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(1) INTRODUCTION.

0

The classical, non-relativistic, wave mechanics of L.de
Broglie and Schroedinger has achieved considerable success
in the interpretation of atomic phenomena. There are however
several phenomena which remain unexplained by the elementary
theory. The principle difficulties arise in the problems of
fine structure in optical and X-Ray spectra, and in the
Zeeman effect.

Using the methods of the old quantum theory Sommerfeld
(ref.1) was able to deduce a formula giving the fine struc-
ture of the energy levels of hydrogen-like atoms. The elec-
tron was assumed to follow an elliptical path described by
a total quantum number *n’ and an azimuthal quantum number
*k*. Account being taken of the variation of themass of the
electron with i1ts velocity, as given bythetheoryof relat-

ivity, the energy of the orbit becomes

1 r z. X
R Nh a N

)i iAW e oo o (1)

where R 1s Rydberg’s constant and N is the atomic number of

b

the element. The quantity ’a* is the fine structure constant

given by
_ 1o
a = (e in O.E.S.U.y

The formula (1) describes fairly accurately the fine

structure of the spectra of atomic hydrogen, singly ionized



(2)
helium etc. It is not exact, however, since it does not pre-
dict enough components, (ref. 2)
The energy levels given by non-relativistic wave mechan-

1cs are

~ |~ i - Tjj- -
where L = k -1.

The separation of the energy levels given by equation (2)
is much larger than that given by equation (1) and is not in
agreement with experiment. Hence wave mechanics in its orig-
inal form fails to accpunt satisfactorily for the fine struc-
ture of the spectra of hydrogen-like atoms, (ref. 3).

.The multiplet structure of the spectral energy terms of
atoms with more than one electron appeared to the early
workers to be quite distinct from the fine structure shown
by hydrogen-like atoms. Sommerfeld found it necessary to
introduce an additional *inner™ quantum number j =L - ? to
account for the multiplet structure of both optical and X-Ray
spectra. By this means he found a fine structure for X-Ray
spectra and for the optical spectra of the alkali metals
identical with that given by equation (1), except that the
atomic number N is replaced by (N - z), where the term *z*
.accounts for the screening of the nucleus by the inner orb-
ital electrons.

Uhlenbeck and Goudsmit séggested a hypothesis to explain

the signigifance of the new half-integral quantum number.

They proposed to consider the electron as a spinning sphere
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of electricity possessing angular momentum 7 and a magne-
tic moment B - i , equal to the Bohr magneton. The two
values of j for each value of L correspond to opposite set-
tings of the spin axis.

The ratio of the magnetic to the mechanical moment is
e/ra”c, which is twice the corresponding ratio for an electro-
nic orbit. " This is the value that is necessary to explain
the Zeeman effect and the Gyromagnetic Anomaly in ferro-
magnetic metals, (ref.if).

We thus find that the splitting of spectral lines in the
case of hydrogen-like atoms came to be attributed to a rel-
ativity correction, whilst in the case of all other atoms it
was attributed to the spin of the electron. The similarity
of the results in the two cases thus appeared to be due to
accident, (ref.5).

In this paper we shall first consider how the conception
of electron spin is to be incorporated into wave mechanics.
We shall then reformulate wave mechanical theory in accord-
ance with the requirements of the special theory of relati-
vity, and show that the spin and the magnetic moment of the
electron arise quite naturally in the process. Finally we
shall see that the exact relativistic theory of wave mechan-
ics provides a satisfactory solution of the problems enumer-

ated above.
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(2) WAVE-MECHANICAL REPRESENTATION OF ANGULAR MOMENTUM

The orbital moment of momentum or angular momentum of a
particle about a point O, taken as origin of co-ordinates,

is defined by the vector product.

which has rectangular components

[e]

yPi-ZPy
ZPx-XPj

My

xpy-yPx
In Wave mechanics these quantities will be replaced by
operators (see paragraph 4) such that .

L A ) L)

A

Mx) = 2Ti (y "~ z)y) =XIU%

My) = v . . . (@D

Mz) = ik
Where the operators (M;) are the wave mechanical equivalents
of the quantities , whilst the angles represent the azi-
muths about the corresponding axes.
It can be shown easily that the proper values of the oper-
ators (M;) have the form ~ m, where m is an integer. Thus *
may be considered to be a fundamental unit of angular momen-

tum.



()

Let us now consider the operator corresponding to the

magnitude of M\  We have
(mQ = (uS+ (My)% (M. f

and the proper values of (M") can be shown to be + 1),
where L 1s an integer.
The operator (M") commutes with the operators (M”") but

the latter do not commute with each other. Hence the simult-
aneous measurement of any two of the quantities is subject
to the restrictions imposed by Heisenberg’s uncertainty prin-
ciple. The relations of non-commutation between these opera-
tors are very important. To examine them we write the opera-

tors 1n terms of the unit

b

(M;) =57 (G =x,y,2)

where the quantities m* are operators which, from equation

(4), are seen to obey the laws

[m”, mj = -im"
mj = -Im* : (5)
Anij, niyj - -Inty A

It can be shown that the relationships (5) link the ang-
ular momenta with the group of spacial rotations, which obey
an analogous law of non-commutation, (ref.6)

We must now consider the spin angular momentum. Let the
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spin of a particle have components Sy, 8", represented
by the operators (8%), (Sy), (SH).
The magnitude of S will be represented by an operator

such that

(%) = (8,)" + (Syf + (82)*

The spin operators are assumed to be related to the group
of spacial rotations in the same way as are the orbital ang-
ular momentum operators. The theory of the spin operators
may thus be deduced directly by analogy with our previous
results. We go one step beyond the results for the orbital
case in assuming the possibility of half-integral proper
values. Thus we write the proper values of (8%) as *s(s + 1)
where s may be integral or half-integral.

The operators (8,) will be written

(8;) - s (J = X,V 3Z) oo (6)

Where the operators s* obey the non-commutation rules

- _; A
Sy, S j is
Sy, = -iSy (7)
S A « -1Sy

In the case of an electron the hypothesis of Uhlenbeck
and Goudsmit assigns the values ¢ to each of the quantities
8" . We thus see that the proper values of S; will in this

case be 1
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We thus write

=2 §- (J T X,V 3Z ) oo, (8)

and seek for three operators G which have the proper values
+1 and are such that the operators s* will satisfy the equa-
tions (/)* This can be done most simply by assuming that the
operators are matrices with two rows and two columns. As we
shall see later in the analogous case in Dirac’s theory the
choice of matrices is largely arbitrary. We shall adopt the
following set of three ”"Pauli matrices” which give a special

prominence to the z-axis,

(9)

These matrices which are clearly Hermitian can easily be
shown to satisfy the conditions laid down. Their significance

will become apparent in the next paragraph.
(3). PAULI'S THEORY.

We shall consider very briefly the attempt made by Pauli
to incorporate the hypothesis of electron spin into wave-
mechanics. (ref. /)e

Pauli’s idea was to represent the two possibilities of the
setting of an electron’s spin in a given direction by the use
of a wave function with two components and

We then write;



- (8)

X =4 "

X (10)
TT - T = 14"ir</'?

where Ttfis the probability that the electron is in the
element of volume c(rwhilst the value of the spin angular
momentum in the z-direction is -f . Similarly 7T. is the
probability that the electron is in the element of volume dx
whilst the value of the spin in the z-direction is -

/ 471
The functions are normalized by writing

=1 (11)
the integration being carried out over the whole domain

denoted by D.

We have now to deduce the wave equation for the two-comp-
onent wave function ~ , which we assume to have the form of

a single column matrix,

The operation of a matrix A with two rows and two columns
upon Ip is given by

AN=""A , ,41 =1,2)
'n

Now Schroedinger’s wave equation can be written in the

form
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»o* A =0 (13)

where H is the wave mechanical Hamiltonian operator corres-
ponding to the classical Hamiltonian function. We have,

symbolically,

L X

B - 4 U (14)

where p is the momentum operator and uw represents the pot-
ential energy.

For an electron in a magnetic field K there will be an

additional potential energy term given by
- (K./) B e (15)
Where is the magnetic moment of the electron due to its

spin. Using the value ofyq given by the hypothesis of Uhlen-
beck and Goudsmit, we obtain from (I5), (6), (8),

ii"=- B (K.Cr.) (16)

where cris the operator with components cg,
We now add U" to a Hamiltonian generalised to operate

upon the two-component function (p, thus

[( ~ P%u)*- B(K .~p = 0 (17)

is the unit matrix.
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We thus obtain two equations for the components of p,

which wewrite

'( tu) - BkJ - “Kx + IKy

(18)
p" +u) 4 B [KA - iky -4/ =0

These equations take us a step beyond Schroedinger’s
elementary wave mechanics since account is now taken of the
magnetism of the electron.

We shall not pursue the study of Pauli’s theory any
further. We do not expect it to be exact, since no account
has been taken of the requirements of relativity, and in
fact the theory does not give correct results for the fine
structure of the spectra of hydrogen-like atoms.

The importance of Pauli’s theory lies in the fact that it
reveals the possibility of incorporating the hypothesis of
spin and proper magnetic moment into wave mechanics, by using
a Wave function with more than one component. Dirac was
guided by Pauli’s work when he deduced his more exact theory,

which will be developed in the succeeding paragraphs of this

paper.

(4). THE RELATIVISTIC MOMENIUM OPERATORS.

* We must now consider the relativistic generalization of

wave mechanics.
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The non-relativistic wave equation may be deduced by the
analogy between the variation principles of Maupertius and
Hamilton in mechanics, and Fermat’s principle in geometrical
optics.

The expression for the variation of the action of the path

of a particle may be written in the form

S 1rPjdq. - Wdtj . 0 (G =1,2,3) + « = (19)

where Wis the energy of the particle and p; represents the
component of momentum conjugate to the co-ordinate q".

Starting from equation (19)' Schroedinger’s wave equation
can be deduced (ref.8) and may be written

V<pP* — AT T - of- 0 o .. (20)

or alternately, as in equation (I9)

We can write equation (I4) for the Hamiltonian as

H = + Uj G =1,2,3) . ... (21)

Equations (I3) and (20)are seen to be equivalent if we
replace the classical momentum components p” in (21) by the

operators given by

T Xt » ALY L L (22)
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In the special case where there is no potential field,
equation (19) msiy be written in a form which is more in acc-
ordance with relativistic i1deas by adopting Minkowski co-
ordinates and momenta. Thus, putting p” - imc and g " ict

equation (I9) may be written

(yx- 1,2,3,4) . . . (23)

From this expression we can deduce the wave equation for

a free particle

(24)
. : . 2 :
The epergy in this case is me = -icp” and we can now
extend equation (22) to all four components, thus
r-f =5FT (295)

As can be seen from equations (I19) and (21) the fourth
of the relations (25) will not hold in a field of force. Thus
in general we do not expect the equations (25) to be true in
an electro-magnetic field. Todetermine the generalform of
theseequations we consider the force onthe particle, which

is given in empty space by the well-known equation
f=e”~J] + — IvxK (26)

where e is the charge on the particle, J is the electric

field and K i1s the magnetic field. These latter quantities
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depend on the scalar and vector potentials according to the

equations

I ~A A
J =- grad V -

> (27)
K = curl A J

We substitute these expressions in (26) whilst introducing

Minkowski co-ordinates and a four-vector potential given by
(A, , A% Aj, A%)= (Ay, Ay, A", iv)

We thus find that the components of the "Newtonian” force

on the particle are given by

Now a general expression for f” which is true in an
y

system of co-ordinates is {ref.9)

j-r (29)
L clLt

Thus from (28) and (29),

where N~ B A (31)

Prom the analogy between (29) and (30) the variation

* =A~JIl-" is a component of the Minkowski force
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principle may be written as

[
il,kdq =0 (K= 1,2,3,4) . . . (32)

The relativistic wave equation is thus to be deduced from
equation (92) instead of from equation (I9). The relations

analogous to (22) which hold in an electro-magnetic field

are (ref. lo), \
I»2,3,4) e, (33)
1.€. (p. 3 =1,2,3)
and (p, . (33)
I - L )L
oi* (me +7V) V=

(5). A RELATIVISTIC SECOND ORDER WAVE EQUATION.

In the special theory of relativity we have the well -

I

known relationship between the momenta;
mc" - APy - mch =0

If we regard the momenta as operators acting upon a wave

function ~ we may write
[pt - *.Ps - P+ =0

Where p* = me, and p* = m”’c.

(34

(335)
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(15)

Substituting the operators given by equations (9M)* we

obtain

A t e o s (36)

We shall nov/ deduce the fonn which must be taken by the
probability density” in accordance with the wave equation
(36).

The equation which is the complex conjugate of (76) 1iS|

Equation (7*6) is now multiplied- in front by y and equa-

tion (76)* by ~ . Then, subtracting,
4'M e
e Vit
f div I Lp grad (j/ - yy gradIp - - A A
or n + le(AV) =0 (37)
where \
if Ttim ¢ tn.c
. . 08)
and V = kpgrad Ip - VWgrad”j- - -———- Ap\ly
4 TTlm,

Equation (97) is the familiar equation which expresses
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the conservation of a quantity of densityyO moving with a

velocity v.

Dirac has criticised the second order equation (96) and
in particular the form of the probability densityyO derived
from it. (ref. 11).

* On considering the expression (98) foryO we notice that
the value is not necessarily positive, whilst a negative
density is meaningless.

An even more serious difficulty is as follows. The general
principles of wave mechanics demand (ref. 12) that the prob-
ability density should be given byyO=Vv;, no matter what the
form of the wave equation. (If there were several components
[p1Of we would have 4* e If we were to adopt
this value for yO however, the equation (97) would not be
satisfied. Hence the probability of locating a particle, and
also the electric charge, would not be conserved.

These difficulties do.not arise in the case of the approx-
imate equation (20). Examination of the manner by which equa-
tion (97) was derived shows us immediately that the difficult;
is due to the presence of the second order term * Hence
we deduce that the true wave equation must be of the first
order in »# . Now in relativity physics there is always sym-
metry between the space and time co-ordinates, hence we
conclude that the wave equation should be of the first order

in all the variables.
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(6) THE FIRST ORDER WAVE EQUATIONS.

Consider the basic equation (35)» which is true in zero
field,

[pt - - P»] 0

This equation is to be considered as being derived from
the unknown true wave equations which are of the first order.
Dirac assumed that the first order equations could be rep-

resented in the form

p  to(,P, + %P3 ° (39)
Where the quantities are Hermitian matrices with ’n’ rows
and ’n' columns. If ’'n’ is less than four it is impossible

to find a set of 4 suitable matrices. Dirac assumes that the
correct value of 'n’ is 4, and that the matrices operate
upon a four-component function (p such that

(n,l,= 1,2,3,4) ... (40)

thus we obtain four first order equations

P + +<,pj *4 " ° (41)

We now multiply equation (4I) in front by the operator

p -<P']

This gives us the equation (35) for each of the components
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of p provided the matrices and obey the anti-commut

ation law

= e e (42)
where 0= 1, if m- n
=0, 1f m”~ n

The choice of matrices fulfilling the conditions (42) is
largely arbitrary. It must be shown that this arbitrariness
leads to no difficulties in the application of the theory.

We note that if we take two different sets of Hermitian
matrices and O™ each satisfying equations (42) it 1is
always possible to find a unitary matrix S with four rows
and four columns such that

A -1 +
- 8 oS =S S
Dirac’s equations may be written in terms of the matrices

f the corresponding wavei functions being

I I I "1 (
Pt “uTjP, +4.p» Y" " 0
ie. P So(,S 4 p"S<S + p,8’%S + P.sV.sj'd= 0 . . (43)

On multiplying in front by S we obtain Dirac’s equation

with the operators > the wave function being now

4 %= 8 iji/N

Now all the quantities having any physical significance
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(or the integrals of such expressions) where A is a linear

and Hermitian operator containing the matrices o” . On chan-
/

ging from a system in to a system in we find that A

becomes A where

/ -1
A =S AS
but
=" CpS A 8pN (since & =8 )
Hence 4" « A
"y
Thus the quantities having physical significance do not
change their value on changing the matrices * Therefore

the arbitrary choice of these matrices does not affect the

physical application of the theory.
The following set of matrices will be used throughout this

paper;

O 0 O 0 0 0 1

0O O 0 0 -1



F

(20)

With this choice of matrices Dirac’s equations can be

written
(Pt  +Pc)<li f (p, + i-Pz)4f + pr4 =0 4
(Pé  +P«)4~+ (P, - IPi)da - P,4t=0
(44)

(Pt  -Pe)dj t (P, + iPi MAL + Pidr-0

(Pt -P.)4f + (P'- 1Pz)4 - P34%° J

There is a further degree of arbitrariness apparent in the
choice of matrices. We have assumed tacitly that the quantity
p* shod.Id be multiplied by the unit matrix in equation (99).
This assumption appears to inve a special distinction to the
time co-ordinate. We can transfer this pre-eminance to any

other co-oidLnate. For example, let us multiply equation (99)

in front by Yo ¢ We thus obtain

<Pt +S5P, NP F3Pz + P.JY- 0 .rriirrvnnnnnnnnn. (45)
where ni = (j =1.2.3)
We see, however, that the matrices are anti-Hermitian

and therefore equations such as (45) seem less acceptable

than the form (99).
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This apparently special position of the time component
is lost when we use Minkowski co-ordinates. The momentum p*
is replaced by -ip” , and we can now write Dirac’s equation
(99) in a number of alternative forms like (45)* in each case
one of the matrices will be anti-Hermitian whilst the remain-

der are Hermitian or vice-versa¥*

(7) THE RELATIVISTIC INVARIANCE OF DIRAC’S EQUATIONS.

We shall employ Minkowski co-ordinates, the first order

equations (4I) being written

{-ip" f + Px]4«= 0 (Lé)

Multiplying in front by i*”", we have

+ IP.j 4« “ 0

If we now introduce the matrices defined by
X" 1 : X o« : X — : X " ' e e (L7)
we find X + X, N =2 (4-8)
where =1 if n =m
=0 if n " m
The matrices are easily seento be Hermitian*

We are now able to write Dirac’s equations in the more

symmetrical form
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+ IP.j 4" =0 (/X* 1,2,3,4) . .. . (49)
We now subject the co-ordinates to a general Lorentz
transformation, that is, a rotation in Minkowski space.
A four-vector such as the momentum transforms according

to the law

is the typical component of a matrix Q with four rows and
four columns. Since we are concerned with rectangular co-

ordinates we can write

Qi (51)

The fourth component of a four-vector in the Minkowski
continuum being imaginary, the matrix Q is not real in
general.

A fter the change of axes the equation (49) becomes

......................................................... <52)
Now if we write

X= (53)
equation (52) becomes

jCPp + -0 Ce (54)

Since the matrix Q is not purely real we see that the
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'

matrices I are not in general Hermitian. They can, however,
be shown to obey the same law of non-commutdtion as the

matrices YL *
.

A fter Neumann, we shall endeavour to represent the trans-

formation (59) in the form
!
., XA
We notice that since ”» 1is not Hermitian the operator /\
1s not unitary, that is e [\

[t 1s necessary to show that the transformation (55) 1is

possible. However we see that if

then - (A A)

Thus if the relation (55) is true for aninfinitesimal
rotation of the axes it 1is clearly true for a finite
rotation.

Now in the case of an infinitesimal rotation we can put

\Y% (5¢)
Where e”” is a very small quantity. To satisfy the condition
of orthogonality (5I) we have e = - e”

In the case of infinitesimal rotations the matrix f\ 1s

very nearly equal to the unit matrix, and we assume

-1 M (57)
hence A =1 -7 eMTAM
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jny
Where T is an anti-symmetric matrix which must be chosen so

that

X v.Nr= A
Hence from ($6) and (57i
X *Z /Jr- [ 1 - I f t /
Thus [X T-t T'-yJ

Which gives us

We are thus able to find matrices A for infinitesimal rot-

ations. Hence it is possible to satisfy the relation (595)

.for all rotations.

Substituting from (55) in (54) we obtain

r\

X Ap/ +ip.4 " O
multiplying in front by /‘ we obtain Dirac *s equations in
the new co-ordinates,

yPp + =0 (58)

where > A
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that is =y (59)

We thus see that Dirac’s equations are invariant to a
Lorentz transformation. The matrices % remain unchanged on
changing the axes whilst the wave functions (j/*transform
according to the law (59)* It must be noticed that does

not transform as a four-vector.

(8) THE FORMALISM OF DIRAC'S THEORY.

The formalism of Dirac’s theory is analogous to that of
non-relativistic wave mechanics. We must, however, always
make a summation over the suffixes of ~ . There are also
operators such as , which do not appear in the older v/ave
mechanics, which operate upon the suffixes of I/ .

At the very foundation of the new theory we have considered]
the form of the probability densityyO as derived from the
second order equation (56), and noted Dirac’s criticism of
the result given by equation (58). We must MW=consider the
corresponding expression in the new theory. Writing Dirac’s

equation and the complex conjugate equation we have

c * T-' * * * %

Multiplying the first of these equations in front by gy

and the second by and subtracting, we obtain, on making
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a summation over the suffixes of

A + div 3 =0 (60)
°
where yO =% J
I (61)
K
AN .
where is the operator with components qﬂ.\

Equation (60) represents the conservation of the probab-
ility of locating the particle. The flow vector j =yOy,
where v is the velocity of flow represented by - cdf e

The wave function Ip is normalised by writing

J9 dr
Where dr is an element of volume within the domain D.

With,every quantity having physical significance will be
associated a linear and Hermitian operator A, which will in

general operate both on the co-ordinates and on the suffixes

on-

The observable values of the quantity associated with A

will be the proper values 'a* of the equation
A<j)”= (n=1,2,if) « « (6j)

There is thus a proper function with four components
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( »)» * corresponding to the proper value a”. 1In the non-
degenerate case the proper functions will be orthogonal. If
there is degeneracy we can make linear combinations of the
degenerate proper functions such that the resulting functicns

are orthogonal. Thiis in general we can write
(t =0 (6if)
and the functions are normalized if we have
X (4) (i)«d?-1 (65)
y GW' 1
Each of the components (p, of the wave function can be exp-

anded as a series in terms of the proper functions (<|w)l,

thus
(66)

where the terms c¢™ are constants, the squares of their
moduli representing the probability of observing the corres-

ponding proper values. Hence the mean value of A is given by

~

A=y ajc,jn = dIr « (67)
"_‘(d (4) n

Also the components of the matrix A are given by

yH'<x)A (68)
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(9) THE CONSERVATION OF ANGULAR MOMENTUM

We must now consider the meaning of the constancy or
conservation of a quantity in our new wave mechanics. If we
differentiate with respect to the time the matrix element A

as expressed by equation (68) we obtain

A(Ma)«- A aH-HA) 1 ar . (69)

A is the partial differential coefficient of A obtained by

formal derivation with respect to t, and H is the Hamiltonian.
If the quantities A are to be conserved ~""must be zero

and hence the integral in (6g) must vanish for all values of

Ip , thus
| A (AH- HA) “0 (70)

now, symbolically.

hence (70) becomes
RA- AR-= R, A] = 0O (71)
""here (72)

Hence a quantity will be conserved if the corresponding
operator A commutes with R, or , in the case, where A does not
depend explicitly upon the time, if it commutes with H.

Applying this test to the energy and momentum operators
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we can demonstrate the conservation of these quantities.
The moment of momentum, however, provides a special
problem.

The angular momentum of a particle about the z-axis,

is represented by the operator

'"(Mj = xpy - yp, = - yA) o s (73)

Consider the case where the field of force is cylindrically
symmetrical about the z-axis. In this case it is found that

is conserved according to the old wave mechanics where the
Hamiltonian is of the second order with respect to the space
co-ordinates. In the new theory this ho longer applies.

Let us consider the value of IR, (MZ.) ,
(M”) must commute with St Ixl A Poand with ~V

since there is cylindrical symmetry.

Now the other terms give

R, (MV)j = ) » weT (7~ - )]

hence Rf M) “ S

Hence (M”) does not commute with R. It is however possible
to find an operator containing (M%) which does commute with R.

Consider the operator
Nz) = (M2) +

on evaluating the commutator IR , (N*) we find
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o (N,) =R EN*) - (%)R =0 (73)

Hence the quantity corresponding to the operator (N%)
is conserved. The moments of momentum about the other axes
may be treated similarly and we find finally that a quantity

N .is conserved where

N=M+3 (76)

S is the spin angular momentum and is represented by

(s) = (77)

where * is a Hermitian operator with components

;  C - « * o (78)
It can be shown easily that the components of * have pro-
per values t 1. We thus see that the total angular momentum
is conserved if we add to the orbital moment of momentum of
a particle the spin moment of momentum, whose value measured
in any direction is jt-/ﬂ—C. As we saw in paragraphs (1) and
(2), this is the value that was proposed for the spin of the
electron by Uhlenbeck and Goudsmit, in their semi-empirical
attempt to solve the problems of fine-structure and the Zee-
man effect. The remarkable feature of Dirac’s theory is the
fact that the correct value of the spin of the electron is
deduced automatically in the derivation of a theory of relat-

ivistic wave mechanics. We note, however, the existence of

particles (Photons, Mesons (ref.1”)) having other values
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for their spin momenta. Here is apparently a limitation to

the application of Dirac’s equations in their present form

Let us now calculate the mean value of e This is

given by equation (6/) in the form

i.e. N, = 41+% IpT - 44 + e . . (79

We interpret this equation by saying that the probability

that the value of the spin in the z-direction is 4*— is given

by

whilst the probability that the value is - ZTX is given by
T1.

(10) DIRAC’S EQUATIONS IN AN ELSCTRO-MAGNETIC FIELD

We shall now derive the second order equation for a part

icle in an electro-magnetic field, on the basis of Dirac’s

first order equations.
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We operate with

[pt - - "0 p»]

upon the equation (59) which we write

lpt "y 1jPj + . Poj4' - 0
Taking account of the non-commutation relations (42) we
obtain
pt "Y,Pi " - P; Pf)
-y ('“"AP; Pk-\% P; )j4= 0 . .. (80)

The two summations can be expressed in terms of the elec-

tric and magnetic field strengths by using equations (jj)*

and (27), then

y<(p,P- PAPt) = - jefe + <3J3]
(81)

y% P,Pk-% P) ) =

lSubstituting these values in (80) the second order

equation takes the form

pt ny/\s - P- _ )

A (<NKH@K2A0(M2K] )]/4 =0 ... (82)
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The novel feature of this equation lies in the terms in
square brackets. Their interprétdtion becomes apparent if we

write Schroedinger’s equation (20) as follows

2rac pt-/ pPb -2 mU 0 (8j)
"j J

On comparing the last two equations we see that the terms
in square brackets in (82) correspond to a potential energy
terra U multiplied by 2 m. Assuming that the mass appropriate

to the new theory is the proper mass , we obtain the two

potential energy terras.

", ' I& : "n " "J .................
These terms may be considered to be derived from a proper
magnetic moment X and a proper electric moment Y of the

particle, whose components are given by

X = B Xz= B 10(3q, ; B 1
I. . . .(86)
= B " Yi= B I"L ; Y= B (% . ]
Here B stands for the quantity v f which in the cases
of the electron and positron is equal to the Bohr magneton.

The first set of equations (86) may be written

K A
X = B* = vA.c(S) . (87)
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where (”s) is the spin angular momentum defined by equation
(77) and ~ 1s the Hermitian operator defined by equations (78)
The ratio of the proper magnetic moment to the spin, given by
equation (87), agrees with the value proposed for the electron
by Uhlenbeck and Goudsmit.

Dirac’s theory thus gives an account of the spin and pro-
per magnetism of the electron. It appears that the results
obtained above should apply to all elementary particles, pro-
vided that we insert the appropriate values of e and m”e We
must note that experimental results obtained for protons and
neutrons do not agree with equation (87) (ref. I14).

The equations (86) indicate that in addition to the real
magnetic moment of a particle there is an imaginary electric
moment. Frenkel (ref.15) bas shown that in the case of a
moving particle the real magnetic moment will give rise to
an additional real electric moment, whilst the imaginary

electric moment gives rise to an imaginary magnetic moment, ]

The derivation of the electric and magnetic moments given”
above is not entirely satisfactory. In comparing equations
(82) and (83) we assumed that the quantity ra© is the true
representative of mass in the new theory. Now we have seen in
equation (61) that the “classical" velocity ’v’ is replaced
in Dirac’s theory by a very different quantity, that is the
operator - c¢O . We might well suppose that a similar diCTiculty

would arise in the representation of mass. That this 1s indeed

the case is indicated by a calculation due to Gordon.(ref.16)
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His results, which we shall not consider in detail, indicate

that the magnetic moment should be written
X A (88)

This result may be interpreted, according to Frenkel,
(ref.17), by considering the similarity between Dirac’s equ-
ation (59) and an analogous first order equation in special
relativity mechanics. The latter may be deduced from the

well-known expression
mc = mc (I-Ac) (89)

hence
m c“= (1 (1

where p represents the momentum m v.

We thus obtain an expression for the energy
W= Ht (p.v) +mc (1 - - )'m N 1)
Now Dirac’s equation can be written in the standard form

(H =D

where theHamiltonian operator H correspondsto the energy

W, and may be written, from (”j)' and (*9)>
H = U - (c¢cp .o ()- mhrehor? (91)

Hence, comparing (90) and (91) we find, as before, that in
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tne new theory the velocity v is replaced by - ¢ <+ We also

find that the operatorreplaces the quantity -(1-"*-)’that
1s, the ratio

Frenkel then assumes that the mass in equation (8”) 1s the

relative mass m, which in the new theory will be replaced by

Thus on comparing equations (82) and (8") we find that the

magnetic moment is given by (88) instead of by (8/). More

important still, the components of the electric moment become

Y, = ; Y= B Y*» B (92)

The significant feature of this result is the fact that,

unlike equations (86), the equations (9”") predict a real

electric moment.

L.de Broglie (ref.18) obtains the results

(88) and' (92)
by a somewhat different

argument. He observes that in Dirac’s
equations (44) the sign of the quantity Po(= m”c) is different
in the first pair of equations compared with the second pair.

If we operate on each of the four functions (j*with

we
obtain

113

\ . (92)
L < m43= : <,m. 4% = m. jff i

Thus a mass m* is used in conjunction with the functions

and <I™ whilst a mass - is used in conjunction with
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the functions 4i The choice of sign is made so that
the positive mass is used with the functions v/hich, as we
shall see in the next paragraph, predominate in the
"classical" case of low velocities.

In comparing the equations (82) and (8”") de Broglie assu-
mes that we are concerned with the proper mass mo , which he

replaces by -m" = -m"/Y” . Hence we again obtain the results

(88) and (g2).

These different arguments due to de Broglie and Frenkel
are seen to lead to the same results. Their difference lies
in the manner in which a result is deduced in the new wave
mechanics by analogy with the known results in non-

relativistic Wave mechanics.

If we accept the arguments outlined in this paragraph we
are led to the conclusion that the electron and other charged
particles possess a real proper electric moment defined by
equations (92).

We must note that Cattermole and Wilson (ref.19) have
published a theory of the electron, based on Kaluza’s theory
of relativity, which gives no electric moment, real or

imaginary.
j(11). PLANE WAVES IN DIRAC’S THEORY”"

Let us consider the equations (44) in the absence of any

field of force. In this case the relations ,(22)” take the
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simple form

L A- U
2XL XTTLcC

Equations (44) then become

L)
O.1CIeX;" 495)
I k
[_3 AN "_Vj+t +[ M1 (A’ - «

These equations have plane-wave solutions of the form

4" &N ®xp. - "Wt - (p.q) (96)

A

Substituting in equations (95)»

Y 4+ me>a + P+ iPiQ) PjSj = 0

\\%

) t m,c > af Pi- iPz S" P3« 0

g . - (97)
. m.c @B+ p + ip?> a t Paa, =0

mc * a*t jp, - iPif a,- Pj8i =0

The condition that these equations should be satisfied for
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non-zero values of a” is that the determinant formed from
the coefficients of the amplitudes a” is zero. On evaluating

this determinant we find

(98)
that is W =1 c¢rsfmfd"+ pt (99)

The condition (98) is automatically satisfied, since it
is the well-known relationship of special relativity mechanics.
We shall confine our attention for the moment to the pos-
itive solution in (99). Giving the arbitrary values A and
to a® and a" respectively, we can determine the other two

amplitudes, since

Pj A- (p, > ip”")B

(100)
r )
p B + (p, - iPz)A

tn*c

In the case where the momenta p- are small compared with
m*c we see that a, and a” are very small compared with a*
and a”. In a system of co-ordinates in which the particle is
at rest the amplitudes a, and a® , and hence the wave
functions (., and 1}/, are zero. Hence in this limiting case we

have a wave function with only two components.

* The solution B is not to be confused with the Bohr magneton.
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(12) THE NEGATIVE ENERGY STATES.

The equation (98) can be satisfied by taking the negative
sign for the square root in (99) instead of the positive.
There are thus two possible values of the energy of a
particle with a given momentum, a positive value which we
shall call W, and a negative value which we shall call ,
such that = - Wp.

Taking the negative energy solutions wecan obtain a set

of values for the amplitudes a” similar to (100) Thus

a, - C =D ;
P30 - (P| + IPz. )D
83
Vg" - m,c (101)
Clearly the wave functions “nd ®re negligible for

the states of negative energy in the ordinary case where the

momenta p- are small compared with m”c.

The states of negative energy of a particle are an out-
standing feature of Dirac’s theory. The question does not
arise in ordinary relativity mechanics, although the
ambiguity of sign in equation (99) is of course found there
also. There is however a discontinuity in the range of

energy values of at least 2 m*c between the positive
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energy states and the negative energy states®* Therefore in
ordinary physics a particle in a positive energy state could
not pass intp a state of negative energy. In the quantum
theory we cannot eliminate the negative energy states in this
way, since in this case a discontinuous change of energy is
quite possible.

We must now see how such states of negative energy might
be expected to arise in practice.

A particular case has been examined in detail by Klein
(ref.20). He considered the incidence of a free electron
upon a potential barrier, the change of potential energy on

crossing the barrier being U. There are three cases;

[\ / Z
(1) U/mc-m*"c 2 ; there are both reflected and ref-

racted waves, that is, there is a finite probability of the

electron passing through the barrier.

(2) m c™- m’c U mc* + rac ; the transmitted wave is
imaginary.
(5) U”A"mc* t mc ; there is a transmitted wave, which

indicates a finite probability that the electron will pass
through the barrier, in which case it will enter a state of

negative energy.

Although it 1s impossible in practice to produce a static
field sufficient to create the conditions of the third case,

the theoretical probability is rather disturbing. We may note.
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however, that this probability becomes zero if we assume that
the potential energy cannot change by an amount mc in a

distance less than h/m”c -

I[f we endeavour to represent any general solution of the
wave equation by the superposition of a series of "monochrom-
atic" plane waves it is found that the waves corresponding to
positive energy states alone do not form a "complete system"
in the sense of Fourier’s theorem. Such a complete system is
only normally obtainable if the waves representing negative
energy states are also included.

It can be shown that the system of waves representing
positive energy states will form a complete system provided
the dimensions of the wave train are considerably greater

than h/m”c.

A detailed examination of the scattering of electro-
magnetic radiation by free electrons shows that the Dirac
electron can only scatter such radiation provided it can enter
states of negative energy, (ref.21). Thus it appears that the
states of negative energy play an essential part in fhe theory

although no particle has ever been observed in such a state.

Finally we must notice that Dirac has made an attempt to
incorporate the negative energy states into the theory in a
very novel way. He assumes that these states are all

normally occupied by negative electrons which produce no

field and are in no way directly observable. By Pauli’s
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exclusion principle we see that the difficulty proposed by

Klein does not arise since all possible states are occupied,
hence the electron cannot enter a negative energy state, in
,this case.

If a sufficient quantity of energy is giyen to an electron
with negative energy it will be raised into a positive energy
state and hence become observable. The "hole" in the system -
of negative energy states will display all the properties to
be expected of a positive electron or positron, with positive
energy. Before the discovery of the positron the "hole" was
identified with a proton, but the difference in mass created
a serious objection to this hypothesis.

If the "hole" theory is true we should expect pairs cons-
isting of a positive and a negative electron to be formed,
for example by the absorption of hard T-rays of energy y 2m’c

* This phenomenon has been observed in cloud-
chambers used in investigating cosmic rays, (ref.22).

Similarly an electron might be expected to fall into the
"hole" represented by a positron, with the emission of

radiation. This phenomenon also has been observed.

The formaiism of the "hole" theory of positrons leads to
several unresolved difficulties, and must be considered as
provisional only.

The states of negative energy constitute a fundamental

difficulty in relativistic wave mechanics. The solution app-

ears to be associated with the existence of a minimum dist-
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ance h/m”c and a minimum proper time h/m”c”, associated v/Ith

a particle of proper mass nf) .

(Ij) CONCLUSION.

C.G.Darwin and W.Gordon have succeeded in deducing the
fine structure formula for the spectra of hydrogen-like
atoms on the basis of Dirac’s equations, (ref.2j). Their

formula gives for the energy levels, approximately

R h N
(102)
where j = L+g |
The selection rules can be shown to be

SL =+ 1 ; $m = 1, 0 ; =x1, 0. . . . (105
Where the quantum numbers L, m, j, have their usual
significance.

#

The application of the formula (102) and the selection
rules (105) gives results in complete agreement with experi-
ment .

Similarly the application of Dirac’s theory leads to
correct results for the fine structure of X-Ray spectra, and
for the Zeeman effect in hydrogen-1ike and alkali atoms.(ref.24.)

Considerable difficulty i1s encountered in attempting to
apply the first order equations to the many-body problem. We
note, however, that this problem leads to great difficulty

even in ordinary, relativity mechanics.
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There are other methods of developing and interpreting the
firfet order equations than that discussed in this paper.

Darwin and Frenkel (ref.25) have drawn attention to the
analogy between the first order equations of the quantum
theory and Maxwell’s electro-magnetic equations. In the
electro-magnetic theory the first order equations were known
first and the second order equation deduced from them. In the
quantum theory we have the second order equation (25)» “ich
is true in zero field, and we have to find the corresponding
first order equations. This treatment leads to the same
results as Dirac’s.

In more recent researches workers have tended to base their
theories upon Kaluza’s $-dimensional relativity. The starting
point of this theory lies in equations (20) and (*2).(ref.26)
It will be noticed that equation (90) is of the form of the
equation of a geodesic, but does not represent a geodesic in
the 4-dimensional continuum. By adopting a five dimensional
co-ordinate system it is possible to make (*O) represent a
geodesic. The quantities ~ are now components of a
covariant vector in this continiium, the fifth component
being identified with the charge on the particle multiplied
by a suitable dimensional constant. The path of an electron is
assumed to be a null-geodesic in the Kaluza space.

H.T.Flint has developed a theory of the electron on the

basis of Kaluza’s theory of relativity, (ref.2/). He assumes

1
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that in the description of micro-physics the ordinary length
and vectors of macro-physics are to be replaced by matrices.
The wave function ixis introduced as a "guaging,function"

for the continuum, on considering the change of the components
of a vector in a parallel displacement. The detailed calcu-

lation leads to Dirac’s equations of which it provides a new

interpretation.
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SYMBOLS.

Most of the symbols used are defined in the text or are

of well-known conventional significance. To avoid any

possible confusion some of the more important are defined

below;-

(X.Y) = the scalar product of X and Y.

[ xXYJ = the vector product of X and Y.

[ X 1YJ = XY - Y X = the commutator of X and Y.

e = the protonic charge - - the electronic charge,

m = the relative mass. In paragraph (2), m - an integer;
in paragraph (1%), m = a quantum number,

mo = the proper mass of a particle.

p* - a component of the momentum,or the corresponding
wave mechanical operator.

= Pw f- a component of the "extended momentum".
C = a unit matrix. In paragraph (4), C = "the variation

of-" in paragraph (17), ~ ="a change in the value of-"
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