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ABSTRACT

Using a computer model of a two cylinder electrostatic lens,
some novel relationships have been found to exist between the
input and output parameters of meridional rays. These
relationships have been developed and used to show that, for a
wide range of practical lens geometries, it is possible to
represent all the third and fifth order aberrations in terms
of just”two of the normal parameters. Formulae have been
derived to describe some of the quantities associated with
this type of lens defect and the problems of minimising the

aberrations are discussed.
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SECTION ONE

INTRODUCTION

In the fifty or sixty years since the first electron lenses
were produced by Busch (1924) and by Davisson and Calbick
(1931), ion optics has become one of the most ubiquitous
branches of physics. In addition to the well established
cathode ray tube technology, ion lenses are essential in the
fields of electron microscopy and spectroscopy, ion
accelerators and the rapidly growing areas of electron beam
lithography and ion implantation. Despite these maﬁy
applications, the theory that describes the influence of a
lens on an ion beam has remained particularly cumbersome.

The properties of a lens are usually described by two sets of
parameters. The first will pertain to the ideal lens, where we
can define ideal focussing as occuring when all rays from a
point in object space converge to a single point in image
space and, moreover, the geometric relationship between object
points is reproduced in image space. A second set may then be
needed to account for the particular defects of the system.
These aberrations will depend not only on the type of lens
used but also on the operating conditions.

This thesis is concerned with the imaging properties of
cylindrically symmetric electrostatic lenses. We shall show
how it is possible to simplify the treatment of one the most
common aberrations of this type of lens. The discussion is in

five parts. In the remainder aof this section we will review



Page &

the focussing properties of electrostatic lenses and establish
some important relationships that will be used elsewhere in
the report. Section two deals with the production and testing
aof an efficient computer model of a two cylinder lens. The
observations that have been made on this model aré discussed
in section three and a series of novel relationships are
deduced and investigated. Section four examines the
application of these results to lens design and the equations
governing the geometric aberrationé are shown to be reducable
to very simple expressions. In the concluding section the most

important results are summarised and discussed further.

1.1) GAUSSIAN OPTICS

The branch of electron optics that is coﬁFined to ideal
imaging is cﬁmmonly called Gaussian optics. It is essentially
the optice of paraxial rays, In this section, as indeed in the
rest of the thesis, discussion will pertain only to systems of
rotational symmetry about the optic axis. These will usually
be composed of simple tubes or apertures as are shown, for
example, in Figures 1, 2 and 3.

For all electrostatic systems the potential distribution in
space is entirely defined by the;geometry and potential of the
electrodes. In the absence of space charge this will satisfy
Laplace’s equation:-

1
VeEir.z) = 0
(1)



Page 9

EA

Sua] aJnjJady

—_— e ———— . —— - - ¥

S |

suan Japul |AD

AJrouuwis
40 S|xy

ase =1

A 8

'y Ag pejousp st aue|d aouadsjsed ayl *‘(
‘ysbus| 0 31un |rjuUSWEpPUN} 8Yy3 Buimoys ‘4x83

v

A

@

843 Ul 0% pPaJJB4$8J 8J4B 3BYL SOSUS| 3UIWS |8
a|gnop 91J33wWwWAS 8ys 40 weubelp O13RWAYIG

T 3ANOT A4




10

Paqe

g=%a

ca

1a 1a < ea

Adrouwls
30 sIxy

——mpe e e e e e e e ey

™A

T ey U

*SJ8j8welp Japul |AD 8Y3} 40 JBSSA| 8Y3 SI (I "3IX8% 8Y3 Ul 03 paJJaFad

aJe 3RYy3 Sasua|

juswa|a a|gnop olJlawwAse ayj) 40 weJdbe|p o13RWAYDG

A

¢ JaNdId



sua auJnjJady suan Jyapul | LK)

€A A A
_. EA A A
N b = A
d | o !
{ |
— { i
— ] l
0} " AJdjowwAis “
<O - S a
(A D | |
1 |
1 |
] |
i 1 B - ! 8
v > <« > <« > < v
] ﬁ. a8 P R
Sy m Pl
*Alantioedssd (I6Q°'P PuU®e (d1'Q ‘0S'0
eQq 0% uaye3} 8de | pue B ‘Y 40 san|ea ayj
*31X8% 898U} Ul 0} pBJJISFOJ B8JR 3RY} SISUI|

g g juswa|a a|diJ} 8Y} O weubelp 913BWAYIS £ IJNNOIAL



Page 12

Apart from the most trivial of electrode structures, it is
impossible to derive the potential distribution by analytical
integration of this equation. However when a lens has an axis
of symmetry, Laplace‘s equation can be used to show that the
distribution of potential along this axis, pg(z), uniquely
determines the potential in all space. (See, for example,

Klemperer, 1971):-

2 4 4
= ( )_ d ( + d - 'R
fir,z) £, (2 %1 g: z) 2r4 g;Jz)

It can be seen that for small values aof r, the potential is
similar to that on axis. It is this insensitivity to radial
displacement that enables the focal lengths of paraxial rays
to be calculated readily; We shall briefly outline the
derivation of an equation of motion for such rays and show how
this leads to the usval characterisation of a lens by 2 focal
and Z mid-focal lengths,

For non-relativistic systems the motion of an electron will be

governed by the Newtonian equations:-

ag(s.z)

z=

t* .j z

r =’] DL (r z)
dt® ér

4
d

(3)
q*

(4)

Where t]is the electronic charge to mass ratio.
If we confine our discussion to paraxial rays, then we can

neglect the potential and field terms of higher than first
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order in r. Hence we can rewrite (3) and (4) as:-

d*z = t)dia(z)

dt® dz

d* r =—'J_r_d" (z)
dtr v JZ

dz*

(3)

(&)

Furthermore, since (dr/dzf {<{1 we can write, in the absence of

thermal velocity:-

(dz/dt)» = 24, (2)

A differential equation for the electron trajectory can be

derived by noting that:-

gt~  dt(dz dt

1}
a
~
o

o
o

2
z o+ dtrfdz
z dt? dz* \dt

Substituting (5), (&) and (7) into (9):-

2 2
-r_d (z) = dr dfolz) + 2 d°r ¢,(2)
Loetes - g2 tdoin) «»

dz dz dz?*

Therefore:-

+ d‘¢9(z) r

a
b |
+
a
=
e
~N
Q.
e |
(=)

a
~
,l
a
N
~N
N
o)
—
N

dz* 4 (1)

(7)

(&)

(9)

(10)

(11)



Page 14

A more vsval form of the ray equation {(Picht, 1939) can be

derived from (11) by making the substitution:-

Ilu
R(z) = r@ﬁ,(za
(12)

Hence:-

k)
d*R(z) + 3 (ddotzy _ 1 ).R(z) =0
dz* 16\ dz #o (1)

(13)

It can be seen that the equation of motion contains neither
the charge nor the mass of the particle, It and all the data
and relationships that are given here may be applied not only
to electrons but to any non-relativistic charged particle. In
the case of positive ions the signs of the applied voltages
need to be reversed.

Since (11) is a linear second order differential equation its
general solution can be obtained by a linear combination of
two particular solutions. Typically two rays, parallel to the
optic axis in image and object space respectively, are
numerically integrated using equation (13).

Ey integration of the Picht equation or otherwise, the four
cardinal points of the lens can be found and thus the focal
and mid focal lengths.

It can be seen from Figure 4 that for conjugate points P and Q,

in object and image space repectively:-
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(P-F, )(Qp,-F, ) = §.f
! e 2
2 ! (1)

and the linear magnification of the system is given by:i-

M = -f J(P-F, ) = -(Q_-F, )/¥.
i 2
' °c (15)
It follows that the asymptotic anqular magnification of a
paraxial ray is given by:-
My = -(F’—F')/Fz = -§,7(Q,-F,)
(16)

1.2) ABERRATIONS IN ION LENSES

The assumptions made in the last section may be valid for many
lens systems. However, when image quality is of particular
importance and the particle interactions cannot be so simply
defined, the Gaussian approximation can serve only as a
guideline to the image properties.

The aberrations of ion lenses may be loosely classified into
those which result from the interaction of the ray with other
than the lens’ field, and into those which are geometric
aberrations. This work is concerned with the latter type only,
so we shall merely identify the most common non-geometric

aberrations. A more detailed review can be found, for example,
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in the texts of Zworykin et al (1945) or Grivet (1972).

i) Chromatic aberrations will result from a spread in incident
energies. In addition, aberrations which could be considered
chromatic will result from fluctuations in the applied
electrode potentials.

The \onaitudinal chromatic aberration for paraxial rays is

given by:-

Bl, = Cc {8V, 7V,
(17)

Where C, is the principal chromatic aberration coefficient and
the incident particles have energy q(V, +§V,). The potential of

the first electrode is V,. (See, for example, Berger, 1982).

ii) Ion-ion interactions could have a significant effect on
the image definition and intensity in higher current systems.
A useful measure of the magnitude of the space charge effects
within the beam is the perveance (=I/QV‘For electrons). For
example, the role of space charge in an electron beam of
perveance less than 10°% A" would be negligible, whereas a
perveance greater than ldq AVW& could impose fundamental
limitations on the design of the system.

Since the perveance is greatest when the beam energy is low,
the most dramatic effect of space charge is generally in the
extraction region of a system (for example near to the cathode

of an electron gun). Indeed the normal operating condition for
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most practical systems is with space charge limited emission
current (see, for example, Dahl, 1973). In the lens region
these effects are usvally much less important, although the
Coulombic interactions will give rise to additional transverse
and longtitudinal forces. The former will diminish image
quality by causing the beam to spread, whilst the latter will

give rise to chromatic aberratian.

iii) Diffraction effects will result if theswﬁzm has apertures
which are comparable to the De Broglie wavelength of the ions.
For non-relativistic electrons this is given by:-

-t

1.22¢ © (nM)

>
e

(1&)

Where @ is Ehe potenéis ' Velts,

In practice, diffraction errors are important only in the

field of high magnification electron microscopy, where the
skructure of Ene objeck gives rise Co Ehese BNy aprrewses.

iv) VU’:) h\j\'\ \}Dl(‘.qge_ lenses will pot nof M(A“'_\J 5'-*'“6" from additsonal O\b{'muoml
however, relakiviskic Eransformations il be needed ko calcdlabe their

iIsk order ?mpe..gieg_The relativistically corrected form of the

Ficht equation is given by:-

2
R¥(z) + 3 Glzifdgetz) 1 \.R¥(z) = 0
dz* 16 dz #, ()

’ (19)

(See, for example, Klemperer, 1971)

Where:-
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)
R*(z) = r(d}(z))q
(20)
Glz) ( )1 1 27 *( )
z) = [#o (2)), + o1
(p(’(z)) ( 3c? )
(21)

Mf(z) being the relativistically corrected axial potential,

which is given byi-

z(o*(z) = g, (z) (1 + Dg, (1)/2c™)
(22)

P‘“ﬂ Gf the eggects G)-Qti) could detract from the image quality of
certain systems. However, even when they are negligible,

Gaussian theoryshouldbe applied only to paraxial rays, because

of EHQ‘xpresencq “og' geometric aberration.

1.3) GEOMETRIC ABERRATION

The Gaussian approximation may be regarded as a first order
theory, since in its formulation terms of higher than first
order in r were neglected. For a meridional ray (that is one
which is contained in a plane which includes the optic axis) a
trajectory through the system can be defined uniquely by its
slope and radial displacement at two, non-coincident planes
normal to the optic axis. If we take these planes as those
which pass fhrough the principal foci of the lens (see Figure

S$) and, furthermore, we define ro» ﬁ'. r and gf as the
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asymptotic radial displacement and slope of a ray at these two
planes, then it follows that we could express r, and q{ as a
power series of r, and r’. Moreover, because of the

cylindrical symmetry of the system, the coefficients of all

the even powered terms must be null.

Hence:-
2
r,, = -r/f) +m,3r"3 tmr' n/f, ¢ mwrﬁr:/F: + m“niff:
' ] ;3 3, .2 ,t 3
+ q,n 5 4 q,n" n VA qQ,n’'"n /£, + Q"N r,/Ff
1 b H §,.¢c5
taunn/f g ri/fy e
(23)
- ’ ls 2 T a 3 3
ra/ﬂ =r' + mur‘ +m“r“ r, /F,. + mur"r‘ /f, * LA /F'l.
15 P .3 2 2 ' 2 s
+q,r, + qur.' r, /F‘ + Q,rs /F: + q“r"rl /1‘z
4 ol 5 5
+ qr'ro/f, + q.r°/f, + ...
A wh o (24)

Where the coefficients of the first order terms follow
directly from the paraxial approximation.

The mﬁ and qy coefficients give rise to third and fifth order
geometric aberrations respectively. These coefficients are
system constants and depend on electrode potential and
geometry alone. It can be seen that there are 8 third order
and 12 fifth order coefficients. It will be shown later that
the isotropic properties of the electrostatic field enable
these to be reduced ta S and 7 distinct coefficients

respectively.

It must be emphasised that r’ is defined by:-
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?

dr/dz

r
(23)

and it is the slope and not the angular inclination of the ray
with respect to the optic axis. For paraxial rays these will

be similar.

1.4) CLASSIFICATION OF GEOMETRIC ABERRATIONS

The multiplicity of coefficients in (23) and (24) give rise to
a number of characteristic imaging defects. Verster (1963) has
shown that it is possible to associate each of the third order
errors with partitular coefficients. Whilst it is felt that no
vseful purpose would be served here by extending this
treatment to the fifth ordef, it should be realised that since
(23) and (24) are general relationships between incident and
emergent meridional rays, they could be vused not only to
quantify spherical aberration, but also the other geometric
errors such as isotropic coma, field curvature, astigmatism

and isotropic distortion.

1.5) FURTHER RELATIONSHIPS

We shall now establish some further relationships between
incident and emergent rays that, along with (23) and (24) will

enable us to investigate the meridional aberrations in ion
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lenses.

1.95.1) Ray Reversal

Equations (23) and (24) enable us to express the output
parameters of a ray in terms of its slope and displacement at
a point in object space. We shall now establish the converse
relationship.

A ray traversing the system given in Figure 5 from right to

~ ~ ~
left will perceive a lens with focal lengths ﬁ » Fz' ﬁ and ﬁ
such that:-
~ ~ ~ ~
f, = Fz' f, = Fl. F, = Fp» F, = F,
(246)

where F, , F, , f, and f, are the focal lengths for a ray

ES

travelling from left to right.

~ ~

If we denote the ray parameters by E r 'y ry and ?{ (the "1"

suffix denotes object space, which is now on the right hand

side) then it follows that:-

~ ~ ~ ~ ~3 ~ oL ~ N AN mg W ~ N3 w3y
[ - - 1" ' ,
nF R /R ot mr” Fm i r JE A mrr JE S+ m, n T
~ o~ ~ ~5 %5
+q“rl'5 + .-------.a-“'q,‘r. /Fz
(z7)
~ ~ o ~ o~ o3 ~ poq~ ~ ~w N wg AMg ~ s vy
— ’ ’ r ¢
n/f =, + My P )" 4 Myt r, /fg + m“r'r‘lfz + nkf‘lfz
w5 ~ o5 TS
+ qz‘rl + 2 & 9 80 ¢ & 9 B + qz;rl /f:
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We can now consider a second ray travelling in the opposite
direction whose trajectory, although reversed, coincides with
the first. The input and output parameters of this ray are
related by equations (23) and (24). Since the rays are

coincident it follows that:-

(29)

Equations (26), (27), (28) and (29) may be substituted into
equations (23) and (24), enabling us to inter-relate the m, q

and 5. E coefficients. Hence it can be shown that:-

o _ ~r - ~d _ ~ _

Mg = Magr My = Magr Mg = Mayr My = May (30)
~ - ~ - ~ . ~ -

May = Mgr My = Migr Mg = My Mag = My (31)
~ - ~ _ . 2

Qy = Ogg * 3mymy = myme » - Qe = qy *+ MysMyy = 3m2’ (32)
~ _ -~ 2 ~ - -

A = Qg * Mg = MyMyp g™ Ay + MMy, — 3y (33)

Using these identities in equations (27) and (28) enables us

to express the ray parameters in object space as a function of

those in image space:-

= 3 2 2 .2 3,3
r" = n /Fi + m“r’_’ - mzsr_‘_' r,/f, + m",rt'r,’_/ﬂ = Mgy /Fl
s 2., § 5
- - -— -
+ (u_26 + 3m2‘m,6 mumzs)rz' case (qz‘ + mumu' ,,mn)r,_ /f,

(34)
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3 2 2
-— - ? - 4 L4 - ’
r /f = ry Mgry + mer, r, /f M,y Ty

2 3
JE o+ mgr)/F,
+ + ( + -3 5 s

v qQ, m,m, MMy dr, /)

(335)

1.5.2) The Lagrange Invariant

Consider a ray through a lens with arbitary terminal points in
image and object space (Figure 4). The ray can be described by
position and momentum vectors x and p.

Suppose that this ray suffers separately or simultaneously two
perturbations. If we denote the generalised coordinates of the
unperturbed ray by V, then the two resultant rays will have
coordinates (V+dV) and (V+§V) respectively. It has been shown
(see, for example, Sturrock, 1953) that the perturbations of

the terminal points can be inter-related:-

§p,-dx, - dp,.8x, = §p,.dx, - dp,.8x,
(3¢)

Equation (36) represents the Lagrange Invariant. It is a
general equation that is valid for all electron optic sytems
(see Verster, 1963). We shall now proceed to express (36) in

terms of our coordinate system.

Since we are considering meridional rays only and furthermore,
we could, without loss of generality, restrict ourselves to

initial perturbations in the r direction, we can write:-
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dx = i.dr
(37)
&£.=.Lrsr
(38)
where ie i5 a unit vector parallel to the r axis.
If s is a unit vector tangental to the ray:-
P=prs
(39)
Where the.magnitude of the position vector, p, is given by:-
p = (2emd + oa-‘g!"/c‘)"z
(40)

Hence, if we express s in terms of its radial and axial

components and we assume that the terminal points of all three

rays are in field free space, then:-

dp = p liads, + iydsg)
- - - (41)
§p = p lipfs. + iyfs,)
- - - (42)

From (37), (&8), (41) and (42):-

Sg:di - QE.{§_= p (Sé,dr - d%&")

(43

~—
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We may eliminate s. from (43) by realising that since r’ is

the gradient of the ray:-

s, = ri( o+ ptm
(44)
Therefore:-
.3
bs, = &r’ (1 + ¢’ 2
‘ (45)
ds, = dr’ (1 + r”').SIz
{(46)
Using (45) and (46) in (43):-
3k
Sp.dx - dp.Sx =p (1 + r'*)y L (§ridr - dr ' §r)
- = - = (47)
Substituting (47) into (36):-
-3k 2 Sh
Iz ? ! - ? ' 7
P, (14r %) (ér dr, ~dr'§r, ) = Pa{14r ) (8r,/dry, ~dry8r, )
(48)
If we note that:-
dr, = (dry /3r, )dr, + (dry/3r,/ )dr,’
(49)
dry’ = ArS/9r, )dr, + (Br{/ﬂq’)dq’
. (30)

GQ‘ = (dr, /br‘)Sn + (Qrzlar{)Sq'
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Sr; = (ar{fan )Sq + (qu/an')sn’
Then we can write:-

<S.r)_'drz - dr/drn, = (3n' 3 - dn dr’ _(Sr|'dr| - dr//8r )
an’ iR’ 3r,

(53)
Furthermore, since the ratio of the focal lengths and the
ratio of the refractive indices in object and image space are

equivalent, it follows that (See Born and Wolf, 1959):-

F,/F1 = p,/pPy

(54)
.. . .. Y
{cf. non-relativistic limit: F\/F1 =(V‘/Vz) ).
Using (53) and (54) in (48)i-
32 1 2h . .
LIS ',.1:'-) = f . r“l). }—rl,.g—rx —3_5.3.5-:
arl I'" arl arl
{55)

This differential equation represents the Lagrange Invariant
for the system that we are considering. It will be used later
to simplify the relationship between incident and emergent
rays. It is important to note that its vuse is restricted by
the assumptions made in its derivation. In particular, it is

applicable only to meridional rays in a lens whose focal
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planes are in field free space.
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SECTION TwWOD
THE COMPUTER MODEL

In this section we shall deal with the method used for
simulating an electrostatic lens and calculating electron

trajectories through it.

2.1) POTENTIAL AND FIELD DISTRIBUTION

There are a number of methods which can be used for
calculating the potential distribution of an electrostatic
lens in the absence of space charge. They are all based on the

solution of Laplace’s equation:-

V‘Y(r.z) =0

(56)

i) Probably the most readily implemented method involves
approximating the continuous distribution by calculating the
potential at discrete points on a mesh. (See, for example,
Carre and Wreathall, 1944), Unfortunately the lack of
continuity in the derived potential distribution could impose
limitations on the accuracy to which first and second order
derivatives can be calculated. The method was judged to be

unsuitable for very accurate trajectory calculations.
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ii) Since it is the charge on the electrodes that is
ultimately responsible for the potential distribution, it is
possible to deduce the latter by firstly calculating the
distribution of surface charge (Read et al, 1971.) The method
enables the accurate calculation of the potential and its
derivatives and can be used to evaluate direct raypaths (Renau

et al, 1982).

iii) In examining aberrations it will be necessary to
calculate a large number of trajectories through a lens using
a direct ray tracing technique. If fifth order effects are to
be observed then each ray will have to be numerically
integrated using a very large number of steps (this was found
to be in the order of 10‘). So for practical reasons the
method used had to be not only accurate but fast. fhe method
vsed, therefore, was based on that described by Cook and

Heddle (1976) which we shall now outline,

2.2) VARIATIONAL METHOD FOR CALCULATING POTENTIAL DISTRIEBUTION

Given an approximate solution:i-

n
gir,z) = > o
;§ l (57)

to Laplace’s equation in a volume,.n, we can define the
P q

function:-



Fage 33

Wig) = 0.5 J(W)‘dn
- (58)

Where the Variational principle would suggest:-

WIY) == W)

——

(59)
The two cylinder lens system that we are considering is shown
in Figure 7. The volume of the lens can be treated as three
regions as shown. Denoting the potential in the ith region by

#; (r,z) it follows that:-

g, (D/2,1)

|
<

(60)

g;(D/Z,z) =

[
<

(61)

Where V, 'and V, are the electrode potentials. If the electrode
gap, g, is small in comparison to the diameter, D, then we can

write:-

#(D/2,2) = (z ¥ g/2)V, - V,)/g + V,
(62)

Where we have assumed that the boundary potential for region 2
varies linearly with 2. Cook has shown that for small gaps the
discrepancy in axial potentials thus found and those
calculated by a relaxation method (Natali et al, 1972) are

negligible. This has been verified by Bonjour (1979) whose
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variational method wsed oo third otder approximokich (o the central
boundary potential. Moreover, for thick walled lens sytems the
linear hypothesis is directly justified. We therefore feel
that a useful analysis of aberrations can be founded on this
potential model. This is validated by the good agreement of
our measuments of third and fifth order aberration coefficients
with those produced by other authors.

Using the boundary conditions of equations (&0), (61) and
(62), the coefficients, «£;, of (57) can be detemined by
minimising the potential energy, W(g), of the system. Hence,
it can be shown that the potential in each of the three

regions is given by:-

oo
4, (R,Z) =V, + (V,=V )Eando(knmmﬂ—sﬂ)
G nz
(63)
| -~ '
By (R,Z) = (Vi #Va ) + (V3 =V, IZ + (Vy -V, )zando(knR)(A',,-Bn)
Z G G

el (64)

oo
#s (R,Z) =V, - (V gv, )Eoﬁdc (ko RY (BT AT )

nel

(65)

Where:-

Anlz) = exp(k,\(22+6)), Ba(z) = exp(k“(Zx—G)
(66)

And -

G =g¢g/D, 2= 12/D, R = 2r/D
(67)
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Jofx) is the Bessel function of order zero and k, is the nth

root of Jgo{x). Finally:-

-1
2
Qq = (zu,\.a‘ (k,ﬁ)
(68)

The derivatives of the potential can be calculated readily

from these equations. For example, in the central region:-

o0
e = Va=Vy ) = 2(V, =V, ) Eanﬂdo (kR (A 4B, )
Y GD GO
n= (69)
(-}
A, = -2V -V, ) '2 Opkad, (KnR) (AT -Bj)
Plg GD £
<l
(70)
2 2 2 .|
glg_f, = 4(\/,6-\/, ) Oqkp g (kg R) (AT ~Bp )
z iD
n=|
(71)
2 _ o b‘l
.3_2(3 = -2 .)_1. - __ﬁ'z
ar* R 3r Azt
(72)
s = <o -
§" = 4(V?56¥' ) Opkgdy (KaRY (AT -Bp)
dzdr ' -
e (73)

The values of k, and J, (k,) to 10 decimal places were taken
from the British Association Mathematical Tables, 1958.

The similarity between the expressions for the potential and
each of its derivatives enables the equations to be evaluvated
simultaneously, term by term. This expedient- is extremely
beneficial to the overall time required to determine a

raypath,
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2.2.1) Evaluation of Bessel Functions

The first and zeroth order Bessel functions (J,(x) and J,(x)
respectively) were evaluated by a method that depended on the

magnitude of their argument.

For x<{20 the general solution of Bessel’s equation was used

(see, for example, Stephenson,1973):-
o0

datx) = N __ =1 S‘“"’
riin+r)!

€20 (74)

For x320 an asymptotic series solution was employed:-

Jo {x) = A_(x)sin(x) + B, (x)cos (x)
(75)
d'(x) = B.(x)sin(x) - A‘(x)cos(x)
(76)
Where:-
V2
Ay, (x) = (F’M (x) - G,.(x))/(rrx)
! ’ (77)
Bo, (%) = (P“ (x) + Q,, (xD/(ﬂx)”"
‘ ) o (78)
and:-
P ix) = 1 - 1h3% + 1535527 - 1535575511 + vuue
20(8x)*  4r(8x)t 6t (8x)*

(79)
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Qotx) = -1 + _1A3%5' - Aa%s 7 '+ .....
1'8x 31(8x)°® 51(8x)
(80)
Potx) =1+ _t,2.5 - f.3,59.7.9 + tLasi7's 3= e
Z'(ex)* 4! (8x) 6' (8x )¢
(81)
Q,(x) = 1.2 - f.3%5.7 + £.3.5°7%9.11 - .....
118x 31(8x P 51(8x F
(82)

In both regions summation stopped when a precision of 10
decimal places had been achieved or with the 80th term if x<20
or the 20th term if x> 20. Convergence was generally much
faster than these limits.

The accuracy of the Bessel function was tested by comparison
with published data. The quoted precisions were derived by
extending its accuracy until raypaths through the system were

found to be insensitive to the inclusion of additional terms.

2.2.2) Accuracy and Speed of Calculations

The accuracy and speed with which the potential and its
derivatives could be found depended upon the number of terms
that were used in equations (63)-(65) and (692)-(73). Generally
these were found to be highly convergent. Each was evaluated
to a precision of & decimal places, except when this did not
occur by the 150th term (as is the case, for example, when
z=+- g/2). In these cases the mean of the sums of the first

149 and 150 terms was used.

Table 1 shows the variation of axial potential for a lens with
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V,=0 and V, =1, The number of terms (n) used for the summations
are also shown. It can be seen that the results agree well

with the results of other authors.

TABLE 1. AXIAL POTENTIAL FOR A TWO CYLINDER LENS.
(g/D = 0.1, V,= 1, V,=0)
z/D #, (z) n # (2) # (1)
Present Cook,1976 Natali,1972
0.000 0.500000 1 0.500000 0.500000
0.025 0.467103 43 0.467101 0.467115
0.050 0.4343504 150 0.434504 0.434532
0.073 0.402496 43 0.402494 0.402538
0.100 0.371344 25 0.371343 0.371399
0.125 0.341282 i8 0.3412832 0.341351
0.150 0.212514 14 0.3125135 0.312592
0.175 0.285195 12 0.285196 0.285279
0.200 0.259440 10 0.252440 0.25932¢
0.2Z5 0.235324 9 0.235323 0.235%413
0.250 0.212879 8 0.212880 0.212%69
0.300 0.172994 7 0.172994 0.173079
0.350 0.139489 6 0.139489 0.13956¢
0,400 0.111785 S 0.11178% 0.111851
0.450 0.089157 5 0.08%9137 0.089212
0.500 0.070851 4 0.0708%1 0.070897
0.600 0.0443407 4 0.044407 0.04443¢%
0.700 0.027658 3 0.027658 0.02767¢%
0.800 0.0171¢8 3 0.017168 0.01717¢
0.900 0.0106264 3 0.010636 0.010642
1.000 0.0065€3 3 0.006583 0.0043586
1.100 0.004072 Z 0.004072 0.004074
1.200 0.002518 2 0.002518 0.002519
1.300 0.001557 2 0.001557 0.001557
1.400 0.000962 2 0.000962 0.000962
1.500 0.00059%5 2 0.000595 0.00059%
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2.3) TRAJECTORY CALCULATION

Electron trajectories were ctalculated by numerically
integrating the Newtonian equations of motion (see equations
(2) and (4) ).

The basis of this method lies in the power series expansion of

the electron coordinates in terms of time:-

z(t) = z, + (dz)t +1(ﬂ‘z)t" + L(dgz)t’ ..
dt 2 \de* c\dt
° ° ° (83)
rt) = r, + fdr\t + 1@ + 1[N + ...,
dtj, z \dt*/ 6 \dt?
° (84)

Where z(t) and r(t) are the coordinates of an electron, with
initial coordinates denoted by suffix 0, after a sﬁort time,
t.

The accuracy of this method will depend upon the number of
terms in (83) and (84) which are used and, in turn, on the
size of t used for integration. The accuracy of each step can
be checked during integration by, for example, a predictor
corrector method.

The method that was adopted initially was based on that
described by Renau (1979), which used only the first three
terms of (83) and (84). However, this was found to require a
very small integration step length and, moreover, the raypaths
were found not to converge to the Gaussian limit for paraxial
rays. A much better method was found to be one which

incorporated second order variations in potential and thus the
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first four terms of (83) and (84).

The electron velocities at the end of a step are given by:-

aja
ad ]
—
(o dd
"
ala
-+ IN
°\~—/
+
=9 fal
| »
of (¥}
N
°
+
N'o-‘
(=8 [= %
| W
Ll )
0\/
-+
~

(85)

aja
i
—
(ad
L
"
[= 9 1=
|
g
°

(8¢)

Where the second differentials of z and r with respect to t

are given by Newton’s equations and hence:-

) (=), -+ 26 (=)
19 (5), + 36 (=),

The final expressions are simpified if we use scaled time:-

ala®
e+ W
bl 1Y}
1)

n

(87)

Qla
W
]
0\'_'/
1]

(88)

\Y/
T=1(27)t
(89)

Bringing together these equations allows us to derive the

recucrence relationships for the position and velocity of the

electron:-
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rit) = r, + (Q.E.)T + .L(M)Tz'* 1 Q'__ ar) + 3:{ a\] T
a7y 4\ork 12 [t/ \dT/, \3zdr) dT)

(91)
dz(t) = (d_z) +_1(M)T +_1'(3’*g) d_z) +(3‘¢ ar\ |7
dT a7/, 2\ ) 4 [\oz* [,\dT/, \dzdr/ | dT
(92)
So(t) = (ar) + (4T +1'_a_}z
dT aT 2 \ar |, 4 | \ar?
(93)
The values of (dz/dT), and (dr/dT), at the beginning of a
trajectory may be derived from the angle, 8, that it makes
with the optic axis:-
h
(dz/dT), = #,~ cos(8,)
(94)
(dr/dT), = g,'*sin(8,)
(95)

Equations (90)-(95) therefore enable the calculation of a
raypath from object to image space. The accuracy of the method
is dependent on the choice of time interval, T, for the step
length. This interval of normalised time is related to the

trajectory step length, As, by:-

= Ass (g™
(96)

2.3.,1) Variation of the Integration Step Length

Two shortcomings result from integration by fixed step
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length:-

i) Computing time is wasted by using steps which need to be
small enough for the regions of highest field strength and are
therefore unnecessarily large in other regions.

ii) Whenever a lens with different electrode potentials is
considered, new checks will have to be made to ensure optimum
choice of step length.

By allowing the routine to have variable step length it
becomes both more efficient and universal. In regions of low
field the step would be large and vice versa. A number of
methods of incorporating this modification were tried, each
based on testing the field strength either directly, or
indirectly by examining deviations in path direction and
velocity. The simple method which was finally adopted wasbased
on the accuracy of the potential calculation routi&e.

Denoting initial valués by suffix 0 and final values by suffix
1, the change in electron kinetic energy during a step is

given by:-

AE = mtv,| - Vv sz
(97)

The discrepancy between the apparent and calculated potential

difference is therefore:-

€= |(g,-9,) -AE/e

Since the potential at a point was ctalculated to a precicsion
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of 10'6, we ctould use the following criteria to govern the
integration step length: If after calculating a step it was
found that £>10’6, then T was halved and the step
recalculated; If €£¢2%107 » then T was doubled for the next
step in the integration. Minimum and maximum values of T had
to be fixed and these were ldn and 104 lens diameters
resbectively. The first step of a trajectory wos calculated
with the minimum step length.

The numeric values that have been quoted were each determined
by variation until the raypath became stationary with respect

to increasing precision.

2.4) TESTING THE COMPUTER MODEL

In addition to checking the accuracy of particular aspects of
the model such as the potential and field distributions, it
was necessary to evaluate its overall performance. We shall

putline the two principal checks that have been made.

2.4.1) Paraxial Rays

When trasectories progressively fill the aperture of a lens,
the resultant geometric aberrations can be considered as
systematic perturbations of the paraxial focus. It is of
fundamental importance to our present study that calculated

trajectories should have a Gaussian limit to their paraxial
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focus. A simple test of the ray tracing procedure was
therefore to compare the parameters of emergent paraxial rays
to those predicted by Gaussian optics.

The Pichf equation (13) was numerically integrated by the
Fox-Goodwin method (see, for example, Buckingham, 1962), using
a short step length (10" 1ens diameters). The paths of rays,
integrated from axis with a launch angle of 107 radians, were
compared to those calculated by the model. The overall
correlation was extremely good.

A typical set of results is shown in Table 2. The small
discrepancy between the two results is a consegquence of the
finite launch angle of the rays. The presence of spherical
aberration causes the non-Gaussian ray to have both slightly
larger angular magnification and to be imaged nearer the lens.
This conclusion was justified by examining rays wiéh
diminished launch angles. The Gaussian limit was further

approached but never exceeded.

TABLE 2. ANGULAR MAGNIFICATION AND IMAGE
DISTANCE OF PARAXIAL RAYS.

{(Two cylinder lens. g/D=0.1 V, /V, =10)

Picht ray Direct ray

1.75 15.88 =-0.05428 15.86 -0.03437
1.0 11.95 -0.07408 11.94 =-0.07418
1.85 9.679 =-0.09289 9.622 -0.09407
1.90 8.198 -0.1137 g.189 -0.1138
1.95 7.156 -0.1335 7.145 -0,1336
2.00 4.334 -0.1332 £.378 -0.1535
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2.4.2) Aberrated Rays

The final test of the accuracy of the model was to use it to
calculate the aberration coefficients of equations (23), (24),
(34) and (33). In a later section we will show how the model
has enabled all of the third and fifth order coefficients to
be evaluated but, for the present, we seek only to show how
the third order aberrations of parallel rays can be calculated
and to check that they are consistent with the results of
other authors.

We have already seen that the behaviour of a trajectory is
governed generally by eight third order coefficients. However,
if we consider rays from an infinitely distant object (r,'=0),

it follows from (23) and (24) that:-

3,03
r,/ = -r, /f, + m.r°/f
2 e et (99)
3 3
r./f = m.r /¥f
2 e (100)

Where we have included terms up to the third order only.
Conversely, if a ray emerges parallel to the optic axis, then

from (34) and (35) it follows thati-

3 3
r' =r ff - m,r, /¥f
: e w2 (101)

b] 3
= m,,r, /f
Vo SR (102)

These relationships provide us with a relatively
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straightforward method of calculating four of the third order
coefficients. Trajectories with r’=0 and r,/=0 were used with a
Least Squares fitting program to obtain My s Mg, Myy and myg
from equations (99)-(102), In order that fifth and higher
order effects should not detract from the accuracy of the
calculations, the fit was restricted to rays for which the
ratio of asymptotic radial displacement at the lens centre to
the radius of the lens (ie the filling factor) was less than
30%.

The results are shown in Table 3 along with the results of
other avthors. The results of Read have been derived from his
Cs coeffients using the the data and relationships that he
gives in his book (1976). Kuyatt et al (1972) quote an
accuracy of 10% ("with one or two possible exceptions”) for
their coefficients. Verster’s results were derived.From an
electrolytic tank modél (1963).

The principal limitation to the precision of the results that
we give here is the inability to decide accurately the maximum
filling factor that should be considered for the third order
least squares fit. Nevertheless, although we have taken this
(somewhat arbitarily) to be 30%, our results are generally
ronsistent with those of other authors. We shall return to

this problem later on when we make more precise caleylations of

the aberration coefficients.
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TABLE 3. THIRD ORDER ABERRATION COEFFICIENTS
FOR PARALLEL RAVYS.

(2 Cylinder Lens. g/D = 0.1)

v, /V, Present KRead Kuyatt Verster
(1976) (1972) (1963)
2 Mg =305 -278 =285
m,e -488 -4467 =502
My, =362 -331 -344
Mo =577 =553 ~-575
5 M3 -7.86 -7.02 -7.34 -7.32
M -22.9 -22.2 ~23.6 -9.18
My -11.7 -10.5 -11.0 -9.21
Mg -33.7 -32.46 ~-34.7 -36.8
10 My ~1.72 -1.4¢ -1.44 -1.58
M, -7 .54 -7.34 -7.06 -1.48
My -3.22 -2.74 -2.71 -3.37
Mg -13.1 -12.8 -12.2 -15.7
20 My, -.570 -.470 -.440 -.430
Mg =3.b66 -3.54 -3.44 -.40
Moy -1.4¢% ~-1.19 -1.16 -1.52
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SECTION THREE

RESULTS

The computer model was used to calculate trajectories for a
large number of rays‘through.the system shown in Figure 7.
Both accelerating and decelerating lenses were considered with
voltage ratios ranging from near unipotential to 40:1.
Raypaths with filling factors of up to 90% and linear
magnification anywhere from zero to infinity were calculated.
The discussion that follows is based on the results of over
1000 trajectories.

Throughout this discussion we shall consider each ray as
emerging from axis at a distance P to the left of the centre
of the lens and to intercept the axis again at a distance Q to
the right of the lens centre. When measurements are made in
regions of finite field, P and Q correspond to the asymptotes
of the ray. The same is true for the treatment of r and r’
which were defined in section two. It can be seen from Figure

S that:-

n' = /{P-F )

(103)

-r, = r, /(Q-F, )

(104)

We shall use M and M, to refer to the linear and angular
magnifications of a paraxial ray from P, which recrosses the

optic axis at the Gaussian image plane, a distance Q, from the
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reference plane of the lens,.
All the lenses examined exhibited positive spherical
aberration ie. @ decreased with increased filling. A typical

set of trajectories are shown in Figure 8.

3.1) RELATIONSHIPS BETWEEN IMAGE AND OBJECT SPACE

The evaluation of the third order aberration coefficients such
as those used in equations (23) and (24) has been the subject
of many papers (see, for example, Kuyatt et al, 1972 or
Harting and Read, 1974). Our initial investigations are not
concerned directly with the evaluation of these coefficients,
but instead we shall louk at alternative connections between
the parameters of a ray in image and object space..

The Helmholtz-Lagrange relatioﬁship suggests that the linear
and angular magnifications of a paraxial ray are simply
;elated. By examinig this relationship for aberrated rays we

have found that for rays emerging from the same axial pointi-

r'/r.) ol Q
1 72 , (105)

This relationship is illustrated in Figures (9)-(16). Although
the gradients and the intercepts of the graphs are dependent
on the voltage ratio and the object distance, the relationship
between the image distance and the ratio of input and output

slopes of the ray proved to be linear for all tested object
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points and voltage ratios. In particular equation (105) was

found to be independent of the degree of aberration of a ray.

We shall investigate this relationship and examine its
limitations and see how it 3ffects the treatment of

aberrations.

We can express (105) as:-

-r/r = b(P).Q + c(P)

Which is easier to treat if we make the substitutions:-

G(P) 1/b(F) - §

I(P) = c(P)/b(P) + F,

"

So that (1046) becomes.i-

Q-F, = -f, r//r; - G(PIr//r/ - I(F)

‘It is useful to defineil-

k = r, /(r/f)

(106)

(107)

(10&)

(109)

(110)

It can be seen from equations (16) and (103) that k is simply

-Mg » the unaberrated angular magnification of a ray from P.

Since for a given voltage ratio this is solely a function of
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P, we can consider G(P) and I(P) as G(k) and I(k)

respectively. Thus, if we incorporate (104), we can rewrite

(109) as:-

r, = fr

We may also express (23) and

R TUS AN A('SIX

(111)

(24) in terms of k:i-

R o= etk s n?moao ¢ rfe k)
{(112)
4 13 ls
rp/f, = r/ + M)+ r 0 (k)
(113)
where:-
M, (k) hy, + m,k + m Ko+ m, K3
- (1] B ‘
' B * (114)
Mg (k) omgk 4 mi o+ mgkd
= m m
: o * (115)
) 3 L 5
Q, (k) = q, + gpk + gk + qk + gk + gk
(116)
2 3 “ H)
Qg (k) = g, * quk + an + quk + Quk + qu# (117)

Substituting (112) and (113)

S
r’ -
1

in

into (111) gives us a quadratic

@(k)-kI(k?-& re (I(k)Ml(k)-ﬁMz(ka+ r,'“(ltk)o,(k)-f,altkb= 0

(118)
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Since (118) is valid for all rays from all cbject points:-

G(k) = kI(k)

(119)

My (k) = M, (K)I(k)/F
(120)

@, (k) = Q, (kKT (k)/F,
(121)

It can be seen that (119)-{121) can be reconciled with

equations (118) and (114)-(117) only if I is a lens constant

and if:-
tMy: = dm,;
3 Y (122)
qﬁ ) 6qj (123)
where:-
o= I/ﬁ
(124)

Substituting (119) and (110) into (111) gives the very simple
relationship between the ray parameters in object and image

space:-

’
rp /f, = r' + gr, /f, *+ O,

(125)

Equations (122) and (123) effectively halve the number of
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unique aberration coefficients needed to describe the
behaviour of a ray. Moreover in (125) we have a linear
relationship, which appears to be independent of aberration,
between the input and output parameters of a trajectory
through the lens., The remainder of this work will be dedicated
to the investigation of the applications and limitations of

these fundamental relationships.

3.2) PARALLEL INPUT AND OUTPUT

({125) has been derived from trajectories with finite
magnifications. We shall now examine its application to rays
which enter the leng parallel to the optic axis.

For parallel incidence (125) becomes:-

rsz = 6?|/Fz + or’

' * (12¢&)
If we use (104) this becomes:-
Q@ =F - fd/1+ 1 )
Fzﬁ
(127)

This relationship is compared with the results of the computer
model in Figures (17)-(21). A strongly linear relationship is
clearly evident for all but the 40:1 lens, where some

deviation from the predicted result is apparent.
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The longitudinal shift in focus for a spherically aberrated

ray is given by:-

Q=F "Crz‘csl’”"---.-
(128)

Where C3 and 05 represent third and fifth order aberrations
respectively.

Figures (22)-(26) show the variation of Q with r* for the five
vaoltage ratios. It can be seen that in each case fifth order
effects become noticeable for rays of over about 50% filling.
This was also the observation of Harting and Read (1976).
Since graphs (17)-(21) represent fillings of up to 90%,
equation (125) must be independent of both third and fifth
orqer aberrations.

The deterioration of this relationship for the near focus rays
of the 40:1 lens suggests that (125) may be an approximation
that is less applicable to strong lenses. We shall investigate

this in more detail later in the thesis.
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3.3) RELATIONSHIPS BETWEEN AEERRATION COEFFICIENTS

We shall now show that in the light of the observations that
have been made, it is possible to represent all the third and
fifth order geometric aberrations using three unique
coefficients only.

If we incorporate the partial differentials of equation (125)

with respect to r, and r':i-

ooI o/
—1 ﬂ1
I
-h
[+ \
‘*1#‘
”
+
ol:u
1R
~——/

(129)

0401
-'1‘ ;‘
L]
o h

VO
+
a

[<F311s g
g | 'ﬂ
e

(130)

into the Lagrange Invariant which was derived in section one

(equation (3%) ), then we can show thati-

)
(1 + rl" ?’zr. (1 + r,”' )),z(cr,}_r}’ - £ h’)

on' ar,
(131)
If we use the binomial expansion:-
(1 o+ PPt e 3e vt e Ll
2 8
(132)

then we can substitute for r, and its derivatives by using

equations (112), (114) and (116). A rather lengthy calculation

will show:-
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dme = 3mg + 3/2

(133)
Gmw LY (

134)
36m;y = my, -3/2

(135)
a5 = SOy = 3m + 3/8 (13

&)

20q,, = 4q,5 - 3mg (137)
30q, = 3qy, - 3my, - 9/4

(138)
40q, = 2q,; - 3m, (139)
Soqy = q,, + 15/8

(140)

Hence, given equations (122) and (123) we can expréss all the
third and fifth order geometric aberrations in terms of just
three coefficients: mg , q,, and o,

To some extent we can check the validity of equations (133) -
{140) by extending a method used by Verster (1963) which
utilised the isotropic properties of an electrostatic field.
An extremely lengthy fifth order calculation enables three of
the third order and five of the fifth order coefficients to be
expressed in terms of the others:-

fMyg =
(141)

(142)

(143)
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Qg = Sy = Img = 3mgmy, + 3m,/2 + /8

(144)
2qw = hqy + bmymg - bm,, Mg = 3mg
(14%5)
2
3Qg3 = 3q,, * 3mg - Imymy - bmem, = 9Im/2Z - 15m, /2 - 9/4
(146)
A, = 2q;; - 18mym, + Zmgm, = 12Zm, = 3mg
(147)
%
20y = Q, * my, - 3my/2 - 3mgmy + 15/8
(148)

Inspection will show that our relationships are compatible

with these results.

2.4) CALCULATING THE ABEERATIUN COEFFICIENTS

It is a relatively straight forward matter to use the data
from the trajectories to determine the value of o for a given
voltage ratio. We have from equation (127) that for parallel

incidence:-

@=F - foft + _x
fn
(149)

Using a Least Squares fit on the output parameters of
trajectories of up to 40% filling the value of o was

determined for a range of voltage ratios. These are shown in

Table 4.

The determination of the my, and q. coefficients was, however,
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found to be more involved. For parallel incidence the
variation of r' with r.is given by:-

P 3.3 5, ¢5
r,y = WA PR L AVE A Qe /f,

(150)

Problems arise when fitting data to this fifth order
relationship due to the presence of higher order variations.
If we are to derive the correct values for m, and q,¢» then it
is necessary to consider as wide a spread in incident rays as
possible. However, if the spread is too large then 7th and
higher order effects will detract from the accuracy of the
coefficients. It was found to be too haphazard to try and
resolve this problem by attempting to determine the optimum
maximum filling factor that should be considered.
Consequently, the m, and q, coefficients were calculated by
fitting a higher order polynomial to r,’. In fact for the
weaker lenses it was necessary to consider 1ith order
variations before q;. became stationary.

The derived values of Mg and q, are shown in Tables (5) and
{6), along with the values of all the other third and fifth
order coefficients which have been calculated from these using

equations (122),(122) and (133)-(140).
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TAELE 4. THE COEFFICIENT o AS A FUNCTION
OF VOLTAGE RATIO.

(2 Cylinder Lens. g/D = 0.1)

Va /Y, 2 S - 10 20 40
=8 1.187 1.47 1.75 2.17 2.96

Y/
(Vo /V)? 1.189 1.50 1.78 2.11  2.51

By considering the standard deviations in the Least Squares
analysis we were able to estimate the accuracy of the quoted
values. We believe me and q,, to be accurate to within 1% and
5% respectively. The other coefficients are derived from these
two and ¢. They are therefore less accurate. Inspection of
equations (122), (123) and (133)-(140) will show that the
largest errors should occur in mg4 and q,, . We estimate these
errors to range from 1% and 5% respectively for the 2:!1 lens,
to 10% and 20% respectively for the 40:1 lens. Kuyatt quotes
accuracies of 10% for (most of) his third order coefficients
and describes his fifth order coefficients as accurate to
about a factor of 2.

It can be seen that the present results are generally in good

agreement with the results of Kuyatt and Read.
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TABLE 5. ABERRATION COEFFICIENTS IN THE EXPANSION OF Loy

(Two cylinder lens. g/D = 0.1)

Vo, /V= 2

Ty Ty, TRy My TQ,, Tq, TQ, 79, TQ, Qg
Present 283 1010 1190 473 6.7E4 4.0E5 9.5ES 1.1E46 6.7ES 1.4ES
Kuyatt 285 1029 1240 502 1ES Z2ES
Read 278 991 1180 447
V, 7V, =5

=My “May -mls ~Myg -qy -q,5 ~Q,s “ Q. “Qg ~Qi¢
Present 7,21 30.3 44.5 22.3 82 600 1800 2700 2000 400
Kuyatt 7.34 31.& 47.0 Z3.6 72 430
Read 7.02 30.0 44.3 22.2
Vo /V, =10

My Ty, o Tmg <My =qy T TQp Ty T ~Qug
Present. 1.50 4.59 11.5 7.20 3.8 35 120 220 210 76
Kuyatt 1.44 .77 12.0 7.06 6b6.2 . 94
Read 1.46 46.70 11.9 7.24
VLIV‘=ZO

—Myy -mlq _mls -m)‘ “Qn “Q -qﬂ “Qug ’q's ~Qy¢
Present .530 1.9% 4.24 3.36 .10 3.0 14 31 37 18
Kuyatt LA460 2.23 4,27 3.44 .27 25
Read .470 2.06 4.58 3.54
V,/V, =40

=Myq =My, LT =M ~8Qn “Qin ~Qy3 “fig -q,s Ay
Present .235 .590 1.75 2.22 -.09 .44 2.9 8.5 14 2.7
Kuyatt 186 ,722 2.03 2.29 0 5.9

Read .200 670 2.27 2.26
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TABLE &. ABERRATION COEFFICIENTS IN THE EXPANSION OF r

(Two cylinder lens. g/D = 0.1)

V, V= 2

Ty TMay Ty M 0y, "z, TA3;  TQ;, T9;5 Qe
Present 3354 1190 1420 S61 8.0E4 4.8E5 1.1E6 1.3E6 8.0E5 1.9ES
Kuyatt 364 1270 1480 575 4E4 3ES
Read 321 1180 1400 553
V, IV, =5

—fhz3 “Mgy “Mag My, —4q,, —Q,, Qa3 ~Qq, “Q2¢ “Adzg
Present 10.6 44.5 &%5.4 32.8 120 890 2600 3900 2900 880
Kuyatt 11.0 47 69 34.7 106 643
Read 10.5 44.3 65.1 32.6
Vy 7V, =10

—Mzy “May ~Mzs ~Mze 0y “Qq “Qq5 Qg -qzs “Oz¢
Present 2.9 11.5 20.1 12.6 &.6 61 220 390 360 130
Kuyatt 2.71 11.4 19.6 12.2 13.5 . 174
Read 2.74 11.9 20.5 12.8
Vy 7V, =20

My, Mg, Ty TMag  TOy TG, "9 TAa, TRy TQ2
Present 1.15 4.24 9.19 7.73 .21 5.4 30 &7 79 39
Kuyatt 1.16 5.29 8.05% 7.27 .79 &6
Read 1.19 4.5 9.12 7.55
Vy/V, =40

=y My, Mg Mae “8 "9, T8 Ty TR, TO
Present 497 1.75 5.17 6.58 .29 1.3 8.7 25 41 ?9
Kuyatt A5 z.19 3.03 ¢&.52 34 34

Read 730 2,27 S5.27 6.36
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3.5) RAY REVERSAL

If a ray travelling from, say, left to right has its input and
output parameters related by equation (12Z5) then it can be
seen that o is a dimensionless quantity. If we denote the

- parameters of a second ray, travelling in the opposite

direction by ~, then it follows that:-

(151)

If these raypaths are coincident then, using (26) and (29):-

!
r,/f, =r' +@r /f, +Gr
2 ' ot ' (152)
Comparison of (152) and (125) shows that:-
5.0 = 1
(153)

Inspection will show that given (122) and (123), this result
ic ronsistent with the relationships that we have shown to
exist between the aberration coefficients of forward and
reverse rays (equations (30)-(33) ).

All the relationships derived in this thesis have been tested

and found to be self consistent with respect to ray reversal.
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SECTION FOUR

FURTHER TREATMENT OF RESULTS

In this section we shall investigate the basis of our results
and their limitations. We shall then show how, for a wide
range of lenses, they lead to very simple expressions for many

of the properties associated with geometric aberration.

4.1) RANGE OF APPLICATION

Earlier on we observed some deterioration in the relationships
that we are examining in the case of a 40:1 voltage ratio
lens. It would appear, therefore, that these relationships are
approximations only, and may not be applicable to the
aberrations of stronger lenses. We shall now investigate these
limitations and derive a criterion that may be used to assess
whether or not the results that have been obtained can be
applied to a particular lens. We shall do this by considering
the particular problem of spherical aberration.

If we denote the aberration of a ray from a point axial object
by its radial displacement.[&r, at the Gaussian image plane
(see Figure 31), then we can define the third order spherical
aberration coefficient, Cs{(M), in terms of Ar, q’ and M (the

linear magnification)i-
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Ar = M,Cs(M)q'B

Where it can be shown that:-

Cs(M) = Cs,+ Cs, M '+ Cs, M+ CsyM + Cs M*

(154)

(155)

It can also be shown that the following relationships exist

between the Cs and the mg coefficients (Verster, 1963):-

Csp =-m,f,

Cs, = (Amy+ 1.3)F
2

Cs, = -2m,f/¥f,

' 3 .2
Csy= (4mg+ 1.5)E/F,

3
Cs, = —myh/ f;

(154)

(157)

(158)

(159)

(160)

If our results are applicable, then it follows from (122) and

(133)-(135):-

Csp= -img + 0.5, /0 + 0.5f, /¢
Cs, = 4(mg + 0.5)F /6" - 0.5,
Cs,= ~bimyg + 0.5/ (F, )

3 2 . 3 2
Cs,= 4(m g+ 0.5)f /f, + 0.5f, /£,

(161)

(162)

(162)

(164)
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Cs,= —(myg + 0.5)16F%/¢> + 0.56¢"/¢}
(165)

These inelegant relationships enable us to establish a very

simple test of our results. If we define:-

4 3
Y = Cs, (df, /F, ) + Cs, (OF, /f, ) + Cs, (dF, /F, )

+ Cs, (6F /F, ) + Cs

3 4

(1646)

then inspection will show that Y=0 if our results are valid.

Therefore:-

2 3
Cset Cs, (f, /0f, ) + Cs, (F,/dF, ) + Cs, (F, /OF, )

4

+ Cs, (F, /0F, ) =0

- (167)

must also be true. Comparison with (155) shows that when
M=Cfafef)™" then the limiting system (for which our results
ore ppgcke) will be free from spherical aberration. The valuve

of the object distance, P, can be derived from (15):-

P=F - f. /0
v (168)

where, because the linear magnification is positive, P < F.

Since all rays from this object point are unaberrated, they

must all pass through the same (virtual) QG:i-

! (169)
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As this is true for all rays P and Q must be interchangeable,

and since O is single valued we must have that:-

P = -Q
(170)
Hence, fram (15):-
(P-F, Y (-P-F_,) = f f
' 2 v (171)
Which means that if P is real and singular:-
. 2
af, F = (F, +F,)
(172)
and:-
P = (F -F,)/2
S (173)
& = 2F,/(F, +F,) = (F +F, )/2F, (7a)
]
= (F,7F 0% = (v sy,
k3 ]
(17%)

We have in these relationships two results of particular

importance. Firstly, equation (172) relates the focal lengths
of the systems for which our observations areprecise. This is
explored in Table 7 where the focal lengths of the simple two

tube lens are given along with the percentage error that there
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would need to be in each in order that (172) be correct. It is
clear from these results that our observations are based on a
weak lens model, even though they have been seen to predict
accurately the aberrations of lenses with voltage ratios of
twenty to one. Secondly, equation (175) enables us to derive
the value of the coefficient o from the overall voltage ratio.
This will prove particularly useful in examining the
application of our results to more complex lens geometries. In
Table 4 we show how the value of o (which was derived earlier
for the two tube lens) compares to (Vz/V,;m . It can be seen
that, with the exception of the 40:1 lens, there is strong

agreement.

TABLE 7. FOCAL LENGTHS OF THE TWO CYLINDER LENS

{g/D = 0.1)

\ AT £, £, F, F, “Error
2 1.10E+1 1.5¢E+1 1.32E+1 1.30E+1 7.5E-3
3 1.77E+0 3.95E+0 2.78E+0 2.48BE+0 2.6E-1

10 8.00E-1 2.54E+0 1.62E40 1.19E+0 7.2E-1

20 4 .60E-1 2.05E+0 1.21E+0 6.40E-1 2.4E+0

40 3.00E-1 1.90E+0 1.03E+0 3.20E-1 5.5E+0
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4.2) OTHER LENS GEOMETRIES

The results that we have obtained so far have been derived
from the model of. the simple two tube lens shown in Figure
(7). We shall now investigate their validity for the lenses of
mare complex geometries that are shown in Figures (1)-(3). For
this purpose we shall use the accurate third order spherical
aberration coefficients that have been derived by Harting and
Fead (1976).

Using (173) to derive the value of &, we have calculated the
value of Y given by equation (166&), where, if our
relationships are valid, we would expect Y to be zero. Tables
(8)-(14) show the results for the various lenses. The error
that is quoted is the percentage error that there would need
to be in each of the Cs coefficients in order that.Y should be
zero, This error should be compared with the 1% error that

Harting and Read quote for their results.

We can summarise the results of the Tables as follows:i-

i) The relationships between the coefficients are applicable

to weaker lenses and, hence, to systems in which the

aberrations are large.

ii) For two element lenses the range of application is limited

to voltage ratios of less than 40:1.

iii) The range of application for three element lenses cannot
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be so simply defined. It is clear that the criterion lies not
in the overall voltage ratio but in the focussing strength of
the lens. We have found that, as an approximate rule of thumb,

pur results are appropriate for lenses in which the value of Fi

is greater than 1/2.

iv) None of the geometries investigated showed any deviation
from the comments that we have made. The basic rule seems to
be that the larger the aberration coefficients then the more

applicable are our results.
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TABLE 8. SPHERICAL ABERRATION COEFFICIENTS FOR THE TWO CYLINDER,
EQUI-DIAMETER LENS

G/D=

V2/vi

2.0
5.0
10.0
20.0
40.0

G/D=

VZsVil

2.0
3.0
10.0
20.0
40.0

G/D=

V2/Vv1

2.0
5.0
10.0
20.0
40.0

ll
Cso

4 ,34E+3
2.77E+1
3.70E+0
9.538E-1
3.72E-1

S

Cso

4 ,42E+3
3.01E+1
4 ,03E+0
1.04E+0
3.94E-1

1
Cso

6.22E+3
4 ,Z22E+1
5.95E+0
1.34E+0
4 ,90E-1

CS1

=1.44E+4
-7.17E+1
=7.54E+0
-1.49E+0
-4.,15E-1

Csi

-1.55E+4
-7 .90E+1
-8.47E+0
-1.68E+0
-4.73E-1

CS1

-2.10E+4
-1.14E+2
-1.24E+1
-2.44E+0
-6.72E-1

Cs2

1.84E+4
7.03E+1
S.99E+0
9.45E-1
2.15E-1

Csz

1.96E+4
7.87E+1
5.97E+0
1.13E+0
2.63E-1

CSs2

2.6LE+4
1.18E+2
1.09E+1
1.80E+0
4 .1ZE-1

CSs3

-1.03E+4
-3.10E+1
-2.21E+0
-2.93E-1
-5.62E-2

Ccs3

-1.10E+4
-3.53E+1
~-2.66E+0
-3.71E-1
~7.34E-2

cs3

-1.50E+4
-5.48E+1
-4 .43E+0
-6.31E-1
-1.24E-1

cs4

2.146E+3
5.19E+0
3.20E-1
3.92E-2
7.74E-3

CS4

2.31E+3
6.0ZE+0
4 ,00E-1
J.16E-2
1.02E-2

CS4

3.17E+3
9.47E+0
6.98E-1
9.08E-2
1.72E-2

Y

-1.68E+0
-5.13E-3
6.07E-4
2.30E-3
2.59E-3

Y

1.30E+1
Z.b46E-3
5.07E-3
3.20E-3
2.70E-3

Y

-1 . 10E+1
1.40E-1
3.64E-3
4.91E-3
3.03E-3

%ERRCOR

4 .8E-3
6.0E-3
1.1E-2
3.8E-1
2.46E40

%ERROR

3.5E-2
Z2.8E-3
8.4E-2
4.5E-1
2.2E40

%ERROR

2.2E-2
?.9E-2
3.8E-2
4.3E-1
1.6E40
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TABLE 9. SPHERICAL ABERRATION COEFFICIENTS FOR THE TWO CYLINDEK,

2B =
OO OUN
OQCOoOOCQ

D2 =

V2/Vvi

2.0
5.0
10.0
20.0
40,0

D2 =

V2/Vi1

2.0
5.0
10.0
20.0
40.0

ASYMMETRIC LENS

Cso

&.75E+3
4.06E+1
5.08E+0
1.23E+0
4 ,50E-1

1.5#D1

Cso

S.91E+3
3.41E+1
4 ,40E+0
1.10E+0
4 ,13E-1

Di1/1.5
ceo

S5.51E+3
3.97E+1
4 ,88E4+0
1.35E+0
7 .92E-1

Di/z
cso

6.81E+3
4.45E+1
6.14E+0
1.646E+0
6.846E-1

Cs1

-2.20E+4
-1.08E+2
-1.09E+1
-2.04E+0
-5.99E-1

CsS1

-1.85E+4
-8 .97E+1
-9.25E+0
-1.78E+0
-4.92E~1

csi1

-1.84E+4
-9.06E+1
-9.61E40
-1.87E+0
-3.72E-1

cs1

-2.27E+4
-1.11E+42
-1.18E+1
-2.33E+0
-6.45E-1

Csz

2.88E+4
1.09E+2
9.03E+0
1.39E+0
3.07E-1

-CsZ

2.34E+4
B.94E+1
7.55E+0
1.18E+0
2.64E-1

csz

2.31E+4
€.7ZE+1
7 .39E+0
1.18E+0
3.06E-1

Csz

2.84E+4
1.0S5E+2
8.74E+0
1.3%5E+0
3.02E-1

Cs3

-1.62E+4
-4 .91E+1
-3.44E+0
-4 ,50E-1
-8.42E-2

CS3

-1.32E+4
-4 .00E+1
-2.85E+0
-3.7%E-1
-7.11E-2

cs3

-1.29E+4
-3.77E+1
-2.68E+0
-3.45E-1
-6.22E-2

cs3

-1.58E+4
-4 ,48E+1
-3.02E+0
-3.84E-1
-7.17E-2

Cs4

3.43E+3
8.40E+0
5.15E~1
6.07E~2
1.12E-2

Cs4

2.77E+43
&.80E+0
4 ,20E-1
5.03E-2
9.57E-3

Cs4

2.70E+3
6.21E+0
3.746E-1
4,70E-2
9.98E-3

CEa

3.2%E+3
7.24E40
4,.135E-1
4,95E-2
1.0ZE-2

Y

-9 .80E+0
1.31E-1
8.35E-4
2.40E-3
2.36E-3

Y

-2.86E+1
2.847E-2
-6.13E-5
3.81E-3
2.42E-3

Y

€.97E-1
3.97E-2
7.41E-3
1.74E-2
2.99E-2

Y

-6.83E40
-5.88E-2
-32.80E-3
&.41E-3
&.03E-3

%ERRCR

1.8E-2
1.0E-1
1.0E-2
2.7E-1}
1.6E+0

%ERROR

6.4E-2
2.3E-2
9.4E-4
S.1E-1
2.0E+0

*%EFRCR

1.2E-2
4,.6E-2
5.0E-2
7.4E-1
4.1E40
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TABLE 10. SPHERICAL ABERRATION COEFFICIENTS FOR THE THREE

CYLINDER LENS.

Vi/Vl= 2
VZsivi Cso
-0.8 2.37E+0
=0.&6 DS.49E+0
-0.4 1.48E+1
-0.2 3.88E+!

0.0 1.01E+2
2.0 4.39E+3
4.0 1.53E+2
6.0 2Z.33E+1
8.0 7.79E+0
10.0 3.83E+0

V3/Vi= 5
V2/svi Cso
-1.2 1.43E+0
-0.8 3.Z4E+0
-0.4 &.83E+0

0.0 1,246E+1
2.0 3.08E+1
4.0 3.48E+1
6.0 2.03E+1
8.0 1.09E+1
10.0 &6.27E+0
vVasvi= 10

VZsvi1 cso

-1.& £.80E-1
-1.3 1.17E+0
-0.8 1.78E+0
-0.4 2.32E+40
0.0 2.84E+0
2.0 3.97E+0
4.0 4.30E+0
6.0 4.,74E+0
8.0 4.41E+0
10.0 3.71E+0
v3/vi= 20
V2sVv1 cso
~2.0 5.20E-1
-1.0 7.21E-1
0.0 ©.84E-1
2.0 1.01E+0
4,0 1.02E+0
6.0 1.06E+0
8.0 1.13E+0
10,0 1.17E+0

Cs1

-5.98E+0
-1.80E+1
-5.00E+1
-1.34E+2
-3.51E+2
-1.47E+4
-4 .93E+2
-7.23E+1
-Z2.27E+1
-1.01E+1

csi

-3.46E+0
-8.84E+0
-1.90E+1
-3.45E+1
=7 .92E+1
-9 .20E+1
-3.19E+1
-2.465E+1
-1.47E+1

Csi

-1.89E+0
-2.59E+0
-3.94E+0
-S.11E+0
=& .15E+0
-7 .84E+0
-9.146E+0
-1.,03E+1
-9.31E+0
-7 .38E+Q

cs1

-8.8%9E-1
-1.21E+0
-1.42E+0
-1.5S1E+0
-1.55E+0
-1.73E+0
-1.91E+0
-2.01E+0

A/D=0.5 G/D=0.1
Csz cs3 cs4
7.78E+0 -5.20E+0 1.81E+0
Z,37E+1 -1.51E+1 4,03E+0
b.6ZE+]1 -4,.08E+1 9 .84E+0
1.77E+2 -1.06E+2 2.45E+1
4.61E+2 -2.72E+2 4.09E+1
1.85E+4 -1.04E+4 2,18E+3
6.02E+2 -3.30E+2 4.82E+1
8.71E+1 -4.83E+1 1.04E+1
2.71E+1 -1.56E+1 3.61E+0
1.21E+1 -7.35E+0 1.89E+0
Csz Ccs3 cs4
3.93E+0 -2.29E+0 4.39E-1
9.87E+0 -3.32E+0 1.18E+0
2.06E+1 -1.04E+1 2.,07E+0
3.64E+1 -1.75E+1 3.Z4E+0
7.78E+1 -3.44E+1 5.89E+0Q
¥.22E+1 -4.1%3E+1 7.08E+0
5.00E+1 -2.17E+1 3.60E+0
Z.49E+1 -1.04E+1 1.74E+0
1.3¢E+1 -5.85E+0 9.88E-1
csz ce3 cs4
1.83E+0 -9.05E-1 2.08E-1
2.45E+40 -1.14E+0 2.34E-1
3.460E+0 ~-1.57E+0 2.81E-1
4,4EE+0 -1.84E+0 3.08E-1
5.21E+0 -2.04E+0 3.23E-1
&.1ZE+40 -Z2.24E+0 3.31E-1
7.7LE+0 -3.09E+0 4.86E-1
8.70E+0 -3.40E+0 S.17E-1
7.42E+0 -2,88E+0 4,25E-1
6.02E+0 -2.2ZE+0 3.2ZZE-1
CS2Z ce3 Cs4
b.81E-1 -2.67E-1 4.78E-2
8.5¢E-1 -2.99E~1 4.44E-2
9.36E-1 -2.99E-1 4.05E-2
9.3%E~1 -2,89E-1 4,00E-2
1.02E+0 -3.46E-1 ©$.23E-2
1.22E+0 -4,30E-1 b.43E-Z
1.37E+0 -4.7%E-1 4.98E-2
-4,83E~1 6.8l1E-Z

1.42E+0

Y

S.67E-1
2.33E-1
3.17E-2
2.46E-1
-5.34E-2
-2.95E+1
-2.57E-1
3.38E-2
S5.21E-2
1.74E-1

Y

1.146E-1
4.03E-2
1.13E-2
1.77E-2
1.84E-2
5.95E-3
2.72E-2
b.14E-2
1.56E-2

\I

2.9¢E-2
1.48E-2
1.03E-2
2.04E-3
4 .48E-3
5.94E-3
3.38E-3
-1.40E-3
3.69E-3
- 3.57E-4

Y

5.81E-3
2.72E-3
2.4LE-3
3.24E-3
3.87E-3
4 ,34E-3
4.17E-3
F.19E-3

%ERKQOR

3.4E40
4 .9E-1
2 .4E-2
7.2E-2
6.1E-3
8.4E-2
2.2E-2
Z.0E-2
9.7E-2
7.1E-1

%ERROR

2.2E+40
3.2E-1
4,4E-2
4 ,0E-2
1.96-2
S.3E-3
4 .5E-2
Z.0E-1
9.4E-2

%ERKOR

1.7E+0
6.6E-1
3.2E-1
S.2E-2
F.9E-2
1.1E-1
9.0E-2
1.8E-2
5.6E-2
&.8E-3

WERFOR

1.3E+0
S.0E-1
4 ,2E-1
5.4E-1
S.6E-1
5.5E-1
4.8E-1
3.6E-1
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TABLE 11. SPHERICAL ABERRATION COEFFICIENTS FOR THE THREE

CYLINDER EINZEL LENS. A/D=0.5 GsD=0.1
vVz/vi cso Cs1 CS2 cez CSa Y “ERROR
-0.5 D5.37E+0 -1.6E8E+1 2,.38E+1 -1.48E+1 5.37E+0 9.40E-1 1.3E+0
0.0 2.42E+2 -9.54E+Z 1,43E+3 -9.54E+2 2.42E+2 6.00E+0 1.5E-1
0.5 4.47E+4 -1.79E+S 2.48E+5 -1 ,79E+5 4.87E+4 -46.00E+2 8.3E-2
1.5 2.03E+35 -8.10E+S 1.22E+6 -8.10E+5 2.023E+5 & .00E+3 1.86-1
2.0 G.68E+3 -2.Z7E+4 3.,40E+4 -2.27E+4 S.68E+3 =-4.00E+1 4,4E-2
3.0 2,26E+2 -9.33E+2 1,39E+3 -9.33E+2 2.3&tE+2 -4.00E+0 1.0E-1
4.0 4.71E+1 -1.81E+2 2.67E+Z -1.81E+2 4.71E+1 -8,00E-1 1.1E-1
5.0 1.72E+1 -6.31E+1 9.,19E+1 -6.31E+1 1.72E+1 1.00E-1 3.9E-2
6.0 B.65E+0 -2.97E+1 4,Z4E+1 -2 .97E+1 8 .65E+0 2.99E-1 2.5E-1
7.0 35.29E+0 -1.67E+1 2.33E+1 -1.47E+1 5.29E+0 4,79E-1 7.1E-1
8.0 3.69YE+0 -1.05E+1 1.43E+1 -1.05E+1 3.49E+40 6.80E-1 1.5E+0
9.0 2.83E+0 -7.17E+0 9.44E+0 -7.17E+0 2.83E+0 7.80E-1 2.6E+0
10.0 2.33E+0 -5.14E+0 b6.62E+0 -5.14E+0 2.33E+0 9.99E-1 4.6E+0
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TABLE 12. SPHERICAL ABERRATION COEFFICIENTS FOR THE TWO

A/D=
vVzrsvi
2.0
5.0
10.0

20.0
40-0

A/D=

vV2/v1

5K

ol e Nold NN
" =

cocooo

APERTURE LENS,

.

cso

S.94E+3
3.95E+1
5.51E+0
1.51E+0
6 .3%9E-1

1

Cso

&.02E+3
4.12E+1
5.67E+0
1.51E+0
&.08E-1

Cs1

-2.00E+4
-1.02E+2
~1.13E+1
-2.37E+0
-7.22E-1

Ccsi1

-Z2.05E+4
-1.09E+2
-1.22E+1
-2.54E+0
-7.62E-1

T/D=0.

Csz2

2.52E+4
1.00E+2
8.93E+0
1.48E+0
3.54E-1

Csz

2.5BE+4
1.10E+2
1.0ZE+1
1.73E+0
4.22E-1

05 Di=D2=D

Cs3 Cs4
-1.81E+4 2.94E+3
-4.41E+1 7 ,34E+0
-3.23E+0 4.53E-1
-4.34E-1 S5.19E-Z
-8.26E-2 8.59E-3

cs3 Cs4
-1.45E+4 3,.05E+3
-4,95E+1 8.48E+0
-3.91E+0 5.84E-1
-5.60E-1 7.35E-2
-1.12E-1 1.30E-2

Y

1.03E+1
-3.52E-2
2.09E-3
2.51E-3
2.29E-3

Y

-4 .90E+1
Z.12E-1
1.02E-2
2.45E-3
2.42E-3

%“ERROR

2.1E-2
2.9E-2
2.7e-2
2.7e-1
1.4E40

%ERROR

1.0E-1
1.4E-1
1.1E-1
Z.3E-1
1.3E40



TABLE 13.
V3/vi= 2
V2/V1 €S0
-1.0 2.72ZE+0
-0.8 8.60E+0
-0.6 Z.04E+1
-0.4 4.82E+1
0.0 2.60E+2
2.0 S5.63E+2
4.0 3.08E+2
6.0 4.91E+1
8.0 1.62E+1
10.0 7.75E+0
Va/vi= 5
V2/V1l €S0
-1.0 5.31E+0
-0.8 7.Z9E+0
-0.6 9.76E+0
-0.4 1.27E+1
-0.2 1.60E+1
0.0 1.96E+1
2.0 3.69E+1
4.0 4.32E+1
6.0 3.07E+1
8.0 1.85E+1
10.0 1.14E+1
V3/Vi= 10
V2/vl €S0
-1.6 1.70E+0
-0.8 2.75E+40
0.0 3.73E+0
2.0 4.74E+0
4.0 5.24E+0
6.0 5.84E+0
8.0 5.87E+0
10.0 5.36E+0
V3/Vi= 20
vV2/V1l €S0
-2.0 7.72E-1
-1.0  9.446E-1
0.0 1.08E+0
2.0 1.20E40
4.0 1.26E+0
6.0 1.33E+0
8.0 1.842E+0
10.0 1.51E+0

Csi1

-1.08E+1
-2.81E+1
-6.935E+1
-1.67E+2
-9.01E+2
-1.89E+4
-1.00E+3
-1.55E+2
-4 .92E+1
-Z.23E+1

Cst

-1.47E+1
~-2.03E+1
-2.72E+1
-3.51E+1
-4 .39E+1
-3.32E+1
-9.54E+1
-1.14E+2
-7 .81E+1
-4 ,54E+1
-2.72E+1

Cs1

-3.82E+0
-6.08E+0
-7 .95E+0
-9.39E+0
-1.11E+1
-1.26E+1
-1.24E+1
-1.10E+1¢

CSi

-1.33E+0
-1.97E+0Q
~1.73E+0
-1.84E+0
-1.97E+0
-2.17E+0
-2.38E+0
~2.S5E+0

Page §

A/D=0.

Csz

1.41E+1
3.72E+1
9.22E+1
Z2.21E+2
1.18E+3
Z.38E+4
1.23E+3
1.87E+2
5.87E+1
Z.64E+1

csz

1.64E+1
Z2.23E+1
2.94E+1
2.75E+1
4.L2E+1
S.5ZE+]
9.39E+1
1.14E+2
7.52E+1
4.25E+1
2.50E+1

csz

3.55E+0
S.34E+0
6.63E+0
7.60E+0
9.20E+0
1.05E+1
1.01E+1
8.70E+0

CSz

9.60E-1
1.08E+0
1.14E+0
1.18E+0
1.30E+0
1.48E+0
1.45E+0
1.73E+0

|
o

[
put }

Cs3

-2.24E+0
-2 .34E+1
-5.64E+1
~1.32E+2
-6.87E+2Z
-1.32E+4
-6.71E+2
-1.0ZE+2
-3.25E+1
-1.50E+1

ce3

-8 .54E+0
-1.13E+1
-1 .8LE+1
-1.83E+1
-2.Z1E+1
-2.60E+1
-4 ,17E+1
-35.08E+1
-3.24E+1
-1.80E+1
-1.03E+1

ce3

-1.&L0E+0
-2.21E+40
-2.57E+0
-2.81E+0
-3 .56E+0
-4 ,01E+0
-3.74E+0
-3.15E+0

Cs3

-2 .44E-1
-3.5%E-1
-3.61E-1
-3.71E-1
-4 ,24E-1
-4 .94E-1
-5.47E-1

Cs4

2.75E+40
5.98E+0
1.35E+1
3.04E+1
1.51E+2
2.80E+3
1.38E+2
2.13E+1
7.03E+0
3.41E+0

Cs4

1.78E+0
2.27E+0
2.83E+0
3.43E+0
4 ,06E+0
4 ,b6LE+0
7.06E+0
8.61E+0
5.35E+0
2.92E+0
1.70E+0

Cs4

3.00E-1
3.63E-1
3.89E-1
4.13E-1
S.40E-1
S.94E-1
S .38E-1
4.43E-1

CSa

5.27E-2
S.02E-2
4.82E-2
S.02E-2
5.93E-2
6.89E-2
7.43E-2

-5.68E~-1 -7.50E-2

SFHERICAL AEERRATION COEFFICIENTS FOR THE THREE
APERTURE LENS.

Y

3.88E-1
1.99E-1
1.42E-1
4.73E-1
1.95E+0
2.22E+1
2.89E+0
1.43E-1
5.35E-2
7.95E-2

Y

6.89E-2
7.29E-2
3.17E-2
S.21E-3
1.29E-2
-3.15E-2
1.5¢E-2
1.66E-1
-3.78E-2
1.14E-2
3.86E-3

Y

1.35E-2
2.48E-3
-3.59E-4
4.78E-3
-2.52E-3
6.77E-3
1.06E-2
Z.69E-3

Y

Z2.4686E-3
3.22E-3

2.48E-3

1.94E-3
4.18E-3
2.29E-3
2.93E-3
-1.46E-1

%ERROF

1.3E+0
z.7E-1
8.0E-2
1.1E-1
8.7E-2
4 ,9E-2
1.2E-1
4.0E-2
4.7E-2
1.5E-1

%ERRCR

3.3E-1
2.6E-1
8.8E~-2
1.1E-2
2.3E-2
4.,7E-2
1.3E-2
1.2E-1
4.1E-2
Z.2E-2
1.2E-2

%ERROR

4.,2E-1
S5.7E-2
b.2E-3
7.2E-2
3.1E-2
7.5E-2
1.2E-1
3.6E-2

%ERROR

4,.3E-1
4.7E-1
4,.8E-1
Z.6E-1
5.0E-1
3.5E-1
3.8E-1
1.5E+1
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EINZEL LENS.

Cso

1.10E+1
4,Z21E+1
1.74E+2
8.11E+2
1.31E+5
SL.19E+5
1.40E+4
3.51E+2
1.05E+2
3.68E+1
1.77E+1
1.02E+1
6.80E+0
4,91E+0
3.80E+0

Ccsi

-3.846E+1
-1.41E+2Z
-6.86E+2
-3.23E+2
~-35.25E+5
-2.08E+&
-3.59E+4
-2.19E+2
-4 11E+2
-1.41E+2
-6.33E+1
~-3.44E+1
-2.29E+1
-1.54E+1
-1.13E+1

Page

A/D=0.5

cs2

5.56E+1
2.38E+2
1.0Z2E+3
4 B3E+3Z
7 .87E45
3.11E+¢
8.37E+4
3.Z8E+3
6.12E+2
2.08E+Z
9.93E+1
S5.Z5E+1
3.25E+1
Z2.18E+1
1.546E+1

9¢&

Css

-3.84E+1
-1.61E+2
-4 .84E+2
-3.23E+3
-5.235E+5
-2.08E+6
-5.59E+4
-2.19E+3
-4, 11E+2
-1.41E+2
-6.53E+1

-3.64E+1

-2.29E+1
-1 .54E+1
-1.12E+1

CSa

1.10E+1
4 ,Z1E+1
1.74E+2
8.11E+2
1.31E+5
S.19E+S
1.40E+4
S.51E+2
1.035E+2
3.68E+1
1.77E+1
1.03E+1
6.80E+0
4 ,91E+0
3.80E+0

Y

e.00E-1
3.99E-1
-4 ,00E+0
-8.00E+0

-1.00E+3

-1.20E+4

1.00E+2

2.00E+0

0.00E+0

-8.00E-1
1.99E-1
S.99E-1
6.00E-1
8.3%E-1
1.20E+0

TAELE 14. SPHERICAL ABERRATION COEFFICIENTS FOR THE THREE APERTURE

%ERRCR

9.1E-1
1.2E-1
2.9E-1
1.2E-1
1.9e-1
Z2.8E-1
1.7E-1
9.1E-2
0.0E+0
1.4E-1
1.5E-1
4.1E-1
& .5E-1
1.3E+0
1.3E+0
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4.3) FURTHER SIMPLIFICATION OF ABERRATION COEFFICIENTS

We have shown that our relationships are erroneous in the case
of very strong lenses. It follows, therefaore, that for the
lenses to which they can be applied the aberration
coefficients will be appreciable.

If we assume that qw>>mw>>0 then we can simplify equations

(1321-(140) -

Mg = dmg/3 = dtmm/3 = 6’mu
(176)
= 6q./5 = oq,/10 = 03q,/10 = 04,,/5 = o
Qe Qg Qy Qi G/~ i S0
{177)
Incorporating these and (122) and (1Z3) into equations
(114)-(117):-
3
M, k) = m, (d+k)
{(178)
= 3
M, (k) = dm (g+k)
(179)
- -1
G, (k) = q, (g+k)
(180)
0,00 = dq, (o+k )
' {181)
Hence, from (110), (112) and (113) we have that:-
’ ’ ? ’ o
n' = -/ +omr/o + r /) gl /0 + r, /f,) 182)

3 ,
n/f =r’ +om r/a+ r JE )+ oqlr/a+ o ”__2’5 (163
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Furthermore, it can be shown that the converse expressions are

given by:i-

5
r' = r,/f 4 ginglr, - rp/(df, ))3+ gq, fr, = ra/ (ef, 1)

(184)
-~ - ’ I’ 3 I )5
ro/ fz =-r, +oml-r, 4+ rzlto’Fl Yro+ ql-r) + rZ/(dFl)

z (185)

These greatly simplified relationships incorporate all the
third and fifth order meridional aberrations and enable the
output parameters of a ray to be calculated from a knowledge
of only two aberration coefficients and the lens constant o.
We have tested the validity of these expressions by comparing
the values of r; and ry p}edicted by equations (leé) and (183)
to those actually produced by ray tracing through the computer
model. These results are shown in Tables (15)-(18). In order
to give a fair test of the practical use of equations (182)
and (183) we have taken the focal lengths as being those
values derived from the Picht equation (see Cook and Heddle,
19746). Moreover we have taken the value of o to be the 4th
root of the overall voltage ratio (equation (1735) ). The
values of My and q are taken from our results for parallel
trajectories (Table 5).

In the case of =zero magnification, r, , which is derived
from O via equation (104), is very sensitive to small errors
in the focal lengths. In spite of this, the accuracy of

expressions (182) and (183) can be seen to be very good for a
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wide range of voltage ratios and linear magnifications.
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TABLE 15. COMPARISON OF THE OUTPUT PARAMETERS OF RAYS THROUGH THE
COMPUTER MODEL TO THOSE CALCULATED FROM EQUATIONS (182)
AND (183).
(TWO CYLINDER LENS. G/D=0.1 D1=D02=D V2/vi=2)
P=14 MAGNIFICATION =-12.3
COMPUTER MODEL CALCULATED
R1’ %WFILLING R2° R2 Rz R2
4,00E-3 11 -2.51E-4 4 ,35E-2 -2.50E-4 4 ,34E-2
8.00E-3 22 -&.35E-4 8.54E-2 -6.35E-4 8.54E-2
1.20E-2 34 -1.32E-3 1.22E-1 -1.30E-3 1.23E-1
1.60E-2 45 -2.49E-3 1.54E-1 -2.41E-3 1.55E-1
2.00E-2 S6 -4.52E-3 1.75E-1 -4,18E-3 1.79E-1
P=19 MAGNIFICATION =-1.8%
COMPUTER MODEL CALCULATED
R1 %FILLING R2 R2 RZ’ RZ
4.00E-3 15 -1.57E-3 4.31E-2 -1.57E-3 4.31E-2
8.00E-3 30 -3.50E-3 8.17E-2 -3.4CE-3 8.18E-2
1.20E-2 44 -6.24E-3 1.09e-1 -&.14E-3 1.10E-1
1.40E-2 53 -8.14E-3 1.16E-1 -7 .90E-3 1.19E-1
1.60E-2 61 -1.06E-2 1.14E-1 -1.00E-2 1.23E-1
P=INFINITY MAGNIFICATION=0
COMPUTER MODEL CALCULATED
R1 %WFILLING RZ K2 RZ’ RZ
&.00E-2 12 -3.89E-3 ~-3.44E-4 -3.8%9E-3 -3.98E-4
1.20E-1 24 -7 .95E-3 -2.89E-3 -7 .95E-3 -2.91E-3
1.80E-1 36 -1.23E-2 -1.03E-2 -1.23E-2 -1.00E-2
2.40E-1 48 -1.74E-2 -2.62E-2 -1.73E-2 =2.44E-2
3.00E-1 &0 -2.37E-2 -9.6%E-2 -2.31E-2 -5.02E-2
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TABLE 1é6. COMPARISON OF THE OUTPUT PARAMETERS OF RAYS THROUGH THE

COMPUTER MODEL TO THOSE CALCULATED FROM EQUATIONS (182)
AND (183).

(TWO CYLINDER LENS. G/D=0.1 D1=DZ=D  V2/V1=5)
P=2.8 MAGNIFICATION =-50.1
COMPUTER MODEL CALCULATED
R1’ %“FILLING RZ R2 RZ ¢ RZ
7 .00E-2 11 -2.32E-4 3.49E-2  ~2.34E-4 2. 49E-2
4 .00E-2 22 -8.21E-4 6.90E-2 -8.10E-4 6.90E-2
6.00E~2 34 -2.17E-3 {.01E-1 -Z.10E-3 1.01E-1
8.01E-2 45 -4 .79E-3 1.296~1 -4.57E-3 1.30E-1
1.00E-1 56 -9.33E-3 1.53E-1 -8.77E-3 1.55E-1
P=4.2 MAGNIFICATION =-1.2
COMPUTER MODEL CALCULATED
R1° wWILLING . R2’ R2 RZ " RZ
2.00E-2 17 -7 .50E-3 3.456-2 -7.51E-3 3.45E-2
4.00E-2 34 -1.63E-2 6.58E-2 ~1.62E-2 6.56E-2
5 .00E-2 42 -7 .16E-72 7.89E-2  ~Z.16E-2 7.91E-2
6 .00E-2 50 -7 .80E-2 8.95E-2 ~2.78E-2 8.99E-2
7.01E-2 59 -3.58E-7 9 .45E-27  -3.53E-2 9.75E-2
P=INFINITY MAGNIFICATION=0
COMPUTER MODEL CALCULATED
R1 % ILLING RZ R2 RZ " RZ
6.00E-2 12 -1.53E-2 -2.27E-4 -1.53E-2 -2.10E-4
1.20E-1 24 ~3.12E-2 -1.68E-3 -3.12E-2 -1.71E-3
1.80E~1 36 -4.81E-2 -5.96E-3 -4.81E-2 -5.96E-3
2 . 40E-1 48 —6.69E-2 -1.88E-2 -6.67E-2 -1.47E-2
3.00E-1 50 -8.85E-2 -3.1ZE-2 -8.79E-2 -3.02E-2
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TABLE 17. COMPARISON OF THE OUTPUT PARAMETERS OF RAYS THROUGH THE

COMFUTER MODEL TO THOSE CALCULATED FROM EQUATIONS (182)
AND (183).
(TWO CYLINDER LENS. G/D=0.1 D1i=DZ=D V2/vVi=10)
P=1.7 MAGNIFICATION =-9.3
COMPUTER MODEL CALCULATED
R1' %WFILLING rR2 R2 rRZ' rRZ
3.00E-2 10 -1.08E-3 Z2.38E-2 -1.05E-3 2.39E-2
6.00E-2 20 -2.44E-3 4.74E-2 -2.3%5E-3 4.75E-2
9.02E-2 31 -4 .36E-3 7.0ZE-2 -4.18E-3 7.04E-2
1.20E-1 41 -7 .24E-3 9.17E-2 -6.87E-3 9.23E-2
1.51E-1 o1 -1.14E-2 1.11E-1 -1.07E-2 1.12E-1
P=2.4 MAGNIFICATION =-1
COMPUTER MODEL CALCULATED
rR1’ %FILLING rR2’ R2 R2' RZ
3.00E-2 14 -9.48E-3 2.37e-2 -9.44E-3 2.37E-2
7.01E-2 34 -2.36E-2 S.34E-2 -2.34E-2 5.35E-2
2.02E-2 43 -3.19E-2 b.66E-2 -3.17E-2 &.67E-2
1.10E-1 53 -4 ,146E-2 7.79E-2 -4.13E-2 7.81E-2
1.20E-1 58 -4 .70E-2 8.28E-2 -4 . 48E-2 &.30E-2
FP=INFINITY MAGNIFICATION=0
COMPUTER MODEL CALCULATED
R1 %FILLING R2' R2 ‘R27 R2
&.00E-2 12 -2.38E-2 -1.57E-4 -Z2.38E-2 -1.37E-4
1.20E-1 24 -4 ,83E-2 -1.16E-3 -4.82E-2 -1.12E-3
1.80E-1 36 -7.40E-2 -3.93E-3 -7.39E-2 -3.89E-3
2.40E-1 48 -1,01E-1 -9 .65E-3 -1.01E-1 -9.58E-3
3.00E-1 &0 -1.32E-1 -1.99E-2 -1.32E-1 -1.96E-2
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TABLE 18. COMPARISON OF THE OUTPUT PARAMETERS OF RAYS THROUGH THE

COMFUTER MODEL TO THOSE CALCULATED FROM EQUATIONS (182)
AND (183).

(TWO CYLINDER LENS. G/D=0.1 D1=D2=D V2/V1=20)
P=1.25 MAGNIFICATION =-8.9
COMPUTER MODEL CALCULATED
R % ILLING RZ R2 RZ ¢ R2
5.00E-2 13 -1.34E-3 2.28E-2 -1.31E-3 2.26E-2
1.00E-1 25 -3.11E-3 4.53E-2 -2.96E-3 4.51E-2
1.51E-1 ag ~5.73E-3 6.71E-2  -5.35E-3 6.71E-2
2.02E-1 51 ~9.48E-3 8.78E-2 -8.93E-3 8 .83E-2
2 .55E-1 64 -1.55E-72 1.06E-1 -1.43E-2 1.08E-1
P=1.65 MAGNIFICATION =-1
COMPUTER MODEL CALCULATED
R1" %FILLING . R2’ R2 R2 RZ
5.00E-2 17 -1.12E-2 2.26E-2 -1.12E-2 2 .25E-2
1.00E-1 33 -2 .35E-2 4.43E-2 -2.34E-2 4.43E-2
1.51E-1 50 -3.78E-2 6.43E-2 -3.78E-2 b.44E-2
1.76E-1 58 -4 .62E-2 7.32E-2 -4 .63E-2 7 .34E-2
7.02E~1 67 -5.55E-2 8.12E-2 -5.59E-2 &.15E-2
P=INFINITY MAGNIFICATION=0
COMPUTER MODEL CALCULATED
R1 % ILLING R2 ‘ R2 RZ ' RZ
6.00E-2 12 -2.98E-2 -9.99E-5 -2.96E-2 -8.82E-5
1.20E-1 24 _5.98E-2 -7.33E-4 -5.97E-2 -7.15E-4
1.80E-1 36 -9 .11E-2Z =-2.55E-% -9.11E-2 -2.46E-3
2.40E-1 48 ~1.28E-1 -6.256-3 -1.28E-1 -6.01E-3
3.00E-1 50 -1.60E-1 ~-1.28E-2 -1.60E-1 ~-1.21E-2
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4.4) SPHERICAL ABERRATION

Spherical aberration (or the aperture defect) is probably the
most important of ;11 the geometric aberrations. It, for
example, is responsible for limiting both the screen spot size
in a cathode ray tube and, along with diffraction effects, the
resolving power of an electron microscope (2worykin et al,
1945). The reason for its importance lies largely in it being
the only geometric defect that is present even for axial
objects. Indeed, it can be shown theoretically that it is
impossible to eliminate it entirely from any axially
symmgtric electrostatic or magnetic lens (see, for example,
;Schétzef{ :]436 ). However, spherical aberration is
also of particulaf interést because it is often taken as a
guideline to the overall aberration of a system. Tﬁis was
investigated by Brunt and Read (1973) who found that the
spherical aberration of an axial object could be used to
indicate an upper limit to the total aberration of a finite
size object at that plane. The fact that, in general, a lens
with small spherical aberratiqn will produce a good image of
non-axial objects also follows from the results that we have

obtained.

4.4.1) Relationship to Total Aberration

We have seen (Figure 4) how the ideal image of an off-axis
object is formed by Gaussian rays. Let us now examine how the

third order aberrations of a lens affect this idealised
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situation. This is shown schematically in Figure 27. The
aberrations have resulted in the radial displacement of a ray
at the Gaussian image plane changing from 3 to r,. We can

therefore define the total aberration as:-

Ar = r“b - rs
{18¢)
From the diagram we also have:-
p = R, + (@ - FIr’
et 2 (187)

Where we have used Q, to represent the Gaussian image
distance.
This can be expressed in terms of the ray parameters in object

space by the use of equations (182) and (183):-

3
e = fn’ * n’fimls(_gl_"+::) + (Qu-F, ) -, + mls(—r-t“‘-'lj

£ f, T
(188)
= fr' - (0,-F )(%) + m,s(g + T:;_).(Q,—Fz +E )
2
2 (189)

The last term of (189) represents the total third order

aberration of the ray:i-

3

Ar = m,‘(_;i’ +_;:),(Q°— F, + of)
' (190)



Page 106

qu,

¥ ---X

S ——— |

jbatuiet Rttt §
o
«

m——

-L.IQQO wm

4

SRR, R S ——— 4

B el T S S p———

+ T snipewJd 3e eue|d ebrw| By} SOSS0UD AR
pejeJueQgR uUR 3S|lym « sy snipedJ ebrvw| uwissnen eyl °3298[qo
SIXR—440 UR JO UO|3RJJBQR BY3 #0 uO|jeRIuUeSeJdad O] 3RWEYDG

—— - —

*42 JdN9OId



FPage 107

For a given object plane, therefore, the aberration of a ray

is given by the following proportionality:-

3
Ar o< (ri/r8 + v 7))

{191)
If we use equation (175) to eliminate ;-
Ar oc (r + r"/JF,Fz)B
(192)

The importance of this dependence becomes clear if one
realises that (r + n’hfﬁa) is the radial displacement of the
ray at a plane which is A/Eﬁ lens diameters to the right of
the first principal focus. To a good approximation (see
section 4.1) this plane is coincident with the reféren:e plane
of the lens. It Follo@s that rays from a particular object
blane will be aberrated according to the filling as measured
at the reference plane and independent of the axial
displacement of the point of origin of the ray. Far a given
filling factor, the spherical aberration of a point axial
object gives an upper limit to the total aberration of an
object of finite size situated at the same plane. This
conclusion can also be drawn from the investigation of Brunt

and Read, as long as we remember that these results are not

applicable to extremely strong lenses.
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4.4.2) Magnitude of the aberration

In Section 4.1 we showed how the spherical aberration of a
lens may be represented by five coefficients and, in turn, how
each of these must be related to the single M aberration
coefficient (equations 161-165). For the lenses that we are

considering mw}>0 and these equations can be simplified

greatly:-

Cs, = -mufz V24

(193)
Cs, = 4m,f, /o4 = -4Cs, /0

(194)
Cs, = -ém,f, /o° = ¢Cs, /o2

, (195)

Csy = &myf, /0° = -4Cs, /02

(196)
Cs, = —m“¥1/dj = Cs, /o™

(197)

It follows that, just as with the mg coefficients, the third
order spherical aberration of a lens can be represented by a
single coefficient. Although this result is important because
of the practical significance of spherical aberration, it is
not surprising since spherical aberration is just one of the
geometric aberrations which are explicitly described by tﬁe mﬁ
coefficients.

The size of the spherically aberrated disc at the Gaussian

image plane becomes:-
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Ar = moes,a - 17emfie 3

(19¢&)
and it follows from equation (154) that the third order
spherical aberration coefficient is given by:-

M.Cs (M) = M.Cs, (1 - t/gMm
{199)

This expression is plotted in Figure 28 for the two cylinder
lens at various accelerating potentials. Also plotted are the
functions M.Cs(M) as derived from Harting and Read’s
coefficients. It can be seen that, particularly in the case of
the weaker lenses, the agreement is excellent.

.When a lens is being operated with zero magnification (object
at infinity) equation (199) is inappropriate and tge

aberration will be given by:-

3 3 3
Arm=0) = dfmgfn) = -Csg (n) = -Cs, [n
f \ ol \f

a ]

(200)

4.4.,2) Retarding Lenses

The spherical aberration of a retarding lens (whose parameters

we shall denote by ™) can be deduced from equation (199):-

~ ~s o 4
Cs(M) = Cs, (1 - 1/6M)
(201)

Where ES(M) is the aberration coefficient of the retarding
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. i ~

lens operating with a magnification of M, M being equal to 1/M
~

and Cs, being derived from equation (193):-

(ol ~ Y4 ~3
Cse = -my fo /0
(202)
which can be rewritten using the results that we derived
earlier:-
n \lo
Cso = -my f, /@ = Cs,(V/V,) ‘
(203)
Hence:-
Cs (M) = Cs .My, 2y, 12
. (204)

€a the spherical aberation coefficient of a retarding lens can
be derived from that of the corresponding accelerating lens
operating at the same magnification. V,/Vy is the overall
voltage ratio of the accelerating lens. Since this is greater
than unity it follows that, for a given magnification, a lens
will always be more aberrated when used to decelerate rather
than accelerate. This is in agreement with the experimental
results of Klemperer and Wright (1939, see also Klemperer,
1971, Figures 6.5 and 46.11). They used a pepperpot method to
measure the longitudinal aberration of parallel rays entering
a two cylinder lens. It is interesting to note, however, that
although they found the lens to be more aberrated when used to

retard rather than accelerate, their aberration coefficient
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was actually greater in the accelerating case. This is because
it was defined in terms of the ray slope in image space, ry
(cf equation 154). It is therefore not only a function of the
aberration and the magnification but also, in accordance with
the Helmholtz-Lagrange relationship, dependent upon the

relative potentials of object and image space.

4.5) DISC OF LEAST CONFUSION

It can be seen from Figure 8 that the image of a point axial
objéct will have minimum cross section at a plane some way
before the Gaussian image plane. This is the disc of least
tonfusion and we shall nﬁw derive its size and position using
the results of the previous work. For algebraic si@pligity we
shall consider the incoming rays to be parallel to the optic
axis and we shall neglect fifth and higher order aberrations.
Once again referring to Figure €, the position and size of the
disc of least confusion is defined by the intersection of the
outermost ray of the object beam and one other. This is shown
schematically in Figure 29. If the ctoordinates of the ﬁoint in
image space where the outermost (below axis) ray of the beam

intercepts any other ray are given by (F,-z,d) then:-

r; = (r,_+d)/z
(205)
R{ = (Rz-d)/z

(20¢&)
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Therefore:-

d = (R,r,” - r,bRY/(r.' + R/)
2’2 2
* * 2 {(207)

When the magnitude of d is a maximum for this bundle of rays,
thisintersection will define the size and position of the disc
of least confusion (D and 2). Setting the differential of
(207) with respect to r, equal to zero and using (182) and

(183), it can be shown that to the third order of R, -

3
D= f o’m,ﬁ@)
3 ,
(208)
= 3
Z = -3f, dm,s(_R_l)
4 f,
(209)

The sign of Z denotes that the disc of least confusion is to
the left of the Gaussian image plane. The overall radius of

the image at the Gaussian plane can be derived from equation

(183) by letting r,'=0:-

3
Ar = ¥, dm‘s(&)
F{

(210)

It can be seen that the image size at the minimum beam waist

is 1/4 that at the Gaussian image plane. This is in agreement

with the observations of other authors.
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4.46) CURVATURE OF THE PRINCIPAL SURFACES

The principal surfaces H, and H, are defined by the loci of
the intercepts of the incoming and outgoing rays for parallel
incidence and emergence respectively. (See Figure 30). The
results that we have obtained allow us to derive simple
expressions for H, (r) and H,(r).

Using the notation defined in Figure 30, it can be seen that:-

Fo + Hytr) = (rp, - r)/r}f

2
(211)

By substituting for r, and r, from equations (182) and (183)

we can show that, to the third order of r:-

2
Fo + Hatr) = §, + m,‘(F,_-ﬁo’)(r/F,_) (212)
3
= £ + fm.o(oc-1)(r/f)
* e : (213)
in a similar fashion it can be shaown that:-
2
F, - H,(r) = f, (m“/U)(ﬂ_-ﬂd)(rfﬁ) 2141
L
= (muf.faﬁ(a—l)(rfﬁ)
{215)

Since for accelerating voltages o> 1, it follows that both

principal surfaces curve towards the high voltage side of the
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lens. This is in agreement with the findings of Kuyatt (1972).

4.7) APPLICATION TO LENS DESIGN

We shall now consider how the results that we have obtained
can be used to gssist in the choice of lens geometry and
operating conditions for a particular problem. We shall try to
show how, subject to various design constraints, the
aberrations of the image can be minimised. Since our aim is to
ascertain the optimum lens without necessarily quantifying the
magnitude of the aberrations, we shall consider the object in

each case to be axial and of negligible cross section.
4.7.1) Optimum Magnification

There are circumstaﬁces under which a designer is given little
freedom to minimise a system’s aberrations by using
alternative electrode geometries. For example, the need for
uncomplicated power supplies and associated control
electronics might mean that a lens must be limited to two
electrodes and, as we shall see later on, there is little
difference between the aberrations of comparable double
element lenses. He is therefore left with the problem of how
best to use a particular geometry. We have already seen in
Figure 28 that the aberrations of a lens are magnification
dependent and that there is a minimum corresponding to an

optimum object position. We shall now derive this.



Page 11€&

We have from equation (198):-

Ar = M.Cs, (1 - IIdM)ur’B

(21&)
When Ar is a minimum:-
MAr) =0
oM
(217)
= Cs, ((1—1/5M)“+ (4/5M)(1-1/5M)’> r’?
(218)
This is satisfied by:-
M = -3/
(219)

The object position cofresponding to this magnification can be
derived from equation (13). The minimum value of Ar is given

by:-

. 3
Ar (M=-3/0) = -9.481(Cs, /d)r," = 2.37on:s,r,'3
(220)

In deriving (220) we have assumed that were it not for
spherical aberration the image would be infinitesimally small.
When the object cannot be assumed to be point axial, (219) may

not represent the optimum magnification for minimum image

cross section, although it is still indicative of the

requirements for minimum image aberration.



Page 119

4.7.2) Best Lens for Finite Magnification

Consider the design problem that is illustrated in Figure
(31). A lens is sought such that the spherical aberration.Aru
at the image is a minimum. The object-image separation (L),
the linear magnification (M), the maximum half angle of the
object rays (r,) and the potentials in object and image space
are fixed.

The value of Ar is given by equation (198):-

Ar = M.Cso (1 = 17em*r

(221)

Since the only constraint on our choice of lenses is the
overall wvoltage ratio, we can optimise not only the lens
geometry but also its scale size. Before we can analyse this
we need to discuss the units of the lens parameters that we
are using.

Most tables for focal lengths and aberration coefficients give
the values of these parameters in terms of some principal
length. For systems of cylindrical symmetry this is commonly
the diamefer of the narrowest cylinder or aperture, and we
shall refer to it as D, the scale size. So if for example the
value of F, for a particular lens is quoted as 2 then this

means that ﬁ =2*%D.

If, in mhﬁm@ing Ar. we are to allow ourselves the freedom to
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select the best scale size of the lens and we assume that all
the Cs coefficients and the focal lengths are given in terms
of D, then we can rewrite equation (221):-

Ar = Mm.cs,.D. (1 - t/omMr?

(222)

.

If the only constraint on D is the object-image separation:-

L/D = (P + Q)/D=F + F, - /M- M

(223)
Hence:-
D=L.(F, +F - f /M - f M
(224)
If we substitute for D in equation (222):-
Ar = LCsoM( - 1/6m) £ ?
F, +F - M- M
(225)

Although this expression could be used for comparing lenses,
any fiqure of merit derived from it in its present form would
be dependent on the magnification of the system. It would be
unhelpful in assessing the general quality of a lens. However,
if the lens is not too strong, a figure of merit can be
derived which is indépendent of magnification. If we

incorporate the relationship that we derived earlier (172)
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between the focal lengths of a weaker lens then (225)

becomes -
Ar = LCsaMtt - 1/eMm) 3
2AF, - f, /M —F, M
(22&)
And if we define:-
a = -1/(6M)
(227)
Then:-
4 3
Ar = -LCeatl + al r/
Ta(2AF, T, + aOf, + f, /ad)
(228)
Yo
Recalling that d=(f, /f)" -
Ar = -L(Cso/f, ) (14arr?
(229)
Hence:-
Ar = -gb {1 - 1/:ﬂ“l)“'rl’3
(230)

Where the figure of merit for the system is given by:-

9 = Cee/fa (231)
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since all the other terms in equation (230) are determined by
the specifications for the system.

We have in (231) a figure of merit for this design problem
which is independent of the system magnification. It should be
noted, however, that in its derivation we have assumed that

the magnification is not zero.

4.7.3) Best Lens for Zero Magnification

The results that we have just derived are inappropriate for a
system that needs to focus a parallel beam into a minimum
cross section (Figure 32).

The Gaussian image distance will be given by F, for that

lens:-

L = F

5 D

and the radius of the image can be derived from equation (190)

by realising that r/ =0 and Q,=F, -

3
Ar = My _JL)JﬁDU)

fimed J13
D f,
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If we substitute for D from (232) and express me in terms of

the Cs coefficients (equations (193)-(197) ):-

L
Ar = —gor?/L

(235)
where:i-
0,= Cs,F, /(£ f, )
(236)
1.3
= Cs,F, /¥,
(237)

The latter of these two expressions can also be derived by a

method independent of our relationships.

4.7.4) Figures of Merit for Retarding Lenses

Most tables of lens parameters do not give data on retarding
lenses. However, since the Fotal lengths and spherical
aberration coefficients of a decelerating lens can be derived
from those for the accelerating lens (equations 24 and 1983),
it is possible to inter-relate the figures of merit for the
system in each mode.

The figure of merit for a lens of finite magnification is
given by equation (231). If, as before, we denote the

parameters of the retarding lens by'v, then it follows that:-
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~ ~ n
g = Cs,/f,
(238)
3)a
= (Vo /V, ) Cs,/f,
{239)
Hence, using equations (175) and (197):-
~N
g = (Cs,/akf). (va/v, Pk
(240)
= (Cs,/f ).V, /)
{(241)
= g.(Va /v, )
(242)

~S
The value of g can therefore be deduced easily from that of g.

For a system with zero magnification we have from equation

(237):-
~ ~ ~
go= Cs, F2/F)
(242)
3,
= W, /v, YhCs, FE
(244)
= Cs,F2/%}
(245)

This expression enables the figure of merit for a retarding

lens of zero magnification to be evaluated.
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4.7.5) Choice of Lens Geometry

We have evaluated the figure of merit, g, for a number of two
element lenses of the cylinder and aperture type. The results
are shown in Table 19. They have been derived from the values
of Cs, and f, given by Harting and Read. It is clear that, as
far as aberrations are concerned, there is little to choose
between these two element lenses. In the case of cylinder
lenses, those with equidiameters are marginally better over
the voltage range considered. Of the two aperture lenses
considered, the one with greater electrode separation is
slightly less aberrated.

The figures of merit of the two triple element lenses are
plotted in Figures 33 and 34. For a particular overall voltage
ratio, g is dependent on the potential of the intermediate
electrode. There are two maxima in this curve corresponding to
V, =V, and V&=V3. At these potentials the number of electrodes
is effectively reduced to two and the overall voltage ratio is
Vy/V, . It is clear therefore that a lens with three elements
will always be less aberrated than a comparable one with two.
This effect is particularly true when the overall voltage

ratio is low.
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Table 19. The Figure of Merit

Voltage Ratio

Cylinder, OFD, (#%)
Cylinder., DF1.5D,
Cylinder, D=2D,
Cylinder, DFD/1.5
Cylinder, Dz=D/2
Aperture, A/D=0.5

Aperture, A/D=1.0

N

278

299

326

282

296

314

270

(g) for Two Element Lenses.

10

¥ Geometries are defined in Figures 1-3

#¥ Cylinder gap=0.1D

20

4468

496

482
476
»571

026

(%)
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4.8) Current Density Profiles

A designer’s concern with the aberrations of a lens lies
generally with the effect that they have upon the current
density profile at the image plane. Whilst for high current
systems the principal aberration will be due to space charge
interactions (see 1.2), geometric effects will iﬁpose some
limitation on the image definition of all lenses. It is
useful, therefore, to be able to relate the aberration
coefficients that have been discussed to the distribution of
current density at the image plane. Since we can describe the
third order aberrations in terms of one coefficient only, the
process is rather straight forward. We shall demonstrate by
considering thevsystem shown in Figure 35, where the incident
beam is parallel to the optic axis and of uniform current
density, J,. Its overall radius is R,.

The current passing through a ring of radius r,  at the object

plane will be given by:-

dI = J, 2wurdr
(24¢6)

It follows that the current density distribution across the

image plane (z=F, ) is given by:-

Jir) di/s(Zurdr)

(247)

Jy(n/r)dr/sdr)
' (24¢8)
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Where r is given by equation (183):-

3
ro= fomglr, /§,)

(249)
Hence:-
kS
Jir) = ""I‘Fi .
3Tfdm,gre /3
(250)
Which can be expressed in terms of Cs, by using equations
(175) and (193):-
2.\2/3
Jir) = J, [ £f
3 \Cs, r*
(251)
Since the overall radius of the image is given by:-
3
R = fomg(R,/fy )
(252)
3
= Cso fy (R
fi \f2
(253)

We can check equation (251) by calculating the total image

current:-

R
I = JJ(r).‘Zﬂ’rdr = JmR;
©
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Which, as expected, is the current input into the lens.

The predicted current density distributions for a two cylinder
lens (D,=D,=D) are shown in Figure 234 for a number of voltage
ratios. We have taken the input beam to have diameter Ds/2. It
can be seen that, as is the case for an Unaberrafed lens, the
current density on axis is infinite. However the profile has a
skirt which becomes more pronounced as the lens becomes
weaker. If should be emphasised that space charge effects have
not been taken into account. If they were we would expect the
current density on axis to be finite and the profile to be
generally broader.

It is possible to derive a figure of merit for the above
system, where a parallellbeam of uniform current density is to
form an image at a distance L from the lens centre: The désign
criterion is that thefe is to be a maximum current (I;,)
incident on a disc of radius Tim situated at the image plane.

This current is given by:-

i
0 | (2355)
3 2
= dﬂT(ﬁ—ga . ﬁmh
Cs,
{254)

Allowing ourselves the freedom to scale the diameter of the

lens:-

2"’3 yls /s
Iim = d.rr(f_u_&) D fip
Cs,

(257)
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Where:-
D = L/F,
(258&)
hence:-
4 2
I;m = ‘J,nLhr/’/g'
(259)
Where the figure of merit is given by:-
1\
g’ = Cseo K
£, £,
(260)
It can be seen that g’ ° strongly resembles =~ g, (equation

234) which is the figure of merit corresponding to minimum

overall image size for this system.



Fage 137

CONCLUSION

S.1) SUMMARY

We have developed a computer model that has enabled us to make
a detailed study of the geometric aberrations of a two
cylinder lens. We have shown that all the third order
aberrations of this lens (at all magnifications) can be
described by a single coefficient. This coefficient depends on
the lens geometry and voltage ratio alone. Fifth order effects
have also been examined and we have shown these to be fully
described by an additional coefficient. The only constraint on
this description is the voltage ratio; For example .at 40:1 the
lens is very strong and our results become erroneous. In
practice this should be a minor‘limitation, not only because
lenses of this strength are rarely used but also because their
aberration coefficients are considerably smaller.

The basis of this simplified treatment of aberrations lies in

equation (12%):-

ro/f, = r' + or/f + dr’ where 6=(V1/th
(261)

which accurately relates a ray’‘s radial position and slope in
image and object space, irrespective of the degree of
aberration. We suggest that this should be used for describing

aberrated rays in the same way that the Helmholtz-Lagrange
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relationship applies to paraxial rays:-

rz/Fl = —Fzr{r{/rl
(262)

Treating the rays in this fashion, we have developed equations
(182)-(185) which can be used to calculate the slope and
position of any ray in image space, in terms of its slope and
position in object space and one aberration coefficient (or two
for fifth order effects). From these results we have been able
to calculate the position and curvature of a lens: focal
planes. Moreover we have shown the size and position of the
aberrated image to be readily calculable, both at the Gaussian
image plane and at the disc of least confusion.

The particular problem of spherical aberration has .also been
examined and we have derived an expression (198) which
descibes the aberration at all magnifications using only ﬁne
coefficient (third order). We have also shown that this
expression can be used to give an upper limit to the
aber}ation of an cobject of finite size.

The application of our results to more complex lens geometries
has been investigated and we have found them to be equally
accurate so long as neither principal focus is within half a
lens diameter of the reference plane (ie F,2>1/2, F,3>1/2).
Although no details are given in the main text (see Appendix)
we have also considered lenses of planar rather than
cylindrical symmetry and found that our results are still

applicable, within the same constraints on lens strength.
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We have given details to show how our results can be used to
assist in the design of a lens. The criterion we have used is
that the lens is to have minimum aberration and we have shown
that, in general, the figure of merit is given by (equation

231):-

g = Csg/F, (
263)

and the suitability of a lens is independent of the required
magnification. (If the system is to have zero magnification a
slightly modified version of this expression (2346) should be
applied.)

Finally, we have demonstrated that image current density
profiles can be calculated readily from a knowledge of a
single aberration coefficient. This analysis, however,

neglecfs space charge interactions.
5.2) FUTURE WGRK

We can see three areas in which this work might be developed

in the future:-

1) The lenses that we have considered have been electrostatic
and, for the most part, of cylindrical symmetry. A treatment
that simplifies the eight third order aberration coefficients
of a magnetic lens would be very useful. So indeed would an

investigation of the lenses used in certain high current
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applications (for example ion implanters) where the electrodes
are of planar symmetry with rectangular apertures. This could

require three dimensional analysis.

2) The work that we have done on current density profiles has
been in the absence of space charge. It would be extremely
useful if a simple method could be devised that enabled both
the current density and emsttance of an output beam to be
described where space charge effects have not been neglected.
In order to achieve this the computer model would need to be
extended to solve Poisson’s equation. However, this would
almost certainly require an iterative solution and a great
deal of optimisation would be necessary if the run time was

not to be excessive.

3) Little work has beén done on the aberrations of lenses
where the object is immersedinthe field. This is particularly
pertinent to electron guns and other emission systems. Such an
investigation could be mounted using the computer although tﬁe
model in its present form would be inappropriate. This type of
study would be especially use#ul if space charge interactions

were naot neglected.
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AFPENDIX
LENSES OF PLANAR SYMMETRY

We have examined briefly the relevance of our work to planar
lens geometries (those with a plane of reflection rather than
an axis of rotational symmetry). The results indicate that the
aberration coefficients of these types of lenses can be
rationalised in the same way that those of cylindrically
symmetric lenses can be.

The two geometries that we have considerd are shown in Figure
27. We shall refer to the five aberration coefficients
pertaining to a point axial object by C;. Analogous to
equation (154) the width of the aberrated image at the

Gaussian plane is given by:-

Ax = M.CtM
(264)

Where:-

CIM) = C, + C,M  + CM* + CgM> + C MY
(265)

and «, is the maximum half angle of the object rays with
respect to the plane of symmetry.

The values of these coefficients for the two lens geometries
are shown in Table 20 (from Harting and Read). Also shown are

the values of Y, which equation (144) predicts to be zero if
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the aberration coefficients are related in the same way as in
cylindrically symmetric lenses {equations 161-145). The
percentage error thet is quoted is that which would need to be
present in each of the C; coefficients in order that Y be
zero. This should be compared to the 1% error that Harting and
Read give for their results,

For the rectangular tube lens the the relationship between the
coefficients becomes too erroneous for V,/V,=8. For the two
slit lens the upper limit on the voltage ratio is 12:1. For
both geometries these upper limits correspond to the voltage
ratio at which F, becomes less than H/2.

These results indicate that the relationships that we have
derived for cylindrically symmetric lenses may alcso be applied
to planar lenses, within the same constraint on focal

strength.
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TABLE 20.

TWO RECTANGULAR TUBE LENS.

V2/Vvi

0o N
OO0 OO0

10.0
12.0
14.0

16 .c,
18.0

TWO SLIT LENS.

V2/V1

oM ool el

2.
4,
6.
8.
10.0
12.0
14.0

16.0
18.0

SYMMETRY

co

7 .85E+2
1.79E+1
5.0%2E+0
2.61E+0
1.72E+0
1.Z9E+0
1.05E+0
9.03E-1
8.03E~-1

co

1.465E+3
4 .01E+1
1.21E+1
6.54E+0
4 .48E+0
3.47E+0
2.88E+0
2.51E+0
2.25E+0

Ci

-2.23E+3
-3.56E+1
-2.04E+0
-3.44E+0
-1.92E+0
-1.2Z5E+0
-82.84E-1
-6.461E-1

-5.13E-1

A/H=0.5

Ct

-4,70E+3
-8 .00E+1
-1.93E+1
-8.79E+0
-5.26E+0
-3.64E40
-2.75E+0
-2.21E40
-1.85E+0
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G/H=0.1
Cz C3
2.37E+3 -1.12E+3
Z.73E+1 -9.50E+0
9.11E+40 -1.54E+0
1.92E+0 -5.30E-1
9.83E~-1 -2.55E-1
9.95E-1 -1.48E-1
4.01E-1 -9.54E-2
Z.91E-1 -6.465E-2
2.23E-1 -4 .86E-2
Cc2 c3
5.0ZE+3 -2.39E+32
6.06E+1 -2.06E+1
1.18E+1 -3.31E+40
4.56E+0 -1.1ZE+0
2.40E+0 -35.28E-1
1.48E+0 -2.98E-1
1.01E+0 -1.88E-1
7.31E-1 -1 .,29E-1
35.97E-1 -9.24E-2

C4a

2.00E+2
1.27E+0
1.85E-1
6.17E-2
2.99E-2
1.78E-2
1.21E-2
8.95E-3
7 .05E-3

C4

4 . 26E+2
2.64E+0
3.99E-1
1.09E-1
4.37E-2
2.92E-2
1.53E-2
1.01E-2
7 .14E-3

Y

S.73E-1
9.09E-2
3.82E-2
Z.84E-2
2.61E-2
Z,36E-2
2.27E-2
Z2.22E-2
2.19E-2

Y

-3.70E+0
1.34E-1
4.37E-2
3.19E-2
1.82E-2
1.69E-2
1.37E-2
8.97E-3
£.79E-3

SFHERICAL ABERRATION COEFFICIENTS FOR LENSES OF PLANAR

%ERKOR

1.2E-2
2.3E-1
6.1E-1
1.3E+0
2.6E+0
4,1E+0
6.2E40
g.7E+0
1.1E+1

%ERRCR

3.8E-2
1.5E-1
3.0E~-1
6.3E-1
7 .3E-1
1.1E+0
1.4E+0
1.2E+40
1.3E+0
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