITY PROFILES
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3.1. INTRODUCTION

The Berlekamp-Massey algorithm described in Chapter 2 is
usually thought of as an algorithm for computing the
local linear complexity L(n) of an n-bit binary sequence
SqS^. . . However, it can be seen from Chapter 2
that this algorithm also computes, in the course of
computing L(n), the local linear complexities L(l),
L(2), ..., L(n-l) of the subsequences s^, s^s^, ...,
s_s_...s _ of s_s_...s_ _. Thus, the Berlekamp-Massey0 1 n-2 0 1 n-1
algorithm can be used to generate an n-vector 
(L(l),L(2),...,L(n)), which we call the linear 
comolexitv profile of s^s^. . . s^^_^.

Alternatively, we can consider the linear complexity
profile as a graph. For a given n-bit sequence
SnS_...s_ -, consider the function L from the set of 0 1 n-1'
integers {1,2,...,n) into itself, where L(k) is defined 
to be the local linear complexity of the first k bits 
s^s^...s^_^ of SqS^...s^_^ (k = 1,2,...,n). The linear 
complexity profile of s^s^. . . can be thought of as
the graph of the function L. Strictly speaking, when 
this graph is plotted a point should be placed at 
(k,L(k)) for k = 1,2,...,n and no other points should be 
plotted, since the function L is defined only for the 
integers 1,2,...,n. However, in practice we will plot 
the linear complexity profile as if it was a step 
function defined for all real values in the interval 
[0,n], by taking the value y of the function at the
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point X to be the local linear complexity L(k) of the 
subsequence s^s^. . . s^^_^, where k = L%J, the greatest 
integer not exceeding x.

We will use the term "linear complexity profile" to 
denote both the vector (L(l),L(2),...,L(n)) and the 
graph of the corresponding step function. Note, 
however, that in some texts, including [15], the graph 
of the step function is referred to as a "staircase 
profile".

The above definition applies to finite binary sequences. 
In a similar way, we can define the linear complexity 
profile of an infinite binary sequence s^s^Sg... to be 
either the vector (L(1),L(2),L(3),...) or the graph of 
the corresponding step function, where L(k) is the local 
linear complexity of the k-bit subsequence s^s^. . . .
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3.2. EXAMPLES OF LINEAR COMPLEXITY PROFILES 

Example 3.2.1.

As a first example of a linear complexity profile, 
consider the 20-bit sequence 01111011010011010000. This 
sequence has linear complexity profile (0,2,2,2,2,4,4,4, 
5,5,6,6,6,6,6,10,10,10,10,10), as illustrated below.
Note that the local linear complexities of the first 11 
subsequences were computed in Section 2.3 using the 
Berlekamp-Massey algorithm.

y = L(k)
12
10

0 2 4 6 8 10 12 14 16 18 20
X (k=LXj)

We say that the linear complexity profile of a sequence 
"jumps" with the bit in the sequence if
L(k) > L(k-l), and we define the height of the jump to 
be the difference L(k) - L(k-l). For instance, the
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linear complexity profile in the above example jumps 
with the 2^^, 6^^, 9^^, 11^^ and 16^^ bits in the 
sequence, and these jumps have heights 2, 2, 1, 1 and 4 
respectively. We describe a horizontal section of the 
profile as a step. Thus, there is a step of length 4 
between the first two jumps in the example above.

Example 3.2.2.

For any integer n > 0, consider the n-bit sequence 
00...01. For k = 1,2,...,n-1, the k-bit sequence 
00...0 has local linear complexity L(k) = 0; and the 
entire n-bit sequence has local linear complexity n, 
since to generate the beginning of this sequence any 
LFSR of length less than n would have to be loaded with 
all zeros and so would generate an all zeros output 
sequence. Thus, the sequence has linear complexity 
profile (0,0,...,0,n), as illustrated below, and is in 
fact the only n-bit sequence with this profile. 
Moreover, 00...01 is the only n-bit sequence with local 
linear complexity n.
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y = L(k)
n - 

n-2 -

4 -
2 - 

0 I I I I I r 
2 4 6

I I I 
n-4 n-2

X (k= LXJ )
n

Example 3.2.3.

Consider the infinite periodic sequence
101110010111001011100..., which has period 7 and global 
linear complexity 3. The linear complexity profile of 
this sequence is (1,1,2,2,3,3,3,3,3,3,...), as 
illustrated below.

y = L(k)
8
6
4
2
0

8 10 12 14 160 2 4 6
----------X (k= LXJ )
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More generally, consider any infinite periodic sequence 
SqS^s^... with global linear complexity L. Then the 
linear complexity profile of s^s^Sg... will increase to 
L by the point (2L,L), after which it will remain 
horizontal, as the following result shows :-

Theorem 3.2.1.

Let s^s^Sg... be a periodic binary sequence with global 
linear complexity L, and let L(k) be the local linear 
complexity of the k-bit subsequence SqS^...Sĵ _^ of

®0^1®2---
Then L(k) = L for k > 2L.

Proof

Since SgS^Sg... has global linear complexity L, 
SgS^...s^_^ can be generated using an L-stage LFSR for 
any integer k > 0, and so SgS^...s^_^ has local linear 
complexity L(k) < L.

Now assume k > 2L,
and suppose that L(k) < L.
Then there exists an L'-stage LFSR (R, say) on which 
SqS^...Sĵ _^ can be generated, where L' < L.
Let s^s^s'... be the infinite binary sequence generated 
by loading the initial state s^s^. . . ŝ ,̂ into the 
register R. Then s^ = s^ for i = 0,1,...,k-1, and 
Sj 5»̂ s( for some j > k.
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Now consider the infinite sequence sjjs^s^... formed by 
modulo 2 adding s^s^Sg... and s^s^s^.... From the above 
discussion we know that sV = 0 for i = 0,1,...,k-1, and 
sV = 1 for some j > k. Thus, sjjsîjŝ ... cannot be 
generated using a k-stage LFSR (c.f. Example 3.2.2), and 
hence sjjs^s^... has global linear complexity 
L" > k. (3.2.1)

Recall from Section 1.3 that Q(f) is the set of all 
infinite binary sequences that can be generated using 
the LFSR with characteristic polynomial f(x). From the 
results in [20] it can easily be seen that any infinite 
binary sequence which is the modulo 2 sum of a sequence 
in 0(f) and a sequence in 0(g) is in 0(fg). Hence, an 
infinite binary sequence which is formed by modulo 2 
adding two other such sequences, one of which can be 
generated using the m-stage LFSR with characteristic 
polynomial f(x) and the other using the m'-stage LFSR 
with characteristic polynomial g(x), can be generated 
using the (m+m')-stage LFSR with characteristic 
polynomial f(x)g(x).
Thus, sjjsîjŝ ... can be generated using an (L+L')-stage
LFSR, and so has global linear complexity
L" < L+L' < 2L < k. (3.2.2)

But (3.2.2) contradicts (3.2.1), 
and thus L(k) = L for k > 2L.

□
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Example 3.2.4.

As a final example of a linear complexity profile, 
consider the 20-bit sequence 10111011001000101001. This 
sequence has the linear complexity profile 
(1,1,2,2,3,3,...,9,9,10,10) , as illustrated below. Such 
a profile is commonly known as a "perfect" linear 
complexity profile.

y = L(k)
12
10

8 10 12 14 16 18 204 60 2

More generally, an n-bit binary sequence is said to have 
a perfect linear complexity profile if 

L(k) = rk/2~l for k = 1,2,...,n, 
where is the least integer greater than or equal
to k/2.
(i.e. if it has linear complexity profile 
( 1 , 1 , 2 , 2 , 3 , 3 , , rn/2l).
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similarly, an infinite binary sequence has a perfect 
linear complexity profile if

L(k) = l"k/2T for k = 1,2,3,---
We will return to the subject of perfect linear 
complexity profiles in Chapter 4.

— 93 —



3.3. PROPERTIES OF LINEAR COMPLEXITY PROFILES

In this section we look at some properties of linear 
complexity profiles. We begin by returning to the 
Berlekamp-Massey algorithm, as described in Chapter 2, 
and interpret some of the results from that chapter in 
terms of linear complexity profiles.

The first point to notice is that, by Lemma 2.2.1, the 
graph of the linear complexity profile of a binary 
sequence must be non-decreasing.

Now consider the remarks towards the end of Section 2.3.
It was there stated that "if L(k-l) > then the local
linear complexity cannot increase on the k^^ iteration
of the loop". Translated into the language of linear
complexity profiles, this statement says that, if the
linear complexity profile of a sequence is above the
line y = x/2 at the point (k-1,L(k-l)), then the profile
cannot jump with the k^^ bit in the sequence (i.e. it

k-1cannot jump at x = k) . Similarly, "if L(k-l) < then
the local linear complexity will increase or remain 
unchanged according to whether d = 1 or 0" means that, 
if the linear complexity profile is on or below the line 
y = x/2 at the point (k-1,L(k-l)), then the profile will 
jump or not with the k^^ bit in the sequence, according 
to the value of that bit.
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Further, "if the local linear complexity does increase 
then its new value must be k-L(k-l)" implies that, if 
the linear complexity profile does jump at x = k, then 
it jumps from L(k-l) to k-L(k-l), and so the jump has 
height k - 2L(k-l). But | - L(k-l) = (k-L(k-l)) - 
and hence the profile jumps the same distance above the 
line y = x/2 as it was below the line before it jumped.

To illustrate the above points, consider the linear 
complexity profile in Example 3.2.1. This profile is 
redrawn in Figure 3.3.1 below, this time with the line 
y = x/2 added.

y = L(k)
12
10

8 10 12 14 16 18 202 60 4

Figure 3.3.1. An example of a linear complexity profile
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Immediately before the first jump in the above profile, 
the profile is a distance of 1 below the line y = x/2. 
Thus, given that the profile jumps, it jumps to a 
distance of 1 above the line y = x/2 (i.e. to the point 
(2,2)). The profile cannot jump with the 3^^ or 4^^ 
bits in the sequence, as the profile is above the line 
y = x/2 at y = 2 and y = 3, and it does not jump at 
y = 5, even though L(4) < 4/2. The jump at y = 6 also 
has height 2, as the profile is again a distance of 1 
below the line y = x/2 immediately before the jump. The 
next jump, however, which occurs with the 9^^ bit in the 
sequence, only has height 1, as the profile is only a 
distance of ^ below the line y = x/2 immediately before 
the jump.

A number of properties of linear complexity profiles 
were derived by R.A. Rueppel in his D.Sc. thesis [14] 
and later reproduced in [15]. Rueppel considers the 
linear complexity profile of a random binary sequence, 
and shows that the expected height of a jump is 2 and 
the expected length of a step is 4. He also derives 
explicit expressions for the mean and variance of the 
local linear complexity L(n) of the first n bits of a 
random sequence. These results are quoted in Theorems 
3.3.1 and 3.3.2 below
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Theorem 3.3.1.

Let E(n) be the expected local linear complexity of a 
random n-bit binary sequence. Then

E(n) =
I + I - 2-"(Ç + h3

-n ,n
(3 + 9 )

(n even) 

(n odd)

Theorem 3.3.2.

Let V(n) be the variance of the local linear complexity
of a random n-bit binary sequence. Then

2

V(n) =
86
81
86

-n,14n 
27

-2n,n 4n 4
9 27 81

-n,13n 80 -2n,n .4n
0l - 2 (1̂  + FT) - 2 (q +ÏÏT)27 81 27 81

(n even) 

(n odd)
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3.4. SOME ENUMERATION RESULTS

In this section we will prove a number of enumeration 
results which are connected with linear complexity 
profiles. We will concern ourselves only with profiles 
which are "possible" in the sense that, for each 
possible linear complexity profile, there exists at 
least one binary sequence which has that profile. The 
set of possible linear complexity profiles is restricted 
by the fact that each one must satisfy the properties 
derived in Section 3.3 from the Berlekamp-Massey 
algorithm. More precisely, for the linear complexity 
profile (L(l),L(2),...,L(n)) to be possible, the 
following two conditions must hold for each integer k 
such that 1 < k < n :-

(i) if L(k-l) > then L(k) = L(k-l)

(ii) if L(k-l) < then
either L(k) = L(k-l) or L(k) = k-L(k-l).

We say that a linear complexity profile 
(L(l),L(2),...,L(n) is valid if it satisfies the above 
conditions. In Theorem 3.4.2 it will be shown that any 
valid linear complexity profile is possible; hence, the 
adjectives "possible" and "valid" are synonomous when 
applied to linear complexity profiles.
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The first of the results in this section gives an 
expression for the number of n-bit sequences which have 
a given linear complexity profile. We begin by proving 
a lemma ;-

Lemma 3.4.1.

Consider a given valid linear complexity profile 
(L(l),L(2),...,L(n)).
There exist precisely 2^ distinct n-bit sequences which 
have this profile, where

M = I{k : L(k) > k/2, 1 < k < n-1)|.

(Note that M is the number of points in the profile
which are above the line y = x/2, excluding the point
(n,L(n)).)

Proof

We will consider what happens when we attempt to 
generate an n-bit sequence SqS^...s ^̂ _̂  with the given 
linear complexity profile (L(l),L(2),...,L(n)).
We begin by generating the first bit s^ of the 
sequence.
If Sq = 0 then L(l) = 0 
and if s^ = 1 then L(l) = 1.
Therefore L(l) defines s^ uniquely.
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Now suppose that we have generated a k-bit subsequence 
SqS^...Sĵ _^ with linear complexity profile 
(L(l),L(2),...,L(k)) (1 < k < n-1).
Consider the generation of s^.
If L(k) < k/2 then, by Theorem 2.5.1, there exists a 
unique L(k)-stage LFSR (R, say) which can be used to 
generate s^s^...s^_^.
Let u^ be the (k+1)^^ bit generated by R when it is 
loaded with the initial state SQS^...s^^^^_^.

By the Berlekamp-Massey algorithm, if L(k) < k/2 then 
either (i) L(k+1) = L(k)

or (ii) L(k+1) = k+1 - L(k).
(i) L(k+1) = L(k)

=> SqS^...Sĵ can be generated using R

=> ^k = "k-
(ii) L(k+1) = k+1 - L(k)

=> s^s^...s^ cannot be generated using R 

= *k + 1
Therefore, if L(k) < k/2 then L(k+1) defines ŝ  ̂

uniquely, given s^s^. . .Sj^_^.

If L(k) > k/2 then, by the Berlekamp-Massey algorithm, 
L(k+1) = L(k), independent of s^. Thus, in this 
situation we have two choices for s^.

By combining the cases L(k) < k/2 and L(k) > k/2 above,
it can be seen that the algorithm given below can be 
used to generate an n-bit sequence SqS^...s^_^ with
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linear complexity profile (L(l),L(2),...,L(n)). By 
repeatedly using the algorithm we can construct the set 
of all binary sequences with this profile. The 
algorithm is as follows :-

Sq := L(l)
FOR k = 1 TO n-1 DO 

IF L(k) < k/2 
THEN

IF L(k+1) = L(k)
THEN := u^
IF L(k+1) = k+1 - L(k)
THEN Sy, := u^ + 1 

END IF
IF L(k) > k/2
THEN Choose s^ to be either 0 or 1

END DO

The number of n-bit sequences with the given valid 
linear complexity profile (L(l),L(2)...,L(n)) is exactly 
the number of different sequences that can be generated 
by the above algorithm.
But in the algorithm, Sĵ  is fixed when L(k) < k/2, and 
when L(k) > k/2 there are 2 choices for s^.
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Hence, the number of n-bit sequences with linear 
complexity profile (L(l),L(2),,,,,L(n)) is 2^, where 
M is the cardinality of the set 
{k : L(k) > k/2, 1 < k < n-1}.

□

We next use Lemma 3.4.1 to obtain our explicit 
expression for the number of n-bit sequences with linear 
complexity profile (L(l),L(2),...,L(n)) :-

Theorem 3.4.2.

Consider a given valid linear complexity profile 
(L(l),L(2),...,L(n)).
There exist precisely 2^ distinct n-bit sequences which 
have this profile, where 

M = min(L(n),n-L(n)).

Proof

It is sufficient to prove that
I{k : L(k) > k/2, 1 < k < n-1)| = min(L(n),n-L(n))

for n > 1,
as the proof then follows by Lemma 3.4.1.
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In other words, we will prove that the number of points 
in the profile which are above the line y = x/2, 
excluding the last point, is min(L(n),n-L(n)).

The proof is by induction.
The result is true for n = 1 trivially, 
since L(l) = 0 or 1.

Suppose the result is true for n = N 
(i.e. |(k : L(k) > k/2, 1 < k < N-l)| =

min(L(N),N-L(N))).
We will show that the result also holds for n = N+1 
(i.e. I(k : L(k) > k/2, 1 < k < N)| =

min(L(N+l),N+1-L(N+1))).

We consider 3 cases, which cover all possibilities :-

(i) L(N) > N/2 (so L(N+1) = L(N)) :
I{k : L(k) > k/2, 1 < k < N)|

= |{k : L(k) > k/2, 1 < k < N-1)| + 1
= min(L(N),N-L(N)) + 1
= min(L(N),N-L(N)+1) (since N-L(N) < L(N))
= min(L(N+l),N+1-L(N+1)).
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(ii) L(N) < N/2, L(N+1) = L(N) :
I(k : L(k) > k/2, 1 < k < N)|

= |{k : L(k) > k/2, 1 < k < N-l}|
= min(L(N),N-L(N))
= min(L(N),N-L(N)+l) (since L(N) < N-L(N))
= min(L(N+l),N+1-L(N+1)).

(iii) L(N) < N/2, L(N+1) = N+1-L(N) :
I(k : L(k) > k/2, 1 < k < N)I

= |(k : L(k) > k/2, 1 < k < N-1)|
= min(L(N),N-L(N))
= min(L(N),N-L(N)+l) (since L(N) < N-L(N))
= min(N+l-L(N+l),L(N+l)).

Combining the 3 cases above we see that
I(k : L(k) > k/2, 1 < k < N)| = min(L(N+l),N+1-L(N+1))
and hence, by induction,
I{k : L(k) > k/2, 1 < k < n-1)| = min(L(n),n-L(n))
for all n > 1.

□

Since the value M in the statement of the above theorem 
is non-negative, for each valid linear complexity 
profile there exists at least one binary sequence which 
has that profile. Thus, every valid linear complexity 
profile is possible and, since we already know that a
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profile must be valid if it is possible, we have shown 
that a linear complexity profile is possible if and only 
if it is valid.

It can be seen from Theorem 3.4.2 that, for a given 
integer n, the number of n-bit sequences with a 
particular valid linear complexity profile 
(L(l),L(2),...,L(n)) depends only on the final value 
L(n) of the profile, and is independent of the values 
L(l),L(2),...,L(n-l). For example, for even values of n 
there are equally many n-bit sequences with a perfect 
linear complexity profile (see Example 3.2.4) as there 
are n-bit sequences with linear complexity profile 
(0,0,...,0,^,^,...,^). The number of sequences in each 
case is, in fact, 2^^^. These two profiles are 
illustrated in Figure 3.4.1 below for n = 10.

6
4
2
0

8 100 2 4 6

6 4
4 
2 
0

+
+ +
I I I r

0 2 4

-+

+ +

1 I I I r 
6 8 10

Figure 3.4.1. Two profiles with the same final value
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As a corollary of Theorem 3.4.2 we can write down an 
expression for the number of n-bit sequences with a 
perfect linear complexity profile (i.e. with linear 
complexity profile (1,1, 2 , 2, 3 , 3 , . . . , rn/2"l ) : -

Corollary 3.4.3.

The number of n-bit sequences with a perfect linear 
complexity profile is 2^, where 

M = in/2j .

□

Having enumerated the number of sequences with a given 
profile, we now derive an expression for the number of 
different profiles with the same final value :-

Theorem 3.4.4.

Let (L(l),L(2),...,L(n)) denote the linear complexity 
profile of an n-bit binary sequence.
For a given value K of L(n) (0 < K < n) there exist 
exactly 2^ different valid linear complexity profiles 
which have L(n) = K, where

0 if K = 0
M =

min(K-l,n-K) if 1 < K < n
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Proof

The proof is by induction.

Let #(L(n) = K) denote the number of distinct valid 
linear complexity profiles (L(l),L(2),...,L(n)) with 
L(n) = K.

The result is true for n = 1 trivially, 
since the only possible 1-bit sequences, 0 and 1, have 
linear complexity profiles (0) and (1) respectively, 
and thus #(L(1) = 0) = 1 and #(L(1) = 1) = 1.

Suppose the result is true for n = N.
Then #(L(N) = K) = 2^, where

M =
0 if K = 0
min(K-l,N-K) if 1 < K < N

We will show that the result also holds for n = N+1 
(i.e. that #(L(N+1) = K) = 2^, where

M =
0 if K = 0
min(K-l,N+l-K) if 1 < K < N+1 ).
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We consider 4 cases :-

(i) K = 0 ;

L(N+1) = 0 => L(N) = 0.
Therefore

#(L(N+1) = 0 )  = #(L(N) = 0)
=  1 •

(ii) 0 < K < :

L(N+1) < => L(N+1) = L(N)
(since (N+1,L(N+1)) is on or below the line y = x/2) 

Therefore
#(L(N+1) = K) = #(L(N) = K)

= 2«
where M = min(K-l,N-K)

= min(K-l,N+l-K). (since K < N+l-K)

(iii) < K < N :

N+1If < L(N+1) < N then
either L(N+1) = L(N) or L(N+1) = N+1-L(N)

(since (N+1,L(N+1)) is above the line y = x/2)
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Therefore
#(L(N+1) = K)

= #(L(N) = K) + #(L(N)

= 2^(1) + 2^(2) 
where M(l) = min(K-l,N-K) 
and M(2) = min(N-K,K-l). 

Therefore #(L(N+1) = K) = 2
where M = min(K-l,N-K) + 1 

= min(K-1,N+l-K).

M

N+l-K)
(since K N+l-K)

(since N-K < K-1)

(iv) K = N+1 :

L(N+1) = N+1 => L(N)' = 0 (see Example 3.2.2).
Therefore

#(L(N+1) = N+1) = #(L(N) = 0)
= 1.

By combining the 4 cases above it can be seen that 
#(L(N+1) = K) = 2^, where

0 if K = 0
min(K-1,N+l-K) if 1 < K < N+1

Hence the result holds for n = N+1, 
and therefore the result holds for all n > 1 by 
induction.

M =

□
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By combining Theorems 3.4.2 and 3.4.4 we can obtain an 
expression for the number of n-bit sequences with local 
linear complexity L. This result was proved by Rueppel 
[15] by a different route.

Theorem 3.4.5.

The number of n-bit binary sequences with local linear
complexity L (L = 0,1,...,n) is 2^, where

r 0 if L = 0
M = <{

L min(2L-l,2n-2L) if 1 < L < n

Proof

By Theorem 3.4.2, for a fixed value of L(n), the number 
of n-bit sequences with linear complexity profile 
(L(l),L(2),...,L(n)) is the same for all possible values 
of L(l),L(2),...,L(n-l) for which the profile is valid. 
Thus, the number of n-bit sequences with local linear 
complexity L is the product of the number of sequences 
with a given valid linear complexity profile 
(L(l),L(2),...,L(n)), where L(n) = L, and the number of 
distinct valid linear complexity profiles with L(n) = L.
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Hence, by Theorems 3.4.2 and 3.4.4, the number of n-bit 
sequences with local linear complexity L 

=

where M(l) = min(L,n-L) for L = 0,1,...,n
0 for L = 0
min(L-l,n-L) for L = 1,2,...,n

and M (2) =

But 2M(1).2»(2) = 2«, Where
min(L,n-L) for L = 0
min(L,n-L) + min(L-l,n-L) for L = 1,2,...,n

M =

0 for L = 0
min(2L-l,2n-2L) for L = 1,2,...,n

□
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CHAPTER 4

SOME CONDITIONS ON 
THE LINEAR COMPLEXITY PROFILES OF 

CERTAIN BINARY SEQUENCES
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4.1. INTRODUCTION

In Chapter 3 the linear complexity profile of an n-bit 
sequence SqS^...s^^_^ was defined to be the vector 
(L(l),L(2),...,L(n)), where L(k) is the local linear 
complexity of SgS^...s^_^ (k = 1,2,...,n). The 
"perfect" linear complexity profile was then defined to 
be the linear complexity profile ( 1,1, 2 , 2 , 3 , . . . , fn/2~l ) , 
the profile which is "closest" to the line y = x/2 .

In 1984 Rueppel conjectured in his thesis [14] that the 
sequence 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 ..., defined by

Si : =
1 if i = 2 ^ - 1  for some r > 0

0 else
has the perfect linear complexity profile. This 
conjecture was later proved to be true by Dai [5]. In 
1986 Wang and Massey extended the result by 
characterizing the set of binary sequences having the 
perfect linear complexity profile; in [18] they showed 
that an n-bit sequence SqS^...s^_^ has the perfect
profile if and only if s^ = 1 and s ^ = ^2i-i ^i-l 
for 1 < i < We will refer to this result as the
"perfect profile characterization theorem", and return 
to it in Section 4.3.

In this chapter we generalise the result first proved in 
[18] to show that, if the bits of a binary sequence 
satisfy certain linear equations of a similar type to
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those in the statement of the perfect profile 
characterization theorem, then the linear complexity 
profile of that sequence will be constrained in some 
way.
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4.2. TWO FUNDAMENTAL LEMMAS

In this section we will prove two results that will 
themselves be used repeatedly when proving results later 
in this chapter. Note that most of the notation used 
was introduced in Chapter 2. In particular, recall that 
if the Berlekamp-Massey algorithm is applied to a binary 
sequence s^s^...s^_^ then, after k iterations the loop, 
the algorithm will have produced the connection 
polynomial C^/x) of an L(k)-stage LFSR that could be 
used to generate s^s^. . . Sj^_^, where L(k) is the local 
linear complexity of s^s^...Sĵ _^. Recall also that the 
extended form of the algorithm given in Section 2.6 also 
produces a polynomial P^(x) of degree < L(k) such that 

P%(X) = C%(x)S%(x) (mod 
where S^Xx) := + s^x + ... + s^^^x^

We now proceed to the first of our two results :-

Lemma 4.2.1.

Let Cĵ (x) be the connection polynomial produced by the 
Berlekamp-Massey algorithm after k iterations of its 
loop, and let P^/x) be as defined in Section 2.6.

Suppose that two consecutive jumps in the linear 
complexity profile of a binary sequence occur with the 
a(r)^^ and a(r+l)^^ bits in the sequence.
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Then
Pa(r)-l(x)Ck(x) + Pk(x)Ca(r)_i(x) = (4.2.1)

for a(r) < k < a(r+l)

Proof

The proof is by induction.
Firstly, assume that the first and second jumps occur 
with the a(l)^^ and a (2 )^^ bits in the sequence 
respectively. (We will assume throughout that the i^^ 
jump in the profile occurs with the a(i)^^ bit in the 
sequence). Then the Berlekamp-Massey algorithm as 
described in Section 2.6 gives the following sequence of 
polynomials :-

C%(x) P%(x) L(k)

0 1 0  0 
1 1 0  0 

2 1 0  0

a(l)-l 1 0  0

a(l) 1 + x^(l) a(l)

a(2 )-l Ca(2 )-i(x) ^ a(l)
a(2 ) Ca(2 )(x) a(2 )-a(l)
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Thus it can be seen that, for a(l) < k < a(2),

Pa(l)-l(x)Ck(x) + Pk(x)Ca(i)_i(x) = O.C%(x) + xa(l)-l.l
=

Hence, (4.2.1) holds for r = 1.

Now suppose (4.2.1) holds for r = R-1 (R > 2)
We will prove that (4.2.1) also holds for r = R.

Let a(R) < k < a(R+l).
From the Berlekamp-Massey algorithm as stated in 
Section 2.6 it can be seen that, if a(R) < k < a(R+l),

c%(x) = C%_i(x) + 5.x®B(x)

and P%(x) = P%_i(x) + 5.x®Q(x)
for some 5 = 0 or 1 ,

where B(x) = Q(%) = ^a(R)-l^^^
and a = k-a(R). 

Hence it can be seen that, if a(R) < k < a(R+l),

c%(x) = Ca(R)(x) + (g^x + + ...
+ 8 X^”^ )Q*k-a(R)X  ̂ a(R)-l

and P%(x) = Pg(R)(x) + (5^x + + ...
+ 8 x ^ ~ ^ )p*k-a(R)X J^a(R)-l

for some ^^ 2 '‘ '^k-a(R) =  ̂ °r 1.
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Thus, for all k such that a(R) < k < a(R+l),

CfcCx) = Ca(R)(x) + F(x)C^^2)_i(x) 

and P%(x) = Pa(R)(x) + P(x)Pa(R)_i(x) 

for some polynomial F(x).
(F(x) = 0  if k = a(R))

Similarly, C^(r )_i (x ) = Ca(R_i)(%) + G(x)Ca(R_i)_i(x)

^a(R)-l(*) ^ ^a(R-l)(*) G(x)Pa(R-l)-l(*)
for some polynomial G(x). (4.2.2)

Thus, c%(x) = C^(R)(X) + F(x)Ca(R_i)(x)
+ F(x)G(x)Ca(R_i)_i(x)

and P%(x) = Pa(R)(X) +
+ F(x)G(x)Pa(R_i)_i(x)

Therefore, Pa(r )-i + Pk(*)Ca(R)_i(x)

^ [ca(R)(x) + F(x)Ca(p_i)(x) + F(x)G(x)C^^j,_j^j_j^(x) j .

(Pa(R-l)(x) G(x)Fa(R-l)-l(*)]

+ [Pa(R)(x) + f(x)Pa(R-l)(x) + f(x)G(x)Pa(R-l)-l(x)]'
[ca(R-l)(x) + G(x)C^^2 _^)_^(x)j
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[Pa(R-l)(x)Ca(R)(x) + Pa(R)(x)Ca(2 _i)(x)j

+ F(x)[Pa(R-l)(x)Ca(R-l)(x) ■'■ Pa(R-l)(*)Ca(R_i)(x)j 

+ F(x)G(x)|Pa(R-l)-l(*)Ca(R_i)(x)
^a(R-l)(*)Ca(R_i)_i(x) + Pa(R-l)(x)Ca(R_i)_i(x)

^a(R-l)-l(x)Ca(R_i)(x)j

+ G(x)(Pa(R-l)-l(x)Ca(R)(x) + Pa(R)(*)C^(R-l)-l(x)]

+ F(x)G (x)^Pa(R-l)-l(*)Ca(R_i)_i(x)

Pa(R-l)-l(x)Ca(R_i)_i(x)]

[^a(R-l)(*)Ca(R)(x) + Pa(R)(x)Ca(R_i)(x)j

+ G(x)^P2(p_i)_i(x)Ca(2)(x) + Pa(R)(x)Cg^g_i)_^(x)j

[^a(R-l)(*)Ca(R)(x) + Pa(R)(x)Cg(2 _i)(x)j

+ G(x)
(since (4.2.1) holds for r = R-1)

From the Berlekamp-Massey algorithm as given in 
Section 2.6 it can also be seen that

^h(R)(*) Ca(R)_i(x) + X  ̂  ̂  ̂ ^Ca(R_i)_i(x)

^a(R)(*) ^ ^a(R)-l(x) + x  ̂  ̂  ̂ ^^a(R-1)-1
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Therefore,
^a(R)-l(*)C%(x) + Pk(x)C^^2 )_i(x)

(Pa(R-l)(x)Ca(R)_i(x) + Pa(R)-i(^)Ga(R_i)(x)j 

+ x a ( * ) - a ( * - l ) [ P a ( R _ i ) ( x ) ( x )

^a(R-l)-l(x)Ca(R_i)(x)j

+ G(x)

[^a(R-l)(x)Ca(p_i)(x) + Pa(R-l)(*)Ca(p_i)(x)]

+ G(x)|Pa(R-l)(x)Ca(%_i)_i(x) + Pa(R-l)-l(*)Ca(R_i)(x)j

+ xa(*)-a(*-l)[Pa(R_i)(x)Ca(R_i)_i(x)

^a(R-l)-l(x)Ca(R_i)(x)j

+ G(x).x^(^  ̂ (by equation (4.2.2))

= G(x).xa(*-1)-1 + xa(R)-a(R-l) ^a(R-l)-!
+ G(x)

(since (4.2.1) holds for r = R-1)

=  xa(*)-l

Therefore (4.2.1) holds for r = R.

□
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We now move on to our second lemma :-

Lemma 4.2.2.

Let C^(x) be the connection polynomial produced when the 
Berlekamp-Massey algorithm is applied to the n-bit 
sequence SqS^...s^_^, and let P^(x) be as defined in 
Section 2.6.

s(x) := =0 + s^x + S2x 2 + ... ,

T(x) •= =0 + + + -- ,

U(x) := + S3X + = 5%^ + . . . .
Suppose that

x“a(x)T(x^) + x^B(x)U(x^) + x'>'c(x)S(x^) s S (mod x™) 
where m < min(o:+n,y9+n-l,7 +2 n) 

for some polynomials A(x), B(x), C(x), and some integers 
a, 7 > 0 and 5 = 0 or 1 .
Then

x7c(x)p2(x) + x*A(x)Pn(x)C^(x)
+ (x*+lA(x) + x^B(x))[Pj^(x)Cj^(x)]'

+ 5 c^(x) = 0 (mod X™).

Proof

We begin by expressing S(x^), T(x^) and U(x^) in terms 
of S(x) :-

S(x^) = Sq + s^x^ + SgX^ + ...
= (Sq + S^X + SgX^ + ... )^

= S^(X)
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T(x^) = Sq + SgX^ + s^x^ + ...
2 3 5= (Sq + S^X + S^X +   ) + (S^X + S^X + SgX + ... )
2 2 = (Sq + S^X + S^x + . . . ) +  X(SQ + s^x + s^x + ... )'

= S (X) + xS' (x)

U(x^) = + SgX^ + SgX^ + ...
= (Sq + S^X + SgX^ + ... )'

= S'(X)

By supposition,
x“a(x)T(x^) + x^B(x)U(x^) + x'’'c(x)S(x^) = S (mod x“ )

Thus,
x“a (x )(S(x ) + XS'(X)) + x^B(x)S'(x) + x‘>'c(x)S^(x)

= S (mod x^)
and so

x^C(x)S^(x) + x^A(x)S(x) + (x^^^A(x) + x^B(x))S'(x)
= 8 (mod x^) (4.2.3)

Now consider the n-bit sequence SqS^...s^_^
n— 1and recall that S: (x) := s_ + s_x + ... + s_ _xn' ' 0 1 n- 1

By inspection it can be seen that
x'>'c(x)S^(x) + x“a (x )S(x ) + (x°^lA(x) + x^B(x))S'(x)
= x^C(x)S^(x) + x“a (x )Sĵ (x ) + (x°^^A(x) + x^B(x))S^(x)

(mod xmin(a+n,^+n-l,T+2 n))

Hence, since m < min(a+n,^+n-l,7 + 2 n), (4.2.3) gives
x^C(x)s2(x) + x“a (x )Sĵ (x ) + (X^+lA(X) + X^B(X))S^(X)

= 8 (mod x^) (4.2.4)
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But from equation (2.6.5),
Sn(x) = (Pn(x) + x"G^(x)) / C^(x)

for some polynomial G^(x)
= D^(x) / C^(x)

where D^^x) = P^^x) + x^G^(x).

Therefore
S^fx) = (P„(x) + x"G^(x))2 / c2(x)

= (p2 (x) + x 2 "g2 (x)) / c2 (x)
(since the coefficients of our polynomials are in GF(2))

= En(x) / c2 (x) 
where E^(x) = P^(x) + x^"g^(x),

and
S^(x) = [(Pj^(x) + ’x "g ^(x )) / C^(x)]'

= (C^(x)[P^(x) + x"G^(x)]'
+ cy(x) (P^(x) + x"G^(x)))

= (Cn(x)P^(x) + nx""^Cj^(x)G^(x) + x"c^
/ c2 (x)
(X)G^(X)

+ C^(x)P^(x) + x"c^(x)Gn(x)) / c2 (x)
= Fn(x) / c2 (x).

Thus, (4.2.4) gives
x'>'c(x)Ej^(x)/c2 (x) + x“a(x)Djj(x)/C|3 (x)

+ (x*+lA(x) + x^B(x))Fj^(x)/C^(x) ^ S (mod x^)
and so

x7c(x)E^(x) + X*A(X)D^(X)C^(X)
+ (x“'*‘̂ A(x) + X^B(X) )Fj^(x) + 5c^(x) = 0 (mod x^)
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But D^(x) = P^fx) (mod x"),
E^fx) - P^(x) (mod x2"),
Fn<x) = Pj|(x)C^(x) + P^(x)Cj^(x) (mod x”"^) .

Hence, since m < min(a+n,y0+n-l,7 + 2 n) , 
x^C(x)p2(x) + x"A(x)P^(x)C^(x)

+ (x*+lA(x) + x^B(x))[P^(x)Cn(x)]' + 5C^(x)
= 0 (mod x^)

□
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4.3. THE PERFECT PROFILE CHARACTERIZATION THEOREM AND AN
EXTENSION

The perfect profile characterization theorem states that 
a binary sequence SqS^...s^_^ has the perfect linear 
complexity profile if and only if s^ = 1 and

= ^2i-i ®i-i 1 < i < In this section we
present a new proof of this theorem (it was originally 
proved in [18]), and extend the result by considering 
also those sequences with s^ = 0 and
^2 i ~ ®2i“l ^ ^i-1’ Thus, we consider all sequences for 

2 i = =2 i-l + Si- 1which s^. = s^j  ̂ + s. , for i > 1 .

We begin by proving a lemma which is a more general 
version of Lemma 3 of [18] : -

Lemma 4.3.1.

Let C^(x) be the connection polynomial produced when the 
Berlekamp-Massey algorithm is applied to the n-bit 
sequence s^s^. . . , and let P^(x) be as defined in
Section 2.6.
If Sq = 5 and s ^ = ^2i~l ^i- 1  1 < i <
then x2p2(x) + P^(x)C^(x) + (x+x^) [P̂ (̂x) (x) ] '

+ 5c^(x) = 0 (mod x^)
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Proof

Consider the infinite binary sequence s^s^Sg...
and let S(x) := s^ + s^x + + . . . ,

T(x) := Sq + s^x + 8 4 %^ + ...
and U(x) := s^ + s^x + 8 5 x2 + ...

2 iThen the coefficient of x in
T(x^) + x^U(x^) + x^S(x^) is

Sq if i = 0

=2 i + S2 i- 1  + =i-l if i > 1

Thus, if Sq = 5 and ®2 i--1 + Si-
for 1 < i < n- 1

then T(x^) + x^U(x^)*+ x^S(x^) = 5 (mod x^)

We now invoke Lemma 4.2.2, taking a = 0, ^ = 2 ,  7 = 2 , 
A(x) = B(x) = C(x) = 1 and m = n.
Hence, if s^ = 5 and = ^2i-i ^i-l

then
for 1 < i < n- 1

2

X^p2(x) + Pn(x)Cj^(x) + (x+x^) [P^(x)Cj^(x)]' + 6c 2(x )
= 0 (mod x*̂ )

□
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We now present a new proof of the perfect profile 
characterization theorem, using Lemmas 4.2.1 and 4.3.1. 
Note that in this proof (and henceforth) we will often, 
for simplicity, write and instead of and
Pk(x).

Theorem 4.3.2.

An n-bit sequence SqS^...s^_^ has the perfect linear
complexity profile if and only if Sq = 1 and 

=21 = =21-1 + =1-1 for 1 < 1 < Bel.

Proof

Suppose that Sq = 1 and s ^ = ^2i-i ^i-1
n- 1
2 •

Then, since Sq = 1, the first jump in the linear 
complexity profile of SqS^...Sj^_^ has height 1 .

From Section 3.3 it can be seen that, if two consecutive 
jumps (the r^^ and (r+1 )^^, say) in the linear 
complexity profile of SqS^...s^^_^ occur with the a(r)^^ 
and a(r+l)^^ bits in the sequence, then there exists an 
integer m with a(r) < 2m < a(r+l) and L(2m) = m.
Let a(r+l) = 2m+j,
so L(a(r+1)) = a(r+l) - L(a(r+1)-1) = 2m+j - m = m+j 
=> the (r+1 )^^ jump in the profile has height j.
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Assume that the first r jumps in the profile all have
height 1 , and in particular that the r^^ jump has
height 1 ,
so L(a(r)) = a(r) - L(a(r)-1)
=> m = a(r) - (m-1 )
=> a(r) = 2m-l.
We will show that j = 1 ,  so that, by induction, all the 
jumps in the profile have height 1 .

Since 2.L(2m+i-l) < 2m+i-l for 1 < i < j, the
Berlekamp-Massey algorithm as described in Section 2.6 
gives the following sequence of polynomials :-

k Cĵ (x) P%(x) L(k)

^2m-2 ^2 m- 2 “"f
*̂211-1 ^2m-l ®

2“ <=2^ Pgm ™
2 m+l C 2^ Pzm

_Slti ^2 m ™
2 m+j C2 m+ xi+"c2 m _ 2 P2 m+
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Czm+j = + xi+lc2 m _ 2

^2m+j ^ ^2m '*' 2̂in-2

Since Sq = 1 and = ^2i-l ®i-l 1 < i <

^"^L+j + P2m+j^2m+j + (%+%') [P2m+iC2m+j]' + ^L+j
= 0 (mod (by Lemma 4.3.1)

=> x'(P2m + %i^'P2 m-2 )'

■*■ ^^2 m ■'■ ^2 m-2  ̂ f^m-2 )

+ (%+%') [(P2m + xi+'P2 m-2 )(C2m + ^ ^ ^ S m - 2 )]'

+ (C2m + m 0 (mod x 2m+i)

=> x'P2m + P2m^2 m + [P2 m^2m] ' +

+ X  ̂ (X P2m-2 ■*' f’2m-2*'2m-2  ̂̂ ^2m-2^2m-2 ̂ ’

j.l " ":m-2 )
+ (P2 mC2m - 2 + P2m-2 <=2 m)

+ (x+x2 )[xi+l(P2mC2m _ 2 + P2m-2 Sm)]'
= 0 (mod x^m+i) (4.3.1)

But by Lemma 4.3.1,

x'f2m + P2m S m  + ( ^ + ^ ' ) [ V 2ml' + ^^m = °
And by Theorem 2.6.1,
max (deg 1 + deg Pg^) = L(2m) = m
and so either deg = 1 + deg P^^ = m

deg = m > 1 + deg Pg^
or 1 + deg ™ > "̂ ĝ

- 129 -



If deg = 1 + deg = m then

deg (x2 p2 ^ + PzmCzm + (%+%') [PzmCgm]' + ^ L )  =
and the same result also holds if 
deg = m > 1 + deg P^^ or if

1 Pgm = m > (̂ =9 Cgm-

Therefore x^P^^ + Pzmfzm +

Also by Lemma 4.3.1,

^ ^2m - 2 ^2m-2 ^2m - 2  ̂ ^2m-2 ^2m - 2  ̂ ^2m - 2

= 0 (mod x 2 m-2 )
And by Theorem 2.6.1,

max (deg 1 + deg Pg^.g) = L(2 m-2 ) = m - 1

so that deg (x P2m _ 2 + ^2m-2 S m - 2 )[^2 m-2 ^2 m-2 ]'
+ C2 m-2 > < 2m - 2

Therefore x ^p ^^,^ + P2^_2Sm-2 + tP2m-2Sm-2l '

+ C2 m - 2 = °
(= o:x2 ™”2  ̂ say, where a = 0 or 1 )

By Lemma 4.2.1, P2mf2m-2 f2m-2^2m = x2 ”>-2

Therefore equation (4.3.1) gives

x2m ^ x2j+2.ax2m-2 + xJ+V™"^ + (x+x^) [x^+V""2) '
= 0 (mod x^™^i)

=> x 2m + x2 m+i-l + (x+x2 )(j-l)x2 m+i- 2 = 0 (mod x^m+i)

=> x2 “ + j.x2“+i-f m 0 (mod x 2™+i)

=> j = 1
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Thus we have shown that if Sq = 1 and
^2 i “ ^2 i-l ®i-l 1 < i < then all the jumps
in the linear complexity profile of SqS^...Sj^_^ have 
height 1 .
But if all the jumps in the linear complexity profile of 
a binary sequence have height 1 then that sequence must 
have the perfect linear complexity profile, and thus 
SqS^...Sj^_^ has the perfect linear complexity profile.

To complete the proof we use a counting arguement :- 
The number of n-bit sequences with Sq = 1 and

= ^2i-l ^i- 1  1 < i < is since
these equations fix all the even-indexed bits in the 
sequence but none of the odd-indexed ones.

And by Corollary 3.4.3, the number of n-bit sequences 
with the perfect linear complexity profile is also 
2 .

Thus, every sequence SqS^...s^_^ which has the perfect 
profile must satisfy the equations Sq = 1 and

= 2 1  = =2 1 - 1  + =1 - 1  for 1 < 1 <

□
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We now move on to consider sequences with
S2 i = S2 i_i + ®i-l' iri Theorem 4.3.2, but with
Sq = 0 instead of Sq = 1. Firstly we prove that the
linear complexity profiles of such sequences can only
have jumps of certain heights :-

Theorem 4.3.3.

Let SqS^...s^_^ be an n-bit sequence with Sq = 0 and 

= 2 1  = =2 1 - 1  + =1 - 1  for 1 < 1 <
Then the linear complexity profile of SqS^...s^^_^ has 
no jumps of odd height > 1 .

Proof

The sequence SQS^...s^_^ = 00...0 satisfies the theorem 
trivially, since its linear complexity profile has no 
jumps.
For any other sequence satisfying the given equations
the first jump in the profile must have even height,
since it must occur with bit s_. _ (i.e. the 2 i^^ bit in21-1
the sequence) for some integer i, and thus it must have 
height 2 i.

Suppose that two consecutive jumps in the linear 
complexity profile of So^l*’*^n-l (^he r^^ and (r+1 )^^, 
say) occur with the a(r)^^ and a(r+l)^^ bits in the 
sequence.
From Section 3.3 it can be seen that there exists an 
integer m with a(r) < 2m < a(r+l) and L(2m) = m.
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Let a(r+l) = 2m+j,
so L(a(r+1)) = a(r+l) - L(a(r+1)-1) = 2m+j - m = m+j 
=> (r+1 )^^ jump has height j .
And let a(r) = 2m-h, 
so L(a(r)) = a(r) - L(a(r)-1)
=> m = 2m-h - L(a(r)-1)
=> L(a(r)-1) = m-h 
=> jump has height h.

Since 2.L(2m+i-l) < 2m+i-l for 1 < i < j, the 
Berlekamp-Massey algorithm as described in Section 2 .6 

gives the following sequence of polynomials :-

k C^Xx) P%(x) L(k)

1 ^2 m-h-l ^2 m-h-l ^ ^
C2 m-h ^2m-h

f S m - 1 ^ 2m-l ™
2 ™ ^2^ Pzm “

2 m+l C 2m ^21,
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ThuS' Czm+i = S m  +

^2m+j ^ f’2m 'f f’2 m-h-l

By Lemma 4.3.1,
since s^ = 0 and s ^ = ^2i-l ^i- 1  1 < i <

x'P2m+i + P2 m+j^2 m+j + [P2m+j^2m+j^ '

= 0 (mod x2m+i)

=> x'(P2 m + %i+^P2m-h-l)'

+ (P2m + ^^■'Sm-h-l) (C2 m +

+ (x+x")[(P2m + xi+^P2m-h-l)(C2 m + ^^^‘'Sm-h-l) ̂ '
= 0 (mod

=> x'p'm + V 2m + (%+%') [P2 mC2m]'

+ x"i+:h(x2 p^m-h-l + P2m-h-lSm-h-l

+ (x+x ) [P2iti-h-lSm-h-l^ ’ ̂
f ^^2 m‘̂2m-h-l f ^2m-h-l'^2m^

+ (x+x2 )[xi+h(P2mC2m_h_l + P2m-h-lC2m)]'
s 0 (mod x2™+i) (4.3.2)

But by Lemma 4.3.1,

x'P2m + ^2m S m  + [P2m S m l  ' " °
And by Theorem 2.6.1,
max (deg 1 + deg Pg^) = L(2m) = m

so that deg (x^P^^ + P^m^Zm + [P2 m S m ^  ' > < ^m
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Therefore + Pz^Cgm + [P2m^2m]'
= 0 or (= ax^^, say, where a = 0 or 1 )

Also by Lemma 4.3.1,

^ ^2m-h-l ■'■ ^2m-h-lf^2m-h-l  ̂[^2 m-h-l‘22m-h-l^ ’
= 0 (mod x^^ ^

And by Theorem 2.6.1,
max (deg 1 + deg P^m-h-l) = L(2m-h-l) = m-h

so that deg (x2 p2 ^_j^_^ + P2m-h-1 ^2 m-h-l

+ (x+x")[P2m-h-lC2m-h-l]') < 2m-2 h

Therefore x2p2^_^_^ + P2m-h-iC2m-h-l
+ (x+x )[P2m-h-1 ^2m-h-l^’

0 or x^^  ̂ if h = 1
( = /3x^^ ^ , say, where ^ = 0 or 1 ) 

if h > 1

2 n\“h " 1
By Lemma 4.2.1, P2mC2m-h-l + P2m - h -lSm = ^

Therefore equation (4.3.2) gives

j+h^2 m-h-l (x+x2 )[xi+hx2 m-h-l]' + ax^®
x^i+Z ^%2m - 2 _ 0 (mod x^”''̂ )̂ if h = 1
0 = 0  (mod x^™^i) if h > 1

X

= >
x2m+j-l + (x+x2 )(i-l)x2m+i- 2 + ox^™ +

= 0 (mod if h = 1

x2 m+j-l + (x+x2 )(i-l)x2m+i- 2 + ax 2m
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=> x2 m+j-l ^ ) + ax 2m

= 0 (mod )

=> ].x2 m+i-l + ex2m _ o (mod x^m+î)

> either j is even 
or j = 1

□

Having shown that the only odd height jumps that the 
linear complexity profile of sequences of this type can 
have are of height 1 , we now show that no two 
consecutive jumps can have height 1 :-

Theorem 4.3.4.

Let SqS^...Sĵ _^ be an n-bit sequence with s^ = 0 and

=2 i = =2 1 - 1  + =1 - 1  1 < 1 <
Then the linear complexity profile of SqS^...s^_^ cannot
have two consecutive jumps of height 1 .

Proof

Since s^ = 0, the first jump cannot have height 1. 
Assume that the linear complexity profile of SqS^...s^_^ 
has two consecutive jumps of height 1 (the r^^ and 
(r+1 )^^ jumps, say), and that these jumps occur with the 
a(r)^^ and a(r+l)^^ bits in the sequence.
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Then, from Section 3.3 it can be seen that there exists 
an integer m such that a(r) < 2m < a(r+l) and 
L (2m) — m .
Also L(a(r)) = a(r) - L(a(r)-1) => m = a(r) - (m-1)
=> a(r) = 2m-l,
and L(a(r+1)) = a(r+l) - L(a(r+1)-1)
=> m+ 1  = a(r+l) - m => a(r+l) = 2m+l
Assume also that these are the first two consecutive 
jumps of height 1 , and that the (r-1 )^^ jump had height 
h > 1 .
Then L(a(r-1)) = a(r-l) - L(a(r-1)-1)
=> m - 1  = a(r-l) - (m-h-1 )
=> a(r-l) = 2m-h- 2 t
By Theorem 4.3.3, h is even.

Now 2.L(2m-2) < 2m-2, 2.L(2m-l) > 2m-l and
2.L(2m) < 2m, and thus the Berlekamp-Massey algorithm as 
described in Section 2.6 gives the following sequence of 
polynomials :-
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C]̂ (x) P%(x) L(k)

2m-h-3 ^2m-h-3 ^2m-h-3 m h 1
2 m-h- 2 C2m-h- 2 ^2 m-h- 2

C2 m - 2 f’2 m - 2 “"f
C2m-2* ^ Sm-h-3 ^2m-2+ ^ ^2m-h-3 “

^xC2m - 2 ^2m-l'*' ^^^2m-2 “
2 m+l C2 ^+ x'c2 m _ 2 P2 m+ x'P2 m - 2

where 5 = 0 or 1

Thus, + X C2m-2

*̂2in *̂2111-1 ■*■ ^*^2m - 2

C = C +^2m-l 2m-2 2m-h-3

and therefore + SxC^ ^ _ 2  + x^C^^.g

= (x2 + 5x + 1)C2^_2 + xh+lc2m_h_3 

Similarly P^m+i = (%" + + D P 2m - 2 + %^^^P2m-h-3

By Lemma 4.3.1,
since Sq = 0 and s ^ = ^2i-l '*’ ^i- 1 1 < i <

^ ^2m+l ^2m+1 ^2m+l  ̂•̂ 2̂m+ 1 ^2m+l^ '
= 0 (mod %2 m+lj
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=> x 2((x 2+5x +1)P2^_2 + xh+lp2m_h_3)2

+ ((x"+;x+l)P2 m _ 2 + x'^lP2m-h-3)((x'+Cx+l)C2m-2

+ (X+x2).[((x 2+5x+1)P2m_2 + x^+^P2m-h-3)•
((x 2+5x+1)C2^_2 + xh+lc2m_h_3)]'

= 0 (mod xfrn+l)

=> (x2+5x+l)2(x2p2^_2 + P2 m_2 C2m _ 2

+ (x+x2)[P2m_2C2m_2]')
^ ^2m-h-3 'f ^2m-h-3^2m-h-3

+ (x+x2)[P2m-h_3C2m-h-3]')
+ (X +5x+l)x (P2m-2^2m-h-3 ^ ^2m-h-3*^2m-2^

+  ( x + x 2 ) [ ( x 2 + g x + l ) % h + l ( P 2 m _ 2 C 2 m _ h - 3  +  P 2 m - h - 3 ^ m - 2 ) ] '

= 0 (mod x^M+l) (4.3.3)

But by Lemma 4.3.1,

x'P2 m - 2 + ^2m-2 S m - 2 + [P2 m-2 S m - 2  ̂ '
= 0 (mod

And by Theorem 2.6.1,
max (deg 1 + deg P2m-2'̂  = L(2m-2) = m-1

so that deg (x ^2m-2 ^2m-2 ^2m - 2  ̂l̂ 2̂m-2 ^2m - 2  ̂ ^
 ̂ 2m — 2

Therefore x^P^^,^ + P2m-2C2m-2 + > [P2m-2Sm-2^ '
= ax^^"^, where a = 0 or 1 .

Also by Lemma 4.3.1,

^ ^2m-h-3 ^2m-h-3^2m-h-3  ̂ ^2m-h-3^2m-h-3 ̂ '
- 0 (mod x2m-h-3)
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And by Theorem 2.6.1,
max (deg  ̂+ deg Pjm-h-S^ = L(2m-h-3) = m-h-1

so that deg + P2n,-h-3‘=2m-h-3
+ (x+x2)[P2m_h_3C2m_h-3]') < 2m-2h-2 < 2m-h-4

Therefore x2p2^_h_3 + P2m-h-3^2m-h-3
+ (x+x ) [P2m-h-3Sm-h-3^ " ^ °

Also, by Lemma 4.2.1,
P C  + P C = y2m—h—32m—2 2m—h—3 2m—h—3 2m—2

Therefore equation (4.3.3) gives

(x^+Sx+l)^QX^”'“  ̂ + (x^+gx+ljxh+fx^M-h-S
+ (x+x2 )[(x2 +gx+l)xh+lx2 ™"h-3 j, _ Q (mod x^^+l)

=> (x^+5 x^+l).ax^”*"̂  + (x^+Sx+ljx^™”  ̂ + (x+x^)5 x^“”^
s 0 (mod x^m+l)

=> 05x2™ + ax2 ™ - 2  + x 2™ + 5x2™-! + x2 m - 2 + gx2m-l
+ 5 x 2™ _ 0 (mod x 2™+!) 

=> (a + l).x2™-2 + (o5 + 1 + 5).x2™ = 0 (mod x2™+!)
=> a + 1 = 0 and olS + 1 + 5  = 0 

=> a = 1 and 5 + 1 + 5 = 0 

= >  1 = 0 !

Thus we have a contradiction, so the linear complexity 
profile of SQS^...s^_^ cannot have two consecutive jumps 
of height 1 .

□
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4.4. SEQUENCES WHICH SATISFY A DIFFERENT SET OF LINEAR
EQUATIONS

Section 4.3 dealt with n-bit sequences s^s^...s^_^ which 
satisfy the equation ^2i ~ ^2 i-l ^i- 1
for 1 < i < In this section we will consider
sequences which satisfy a different set of linear 
equations - we will consider n-bit sequences s^s^...s^_^ 
for which s^^^^ “ ^2 i “̂i 1 < i < Note that
a sequence of this type can be formed by taking a 
subsequence consisting of the first n- 1 bits of one of 
the sequences discussed in Section 4.3 and adding an n^^ 
bit to the beginning of it.

As in Section 4.3 we begin by proving a lemma :- 

Lemma 4.4.1.

Let C^(x) be the connection polynomial produced when the 
Berlekamp-Massey algorithm is applied to the n-bit 
sequence SQS^...s^_^, and let P^(x) be as defined in 
Section 2.6.
If s^ = 5 and 3^^+^ = + s^ for 1 < i <
then p2(x) + Pj^(x)Cj^(x) + (1+x) [P^(x)C^(x) ]'

+ 5c2(x) = 0 (mod X™"!)
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Proof

Consider the infinite binary sequence s^s^s^
let S(X) := =0 + SiX + =2%^ + . . .

T(X) •= =0 + =2'' + =4%^ + . . .
and U(x) := + S3 X + s^x2 + . . .

2 iThen the coefficient of x in
U(%2 ) + T(%2 ) + S(%2 ) is

= 1  + = 0  + = 0 = = 1 if ! = 0
=2 1 + 1  + = 2 1  + = 1  if i > 1

Thus, if s^ = 5 and ^2i+l ^ ^2i ^i 1 < i <

then U(x^) + T(x^) f S(x^) = 5 (mod x^ .

We now invoke Lemma 4.2.2, taking a = = 7 = 0,
A(x) = B(x) = C(x) = 1 and m = n-1.
Hence, if s^ = 5 and ^2i+l ^ ^2i ^i

n- 2
2

for 1 < i <
then

n- 2
2

Pn(x) + Pn(x)Cn(x) + (1+x) [Pĵ (x) Cĵ (x) ] ' + Sc^^x)
s 0 (mod X™ i)

□

Having proved Lemma 4.4.1 we will now use it to show 
that if a binary sequence So^l’**^n-l satisfies 
s_.,_ = s_. + s. for 1 < i < then the linearA 1"T A1 1 At
complexity profile of SqS^...s ^̂ _̂  can only have jumps of
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certain heights. We will treat the sequences with 
s^ = 0 and s^ = 1 separately. Firstly we consider
the case s^ = 0 :-

Theorem 4.4.2.

Let SqS^...s^__^ be an n-bit sequence with s^ = 0 and 

=2 i+l = = 2 1  + = 1  1 < i <
Then the linear complexity profile of SqS^...s ^̂ _̂  has no 
jumps of even height.

Proof

The n-bit sequence 00...0 satisfies the theorem 
trivially, since its linear complexity profile has no 
jumps.
For any other sequence SqS^...s ^̂ _̂  satisfying the given 
equations the first jump in the profile must have odd 
height, since it must occur with bit (i.e. the
(2 i+l)^^ bit in the sequence) for some integer i, and 
thus it must have height 2 i+l.

Suppose that two consecutive jumps in the linear 
complexity profile of SqS^...s^^_^ (the r^^ and (r+1 )^^, 
say) occur with the a(r)^^ and a(r+l)^^ bits in the 
sequence.
From Section 3.3 it can be seen that there exists an 
integer m with a(r) < 2m < a(r+l) and L(2m) = m.
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Let a(r) = 2m-h and a(r+l) = 2m+j.
Then, as in the proof of Theorem 4.3.3, the r^^ and 
(r+1 )^^ jumps have heights h and j respectively, and the 
Berlekamp-Massey algorithm as described in Section 2 .6 

gives

^2m+j ^ ^2m ^2m-h-l
^2 m+j ^2m ^2m-h-l

By Lemma 4.4.1,
n- 2

1 - " "2 i+l “ "2 i ' "i """" "  ̂  ̂ 2 'since s„ = 0 and s^j.^ = s^j + s. for 1 < i <

Pzm+i + Pam+jSm+j + [P2m+jSm+j  ̂ '
= 0 (mod

=> (P2m + %i^^P2m-h-l)'

+ (P2m + (Czm +

+ (!+%)[ (?2 m + xi+^P2 m-h-l)(C2 m +  ̂'
= 0 (mod x2™+i-!)

=> p L  + V 2m + ( ! + ^ ) [ V 2m^'
+ x2j^2b,p2 + p C

2m-h— 1 2m-h— 1 2m—h — 1

+ (l+x)[P2m-h-1 ^2m-h-l^^ 
^2m-h-l^2 m^

+ (l+x)[xi+h(P2mC2m-h-l + P2m-h-1^2m)]'

= 0 (mod x^^^i (4.4.1)

But by Lemma 4.4.1,

+ V 2 m + (!+%)[P2 mC2m]' " ° (™°d
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And by Theorem 2.6.1,
max (deg 1 + deg = L(2m) = m

so that deg + P^^C^^ + d+x)[P 2^C2 ^ ] ') < 2m-l

Therefore P^^ + Pz^Cza + d+^>[P 2mC2 m]'
=  0 or x^^~^ (= ax^^“ ,̂ say, where a =  0 or 1 )

Also by Lemma 4.4.1,

^2 m-h-l "P !*2in-h-1^2iti-h-l (l+xiCPgQ.h-iCgm-h-l]'
= 0 (mod x^^ ^

And by Theorem 2.6.1,
max (deg Cg^-h-i'  ̂ + deg P^m-h-l) L(2m-h-l) = m-h

so that deg (P^m-h-l ^2m-h-1 ^2m-h-l

Therefore Pg^-h-i + P2m-h-1^2m-h-l
+ (l+x)[P2m-h-lC2m-h-l]') < 2m-2 h-l

-h- 1
+ (l+x)[P2^^h-lC2m-h-l]'

0 or x^^  ̂ if h = 1
(= 0 x^^ ^, say, where y0 = 0 or 1 ) 

if h > 1

2m-h-lBy Lemma 4.2.1, ^2m^2m-h-l ^2m-h-1^2m = X

Therefore equation (4.4.1) gives

0 x 2™-! + xi+h^Zm-h-l + (i+x)[x3+V™-^-!]'

x2 i+2 ^x2™-! s 0 (mod x^m+j-l^ h = 1

0 = 0  (mod x2 ™+]-!) if h > 1
+ ■*
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+

=> 0x2™ - !  ^ x2m+j-l + (i+x).(j-l).x2™+j-2

/9x2™+2j-l ^ 0 (mod %2™+i-!) if h = 1
0 5  0 (mod x2™+i-!) if h > 1

;> o%2 ™-! + (i_i).x2™+i- 2 - 0 (mod x2 ™+^-!)
> j is odd

□

Having dealt with sequences with ^2i+l ~ ^2i ^i 
s^ = 0 , we now consider sequences with

=2 i+l = =2 i + =i ="■! = 1  = ! :-

Theorem 4.4.3.

Let SqS^...s^_^ be an n-bit sequence with s^ = 1 and

=2 i+l = =2 i + =i for 1 < i <
Then the linear complexity profile of SqS^...s^^_^ has no 
jumps of even height > 2 .

Proof

Since s^ = 1, the linear complexity profile of any 
sequence satisfying the given equations must have at 
least one jump.
For any sequence which satisfies the given equations, 
the first jump in the profile must occur either with bit 
Sq (if Sq = 1 ) or with bit s^ (if Sq = 0 ), and thus it
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must have either height 1 (if Sq = 1 ) or height 2 (if 
Sq = 0). Hence the first jump in the profile does not 
contradict the theorem.

Suppose that two consecutive jumps in the linear 
complexity profile of SqS^...s^_^ (the r^^ and (r+1 )^^, 
say) occur with the a(r)^^ and a(r+l)^^ bits in the 
sequence.
From Section 3.3 it can be seen that there exists an 
integer m with a(r) < 2m < a(r+l) and L(2m) = m.
Let a(r) = 2m-h and a(r+l) = 2m+j.
Then, as in the proof of Theorem 4.3.3, the r^^ and 
(r+1 )^^ jumps have heights h and j respectively, and the 
Berlekamp-Massey algorithm as described in Section 2 .6 

gives

C2m+i ^2 m 

P2m+j = ^2m +

By Lemma 4.4.1,
since s^ = 1 and for 1 < i <

^2m+j !“2m+j^2in+j ^ '^^2m+j‘̂ 2m+j ̂ ^ f̂ 2m+j
= 0 (mod x^™^i )̂

(^2 m ^2m-h-l)

+ (P2m + (C2 m + ^^^^^2 in-h-l)

+ (!+%)[ (Pzm + xi+^P2m-h-l)(C2m +  ̂'

+ (C2m + " ° (™°d
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=> 4 m  + V 2m + (l+x)[P2 mC2m]' + 4 m

+ y2 j+2 h,p2 _|_ p Q
2m—h — 1 2m—h— 1 2m—h — 1

+ (l+xiLPgm-h-l^Zm-h-l]' ^2 m-h-l^

+ x^ !’2 m-h-1 ^2 m^

+ (l+x)[xi+h(P2mC2m_h_l + P2m-h-lSm) ] '
= 0 (mod (4.4.2)

But by Lemma 4.4.1,

4 m  + V 2m + (!+x)[P2mC2m]' ^ 4 m  ^ ° (™°d x^™'!)
And by Theorem 2.6.1,
max (deg 1 + deg Pg^) = L(2m) = m
so that deg (P^^ + P^^C^^ + (!+%) [92*^2%]' + ^ L )  <

Therefore P^^ + P2mC2m + (!+^>

= Q^x^^ + where and = 0 or 1 .

Also by Lemma 4.4.1,

f’2 m-h-l "P !’2m-h-lSm-h-l (l+x)[P2 m-h-1 ^2m-h-l]'
+ c'm-h-l - ° (™°a x 2 ™-h- 2 )

And by Theorem 2.6.1,
max (deg ! + f^m-h-l' = L(2m-h-l) = m-h

so that deg (P^m-h-i + P’2m-h-1 ^2m-h-l

+ (l+x)[P2 m_h-lC2m-h-l]' Sm-h-l^  ̂ 2 m-2h
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Therefore

^2m-h-l ^2m-h-1 ^2in-h-l  ̂ •̂ 2̂m-h-1 ^2m-h-l^ '

+ C2m—h — 1 ySĵ x 

0

2m-4
l ' ^ 2

if h= 2  (yŜ  = 0 or 1 ) 

if h> 2

By Lemma 4.2.1, Pzmfzm-h-l + P2m-h-1^2m = ^2 m-h-l

Therefore equation (4.4.2) gives

a.x"'*“ + + xi+^x2m h - 1  (i+x) ]̂ '2m 2m*1^ ■ -2

x2 j+2 (^^x2®-2 + ^^x2 ™“2 ) s 0 (mod x^M+i"!) if h=l

= 0 (mod x^™*] !) if h= 2

= 0 (mod x2 ™^i !) if h > 2

x2i+4^^x2m-4

=> o^x^™ + OgX^™ ! + (i-l)x2™+i 2 = 0  (mod x 2™+i !)

=> either j is odd 
or j = 2

□
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4.5. A MORE GENERAL THEORY

In Sections 4.3 and 4.4 we concerned ourselves, for each 
theorem, with sequences which satisfied a certain set of 
linear equations. In this section we will derive more 
general results in the sense that, for each theorem, we 
will consider a class of sets of linear equations rather 
than a specific set of equations. The previous two 
sections involved sequences in which every other bit was 
the sum of the preceding bit and a bit approximately 
"half way back". In the more general theory of this 
section we will be concerned with sequences in which, 
roughly speaking, every other bit is the sum of a number 
of the preceding few bits and a number of bits 
approximately "half way back". It will be shown that 
the linear complexity profile of a sequence of the 
appropriate type is restricted in the sense that its 
profile can have no jumps of a certain parity above a 
certain height.

We will deal with the sequences in two groups, according 
to whether their "fixed" bits (i.e. the ones which can 
be expressed as a sum of previous bits) are the ones 
with odd or even indices. We begin with the sequences 
whose fixed bits have odd indices :-
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Lemma 4.5.1.

Let C^(x) be the connection polynomial produced when the 
Berlekamp-Massey algorithm is applied to the n-bit 
sequence SqS^...s^_^, and let P^(x) be as defined in 
Section 2.6.

®2 i+l-2w
®2 i+l-2 x(l) ^2 i+l-2 x(2 ) + s2 i+l-2 x(a)
^2 i-2 y(l) ®2 i-2y(2 ) ^ + ^2 i-2 y(b)
®i-z(l) ^i-z(2 ) ^ ^i-z(c)

for min(w,z(l)) < i < min(^+w-l,n+z(1 )-1 ) 
where s^ := 0 for ^ < 0

(w < x(l) < x(2 ) < 
w < y(l) < y (2 ) < .

< x(a),
< y(b), z(l) < z(2 ) < ... < z(c), 

a > 0 , b > 0 , c > 0 )
then

+ (x2 y(i)+x2 y(2 )+

(3j2 z(1 )̂ ĵ 2 z(2 )^ ... +x2 z(c))p2 (x)

.. +x2 y(b))p^(x)C^(x)

+x2 x(a)
+%2y (!)+!+ +x2 y(b)+l)[P^(x)C^]

+ (x2 w+x2 x(l) +

n
- 0 (mod %min(2w+n-l,2 z(l)+2 n))

Proof

the infinite binary sequence s^s^s^.
S(x) = = ^ 0 + S f X + S2 %: + ...

T(x) = = = 0 + ^2 ^ + 3 4 %^ + ...

U(x) := + S 3 X + + ...
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2 iThen the coefficient of x in

(x2"+x2 x(l)+x2 %(2 )+ ... +x2 x(a))U(x2 )
+ (x2y(l)+x2y(2)+ ... +x2y(b))T(x2)
+ (x2z(l)+x2z(2)+ ... +x2z(C))S(x2) is

®2 i+l-2w‘‘' ^^i+l-2 x(l)+ ^^i+l-2 x(2 )+ ... + 32i+l-2x(a) 
S2 i-2 y(l)+ G^i-2 y(2 )+ ••• + ®2 i-2 y(b)
Gi-z(i)+ ®i-z(2 )'̂  ••• ®i-z(c)

Therefore, if the conditions of the lemma hold 
then

(x2w+x2 x(l)+x2 x(2 )^ +x2 x(a))U(%2 )
+ (x2y(l)+x2y(2)+ _  + x ^ y ) T ( x ^ )
+ (x2 z(l)+x2 %(2 )+ ... +x2 z(c))s(x2 )

- 0 (mod xmin(2w+n-l,2 z(l)+2 n))

We now invoke Lemma 4.2.2, taking
a = 2y(l) / P = 2 w, 7  = 2 z (1 ), 5 = 0 ,
A(x) = 1 + ^ 2y(2 )-2 y(l) + ^2y(b)-2 y(l) ̂

B(x) = 1 + x 2 x(1 )-2w ^ ^ 2 x(a)-2w ^ /
C(x) = 1 + ^ 2 z(2 )-2 z(l) ^ + 2 z(c)-2 z(l)^ t

and m = min(2w+n-l,2 z (1 )+ 2 n) ( < min(a+n,0 +n-l,7 + 2 n) )
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Hence, if the conditions of the lemma hold 
then

(x2 z(l)+x2 z(2 )+ ... +x2 :(c))p2 (x)

+ (x2y(i)+x2 y(2 )+ ... +x2 y(b))p^(x)c^(x)
+ (x2w+x2 x(l)+ ... +x2 x(a)

+x^y(l)+l+ ... +x2 y(b)+lj^p^^x)c^(x)]'

^ 0 (mod xmin(2 w+n-l,2 z(l)+2 n))

□

Theorem 4.5.2.

Let SqS^...S ĵ _^ be an n-bit sequence with

®2 i+l-2w ^ ®2 i+l-2 x(l) ®2 i+l-2 x(2 ) + ••• + ®2 i+l-2 x(a)
* ®2 i-2y(l) ^2 i-2 y(2 ) + ••• + ®2 i-2 y(b)

®i-z(l) ®i-z(2 ) + ••• + ®i-z(c)
for min(w,z(l)) < i < min(^+w-l,n+z(1 )-1 ),

where s^ := 0 for £ < 0

(w < x(l) < x(2 ) < ... < x(a),
w < y(l) < y (2 ) < —  < y(b), z(l) < z(2 ) < ... < z(c),

a > 0 , b > 0 , c > 0 ) .

Then the height j of any jump in the linear complexity 
profile of SgS^...s^_^ must satisfy either (i) or (ii) 
below :-

(i) j odd
(ii) j < max(2 z(c)-2w,2y(b)-2w+l,2 x(a)-2w)
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Proof

The n-bit sequence 00...0 satisfies the theorem 
trivially since its linear complexity profile has no 
jumps.
For any other sequence SqS^...s^_^ satisfying the given 
equations the first jump in the profile must have odd 
height, since it must occur with bit s ^ ( i . e .  the 
(2 i+l)^^ bit in the sequence) for some integer i, and 
thus it must have height 2 i+l.

Suppose that two consecutive jumps in the linear 
complexity profile of SqS^...s^_^ (the r^^ and (r+l)^^, 
say) occur with the *a(r)^^ and a(r+l)^^ bits in the 
sequence.
From Section 3.3 it can be seen that there exists an 
integer m with a(r) < 2m < a(r+l) and L(2m) = m.
Let a(r) = 2m-h and a(r+l) = 2m+j.
Then, as in the proof of Theorem 4.3.3, the r^^ and 
(r+1 )^^ jumps have heights h and j respectively, and the 
Berlekamp-Massey algorithm as described in Section 2 .6 

gives

^2m+j “ ^2 m ^ ^ ^2m-h-l

P2 m+j = P2m + %i+^P2m-h-l
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By Lemma 4.5.1, if the conditions of the theorem hold 
then

(x2 :(l)+x2 :(2 )+ ...
+ (x2 y(l)+x2 y(2 )+ ... +X=y(b))p2^+.C2^^.
+ (x2"+x2 x(l)+ ... +x2 x(a)

+x2 y(l)+l+ ... +x2 y(b)+l)[P2^^.C2m+j]'
= 0 (mod xmin(2z(l)+4m+2j,2w+2m+j-l)j

-> ...

+ ... +x2 y'bi,

+ (x2w+x2x(l)+ ... +x2x(a)+x2y(l)+l+ ... +x2y(^)+l)

• [ (P2 m+ %i+^P2m-h-l) (C2m+ ^̂ "'''=2m-h-l) ] '
= 0 (mod xmin(2z(l)+4m+2i,2w+2m+j-l))

=> A(x) + B(x) + C(x) + D(x)
-  0 ( m o d  x “ i " ( 2 z ( l ) + 4 m + 2 j , 2 w + 2 m + j - l ) j  ( 4 . 5 . 1 )

where

A(x) = (x2z(l)+ ... +x2z(c))p2^

+ (x2 y(i)+ ... +x2 y(b))p^^c2 m

+ (x2 "+x2 x(l)+ ... +x2 x(a)
+ x 2 y ( l ) + l +  . . .  + x 2 y ( b ) + l ) [ P 2 ^ C 2 ^ ] '

B(x) = x2i+2h((x2z(l)+ ... +x2z(c))p2^

+ (x2 y(l)+ ... +x^^<‘=^)P2m - h - l % - h - l
+ (x2"+x2 x(l)+ ... +x2 x(a)+x2 y(l)+l+ ... +x2y(b)+l)

• l ^ ^ 2 m - h - 1 ^ 2 m - h - l ^ ' ^
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C(x) = (x2y(l)+ ... +%2 y(b))
^2m-h-1^2in^

and
D(x) = (x2"+x2x(l)+ ... +x2x(a)

+ x2y(i)+i+ ... +x:y(b)+i)

But by Lemma 4.5.1
A(x) - 0 (mod xmin(2z(l)+4m,2w+2m-l))

And by Theorem 2.6.1,
max (deg 1 + deg Pg^) = L(2 m) = m
SO that

deg A(x) < max,(2z (c)+2m-2 , 2y (b)+2m-l, 2x(a)+2m-2)

Therefore, A(x) =
^ ^min(2z(l)+4m,2w+2m-l)
^ ^ min(2z(1)+4m,2w+2m-l)+1 ,' Q! 2 I • • •

, ^ max(2 z(c)+2m-2 ,2 y(b)+2m-l,2 x(a)+2 m-2 )# * * I QîpX

for some fOt̂  = 0 or 1. (4.5.2)

Also by Lemma 4.5.1,
B(x) / x^i+Zh = 0 (mod x™in(2z(l)+4m-2h-2,2w+2m-h-2))

=> B(x) m 0 (mod x”i"(2z(l)+4m+2j-2,2w+2m+2j+h-2)J

=> B(x) = ^^^min(2z(l)+4m+2j-2,2w+2m+2j+h-2) 4. _ _
, n min(2z (1)+4m+2j—1,2w+2m+j—2)... + P g X

(mod x m i n ( 2 z ( l ) + 4 m + 2 j , 2 w + 2 m + j - l ) ^  

for some = 0 or 1. ( 4 . 5 . 3 )
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By Lemma 4.2.1, Pzmfzm-h-l + f^m-h-l^zm =

Hence C(x) = (x^y^^^+ ... +x2y(b))xi+hx2m-h-l (4 .5 .4 ) 

and D(x) = (x2"+x2x(l)+ ...
+x2 y(l)+l+ ... +x2 y(b)+l).[xi+hx2 m-h-l]'

(4.5.5)

Combining equations (4.5.1) to (4.5.5) we obtain

^ ^min(2z (1)+4m, 2w+2m-l) _j_
, ^ max(2 z(c)+2m-2 ,2 y(b)+2m-l,2 x(a)+2m-2 )

• • • ”T" w  XJr
. n min(2z(l)+4m+2j-2,2w+2m+2j+h-2) ,t ^  J^X i e * *

, n min(2z(1)+4m+2j-1,2w+2m+j-2)... -h PgX

+ (x2 y(l)+ ... +x2 y(b))x2m+i-l

+ (x2"+x2 x(l)+ ... +x2 x(a)
+x2y (!)+!+ ... +x2 y(b)+l).(i_i).x2m+i- 2

^ 0 (mod x™i"(2z(l)+4m+2j,2w+2m+j-l))

=> a^x™i"(2 2 (l)+2m,2w-l) +

... + a x™3x(2z(c)-2,2y(b)-l,2x(a)-2)

n min ( 2 z ( 1 )+2 m+ 2 j- 2 , 2wH-2 j+h— 2 )"t* yD̂ X “i • • •
, n min(2 z (1 )+ 2m+2 j-1 ,2w+j-2 ). . .  -h P q X

+ (x2 y(i)+ ... +x2 y(b)).j.xj-i

+ (x2"+x2x(l)+ ... +x2x(a)).(i-l).xi-2
^ 0 (mod x™i"(2 z(l)+2m+2 j,2w+j-l)j
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=> e^xmin(2 z(l)+2m,2w-l) ^ _

+ a xmax(2 z(c)-2 ,2 y(b)-l,2 x(a)-2 )
P

^ ^ ^min(2 z (1 )+ 2m+2 j-2 ,2w+2 j+h-2 ) ^
n min(2 z(l)+2m+2 j-l,2w+j-2 )... + P g X

+ (j-l).x2 «+i- 2 ^ 0 (mod xmln(2 z(l)+2m+2 i,2w+i-l))

(since w < x(l) < ... < x(a)
and w < y(l) < ... < y(b))

Thus, by considering the x^^^i  ̂ term it can be seen 
that j must satisfy either (i), (ii) or (iii) below :-

(i) j odd
(ii) min(2 z (1 )+ 2m,2 w-l) < 2w+j- 2

< max(2 z(c)-2 ,2 y(b)-l,2 x(a)-2 )
( => j < max(2 z(c)-2w,2 y(b)-2w+l,2 x(a)-2wj)

(iii) min(2 z (1 )+ 2m+2 j-2 ,2w+2 j+h-2 ) < 2w+j- 2
< min(2 z (1 )+ 2m+2 j-1 ,2w+j-2 )

( => 2m+j < 2w-2 z(l), since 2w+2 j+h- 2 > 2w+j-2 )

But if (iii) is true, then 2m+j < 2(w-z(l)) 
and so w-z(l) > 0  (i.e. z(l) < w).
Hence, if (iii) is true then :-

2 i+l-2w < 0 for min(w,z(l)) = z(l) < i < w;
2 i+l-2 x(k) < 0  (k = 1 ,2 ,...,a)

for min(w,z(l)) = z(l) < i < w
(since w < x(l) < x(2 ) < ... < x(a));

2 i-2 y(k) < 0  (k = 1 ,2 ,...,b)
for min(w,z(l)) = z(l) < i < w

(since w < y(l) < y (2 ) < ... < y(b)).
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and thus, since s^ := 0 for ê < 0

®2 i+l-2w " ° for min(w,z(l)) = z(l) < i < w;
®2 i+l-2 x(k) " ° = 1 ,2 ,...,a)

for min(w,z(l)) = z(l) < i < w;

=2 i-2 y(k) = ° = 1 ,2 ,...,b)
for min(w,z(l)) = z(l) < i < w.

Therefore, from the conditions of the theorem it can be 
seen that, since i-z(l) > i-z(2 ) > ... > i-z(c),

^i-z(l) ~  ̂for min(w,z(l)) = z(l) < i < w;
i.e. s^ = 0 for 0 < i < w-z(l).

Thus, the first jump in the linear complexity profile of
Sq S^...s^_^ must have height at least w-z(l)+l, so that 
m = L(2m) = L(a(r)) > L(a(l)) > w-z(l)+l.
Hence 2m+j > 2m > 2w-2z(l)+2, which contradicts 
"2m+j < 2w-2 z(l)", and so j cannot satisfy (iii).

Therefore j must satisfy either (i) or (ii) below :-

(i) j odd
(ii) j < max(2 z(c)-2w,2 y(b)-2w+l,2 x(a)-2wj

□
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We now deal with sequences whose fixed bits have even 
indices :-

Lemma 4.5.3.

Let C^(x) be the connection polynomial produced when the 
Berlekamp-Massey algorithm is applied to the n-bit 
sequence SqS^...s^_^, and let P^(x) be as defined in 
Section 2.6.

®2 i-2w
" ®2 i+l-2 x(l) ®2 l+l-2 x(2 ) + ••• + ®2 i+l-2 x(a)

®2 i-2 y(l) ^2 i-2y(2 ) + ••• + ®2 i-2 y(b)
®i-z(2 ) ••• ®i-z(c)

for min(w,z(l)) < i < min(^^^+w,n+z(l)-l)
where s^ := 0 for £ < 0

(w < x(l) < x(2 ) < ... < x(a),
w < y(l) < y(2 ) < ... < y(b), z(l) < z(2 ) < ... < z(c),

a > 0 , b > 0 , c > 0 )

then (x2 z(l)+x2 2 (2 )+ ... + x ^ ^ )P^(x)

+ (x2w+x2 y(i)+x2 y(2 )+ ... +%2y(b))Pn(x)Cn(x)

+ (x2"+l+x2 x(l)+ ... +x2 x(a)
+x2y(l)+l+ _ +x2 y(b)+l)[p^(x)c^]' 

= 0 (mod xmin(2w+n,2 z(l)+2 n))
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Proof

Consider the infinite binary sequence s^s^Sg
and let S(x) := Sq + s^x + :2 X= +

T(x) := Sq + s^x + 4- . . .
and U(x) := s^ + s^x + Sgx2 + . . .

Then the coefficient of x^^ in

(x2"+x2 y(l)+x2 y(2 )+ ... +x2 y(b))T(x2 )
+ (x2 x(l)+x2 x(2 )+ ... +x2 x(a))U(x2 )
+ (x2 :(l)+x2 :(2 )+ ... +x2 :(c))S(x2 )

S2 i-2w+ ®2 i-2 y(l)'^ ®2 i-2 y(2 )'*' ••• + ^2 i-2 y(b) 
®2 i+l-2 x(l)'*' s^i+l-2 x(2 )+ ... + 32i+l-2x(a)

+ =i-z(l)+ ®i-z(2 )+ ••• + Si-z(c)

Therefore, if the conditions of the lemma hold 
then

(x2 *+x2 y(i)+x2 y(2 )+ ... +x2 y(b))T(x2 )
+ (x2 x(l)+x2 %(2 )+ ... +x2 x(a))U(x2 )
+ (x2 :(l)+x2 :(2 )+ ... +x2 :(c))S(x2 )

- 0 (mod xmin(2w+n,2 z(l)+2 n)

We now invoke Lemma 4.2.2, taking 
a = 2w, /3 = 2 x(l) , 7 = 2 z(l), 5 = 0 ,
A(X) = 1 + x2y(l)-2" + ... + x2y(b)-2w,
B(x) = 1 + x 2^(2)-2x (1) ^ ^ x2x(a)-2x(l)^
C(x) = 1 + x 2"(2)-2z (1) + + x2z(c)-2z(l)^

and m = min(2w+n,2 z (1 )+2 n) (< min(a+n,^+n-l,7 + 2 n)).
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Hence, if the conditions of the lemma hold 
then

(x2 z(l)+x2 z(2 )^ ... +x2 z(C))p2 (x)
+ (x^*+x2 y(i)+x2 y(^)+ ... +x^y(^))p^(x)c^(x)
+ (x2"+l+x2x(l)+...+x2x(a)

+x2 y(l)+l+,, .+x2 y(b)+l) [P^(x)Cj^(x) ] ' 

- 0 (mod xmin(2w+n,2 z(l)+2 n))

□

Theorem 4.5.4.

Let SqS^...Sĵ _^ be an n-bit sequence with

®2 i-2 w ^ ®2 i+l-2 x(l) ^2 i+l-2 x(2 ) + ••• + ^2 i+l-2 x(a)
®2 i-2 y(l) ®2 i-2y(2 ) + ••• + ®2 i-2 y(b)

* ®i-z(l) ®i-z(2 ) + ••• + ®i-z(c)
for min(w,z(l)) < i < min(^^^+w,n+z (1 )-1 ) ,

where s^ := 0 for £ < 0

(w < x(l) < x(2 ) < ... < x(a),
w < y(l) < y(2 ) < ... < y(b), z(l) < z(2 ) < ... < z(c),

a > 0 , b > 0 , c > 0 ).

Then the height j of any jump in the linear complexity 
profile of SqS^...s ^̂ _̂  must satisfy either (i) or (ii) 
below : -

(i) j even
(ii) j < max(2 z(c)-2w-l,2y(b)-2w,2 x(a)-2w-l)
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Proof

The n-bit sequence 00...0 satisfies the theorem 
trivially, since its linear complexity profile has no 
jumps.
For any other sequence s^s^... s^^^ satisfying the given 
equations the first jump in the profile must have even
height, since it must occur with bit ^2i-i the
2 i^^ bit in the sequenc 
it must have height 2 i.
2 i^^ bit in the sequence) for some integer i, and thus

Suppose that two consecutive jumps in the linear 
complexity profile of SqS^...s^^_^ (the r^^ and (r+1 )^^, 
say) occur with the a(r)^^ and a(r+l)^^ bits in the 
sequence.
From Section 3.3 it can be seen that there exists an 
integer m with a(r) < 2m < a(r+l) and L(2m) = m.
Let a(r) = 2m-h and a(r+l) = 2m+j.
Then, as in the proof of Theorem 4,3.3, the r^^ and 
(r+1 )^^ jumps have heights h and j respectively, and the 
Berlekamp-Massey algorithm as described in Section 2 .6 

gives

^2m+j ^ ^2m ^2m-h-l

^2mtj = ^2m + xi+^P2m-h-l
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By Lemma 4.5.3, if the conditions of the theorem hold 
then

(x2 z(l)+x2 z(2 )+ ... +x2 z(c))p2^^j

+ ( x ^ v y ( l ) + x ^ y ( ^ ) +  ... +x^^(^')P2 m+3 C2 m+j 

+ (x2*+l+x2 x(l)+ ... +x2 x(a)
+x2 y(l)+f+ ... +x2 y(b)+l)[P2^+.C2 ^+j]'
= 0 (mod xmin(2z(l)+4m+2j,2w+2m+i))

=> (x2 :(l)+ ... +x2 :(c))(P2m+ ^ ^ ^ S m - h - l ) "

+ (x2 w+x2y(l)+ ... +x2 y(b))
• (^2m+ ^2m-h-l^ (^^m+ ‘̂2 m-h-l^

+ (x2 "+l+x2 x(l)+ ... +x2 x(a)+x2y (!)+!+ ... +x2y(b)+l)
• [ ( 2̂ m+ ^^^Sm- h - l )  (C2 m+ ^ ^ ^ S m - h - l >  ̂ '

^ 0 (mod x™i"(2z(l)+4m+2j,2w+2m+i))

=> A(x) + B(x) + C(x) + D(x)
- 0 (mod x’"i*^(2z(l)+4m+2j,2w+2m+j)j (4 .5 .6 )

where

A(X) = (x2=(l)+ ... +x2z(C))p2^

+ (x2"+x2y(l)+ ... +x2y(b))p2^C2m 

+ (x2"+l+x2 x(l)+ ... +x2 x(a) 
+x2 y(l)+l+ ... +x2 y(b)+l)(P2 ^C2^]'

B (X) = x2]+2h((x2z(l)+ ... +x^^^‘"^)PL-h-l

+ ...
+ (x2"+l+x2x(l)+ ... +x2x(a)+x2y(!)+!+ ... +x2y(b)+lj

^ ^ 2 m — h — 1 ^ 2 m — h — 1^
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c(x) = (x2*+x2 y(i)+ ...
^2in-h-1^2m^

and
D(x) = (x2"+l+x2x(l)+ ... +x2x(a)

+x2 y(l)+l+ ... +x2 y(b)+l)

-[xi+^(P2mC2 m-h-l + P2m-h-lC2 m)]'

But by Lemma 4.5.3
A(x) . 0 (mod xmin(2z(l)+4m,2w+2m))

And by Theorem 2.6.1,
max (deg 1 + deg = L(2m) = m
so that

deg A(x) < ma%(2z(c)+2m-2,2y(b)+2m-l,2x(a)+2m-2)

Therefore, A(x) =
^ min(2z(1)+4m,2w+2m) , ^ min(2 z (1 )+4m,2w+2m ) + 1

“T 0 2̂^  "T * .  .

, ^ max(2 z(c)+2m-2 ,2y(b)+2m-l,2 x(a)+2m-2 )
• • • I Q!pX

for some f • • •/Q̂ p = 0 or 1. (4.5.7)

Also by Lemma 4.5.3,
B(x) / x2J+2h ^ 0 (mod xmin(2z(l)+4m-2h-2,2w+2m-h-l))

=> B(x) = 0 (mod xmin(2z(l)+4m+2i-2,2w+2m+2j+h-l))

=> B(x) = ^ j^min(2z(l)+4m+2j-2,2w+2m+2j+h-l) ^
a min(2z(l)+4m+2j-l,2w+2m+j-l)... -i- PgX
(mod xmin(2z(l)+4m+2i,2w+2m+i)j 

for some = 0 or 1. (4.5.8)
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By Lemma 4.2.1, + P2m-h-1^2m = x^m-h-l

Hence C(x) = (x^^+x^yd)^ ... +x^y (̂ ) )
(4.5.9)

and D(x) = (x^^^^+x^*(^)+ __ +x^*(^)
+x:y(i)+i+ ... +x2 y(b)+i)

. ,  (4.5.10)

Combining equations (4.5.6) to (4.5.10) we obtain

^ ^min(2z(1)+4m,2w+2m) ^
^ ^ ^max(2 z(c)+2m-2 ,2 y(b)+2m-l,2 x(a)+2m-2 )

, o min(2z (1)+4m+2j—2,2w+2m+2j+h—1)
* • • •

n min(2z(l)+4m+2j-l,2w+2m+j-l)... t- PgX

+ (x2"+x2 y(l)+ ... +x2 y(b))%2m+i-l

+ (x2"+l+x2x(l)+...+x2x(a)+x2y(l)+l+...+x2y(b)+l)
.(i-l).x2 ™+i- 2

= 0 (mod xmin(2z(l)+4m+2j,2w+2m+i)j

=> ce^x^in(2 z(l)+2m,2w) ^

+ a xmax(2 z(c)-2 ,2 y(b)-l,2 x(a)-2 )

+ P ĵ inin(2z (1)+2m+2 j-2 , 2w+2j+h-l) ^

, n min(2z(1)+2m+2j-1,2w+j-1)... 1- PqX

+ (x2"+x2y(i)+ ... +x2y(b)).j.xi-i
+ (x2 x(l)+ ... +x2 x(a)).(i-i).xi" 2

= 0 (mod xmin(2z(l)+2m+2j,2w+i))
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=> a xmin(2 z(l)+2m,2w) +
^ ... + a xmax(2 z(c)-2 ,2 y(b)-l,2 x(a)-2 )

, n min(2 z (1 )+2 m+2 j-2 ,2 w+2 j+h“l) ,
I “r  • • •

. n min(2 z (1 )+ 2in+ 2 j-1 , 2w+j-l)... -I- PgX

+ j.x2w+i-l - 0 (mod xmin(2 z(l)+2m+2 j,2w+j))

(since w < x(l) < ... < x(a)
and w < y(l) < ... < y(b))

Thus, by considering the x^^+j-l term it can be seen 
that j must satisfy either (i), (ii) or (iii) below :-

(i) j even
(ii) min(2 z (1 )+2m,2w) < 2w+j-l

< max(2 z(c)-2 ,2 y(b)-1 ,2 x(a)-2 )
( => j < max(2 z(c)-2w-l,2y(b)-2w, 2 x(a)-2w-l)

(iii) min(2 z (1 )+2 m+2 j-2 ,2w+2 j+h-1 ) < 2w+j-l
< min(2 z (1 )+2m+2 j-1 ,2w+j-l)

( => 2m+j < 2w-2 z(l)+l, since 2w+ 2 j+h- 1  > 2w+j-l)

But if (iii) is true, then 2m+j < 2(w-z(l))+l 
and so w-z(l) > 0 (i.e. z(l) < w ) .
Hence, if (iii) is true then : -

2 i-2w < 0 for min(w,z(l)) = z(l) < i < w;
2 i+l-2 x(k) < 0  (k = 1 ,2 ,...,a)

for min(w,z(l)) = z(l) < i < w
(since w < x(l) < x(2 ) < ... < x(a));

2 i-2 y(k) < 0  (k = 1 ,2 ,...,b)
for min(w,z(l)) = z(l) < i < w

(since w < y(l) < y (2 ) < ... < y(b)).
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and thus, since s^ := 0 for £ <  0 i-
®2 i-2w ^ ® for min(w,z(l)) = z(l) < i < w;
^2 i+l-2 x(k) ^ ° 1,2,...,a)

for min(w,z(l)) = z(l) < i < w;
®2 i-2 y(k) ° (k = 1 ,2 , . . . ,b)

for min(w,z(l)) = z(l) < i < w.
Therefore, from the conditions of the theorem it can be 
seen that, since i-z(l) > i-z(2 ) > ... > i-z(c),

^i-z(l) ^ ® for min(w,z(l)) = z(l) < i < w;
i.e. s^ = 0 for 0 < i < w-z(l).

Thus, the first jump in the linear complexity profile of
SgS^...s^_^ must have height at least w-z(l)+l, so that 
m = L(2m) = L(a(r)) > L(a(l)) > w-z(l)+l.
Hence 2m+j > 2m > 2w-2z(l)+2, which contradicts 
"2m+j < 2w-2 z(l)+l", and so j cannot satisfy (iii).

Therefore j must satisfy either (i) or (ii) below :-

(i) j even
(ii) j < max(2z(c)-2w-l,2y(b)-2w,2x(a)-2W“1)

□
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Example 4.5.1.

As an example of the way in which the general theory of 
this section can be applied to a binary sequence which 
satisfies a particular set of linear equations, consider 
an n-bit sequence Sq S^...s^_^ which satisfies the 
following conditions :- 

s^ = 0

®2 i+l = =2 i-l + Si + s._i for 1 < i < f-1.
If we let s^ := 0 for £ < 0, then the above conditions
can be simplified to :-

=2 i+l = =2 1 - 1  + = 1 + =1 - 1  ° i < §- 1 -
But if we take a = 1, b = 0, c = 2, w = 0, x(l) = 1 ,  
z(l) = 0 and z(2) = ‘1 in Theorem 4.5.2, then we see 
that the conditions of the theorem are exactly the 
conditions above.
Hence, by Theorem 4.5.2, if s^ = 0 and
®2 l+l " =2 1 - 1  + 3i + Sf-i for 1 < 1 < |- 1 , then 
the linear complexity profile of SQS^...s^_^ has no 
jumps of even height greater than 2 .

The results in this section go some way towards 
generalising the results obtained in Sections 4.3 and 
4.4 of this chapter. The question remains as to whether 
further generalisations are possible. For instance, 
might it be possible to obtain a more general version of 
Theorem 4.3.4? Or are there any restrictions on the
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linear complexity profiles of sequences which satisfy 
linear equations such as s^^^^ = s^^ + s^, 
s^ ^ ^ 2  ~ ®4 i ®3i+l' etc. These and other such
questions remain to be answered.
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CHAPTER 5

STATISTICAL TESTS FOR RANDOMNESS
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5.1. INTRODUCTION

In Section 1.2 the need to perform statistical testing 
on sections of enciphering sequence for use in stream 
cipher systems was established. For a sequence 
generator to be suitable for use in a stream cipher 
system, it is important that sections of output from the 
generator should be indistinguishable from randomly 
generated sequences of the same length. Thus, 
statistical tests for local randomness must be performed 
on sections of sequence generator output to check 
whether or not this is the case.

An important property of any such statistical test for 
randomness is that a certain percentage of random binary 
sequences should pass the test. If we denote this 
percentage by (1 0 0 -a)%, then a% is known as the 
significance level of the test and is the percentage of 
random binary sequences that would "fail" the test.

To derive a statistical test for local randomness, a 
test statistic which reflects some property of a 
sequence is found, with the property that the 
distribution of the test statistic is known for the set 
of all binary sequences. A critical region is then 
defined such that, for (1 0 0 -#)% of all binary sequences, 
the test statistic lies outside the critical region. In 
order to perform the test on a given sequence the test 
statistic is computed. The sequence is said to have
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failed the test if the computed statistic lies inside 
the critical region; otherwise the sequence is said to 
have passed the test at the a% significance level.

It is important to note that, even if a sequence 
generator has the desired statistical properties (i.e. 
its output sequences are indistinguishable from randomly 
generated sequences), a% of all output sequences will 
fail any given statistical test. Hence, if a single 
output sequence happens to fail the test, then this does
not necessarily imply a weakness in the generator. Thus
it can be seen that the term "fail" is perhaps rather
misleading when used in this context.

In this final chapter of the thesis we discuss the 
statistical testing of binary sequences. We begin by 
briefly reviewing some previously published statistical 
tests for local randomness. We then derive an 
expression for the number of n-bit sequences with a 
given number of jumps in their linear complexity 
profiles, and use this expression to compute the mean 
and variance of the number of jumps in the profile of a 
random n-bit sequence. Next we describe a statistical 
test for randomness based on the number of jumps in the 
linear complexity profile of a binary sequence, before 
moving on to discuss further tests based on the 
distribution of jump heights.
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Note that the idea of using the linear complexity 
profile of a sequence to construct statistical tests for 
randomness was also suggested by Niederreiter in [13]. 
However, the ideas in this thesis were developed in 
parallel with and completely independently of the work 
of Niederreiter.
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5.2. SOME WELL-KNOWN STATISTICAL TESTS

Before we go on to develop some new statistical tests 
for randomness, we first review some of the tests which 
have previously been published in the literature :-

5.2.1. Frequency Test

In a randomly generated n-bit sequence we would expect 
approximately half of the bits in the sequence (i.e. 
approximately n/ 2  bits) to be ones and approximately 
half to be zeros. The frequency test checks that the 
number of ones in the sequence is not significantly 
different from n/2 , the expected value.

The frequency test is normally stated in the form of a 
goodness of fit test. In general, goodness of fit tests 
are used to test whether a set of observations conform 
to a particular distribution. In order to do this the 
observations are divided into a number (M, say) of 
classes, and for each class the expected number of 
observations in the class (e^^ say) is computed for 
k = 1,2,...,M. Care must be taken to ensure that the 
expected frequency e^ for each class is at least a 
certain value; this minimum value is commonly taken to 
be 5.
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The observed frequency say) for each class is also
computed, and the test statistic S is calculated, where 

M
s := I (̂ k - 2%)2/

k=l
The goodness of fit test is passed at the a%

2 2significance level if and only if S < x / where % is 
the upper a%-point of the % distribution with M-1
degrees of freedom (i.e. the point such that a% of the

2distribution lies above % ).

The frequency test tests the hypothesis that zeros and 
ones are equally likely to occur in the sequence being 
tested. Under this ‘null hypothesis, the expected number 
of zeros and the expected number of ones will both be 
n/2. If we let the number of zeros and ones in the 
sequence be n^ and n^ respectively (so n^ + n^ = n) then 
the test statistic S is as follows :-

S = (n̂  - n/2) 2/ (n/2) + (n̂  - n/2) V  (n/2)
= (n^ - n^)2 / n.

The frequency test is passed at the a% significance
2 2level if and only if S < % , where % is the upper 

a%-point of the % distribution with 1 degree of 
freedom.

It could be argued that the frequency test should use a 
continuity correction (see [19]). However, this section 
is intended as a review of published tests; the
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frequency test quoted in [2] and [9] does not use a 
continuity correction, and so we will omit to use one 
here.

5.2.2. Serial Test

The serial test checks that the frequencies of the 
different transitions in a binary sequence (i.e. 0 0 , 0 1 , 
10 and 11) are approximately equal. By so doing the 
serial test gives an indication as to whether or not the 
bits in the sequence are independent of their 
predecessors.

Let Hq q , n^Q and n^^ be the number of occurrences
of 0 0 , 0 1 , 1 0 and 1 1 respectively in the n-bit sequence 
under test, and let n^ and n^ be the frequencies of 0 

and 1 respectively. It can be shown (see [8 ]) that the 
statistic S is approximately distributed according to 
the X distribution with 2 degrees of freedom, where

(n.^ - (n-l)/4)2 _ Y (n. - n/2)^
(n-l)/4 / q n/2

1 1V V
L Li=0 j=0
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Hence, the serial test is passed at the a% significance
2 2level if and only if S < x / where x is the upper

2a%-point of the x distribution with 2 degrees of 
freedom.

5.2.3. Poker Test

In a poker test the n-bit sequence being tested is 
divided into F non-overlapping m-bit blocks, where F = 
Ln/mj, the greatest integer not exceeding n/m. If the 
sequence is random then these blocks are independent, 
and so the frequencies of the 2 ^ possible blocks should 
be approximately equal. Thus we can apply a goodness of 
fit test (see 5.2.1 above) to check whether the observed 
frequencies of the different types of block conform to 
the expected uniform distribution. We call such a 
goodness of fit test a poker test of block size m.

More precisely, let f^ be the number of occurrences of 
the k^^ block (k = 0,1,...,2^-1) in the sequence. Then 
our test statistic is 

2̂ -̂lS = # . I (fk -
k= 0

and the poker test is passed at the a% significance level
2 2if and only if S < x / where x is the upper a%-point of 

the x^ distribution with 2 ^ - 1  degrees of freedom.
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As mentioned in 5.2.1 above, care must be taken to 
ensure that the expected frequencies (—m for all k in 
this case) are all large enough. If this is not the 
case then a variant of the poker test may be used, in 
which the different block types are grouped into classes 
in such a way that the expected frequency for each class 
attains the minimum value.

5.2.4. Runs Test

The runs test checks that the distribution of the 
lengths of runs of ones and zeros in a binary sequence 
conforms to that which would be expected for a randomly 
generated sequence. The theory underlying the runs test 
was established by Mood in [12]. In [12], two cases are 
considered; one in which the numbers of ones and zeros 
in the sequence are fixed, and the other in which they 
are randomly (i.e. binomially) distributed. We will not 
describe the runs test in detail here, as both the test 
and the theory behind it are rather complex.

The statistical tests for randomness described above 
represent only a selection from those described in the 
literature. Details of other such tests can be found in
[2], [9] and [10].
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5.3. THE NUMBER OF SEQUENCES WITH A GIVEN NUMBER OF
JUMPS IN THEIR LINEAR COMPLEXITY PROFILES

In Chapter 3 the linear complexity profile of a binary 
sequence was discussed. In this section we will derive 
an expression for the number of n-bit binary sequences 
with a given number of jumps in their linear complexity 
profiles. Before we do this, however, we prove an 
intermediate result : -

Theorem 5.3.1.

Let f(n,L,J) be the number of n-bit sequences with local 
linear complexity L 'and J jumps in their linear 
complexity profiles. Then 

f(n,0 ,0 ) = 1

f(n,L,J) = Jmin(L-l,n-L)j_2 inin(L,n-L)

if 1 < L < n and 1 < J < min(L-1,n-L)+1
f(n,L,J) = 0 else

Proof

The n-bit sequence 00...0 is the only n-bit sequence 
with local linear complexity L(n) = 0.
Therefore f(n,0,0) = 1

and f(n,0,J) = 0 for J > 1 (5.3.1)
since the linear complexity profile of 0 0 . . . 0  has no 
jumps.
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For any n-bit sequence, the local linear complexity L(n) 
< n, since any n-bit sequence can be generated using any 
n-stage LFSR.
Therefore f(n,L,J) = 0  if L > n. (5.3.2)

Also, if the local linear complexity of a sequence is 
positive then its linear complexity profile must have at 
least one jump,
and therefore f(n,L,0) = 0 for L > 1. (5.3.3)

For any n-bit sequence, the local linear complexity L(n) 
of the sequence must be no less than the number of jumps 
J in its linear complexity profile, since each jump must 
have height at least 1 .
And 1 < L < => min (L-1, n-L)+1 = L.
Therefore for any n-bit sequence with 1 < L(n) <
J < L(n) = min(L(n)-l,n-L(n)) + 1.

Also, < L < n => min(L-l,n-L)+l = n-L+1.
And if the last jump in the linear complexity profile of 
an n-bit sequence occurs with the m^^ bit in the 
sequence then, from Section 2.3, L(m) = m - L(m-l), 
so L(m-l) = m - L(m) = m - L(n) < n - L(n), 
and hence the number of jumps J in the profile is at 
most n-L(n)+l.
Therefore for any n-bit sequence with < L(n) < n,
J < n-L(n)+l = min(L(n)-l,n-L(n)) + 1.
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Thus
f(n,L,J) = 0 (5.3.4)

if 1 < L < n and J > min(L-1,n-L)+1

Combining equations (5.3.1) to (5.3.4), we have now
shown that f(n,L,J) = 0 "else".

We now use induction to show that

f(n,L,J) = Jmin(L-l,n-L)j_2inin(L,n-L) (5 .3 .5 )

if 1 < L < n and 1 < J < min(L-1,n-L)+1

Consider an n-bit sequence So^l’*’^n-l' let J be the
number of jumps in its linear complexity profile and 
L(k) be the local linear complexity of the first k bits 
of the sequence.

n = 1 => either L(n) = 1 and J = 1
or L(n) = 0 and J = 0

Thus f(1,1,1) = 1, and so (5.3.5) holds for n = 1.

Now suppose that (5.3.5) holds for n = N

so that f(N,L,J) = [min(L-l,N-L)j_2inin(L,N-L)

if 1 < L < N and 1 < J < min(L-1,N-L)+1
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We will show that

f(N+l,L,J) = |^min(L-l^N+l-L)j _2Ïftin(L,N+l-L)

if 1 < L < N+1 and 1 < J < min(L-l,N+l-L)+1 
(i.e. that (5.3.5) holds for n = N+1).

We split the values of L = L(N+1) into 4 cases :-

(i) 1 < L < I :

No jump could have occurred with the (N+1)^^ bit in the 
sequence (since L(N+1) < ^^^) / and half of all the 
N+l-bit sequences with L(N) = L will have local linear 
complexity L(N+1) = L (since L < ^ ; the other half will 
have local linear complexity L(N+1) = N+l-L).

Therefore, since the number of N+l-bit sequences with 
L(N) = L is twice the number of N-bit sequences with 
L(N) = L,

f(N+l,L,J) = f(N,L,J)
fmin(L-l,N-L)l _min(L,N-L)

- [ J-l J-2
fmin(L-l,N+l-L)] _min(L,N+l-L)

- [ J-l J-2
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(ii) L = ^  :

No jump could have occurred with the (N+1)^^ bit in the 
sequence (since L(N+1) < t and all of the N+l-bit
sequences with L(N) = will have local linear
complexity L(N+1) = (since L(N) > .

Therefore f(N+l,L,J) = 2.f(N,L,J)
= 2 |min((N-l^/2,(N-l)/2)j 2min((N+l)/2,(N-l)/2)

= j'(N-l)/2] 2(N+1)/2
J-l J

fmin(L-l,N+l-L)] _min(L,N+l-L)
■ I J-l J'2

(iii) < L < N :

Either there was no jump with the (N+1)^^ bit in the 
sequence, or there was a jump from N+l-L to L (since 
L(N+1) > ^^^) . All of the N+l-bit sequences with
L(N) = L have local linear complexity L(N+1) = L
(since L > ^ ) , and half of those with L(N) = N+l-L will
have L(N+1) = L (since N+l-L < | ) .

Therefore f(N+l,L,J) = 2.f(N,L,J) + f(N,N+l-L,J-l)
2 |’inin(L-l,N-L) j 2min(L,N-L)

, fmin(N-L,L-l)] ^min(N+l-L,L-1)I J-2
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. (A)]
fmin(L-1,N+l-L)] _min(L,N+l-L)

- [ J-l J-2

(iv) L = N+1 :

There must have been a jump from 0 to N+1 with the 
(N+1)^^ bit in the sequence (see Example 3.2.2). There 
is only one N+l-bit sequence whose linear complexity 
profile has such a jump, namely 00...01.

Therefore f(N+l,L,J) = 1  if J = 1 (and 0 if J ^ 1) 
and |^min(L-l^N+l-L)j _2B>in(L,N+l-L) _ ^ for J = 1

so f(N+l,L,J) = Jmin(L-1,N+l-L)j_2 min(L,N+l-L)

for 1 < J < min(L-l,N+l-L)+l = 1

□

Now let N(n,J) be the number of n-bit sequences with J
jumps in their linear complexity profiles. Notice that 

n
N(n,J) = ^ f(n,L,J) (5.3.6)

L=0
We will derive an explicit expression for N(n,J) :-
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Theorem 5.3.2.

Let N(n,J) be the number of n-bit sequences with J jumps 
in their linear complexity profiles. Then

N(n,J) =

3.
(n/2)-l V

L
i=J-l

3.
(n-3)/2 V

L
i=J-l

if J = 0

if 1 < J < ^ and n even

if 1 < J < and n odd

if J > n+1

Proof

By equation (5.3.6), N(n,J) =
n
\ f(n,L,J)

L=0

J = 0 => f(n,L,J) = 1  if L = 0 (and 0 if L ^ 0)
(by Theorem 5.3.1)

=> N(n,0) = 2 f(n,L,0)
L=0

= 1.

J > => J > min (L-1, n-L)+1 for 1 < L < n
=> f(n,L,J) = 0 for 1 < L < n

(by Theorem 5.3.1)
n

=> N(n,J) = \ f(n,L,J) = 0.
L=0
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Now consider the case 1 < J < n+1 
2 •

Notice that
l < L < n ,  1 < J <  min(L-1,n-L)+1 if and only if

1 < J < L < n-J+1.
n

Thus N(n,J) = ^ f(n,L,J)
L=0

n—J+1 V■ L 
L=J

|’min(L-l,n-L) j 2min(L,n-L) (5 .3 .7 )

for 1 < J < (by Theorem 5.3.1)

We now consider the odd and even values of n separately.

1 < J < — and n even :

From equation (5.3.7) 
(n/2)-l

L=J

L=(n/2)+l
(n/2)-lV

L
i=J

(fci) *
(n/2)-l n/2V 

L
i=J-l i=J

(n/2)-l
3- I

i=J-l
[ A W
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1 < J < and n odd :

From equation (5.3.7)
(n-l)/2 n-J- I . I * [5 ]

L=J L=(n+l)/2

(n-l)/2V
L
i=J

(n-l)/2  ̂ (n-l)/2V 
L

i=J-l ' i=J

(n-3)/2

1=J-1

□
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5.4. THE MEAN AND VARIANCE OF THE NUMBER OF JUMPS

In this section we use Theorem 5.3.2 to obtain explicit 
expressions for both the mean and variance of the number 
of jumps in the linear complexity profile of a random 
n-bit binary sequence. We begin with the mean :-

Theorem 5.4.1.

Let J^ be the random variable representing the number of 
jumps in the linear complexity profile of a random n-bit 
binary sequence, and let := E(J^) be the mean number 
of jumps in the linear complexity profile of such a 
sequence.
Then

4 + 3 - 3 ^ "

-  +  —  -  — n  4 12 3.2"

if n is even 

if n is odd

Proof

n
nI i- i)

j=0
But P(J^ = j) = (number of n-bit sequences with j jumps 

in their profiles) / (total number of n-bit sequences)

= N(n,j) / 2n
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n
Therefore ^ j . (N(n,j) / 2 ")

j=0
(n+l)/2

= % ]. (N(n,j) / 2 ") (5.4.1)
j=l

since, by Theorem 5.3.2, N(n,j) = 0 for j >

We consider odd and even values of n separately :-

n even

By equation (5.4.1), 
n/2= i". I j-N(,n,j)
j=l

n/2 (n/2)-l 
3„ V

= 2 ". L j. ^ (by Theorem 5.3.2)
j=l i=j-l 

(n/2)-l i+1

i=0 j=l
= 2". L

^since l < j  g-1 if and only if
0 < i < |-1, 1 < j < i+1i+l]

(n/2)-l i= I". I 2\ \
i=0 j=0

(n/2)-l 
= |n ^ 2^.(i.2^“  ̂ + 2^)

i=0
r

[since \ [k).k = r.2'"“3 and \ [̂ ) = 2^)
k=0 k=0
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(n/2)-l (n/2)-l
= #n.[ 2. I 1-4! + I 4I ]

i=0 i=0

- 1 " . [ i . ( f
+ [4"/2_ ij /

c
^since ^ i.x^ = (c.x^^^- (c+1).x^^^+ x) / (x-1)^

1 = 0  c ^
and ^ 1) / (x-l)j

1=0

= #".[ 36.[("-2).2"+2 - n.2" + s] + Y.[2" - 1) ] 

=  J^n [n.2"+2 _ 2 " + 3  _ n . 2" + 8 + 1 2 .2"  - 12^

= 4 + 3 " 3~2^

n odd ;

By equation (5.4.1), 
(n+l)/2

^n = 2 ". I i-N(n,j)
j=l

(n+l)/2 (n-3)/2
= h. I i- I [i^i)-:'

j=l i=j-l
(n+l)/2

j=l
(by Theorem 5.3.2)
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(n-3)/2 i+1 (n+l)/2' ' I [+.].) * I ['Y-Kl )
1=0 j=l j=l

= 2". L

since 1 < j < j-l < 1 < if and only If

0 < 1 < , 1 < j < 1+lj

(n-3)/2 1
= 2 ". I 2 ^. \ (j]-(j+l)

^=° (n-l)/2
+ (jj("+l)/2 ^ [("-l)/2].(j + l)

j=0
(n-3)/2

= |n ^ 2^. (i.2^'’̂  + 2^)
i=0

[since \ [k]-’̂ = ^.2^-1 and \ [̂ ] = 2^]
k=0 k=0

(n-3)/2 (n-3)/2- I * V  * I
1=0 i=0

= #n.[ i . [2 = 3. 4 (n+l) / 2 - 5=1.4(n-l)/2 + 4] / 9

[4 (n-l)/2 - 1] / 3] + 5 ^  + 1+
c

.c+1. ..V / . V 2^since ^ i.x^ = (c.x^^^- (c+l).x^'^+ x) / (x-1) 
i=0 c

and y x^ = (x^+l- i) / (x-1)1 
1=0
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- i
12 ^n.2 "+l- 3.2^^1- n.2 " 2 ""^+ 8 + 6 .2 "- 1 2 ^

n . _i _ _ L „4 12 3 .2 "

□

We now compute the variance of the number of jumps in the 
linear complexity profile of a random n-bit sequence :-

Theorem 5.4.2.

2Let be the variance of the number of jumps in the 
linear complexity profile of a random n-bit binary 
sequence.
Then

8 ~ 9 ^ 6 .2 " ^ 3.2^ 9.2^^ even

8 " 8 6 .2 " 1 8 .2 " ” 9.2^"
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Proof

Firstly we note that

a2 = E(j 2) - E(J^)2

= E(j 2) - (5.4.2)

n
and E(j 2) = ^ j2. p(j^= j)

j=0
n

= I j^.(N(n,j)/2")
j=0
(n+l)/2

= I j2.(N(n,i)/2") (5.4.3)
j=l .

since, by Theorem 5.3.2, N(n,j) = 0 for ] > 2 •

As in Theorem 5.4.1, we consider odd and even values of
n separately :-

n even :

By equation (5.4.3)
n/2

E(Jn) = 1". I i^-N(n,j)
j=l

n/2 (n/2)-l
= h.l I [j-l]-2^ (by Theorem 5.3.2)

j=l i=j-l

(n/2)-l i+1= I 2 \  I
i=0 j=l
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(n/2)-l i" I”. I 2̂ . % [j] • (j+1)^
1=0 j=0

(n/2)-l
= |n ^ 2^.(i.(i+1).2^"2 + i.2^ + 2 )̂

i=0

[since ^ = r. (r+l) .2 ^ " 2 , ^ [^j.k = r.2^"3

0 - 1

k=0 k=0 ^
and I

, (n/2)-l (n/2)-l (n/2)-l (n/2)-l= |5 .( i  I + i  I i-4  ̂ + I i-4  ̂ + I 4I ]
1=0 i=0 i=0 i=0

= §n [ [( Q ^) 2 .4 (n+2 ) / 2  _ (g. (5/) 2+ 2.(5/) - 1 ).4*^/2

+ (Q)2.4(n-2)/2 _ sj / 27

+ | _ [ n / . 4 (n+2 ) / 2  _ n 4 n/ 2  + 4] / 9

+ [4^/2 - ij / sj

(since Y i2x^ = x.(c2%c+2- (2 c 2 + 2 c-l)xC+l

+ (c+l)^x^- X - 1) / (x-1)-’,

1 i . x ^  = ( c . x C + 2 _  ( c + l ) . x ° 4 1 +  X) / (x-1)2
i=0 c

and 'I W  = (x^+l- 1) / (X 
i=0

-1)]
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= I”.[ 108.(nf-4n+4).2"+2 _ (n2-2n-2).2^

+ - Y# + 7#.("-2)'2"^' - 7#."-2"

9 . (n2-4n+4) - /  (n2-2n-2) + % ^ _ n 2  - + f . (n-2)

- 24." + 3T2" + 1 - 2" 

16 4" 24 ” 9 9.2" (5.4.4)

Therefore, combining equations (5.4.2) and (5.4.4) with 
the result of Theorem 5.4.1, we get

‘’n = 16 + §4 - 9 + Wti" - [ 4 + 3 - 3 ^ "  Y  

^ 8 ” 9 6 .2 " 4- 3 .2 " “ 9.22"

n odd :

By equation (5.4.3) 
( n + l ) / 2

E ( j 2 )  =  /  'I  j 2 . N ( n , j )  

j = l

(n+l)/2 (n-3)/2
3„ V

= 2 ". L i’-I ( A ) - ’
j = l  i = j - l  

( n + l ) / 2

j=l
(by Theorem 5.3.2)
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(n-3)/2 i+1 (n+l)/2I ( j W  I ('Y-K'] j'
i=0 j=l j=l

= 2". L

(n-3)/2 i= 1". I 2̂' I
^=° (n-l)/2

+ (l)("+l)/2 % [("-|)/2].(i+l)2
j=0

(n-3)/2
= |n ^ 2^.(i. (i+1).2^”2 + + 2^)

i=0
+ (1) (n+l)/2|'n^ n±l 2(n-5)/2 n%l 2(n-l)/2 + 2(n-l)/2j 

[since ^ [k] " r . (r+1 ) . 2 ’̂ "2 , ^ [̂ j .k = r.2^“3

W  = '1
k=0 ' k=0 ^

and \ 
k=0

 ̂ (n-3)/2 (n-3)/2 (n-3)/2 (n-3)/2

1—0 1—0 1—0 1—0
(n-1)(n+1) n-1 1

32 4 2
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= [ [(Q/) 2 . 4  (n+1)/2 _ (g. (5/)^

+ 2 . ( 5 / )  - 1 ) . 4 ^ 5 “ 3)/2 + ( ü / ) 2 _ 4 ( n - 3 ) / 2  _ sj / 27 

+ & [m/. 4 ("+l)/2 _ n / . 4 (n-l)/2 + 4] / g

+ [4 ("-l) / 2  - 1 ] / 3  ] + <"-3>(5±1X + 5 /  4  1

[since  ̂ i^x^ = x. (c^x^'^^- (2 c2 +2 c-l)
i=0 + (c+l)2x°- X - 1) / (x-1)3,

c
y i.%i = (c.x^+Z- (c+l).xC+l+ X) / (x-1)2
1=0 c

and y x^ = (x^^^- 1) / (x-1)1
i=o J

(n2-6n+9).2"^3 _ -1 (n2-4n+l).2" ^= 3 r _i_2 . 108.

+ ÏY8.(""-2n+l).2"-3 - Y# + Y#.("-3)-2"+^

- Y#.(n-1)-2""^+ I + i.(2""l-l)]
(n-1)(n+1) , n%l 1

32 4 2

Ï ? .  ( n 2 - 6 n + 9 )  -  ( n 2 - 4 n + l )  + ^  { W - 2 n + l )  -  / y "

+ if.(n-3) - %§.(n-1) + jfjn + f " Y" + 32.(n^+8n+7)

16 4' 3 + 144 + 9.2" (5.4.5)

- 198 -



Therefore, combining equations (5.4.2) and (5.4.5) with 
the result of Theorem 5.4.1, we get

= 1 6  + 3 + 1 % % +  9^2" - [ 4 + 12 - 3T 2 "

= 8 - 8 + 672" + 1 8 ^ "  - 9 7 7 2 "

□
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5.5. A STATISTICAL TEST BASED ON THE NUMBER OF JUMPS

We now go on to describe a statistical test for 
randomness which checks the number of jumps in the 
linear complexity profile of a binary sequence. This 
test relies on the fact that the distribution of the 
number of jumps is approximately normal for large n, and 
so we begin by justifying this claim.

We first recall a result from Chapter 3 :-

Let M(n,L) be the set of all n-bit binary sequences with 
local linear complexity L, and denote the cardinality of 
this set by m(n,L). Thus, m(n,L) is the number of n-bit 
sequences with local linear complexity L. Then Theorem 
3.4.5 can be rephrased to give the following result :-

m(n,L) = "
1 if L = 0
2inin(2L-l,2n-2L) i < l < n

0 if L > n

Consider the set M(n,L) of n-bit binary sequences with 
local linear complexity L. Let ^ be the random 
variable representing the number of jumps in the linear 
complexity profile of a sequence chosen at random from
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M(n,L). Then, using Theorems 3.4.5 and 5.3.1 it can be 
seen that, if 1 < L < n, ^ has the following 
distribution :-

P(Jn , L = j)

if j = 0

[min(L-l,n-L)l _min(L,n-L) , _min(2L-l,2n-2L) j-1 J-2 / 2
if 1 < j < min(L-l,n-L)+1

if 3 ^ min(L—1,n—L)+1

(since " i) = f(n,L,j) / in(n,L) )

P(Jn,L- 1 = i) =

rmin(L-l,n-L)l ,1.min(L-1,n-L)
I i J.'2)

if 0 < j < min(L-l,n-L)

else

and so 1 is distributed according to the
binomial distribution B(min(L-1,n-L),^).
(A random variable X is distributed according to the
binomial distribution B(r,p) if
P(X = k) = |^^.pk(i-p)f-k for k = 0,1,...,r)

Note also that for large values of r the binomial
distribution B(r,-) is approximately N(-,~), where
N(jLi,a ) is the normal distribution with mean n and 

2variance o (see, for example, [6]).

- 201 -



Hence, for large values of min(L-1,n-L), 1 is
approximately N(min(L-1,n-L)/2,min(L-1,n-L)/4).

Now consider the set M(n,*) (of cardinality 2^) of all 
n-bit binary sequences. By Theorem 3.4.5, if a sequence 
is chosen at random from M(n,*) then, if 1 < L < n,

P(sequence has local linear complexity L)
2min(2L-l,2n-2L)y

Thus, if we let J denote the random variable ' n
representing the number of jumps in the linear 
complexity profile of a sequence chosen at random from 
M(n,*), then the distribution of the random variable 
J^-1 is given by

P(J^-1 = j) = P(Jn =
nY= ^ P(sequence has j+1 jumps | sequence has

L=1 local linear complexity L)
.P(sequence has local linear comlexity L)

= ^ (2™i"(2L-l,2n-2L)y 2 ") . P(J^ ^ = j+1)
L=1
n
y ^2™l"(2L l<2n 2L)y 2 ") . P(J 1 = j)
Li n / j-j

L=1
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= ^ l,2n-2L)y . b(min(L-1,n-L),^)
L=1

where b(r,p) = ^?j.pi(l-p)^  ̂ is the probability that, 
if X is a random variable with the binomial distribution 
B(r,p), then X = j .

Therefore, for n even,

P(Jn-l = j)

= (i)"“^.b(0,|) + (|)""^.b(l,|) + ...

+ + TT.b(^^,l) + ...2 '2' 16 ' 2 '2' 64 ' 2 '2

+ (2 )" (2^” -'^(°'o)

+ . . .2 '2' 16 ' 2 '2' 64 ' 2 '2

2“ .+ ^n-2 b(l,^) + ^n b(0,^j

But for large values of n the terms towards the right 
hand end of the above expression are insignificant, 
while the binomial distributions towards the left hand 
end are approximately normal 
(since B(r,^) ~ N(|-,J) for large r) .
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Thus, for large n,

P(Jn-l = J) -

+ + •••

=> P(J„ = j) - +

+  +  • • •

2where ÿ(^,a ) is the probability density function of the
2normal distribution with mean ji and variance o ,

evaluated at j .

By Theorems 5.4.1 and 5.4.2 respectively, for n even 

= E(Jn) = ? +,f - 3 3 "

°'n ^ “ 8 " 9 6 .2 " 3 .2 " ” 9.2^"

2Therefore, if we denote these values by /z and a 
respectively, we have

P((Jn-^)/^ = j) - ( ^ ) / a ^ )

16 '4 r / / g

+ + ...

4^"'  ̂ 9n-16''9n-16' 16'^' '' ' 9n-16^ ' 9n-16
_1 j, r // 2 , 9n-54
64*0( 5.y(gn-i6)'9n-16

Thus, for large n, P((J^-/i)/a = j) ~ ÿ(0,l)
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The same result can also be established for odd values 
of n in a similar fashion.

Thus we have established that, for large n, the random 
variable is approximately distributed according
to the standard normal distribution N(0,1). This fact 
can be used in the construction of a statistical test 
for randomness (Test 5.5.1 below), which checks that the 
number of jumps in the linear complexity profile of an 
n-bit sequence is not significantly different from the 
expected value. Hence, a sequence will fail Test 5.5.1 
if its linear complexity profile has too many jumps 
(e.g. if it has the perfect linear complexity profile), 
or if its profile has too few jumps (e.g. if too many of 
its jumps are excessively large). The test proceeds as 
follows : -

Test 5.5.1.

Step 1. Compute the number of jumps J in the linear
complexity profile of the sequence using, for 
example, the Berlekamp-Massey algorithm.

Step 2. Compute the mean value jjL of using 
Theorem 5.4.1.

2Step 3. Compute the variance a of using 
Theorem 5.4.2.
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step 4. Compute the test statistic S = (J-jjL)/a.

Step 5. The test is passed at the a% significance level
if and only if -C < S < C, where C is the upper 
^%-point of the standard normal distribution 
N(0,1).

Alternatively, Steps 4 and 5 above can be replaced by
Step 4' below :-

Step 4'. The test is passed at the a% significance level
if and only if ji-Ca < J < jjl+Co , where C is the
upper ^%-point of the standard normal 
distribution N(0,1).

To illustrate the use of Test 5.5.1, 100 8000-bit 
sequences were generated. For each sequence 
SQS^...s^ggg, the 4000 odd-indexed bits s^,Sg,...,s^ggg 
were randomly generated, while the 4000 even-indexed 
bits Sq,s^,...,s^ggg were generated using the equations 
Sg = 1 and + s^_^ for i = 1,2,...,3999.
By Theorem 4.3.2, these sequences all have the perfect 
linear complexity profile, and therefore the profile of 
each sequence contains J = 4000 jumps. Hence, all 100 
sequences clearly failed Test 5.5.1; for example, at the 
5% significance level the test would be passed if and 
only if 1939 < J < 2062.
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The above-mentioned 100 sequences were also subjected to 
the statistical tests described in Section 5.2, and the 
following results were obtained :-

Number of sequences passing 
at 5% significance level

Frequency test 97

Serial test 95

Runs test 99

Poker test 
block size 97

94 
96
95
98 
94 
98

Note that, if the sequences being tested had been 
randomly generated then, for any given test, the 
expected number of passes would have been 95, and there 
would have been a probability of approximately 0.972 
that 91 or more of the sequences passed the test.

The above results suggest that Test 5.5.1 is capable of 
identifying in binary sequences non-randomness which 
would not be detected using established statistical 
tests for randomness.
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5.6. STATISTICAL TESTS BASED ON THE DISTRIBUTION OF
JUMP HEIGHTS

If a binary sequence passes Test 5.5.1 above then we 
know that the number of jumps in its linear complexity 
profile is not significantly different from the expected 
number of jumps in the profile of a randomly generated 
sequence of the same length. However, this does not 
necessarily imply that the linear complexity profile of 
this sequence is not substantially different from that 
which might be expected of a randomly generated 
sequence. The following example illustrates this 
point : -

Example 5.6.1.

Consider an n-bit binary sequence which has linear 
complexity profile (L(l),L(2),...,L(n)) =
( 0 , 2 , 2 , 2 , 2 , 4 , 4 , 4 , 4 , 6 , . . . , ^ - 2 ,  as shown below.
For convenience we assume that n is a multiple of 4.

y = L(k)

n
2

8
4
0

0 4 8 12 n-4 n
X (k=LXj)
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This profile has exactly ^ jumps, which is approximately 
the expected number for a random n-bit sequence (see 
Theorem 5.4.1), and hence the sequence would certainly 
pass Test 5.5.1. However, all ^ of these jumps have 
height 2, and so the distribution of jump heights in 
this profile would be unlikely to be obtained from a 
randomly generated sequence.

In this section we will discuss statistical tests for 
randomness which check that the distribution of the 
heights of the jumps in the linear complexity profile of 
a binary sequence is .not significantly different from 
the expected distribution of jump heights for a randomly 
generated sequence. We begin by discussing the 
distribution of jump heights :-

In the case of a random binary sequence s^s^. . . s^^_^, the
m^^ bit in the sequence is equally likely to be a
0 or 1, whatever the value of s_s_...s _. In otheru 1 m—2
words, 0) = P(s^_^= 1) = 2 ' independently of
SqS^...s^_2 - From Section 3.3, the linear complexity 
profile of SqS^...s^^_^ can only jump with if
L(m-l) < if this inequality holds then the
profile will jump or not according to whether or not 

would be the m^^ bit output from the (unique)
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L(m-l)-stage LFSR on which SqS^...s^ _ 2  can be generated 
if this register was loaded with the initial state
SqSi . . -1"

Now suppose that the r^^ jump in the linear complexity 
profile of a binary sequence occurs with the a^^ bit in 
the sequence. Then L(a) > and so a jump cannot occur 
with the (a+1)^^ bit in the sequence. In fact, the next 
opportunity for a jump to occur will be with the 
(2L(a)+l)^^ bit in the sequence, since L(i) = L(a) > ^ 
for a < i < 2L(a)-l.

From the above two paragraphs it can be seen that the 
linear complexity profile of a random binary sequence 
will jump at the first opportunity after the r^^ jump 
(i.e. with the (2L(a)+l)^^ bit in the sequence) with 
probability — . Similarly, if the profile does not jump 
at the first opportunity then it will jump at the second 
opportunity (i.e. with the (2L(a)+2)^^ bit in the 
sequence) with probability and in general if the 
profile does not jump at any of the first k-1 
opportunities after the r^^ jump then it will jump at 
the k^^ opportunity (i.e. with the (2L(a)+k)^^ bit in 
the sequence) with probability Thus, since the bits 
in the sequence are independent of each other, the
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probability that the (r+1)^^ jump in the profile occurs 
at the opportunity after the r^^ jump (i.e. with the
(2L(a)+k)^^ bit in the sequence) is (^j^.

If the r^^ jump in the linear complexity profile of a 
binary sequence occurs with the a^^ bit in the sequence 
and the (r+1)^^ jump occurs with the (2L(a)+k)^^ bit, 
then the (r+1)^^ jump in the profile will have height 
L(2L(a)+k) - L(a). But L(2L(a)+k) = 2L(a)+k - L(a)
= L(a)+k (from Section 2.3), and so the (r+1)^^ jump has 
height L(a)+k - L(a) = k in this case. Thus, the 
probability that the (r+1)^^ jump has height k is (^j^.

Similarly, the probability that the first jump in the
linear complexity profile of a random binary sequence

1 khas height k is (— ) , since the first jump in the linear 
complexity profile of SqS^...s^_^ has height k if and 
only if SgS^...s^_^ = 00...01.

For a random binary sequence, the height of each jump is 
independent of the height of all other jumps. Thus it 
can be seen from the above discussion that the heights 
of the jumps in the linear complexity profile of a 
random binary sequence are independent, identically 
distributed random variables with distribution G(^j, 
where G(p) is the geometric distribution with 
parameter p.
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(A random variable X is distributed according to the 
geometric distribution G(p) if P(X = k) = (l-p)^"’̂ .p 
for k = 1,2,3,...)

The above result can be used to construct a randomness 
test (Test 5.6.1 below) based on the heights of the 
jumps in the linear complexity profile of a binary 
sequence. This test considers the first F jumps in the 
profile, where F is fixed for a given sequence length n, 
and checks whether the heights of these jumps conform to 
the geometric distribution with parameter Hence, the
test is capable of identifying non-randomness such as 
that displayed in Example 5.6.1.

Test 5.6.1 is a goodness of fit test (see Section 5.2). 
In the test, the jumps are divided into M classes 
according to their heights. Each of the first M-1 
classes contains all the jumps of height k for some k 
(1 < k < M-1), while the M^^ class contains all the 
jumps of height > M, where M is the lowest integer such 
that the expected number of jumps of height M is less 
than 5. The expected frequency e^ for each class is 
F.Pj^, where p^ is the probability of a given jump in the 
linear complexity profile of a random binary sequence 
being in class k. Hence, since the jump heights for a 
random binary sequence are distributed according to the 
geometric distribution G(^), p^ = (^)^ for 
k = 1,2,...,M-1 and = (^)“ + + ... =

- 212 -



Given a binary sequence So^l’*‘^n-l test proceeds
as follows

Test 5.6.1.

Step 1. Compute the linear complexity profile of
SqS^...s^_^ using, for example, the 
Berlekamp-Massey algorithm.

Step 2. Compute F = f̂i-Câ  , the least integer greater
than or equal to ii-Co, where C, ^ and a are as
in Test 5.5.1. If a sequence passes Test 5.5.1 
then we know that its linear complexity profile 
must contain,at least F jumps.

Step 3. Define M to be the smallest value of k such
that F. < 5.
For k = 1,2,...,M compute f^, where

fĵ  := number of jumps of height k in first 
F jumps of profile (k = 1,2,...,M-1) 

f^ := number of jumps of height > M in 
first F jumps of profile.

Step 4. Compute the test statistic
M

s := I [(fk - F-Pk)'/ f-Pk:
k=l

where p, : =
(k = 1,2,

(k = M)

.,M-1)
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step 5. The test is passed at the a% significance level
2 2if and only if S < x , where % is the upper 

a%“point for the % distribution with M-1 
degrees of freedom.

If a single n-bit sequence SqS^...s ^̂ _̂  is being tested 
for randomness then, strictly speaking. Test 5.6.1 can 
only be performed if the linear complexity profile of 
SqS^...s^_^ contains at least F jumps. However, if the 
profile has less than F jumps then the sequence will 
already have failed Test 5.5.1 if that test has been 
performed. Also, if it is a sequence generator that is 
being tested rather than a single sequence, then it 
might be possible to generate subsequent output bits 
^n^n+l^n+2* * * until the required F jumps have been 
obtained.

An alternative approach to testing the distribution of 
jump heights is to apply the theory established by 
Mood in [12], as was used in the runs test (see Section 
5.2) :-

Consider the n-bit sequence SqS^...s^_^ with linear 
complexity profile (L(l),L(2),...,L(n)), and assume that 
the profile contains R jumps and that the r^^ jump 
occurs with the a(r)^^ bit in the sequence (r =
1,2,...,R). Think of the first jump in this profile (of
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height L(a(l))) as a run of ones of length L(a(l)). 
Similarly, think of the second jump in the profile (of 
height L(a(2)) - L(a(2)-1)) as a run of zeros of length 
L(a(2)) - L(a(2)-1), the third jump (of height 
L(a(3)) - L(a(3)-1)) as a run of ones of length 
L(a(3)) - L(a(3)-1), etc. In general, think of the r^^ 
jump in the profile as a run of ones or zeros (according 
to whether r is odd or even) of length 
L(a(r)) - L(a(r)-1). By considering the jumps in the 
linear complexity profile as runs of ones and zeros in 
this way, the entire profile can be thought of as a 
binary sequence '^o^l*’‘̂ L(n)-1 length L(n) which
contains *̂ R/2̂  runs of ones and iR/2j runs of zeros.

If SqS^...s^_^ is a random sequence then, by a similar 
argument to that given in the preamble to Test 5.6.1, it 
can be seen that "^o^l‘ ’^L(n)-1 also be thought of
as a random sequence of bits (with the possible 
exception of the last run, which must have length at 
least 2.(L(n)-|) if L(n) > | ) .

Hence, the distribution of the heights of jumps in the 
linear complexity profile of SqS^...s ^̂ _̂  can be tested 
by applying the theory in [12] to the L(n)-bit binary 
sequence tQt^...t^^^^_^. In particular. Corollary 5 of 
Section 5 of [12] and Corollary 4 of Section 8 of [12] 
would seem to be particularly relevant, as these results
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group together runs of ones and zeros of a given length. 
As in Section 5.2, however, we will not give details of 
the tests here, as these details are rather complex.

To illustrate the use of Test 5.6.1, 100 8000-bit 
sequences were again generated. This time, for each 
sequence s^s^. . .s^^g^g the 4000 odd-indexed bits were 
randomly generated, while the even-indexed bits were 
generated so that the equations s^ = 0 and

’2i+2 =  .̂ + s^ for i = 0,1,...,3998 were all
satisfied. By Theorem 4.5.4, the linear complexity 
profiles of these sequences have no jumps of odd height 
greater than 1 (i.e. they have no jumps of heights
3,5,7,...). Hence, if we perform Test 5.6.1 on any of 
these sequences, then the contribution to the test 
statistic S from the k=3 term is (f^ - F.p^)^/ F.p^
~ 2 42.4 (since f^ = number of jumps of height 3 = 0 ,
F = 1939 from Section 5.5, and p^ = (^)  ̂ = g), and this 
alone is sufficient to ensure that the test is failed at
the 5% significance level, since M = 9 and the upper 
5%-point of the dis 
freedom is only 15.51.

25%-point of the % distribution with 8 degrees of
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The above-mentioned 100 sequences were also subjected to 
the statistical tests described in Section 5.2, and to 
Test 5.5.1. The following results were obtained :-

Number of sequences passing 
at 5% significance level

Frequency test 97

Serial test 98

Runs test 97

Poker test 
block size 95

93 
97
94 
94
96 
94

Test 5.5.1 92

These results suggest that Test 5.6.1 is also capable of 
detecting non-randomness in sequences which would remain 
undetected if the sequences were tested using 
established statistical tests. More generally, the 
statistical tests based on linear complexity profiles 
described in this chapter would be capable of detecting

- 217 -



the non-randomness in most of the sequences discussed in 
Chapter 4, and indeed in other sequences in which 
non-random structure in the sequences was reflected in 
their linear complexity profiles.
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