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ABSTRACT

The far infrared optical properties and complex dielectric
response functions of two alkali halide crystals (CsI and KI) and
twvo TIII-V compound semiconductor crystals (TnAs and 1InP) have
been studied using the technique of dispersive Fourier transform
spectroscopy. The values of the transverse optic and longitudinal
optic phonon frequencies at wave vector q=0 determined from these
results agree quite well with published values, and the
dielectric functions were used to calculate the imaginary parts
of the anharmonic self-energies [ (0j,V) of the q=0 transverse
optic modes.

These are the first reported measurerments on Csl by
dispersive Fourier transform spectroscopy, and  reasonable
agreement is obtained between the frequencies of measured fga-
tures in ' (0j,V ) and published two-phonon frequencies. In the
case of KI the present measurements have been made at a higher
resolution than any reported yreviously, and theywAfrnvide a
sensitive test of the validity of various theoretical
calculations available in publications. Also, in the case of KI
some two-phonon difference bands have been observed and assigned
in the spectrum of [* (0j,V) for the first time,

No measurements of the optical constants of InP in the far
infrared region using this technique have been reported before,
and, for both 1InAs and InP, these are the first reported
experimental determinations of the imaginary part of the

frequency dependent damping function. A number of features in



the spectra of |? (0j,V ) for InAs and InP are revealed and attri-
buted to two-phonon decay processes with the aid of a critical
point analysis based on published data for these materials.

Since the performance of the dispersive reflection interfe-
rometer was limited by the specimen size a prototype focused heam
interferometer was constructed, and its performance has heen
demonstrated by recording a water vapour abhsorption spectrum at a

resolution of 2 cm? using end mirrors 5mm in diameter,
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CHAPTER "1

INTRODUCTION

The exploration and application of the far infrared region
of the electromagnetic spectrum have progressed steadily over the
last twenty years, The method of Studying electromagnetic spec-
tra by Fourier transform spectroscopy was pioneered by Michelson
[1902].

The main obstruction to the progress of Fourier spectros-
copy during the period of Michelson and up to the late 1950's was
the absence of adequate computing facilities to perform the
Fourier transformation of the interferograms.

The major breakthrough came in the late 1950's and the
early 1960's following the experimental realisation of the
multiplex and throughput advantages by Fellgett (1957) and
Jacquinot (1954), respectively, and their application by Gebbie
and Vanésse (1956), and Strong (1957), This, togsether with the
exploitation of digital computers and the development of infrared
sources and detectors like the pneumatic Golay cell;’ﬂand highly
sensi;ive bolometers led to the present state,

| In conventional spectroscopy the most common method for
obtaining the optical constants is to measure the power reflecti-
vity over as wide a spectral range as possible and to analyse the
results using a Kramers-Kronig (K-K)analysis. On the other hand,
the main aim of measurements by infrared power transmission
;pectroscopy‘ is usually to obtain only limited information about
the specimen under investigation such as the frequencies of

particular spectral features, rather than to make a complete



analysis of the spectra including an absolute determination of
the optical constants,

The application of K-K analysis to spectroséopy was
first discussed by Robinson and Price (1953), and has heen wused
in calculating the optical constants in ‘the electromagnetic
region from the far infrared to the ultraviolet. The values of
the optical constants so obtained are in efror‘beéause of the
truncation of the infinite integral. Another difficulty'in‘using
a Krame;s-Kronig analysis, especially in the casequf alkali

halides is that these crystals have very low reflectivity in part

o

of the spectral region of interest, wﬁich leads to an inaccﬁrate-
ly calculated phase, Thus it is not practically possible to
determine very accurate values of the optical constants from
infrared power spectroscopy.

Following the initial development of dispersive TFourier
transform spectroscopy some two decades ago [Chamberlain et “al
(1963), Bell (1966), Russell and Bell (i966) ] it has been
established that suitable amplitude and phase spectfa'for solids,
liquids, and gases can always be determined by using a variety of
experimental techniques. In all these techniques the specimen:is:
placed in an appropriate configuration in one arm of a two-beam
interferometer rather than in front of the detector as for
conventional power spectroscopy.

The optical constants can then be calculated diréctly from
the measured values of the complex amplitude reflection. coeffi-
cient or amplitude transmission coefficient and phase by using
Fresnel's relations,

In this work the technique of dispersi&e Fourier reflection



spectroscopy has been used to determine the optical constants of
diatomic cub;c crystals in the far infrared in the immediate
vicinity of the reststrahlen band where the crystals are very
highly absorbing. The results obtained by using this technique
are gatisfactory, but elsewhere the phase change froduced on
reflection is very small [Johnson and Bell (1969) Parker and
4Chambers (1976), Pai et al (1978)], and therefore the absorption
index, k(V), cannot be measured satisfactorily by using this
technique, In such circumstances, however, the measurements for
the determination of the optical constants with reasonahle accu-
racy can be made satisfactorily by using the technique of
dispersive transmission spectroscopy [Johnson and BRell (1969)].

The technique of dispersive reflection spectroscopy has
been previously used helow ambient temperature, but no dispersive
transmission measurements on solids below room temperature have
been reported outside this laboratory. To perform low temperature
measurements on solids a single pass transmission interferome-
ter was built in this laboratory which permits measurements at
normal incidence in the temperature range .77 to 300K{

Also at low. temperature, reflection measurement's have bheen
performed successfully down to 7K by Parker at el (1979), Details
of the transmission and reflection interferometers tosether with
the associated problems are given in chapter 4,

In the case of the reflection interferometer, since the
measurements are restricted by the size of the specimens, we
designed a prototype of a focused beam interferometer using very

few optical components as compared to other interferometers [Gast
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and Genzel (1973) ]. The design of the instrument permits
measurements ‘on specimens as small as Smm in diameter., A des-
cription of this interferometer, together with a demonstration of
its feasibility is given in chapter 4,

The main subject of this thesis was the investigation of
the far infrared optical properties of diatomic cubic crystals
like the alkali halides and some group ITT - V compound semicon-
ductors. fhe optical constants of these crystals were measured
in the vicinity of their transverse optic phonons of wave vector
q=0 at room temperature and low temperatures using two Michelson
interferometers operated in the asymmetric mode, as described in
chapter 4,

In the case of KI crystals good agreement was obtained with
the previous room temperature measurements of Perg and BRell
(1971), whereas for CsI there appear to have been no similar
measurements by dispersive Fourier transform spectroscopy
reported before.

The results obtained for KI and CsI were used to calculate
the ‘frequency dependence of the imaginary part of tﬁgdanharmonic
self-energy of the q=0 transverse optic mode of hoth materials at
room temperature and at low temperature, Structure associated
with anharmonicity was revealed that had not previously been
observed by K-K analysis of the power reflectivitv., The frequen-
cies of the transverse optic modes determined from the positions
of the peak values of the conductivity are in pood agreement with
values reported by Lowndes and Martin (1969), and a detailed
discussion of this is presented in chapter 6. The overall

agreement for KI is in good agreement quantitativély and qualita-

11



tively with the calculation of Berg and Bell (1971) and Eldridge
and Kembry t1973), and that of CsI with the calculation of
Beairsto and Fldridge (1973) which includes the contribution
from cubic anharmonicity. A detailed discussion of these results
and their comparison with other theoretical calculations is given
in chapter 6,

The measurements on III - V compound semiconductors like
InAs and InP within the reststrahlen frequency band and helow
the transverse optic phonon frequency were performed only by the
dispersive reflection technique since the pure crystals used for
these measurements were completely opaque in this region so that
it was not possible to perform dispersive transmission measure-
ments. Nevertheless the dielectric constant results obtained at
room temperature are satisfactory, particularly in the case of
InP, for which no measurements of the optical constants in the
far infrared have been reported before using the dispersive
technique.

The frequency dependence of the imaginary part of the
anharmonic self-energy of the transverse optic phorion of wave
vector q=0 is calculated for these compound semiconductors using
the measured values of the dielectric constants as described in
chapter 6., Many features are revealed in the spectra of these
crystéls for the first time and attributed to two-phonon decay
processes with the aid of a critical point analysis based on
published data for the dispersion curves, The complete lists of
observed two-phonon summation and difference processes for these

semiconductors are presented in chapter 6.

12



CHAPTER II

GENERAL THEORY OF FOURIER TRANSFORM SPECTROSCOPY

2.1) Introduction

The main concern of this chapter is to vprovide a hrief
description of the mathematical methods inveolved in Fourier
transform spectroscopy. Many theoretical details "are omitted
since the publications by Bell (1972), Chamberlain (1979), and
Martin (1980) provide detailed descriptions of Fourier transform

spectroscopy, hereafter called FTS,

AT

>In late 1950 the work of Fellgett 1led to the modern
interferometric technique. Fellgett not only realised the
advantage of the multiplex principle, but he also realised that
the necessary Fourier transformation could be easily handled by
the use of advanced techniques developed in computer
programming and the computer itself. Nowadavs with the fast
Fourier ‘transform algorithm of Cooley and Tukey (1965) one can
perform the analysis of a large number of data points in a
matter of seconds,

In a Michelson interferometer one common procedure in the
far infrared region is to record the signal as a stepping motor
moves the mirror, and hence an interferogram is recorded in
terms of intensity as a function of optical path difference,
"and by means of Fourier transformation it is then converted info
intensity versus frequency. In practice this tedious calculation
is performed by a computer, which is why FTS was not a practical
proposition until computers became readily available,

The discussion in this chapter starts by deriving a

13



fundamental relation used in FTS, and then two major advantages
of FTS are discussed., These are the sﬁperior light gathering
power and the multiplex advantage, It is shown that for a given
resolving power the 1light grasping power of a Michelson
interferometer can be of the order of one hundred times better
than that of a grating spectrometer, This advantage can either be
used to reduce the scanning time by a factor of 100 or improve
the signal to noise ratio by a factor of 10. Besides these advan-
tages the response of the instrument to monochromatic and polyc-
hromatic radiation,viz, the instrumental line shape due to the
limitation on maximum optical path difference of a Michelson
interferometer, is described. Also, the effects of apodization on
the resolution of the spectrum are discussed. The chapter is
concluded by describing sampling of an interferogram and the

phenomenon of aliasing.

2,2) Fundamental relation of FTS
In order to derive the fundamental relation of ‘FTS, we

consider a Michelson two beam interferometer, as illustrated in

-

fig(2.1).

The radiation from the source is divided by the beam divi-
der into two beams of equal amplitude which are reflected from
mirrors and return to the beam splitter for a second splitting,
We are interested in only those two partial beams which reach the
detector and interfere.

If we assume that the incident monochromatic radiation has
a frequency V, (in wave numbers) and amplitude A , then, by

displacing one of the mirrors of the interferometer, a phase

14



delay of § = 2TVox is introduced, where x is the optical path
difference between the two beams, Now by applying the law of
linear superposition the complex amplitude so ohtained is given
as
16
A=A, (1 +e°) (2.1a)
Then the intensity of monochromatic radiation at the detector is

obtained by multiplying Eq(2.1a) by its complex conjugate, i.e,

1= 2K =2K[1+ cos(2TVex)] (2.1b)

llence the signal registered at the detector as a function of

optical path difference is given as
I(x) = 2B[1 + cos(2TTVex)], - (2.1c)

where B=K: now represents the intensity of the superimposed
beams. The function I(x) goes through maxima and minima as the
optical péth difference x is varied, and this is achieved by
displacing the moving mirror along the optical axis, If now -we
consider that the source is polychromatic instead of
monochromatic, then the spectrum can be obtained bv integrating

(2.1c) between the limits 0 and infinity, i.e -

I (x) = zjncvm + cos(2TV x)] v | (2.2)
- 2je(v) dv + 2jcos(zTrvx) B(Y) dv (2.3)

¢

For equal mirror displacements from the beam splitter (i.e,x=0)

we calculate oo

12(0) = 2 Szn(v) dv (2.4)

and for infinite mirror displacement i.e, x=©2 we have

15



1ee) = (1/2) I, (0) + lim fzn(v) cos(2TVx) dv  (2.5)
x-’°° [']

In (2.5), as x tends to infinity the cos(2TVx) term oscillates
very fapidly and averages to zero. Therefore, only at x=0 does
constructive interference of all frequencies take place, This
means that IR(x) has its maximum with this mirror displacement,
and by (2.4) the maximum intensity is then observed at the
detector, For large optical path differences it follows from
(2.5) that only half of the maximum intensity is then observed at
the detector, and the other half returns to the source. Inserting

(2.4) in (2.5) we then obtain
IR(x) - (1/2) IR(O) = JZB(“) cos(2Tv x) dy (2.6)

The expression on the left hand side of (2.6) is called the
interferogram, which is the sum of the fluxes of the patterns
produced by each wave number present in the broad bandwidth, “and
the method of Fourier transformation interprets the interferogram

to provide the pattern for each frequency - and hence determines

LN

the magnitude of the fluxes at that frequency.
As the interferogram and spectrum form a Fourier transform
pair, we can therefore obtain the spectrum, B(v), by Fourier

transformation of the interferogram :
[V

B(Y) = (I/Z)J[IR(X) - (1/2)1z(0)] cos(2Tx) dX

o

(2.7)
Eq(2.7) states that at a given wave number, if the flux versus

optical path difference is known as a function of x, the cosine

Fourier transform of the interferogram will produﬁe the spectrum,

In order to obtain the complete spectrum (2,7) must be integrated

16



for the whole frequency spectrum under ohservation,

Since the spectrum PB(V) is an even function in the whole
7/
frequency range we can write the following pair of Fourier

transform integrals as given by Chamberlain (1979) :

“+o0

(X)) = Ss(u) cos (2TVX)dy (2.8)

vhere ]t(x) = [Ig(x) -(1/2)IR(O)] (2.9)
4+ oo

and B(v) = Slc(x) cos (2TWVx)dx (2.10a)

In the equations above we observe that we have used physi-
cally very large values of the optical path difference for the
calculation of the spectral distribution R(V). We will discuss
the limits on this optical path difference later in this chapter,
Furthermore, since the optical svstem in the interferometer 1is
not always perfectly balanced, it is useful (Rell 1972) to use
complex Fourier transforms instead of cosine Fourier trans?n¥%s.

Therefore we have

400
+i2mVx
I (x) =-SB(v) e dv - (2.10)
and the spectrum +oo
g -i2TvYx
B() = |T.(x) e dx (2.11)
o

Thus relation (2.7) represents the fundamental relation of FTS
and the rest of the derivation relied on the Tourier transform

integral theorem and mathematical manipulation.

17



2.3) Multiplex and throughput advantages

The two main features which distinpuish FTS Ffom
conventional spectrometry, i.e, prism or grating spectrometry,
are the multiplex and light gathering advantages. We will first
consider the multiplex advantage. In an interferometer a black
body source emits radiation of broad bandwidth and the
intensities of all spectral elements which are present in the
broad bandwidth are simultaneously observed by the detector
during the entire period of measurement. Suppose that we are to
observe a spectrum made of N spectral elements in time T, each
spectral increment being equal to the resnlution. Then with a
conventional spectrometer each element will he ohserved for a
time T/N, and the signal to noise ratio in the ohserved snectrum
will be proportional to the square root of the ohserving time

v
i.e (S/Nza oL (T/N)E (2.12?)

In the case of an interferomcter the situation is different
because, here, each spectral element is ohserved all the time so
that the signal to noise ratio will be proportional to the square

root of T, i.e,
1

(S/N) ¢ ()™ (2.12h)
T
Comparing the (S/N%. with (S5/N), we see that
G
........ = (2.12¢)

for the same constant of proportionality. It therefore follows
that the interferometric system is superior to the conventional

L
system by the factor of (NY. This improvement is termed  the

18



Fellgett, or multiplex advantage. In order to fully achieve this
advantage, the system must be detector noise limited. This advan-
tage is not applicable in the visible and wultraviolet regions
where the principle source of noise is photon nonise due to

fluctuation in the size of the signal,

Another significant adv;ntage of interferometers was
pointed out by Jacquinot., According to him an interferometer
possessing circular symmetry has an angular admission advantage
over a grating spectrometer which emplovs a  slit and
consequently has no such symmetry. Jacquinot showed that the
radiant throughput of an interferometr is much higher than that
of a grating spectrometer. The throughput of a Michelson
interferometer is calculated below and is compared with that of a
grating spectrometer,

The amount of radiation flowing out from a noint sourcé p
within a small solid angle subténded by an element (mirror) of

area dA' at a distance r [fip(2.2a)] is proportional to the snlid

N

angle., Then we can obtain the flux (dF) by dividing the area of
dA' projected normal to the rays by r. llence the flux dF is

given as
‘ dF = constant (dA'/r?) cos¢ (2.13)

In practice the source can never be a point, We therefore
consider it as an element of area ds which is inclined at an
angle © between the source normal and the optical axis, as
shown in fig(2.2b), If we assume that the given source radiates

according to Lamberts law, i.e, the flux is proportional to



cos@ ds, the. flux will now be proportional to the projected area

of ds as well, therefore

dF = B [ds cos8 dA'cos¢] r > (2.14)

L4
where B, the proportionality constant, is the source brightness,

with units of w ﬁzstefi We can define in (2,14) the snlid angle

subtended by the source as

d-n-= (cosd ds) r"* (2.15a)
and the projected area of the collimator as
dA = cos$ dA' , (2.15b)
Substituting these values of d# and dA in (2.14) we have
dF = BdArpdn

or E = (dF/B) = dA d- (2.16)

Let us assume that losses due to ahsorption in the optical
system are negligible, vIt then follows that for an interfero-
meter the quantity dA d is a constant, and one can therefore
use large values of dA d-- in the interferometer anqrhave high
resolﬁtion which is independent of the quantity dA d-, which is
called etendue. From above it follows that one may consider the
flux throughput at any point in a lossless optical system for, in
such a system, the brightness of an object is equél to the
brightness of an image.

In order to compare the throughput of the two systems, i.e,
a Michelson interferometer and a grating spectrometer, we will

first consider the throughput of a Michelson interferometer En as
Em= Ay, Sim (2.17)

20



[Bell (1972)]. Here —m= (TID*/F*) is the solid angle subtended
by the source of circular diameter D at the collimator of focal
length F. The resolving power of a Michelson interferometer is

defined as
Vo
SR |
In a collimated interferometer off axis rays are present because

(2.18)

of the finite size of the limiting aperture and this introduces a

spread in wave number which is written as

V o=V [l -2 ] (2.19)
2T
[Fleming (1974), Bell (1972), Connes (1958)] and the total wave

number spread is written

AY = Vo-Q-_T_:‘ (2.19b)
PN

From (2.18) and (2.19) we have the resolving power R, as

R = H‘——
™M Lim

Putting the value of solid angle from (2.20) in (2.17) we have

(2.20)

Epg = 2T (A /R1) (2.21)

This relation represents the throughput of a~~ Michelson
interferometer,

In a grating spectrometer the resolving. power and
throughput power are limited by the slit width, The solid angle
of a 'grating spectrometer in terms of its slit width 'h' and

length '1' and the focal length F of the collimator is given as

S, = b1/ F* (2.22)
Also
R, =(2F tan®)/ b . (2.23)

21



[Bell (1972)]. Here Rg 1is the resolving power of a grating
spectrometer . and @ 1is the angle of rotation of the grating.
Now substituting the value of 'b' from (2.23) in (2.22), and
using the definition of etendue as given in (2.16), the

throughput of a grating spectrometer is written as

Eg = Ag St = (1/F) (As / Rs) 2 tan® (2.24)
Thus the maximum efficiency of a grating instrument can be
obtained as follows, For maximum efficiency, @ is chosen to he

~~ 30 , Then we have 2 tan8~1
hence Fe = (1/F) (Ay / Ra) . (2.25)

If we assume that A, ~ A, , and that the focal lengths for the
collimators, and the resolving powers of both the instruments
are almost the same, then the ratio of interferometer and grating

throughputs can be expressed as

Ew/ Eg = 270 (F/1) (2.26)
For the best grating spectrometers the ratio of the focal length

of the collimator to the slit length is never less than 30, Thus

N

the etendue of a Michelson interferometer is nearly 200 times

better than that of a grating spectrometer,
2.4) Finite path difference and instrumental line shane

So far we have been considering the limits of optical path
difference (x) to be infinite, i.e, x varies form -00 tn +00 ,
but in practice this is not possible since the optical path of an
interferometer is restricted by the length of its moving mirror

arm, Therefore we are forced to truncate the integral within

22



the limits of - L< x <+ L, say.

To obtain an expression for the instrumental line shape
produced by a finite optical path difference we have to study,
within the finite maximum optical path limits, the form of the
spectrum produced by the Fourier transform of the interferogram
when a monochromatic source is used, Considering the complex
Fourier transform relation given by (2,10), the interferogram
function is given as

V.
+12TV x

Io (0) = Sncv) e dv 2.27)

-0l

If we assume that the source is emitting monochromatic radiation
(V,), and that the spectrum B(V) obtained is in the form of a

Dirac delta function, i.e,
B(V) = (1/2) [§(V-V) + § (V+V)] (2.27a)

then we have, from (2,27), the interferogram function as

© +i2TV x
L) = (1/2)5[8(v-v°)+8(v V)] e dv
(2.28)

By using the definition of the Dirac delta function"the ahove

expression for the interferogram function reduces to

T (x) = 2 cos(2TY,x) : (2.29)
llence - the interferogram obtained from a monochromatic line of
wave number VYo is of the cosine form. Inserting the value of
I (x) from (2.29) in (2.11) we get

e -12TV x ‘
Bw) ={2 cos (2mx) e dx (2.29a)

-0
Since the integral of the odd function is zero, after applying

23



finite path limits (2.29a) reduces to
+L ’
B(v) = S{[cos(ZTi (V-v)x] + [cos(2m (v+va)x]}dx (2.30)
<1

Thus on integrating the above relation we have
2L sin 2TW (v -v,)L 2L sin2T (V +Ve )L

B(v) = + (2.31)
2T (v =)L 2T (V + V)L

In (2.31) we observe that the second term is negligible compared
to the first term if V,L}) 1 i.e, L»AN, which is always the
case, Therefore we ignore the second term, and now the

instrumental line shape can be expressed as

2, sin2T (V -V.)L

B(v) ~ (2. 322)
2T (V- Vo)L
~2L (siny ')y =~ 4 sincy (2.33)
where y = 2TT (v = ¥,)L (2.34)

The quantity 2L sinc y is usually called the‘ instrumental
lineshape (ILS)., A relation of this type exists for every
spectrometer and ultimately limits its resolving power. The
spectrum of a monochromatic source under finite maxié;m optiéal

path limits (ILS) is presented in fig(2.3a)

2.5) Apodization and Resolution
Apodization

if we refer to fig(2.3) we ohserve that there are positive
and negative side lobes besides the central peak of finite width
which one can tolerate as an approximation to the monochromatic

line within the resolution limit imposed by the truncation,
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When an interferogram fails to decay to zero at maximum optical
path difference the apparatus function tends to introduce
spurious features in the computed spectrum, and they could be
mistaken for real spectral features., It is therefore necessary
to make the interfecrogram decay to zero smoothly at maximum
optical path difference. We can achieve this by multiplying the
interferogram function I.(x) in (2.10) by a triangular function

A(x) which is defined as
A(x) =1 - Ix/[{ for -L< xg +L (2.35)

The function A(x) is called an apodizing function, Thus we ohtain

the computed apodized spectrum as

490

-i2TmV X
R(v) = Slc(x) A(x) e dx (2.36)

-0
Now applying the condition estahlished for the apodizing
function in (2.35), and also since the interferogram function

from a monochromatic line is the cosine distribution as given in

(2.29), then using (2.29) and (2.35), relation (2.36) reduces to

Wt -i2TV x
B =2 [ (1 -|x/L) cos(2T¢x) e dx (2.37)
~L
Using Euler's formula we have
Ak
B(v) =2 g(1~lx/Ll) cos2M¥x(cos2MV x - isin2TVx) dx  (2.38)
-L

and then wusing a trigonometric identity, and dropning the
cos[2T (v +V,)x] term since its contribution is very small,

equation (2,38) reduces to
‘L

BOW) = § (1 -Ix/L1)cos[2T (V-M)x ] dx (2.39)
-t

2({1- cos[2T (v -vo)]L} .
= - (2.40)
[2T (v -ve) L
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Again using a trigonometric relation, we have
B(w) = L sinc [T (v -w)L] (2.41)
Besides triangular apodization there are several other functions

commonly used for apodization, of which two are

[1- (x/L) ] (2.42)

cos (W x/2L) ., (2.43)

A(x)

and | A(x)

The Fourier transform of the trianpular apodization
function itself can be given as LsinéL[ﬂUL], which has positive
side lobes and theoretically represents the same apparatus
function as that of a grating spectrometer. For a monochromatic
input we obtain the output as given by (2.41).

The apodizationv process is of course not limited to a
monochromatic input only, but can equally be applied to the case
of a polychromatic  input which can be considered as a linear
superposition of Dirac delta functions. From fig(2.3) we see”thé
effects of triangular apodization., The line width is broadened
and consequently the resolution ohtainable will be decreased, But
on the other hand we notice that the undesirahle éideJlohes are
all positive and are considerably smaller than in the case of the
unapodized spectrum produced by the apparatus function. As a
result an improved spectral profile is obtained, The process of
remov{ng the unwanted feet is termed apodization, and is widely

used in Fourier transform spectroscopy.
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Resqlution

The spectral resolution obtained in Fourier spectroscopy is
primarily determined by the maximum path difference attained
during the interferogram recording. When no apodization is
applied to the spectrum the instrumental line shape is given by
"sinc y", where y = 2T (V-¥)L. This type of relation exists
for all spectfometers and provides the basis for estimates of the

resolving power,

One possible definition of the resoluticn can be obtained
from the width of the sinc function at half its peak value,
normélly called the half width, From fig(2.3h) we observe that
the intensity drops to half its peak value when y=%0,607T |
Hence the full half-width is of the order of 1,211, Therefore
when y=1,21T = 2T (v -v)L we obtain the resolution of
the interferometer in terms of wavenumber as .

1.21
AV o (2.44)

2L

el
—

Thus we arrive at a simple definition of the resolution available
with a Michelson interferometer, namely that it is approximately
the reciprocal of twice the maximum mirror movement from the
zero optical path difference position.

Akesolution can also be defined in terms of the Rayleigh
criterion, which considers two neighbouring lines in a spectrum,
Thus for any two spectral elements to be resnlved, their

respective contributions to the interferogram must be out of

phase by at least 2T [Martin (1967) ], 1i.e they are separated



such that the peak of one resonance falls at the first zero of
the other resonance., If we assume that the two resonances have
instrumental 1line shapes given by sinc* (y/2), then for a
monochromatic input the intrumental line shape for a triangular-
ly apodized interferogram is given in the form of (2.41) 1i.e,

B, () X sinc” (y/2) - (2.45)
For the same input the unapodized instrumental 1line shape can bhe
written as

Bu(v) &K sinc (y) (2.46)
According to the Rayleigh criterion the separation between the

eaks of the two resonances in terms of 'y! is given for (2.45)
P y g

as
2T = (%, - ¥") (2.47)

where Yo = [2T (v -w)L] (2.48)

and y' = [2T (v -v)L] (2.49) -

where L is the maximum optical path difference and the two
)

resonant frequencies are Yo and Y , Substituting the values of y

and y' in (2.47) we arrive at the definition of resolution for a

triangularly apodized interferogram, i.e,
(V%) =Y = /1 (2.50)

We ma& consider (2.50) as a measure of the resolution of an
interferometer, but we cannot give a fixed definition of the
resolution for a Michelson interferometer bhecause of the effects
of apodization, However, in every case we reach the same general

conclusion that the resolution of an interferometer varies
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inversely as the maximum optical path difference.
2.6) Sampling and the phenomenon of aliasing

As we have seen earlier, the interferogram function I (x)
and the spectral distribution B(Y) are the Fourier transforms of
each other,The spectrum can therefore he ohtaired by determining
the integral of the relation given in (2.11), and the
interferogram by its Fourier transform. In order to solve (2.11)
using a digital computer it is necessary for the interferogram
to be digitised into a number of discrete valiues which are the
input data of the computer, llence we record the interferogram at
equal intervals of optical path differnce to make use of the fast
Fourier algorithm of Cooley and Tukey (1965).

Since the interferogram is to be recordzd in equal steps,
we have to refer to our Eq(2.11), and have to replace the
integration by a summation, Ilence the samnle interFerngrgm,
I¢ (x), so obtained is not the continuous interferogram Ic(x)..%he
two interferograms however, can be related with the help of the

Shah function :

L (x) = ( 'E;()Ic(x) " (2.51)
wherelil( x/a.x) is the Shah function, which allows only those
values, for the sampled interferogram for which

x= 0; +4ax, +2Ax, t34x + - = « = =
The distance & x between the successive sampling points is the

sampling distance, Mathematically the Shah function is defined as

an infinite sum of Dirac delta functions i.e,
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Nz

W x) = =S(x-N) (2.52)

; Nz=-0
where N is an integer. Using the property of the Shah function
which states that the inverse Fourier ¢transform of a Shah
function is a Shah function, we can deduce the effects of the
sampling procedure on the final computed spectrum, and also using
the definition of the delta function and change of variable

relation from Bell (1972) we have

-)
Flwanl- ara)yw ey (2.53)

Here the symbol ¥ represents the Fourier transform, recalling

that the sampled spectrum Bg (V) can be defined from Fq(2.11) as

-\
B v) = F{1:)} (2.54)

and the complete spectrum

- .
B.(») = T {1.(x)} (2.55)

After taking the inverse Fourier transform of (2,51) we get

- -
Flem) - T{w wax) @} (2.56)
Now substituting the values from (2. fl) and (2.%5) and-using the

convolution theorem we have

- . '
B¢ (V) =g{L\J(x/Ax)}ch_(v),‘ , (2.57)
Now applying the property of the Shah function stated in (2,53)
we get
Be(v) = 4 x W (vax) * Be (V) (2. %7a)
which leads to
-\ Nz +00
3315 x)}= Be(9) = Z B (V- Nav) (2.58)
=00
where sV = 1/ax (2.9



Hence the complete spectrum is obtained for V¥V = NAV for all
values of N when we compute the inverse Fourier transform of the

sampled interferogram,

We can easily identify the region of frequency from zero to
maximum if the repeated spectra do not overlap. Overlapping i.e,
aliasing of these spectra may occur depénding on the magnitude of
AY. If we choose the value ofAx to be very small, then by
(2.59) the value of Aywill be very lérge and therefore the spec-
tra will be separated, but, on the other hand, if Ax i; very
large then there will be bad overlapping and then it will be
rather difficult to determine the true spectrum from the sampled
interferogram., Fig(2.4) shows clearly the aliasing phenomenon, A
continuous interferogram I¢ (x) recorded on haoth sides of zero
optical path position gives both positive and nega&ive freauency
values for a continuous spectrum B.(V), that is, from - Vmax - to
+ Vmax., Fig(2.4a) shows a solid curve and dashed curve repre-
senting positive and negative spectra, respectively, as
computed from a sampled interferogram. Fig(2.4bh) shoﬁ§'the total
spectrum as would be computed from the sampled interferogram,

The separation of spectra can be achieved by making AVbig
enough such that the contribution from the maximum positive
frequency spectrum does not overlap with the negative one, This
can be achieved by setting |

Ax € 1/ 2Ymax (2.60)
which shows that the largest frequenéy now permitted is directly

related to the sampling interval,
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CHAPTER III

GENERAL ASPECTS OF DISPERSIVE FOURIER TRANSFORM SPECTROSCOPY
3,1) Introduction

In conventional FTS in the millimetre and submillimetre
region the optical constants of a medium have usually been
determined ‘from the measured power reflection or power
transmission spectrum of a specimen by the use of an indirect
analysis 1like the Kramers-Kronig method [Robinson and Price
(1953)].

The recent development of dispersive FTS, in which the
amplitude attenuation and phase shift produced by a specimen are
directly measured, provides a precise method for obtaining the
optical constants without the use of the Kramers-Kronig
relations [ Russell and Bell (1966), Bell (1966), Chamberlain
(1969), Chantry (1971), Birch and Parker (1979)].

The main difference bhetween the two techniques 1is the
positioning of the specimen in the interferometer., In FTS the
specimen is usually placed in the combined beam in front of the
detector, and because of the symmetry of the measurement the
phasé shift caused by the specimen is present in both the partial
beams, and hence it cannot be recovered from the intensity
patterh at the detector. Therefore only one quantity, the power
attenuation of the specimen, is measured. Thus it is not possible
to calculate both optical constants directly.

In dispersive FTS, on the other hand, the specimen is
placed in one of the arms of the interferometer.and either the

complex spectral transmittance or reflectance can be measured,
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depending on the optical configuration of the interferometer.
Therefore, wh;n the specimen is introduced in one of the interfe-
rometer arms, the interferogram becomes asymmetric, Each
spectral component is now reduced in amplitude and its phase is
shifted, The ratio of the complex Fourier transforms of the
interferograms recorded with and without the specimen yields the
complex spectrum which contains both the amplitude attenuation
and phase shift caused by the specimen. Hence a single measure-
ment can determine two quantities which are directly related to
the extinction coefficient and refractive index.

For the determination of the optical constants from the
technique of dispersive FTS the measurement of the phase
spectrum requires high stability of the optical path lengths in
the arms of the interferometer, and the way in which this
stability 1is achieved is described in chapter 4, 1ow comes the
choice of interferometer configuration, which is dictated by “the
nature and behaviour of the specimen under study. Three basic
interferometric configurations are illustrated in fig (3.1). For
transmitting specimens the optical arrargement is” shown in
fig (3.1a). In this arrangement the specimen is placed in the
fixed mirror arm of the interferometer and the radiation passes
through it twice, and this is called a double pass measurement,
For those specimens which are highly absorbing but still
marginally transparent the optical arrangement is modified. Here
the optics is so arranged that the radiation only passes
through the specimen once, and this is termed a single pass

measurement, and is shown in fig (3.1b). For very highly ahsor-
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bing substances, the reflection instrument is illustrated in
fig (3.1c), and here the specimen replaces the fixed mirror of
the interferometer, The detailed mechanism for achieving this is

dealt with in chapter 4,

3.2) Complex index of refraction
The transmission of infra red radiation through a medium
and its behaviour at the interface bhetween two media is

explained by Maxwell's field equations., These equations are

o
o

curl £ = - §2 (3.1)

Curl I =J +92 (3.2)
Y

divB =0 (3.3)

divp = (3.4)

where E is the electric field, B the magnetic induction, I “the
magnetic field and D the electric displacement, J and
P represent the current and charge densities, respectively,

The response of the conduction electrons to the electric field is

given by Ohm's law

J = CE . - (3.5)
where g~ is the electrical conductivity. The constitutive relation
between the electric displacement D in terms of the dielectric
permittivity of vacuum £, and polarization P which represents the

electric dipole moment per unit volume is given as

—

D = EOE + P . (3.6)

Now the dielectric susceptibility or the polarizability, x{ can be
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defined by

2 = (€& - &) E (3.7
= X&E (3.8)
where
- £ '
X = & 1 (3.9)

In the case of an isotropic medium the quantity >{ is a scalar,
having the same value for any direction of the applied electric
field, but for an anisotropic medium the mapnitude of the
polarization varies with the direction of the applied field.

If we now consider a homogeneous electrically Aneutral
medium, then the charge density € =0, and therefore we can

rewrite (3.1-3.4) as

: 21

Curl E = —pMMe -—— , (3.10)
25

Curlll = GE + &Eo—g'{' (3.11)

div I =0 (3.12)

divD =0 (3.13)

taking the curl of (3.10) and applying (2z11) we get __«

Curl Curl E =-pMMo €& 'aa + M pho T (3.14)

|
o |im

therefore V"E = MMo E& 'éa__ + pMfMe ol ac (3.15)
- t> 2t

Thus by eliminating the magnetic field vector from Maxwell's
equations we have deduced the wave equation of the electric field
vector E. A solution of (3, 15) can be written as

E = §° exp i(K-r - wt) (3,16)

where w 1is the angular frequency of the radiation ard K is the
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wave vector, of magnitude |K| = 2T/n, whereX is the wave
length of the radiation, and r is a vector. If we consider a
simple example of a wave travelling in the positive z direction,

then we have a plane wave

s exp 1(Kz - wt) 3.17)

which 1is the solution of a second order differential equation,

i.e,
2 s =
?__E_ = Mito E€o 3_5.%} + MM & _B—E__ (3.18)
22* at

Thus, substituting (3.17) in (3.18) then yields the square of K as

A

K* = wipupe (E&+ 1 =) (3.19)
'S . G" \/-

K= wimhots, +,u/u.1-.;,75" (3.2

For free space the wave vector is a real quantity, hence we see
that in a medium the phase velocity of a plane wave propagating
is given as K/w. Also, since we are concerned here with non-
magnetic materials, M =1, llence (3, 20) reduces to

- 1

= €€, + LM
K= witotbsl TJE PNEYS)

We see that in a crystal the phase velocity is modified by the

factor n which is given as
h= (W) K (3.22)

Here n represents the complex refractive index, Substituting
the value of the phase velocity K/w from (3.2) in (3.22)
we have

i
. P
no= cuee + 18] N X
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but since L
c = (l/ue) (.29
therefore (3.23) reduces to
. =
A= (& +1% ) =n 4 ik (3,25)
w g,
A A A
and also n = (&£)* (3. ®)

where n is the real refractive index, k is the extinction
coefficient, and (E) stands for the complex dielectric constant,
By a variety of measurements like reflection and transmission
these quantities are measured in dispersive FTS. By squaring and-

equating real and imaginary parts in (3,26) we get

1 /
n - kK =¢ (3. %a)
173
2rk =gw =& (3. 27)

Thus the real and imaginary parts of the complex dielectric
constant are presented as

A

£ =& 18" (328
and from (3,22 we have |

A A .
n + ik = (¢/w)K K = nmw/c + ikw/c (3, 2m)

By

The effects of absorption due to a mediwum through which the wave
propagates can be determined by putting (3, 2&) into the equation
for a plare wave (3,16).

Hence E = E, exp Ew (nz/c -t)] exp (-kwz/c) (3. 29)

The above equation represents a wave yrogressing in the
direction of the wave vector, i.,e the z direction, ard the term
n/c in the first exponential gives the reciprocal phase velocity

in the z direction, Hence the relative decrease in the amplitude
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of the wave vector per unit length is eip (-kw/c). The damping,
of course, is due to absorption of elecfromagnetic radiation in
the medium,

Since the energy in the wave at a given point is proportional
to | E|t then the energy varies with distance as exp(-2kw/c).
Hence  2kw/c is the power absorption coefficient per unit length

within the medium and is normally written as

ol = 2kw/c = 4Tk/x = 4T kV (3.30)

where X\ is the wavelength and V is given in wave numbers.

3,3) Fresnel's relations

When electromagnetic radiation passes from a medium of
complex refractive index ﬁ‘ (in our case vacuum ) to one of
complex refractive index %1 the change in the electric and
magnetic fields is continuous and takes place within a thin
transmission layer at the boundary. Hence to satisfy the law of
conservation of energy we have to apply thz above mentioned

boundary conditions. —

Thus the most general form of Fresnel's relations using
these boundary conditions can be given for the components of the
reflected and transmitted waves in terms of the complex index of

¢

refraction of the two media as [ Born and Wolf 1970 ]

. ﬁ,coth - ﬁzcosei
m = = - - (3.31)

ncosB, + n,cosOi

R ﬁ\cosei - %lcoset
. = (3.32)

ﬁ‘cosB; + h,cos 0,
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A 2n, cos 01

n‘cosﬁt + nzcoseg

A 2n,cos 01
t, = ' —~ (3.34)
n cosbi + n1c059£

In Eqs (3.31-3.34), each wave is resolved into components
parallel (denoted by Il ) and perpendicular (subscript A ) to the
plane of incidence, and t and T are the amplitude
transmission and amplitude reflection coefficients, respectively,
Here . and D¢ refer to the angles of incidence and of refraction
or transmission, respectively.

For normal incidence we have Ot =0, and consequently 94_ =0.
Also, if we consider medium 1 to be vacuum then n, =1, and

therefore the above set of relations reduces to

A A A A A
T = r,= T, = 71,= (T -n,)/(1 + n ) (3.35)
A » A A IN
and t = t,=t, =t = 2/(1 +n,) (3.36)

Hence for normal incidence the distinction between parallel and
prerpendicular components disappears. The sukscript order in the
above relations indicates incidence from medium 1 on to medium 2,

If the order is reversed i.e, now the incidence is from medium 2

onto medium 1, then we have

A A ;
T, = - T (3.37)
A A A

and tyy = n,t (3.3%)

.

A more suitable form of (3.35-36) which provides the
attenuation and phase terms, can be given in the exponential

form i.e

A Y 4
T, = Tnexpf, ' (3.39)

The equation above represents the complex attenuation of an
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electric field vector on suffering reflection at the interface,
and the amplitude attenuation ard phase shift are given by
quantities like Yyaand q?:respectively.

If we mw comider normal incidence then the power
reflection coefficient can be obtained from (3.35) by using the
relation n = n + ik, and dropping tﬂe subscript on n we have

A

. =1
=7, exp@,= [1 -(n+ ik)] [1 + (n+ ik)] (3.40.)

'3 iz

Now equating real ard imaginary parts in (3.40) then yields

(1 -5 - k)] [ms 1) + )]

T cos

(2%) [(n+ 1)+ k‘)]" (3. 41)

r,, sing
Hence from (3. 41) we have

tang = (2k) [(n* + X' - 1)]" (3. 2)
also r* = {1 - n e @ e e ey

Considering mnow the limiting behaviour of the absorption
index, we can derive the relation for the change in phase which

takes place due to reflection from transparent and 6§aque media

for normal incidence from vacuum

2 -1
Thus lim @, = 1lim  tan [ (2k)/(n*- 1)] (3. 44)
K=o k=0
.Y . -
ard  lim @ = lim tan [2/K] (3. 45)
K — c0 K- oo )

Since the refractive index is chosen to be greater than
r
unity for the medium, thereforetk)is of the order of T radians,

For an opaque medium the result is very wuseful in dispersive
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reflection measurements, where we compare the complex reflectiv-
ity of the unknown substance (in this case a solid) under study
with that of a reference silvered surface, since for the silvered
"

surface the phase Cé‘ is normally TV radians.

Before we derive the exact form of the power transmission
coefficient it is to be borne in mind that while the power

A

reflectivity of the interface is'ﬁ: , the quantity t:gs not the
power transmission coefficient. The correct form of the power
transmission coefficient is given by the expression

P S
t, =1 -1 (3.46)

12
Thus following the process of deriving the amplitude
reflection coefficient we can write the amplitude transmission

coefficient irn complex form as

A i .ot

t,. = tuexp@, (3.47)
Thus from (3.47) we have

tan @

vhere  to, = [[ 4{(1 + n)*- (k)"]/[(l s e (k) ]‘]’ (3.49)

represents the power transmission coefficient,

(-k)/(n +1)
tan ' [ (-k)/(n + 1)] (3.48)

3.4) The interface effects of a plane parallel specimen

.

When a plane EM wave of wavenumbervis propagated through a
medium of refractive index n(v), and ahsorption index k then its
amplitude is attenuated according to exp [ - (V) x], vhere
o€=4TVk , and its phase is shifted by a facto:-[ZTTUn(\J) x],
where x 1is the distance through which the radiation travels in

the medium, The combined efects of these two quantities can be
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represented in terms of a complex quantity called the complex

propagation factor of the medium represented as

2= exp [-o(x/,_] exp [ 21invx] (3.50)
A= exp [2TiV nx] (3.51)

Here A 1is the complex pronagation factor within the medium
and is given in terms of the comnlex refractive index ;.

If we assume that the medium is hounded hetween two paral-
lel planes, as shown in fipg (3.2), i.e, at x=0 and x=d, then part
of the incident radiation is reflected from the surface at x=0,
i.e, at the first boundary and the rest of it passes through the
medium and suffers attenuation in amplitude and phase at the
second houndary i.e, at x=d, as described abecve. Part of this
penetrates the second boundary but a fraction is reflected back
to the first where partial transmission and reflection again
take place. This phenomenon repeats, leadine to a mltiply
reflected beam within the medium. The direct beam suffers TeFie-
ction losses at the houndaries in addition to attenuation within
the medium, and similar losses are suffered bv the multinly
reflected beam, with the consequence that it becnmes“ wvenker as
the number of reflections and transits of the léver increases.
The emerging components hecome correspondingly wealer, Therefore
the resultant transmitted amplitude is the sum of the direct

transmitted bheam and the multiply reflected heoms,

Let us now consider a heam of radiation of unit amplitude

[¢]

LY
incident on a plane parallel specimen of refractive index n,(i.
medium 2), surrounded by medium 1 of refractive index n,

(generally vacuum). As we have described above, the incident
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radia tion suffers multiple intermal reflectior at the interfaces,
and the .resultant electric field amplitude which is the sum of
the reflected and transmitted partial waves, as seen in fig

(3.2), can be given as

» .s-'4-‘

A P A '3 A A
Tia= t, a, te a3, V2 t,t b, a2, T2 Eus (2.52
A A A A2 A Ao 23 A .
(kS = r\'l- + tn- a:.‘vntu*' tn_a'n. Tl\ tz\+ (';“rg,)
Fqua tion (3.52 can also be written as
wm 2o
A~ a A 7y am
TI‘A- tn-tu a, ( a, ) (3.54)
m-=o

Then, since from Fresnel's relations, i.e, (3. 37-28 we have

1] A c
Lv5° T, (3.55)
equa tion (3.54) reluces t
LY A2 A
Tl\ = (1 - r‘\_) az b1\'3- (3’56)
In this equation taty, = (1 -7 (3. 57

gives the fractior of the complex amplitude remaining after
boundary reflection losses from the direct beam and
A W =00 A A
My = z a;,*u ) (3.58)
MAz o
gives the relation for multiple reflections for fm>1). In (3.52)
A A
and (3.53) quarntities like r, and r,, represent the complex
IS A
amplitude reflection factor anl t,, and t,, represent the
complex transmisson factor, and a is the tomplex propagation
factor for a distance equal to the thickness of the specimen.
Relations (3, R-53) are the most useful form of the complex
transmission and reflection coefficients of a plane parallel

specimen, and are widely used ir dispersive FTS and FTS,

In dispersive FTS the phase sensitivity of the interferome-
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te resolves the contritution of each partial wave given in
Eqs(3.52-53). Thus the first term in relation (3.52) is the
single pass transmission coefficient and the first term in (3. 53)
represents the front surface reflection coefficient of the
specimen, For thick specimens, since the signatures in the
recorded interferogram are well separated, therefore for thre
determination of the optical constants only the first term in
(3.52 1is needdl, On the other hand, for the determination of
the optical constants of thin specimens the contribution of all
partial waves is to be taken into account, Therefore we car

rewrite (3.5%53), after taking the sum of all the partial waves,

as
A A3
';- a‘, (1 - r]}) (-4 q(\)
1 = Ax Al Pl
(1 -a, rn.)
A A
A r, (1 - a,)
- 2
Rl\-- a2 Aq ("60)
a - a r.)

The full applicatior of the above equations is discussed in the

following section.

% 5 Relation between the interferogram and spectrum for

dispersive FTS.

Before deriving the relation hetween the interferopram anl
the spectrum it is essential to introduce a complex quantity
termed the complex insertion loss, because this is the factor
which is measured in dispersive FTS. Chamberlain (1972) has
investigated the role of the complex insertion loss in dispersive
FTS using an elementary wave theory aproach. lle defines the

complex insertion loss,



AL(v) = LV) exp i £V (3.61)
as the ratio of the complex propagation of the specimen to the
corresponding factor for a vacuum or reference surface, We will
derive the relation between ?,(v) and the optical constants later
in this chapter.

In order to determine the optical properties of a given
crystal we will assume that our specimen is placed in the fixed
mirror arm of the Michelson interferometer as shown in fig (2 1c)
ard that the law of linear superposition holds, and also that the
electric fields are real functions, .

The essential expression for the electric field propagating

in a Michelson Fourier spectrometer in a vacuum can he given in

terms of a Fourier integral as

+°0

[_?=JE°(v) exp [RTiVz<ct)] dv (3.62)

Zeo
(Rirch and Parker 1979), where E, (V) is the amplitude, zis a
coordinate in the directon of propagation and t is time, Thus if
this electric field is propagated in the moving mirror,arm, and
the mirror is displaced ty a distance x/2 from its optical zero

pa th position, then the output from that arm canr he written as

+%

’1:"' = S go(v) exp RTiv(z+ x - ct)] dv (3.63)

-0

If we row consider a specimen of complex insertior loss 1(\:) as
defined by (3.61) placed in the fixed mirror arm, then the

rodified output beam can be given as
+00

‘;, =-(. rf:° (V) L(¥) exp i[2T (z - ct) +&M+ R dv  (3.64)
£
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llere %(Wis a residual phase difference corresponding to a small

error in the path difference

i.e Pv) = 2TTVE, (V) (2.65)
This phase difference can arise due to lack of symmetry in the
interferometer caused by imperfect aligmment, or it can he caused
if we ignore the effects of compensa ting windows, which are
employed in the interferometer,

Mow invoking the law of lirear superposition the resultant
electric field amplitude, which is the sum of the amplitudes from
the two arms of the interferometer propagating towards the

det ector, is
*ﬂ

A A
= B+ E_ = xg(\’a x)exp [ i2WV (z - ct)] 4V

—.1)

Y
(3.66)

where g(v, x) = f?.‘ (v) [L(VY) exp i gva exp (2MeVx)  (3.67)

and P = p® + G W (3.68)

The intensity reaching the detector is proportional to ¢ (V, x)

*
g(v, x), where * indicates the complex conjugate.

-

>
Therefore I(x) = Slg(v, x)l dv (3.69)

-0

+%0 .
=i lE,on] 1+ L(M™] dv

+ ZJ\E, (V)IzL(\’) cos [ W) - 2TVy] AV
Y

The first term in (3.69) is constant and is independent of the
displacement, whereas the second term is the interference fun-

ction. Therefore, the information on the spectrum is provided hy

48



the varying part of the interference function, i.e, the cosine
term and hence, using a trigonometric identity it can be written

as the sum of two parts i.e, even and odd

4°°

I, (x) = Swe(\)) os ¢ (V) cos (27Tv x) dV

o0

+ (R sing () sin (2Tvx) av (3.70)
-~

The factor @ (V) in the equation akove stands for 2 lF., (v)[z L{v)
and it is the factor which represents the tramsmitted power

spectrum. Taking the sine and cosine transform of I, (x) we have

*Qﬂ
P = JI 0 os (2 dx= Py) ws¢p V) (3.71)
400
qP) = {Is(x) sin (2TVx)dx = P(¥) sing (V) (3.72)
O
Hence the spectrum is given as
SOV) =p(W) +1iqW) = €(V) exp if (V) (2.73)
% 2 .‘-
with a modulus PV = [p (W + qVv) 1> (2.7

Thus fror (3.71) ard (3.72) we chtain the phase as

o) = ta’ [ q(v/ p) ] RS

Now using relation (3.61), and with (3.68) and (3.70-73), we can
relate the complex insertion loss to the complex Fourier tran-

sform of - the interferogam :
400

"A
i.e, 2 \E, (v)‘ L(V) exp iCPO(V) = SIS(X) exp (i2MVx) dX (3.76)
-

Mow the special case of the background interferogram with the

specimen absent is included in the above treatment by replacing

I (x) by
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460
I, (x) - = Xe,,m cos [H (™ -
-0

where AC)

2MVx ] dv

2 JEowm|

The cosine and sine transforms of (3.77) then yield

*Qﬂ
PO(V) = SL(X) cos (2TV x) dx
o
+ 00
q, () =SL&) sin (2TVY x) dx
~0b

Therefore the bhackground spectrum

Se(v) = n () +idq, (V)

llere S (V) 1is a complex quantity

6, )

and a phaseﬁ(\?) tan [ a, (V)/

= fo() cos (V)
=f.(V) sing ™)

is written as

= G)) exp ig (V)

having a modulus

L
[Pa (V) + qFfW 1%

r, (V) 1]

(3.77)

(3.78)

(3.79)

(3.80)

(3.81)

(3.82)

(3.83)

Ideally, q,(V) is zero, so that the computed spectrum S, (V). is

real and I,(x) is even, bhut there is generally a small non-zero

sine transform. Illence we have the

_‘oo

spectrum as

%o ™) = SIo(x) exp (i2T¥x) dx

—00
Thus from (3.79 - 82) we have

+R

2 fzo(v) \Lexp i) = Xro(x) exp (12T x)dx

~od

lHence we can obtain the complex insertion loss from

(3. p4)

(3.85)

(3.76) and

(3.85) as the ratio of two complex Fourier transforms, and it can

be given as

400

1 )

_LI; (x) exp (i2TVx) dx

+00

~00
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(2.86)



FT{ I, =)}
FT{I,(x)}

INCORE

(3.86a)

The simple approach for obtaining the real values of the mantity
L(v) and ¢L(v) is to use sine and cosine Fourier transforms of
the sample and background interferograms. llence using (3.71) and

(3.72), and (3.81 - 82), respectively, we get

% ~- .‘-‘-‘ 1SS > -y;,
L [p W) +a(M 1:[p, (M +q,(» 1 (3.5

ant P ) tan' [qM)/p(V] - tan [q, (V)/p, (W] (3.86c)

Thus using the above two quantities we can obtain the complex

refractive index, as shown in the following section.
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3.6) Determination of optical constants by reflection

A suitable method for the determination of the optical
constants of highly absorbing solids is by measuring their front
surface complex amplitude reflection coefficient (Bell 1966). We
can obtain the simplest relation for reflection from a single
surface of the crystal provided we consider normal incidence.

In a Michelson interferometer the measurement at normal
incidence is possible since the radiation after reflection from
the front surface of the sample may return to the beam divider

along the same path as that of the incident radiation.

In practice it is necessary to record first the bhackpround
interferopram I4 (x) i.e, no sample in the heam, and then to
obtain the interferogram Ig(x) with the sample replacing the
mirror in the fixed mirror of the spectrometer, as illustrated
in fig (3.3). It is necessary, however, for the end mirror to be
accurately replaced in position by the sample so that there will
be no unknown shift in the position of zero optical path
difference in the interferometer. Since the sample is highly
absorbing only the first term in (3.53) describing amplitude
reflectivity is taken into account. Hence the amplitude reflec-
tivity of the mirror can be represented as

r @) =1, exp id (V) (3.872)

where 71, (V) is the modulus, and QQ (v) is the phase for a plane
mirror which is a very good conductor and therefore ?z (v) =W

and r (v =1, Hence

>

we (V) = exp iTw (3.87h)

52



The amplitude reflectivity of the specimen can be written as
A
r(V) = 1, (V) exp i (V) (3.87¢)

The grand maxima i.e, the bright fringes of the two interferogr-
ams I, (x) and I, (x) will be at nearly the same position of the
moving mirror because the phase delay $, (V) of rthe specimen
lies between T and 2T, Thus one can record both interferograms
from the same starting point., Hence, the phase spectrum is
calculated by choosing the starting point as reference.
Therefore the complex insertion loss of the specimen in .reflec-

tion measurcments is obtained from (3.87) as
r
L W) = 1™ exp i[€ ) -T] (3.88)

Hence for normal incidence, the complex refractive index in
terms of the complex amplitude reflection coefficient as des-

cribed in (3.55) is obtained as

. 1 - )]
nw) = , (3.89)
1 + (V]

Thus by substituting the values of complex n and * From (325)

and (3.40), and equating real and imaginary parts we finally

arrive at the values of n and k as

nOW) = [1-r1o (W J/[1+2r M cos®, (V) + r )] (3.8%)

kW) = =[2r, (V) sing (M]/[1 +2r. () cosd (V) + 1, (M] (3.89h)

Thus we are able to compute the complex refractive index of a
sample by measuring its front surface complex amplitude

reflectivity.
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3.7) Sinrgle pass transmission measurement on thick and thin
specimens,

In order to study the relation between the complex
insertion loss of a specimen and its complex transmission coeffi-
cient in terms of its complex refractive index it is beneficial
to look into the procedure by which measurements are performed.
The normal method is that at first the background interferogram
I,(x), and then the specimen interferogram Ig (x) 1is recorded.
Suppose that the interferogram without the specimen, T,(x) is
recorded with wings of equal optical path length (x), symmetrica-
11y about optical zero path position, so that the total optical
path 1length is 2x, If we now put the sample in the heam of the
fixed mirror arm and record the samnle interferopramn Tg (x) of
optical path length similar to that of the backeround i.e, 2x,
then the bright fringe of the specimen interferopram is shifted
by 2D = (n - 1)d, (3.90a)
as 1illustrated in fig (3.3), where d is the thickness of the
sample and n is the average refractive index for material of
nearly constant refractive index,

For computational advantages we define 2D as the optical
path difference between the origin and the position of grand
maximum, i.e, gis the shift on the moving micrometer scale of the
starting point of Ig(x) from that of I (x), as shown in fig
(3.3). In dispersive FTS it is useful to designate the sampling
point nearest the zero crossing at the center of the
interferogram as the origin for both background and specimen,

These points are indicated as x_, and x, in fig (3.3).
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If the specimen on which we are performing measurements is
thick enough, then the signatures associated with each partial
beam will be well separated on the recorded sample
interferogram, Hence the optical constants can be completely
determined by recording the first signature.

Thus for single pass transmission measurements, since d is
taken as the thickness of the specimen and ﬁ(v) i; its complex
refractive index, then the optical path in the sample 1is the
product ﬁ(1))d and the phase in the sample is given as
211xJ;|(v)d. If the measurement is performed in such a way that
oni; the main specimen interference signature I (x) is recorded
then we can obtain the complex transmission coefficient by
employing only the first transmitted partial beam given by
relation (3.52). Thus by using (3.36), (3.38), and (3.51) we can
wvrite (3,52) as follows :

A

t (V) = t (v) expif(V) (3.90)

) 4n (V)
t (V) = - exp [i2MV n(v) d] (3.91)
L+ 1>

Also the complex ratio in terms of the complex insertion loss is

given as A .
L) =1][FTIg(x)]/[FTI. (x)] (3.92)
A ! !
where L'(V) = L(¥) exp i4l(V) . (3,93)

The complex ratio given above, determined from the complex
transform of the two interferograms can he obtained by equating
the complex insertion loss to the transmission coefficient of
(3.90), by including the large phase shift 4TV D associated

with the specimen, which causes a large displacement of the
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starting point of the two interferograms. Hence after including
this lar;.;e phase factor, the complex insertion loss is written in
terms of experimentally mcasured quantit'ies as

A ' '
L(VM=L () expilf (v) +4mVD] (3.94)
llence the relation between the complex transmission coefficient
and the complex insertion loss of the specimen can he given

in terms of the complex refractive index as

T =10 exp (-i2TVd) (3.95)

4n W)
= - exp i2mV[n(v) - 1]d
(r + nv I*

For highly dispersive substances the principle value of the
phase difference between two complex spectra i.e, ‘b,__ must
therefore be replaced hy ¢‘_' + 2mT , where m can take the values
0, 1, 2,.0e0.. llere the factor 2Tnm is used to ensure continuity
in ¢:_ when the computed values of ¢: change branches., As an
illustration , the phase and amplitude spectra for sinple npass
transmission coefficients for CsI arc shown in fig (&.§). Tt can
be seen from fig (6.4) that ¢L'(v) approaches zero at low freauen-
cies, so that m=0 on this branch, and hence the remraining
branches have order m=1,2,3,......... Thus for a srecimen where
n(vV) 1is large compared to K(V) the values of n § k éan be
obtained from (3,94 - 95), and therefore

[¢:_())) + 4TIVD + 2mTT ]

n(\)) =1 + (3.96)
[27Vd ]
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and 2
k () = [1/72wvd] In[ 4 n)/ [1 +n M]LM™]  (3.97)
After having calculated the absorption index it can be related to

the absorption coefficient by the relation
K = 4Tk (3.98)

From above we see that the transmission measurements are
much simplified when a sample is taken which is many wavelengths

thick and there is still measurable radiation passing through it,

.

However, when the specimen used in transmission measure-
ments is very thin the signaturcs associated with all the
transmitted partial waves piven by (3.52) will overlan on the
sample interferogram, and it is then necessarv to use the full
series given hy (3.52). The geometric sum of this series is given

as

A A -

Ty = (0 - T2ya 101 - & %] (3.99)

Therefore using (3.35) and (3.38) one can give the complex
insertion loss as

. 2 exp i2T(n - 1)v d
L(v) = [4n/(1 + n)" ]

1 -0 (@ -n)/Q+n))%exp i4TVnd

(3.100)
where the complex insertion loss is related to the complex
transmission amplitude by (3.90 - 3.93). Since these measure-
ments are usually done close to the reststrahlen band, where the
dispersion in the refractive index is  hipgh, there are many

branches in the phase spectrum which makes it difficult to trace
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the phase continuously to zero frequency. Ilence some other
source of information like an amplitude reflection mesurement is
needed to ensure the absolute value of the phase at low frequen-
cies,

Since the equation for L(V) cannot be solved analytically
for the refractive index, it must be solved numerically at each
frequency by wusing an iterative procedure such as the secant
method described by Conte and de Boor (1972). This procelure
needs an initial estimate of the refractive index at some point
on the spectrum, and starting values for n at the first spectral
point above and below the reststrahlen band can be obtained from
(3.96), or from a supplementary amplitude reflection measurement,
The final values of n at these points are used as the starting
values at the adjacent spectral pints, and the process continues
until n(v) and k(V) have been determined within the experimental

uncertainty throughout the spectrum.
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CHAPTER 4

INTERFEROMETERS

4,1) Introduction

In this chapter we describe Michelson interferometers used
for obtaining data by dispersive single pass transmission and
amplitude reflection measurements on solids,

For performing measurements within the reststrahlen region
a dispersive reflection interferometer was used and this is
descrited in detail, anl for performing low temperature measure-
ments a cryostat ‘tuilt in this laboratory was used. The method
exploited for exposing the aluminized and uraluminized specimen
surface and for recording the background and specimen interfero-
prams, respectively, is also discussed in detail here,

For dispersive single pass transmission measurements on
solids a Martin-Puplett typc interferometer has been designed hy
Parker “at el (1978) to permit measurements at normal incidence
in the temperature range of 77 - 300K, This interferometer 1is
modified to work as a polarizing interferometer hy rep}acing the
mylar beam divider with a free-standing wire grid beam snlitter,
and by introducing a polariser amd analvser in apnronriate posi-
tions in the interfecrometer.

The essential accessories to the interferomcter like heanm
dividers and detectors, etc, and problems related with the inter-
ferometers are dealt with here,

At the end of this chapter a rew focused bheanm
interferancter designed in this laboratory is described. This

instrument allows measurements to he performed on specimens as
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small as 5mm in diameter. The performance of this interferometer

is assessed by recording a water vapour spectrum,

4.2) Dispersive single pass transmission spectromrmeter

The basic design of the single pass transmission spec -
traneter used for our measurements is il Justrated in fig (4.1).
The heart of the interferometer is the central cube, having a
slot at 45 degrees at its center and capable of holding a Mylar
beam divider stretched on a metallic frame. The ports in the
four vertical faces of the cube allow four extensions to be
bolted on to the cube., These four extensions contain the sour-
ce, the sample or the fixed mirror, the moving mirror, and the
detector housing.

The radiation source is a high pressure Mercury arc
lamp (Philips 125-1IPK), having a fused quartz envelope. The larp
is surroundel by a copper cylinder having a hole of 7mm diame-
ter centered on the optical axis of the spectrometer in o;der
to limit the aperture. The whole unit is mounted in a water
cooled jacket which helps to keep the instrument near amhient
temperature by removing the excess heat developed éuring the
operation of the lamp. The radiation from the source is made
incident on the beam divider by the use of a collimator unit
which consists of a parabolic mirror and  a plane mirror.

So far the set up of our instrument is similar to that of
an NPL/Grubb Parsons modular interferometer. Beyond this,
however, a large number of modifications have been carried out
at Westfield College. For single pass dispersive transmission

measurements the instrument was desipgned to permit a plane



parallel specimen to be inserted near the fixed mirror via a
vacuum feedthrough system. The crystal can be easily taken out
of the beam without disturbing the vacuum of the instrument for
recording the background interferogram.

In order to achieve single pass transmission through the
specimen, we have connected additional units which displace the
collimator and detector optics laterally by 12.7mm in opposite
directions with  respect to the optic axis through the central
cube, For restoring the continuity of the optical path between
the source and the detector we installed roof-top mirrors in
both the arms of the interferometer., In order to perform low
temperature measurements a cold finger (dewar) was installed in
the fixed mirror arm, The specimen could be inserted using
a movahle copper mount, as illustrated in fig (4.2). This copper
mount holding the specimen is connected to the hase of the liquid
nitrogen cold finger with the help of a copper braid to provide
good thermal contact. By using this method the specimen can be
cooled down close to the nitrogen temperature, and the specimen
can easily be taken in and out of the beam as desired,

In the movable mirror arm the roof-top mirror is provided
with a special micrometer alignment system which is capable of
sliding the mirror up and down perpendicular to the’ontic axis.
The whole assembly is mounted on a steppiﬁg micrometer which is
driven by an electric motor. The stepping motor and its related
electronics system allows the roof-top mirror assembly to move in
either direction i.e, reverse or forward, in steps of 2500,

5000, 7500, or 10000nm, respectively., The step size is chosen in

accordance with the spectral limit allowed by the beam divider
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response to aQoid over lapping of the spectra, as discussed in
chapter 2, The maximum displacement from the white light position
for two-sided operation is 25mm in optical path, This corres-
ponds to a theoretical resolution of O.ACH| when triangu-

lar apodization and the Rayleigh criterion are applied.

The radiation, after being divided at the beam splitter,
reaches the moving mirror via a plane mirror mounted on a vibra-
tor held at 45 degrees to the optic axis. This vibrator unit
provides phase modulation, i.e, the path difference is modulated
by small periodic displacements of the mirror mounted on the
vibrator. This vibrator unit is powered by an oscillator, and-the
frequency of oscillation of the vibrator can be varied in
accordance with the detector response time. In the case of a
Golay cell the maximum efficiency can be obtained by modulating
the signal at 11 Hertz, which is the manufacturer's recommended
frequency. The subject of modulation is discussed in detail la;er

in this chapter,

After reflection of the radiation from the moving mirror

-

and transmission through the specimen and reflection from the
fixed mirror, the two beams are incident back on to the beam
divider where they recombine and interfere according to the
diffe{ence in the optical path in the éwo mirror arms, and the
phase delay introduced by the specimen. The recombined beam is
then finally focused either ty using reflecting optics, using a
design which is very close to a Pfund system, or by using a high
density polyethylene 1lens doublet, We have used toth these

systems fa different freQuency regions, Using the alove optical
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setup the hbeam is finally focused on to the detector.

Besides the ahove setup, in order to improve the performan-
ce of the interferometer, we made provision for the optical
stability of the instrument to be closely controlled. The tempe-
rature of the whole instrument was stahilised to bhetter than
+0.1K, This was achieved by circulating water from a commercial
temperature controller through copper coils attached to the
outside of each module of the system and then passing it through
a radiator., The water is kept at a temperature a few degrees
above room temperature by a thermostatic heater incorporated in
the circulator. Also an extra hooster circulator was coupled to
the circulating system to achieve better temperature stzbility of
the instrument. The circulating system was necessary én ensure
mechanical stability in the lengths of the tw arms of the inter-
ferometer, since slight instability will produce nhase errors
in the computed spectra. llence it is necessary to stabilise -the
temperature of the system for accurate phase measurements,

As we know, in the far infrared region, if the instrument
is not evacuated to a pressure of ld-‘UDrr, the sample spectra
wiil be degraded due to high absorption by water vapair present
in the system. This pressure was obtained by connecting the
instrument to a rotary vacuum purp. At low temperature i.e,liquid
nitrogen, the small amount of moisture present in the system may
cause icing up on the specimen, and this my have serious
effects on the phase spectrum. In order to prevent this, the
system was mounted on a diffusion pump attached to the central

cube i.e, the base of the beam divider module and the interfero-
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meter can be evacuated to a pressure of 16G torr.

4,3) Polarizing interferometer

The main problem with a conventional interferometer is the
performance of its beam divider. Because of the array of minima
associated with dielectric beam dividers the performance of the
interferometer may be effected. Also, if amplitude modulation is
used there is a strong mean level of the interferogram, and anv
variation in this, which may be due to instability in the
instrument will produce spurious features in the computed
spectra. llence in order to improve the throughput energy in the
desired spectral range, one has to use an appropriate thickness
of the dielectric beam divider. As the response of these beam
dividers varies with thickness, by using a thick beam divider
the low frequency response of the interferometer can be improved,
but on the other hand the high frequency response will bhe very
poor, and for a thin beam divider the process is reversed., lence
in order to cover a large spectral range, a number of heam divi-
ders of different thicknesses are needed.

In ornier to improve the performance of the interferometer,
a method of interferometric spectrometry depending on free
standing wire grid beam dividers was developed by Martin and
Puplett [1970] which allows operation over a wide range of
spectral frequency without strong variations in efficiency. The
high frequency cut off wavenumber of wire grid beam dividers is
approximately equal to 1/2d cﬁ‘, where d is the spacing between

two adjacent wires. The efficiency of a polarizing interferometer
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is far better than that of a conventional interferometer in the
sense that a polarizing interferometer equipped with a wire grid
heam splitter eliminates the internal reflection problems asso-
ciated with dielectric beam dividers.

The polarizing action of the interferometer 1is briefly
given as follows, The radiation from the source is first
polarized by the polarizer Pl, as illustrated in fig(4.3a), such
that the electric vector is inclined at 45 deprees to the vertical
direction, The polarized beam is then incident on the free
standing wire grid beam divider where it is partially transmitted
with horizontal polarization towards the moving mirror arm and
partially reflected with vertical polarization towards the fixed
mirror arm. The roof-top mirror at the end of each arm behaves
as a rotator for the polarisation vector of the incoming
radiation. lence the electric vector of the radiation moving
towards the fixed~arm roof-top mirror will be flipped by. 20
degrees, and on encountering thc beam divider the second t;me
will be completely transmitted, whereas the radiation from the
moving mirror arm will now be reflected on returning tq the bheam
divider, The beam then passes through the analvser P2, The
resultant intensities with the analyser Pl parallel and perpend-

icular to the polarizer P2 can be given as

In = (I,/2)[1+cosA] (4.1)

I+ = (I,/2)[l-cosa], (4.2)
respectively, (Martin and Puplett 1970),
where @ =2TMYx, llere x is the path difference, V, is the frequen

-cy of a monochromatic source in wavenumbers, and I, is the
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intensity of the plane polarized radiation incident on the beanm
divider. Both the outputs are modulated as the moving mirror
scans and the resulting interferogram can be uscd to obtain
spectra. We can obtain the difference signal bv alternating the

orientation of analyser or nolarizer, and this is given as

I - T =1 cos2Wyx (4.3)
llence by modulating the polarization of the radiation the outnut
will oscillate about a true zero, as in the case of phase
modulation. This modulation is in some wavs similar to amplitude
modulation, hut the large d.c backeround which is nresent in

amplitude modulation is eliminated,

The desipn of our single nass transmission interferomecter
as shown in fig (4.3a) is similar to that of a MMartin and Puplett
polarizine interferometer., Thercfore our instrument can be easily
adapted to the polarizing mode. In order to do this we renlace
the Mylar beam divider with a free standing wire grid heam split
-ter made out of 10 micron thick tungsten wire, with spacing 'd!
of 25 microns bhetween consecutive wires, which givés a high
frequency 1imit of 200 cﬁ‘ . The winding technique for making
these wire grids and their spectral respense is given in detail
by Costley et al (1977) and leunen et al (1981). Together with
the bheam divider, two more wire grids were introduced i,e, a
nolarizer and an analyser. The polarizer was nlaced in the beam
inlet port, vwhereas the analyser was fixed between the heam
divider and condensing optics at the detector end,

In order to modulate the radiation, instead of having fixed

polarizer we mounted the polarizer on a rotating cvlinder which
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was driven by an electric motor, as shown in fig(4.3b). The
frequency of modulation was varied in accordance with the
detector requirements by simply changing the size of the rotating
pulley which is connected to the motor. The polarizer is mounted
on the rotating cylinder and is coupled to the pulley with the
help of a rubber belt. Thus using this technique we have done
measurements as low as 10 cﬁd , using a quartz Golay, and with a
liquid helium cooled bolometer down to 3 cﬁ*, but due to improper
function of the holometer the low frequency spectrum was loaded

with fringes.

4.4) Dispersive reflection interferometer

A wide range of techniques have been developed at Westfield
College for measuring the optical constants of solids by
dispersive reflection spectroscopy. The common feature of the
instruments developed for amplitude reflection spectroscopv has
been the elimnation of the need for the precise mechanical
replacenent of the reference mirror by the specimen. In the
method developed in this laboratory by Parker at al [1976] the
need for the precise replacement of the reflecting surface is
avoided by aluminizing part of the sample surface, The
fundamental design of our reflection spectrometer is similar to
that of a phase modulated NPL/Gruth Parsons modular
interferometer, and the design of our instrument is illustrated
schematically in fig (4.4), and the instrument consists of two
sections i.e, the interferometer and the cryostat,

The radiation from a high pressure mercury source MS passes
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through the collimator C and then through a 1,3mm thick black
polyethylene " filter F, The reason for using the filter in the
inlet port is that, being a good mid-infrared absorber, it will
attenuate frequencies above 500 cﬁ‘,i.e, it will absorb a fair
amount of undesired radiation which would otherwise increase the
boiling rate of liquid helium held in the cryostat, In other
words it helps to increase the hold time of the cryostat. The
radiation after passing through the filter F is incident on a
6.25 micron beam splitter BS where it is partially transmitted
and partially reflected into the two arms as usual,

The reflected beam then propagates through a 1.5mm thick
white polyethylene vacuum window VI which isolates the vacuum
system of the fixed mirror arm from the rest of the instrument.
The radiation then falls on to the mirror IM which is inclined at
45 degrees to it, This mirror was made by aluminising the front
surface of a 12.5 micron thick sheet of Mylar stretched on a
metallic frame., Radiation, after being reflected from the
front surface of the mirror IM travels vertically upward and
encounters the specimen S in the fixed mirror _arm of the
instrument. The specimen S is attached to the base of the liquid
helium can of the cryostat, details of which are shown in
fig (4.5). The radiation is then reflected bhack at normal
incidence from the sample towards the beam divider,

The radiation in the moving mirror arm, after first being
transmitted through the beam divider, passes through a white
polyethylene compensating window C¥ similar in thickness to VW
on to a plane vibrating mirror VM mounted on a vibrator which is

held at 45 degrees to the incoming beam, Finally the beam encou-
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nters the moving mirror MM which is of 6cm diameter and is coup-
led to the non rotating shaft of a micrometer. The spindle
passes through a vacuum seal, and the micrometer is driven by the
stepping motor.

The beams returning from the two arms of the interferometer
recombine at the beam divider. The combined beam is then focused

by two low density polyethylene lenses PD, on to the detector D.

The cube assembly on the right, with IM held across its
diagonal, has its upper port bolted to the base of the cryostat
through a high vacuum coupling, and the lowef end of the cube is
similarly attached to a diffusion pump. Thus the fixed mirror
assembly together with the cryostat can be evacuated to a pres-
sure of ldﬂtorr, which allows the specimen to be cooled down to
liquid helium temperatures without any icing up problems. The
rest of the instrument on the left of the window V¥ could be
evacuated to a pressure of 152-torr with the help of a rota;y

pump, which is good enough to remove any water vapour traces

present in the instrument.

N

For sensing the temperature of the specimen fwo carbon
resistors of the order of 12K Ohms were calibrated at 300, 77,
and 4K, The variation of resistance, R, with temperature, T,
is given by the Clement and Quinell (Thor éryogenics Ltd) three

.

term relation i.e,

logR  + (K/logR) = A + (B/T) (4.4)

where A, B and K are constants,

After calibration, one of the resistors was connected to the hase
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of the liquid helium can and the other to the specimen mount, In
order to stabilise the temperature of the instrument the same
technique was wused as described in the dispersive transmission
instrument,

The cryostat used here was designed by Parker and Lowndes
(1979), and their publication describes all thé engineering
details. The principle features of the cryostat are shown in
fig (4.5). The sample was fixed to the base plate of the 1liquid

helium can as a complete unit as shown in fip (4,5). The sample

.

mount is shown in vertical cross-section in fig (4.5a).

The major problem facing dispersive reflection snectroscopy
(Johnson et al 1969, Berg et al 1971 , Zwick et al 1977) has
always hecen the accuracy with which the phase can be measured,
due to an apparent need for the physical replacement of a refe-
rence mirror with the sample. Parker and Chambers (1974), (1975),
(1976), recognised that the solution to this problem was to
metallise part of the sample surface,

To wuse this technique the crystal was first worked to an
optical flatness of the order of 0,1 micron on its reflecting
surface, Then the crystal was attached with the unpolished sur-
face to the copper base with the help ofla small spot of 1low
temperature adhesive (G.E varnish cc-155). The polished surface
of the specimen was then aluminised in four sections as éhown in
fig (4.6a). This aluminised surface then provides a reference
surface which eliminates phase and amplitude errors obtained with
sample-reference mirror interchanging. The copper plate holding

this aluminised specimen was then bolted on to the base of the
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liquid helium can with three equally spaced aligning screws and
stainless steel springs, These screws were specially made of
copper to provide good thermal contact.

We have used a switching mask similar to that described by
Staal and Eldridge (1977). The mask was placed in front of the
specimen and the crystal was accurately aligned parallel to a
mirror fixed on the hase of the cryostat, This mirror was used
only for the purpose of alignment which was carried out with the
aid of a laser by adjusting the aligning screws.

* " The switching mask was made out of a thin sheet of
aluminium and was operated by two solenoids, and the screen
peometry and solenoid mount are illustrated in figs (4.6h) and
(4.6c) respectively. This mechanism works at all temmeratures in
the range 4-300k. In its extreme positions the screen exnoses
either the aluminised part of the specimen or the uncoated
specimen to the incoming radiation. The operating power needed
for switchinpg the screen at 300; 77, and 4 K, is 200, 10, and
1 mW respectively,

When the screen is operated in the switching mode the mask
alternately exposes the aluminised surface and the sample surface
at each step of the moving mirror. The screen can also be
operated in the conventional mode, in which the corplete interfe-
rogram 1is recorded initially from the aluminised surface of the
specimen and then from the exposed surface during independent
scans of the moving mirror.

The major disadvantage of this technique is the restriction
on the specimen size, since one has to aluminise part of the

front surface of the specimen. Consequently it requires .speci-
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mens of large diameter. We have proposed a new type of interfe-
rometer design which allows the performance of dispersive
reflection measurements on  specimens as small as Smm in diame-
ter, which is 10 times smaller than that used in the above
technique. The details of the new instrument are given at the

end of this chapter.
4,5) Accessories for the interferometers

A) Beam dividers

One of the major factors which impose z restriction on the
spectral range in Michelson interferometers is the performance of
Mylar beam dividers. At low frequencies the output from a black
body source like a mercury arc lamp is very low and in addition
to this the throughput of the instrument drops rapidly due to a
rapid fall in the beam splitter efficiency to less than 1/5-~ of
its maximum value, Because of this we used wire grid beam divi-

ders. Thus the operational frequency of the interferometer

LN

depends upon the choice of beam divider,

As we have extensively used Mylar for beam dividers to
cover the frequency range from 30 to 500 cm it is desirable to
discuss its behaviour in the interferometér.

'Let us consider an interferometer in which a bheam of unit
amplitude is incident upon a beam splitter held at 45" to the
incoming beam, and let the proportion of the incident beam trans-

mitted by the beam divider be T and that reflected be R, Then the

incident radiation at the bheam divider splits into four parts
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having relative intensities TR, RT, R* T%* where TR and RT
interfere to give the interferogram whereas R“and T'return to the

source, If we assume that there is no absorption, i.e,

>

R* +RT + T* =(R + T) = 1 (4.5)
then the amount of usable radiation is 2RT=2R(1-R), and the
maximum of 2RT occurs for R = T = 0,5, Thus the maxirum efficien-
cy of a perfect Michelson interferometer is 50%. In practice,
however, transmittance and reflectance are not usually equal to
0.5 and there is also absorption in the beam divider. Further-
more, mul tiple reflections take place within the bheam divider
itself (Chamberlain and Chantry 1966)I, and its behaviour is
strongly dependent on its thickness,

As a result of multiple reflections the efficiency varies
with frequency fraom zero to (2RT). Illowever only the primary
trarsmitted and primary aml sccondary reflected heams are imor-
tant, because the primary transmitted heam contains 83% of ghe
incident flux, whereas the rimry aml secondary reflected heams
contain 8,9 amnl 7.4% of the incident intensity, respectively
(Bell 1972). The mylar film loses reflectivity when "tbe optical

path difference is an integral mltiple of wave 1lengths.

Theref o e one can write the condition for interference as

ra = A [n* - 1/2]%. ' (4.6)
(Rell i972), where d is the thickness of the dielectric film and
n its index of refraction. The condition for interference depends
on the values of m. For constructive interference m=1/2
y 3/2,5/2,.00 ... and for destructive interference the values of

mare m=0, 1, 2, 3, .ciseevess . For alldielectric heam
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splitters the efficiency is dictated by relation (4.6), and is
zero if V = 1/x= 0, since one of the reflected beams has a phase
shift of 77T with respect to the other., Hence they interfere
destructively, One can obtain other minima by choosing integral
multiple values of A in eq(4.6), In fig(4.7) the first order
interference fringes are shown for varying thicknesses of mylar
beam divider. It is clear from fig(4.7) that to ohtain a good
signal over a considerable spectral range a number of bheam
dividers are needed.

The polarizing effects of an interferometer due to the
mylar beam divider can also be given, If we consider a heam of
unpolarized radiation incident upon a dielectric bheam splitter,
the reflected and transmitted heams are partially polarized and
their polarization depends upon the angle of incidence. The value
of the Brewster angle for mylar of refractive index 1,75, at
which the beam is 100% polarized is obtained by the relation
tan = n . Therefore the Brewster angle is ~ 60, Since b-eam
dividers are commonly wused at an angle of incidence of 45?
principly for ease of construction, it follows that the emergent

beam is partially polarised.

B) Infrared detectors
The detector which was most used in our measurements was
the well known Golay cell, except for low frequency measurements

for which we utilized a liquid helium cooled germanium holometer,

For thermal detectors like a Golay cell the intrinsic

response time i.e, the speed with which they respond to changes
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in the incoming signal is about 50 ms, The Colay cell is sensi-
tive throughout the whole infrared region, and works by the
cxpansion of an inert gas heated hy the incoming radiation. The
inert gas is contained in a small cell, one wall of which is a
flexible membrane which distorts under pressure, and the siernal
is obtained from the deflection of a lipght beam reflected off it.

The spectral response of a thermal detector is determined
mainly by its window. Thus for frequencies helow 250 CE' a folav
cell with a quartz window is used, whereas a diamond window
Golay has no upper frequency cut off in the  infrared, heing
transparent up to and beyond 10,000 c;\. The major advantage of a
Golay cell is that it operates at amhient tempzrature.

In all dectectors the usecful sensitivity is limited by the
noisc, which 1is normally expressed by setting the minimum
detectable signal power equal to the noise equivalent, This means
that a signal is just detectable when the signal to noise ratio
is unity. Basically there are three main sources of noise wh;ch
cffect the performance of a dctector: fluctuation in the
background radiation and in the lipht source itself, thermal and
clectrical fluctuations in the detector and finallv  the
fluctuation 1in the amplifying circuit, Since the nonise in the
recording electronics varies inversely with the freouency of
modulation, to minimize the noise one wohld like to chop the
sipnal at as hipgh a frequency as possible, but the chopping
frequency 1is limited by the dectector response time, In the case
of a Golay cell the chopping frequency is of the order of 150z,
Thus the disadvantage of a Golay detector is that it has a slow

response time., But on the other hand the resnonse time of a
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liquid helium cooled detector is much faster i.e, of the order of
1Ms, Therefore one can use a high frequency of modulation, and
as a consequence noise in the cooled detector is considerably
reduced.

At low spectral frequencies the output from a bhlack bhody
source like a mercury arc lamp is very low. Tn such a low energy
region, the liquid helium cooled detector has proved to be very
efficient on account of its high sensitivity. Furthermore, since
the detector response time is now much faster one can use freque-
ncies as high as 800 Hz, Typically the noise equivalent power of
a helium cooled detector is 1000 times better than that of a
Golay cell,

To obtain reliahle results at low frequzncies we have used
a liquid helium cooled Antimony doped germanium thermal bolometer
mamifactured by QMC Industrial Research Limited, with a spectral
range of 2 to ZSOCéd. The performance of this detector helowvécﬁ*
is doubtful because in that frequency range it produces snurious
fringes in the computed spectra., Neverthless, its nerformance
bhetween 10 to 250 cg'is excellent, In recent year; rercury
cadmium telluride detectors have come into use, These operate at
77k and have a fast response time and their spectral limits are

400 to 5000 cm'.

C) Signal modulation
Modulation of the signal from the source is essential in
the far infrared region because the power radiated by the source

is proportional to the first power of the temperature
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(Rayleigh Jeans law, Sears and Salinger 1975). Due to the large
acceptance angle of a Golay nose (60 degrees) it receives a
significant amount of radiation from the walls of the
interferometer and other points in the field of view bhesides
radiation from the lamp source. If the temperature of the
surroundings were the same as that of the detector,” then there
would be no net flow of radiation from one t another which would
be an ideal case, which one cannot achieve in practice. Therefore
the signal in the interferometer is always modulated.

: Thus it is common practice to modulate the signal emitted
by the source. Different mcthods of modulating radiation can be
used, The common form of modulation is a rotating chopper
disc,which chops the signal radiated by the source, Chopping of
this type is usually called amplitude madulation, All surfaces
in the interferameter radiate energy according to their
temperature, amd so it is therefore preferable to carry out this
type of modulation just tefore the collimator to discriminate
against ambisnt temperature radiation,

The disadvantage of amplitude modulation (AM) is that a d.c
level 1is carried at the detector together with the signal, tbhe
variatim of which due to instrumental instatilities will produce
spurious features in the resulting spectnam.’Another d isadvantage
of AM is that one half of the total incident power is rejected by
the chopper blades. Thus with AM, in order to achieve a.c
amplification, some signal has to be sacrificed,

An alternate method for modulating radiaton is known as

phase modulation, llere the path difference is modulated by making
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one of the interferometer mirrors execute small oscillations
along a line perpendicular to its surface. In an interferometer
at time 't', if x is the path difference between the two mirror
arms, then with the addition of jitter of one of the mirrors,
i.e, oscillating with small amplitude 'a', and anguar frequency
'w', we have the time dependent displacement caused by jittering
as, x' = x +a sin(wt), 4.7a)
1If we now comsider that the interferometer is irradiated by
moncchromatic radiation of frequency Vothen the phase difference
between the two beams at time t is 2WV,x' and their instanta-
neous resultant is proportional to

P[1 + cosxmVx'], (4.7b)
where P is a measure of the power. Since the constant term is
blocked by the amplifying system the output sipnal is pronortio-

nal to [ PcosZTWaXI]
i,e V(x,t) ~ P cos 2TV, (x + a sin wt) (4.7¢)

This function has time dependent parts which are not simple and
the coefficients of their Fourier components are Bessel func-
tions. Since, however, the only frequencies passed by the narrow
band amplifier of the detecting system are close to f, the resul-
ting output interferogram as given by Martin.[1980], and Chantry

[1971] has the form
I(x) &C P(¥) J, (2Ma) sin(2Myx) dV (4.8)

and for broad band radiation the interferogram function

(%]

will be I(x)och(u) J (2nYa) sin (2nvx) dv (4.9)
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By wusing eq(4.9) the interferogram looks similar to the first
derivative of that obtained by AM, The two situations are
displayed in fig(4.8). The amplitude modulated interferopram is
symmetrical about zero path difference, having a mean background
level of ideally half the value of the grand maximum, whereas the
phase modulated interferogram is antisymmetrical about zero path
position. Since there is no d.c contribution to the signal the
mean level is zero as is clear from the fig(4.8).

From eq(4.8) we observe that phase modulation imposes a
Bessel function envelope on the throughput. The main advantages
of using a phase modulation system are as follows, Firstly the
whole of the radiation is utilized instead of approximately half
when using AM. Secondly, the constant term is unmodulated, so
drift problems are reduced and the noise due to fluctuations in
the source is reduced. Also we get rid of mechanical vibra-
tions associated with the chopper. Finally the Bessel Funcf}on
.Il(ZTYVb a) is frequency dependent and falls to zero at (27 a)
= 3.8, Thus, as a bonus one gets a non absorptive method of
limiting the frequency range of the interferometer‘\since the
Dessel function maximises and minimises at frequencies dictated
by the jitter amplitude ,a, of the vibrating mirror. Therefore by
varying the current through the vibrator with the help of a power
osciliator, the response in the desired spectral range can be

optimised.
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D) Focusing optics

In FTS in the far infrared region, reflecting  and
refracting optics are used to focus the radiation coming from the
source and traversing the interferometer to the detector. The
throughput of the interferometer is dependent on these focusing
optics.

The two optical systems which we have used in our inter-
ferometers are shown in fig(4.9). For refracting optics a high
density polyethylene doublet with a focal length of 50mm was used
whereas the reflecting optics comprises a plane mirror and
spherical mirror of 100mm focal length, The way in which the
reflecting optics is arranged is similar to a Pfund system, The
main features of the two systems are as falows,

The use of reflecting optics instead of refracting optics

increases the throuwhput energy of the interferometer very

considerably since the transmission losses in the polyethylene

lens are removed. Also there is a local immrovement of ttre
-1

signal at 73cm  because of the removal of the absorption due

to a polyethlyene lattice band. Put the advantage of using ref-
lecting optics below 40cm' is very small because below this
frequency the transmission losses in polyethlyene are
regligible.

If we consider the behaviour of refracting optics in an
int erfer oreter equipped with a 12,5 micron heam divider and a
quartz Golay then in a carefully aligned interferometer it is
observed that the detector signal reaches one half the satu-
ration value recormend ed by the manufacturers, Hence if one

uses reflecting optics instead, it will overload the detector,
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and then it becomes necessary to limit the sipnal with additio-
nal filters. In the case of refracting optics, the nolye thvlene
being a mid infrared absorber, besides providing an adecuate
amount of signal, will also help in minimizing the phenomenon of
aliasing associated with the interferometer.

E) Preparation of thin samples

In order to determine the optical constants of alkali
halides 1like CsI and KI  using a dispersive single pass
transmission technique, fairly thin samples of the order of 120
micron in thickness were prepareal in our lahbcratary using the
following method.

The initial size of the alkali halide samples hrought were
of 2nm thickness and 25mm diameter. After lapring and pelishing
one of the surfaces of the sample the prerared surface was
fastmed with paraffin wax to a brass plate with a 20mm diameter
hole at its center, This brass plate was then screwed to  ‘the
inner end surface of a two part cylindrical sample holder for
lapping and polishing the other side of the samnle.

The exterior end surface of the specimen was then used as an
ad justable reference plare, by which the thickness of the lapped
sample was determined. DNuring this preparation the hole was
filled by a disk of brass of the same thickness as that of the
brass plate in order to support the centfal region of the sample,
then the operation had been completed the specimen was retained
on the brass plate so that the danger of cracking the thin sample
was minimized. Since the thickness of the sample should he wni-

form for dispersive transmission spectroscopv, care was talken
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to keep the surfaces parallel, but a variation in the thickness
of a few microns was impossible to avoid, The optically usahle
circular region of the preparel sample was of the order of 20mm

diameter.

4,6) Electronics and data acquisition
The electronic setup for the transmission and reflection
instruments is basically the same. The 1lav out of the

e lectronics is shown in fig(4.10).

The sipnal from the detector first passes to a broad bhand
amplifier, After amplification tlte signal is svnchronously
rec tified by a phase sensitive detector (PSD) where the amplified
signal 1is compared with a reference signal., In order to operate
the PSD a reference voltage is derived from a power oscillator
which drives the phase modulated mirror. The modified output is
then passed through an RC filter of variable time constant, The
a.c noise components which are associated with the resultant
output are not coherent with the reference and the response of
the electronics to moise depends on the time constant of the PSD.
If a long RC time constant is emploved we cannot run the
spectrum too quickly, because by doing so the sharp features will
be blu?red out as the system has not enough time to respond to a
sudden charge. The spectral scan time is chosen so that there is
a minimum of dead time for each spectral point, and this is
selected to provide an adequate signal to noise ratio.

The modified output after passing through tke RC filter,

can then be passed either to a chart recoder or a digital voltme-
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ter (DVM) or to hoth in parallel, as desired, From the DIVM the
signal passes through a frequency counter to which is attached an
external oscillator. The PSD can integrate the signal from a
specific interferogram point for effectively 3Xec, lsec, 200msec,
or 100msec., The DVM frequency counter is triggered by an external
oscillator and counts the pulses for a time interval proportional
to the input sipnal, The infeormation is then collected on a paper
tape.

The trigger elec tronics used in our svstem was designed and
built at Westfield collepge. The complete cvcle of stepping and
sampling is derived from the trigger electronic urit, At first
the moving mirror is stepped and then after a short time delay
the signal to the PSP rises exponentially under the action of the
RC filter. After this pre-fixed delay the frequency counter is
triggered, the signal is then sampled for a finite reproducible
time set hy the external oscillator and the data is punched on
the paper trpe. The process is repeated after a short delay and
is continuei wurtil the full interferogram is recorded on the
paper tape. Manual control was also provided in the system to
allow a quick check of the interferogram and to set the position
of the starting point for recording the interferopram, Once the
data is recorded on the paper tape it is submitted to thre [I'LCC

ChC M6000 or M6600 computer for Fourier transformation.

4,7) Focused beam interferometer

We have seen that in the dispersive reflection spectrometer
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the minimum sample diameter needed to carry out measurements is
of the order of 40 mm, Since most samples of this size are very
costly we decided to modify the optical arrangement of the spec-
trometer to try to accommodate smaller specirens,

The rmvel features of this new Michelson type dispersive
reflection interferometer are as follows, Firstly, now one can do
measurements on samples as small as 5mm in diameter by using a
focused beam in both arms of the interferometer. Cecondly, very
few optical components are employed to obtain the focused beam in
each arm, as compared to that of Gast and Genzel (1973) who emp-
loyed a much more complicated system,

The optical lay out of the interferometer is schematically
illistrated in fig(4.11). Collimated radiation from a mercury
source is incident on a rylar beam divider, which is held
vertically along the diaponal of the central cube of the interf-
eraneter. The radiation after splitting at the beam snlitter PS
is then propagated into the two arms of the interferometer. %he
beam in the fixed mirror arm is first reflected from the nlain
mirror PM and is focused on to the sample or fixed mirror by a
parabolic mirror P1, whereas the heam in tre moving mirror arm
of the interferometer is first reflected by a vibrating mirror
VW anl is focused on to the moving mirro; M4 by the marabolic
mirro; P2, anl the interferometer is scanned hy moving the
mirror MM,

The two beams then pass from their respective arms to the
beam divid er once again, and the recombined heam is then focused
on to the detector. In the moving miror arm a special mirrar

holda was made so that it could be mounted on the vibrator and
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wsed as part of the focusing optics in that arm. The paratolic
mirrors weré of 200mm focal length, and were taken from commer-
cially available collimator units made for the NPL/Grubb Parsons
interferometer, It is better to use parabolic mirrors of short
focal length in both arms, since the slort focal 1length will
relwce the optical path length of both the arms, and hence reduce
the noise factor in the recorded signal,

The alignment system used with this instrument is the
same as that of the original reflection spectrometer, and needs
to be improved for this system, and so is the technique of sample
replacenent, Because of the smaller siz of the specimen the
technique of aluminizing part of the speciren cannot bhe used
here., The temperature of the interferometer was stabilized to
better than % 0.1K using the same technique as described ear-
lier, and the instrument was connected to a rotary pump to eva-

-
cuate it to better than 10 torr.

Results of prototype interferometer

As a performance test and as a demonstration of the range
of applicability, due a to lack of time, only a water vapour
absorption spectrum together with a background spectrum are pre-
sented here. In order t record the background interferggram with
mirrors in two arms of the interferometer, the system was
evacuated to 16' torr to remove all water vapour present in the

system, Also, to reduce the size of the mirrors in each arm an

87



aperture 9f 5mm diameter was introduced, .

The interferometer was equipped with a quartz Golay and a
12,5 micron beam divider. After recording the background spec-
trum , as shown in fig(4.12), to record a water vapour absorption
spectrum air was let into the system and the interferogram was
then recorded. Thus the ratioof the Fourier transforms of the
two interferograms gives the water vapour absorption spectrum
which is illustrated in fig(4.13). The lines indicated are listed
in a table of wave length standards by Narahari et al (1966).
The spectrum was computed from a double sided interferogram of
1000 steps of 2500nm each on each side of the position of zero
path difference, This 1is equivalent to 2 cm theoretical
resolution, The water vapour interferogram recorded from the
unevacuated interferometer is presented in fig(4.14),

From the results presented ahove it is clear that with this
design, the interferometer works satisfactorily, but that it

needs further attention to obtain better quality measurements,

and to provide low temperature facilities,
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Fig(4.4) A sctematic representation of the reflection interferometer
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Fig(4.6) Screen and crystal geometry \
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CHAPTER 5

FAR INFRARED OPTICAL PROPERTIES OF SOLIDS

5.1) Introduction

The theory presented in this chapter is concerned primarily
with the far infrared optical properties of diatomic cubic
crystals associated with atomic vibrations,

To start with we consider the familiar photon-phonon
interaction in an ionic lattice within the harmonic approxima-
tion, and have derived the LST relation, and dispersion relation
for the simple harmonic oscillator. This model is then extended
by including a frequency dependent damping function as the simple
harmonic  oscillator model is insufficient to explain the
experimental results. Also a review of the effects of
anharmonicity as discussed by Cowley (1963) is given in brief,
and a modified form fér the dielectric response function is given
for interpreting the experimental results.

A brief discussion on infrared selection rules together
with tables for infrared active two-phonon transitions for alkali
halide and III-V compound semiconductors is given here. The
chapter is concluded by describing the Bose-Einstein factor used
in evaluating the temperature dependence of phonon combination
bands,

5.2) Dispersion relation in diatomic crystals

In diatomic cubic crystals the formal solution for the
interaction of electromagnetic radiation with the crystal has

been given by many authors like Born and tuang (1954), Zeeman
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(1960), Donovan and Angress (1971). We will pive here the outline
of the deri?ation of the dispersion relation for far infrared
radiation by cubic crystals.

In a crystal with N atoms per unit cell the angular
frequency w is a multi-valued function of the wave vector q, and
has 3N branches for w, (q)—20 as q-=>0 which are known as
acoustic branches, In an acoustic mode at wave vector q~0 the N
atoms move in the same direction with the same amplitude., The
remaining 3(N - 1) branches have non-zero values of w, (@) at
long wavelength, i.e, the frequencies do not vanish in the low
frequency 1limit and they are called optical modes. Ilence for
diatomic crystals there are six vibrational branches; threc
acoustic and three optical ; these optical and acoustic branches
are represented by well known w - q plots, i,e, the disnersion
curves., In 1ionic crystals an oscillatory dipole moment 1is
created due to the motion of ions in anti-phase, and this tan
interact directly with the electric field vector of the incident
electromagnetic (EM) radiation. When EM radiation interacts with
a crystal lattice the infrared-active branches are modified due
to the interaction of the radiation with the ions. The
propagation of the FEM wave and the lattice waves is not
independent, and the modified wave is the combination of EM and
mechanical vibrations [ Rorn and lluang (1954)].

The salient features of the phenomenological theory of
infra red dispersion in ionic crystals given by Rorn and Huang

are given below, Since our studies are limited to diatomic cubic

crystals, henceforth we shall consider only this case, For such



crystals the equation of motion can be described in terms of a
macroscopic electric field E and the relative displacement of two
ions in a unit cell. The equation of motion and the polarization

can be written as (Born and Haung 1954) :

‘—"_ = h"."'_.' + b“-F; , (5-1)
Poen o bR (5.2)

where in these equations

-
M Cu, - )

W

(5.3)

(M, x M_)/( M, + M) (5.4)

and M .

is the reduced mass of the ions, V is the volume of the unit
cell, and (U, - U_ ) is the relative displacement of the ions in
a unit cell. In the ahove relations P and E are the dielectric
polarization and macroscopic field E, respectively, and the bh's
are scalar coefficients., It can bhe shown that for a cubic diato-
mic lattice by, = h,p as a consequence of the principle of
conservation of energv. The abhove equations of motion are valid
only if W, P, and E vary negligibly as compared to the lattice
constant,

Since the interatomic forces in a crystal are usually
strongly dependent on the interatomic spacing the lattice
potential energy of a crystal can be written as a power series in
the displacements of the atoms from their equilibrium positions,
If such an expression is terminated at the quadratic term, then

this constitutes the so-called harmonic approximation, i.e,
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Vo= SUs e SU o+ SU (5.4a)

In the harmonic approximation the lattice vihrations are
trne normal modes such that if energy is channeled uniquely into
any one lattice mode, then it will remain undissipated in that
mode, The harmonic approximation would therefore predict, for
example, that the spectral profiles of lattice vibrations would
be a set of undamped temperature independent resonances.

I'e can solve the above sets of relations in thé harmonic
approximation, by using Maxwell's equations and assuming that

¥, E, and P vary with time as
(!}'.E._P) = (Wy,F,P ) exp i(wt) . (5.5)

Then, using (5.5), equations (5.1) and (5.2) reduce to

-wtlW = by + b, E (5.6)
and P =b,W + b F ; (5.7)

The dielectric polarization and electric field can be defined by

the relation

s

§+ 4vf=[l=£,12 (5.8)
Fliminating W from (5.6) and (5.7) then yields

by by,

P (5.9)

"
—
T
¢
+
-n

Substituting the value of polarization from (5.8) in (5.9) we
can write the dielectric constant as
4Thja bay

£= 1 + 4T h,, + (5.10)
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[quation (5.10) 1is in form similar to the infrared dispersion

formula.
(& - & )‘%T
n*w) = &) = &os (5.11)

E A
Wy - W

vhere n(w) is the refractive index for an optical wave of freque-

ncy w and E(w) is the corresponding dielectric constant, £ and

’

€0 are the limiting high frequency and static dielectric
constants, respectively, and w, is the infrared dispersion fre-

quency, 1i.e, the frequency at which the conductivity G‘=.J;£f,
| 2

reaches its maximum, The scalar coefficients can now be obtained

A

by comparing the dispersion relation (5.11) with (5.10), i.e,

by = - W (5.12)
| Y
bia = by = [ (& -€«)/4T ] w, (5.13)
and by = (€0 - 1)/4T (5.14)

Equations (5.1) and (5.2) can be solved simultaneouslv using
Maxwell's equations. If we assume that ", E, P, and the asso-

ciated magnetic field II all vary as exp [i(k-r - wt)], then we

have
ke (E+4TP) = 0 (5.15)
k-H=0 (5. 16)
k x E= (w/c)H o (5.17)
k xH=- (wc) [ E+ 4P (5.18)

We notice here that E cannot be zero, for if F were to vanish,
which implies from (5.17) that H also vanishes, then from (5.18)
it is obvious that P is also zero and so is 1. Thus F=0 leads to

[=l1=P=W=0, From (5.9) and (5.15) we ohtain,
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(k*E)§1 + 4Thye 4T by by, }=° (5,19)

(-by - wr)

This equation allows two alternate possibilities :

(A) Longitudinal waves

1 + 4T bay + =0 (5-20)
- b“ - wl

On account of (5.9) , (5.20) implies also that

E + 4T7P =0 (5.21)

Thus in this case (5.18) reduces to

kxll=0 (5,22)

This requires that either !l is parallel to k or vanishes, but on
the other hand from (5.16) 1! is either perpendicular to k or
vanishes, Thus in this case H=0, and therefore (5.17) reduces
to ‘

k x E =0 * (5.22a)
As E does not vanish it must be marallel to k. TFurthermore V,
P, mst also be mrallel to k, as is clear from (5;15:(5.2) and
(5.9). Thus, in this case yllfllgllg , Which specifies longitu-
dinal waves. The frequency of the longitudinal mode which we
denote by w is then given by the solution of (5.20) as

N 4Th,, ba,

w o= - b,y+ = w:' (5.23)
1 + 4Tbaa

Substituting the values of the scalar coefficients from (5.12 =

14) in (5.23) we have
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> Eeo
w'_ = [E-] W‘:' (5.24)

which is tﬂe well known Lyddane-Sachs-Teller (LST) relation
(Lyddare et al 191)., Now we consider the second case i.e,
B) Transverse waves

If k*E =0 and E is non zero, then E nusf be perpendicu-
lar to k, and it follows from (5.17) that %k, E, and H form a
right-handedA orthoponal system of vectors and their scalar

magnitudes are related as follows :

kE = [w/c]H (5.25)

llence (5.17) reduces to the scalar relation
¥ =(/c)[ E + 4TP] (5.26)
Eliminating } from (5.25) and (5.26) we have
[ x* c*/wHE = E + 4P (5.27)
Now eliminating H and P by using (5.9), (5.27) reduces‘to
47Th 2 by,

(ke/w)™ = 1 + 4Thy,+ (5.28)
-b\\ - W" g

Since E cannot vanish, once it is specified, W and P are fully
determined by (5.6) and (5.9). To summarise, all the solutions
in (B) are transverse, mnamely ¥, (EQ[LE i B, B are all
rmutually perpendicular, For a given wave number k  (5.28)
produces two solutions, fince k and -k are both permitted
within the systenm, there are four independent transverse
vibrational modes corresponding to two doubly degenerate frequen-

cies. Thus, putting in the values of the scalar constants, and
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as the refractive index is the ratio of the velocity of light to

the phase velocity, the wave equation (5,28) reduces to

(Eo - &) Wo
no(w) = Ew) = £ 4 . ’ (5,29)
W, = w*

From (5.29) we see that €(w) rises from its static value Eo as
w  increases, becomes infinite when w reaches the disnersion
frequency i.,e, w = w, , and then negative for w infinitesima-
1ly greater than w, and renains negative until becoming zero for

the frequency satisfying the relation

(& -€x0) Wo
0 - Ew . e, (5.2%)

(Wa - w5)

the solution of which is w = (&/&o)“i w, . The dielectric
constant  is therefcre negative between the limits w, < w< w
This implies that the refractive index is imaginary, The crvstal
is therefore rerfectly reflecting i.e, the power reflectivity
approaches unity between the transverse ontic rode (TN} and
longitudinal  optic mde (LO) frequencies., This selective
reflection of radiation in the neighbourhood of the optical mode
frequencies in an ionic crystal is known as reststrahlen refle-

ction,

5.3) Damping in cubic crystals.

The above treatment is of course unrealistic in the sense
that no damping term is present in (5.1), since we know from
experience that the TO resonance in diatomic cubic crystals is

very broad, i.e, the observed reflectivity in this region does
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not agree quantitatively with the above case of a harmonic crys-
tal, The effect of damping is to make N real everyvhere, but it
is nevertheless very smll between the TO and LN mde freouen-
cies.

Tn a real crystal, however, anharmonic effects are nresent
and these lead to energy dissipation within the crystal, These
effects cannot be fully accounted for by the phenomenological
introduction of a frequency independent term in the equation of
motion giQen by (5.1). Henée the modified equation of rmotion can

be written as
B o= by W =YW + b E (5.30)

where Y is positive with the dimension of frequencv. If we use

the periodic solution
(v, E) = (v, ,Fo) exp i(wt) N (5.302)
then we can write (5.30) as
a
- W B’ = (b“ + iWT) ‘_‘_’ + b)a F (5.31)

Thus by comparing this equation with the undamped Eq(5.1), we
reach the conclusion that the addition of a damping term is
similar to replacing the scalar coefficiént with the term (Bn
+iwF ). Hence the new dispersion formula can be given as
(& - &0) Vo
Ew) = Eo (5.32)

b N -
wg'- wo o= iwT

In a real crystal the damping may be :freauency derendent
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and complex and this may give rise to additional structure, Thus
under the harmonic approximation this frequency independent model
fails to account for detailed structure in the measured infra red
spectra (Hisano et al 1972), For most alkali halide materials
the variation in ﬁv below the TO mode freauency is  small,
butl}n increases and changes significantly in the LO frequency
range, To account for detailed interactions between the normal
modes one has to include the higher order terms in the potential
function in (5.4a), which are normally known as the anharmonic

terms 1i.e
EY 3
V. o= ¢Up + S"U +jzl-l + fsU - - (5.32a)

The inclusion of the anharmonic terms in the lattice
potential has two consequences, Firstly, the phenomenon of
thermal expansion is now allowed, and secondly, the anharmonicity
allows interactons between the normal modes, The net effects of
these interactions is to open up channels for the decay of pho-
nons which lead to changes in the phonon enerpgies tgggther with
the appearance of finite life times for the phonons ( Maradudin
and Fein 1962, Cowley 1963).

Theoretical and experimental studies of the effects of
anharrmonicity on various physical properties have been carried
out by many authors; in particular Cowley (1963), and Wallis et
al (1966), Since the theory of the dielectric response of
anharmonic crytals has been given in detail by Cowley, we will
only quote the requisite results here., The frequency dependent

dielectric susceptibility X( (W) for a crystal bossessing cubic
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symmetry, and using the first order dipole moment and including

the contribution from anharmonicity can be given as

z
2w (0§) Mg (o)

w*(03) - w* + 2u(0§) [A (0§,w) - iT(0f,w)

JZQ(W) = (1/Nvh)

(5.33)
[Cowley (1963)]

lHlere v is the volume of a unit cell, N is the number of unit
cells in the crystal, w is the angular frequency of the radiation
field, w(oj) is the angular frequency of a phonon mode, in the
harmonic approximation, belonging to wave vector q=0 and branch
index j, and M, (0j) is the oC (cartesian) component of the
coefficient of the leading term in the expansion of the cryvstal
dipole moment operator in a power series of the phonon field
operator., The terms A (oj,w) and I'(oj,w) are the real and
imaginary parts of the self - enerpgy of the TO phonon, The real

part of the self-energy can be written as the sum of two parts
. X £ . A .
i.c, A (oj,w) = A(oj) + A (oi,w) (5.33a)

where ASF(oj) is a frequency - independent contribution which

N

arises from the thermal expansion of the crystal, and Zf%oj,w)
is frequency dependent, and arises purely from anharmonic
interactions in the crystal,

The lowest order expressions for & (oj,w) and IV (oj,w)
which arise from thermal expansion and cubic anharmonicity of
the lattice have been derived by Cowley (1963) , and Maradudin
and Fein (1962). We reproduce below the dielectric suscentibility
and self energy functions which they used in their calculations,

Also we will present here the modified expression of these
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quantities in terms of experimentally measured quantities.

The expression for the frequency - dependent dielectric
susceptibility is given in (5.33), whereas the Hermitian 1i,e,
real part of the frequency dependent self energv can be written
as (Cowley 1963),.

2

allm = - (a8/8) F  |vCoei, a5, 0 i) re
3,4,
s 2
and T (0j,w) =+ (8T/A) = {V(oi, qi,aj)| s
t‘]))a_

{(5.34) and (5.35) resnectivelv,

~1 ) -3
wvhere R(w) = (n, + n, + D[ (w + LA w% + (v, = w o+w) ]'7

-1

-1
+ (n)_ - n\) ‘:(u" - W W )]’ + (w‘ - W 4w )P]
(5.36)
and S(w) = (n, + n_+ 1)[8&(w =+ W= W) - S(w‘ *wo+ w) ]

+ (n‘ - n2 ({,(w‘ - Wy, + W) -S(W‘ - W - w)l
(5.37) -
llere S(w) is a function of temperature and wave numher resnulting
from the transition probahilities fer phonon creation and des -
truction, and the conservation of enerpgy between the initial
phonon state and final two-phonon state., The first mnart in
(5.37) describes the summation process where two nvhonons are
creatcd and the second part presents the difference nrocess in
which one phonon is created and another destroved,

In (5.36) and (5.37) w =w(qj ), and n (q j) 1is the

occupation number for the mode (q i ), and is given as

-1
no=nqi) = exp [(hw (i) /KT -1 (5.389)



where w(qj) is the frequency of the mode in the harmonic
approximation, T is the absolute temperature and Kp is
Roltzmann's constant, The summations in (5.34) and (5.35) extend
over all phonon modes of the crystal, Also V(oj,q‘j‘, qzﬁ;) is
the cubic coupling coefficient that connects the three modes
(03), (q‘jl), and (quL), via cubic anharmonicity of the lattice.
An explicit expression for the cubic coupling coefficient is
given by Johnson and Bell (1969) and Berg and Bell(1971).

The modified relation for the dielectric suceptibility can
also be written in terms of experimentally measured quantities as
shown below. The frequency dependent dielectric constant can be
written in terms of the dielcctric susceptibility as function of

frequency Y which is here given in wave numbers:

A
E = &+ X (V) (5.39)
Thercfore, using (5.39),(5.33) can he written as

. (1/8h) [ 2V (0§) M. (o7)
Ew) = €@+ — - « ]
[Vloi) - Vs 2V(0i) [A(0j) - iT(oi,M1]

(5.40)

For zero frequency (5.39) and (5.40) reduce to -
K0 = &y o Ele0) (5.41)
X, (0) = 2 M: (0j)/ N v h¥V(0j) (5.42)

Thus using (5.41) and (5.42), FEq(5.40) can be written as

. [E®) - £69) ] V(i) (5.43)
E®) = Efo) + —m — -
V(0j) - V™+ 2V (0§) [A(0j,V) -iT (0j V)]
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The real and imaginary parts of the anharmonic self-energy of the

TO mode can be obtained from (5.332) and (5.43)as

/ +
A 05 N) = (1/2) Vi) [(E () - EENNO) - 1] + [V7(0i)]
- A&%06H) (5.44)

' (03,9) = - (1/2)V (0j)[E(0) - €6 1 M W) (5.45)

where () = [0 - £69) MMEWD - £60) T+EMT (5.46)

174
N W)

-EMAE W) -E @)+ EW (5.47)

The full frequency dependence of the above functions can than be
ecvaluated from the real and imaginary parts of the dielectric

constant measured directly by dispersive FTS,
2.4) Selection rules

The mechanism of the interaction of clectromagnetic ra-
diation with phonons in a polar crystal which causes additional
features besides the fundamental resonance has been discussed
by Klienman (1960) and Cowley(1963). These side bands are
created due to the anharmonic part of the potential energy
associated with the lattice vibrations. This kind of interaction
is due to the presecnce of a dipole moment associated with polar
crystals.,

On the other hand in the case of homopolar cubic crystals,
because of the centre of inversion symmetry (diamond structure)
the displacement of two identical atoms for an optic mode at wave
vector q=0 produces no coupling because of the zero dipole

moment. Thus the anharmonic mechanism will be inoperative in
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these cases, Lax and Burstein (1955) have shown that the absor-

ption in such.crystals is due to the direct interaction of two or

more phonons with the radiation through terms in the electric

moment of second or higher order in the atomic displacement, The

order of term corresponds to the number of phonons involved., Lax

and Burstein also suggested that the second order terms in the

electric moment may be observed as the result of one vibrational
mode inducing charges on the atoms while the second vibrational

mode causes these charges to vibrate, thus producing an electric

moment that can couple to the radiation field,

Regardless of the coupling mechanism between the radiation
field and the phonons, the selection rules for the interaction
of EM radiation with the crystal vibrations are based on the
requirements of conservation of energy and momentum and the need
for a dipole moment.

If we assume that fw and k are the energy and wave vector
of the absorbed photon and q is the wave vector of the created

or destroyed phonon of frequency w(q,) then

hw

i‘._ + fiw(q) . (5.48)
and k +# nb= Z# q; (5.49)

where b 1is a reciprocal lattice vector and n is a positive
¢

or negative integer or zero. Since the wave vector k of a photon

in the infrared region is small compared to the phonon wave

vector q over most of the Brillouin zone, (5.60) reduces to

nb =Z+q; (5.49a)
1 9
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For one and two-phonon processes n=0, and for a three-phonon
process n=0, + 1, Here we will only consider up to two-phonon
processes in the final state. In a one-phonon process a photon
from the radiation field is absorbed and a TO phonon is generated
at the center of the Brillouin zone (q~0). Thus from the above

considerations a one- phonon process will have

=
1]

+ w(q) (5.50)

kK = q (5.51)

Since k = 2T/, , where A 10 micron, and \q““\i.e, \q\ at the
zone edge 1is of the order of 1T7a where a 1is the lattice
constant, Fq(5.51) becomes equal to q~0. Near q=0, w(q) can
assume values appropriate to each of the branches, However, only
the TO branch possesses an electric moment capable of coupling to

the radiation field, and therefore

hw@=hw (5.52)

A two-phonon process may take place if there are anharmonic
terms in the potential function or in the series expansion of the
transition moment, For cubic crystals having a center of
inversion (like alkali halides and diamond structure crystals),
the vectors a, and qz.of the two-phonons belong to different
braAches. Hence there are no overtones 2w(q,) in such crystals,
(Szigeti 1960).

Now we will describe the phenomenon of two-phonon absor-

ption, Here we will consider the effects of electric and

potential anharmonicity separately, We have described above the
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effects of electric anharmonicity in terms of the counling of a
photon to two phonons which can be presented schematically as in
fip(5.1). Tn two-phonon optical nrocesses due to the non-linea-
rity of the transition moment the photon from the radiation field
is absorbed by coupling directly with two phonons of freauency

w(q,) and w(q,), leading to a summation band

ﬁ'w(k) =k w(q‘) + ﬁ'w(qzj (5.53)
k = q, *+ q9, ~ 0 (5.54)

If the absorption of a photon of energy h w(k) creates one

phonon and destrovs another the resulting energy is given as

Rw) = Ww) - ¥wy) (5.55)
Noth the summation and difference processes are illustrated in
fip(5.1).

A twe-phonon optical process due to the anharmonicityv of
the potential function is more complicated. l'ere at first 'the
photon w(k) from the radiation field first couples to a TO phonon
of wave vector q~0., This TO phonon serves as an intermediate
(virtual) state, which then couples with the two phonons wiq, )
and w(q,.) leading to summation and difference bands as illus-
trated in fig(5.2). Hence the combination of two phonons should
nive rise to absorption, Illowever, the absorption maxima are
produced due to peaks in the two-phonon density of states,
Therefore any structure in the infrared spectrum as a consequence
reflects structure in the frequency dependence of the combined
density of states of the participating phonons. The regions where

the phonon concentration is larpge in the phonon disnersion curves
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are known as critical points. The singularities corresponding to
the critical points occur where the dispersion curves for the
individual branches are flat, In the case of cubic diamond and
zinc blende structure crystals the relevant critical points are
T, the center of the Brillouin zone, L, the center of a face and
X, the center of a face. The coordinates of these points are
(0,0,0),‘ (1/2,1/2,1/2) and (1,0,0), respectivelv, and the other
major critical points are W, the peak of coordinates, and K
the edge of the =zone, having coordinates (1,1/2,0) and
(3/4,3/4,0), respectively,

The selection rules for the infra red spectra of cryvstals
due to higher order effects have been calculated by Szigeti
(1960) in a lengthy perturbation calculation, the perturbing term
being the anharmonic contribution of the eleétric transition
moment and potential function, Burstein at el (1965) have
obtained the selection rules for alkali halides wusing group
theoretical arguments, In table (5.1) we represent the infra red
active two phonon combinations of alkali halides as calculated by
Burstein,

The selection rules for electric dinole moment allowed two-
phonon processes for the diamond and zinc blende structure were
calculated by Birman (1962, 1963). The two - phonon selection

rules for zinc blende structure crystals are given in table (5.2
5.5) Temperature dependences of two phonon interactions

At any frequency of the incident radiation the temperature
dependence of the absorption spectrum is mainly dependent on the

number of phonons present to take part in the pronosed multipho-
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non process at a given temperature, Since the phonons are bosons
and obey Bose - Finstein statistics, the temperature dependence
of the average excitation (or occupation) number n  of phonons
of angular frequency w at the absolute temperature T 1is given

by Kittel (1967) as

-\
&m) =[lexp (hw/km) -11 (5.56)

where K 1is the Boltzmann constant ., The aquantum mechanical
treatment of the interaction of radiation with a svstem of oscil-
lators gives the expression for the transition nrobahilities of
absorption and emission of one of these nhonons. The probabili-
ties of emission and absorption are proportional to the matrix
clements of the phonon creation a and destruction a opera-
tors respectively. llence the cmission and absorption probabili-
ties are pronortional to (n; + 1), and n,, respectively (Ziman
1960).

The net number of phonons which are created in a two-phonon
summation process is proportional to the difference of
probabilities of creation of two-phonons and destruction of two-
phonons. Thus 1if we assume an absorption band is assigned to a
two phonon process such that the absorption of a photon is
accompanied by the emission of two phonons (i = 1,2 ) obeving
the conservation laws as laid out in (5.48) and (5.49), then the
temperature dependence of the net absorption for the summation

band is proportional to

(1 +n) (1 + nl) -n, n,. =1 + n + n (5.57)
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In order to arrive at the above result we use the fact that the
probability of i wunrelated events occurring topether is given
by the product I U L R R U of the individual probabi-
lities p_ .

In the case of a difference process, if the ahsorption of a
photon results in the creation of one phonon and the destruction
of another then the temperature dependence of the absorption is

proportional to

(1 +n)n, - n\(l +n,) = n, - n, (5.58)

The temperature dependence of a two-phonon summation band can

also be written by using (5.68) and (5.69) as

-1 -\
1o+ [Cexp (K w(q,)/ ¥1) - D1+ [(exn (h w(a,)/¥m - D]
(5.59)
and the expression for the temperature dependence of the strength

of a difference band can similarly be written as

"

(Cow (w7 ¥1 - D] = [Cexn (ua)) / KD -1]

- (5.60)
From (5.59) and (5.60) we observe that the phonon occupation
number of a difference bhand approaches zero as the absolute
temperature tends to zero, vwhereas the expfession for the phonon

occupation number for the summation process remains finite,
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Table (5.1)

INFRARED ACTIVE TWO-P1ONON COMBINATIONS OF ALKALI HALIDES

Symmetry point’ Active combination

r None

X None

L TO + LA, TO + TA,LO + LA, LO + TA

2} TO + LA, TO+ TA,LO+ LA, LO+ TA, TO + LO, TA + LA

After E. Burstein, F. A, Johnson, and R. Loudon, Phys. Rer. 139, A1239 (1965).

Fip(5.1)

Fip(5.2)

These Fipgs: represents two-nhonen processes



Table (5.2)

DiroLE-ALLOWED TWO-PHONON -
PRroCESsES IN ZINC BLENDE AT THE -~
CriticaL Points T, X, L, AND W

r 2LO
LO+TO
2TO

X 2TO -
TO+LO
TO+LA
TO+TA
LO+LA
LO+TA
LA+TA
2TA

L 2TO °
TO+LO
TO+ LA
TO+TA
2LO -
LO+LA
LO+TA
2LA
LA+TA
2TA

W TO,+LO
TO,+10
TO,+LA
TO.+LA
LO+LA

L.O+TA,
LO+TA;
LA+TA,
LA+TA,
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CIIAPTER 6

EXPERTMENTAL RESULTS  AND DTSCHES TN
6.1) Alkali halides

Alkali halide crystals and especially CsI and KI were
chosen for measurements hecause their absorption bands fall in
the optimum repion for the employment of our experimental
techniques, and also because theoretical calculations regarding
the dispersion curves and selection rules were available in the
literature presented by Beairsto and Fldridege (1973), and
Fldridge and Kembry (1973). The theoretical calculations for
the self-cnergies of the a=0 TN phonon modes in alkali halide
crvstals have heen given by several authors, esnecially Cowlev
(1963) and Wallis (1966), and this nrovides a goad onrortunitv to
test the validity of theorectical calculations with our
experimental results,

a) Cesium Jodide, Cst

To detcrmine the optical constants of Cs1 by dispersive
transmission and reflection techniques we used single pass
dispersive transmission and dispersive reflection snectrometers.
Poth the instruments are described in detail in chapter 4,

Pure single crystals of CsI 25mm in diameter and 2mm  thick
for transmission, measurements were purchased from SPFCAC, Since
the alkali halides are very strong absorbers in the far infrared
region extremely thin samples of the order of 100 micron in
thickness were prepared by using the method descriked in chanter
4, After installing the specimen in the interferometer, the

background and sample interferograms were recorded. The ratio of
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the Fourier tfansforms of these two interferoprams provides the
complex iﬁserfion loss 1(0) of the specimen which is related to
the amplitude transmission coefficient and phase, as explained in
chapter 3. The amplitude transmission coefficient and principle
values of the phase spectra so obtained at room temperature and
at 77K are given in fig (6.1) and fip(6.2).

Since the specimen used here is very thin, therefore unlike
a thick specimen, in order to evaluate the optical constants
completely all the transmitted partial waves in the geometric
series of FEq(3.52) were included to ohbtain the single pass
complex transmission coefficient, Thus by using the data of
fig (6.1) and fig (6.2) the values of complex refractive index
were calculated using Fq(3.100). The values of refractive index
n(VY) and absorption index k(V) of CsT determined 1in this wayv
above and below the reststrahlen region at 300K and 77K are eiven
in figs (6.3) and (6.4), respectively,

In the region where the sample was completely opaque 1i.,e,
the reststrahlen band, the measurements were done by the
dispersive reflection technique. A single crystal of €s1 of 40mm
diameter and 6mm in thickness was used., One surface of the
sample was optically polished to a flatness of about +0.1lmicron
and partially aluminised in an evaporator using a geometry and
screen arrangement as described in chapter 4,

The main problem we came across during the studies of
alkali halides, and especially CsI, was the preparation of
samples which were very hygroscopic so that prolonged  exnosure

of the crystal to the air had to be avoided, The prepared
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specimen was fixed on the hase of the cryostat and was aligned
parallel to its base. The cryostat was then installed in the
fixed mirror arm of the interferometer.

The amplitude and phase reflection spectra were determined
by recording the interferogram from the metallized and exposed
parts of the crystal surface by moving a screen in front of the
specimen, and the detailed procedure is described in chapters(3)
and (4).

The amplitude and phase spectra ohtained for CsI at 300,
77, and 12K are given in figs (6.5), (6.6), (6.7), resnectively,
Thus having measured the values of amplitude and phase, the
values of refractive index n(Vv) and abhsorntion index k() were
determined using the Fresnel relations for normal incidence. The
values of n() and k(v) so obtained at 300 and 77K within the
reststrahlen band are given in figs (6.3) and (6.4),
respectively, and for demonstration purposcs the values of the
dielectric constant obtained using Fqs (3.26) and (3.27) for iZK
are presented in fig(6.8). BRetween 60 and 90 cal measurements

were done by amplitude reflection spectroscopy whereas below 60

LN

and above 90 c;‘ measurements were done by dispersive
transmission interferometry, all at a resolution of 2 en!

The values of the transverse optic phonon (TN) and
longitudinal optic phonon frequencies obtained exnerimentallv at
300, 77, and 12K are indicated in figs (6.3), (6.4), (6.8), and
are listed and compared with other results obtained from
different techniques in table (6.1). The value of Vyp occurs

7
where Ef V) =2nk has its maximum and Vio occurs where n(v)’l

k(vj»=0. These values are in good agreement with ~ the results of
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Lowndes and Rastogi (1976) and Lowndes (1970), respectively,

The doﬁinant interaction of infrared radiation in cubic
ionic diatomic crystals is with the T0 1lattice vibrational mode
of the same wave vector q as the incident electromagnetic wave.,
This interaction results in the fundamental absorntion band
characterised by very high absorption and reflection in the
neighhourhood of the TO (q»-O).phonon frequency. Although the
main features of the spectra can be reproduced quite well with a
model of a classical 'simple harmonic oscillator as described in
chapter 5, this model is not capable of explaining the detailed
nature of the spectra., To account for detailed structure in the
spectra one must consider the frequency-dependent damping effects
of the anharmonic parts of the interatomic forces on the
vibrational mode. Theoretical studies of this effect have hecen
carried out by Cowley (1963). We have presented the modified
form of that dielectric response function in chanter 5. Now ™ we
intend to use it for further analysis of all our results.

The frequency dependent damping function (' (oj,y ) at 300,
77, and 12K calculated from the optical constant data of fips
(6.3), (6.4), and (6.8), respectively, using Fq(5.45), is shown
in figs (6.9a), (6.9b), and (6.9c), and the values of £(0) , € ()
and Y (o0j) needed for these calculations were taken from the data
of Lowndes and Martin (1969). As far as the assignment of the
features in the two phonon damping spectra is concerned, in the
case of alkali halide crystals the infrared lattice absorption
bands due to two phonon emission are relatively few in number as

compared to ITI-V compound semiconductors,
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The normal mode frequencies for CsI in the major syvmmetry
directions have been determined using slow neutron inelastic
scattering methods by Buhrer and Halg (1971), Also Beairsto and
Eldridge (1973) have calculated the dispersion curves together
with the selection rules for Csl. The detailed analysis of cubic
anharmonicity carried out hy Beairsto and Fldridge showed that no
two-phonon combinations are allowed at [” or M, wher;as thev have
shown that the main features in the spectrum of [1 (oj,V ) are
expected to arise from two-phonon combinations at the X and R
symmetry points.

The measurements performed by us on CsT apree auite well
both qualitatively and quantitatively with the calculations of
Beairsto and Fldridge. The minor discrepancy in the measured
frequencies in some of the features observed herc in the  two-
phonon  spectra with their calculated spectra are duec to
inaccuracies in their input data as they have indicated in their
publication, We therefore have used the frequencies measured by
Buhrer and Ilalg rather than those calculated by Reairsto and
Eldridge at the X and R symmetry points. The observed features
of  two-phonon summation and difference processes are indicated
in figs (6.3) and (6.9) at 300K. Two summation bands occur above
the TO frequency at 84 and 112 cglwhereas a broad difference band
is observed at 30CF;‘ The correlation bhetween the positions of
the measured features in ['(oj, V), and the spectral distribution
of these combinations is in good agreement with the results of

Beairsto and Eldridge.
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Table (6.1) Summary of CsI Results

- - s G - - > U = e T D P Th N e G e M S R M A e D S A M S e A P S D AS SR Gy e b W e W S - -

Parameters Present Lowndes and Lowndes
in cm™! measurement Rastogi 1976 1970
V10 300K 61.5 62.1 + .3 -
Y10 77K 64.5 65.5 + .3 -
Vro 12K 64.5 65.8 + .3 -
YLO 300K 90,2 - 90.5
YyLo 77k 91,0 - 91,0
Vo 12K 91.2 - 91.5

I'(0j,V) 300K 1,2 + .2 1.3 + .3 -

I (oj,p) 77K 0.8 + .3 0.6 + .3 -

Mloj,p) 12K 0.51+ ,3 0.5 + .2 -

- . S e n S Gm TGP R e D G NS G e G T WS e D R T P R W e = e e = WP = = e
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b) Potassium .Iodide, KI

The optical constants n(¥) and k(V) of pure single crystals
of KI have been determined as a function of frequency using two
Michelson interferometers in the asymmetric mode, The measure-
ments in the reststrahlen region were made on a single crystal of
KI ~ 40mm in diameter and 6mm thick polished to a flatness of
0.1 micron on the reflecting surface by using a reflection
interferometer as described carlier. The values of the extin-
ction coefficient k(V) away from the reststrahlen band are not as
accurate as those determined between the TO and LO frequencies.
This 1is bhecause away from the fundamental the phase hecomes
very small and is difficult to measure accurately bv the
dispersive reflection technique. Therefore the complementary
measurements, 1i.e, the single pass transmission measurements,
were performed on a sample of KI of about 200 micron thickness.

Thus using reflection techniques the measurements wére

-1
performed in the reststrahlen range of 80 to 150 cm , and in the

rest of the frequency range the measurements were done by the

oo\

single pass transmission method. In both cases the measurements
were made at 300 and 200K, and figs (6.10), (6.10a), (6.11) and
(6.11a) show the experimentally measured amplitude reflectance r
and ph§se g& and amplitude transmittance t and phase;{;t 300 and
200K, respectively. The data for amplitude reflectance and
transmittance and phase represent in each case an average of at
least four separate experimental runs with a resolution of 2cﬁq .

The measured values of refractive index and abhsorption

index at 300 and ZOOK‘obtained from the phase and amplitude are
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shown in figs (6.12) and (6.13). The room temperature results
agree very well with those of Berg and Bell (1971). The TO and
L0 mode frequencies at wave vector q=0 are also indicated in figs
(6.12) and (6.13). The values of the TO frequency measured here
(102 + 0.5 at 300K and 105.5+0.5 cm at 200K) are in good
agrecment with the values determined by Lowndes and Rastogi
(1976) from transmission measu;ements on thin films, Also the
values of the LO frequency at these two temperatures determined
in the present work are compared in tabhle (6.2) with the
experimental values obtained by Lowndes (1970) and Rerg and Rell
(1971), and with the calculated values of Fldridge and
Kembry (1973) obtained using the Lyddane-Sachs-Teller relation
in the harmonic approximation. The agrecement between the va-
rious experimental results and the theoretical calculations
with the present measurements is excellent as can be seen in
table (6.2).

The full frequency-dependence of the imaginary part of the
self-energy at 300 and 200K is then calculated by using Fq(5.45)
and the data shown in figs (6.12) and (6.13) respecfiyely, and
the values of the static and high  freauency dielectric
constants were taken from Lowndes and Martin (1969). The results
obtained for " (oj,yY ) at 300 and 200K are shown in fips (6.14)
and (6.15), respectively, and the error bars show the uncertainty
propagated into [ (0oj,V ) at a few selected frequencies from
standard deviations in the measured amplitude and phase spectra.

The assignments proposed here for the frequencies of two
phonon processes, i.,e, the summation and difference bands in KI

at room temperature are numbered in fig (6.14) and are listed in
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table(6.3). These assignments correspond to the most prominent
features 1listed by Eldridge and Kembry (1973) in their tahle 3.
The important factor to note here is that Fldridge and Kembry
derived their phonon frequencies from dispersion curves measured
by Dolling et al (1966) at 90K by inelastic neutron scattering,
All the frequencies in the Brillouin  zone were reduced by
Eldridge and Kembry by 5% in order to approximate the room
temperature dispersion curves, Thus, as the original neutron data
has an experimental uncertainty of the order of 2em! in  each
phonon frequency the uncertainty in the rhonon frequencies
calculated by Eldridge and Kembry is probably at least 4cﬁr{

The agreement between the expected and observed frequencies
of two-phonon processes in KI at 300K listed in table(6.3) is
quite reasonable. From fig (6.14) we also observe that the
overall spectrum of {'(oj,V) agrees quite well with the
calculations of Berg and Rell, rather than with those of Fischer
(1974). It appears that Fischer's self consistent theorv over
estimates the life time of the decaying phonons and as a result
all the critical points appearing in the damping function are
washed out by the line broadening effect. Thus it fails to
reproduce the structure in the spectrum of 1'(oj,) revealed by
this measurement, |

The discrepancy between the measured and calculated values
of " (0j,V ) in the vicinity of the T0 frequency can be accounted
for by including three-phonon damping [Eldridge and Staal
(1977)]1. The temperature dependence of ['(oj, V) is determined by

the occupation number of the phonons created and destroyed in the
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various decay processes as described in section (5.6). We have
listed the - temperature dependence in tahle (6.4) for  those
frequencies which are used in assignments of the summation and
difference bands as calculated by Eldridge and Kembry. As we see,
the intensities of the numbered features in fig (6.14) should
decrease by a factor of between 0.64 and 0.68 between 300 and
200K, The overall temperature dependence of [7(oj,J) obhserved
from fig (6.14) 1is 1in quite reasonahle agreement with the

expected behaviour,
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Table(6.2)

,\' - -
. Comparison nf values of v obtained in the present

work with previous values obtainedLgy (a) Kramers-Kronig anal-
ysis of the reflection spectrum of a single crystal (b) graz-
ing-angle thin film reflectance data (c) DFTS (d) calculation
including cubic anharmonicity and (e) the Lyddane-Sachs-Teller
relationship used in the harmonic approximation

Source 200K 300K
This work 134 128
(a)
Lowndes 1970 KK 134.5 129
Film(b) 134 127
(c)
Berg and Bell 1971 129

Eldridge and Kembry yq73

Anharmonic calculation(d) 128

Lst e’ 140

. A

‘e 143



Tabhle(6.3)

Two-phonon combination bands in KI at_ 300K

Feature - Phonon Combination Expected Observed
assignments frequg&cy frequg&c ,
(cm ™) (em =) !
1 2l(LA)Eu(TO) Difference 28.5 30
Zq Zq . , ko
1
2 L3 L3 Difference 40 . 46
)
, WM, 43.7
Zl(LO)Zu(TA) 60 )
3 Difference 59
' - W 62.3
L Ll' L3 Difference 70.3 72.5
Eq El} 142.5
5 Summation 1u0
L3' L3 142.5
Zl(LA)Zq(TO) 153.9
6 wl wz' Summation 153.9 150
1
1
(L3 +w2 )+(Ll+wl) 153.9
7 Zl(LO)Zq(TA) Summation ' 163.4 161.5
Al Al 171
8 Zl Zl Summation 174,.8 172
]
Ll L3 172.9
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6.2) III-.V Compound Semiconductors.

The far infrared optical properties of several undoped
I1I1-V compound semiconductors of the zinc blend structure were
studied in the reststrahlen region and below the TN frequency

by dispersive reflection spectroscopy.
a) Indium Arsenide, InAs

The amplitude and phase spectra of an undoped InAs crystal
3mm thick and 20 mm in diameter were measured at room temperature
by dispersive reflection spectrometry. These measurements were
done at a resolution of 3 cﬁq, and the random noise level was of
the order of 1% in the whole region of tﬁe scan,

In fig (6.16) we represent the experimentally measured
amplitude reflection coefficient and phase reflection spectra of
InAs within the frequency range 140 to 290cﬁ', which includes

! and the

both the fundamental lattice resonance at about 219cm
onset of free carrier absorption which is amnarent at lower
frequencies from these spectra., The data for the* amplitude
reflection and phase spectra represents an average of several
experimental runs, The complex refractive index obtained wusing
the above set of data is shown in fig(6,17).

The results of the present measurements on InAs are in good
agreement with those by Gast and Genzel(1973), but in this measu=-
rement some side bands which have not previously been observed
are resolved, In order to investipgate this further we calculated

the dielectric response from the complex refractive index, and

/
this is given in fig (6.18). From the real £(V) and imaginary
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é}\’) parts of the dielectric constants we obtained values of the
transverse.optic mode frequency V1o, and longitudinal ontic mode
frequency VLo, from the position of the maximum value of ny)))
and the position where Ef(»ﬂ is zero, respectively, in the
spectra given in fig (6.17). The values of V70 and Vo so
obtained are in good agreement with the published values given by
Kunc et al (1975), and these values are listed in table (6.6).

To calculate the full frequency dependence of the imaginary
part of the anharmonic self-energy function of InAs at 300K, we
used in Eq(5.45) the values of E,(u) and E,”(u) from the data of
fig(6.18) and also the experimentally determined values of V7o
together with the values of £(0) and €(od), taken from Kunc et al
(1975). The frequency dependent imaginary part of the anharmonic
self-energy function [ (0j,V) is shown in fig (6.19. 1If we
compare the spectrum of '(oj,y) with other more conventional
spectra like the absorption cocfficient it is apparent from fig
(6.19 that the absorption peak appearing in the conventional
spectrum 1is completely suppressed here, and therefore all the
weak phonon combination side bands are more prominent, .

The analysis of two-phonon spectra is performed by
considering the features which correspond to singularities in the
two-phonon density of states which occurs when two dispersion
curves are parallel, or one is horizontal, particularly at the
, X and L symmetry points, As shown by Birman (1963) all possible
two phonon processes at the pointsf!, X, and I, are in;rared

active except for the two over-tones 2LO(X), and 2LA(X), for

zinc blend structure materials, resulting in some 34 two-phonon
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features. In addition to this there will be more critical points
in the two-phonon density of states elsewhere in the Brillouin
zone,

The structure in the spectrum of ['(0oj,V ) renorted here
agrees well with that in the infrared transmission and emittance
spectra within the  frequency range 2.'~‘>f)-29f)crr7l reported
previously by Stierwalt and Potter (1967) and Lorimer and Spitzer
(1965), and besides these features there are a number of weak

features at frequencies below ZOOCE‘

vhich have not been reported
before, These weak features carry insufficient information to
allow us to decide with absolute certainty which combination of
phonons gives rise to a particular peak in the observed spectrum,
especially when the experimental phonon dispersion curves
determined by neutron spectrometry are not available because of
the high neutron absorption coefficient of In. Nevertheless the
features observed here in the spectrum of 1 (0j,V ) apree well
with the calculations of Talwar and Agrawal (1974). Assig;ed

features are marked in fig (6.1Y) and are listed in table (6.5),

together with the calculated frequencies of Talwar and Aprawal.

AN

All the features below 190c;' are due to two- phonon difference
processes, whereas above 190c;‘a11 the ohserved peaks in the
spectrum of [ (oj,J) are due to two-phonon summation nrocesses. Ve
suggest here that measurcments be performed over a wider
frequency range and at higher resolution to include as many two-
phonon combination bands as possible, and also that measurements

be made at low temperatures.
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Table(6.5)

Assignment of two-phonon combinations for InAs at 300K

- > > - . - T G D S e A5 e S e W T e e e = e - = e AR = = -

Feature Observed Calculated Assignments
No: cm! cm-' (Talwar 1974)
1 146 145 LO - TA (X)
2 153 157 TO - TA (X)
3 167 168 Lo - TA (L)
4 179 180 ™™ - TA (L)
5 199 198 LA+ TA (X)
6 248 248 ™ + TA (1)
7 253 251 Lo+ TA (X)
8 264 263 TO + TA (X)
9 277 276 2LA (1)

10 287 286 ¥, + Vg
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b) Indium phosphide, InP

To study the far infrared optical properties of InP at 300K
measurements have been made in the spectral range of 200 to 420cr-;l
on an undoped single crystal 3mm thick and 20mm in diameter by
using dispersive reflection spectroscopy. These measurements
were performed at a resolution of 3cﬂq, and the amplitude and
phase spectra obtained are given in fig (6.20), These spectra are
the average of at least three separate experimental runs. The
reproducibility and reliability of all the spectra presented in
this section can be easily assessed from the amplitude and phase
spectra of the three individual runs overlaid in the same plot as
shown in figs (6.21) and (6.22), respectively,

Using the data of fig (6.20) the optical constants of TInP
determined at 300K are given in fig (6,23), and it appears that
no such measurements on InP using the dispersive technique have
been reported before,

Fig (6.24) shows the dielectric constants ohtained by using
the data of fig (6.23), and the values of V7o aﬁd Vw are
indicated in the figure. These values agree well with those of
Ulrici and Jahne (1976), and are listed in tahlé (6.6).

In order to calculate the frgquency dependent imaginary part
of the anharmonic self-energy r (oj,v), we made use of Eq (5.45)
and the data of the fig (6.24). The results so obtained are
given in fig (6.25), the values of 'V, £(0),and £(») used in
the above calculations were taken from Kunc et al (1975). In
table (6.7) we list the frequencies of features observed due to

two-phonon summation and difference processes in the snectrum of
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{(0j,V). The mode frequencies used in this critical point
analysis were taken from Ulrici and Jahne, Besides phonon pairs
located at major symmetry points like X and L, certain features
which could not be attributed to phonons at X and L critical
points are assigned to pairs of phonons near the W point, which
indicates that in III-V compound semiconductors the phonons on
the hexagonal face of the Brillouin zone play an important role
in  producing the singularities in the two-phonon spectra.
[Koteles and Datars (1976)]

The frequencies of all the features marked in fig (6.25)
and listed in tabhle (6.7) agree well with the calculated
frequencies of Ulrici and Jahne, and also the features numbered
3,5,8,9,10,and 11 have been previously observed by Koteles and
Datars (1976) using convcnfional techniques, vwhereas the rest of
the observed features in the spectrum of (' (0j,V) in fig( 6.25),
have not been reported before. In this two-phonon assignmpnt
process we have been able to minimize the uncertainty in a Few-of
the zone boundary frequencies given by Ulrici. Thus if we choose
the frequency at LO(X) as 333C;', TA(X) as 67cﬁj anerO(L) as
340cﬁ: then the observed features reported here are v;;y close to
the calculated frequencies of Ulrici, and also these corrections
bring the critical point frequencies given by Ulrici close to
those ,of Borcherds et al (1975) measured by neutron scattering,
Thus the measured two-phonon spectra also help in removing the

uncertainty in the calculated zone boundary frequencies,
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Table(6.6)
Summary of results for InAs and InP at 300K

- e e - e YR Gn Y S S D S R s S W D S SR G YR R R TR M Am R W e L S e e e e

Frequency InAs TnP
in em”!

- e e e e W SR P P R D SR R e P G S S 4SS D R R e G T e e G R Y e = S S e e e e

This FExpt: 219 244 307 348

Kunc 219 243 304 345

Ulrici - - 305 + 3 345 + 1
Table(6.7)

Two-phonon combination bands observed in the spectum of [! (0j,V )

for InP.
Feature no: Observed calculated Assignments
e ent! e ame
1 207 205 vq + W
2 216.5 215 vy - Vg
3 222 223 LA + TA (L)
4 252.1 250 TO S TA (X)
5 259 258 LA + TA(X)
' TO - TA(L)
6 335 336 2LA(L)
7 377 373 VB + Vg
8 383 384 TO + TA(X)
9 395,2 396 LO + TA(L)
10 407.5 405 W, + Ve
11 419 420 wl + ‘.vs__

- D e T = R S R T S T R e T R e P e T T R R A e G e S e e -



CHAPTFR 7
CONCLUDING REMARKS

Following recent developments the technique of dispersive
Fourier transform spectroscopy has now heen improved to the
point that measurements can be made on solids with an accuracy
which surpasses that attainable by alternate methods. This
technique provides direct experimental measurements of the
optical constants and the dielectric response of solids in the
far infrared, and gives access to valuable information on the
lattice dynamics of crystals.

Measurements of the far infrared optical pronerties of
alkali halides 1like CsI and KI have been performed at room
temperature and at low temperatures using this technioue to
illustrate the advantages over conventional spectroscopnic techni-
ques, To exploit the full advantage of amplitude spectrnséépy
when investigating detailed structure close to strong ahsorption
bands, such as the reststrahlen band in alkali halide ﬁrystals
[Johnson and Bell (1969) and Parker et al (1976)],“J(a single
pass dispersive transmission technique was used to complement
the technique of dispersive reflection spectroscopy.

Thus the combination of these two techniques provides a
powerfhl tool comparable in sensitivity with the technique oF‘
Raman scattering, and as a consequence we are able to ohtain the
first experimental determination of the frequency dependent

anharmonic damping functions of the transverse ontic phonon for

CsI and KI at ambient and low temperatures. The various lattice
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dynamical results obtained here are very encouraging and a good
correlatoﬁ Between experimental and published theoretical
calculations is obtained. In both cases the structure associated
with anharmonicity was revealed which had not previously been
observed by conventional power spectroscopy. In the case of
compound semiconductors like InAs and InP, the exploitation of
the dispersive reflection technique in the far infrared region at
ambient temperature has made possible the investigation of
detailed structure associated with phonon combination bands in
the spectrum of ['(0oj,V ), and also provides an access for the
first time to many combination bands within the reststrahlen
region, A number of these features in the spectrum of [' (0jV)
have bheen ohserved for the first time, and their assignment was
carried out by using published values of critical noint
frequencies. As a consequence the dispersive techniacue should
help in establishing precise phonon frequencies at the symmetry
points in these materials., Further confidence can be ohtained in
these frequencies by performing the measurements at low
temperatures, The experimental results obtained-"on these
compound semiconductors agree quite well with  the preveously
published data where it is available,

Since the performance of the dispersive reflection
interferometer was limited due to snecimen size, the
construction and design of a prototvme  focused  heam
interferometer which over comes the prohlems associated with the
reflection interferometer is given in detail together with the
demonstration of its feasibility in chapter 4, A possible future

development would be to incorporate low temperture facilities and
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to decvelop a new technique for replacing the smaller specimens
(5mm in diameter) with the reference mirror to achieve phase
accuracies similar to those obtained by Parker et al (1974-75-76)

for specimens of large diameter,
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