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ABSTRACT
It is widely known that one of the major tasks of 

•Foundations* is to construct a formal system which can he said 
to contain the whole of mathematics#

For various reasons axiomatic set theory is a very suitable 
• choice for such a system and it is one which has proved acceptable 
to both logicians and mathematicians#

The particular demands of mathematicians and logicians, however, 
are not the same# As a result there exist at the moment two 
different formulations of set theory idiich can be rou^ily said to 
cater for logicians and mathematicians respectively*# It is these 
systems which are the subject of this dissertation# The system 
of set theory constructed for logicians is by P# Bemays# This 
will be discussed in chapter H %  For mathematicians N« Bourbaki 
has constructed a system of set theory within which he has already 
embedded a large part of mathematics# This system will be discussed 
in chapter III#

Chapter I is historical and contains some of Cantor's original 
ideas#

The relationship between Be mays' system and (essentially) 
Bourbaki's system is commented upon in chapter IV%
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CHAPTER I
Cantor's theory of aggregates

In this chapter we shall set forth some of Cantor's original 
ideas* and then briefly sketch the path of their later modifications# 

It has been maintained that one cf the major triumphs of 
Cantor's theory of aggregates is that it places the problem of 
'completed infinities' (represented by cardinal and ordinal numbers) 
on a firm basis thus repudiating Gauss' famous dictum "I protest 
.#....against the use of infinite magnitudes as something completed, 
which is never peimissable in mathematics"# Now although it is 
by no means unanimously agreed upon (among workers in 'Foundations') 
that Cantor's theory of aggregates does constitute such a repudiation, 
we shall in this chapter view the cardinal and ordinal numbers of 
Cantor as capable of representing 'completed infinities' and select 
those of Cantor's ideas which have a bearing on this notion#

Fundamental to the whole theory of aggregates is the definition 
of an aggregate#
*3y an aggregate (Menge) we are to understand any collection into 
a whole (Zusammenfassung zu einem Ganzen) M of definite and separate

Unless otherwise stated the quotations given in this chapter are 
taken from P# Jourdain 1915? our page numbers refer to the Dover 
reprint#



objects m of our intuition or our thought. These objects are
called the elements of M# In symbols we express this thus,

M = ^ m^
Prom this a partial aggregate or part of an aggregate M is defined 
as any other aggregate whose elements are also elements of M*
Three important conceptions are implicit in this definition of an 
aggregate :

(a) Aggregates themselves as 'wholes' become 'definite
and separate objects of our intuition' and can thus be elements 
of further aggregates#

(b) There is no restriction whatsoever on the formation of 
aggregates# Any method of collecting together different objects 
(e#g. by listing them, or requiring them to satisfy some condition) 
will yield an aggregate #

(c) All objects are elements of a single aggregate which 
comprehends them all#
Later in this chapter (pp# 3:1-3 ) and in chapter II (pp#U-\-3 ) 

we shall see the important roles played by the above conceptions 
in the axiomatisation of Cantor's ideas#

Upon the above notion of aggregate Cantor constructed two 
fairly separate theories; the theorj’- of cardinal numbers and the 
theory of ordinal numbers#

We shall (following Cantor) deal with the theoiy of cardinal 
numbers first o
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Section l̂o Cardinal numbers#
'We will call by the name of power or cardinal number of M 

the general concept which, by means of an active faculty of 
thought, arises from the aggregate M when we make abstraction 
of the nature of its various elements m and of the order in vdiich 
they are given# We denote the result of this double act of 
abstraction, the cardinal number or power of M,* by fi#'

Thus every aggregate M has an entity M correlated with it% 
Cantor conceived this entity as an aggregate, the elements of which 
were characterless 'units' and says of it that 'this number has 
existence in our mind as an intellectual image or projection of the 
given aggregate#'

Pursuing the notion that cardinal numbers embody the magnitude 
of aggregates Cantor investigates how the relations of 'equality' 
and 'greater than' and the operations of 'addition', 'multiplication' 
and 'exponentiation' can be defined for cardinal numbers#
Relation of equality

This rests on the notion of the equivalence of two aggregates# 
'We say that two aggregates M and N are equivalent, in symbols 
M ^  N or R M, if it is possible to put them, by some law, in 
such a relation to one another that to every element of each one of 
them, corresponds one and only one element of the other#' (p#40)#



Cantor then argues* that equivalence of aggregates M N 
and equality of cardinal numbers S = B are one and the same thing, 
in the sense that from either one of them the other can be deduced# 
Thus Ê = B if and only if M N#
Relation of 'greater than* (p. 8$)%.

If between two aggregates M, N with cardinal numbers a = M
b = B, the following two conditions hold then & said to be less
than b (or b greater than a), in symbols a < b:

' (i) There is no part of M which is equivalent to No
(ii) There is a part of N such that N^ M#
Cantor proves that the relation so defined has the properties 

(in modern terminology) of irreflexivity (not a < a)y asymmetry 
(a ̂  b implies not b <  a) and transitivity (a < b and b ̂  c implies 
a < o).

Using this definition and assuming the theorem on the 
comparability of cardinals in the form which asserts that if a and b
are any two cardinal numljers then either a = b or a < b or b ̂  a.
Cantor is able to prove the following theorem:
If two aggregates M and N are such that M is equivalent to a part N^
of N and N to a part of M then M and N are equivalent#

* We use this word advisedly since there is no question of a proof 
here from the above 'definition' of a cardinal number# However 
Cantor's intuition was quite in order# See chapter II p# 11 #



This theorem, which was later proved without the assumption 
of comparability by Schrbder and Bernstein independently, is basic 
to the whole theory of cardinal numbers#
The addition of two cardinal numbers (p# gl).

The sum of two cardinal numbers a = M, b = N is obtained by
uniting M euid N into a single aggregate (M,1T) termed the union aggregate 
(Vereingungsmenge) and taking the cardinal number of this new aggregate:

a + b = (M̂ N)
The union aggregate (M,N) as Cantor defines it here, is only defined 
for disjoint sets# Thus 'we denote the uniting of many aggregates 
M,N,Po.•••which have no common elements, into a single aggregate by
(M,N,P,.... )*# The elements of this aggregate are,^therefore, the
elements of M, of N, of P,••••.taken together*, (p. 85)#

There is however no necessity for this restriction to disjoint 
sets as was later shown by Zermelo who proved the general theorem:
If S is any set one can form a disjointed set S' ^ich is equivalent
to 8 and whose members are equivalent to the members of S in a 
well-defined* sense.

■ In this connection we note that Cantor points out that the sum 
a + b in no way depends on the 'representative* aggregates M and N,

see Praenkel/Bar Hillel* I96O p# 126,



since if M* M and N* N then the re suit (M* , N') (M,N)
follows easily from the definition of equivalence# (However, since 
the time of Zermelo*s axiomatisation of the ideas contained here, it 
has been know that the Choice-axiom is invoked in 'selecting* the 
repre se nt at ive aggre gate s)•
Miltiplication of cardinal numbers. (p. 92)#

This is based on the notion of the aggregate of pairs 
(Verbindungsmenge) which is defined as follows:
'Any element m of an aggregate M can be thou^t to be bound up with 
any element n of another aggregate N so as to form an element (m,n); 
we denote by (M#N) the aggregate of all these pairs (m,n) and call 
it the aggregate of pairs of M and R# Thus (M#N) = «f(m,n)y •*

From this, the product of a and b, a#b is defined as a#b = (M,N)#
As with the sum, the product a#b is independent of the representative 
aggregates M and R with, of course, the same qualifying remarks as 
before•
Exponentiation of cardinal numbers# (p. 94)o

This is based on the inportant notion of covering#
'By a covering of the aggregate R with the elements of the aggregate M 
or, more sinply, by a covering of R with M,' we understand a law by which 
with every element n of R a definite element of M is bound up, where 
one and the same element of M can come repeatedly into application# The 
element of M bound up with n is, in a way, a one-valued function of n, 
and may be denoted by f(n); it is called a covering function of n# The



corresponding covering of N will be called f (n )J Cantor terms 
the totality of different coverings of N with M the covering
aggregate ( Be le gungsme nge ) of N with M and denotes it by (n/m )# Thus

(N/M) = {f(N)).
If now a = M, b = N, then exponentiation is defined as

= ( ^ )
Using this definition Cantor obtains the following three basic 
index theorems:

a^. a° = a^® 

a^. b^ = (ab)°

(â )"" = â ""

If now is defined as the cardinal number of the aggregate of all
the integers*, i.e.

then the following two theorems are not difficult to obtain
(a) (2 '̂ )̂ “ = 2'^° ■

(b) (2^ 0)^° = 2^*°
Now in view of our definition of covering, 2 can be interpreted

* Strictly the natural numbers should have been defined with respect 
to aggregates in some way for these results to have their full 
depth# This can be done, as we shall see below#



as the power of the contimrain (this is clearly seen if the continuum 
is considered as the totality of all binary representations

+ .....
2 2® 2®

where f(n) = 0  or l) •
The results (a), (b) thus express the facts that the n-dimensional 
and ^-dimensional continua have the same power ('same number of 
points') as the one-dimensional continuum#

The depth of these results bears testinony to the fertility of 
the notion introduced so far© Indeed, Cantor himself remarks 
(with reference to the results (a), (b)) 'Thus the whole contents 
of my paper in Crelle's Journal (vol# 84, 1878) are derived purely 
algebraicly with these few strokes of the pen from the fundamental 
foimulae of the calculation with cardinal numbers' (p# 97)®
Finite cardinals (p« 97)*

As well as providing a theory of the 'actually infinite or 
transfini te cardinals' Cantor recognised that his theory of aggregates 
could equally well be used to give a foundation to the theory of finite 
numbers #
'To a single thing e^, if we subsume it under the concept of an 
aggregate = (ê ) ,‘ corresponds as cardinal number what we call 
"one" and denote by 1; we have

1 = Ê



Cantor then forms the union aggregate E^, of E^ and a new element 
thus = (Ê , e^) = (e^, e^) (a)

and "two" is now defined as the cardinal number of E^, thus 
2 = E^, and in general

n = E ^ ^  where Eg = (Ê , Sg), E^ = (Eg, e^) etc.
Having defined the entities E^, E^, etc* which represent the integers, 
Cantor then shows that the usual properties of integers are 
provable for them. He also proves several general theorems 
concerning finiteness, the most important of which (from the axiomatic 
standpoint) is the following:
Every finite aggregate E is such that it is not equivalent to any of 
its parts.

This theorem characterises, for Cantor, the idea of finiteness.
It is by no means the only such characterisation, as we shall see 
in the next two chapters.

We shall return to Cantor's definition of finiteness when we 
discuss Bourbaki*s definition, and for the moment we note the 
following points.

(a) In equation (a) Cantor fails to distinguish between the 
aggregate E^ whose sole element is e^ and the 'single thing' e^ itself 
(a distinction first made by Frege and Peano). Here, in fact, the 
erroneous assertion of equality ((Ê , e^) = (ê , e^) is not necessary 
to Cantor's definition and can be dispensed with.



(b) the infinity of distinct objects e^ (v = 0, 1, 2,o..) 
used by Cantor to carry out his construction of the finite cardinals
is not needed and can be replaced by one object, e^ (or O', the null
set) and an operation on sets which exploits the very distinction 
indicated in (a). Thus the objects of the following sequence will 
serve instead of e ,̂ e^, etc*

@0, [«(P , , etc

where denotes the set idiose sole element is au « (see
chapter U  p. 53 )•
Transfinite aggregates

Cantor defines transf inite aggregates as aggregates which 
are not finite (according to the definition of finite ness given 
above) so that the characterising property for transf inite aggregates 
is the following: 'Every transf ini te aggregate T is such that it 
has parts T^ which are equivalent to it'.

We have already encountered the cardinal numbers of two such 
aggregates, namely the cardinals and 2 for which the 
relation 2 ^ holds. Just as 2 ° was produced from by
exponentiation, so higher cardinals can be produced by repeating the
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X ^ ooperation , and we would obtain ^ ^ , 2  ^2" etc#
In general, the cardinal numbers described in this section 

generalise the notion of magnitude from the finite to the transf ini te 
and the particular cardinal numbers ^ 2 ^ etc, are certainly
'completed infinities' in this sense# There is, however, besides 
magnitude, another familiar aspect of the finite aggregates (i#e% 
numbers) # Thfs is their ordinal aspect, exemplified in their 
use for counting, and it is the generalisation of this aspect that 
is accomplished by the theory of order which we shall now describe # '

* This is not the only way of producing higher cardinal numbers
from Q* shall meet another method in section 2 which produces
the sequence of cardinals ^2^ etc. such that ^  ^ 2 ’
etc. The connection between the two methods of generation has not
yet been satisfactorily explained. (See chapter IV) #



Section 2, Theory of Order
Cantor calls an aggregate M simply* ordered if *a definite 

order of precedence (Rangordnung) rules over its elements m, so that, 
of eveiy two elements m^ and m^, one takes the lower and the other 
the h i ^ r  rank, and so that, if of three elements m^, m^ and ny,
ny, say is of lower rank than m^ and m^ is of lower rank than ny,
then ny is of lower rank than ny* (p. U O ) .

Now just as the cardinal number of an aggregate embodied the
magnitude of that aggregate, so an entity is needed which embodies 
the 'orderedness* of an aggregate. Cantor proceeds as follows. 
'Eveiy ordered aggregate M has a definite ordinal type or more 
sliortly a definite type which we will denote by M. By this we 
understand the general concept which results from M if we only 
abstract from the nature of the elements m and retain the order of 
precedence among them. Thus the ordinal type M is itself an ordered 
aggregate whose elements are units which have the same order of 
procedence amongst one another as the corresponding elements of M.'

* This adjective was used by Cantor to distinguish the notion of 
order defined here from more complex notions of order. However 
these latter notions were not developed, and we shall follow Cantor 
and omit the word "simply".
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As equivalence is the notion Tdiich allows the comparison 
of cardinals, so similarity is the coirespending notion for types#

'We call two ordered aggregates M and N similar (ahnlich) 
if they can he put into a hiunivocal correspondence with one 
another in such a manner that, if ny and ny are any two elements 
of M ard n^ and n^ the corresponding elements of N, then the
relation of rank of ny to m^ in M is the same as that of ry to n^
is N# Such a correspondence of similar aggregates we call a 
mapping (Ahhildung) of these aggregates on one another'# (p# 112)#

We shall not pursue these ideas for in the first place notions, 
almost completely analogous to the ones for cardinals, can be 
defined whose manipulation leads to similar theorems#

Much more important than this, for our purposes, is that, 
whereas cardinals do completely embody magnitude and thus generalise 
that aspect of number, this is by no means the case with ordinal
types; they are not analogous to the finite numbers considered
ordinally# The reason for this is that the property of being sinply 
ordered does not fully characterise the finite ordinals - they possess 
the stronger ordering property of being well-ordered#

Cantor defined an ordered aggregate P to be well-ordered if 
it satisfied the following two conditions#
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'The elements f of P ascend in a definite succession from a 
lowest f^ such that
(a) There is in P an element f^ which is the lowest in rank*
(h) If P' is ary part of F and if F has one or many elements of 
higher rank then all elements of F', then there is an element f  

of F which follows immediately after the totality F', so that no 
elements in rank between f  and F' occur in F*' (p. 137)*

A primary consequence of this definition is that every 
part F^ of a well-ordered aggregate F has a lowest element#

It is usual now to take this consequence as the definition 
of a well-ordered set and to derive the properties (a) and (b) 
from it.

The ordinal types of well-ordered sets are entities which do 
indeed constitute generalisations of the finite ordinal numbers.
In recognition of this fact Cantor termed these entities ordinal 
numbers.

The operations of addition, multiplication etc. for ordinals 
(i.e. ordinal numbers) are,' of course,' special cases of those 
defined for ordinal types in general. The consequent theory of 
ordinals, however, because it is a specialisation, contains much 
deeper and more particular results than does the general theory of 
ordinal types'. One such result is the comparability of ordinals; 
to describe this we need first the idea of a segment of an ordinal*



'If f is aiy element of a well-ordered aggregate P which is 
different from the initial element f^, then we shall call the 
aggregate A of all elements of P which precede f a segment 
(Ahschnitt) of P or more fully the segment of F defined by the 
element f .' (p. I4I)*

The theorem asserting the comparability of ordinals can now 
be stated:
If F, G are any two well-ordered aggregates then one of the following 
three cases must hold*

(a) F, G are similar to one another.
(b) There is a definite of G to which F is similar.
(c) There is a definite segment A^ of F to which G is similar.

Thus of two unequal ordinals it can always be asserted that one is 
'higiier' than the other. The proof of this theorem rests on a 
good deal of subsidiary work on the notion of similarity. The 
character of this work, however, has a certain transparency and 
the comparability theorem is a more or less strai^t forward 
consequence of the definition of an ordinal. It is this transparency 
to which we are calling attention here'. Ordinals are much simpler 
entities than cardinals in spite of the stronger intuitive aspect of 
cardinals as sheer magnitude, and thus results for cardinals, analogous 
to easily obtained results for ordinals, are often difficult to obtain 
within the theory of cardinals.
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Cantor recognised that this disparity between results for 
cardinals and ordinals could, to some extent, be overccme if 
a proof could be given that any aggregate can be well-ordered 
(i.e# if it could be proved that for any aggregate there 
exists an ordering of its elements which is a well-ordering).
Cantor did not, in fact, manage to prove this theorem, and it was 
not until I9O8 that it was proved - by Zermelo. This brings us back 
to comparability. For the importance of the comparability theorem 
for ordinals is that it, together with Zermelo's well-ordering 
theorem, furnishes a conparability theorem for cardinals. Since, 
given any two aggregates A, B we can, by the well-ordering theorem, 
assert the existence of two well-ordered aggregates A*, B* such 
that the elements of A are the same as those of A* and similarly 
for B, B* ; thus A A* and B B' . The three mutually 
exclusive alternatives (a) -(c) for ordinals guaranteed by the 
comparability theorem for ordinals thus become three mutual]y 
exclusive alternatives for cardinals (according to the definition 
of * < » on p. above); so that one of the following three cases
must hold.

(a)* A = B
(b)' A <  B
(c)' B < A
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The situation is a little more complicated than we have made it appear, 
however, since, to any aggregate A, there exist many ordinals A' with 
the above pro%)erty and it is necessary to take the least one having 
this property. This point will become clearer in the next section 
where we shall be concerned with the particular case A =

We shall finish this section by giving Cantor's account of one 
of the most important ideas in his theory of ordinals - the notion of 
a limit number.

First, Cantor calls any series of ordinals ay, a ^ , ' . w h i c h  is 
similar to the series 1, 2,....#., a fundamental series (or more precisely
a fundamental ascending series of ordinals).

Now let pg,......(l) be any series of distinct ordinals (not
necessarily a fundamental series) such that Then Cantor
proves that the aggregate G =(G^, G^,.....) is a well-ordered aggregate,
whose order type is thus an ordinal, and he takes* this ordinal to be 
the sum, p, of the series (l), so that

p = G = p^ + pg +  p^ + .....
From the series (l) Cantor forms a new series

“2......  V .....
which is a fundamental series, by taking

“n = Pi + P2 Pn
i.e.  G^)

* In accordance with his definition of the ordinal sum of a = A, y = G
as a + Y = (a , G).
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so that Pi = 0^, , Pn+I = V l  - “n

V l  > “n“
Cantor then expresses the relationship which holds between p and 
the series (2) thus (p. 157):

(a) The number p is greater than for every n, because the 
aggregate (Ĉ , Gg,\....G^) -sdiose ordinal is is a segment of the 
aggregate G which has the ordinal p.

(b) If p* is any ordinal less than p, then, from a certain n
onwards, we always have p*• For, since p* < p, there is a
segment B* of the aggregate G idiich is of type p* * The element
of G which determines this segment must belong to one of the
parts G ; we will call this part G » But then B* is also a n no
segment of (Ĝ , G^,.... G^) and consequently p* < for n ^  n^o
Thus p is the ordinal number which follows next in magnitude after 
all the numbers a^; accordingly we will call it the limit (Grenze) 
of the number for increasing n and denote it by so that
we have

(3) = 0̂  + (=2 -    ( V l  " +°'"
Thus Cantor has proved the following theorem:-
'To every fundamental series ^ of ordinals belongs an ordinal 
L m  which follows next, in order of magnitude after all the 
numbers a^; it is represented by the formula (5)#'

In the next section we shall see how this theorem plays a vital 
role in the construction of the second number class*
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Section 3* The second number class*
If A, B are any two finite aggregates such that A B 

(i*e* A = B) then Cantor proves that A = B i.e* all ordered 
aggregates of a given finite cardinal number have one and the same 
ordinal type* Thus 'finite ordinals coincide in their properties with 
finite cardinals'* However, 'the case is quite different with the 
transf inite ordinal numbers; to one and the same transf ini te cardinal 
number X  belong an infinity of ordinal numbers which form a 
unit@13: and connected system* We will call this system the number 
class Z (X  )t (p. 1 5 9);

The simplest such number class is obtained when x  = and
Cantor termed this the second number class* (He understood by the 
first number class the aggregate { n^ of finite ordinals) *

Thus the second number class is a totality of ordinals which 
coEprises all types of well-ordered aggregates having the cardinal 
number ^ *

The following four theorems (proved by Cantor) are sufficient 
to furnish us with a broad intuitive picture of the second number 
class*
Theorem 1

The second number class has a least number
^  = Lim n n
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Theorem 2
If a is any number of the second number class, the number 

a + 1 follows it as the next greater number of the second number 
class*
Theorem 3

If cy, Gg,*,...; is any fundamental series of numbers of 
the first or second number class, then the number Lim following 
them next in order of magnitude belongs to the second number class* 
Theorem 4

Every number a of the second number class is such that either
(a) it arises out of the next smaller number a (if there is

such a one) by the addition o f l : a = c ^ + l
or (b) there is a fundamental series [ of numbers of the
first or second number class such that a = Lim a *n n

We can now construct our picture^% The following ordinals are 
elements of Z ( ^  ̂ )

CO Th*l
. ^  + 1, tO+ 2, *.*.* 00+ n, *. .*; by Th*2

C0*2 = L ^  oO + n by Th*3
00*2 + 1, cO*2"+ 2, tO*2 + n by Th*2
oO%3 = Lmoo'o2 + n by Th*3

continuing this process we obtain (amongst the ordinals generated) 
the ordinals:



cO0̂ 9 ••••• oHy *#* ##)
(we have omitted ^ « 4  + 1 , ^  #5 + 1, **..« etc)#

These form a ftmdamental series and hence "by Th. 3 have a limit
ordinal

u> ® to. n
similarly u) ® = M m  cO®on

In this way a new fundamental series

u>®,....
with limit ordinal = L m  is formed; repeating this with the
series

usT* , w  ̂ ^  , K  ^  \ .... ; we get
^  ( to*̂  ) = CO  ̂ ) giving yet another

fundamental series :
VCO W

U> W  LO
LO n. K

The limit of this series cannot he written usin^ a finite number 
of symbols to in the exponent# It is called 

 ̂ ^ o ~ first epsilon number#

It has the property (not possessed by any smaller ordinal of Z (Jf^))
that it satisfies the equation to = (l)
/ . ^ o  ̂ \(i.e. to = €^)o
The number however is by no means the 'final number* of Z (^^)#



2.ÎL

For the ordinals ^  ̂+ 1, + 2,..o.o £  ̂+ n.#...; all belong to
Z ( .X* and serve to start again the process of generating elements 
of Z ( ^)o In fact Cantor calls all ordinals satisfying equation (l)
epsilon nimliers and proves the remarkable theorem that there exists an 
epsilon number £ ̂  for every ordinal a which belongs to the first or 
second number class (p. 197)®
Tlie epsilon numbers are all limits of fundamental series of the form

Y Y Y
Yi Yg . . . . . . .......... ;

where y is an ordinal of the first or second number class# By taking 
y = 1 we obtain as before# To obtain £ y is given the value
£ ̂  + 1; to obtain 6^, y is given the value £ ̂  + 1 etc#

Having thus constructed the second number class Cantor, naturally, 
investigates its cardinal number; this he call and proves that it 
is greater than and is in fact the next cardinal number after 
(hence the notation)# His proof is essentially an application of his 
'diagonal argument* where the diagonal 'element* is provided by Th#3#
That is, on the assumption that the elements of Z ( X  )̂ can
be written as

Pl’ ^2 Pn  . , .
From this series a fundamental series can be formed, the limit of which, 
is greater than any ordinal and which is an element of Z (%^ ̂ ), 
thus contradicting the assumption that the above series contains all 
the elements of Z (%>f^)#



V/e shall now consider an application of the second number class 
to the process of 'counting* , which is exemplified by the notion 
of induction* The induction principle for the natural numbers 
asserts the following.
(a ) If the truth of a property P for a number n implies its truth 
for a number n + 1 and if it is true for 1 then it is true for all 
natural numbers. Expressing this roughly in symbols 

(P(l) (P(n) P(n + 1))) -> p(n) for all n.
This principle can be generalised to give induction over the 

elements of Z by inserting a clause to deal with the limit
numbers, thus:
(B) (P( w  ) & (P(a) P(a + 1) & P(a) P(p))) P(a)

a < p
for all ozrdinals a of Z (%X )o'  o '

The principle (b ) is but a special case of the more general transfinite 
induction principle framed for any well-ordered set rather than for 
Z (See chapter H  p.tl )#

It is seen that (b ) is indeed stronger than (a ) by comparing 
their conclusions. (A) asserts the truth of a property P for 
'X Q individuals whereas (B) makes this assertion for ^ individuals 

The importance and fruitfulness of transfinite induction cannot be 
exaggerated. This is so even when it is used in a weaker form than 
(B) • Such a weakening can be obtained by restricting the induction



to apply only up to a certain element of Z This can
be illustrated as follows# Let us suppose it is desired to 
list the foimulae of a foimal system; for our purposes these 
can be taken as finite strings of symbols formed from an 
infinite alphabet of letters# Let us suppose also that 
it is necessary to list all strings of n letters before any
string of n + 1 letters (for n = 1, 2,.... Now it can
easily be shown that any ordinal of Z ( X  which is less than 

can be expressed in the form

+.... + a^ where a_ (i ^ n) is
a finite ordinal# There is thus a (l,l) correspondence between 
n - iuL^lets and ordinals of Z ( X  less than k)^# Hence

toour list of strings will have ordinal number co , and induction 
up to this ordinal can be used to deal with this list; in fact 
Gentzen in his proof of the consistency of number theory (195^7 
1938) used transfinite induction up to £ ̂ #

At first glance the weakened foim of (B) illustrated above 
appears to be nothing more than an application of (a), since 

any ordinal of Z ( X ^ ) ,  in particular to , is the order type 
of a denumerable set and by re-arrangement of this set it would 

be possible to apply the principle (a)# Now although this is
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true it is not the complete story and the situation is somewhat 
more subtle than this*# In any case, use of a weakened form of
(b ) has justification in that it is very often considerably 
simpler than the corresponding numeral induction #

\7hat emerges from the above discussion of induction is 
that the infinite ordinals constructed by Cantor (in particular 
the members of Z (X^)) are certainly * completed infinities* 
and that they permit the extension of counting operations 
beyond the finite aggregates#

* See Klee ne 1952 pp. 476-479* The essential point is that 
such a rearrangement would entail a change in the character 
of the property P in (B)#

* E#g# where induction occurs within the basis of another 
induction# See KLeene loc. cit#
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Section 4» Zentielo - Fraenlosl get theory#
As is well known Cantor* s theory of aggregates is inconsistent ; 

since, using modes of reasoning which Cantor* used Russell 
constructed an antinomy (see p. below) within the theory of 
aggregates# The discovery of this antinomy gave the main impetus 
to a reformulation of Cantor*s ideas on a more rigorous basis©
The increasing tendency to axiomatise branches of mathematics 
(along the lines of Peano* s axiomatisation of arithmetic) also 
helped to bring about this reformulation#

The original axiomatisation of Cantor*s theory of aggregates 
was carried out by Zermelo in 1908# Since then there have been 
additions to and modifications of this original axiomatisation 
resulting in the Zermelo-Praenkel (-Skolem) set theory which is 
normally referred to as ZPV It is ZP that we shall briefly 
describe, commenting later in this section on the difference between 
it and Zermelo*s original version#

* Cantor himself formulated an antinomy which is known as Cantor* s 
paradox# He asks whether the cardinal number of the aggregate of 
all aggregates is the largest cardinal number# By the very definition 
of such a number the answer is yes eind yet the cardinal number of 
the aggregate of parts of the aggregate of all aggregates possesses a 
greater cardinal number#



ZP set theory consists of nine axioms ZPl - ZPg and employs 
the relation of membership ( £ ) as primitive. The notion of
set in ZP, which formalises that of aggregate, is undefined - in 
the sense that no explicit definition, analogous to Cantor's 
definition of an aggregate is given for it. This illustrates 
immediately the difference between Cantor's approach and that of 
Zermelo (and all his successors). Cantor abstracted from a 
given 'world' and he thus took it as meaningful to define an 
aggregate in tems of notions related to this world. Zermelo 
on the other hand assumed nothing but his axioms (for the question 
of his logic, see p. io below) and constructed everything from 
these'.
The basic logic of ZP is usually taken to be the predicate calculus 
(e.g. as set out in Hilbert/Ackermann 1958) which we shall not 
however describe here.
The axioms of ZP 
ZPl. Extens ionality.

If two sets X, y contain the same members then they are equal,
yin symbols

(x) (y) (’f) ( (’f fe X ^  W e y) X = y
If, as we stated above, ' £ * is the only primitive relation

in ZP then '=* must be defined in terms of it; this can be done by

* Por the logical symbols used in this section see chapter II.
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taking x = y as an abbreviation for (z)(x £ z O *  y £ z)o If, 
on the other hand, * =» is taken as a second primitive relation (as 
it is, in the set theories of Be mays and Bourbaki) then ZPl must 
be strengthened by a further extensi onality axiom (El Be mays) 
or by an addition to the basic logic (S6 Bourbaki)© These 
strengthenings ensure that '=» has the usual properties of an 
equivalence relation and they are not needed when the above 
definition is used, since the properties in question can then be 
derived from it. (See Praenkel/Bar Hillel pp. 28-33)•
ZF2'. Pair set.

Por any two distinct sets x, y there exists a set w which 
contains just x, y.

(Ew)(z)(z £ w (z = X V z = y)
ZF3. Power set.

Por any set x there exists a set y whose numbers are just all 
the subsets of x.

(x)(Ey)(z)(z e y f-» Z Ç x)
ZP4© Union.

Por any set z there exists a set y, the union of z, whose members 
are just the members of the members of z

(z)(Ey)(x)(x 6 y (Ew)(x’fe w & w è z))
ZF5» Infinity.

There exists an infinite set 
(Ez)(0 fe * & (x)(x 6 z [x] € z) 

where Qx"] denotes the set whose sole member is x.



ZF6o Sifting - Aussonderungsaxiom.
For any set z and any well-defined condition P(x) (see below)  ̂

there exists a subset y of z whose members are just the members of 
z which satisfy the condition P(x) #

(z)(Ey)(x)(x € y (x 6 z & P(x))
By a well-defined condition is meant any formula (with a free 
variable) which is built up from the 'atomic' formula a e b and the 
logical constants in a recursive manner# (See Bourbaki's critères
format if s or Praenkel/Bar Hillel p# 272). It will be more
convenient to comment on the nature of this axiom* in the next 
section#
2P7» Choice #

Por any disjoint set x, whose members are non-ec^ty, there 
exists at least one subset u of the union x, with the property 
that u has one and only one element in common with every member 
of X #

(x) { (y)(z)((y € X & z 6 x) ((Es)(s fe y & (Ew)(w e y & w t z)))) 
— ^(Bu)(y)(y fc X (Ev)(t)(t = v (tfcu&tfc y)))^

ZP8# Replacement (Substitution).
Por every set t and every single-valued function P(x) which is 

defined for the members of t, there exists the set that contains 
all p(x) with X £ tc

* Axiom-schema to be precise, since only the substitution of a 
particular well-defined condition for P(x) will yield an axiom#
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(x)(x*)((x e t & x'fet & P(x) = F(x ') X* = x))
(Es)(y)(y £ 8 ^  (Ex) (x £ t & y = P(x))

This axioin-cchenia in fact contains as a special case the schema ZP6 
above but we include ZP6 in this enumeration of the axioms of ZP 
because it shows quite clearly the restrictions which have had to be 
imposed on the formation of sets to prevent the formulation of 
antinomies (see next section). The notion of a function which is 
employed here is interpreted in the same way as that of well-defined 
condition in ZP6.
ZP9o Foundation (Pundierungsaxiom) ♦

Every non-empty set s contains a member t such that s and t 
have no common member

(e) { (Ex) (i t s) -> (Bt)(t e s & (y)(y fc s & y ér t))].
The system embodied in ZPl - 9 (with the predicate calculus as basic 
logic) differs from Zermelo*s original system in the following respects 

(l) Zermelo* s system did not possess a fully formalised 
basic logic such as the predicate calculus ; perhaps because 
of this, Zermelo was not able to give a satisfactory definition 
of the predicate occurring in ZP6. The definition given 
above of using prime formulae and building up the predicates 
in a recursive way is due to Skolem.

(2 ) Zermelo* s axiom of extensi onality differed from ZPl 
since he was concerned with the possible existence of memberless 
sets (see chapter II p. )•
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(3) ZP8 was added to Zermelo* s system by Fraenkel in 
1921 o Intuitively it permits one to replace the members 
of a set by any previously defined sets. It was used 
explicitly by Cantor in roughly the same form as is 
formalised in ZP8. (See Wang/McNau^ton 1952 p. 18).

(4) ZF9 was added by Von Neumann in 1925# The purpose 
of this axiom is to exclude the so-called extraordinary 
sets (ensembles extraordinaires) which have the property
of an infinite regression of membership or of cyclic 
membersliip. Thus the two sets x, y displaying the 
following properties are extraordinary sets:

 e ^ ^  ^ ^
y ^ u f e v t y

The existence of such sets appears not to have occurred in Cantor* s 
ideas. They are compatible with ZPl - 8 but their existence 
cannot be inferred from these axioms (see e.g# E. Specker 1957) *
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Section 3# The conceptions of Von-Neumann and Bemays#
The ZP system of set theory as embodied in ZPl - ZP9 has come 

to be regarded as the standard axiomatisation of Cantor*s ideas.
This is accounted for, quite naturally, by the historical closeness 
of Zermelo*s original paper to Cantor*s theory of aggregates.
In addition, set theory, is the form of ZP, has played an
increasingly important role in the foundations of mathematics.

Thus newer systems of set theory tend to be regarded as 
modifications of, or departures from, ZP; this is in fact how we 
shall view the systems of Bernays and Bourbaki in chapters II and III.

In formalising conceptions (a) and (b) of Cantor*s definition 
of an aggregate (above p$ i ), there are two alternatives»

(a ) To retain the freedom indicated in conception (a) whereby
any collection (i.e. set) formed in accordance with the axioms
could be conceived as an entity capable of being a member of some 
other set (i.e. an entity possessing elementhood. in the sense of 
Quine I940).

(B) To retain the freedom of forming a set by abstraction,
i.e. fozming the set xP(x) of all the objects which satisfy any
given condition P(x).

In order to see that a real choice is involved here, i.e. that
(a ) and (b ) exclude each other, we must look at Russell*s paradox.
This paradox poses the question:
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Is the set of all sets which are not members of themselves a member 
of itself? In symbols, is it true that x(x ̂  x) £ x (x ^ jc)? As 
is well known, both the answers *yes* and *no* to this question lead 
to a contradiction. Now the construction of the question depends 
on utilising first (b ) to form the set "x(x ̂  x) and then (a ) to 
ensure that the question itself is meaningful i.e. the set x(x ̂  x) 
possesses elementhood.

Thus the formulation of both (a ) and (b ) in a system would result 
in a contradiction, arid some sort of choice between them must be made. 
Zermelo chose (a )* in that he rejected (B) by disallowing the use of 
unqualified abstraction in the formation of sets. He admitted a 
qualified form of abstraction by requiring that the objects which are 
to form a set by abstraction must already be members of some previously 
secured set (this is the set z in ZP6).

It was von Neumann who discovered that a fuller** formalisation 
of (B) can be achieved by admitting unqualified abstraction to form sets 
but excluding certain of the sets so formed from elementhood. Precisely 
which sets are excluded from elementhood will emerge in the next 
chapter where we shall be concerned with Be mays system, which embodies 
the discovery of von Neumann* s stated above.

* Thus any set in ZP possess elementhood; this is shown (trivially) byI
the existence in ZP for any x of the unit set Qx3 •

In the sense that no set excluded from elementhood by von Neumann 
can ever occur as a set in ZP. (See p;lô . below)’.
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Chapter II.
The set theory of P. Bemays.

In this chapter we shall discuss the system of set theory 
constructed by P. Bernays, basing our exposition on the book 
Axiomatic set theory by P. Bemays and A .A. Praenkel*. This 
book contains a more detailed and in some respects simplified 
version of the set theory put forward by Bemays in the Journal 
of Symbolic Logic (see bibliography). Y/e shall use the letter 
B. as an abbreviation for Bemays* system as put forward in the 
book and make reference to the book simply by giving the page 
number. Differences between B. and Bemays JSL will be 
commented upon at the appropriate places in this chapter and 
in chapter IV.

B. is a modification of the ZP system; its underl)d.ng logic 
consists of a two-fold extension of the predicate calculus.
The form of the predicate calculus which is used is a standard 
one (cf. Hilbert/Ackermann 1938 pp. 68-70); we shall therefore 
not repeat Bemays* description of it, but confine ourselves to 
the two extensions. These are the theory of descriptions 
(iota operator) and the class formalism (abstraction operator).

* The section contributed by Praenkel (pp. 1-44) is an historical 
introduction formulated as a commentary on the ZP axioms.



is:

Section 1. Notation and primitive s.'̂ nnbols
The objects treated in the system are of two sorts - sets

and classes; the sets are basic - set variables being the individual
variables of the predicate calculus.

As set variables small roman letters a,b,c,' x,y,z,s,t,u
are used. These variables can occur either free or bound©

As class variables capital roman letters A,B,C,..... .L,lî,N,
...... are used. These variables can only occur free.

As s^mt actio variables (i.e. me ta-variables denoting objects
of the formal sĵ 'stem) german letters are used; small german letters
denoting set variables and capital ones denoting class variables
or formulae. For t\'3>ographical reasons we shall use the equivalent #
english letter with a bar beneath it instead of a german letter.
Thus

*...... denote set variables
A,B,^V«••••♦ denote formulae
P,G^H,K,L,M,N.. denote class variables
Bemays designates the logical constants in the following 

manner: conjunction **(?•”, negation »»— »», disjunction **v”, 
implication ", bi-implication” the universal quantifier
”(x)” and the exi.stential quantifier "(Ex)”.

Bernays has two further primitive * logical* symbols:
(i) The C- operator ^^Cà(x)a) where a is a constant of 

the system, (see p. 38 below).
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(ii) The abstraction operator j A(x)jw This is, as 
we shall see, essentially equivalent to Russell*s class symbol

2 A(x) •
In addition to the primitive logical sjonbols there are 

the primitive set-theoretical symbols for membership " t " 
and equality (between sets) " = "•

The only other primitive symbols of B* are constants (such 
as O) introduced in the axioms, which thereby constitute an 
implicit definition of them*. We shall deal with these when 
we meet them.

gr In Bemays JSL a second primitive relation of membership ", 
denoting" membership of a class, was adopted© This distinction 
between membership of a set and of a class is now considered 
unnecessary.

/mi
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Section 2. Descriptions

To adjoin a theory of descriptions to a formal system is
to add the definite article to its logical vocabulary. The
simplest way of doing this is to provide a means of constructing
a name for each unique object (i.e. set) which exists in the system.
Thus if L ^ ( ^  denotes * the x such that A(x)* then in conformity
with normal usage one would only want this expression to be formable
if these existed an x satisfying A(^ and this x was furthermore
unique ; that is, if the following existence and uniqueness clauses
were provable ;

(a) (Ex) A(^

(P) (5) (z)(A(ï) & A(z) z  = y)*
The difficulty of this method however is that it throws the

admissibility of expressions as terms onto the notion of provability
n’. V.for which there exists no decision procedure. This would be an 

undesirable weakening of the usual definiteness of what constitutes 
a term (particularly for metalogical investigations).

If, on the other hand, the expression L^(z) is admitted as 
a term for any formula A(x) then trivially undecidable formulae may 
result.

We shall adopt Bemays* order of precedence —^ y
for the logical constants.
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Bernays* way out of these difficulties is to introduce a 
certain constant, a, into the L - teim t^(A(x),a) so that if 
either (a) or (p) is not satisfied then the L - term assumes 
the value of this constant© (Cf© Quine 1940> PP* 146-151 where * 
the same course is adopted).

These considerations are embodied in the following two 
scliemata governing the L - operator©

(1) A(c) & (x )(a (x ) X = c) -> c = L^(A(x),a)

(2) (%) (A(x) & (y)(A(y)--> X =%)) V (%))&) = &

(l) asserts that if there exists a unique object c satisfying 
A(x ) then this object; (2) asserts that either
(a) and (p) hold (in which case (l) applies) or else the ^ - term 
reduces to a©

The application of the schemata (l), (2) is simplified when 
the symbol 0 (null set) is introduced through axiom Al; for then 
it is possible to take 0 as the constant a and to define 
t ^ ( x } »  ̂ (a(x),0)• The scheraatft(l), (2) then become

(!)• A(c) & (x ) ( A ^  -) X = c) — > o = t^(i)

(2)» (Ex)(A(x) & (^(A(x) X = 2 ) V ^ ( x )  = 0

The addition of a theory of descriptions to a logical system 
(in the above manner, say) clearly extends the expressive power of



that system and it is natural to look for attendant disadvantages* 
Fortunately there appear to be none, for the L - terms prove to 
be eliminable* - in the sense that any theorem proved with their 
aid but not containing them in its statement can be proved 
without them# A similar situation exists with regard to class 
terms which we shall discuss in chapter IV*

Hilbert/Bernays 1934, P* 422 ff*

3 ^
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Section 3* The class foimalism»
The class formalism which we shall discuss in this section 

is perhaps the most distinctive feature of B. Its formal 
embodiment in B# (as an extension of the predicate calculus) is 
simple enough and we shall set this down first.

The class operator { x j A(x)} is primitive in B; 
intuitively it denotes the collection of objects (sets) which 
satisfy the predicate A(x). The rule which formalises this 
interpretation is the so-called *Church schema* which makes 
explicit the connection between predicates and their extensions 
(classes).
Church scliema. c £  ̂x | A(x )V 4^ A(c)

The predicates admissible in B. are those which can be built 
up from the following three prime formulae (using the logical 
constants and quantifiers) in the well-known manner.

(1) a fe b
(2) a 6 K
(3) a = b

In these formulae ^  denote set terms and JÇ denotes a class term; 
the set term L^(x) and the class term { x | A(x)} generated by 
the t - schemata and the Church schema respectively contain 
predicates as constituent parts and it is thus necessary to define 
terms and formulae by simultaneous recursion (See for example
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Bourbaki I# critères formatifs p. l?)* This leads to the 
following classification of terms, for both set and class 
terms:

(a) Any free variable
(b) ÈTïy individual symbol# Por instance 0, the null

set, introduced in axiom A#l, is an individual set symbol*
(c) Any function symbol with terms as arguments# (See 

p. below)#
(d) Any expression formed by the application of an 

operation symbol to an arbitrary formula or term, of which one 
or more occurring free variables are bound by the operation 
symbol# The L -operator is an example of this kind of 
operation symbol#

Another rule for classes (of less importance than the 
Church schema) is a substitution rule analogous to the substitution 
rule for sets (which can be derived from the predicate calculus) #

a (c )The rule is wMch permits the replacement of the (free)
class variable C by the class term denoted by K#

We shall now turn to the significance and interpretation 
of the class formalism# . First we must recall the choice of 
paths that was indicated in the last chapter concerning the 
axiomatisation of Cantor * s ideas# Implicit in Cantor* s 
definition of an aggregate were the following three conceptions#



(a) Aggregates as * definite and separate objects* can be 
elements of further more comprehensive aggregates*

(b) . There is no restriction on the formation of aggregates; 
any condition imposable on objects determines the aggregate
of objects satisfying that condition*

(c) There is an aggregate comprehending all aggregates and 
of which all aggregates are elements*
We saw that if * aggregate* is interpreted in the same way 

throu^out these conceptions and if the notion of an imposable 
condition is suitably characterised then it is not possible to 
formalise (a) and (b); Zermelo chose to formalise (a) so that 
all sets in ZP are capable of being elements of other sets; as 
for (b), he restricted set formation by means of the Aussonderungs axiom * 
Thus, as far as the paradoxes were concerned, his method disallowed 
the formation of the * oyer-comprehensive* sets upon which they are 
based*

von Neumann* s achievement can be viewed as the discovery 
that all the conceptions (a), (b), (c) can be formalised provided 
that two different interpretations of * aggregate* are recognised; 
and that no paradox results from forming any collection of objects 
into a whole provided that a suitable limitation is imposed on such 
collections as to whether they ar^ allowed to serve as elements of 
further collections* von Neumann formulated his ideas in terms 
of functions rather than collections and it was Bernays who
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reformulated and simplified them into the form that we are 
presenting here.

Thus hy the Church schema every predicate of the system 
determines a class which is the collection of objects (sets) 
satisfying that predicate# This unrestricted formation of 
collections by abstraction is the sense in which (b) is formalised 
in B. - provided that * aggregate* is interpreted as * class * •
The paradoxes are avoided here by debarring *oveivlarge* classes 
from elementhood and eillowing elementho<^ only to the remaining 
classes; classes distinguished in this way, by their ability to 
be elements, are called sets*. It is by interpreting 
•aggregate* as * set* that (a) is also formalised in B*.; 
furthermore by employing both interpretations, (c) is formalised 
in B. since the universal class 7 = { x | x = x^ is an aggregate
(class) to which all aggregates (sets) belong.

This distinction between sets and classes has substance 
only if the * over-large * classes are fully characterised and 
criteria are subsequently established for the elementhood of ' J 
classes. Precisely this was done by von Neumann who excluded 
from elementhood (in t}» terminology of B.) those classes which

* We have expressed this loosely to achieve intuitive clarity; 
strictly a class can never be an element - only the set with the 
same members as that class can be an element (see p. below).



could be mapped on to the universal class; we shall see that 
exactly the same situation is present in B. (see p. below).

The division of collections into sets and classes on the 
criterion that their elementhood would produce antinomies 
appears at first sight to be, to some extent, arbitrary.
Bernays points out that in fact there is very little arbitrariness 
here in view of a profound intuitive interpretation that can be 
put on the difference between sets and classes - 'This distinction 
between sets and classes is not a mere artifice but has its 
interpretation by the distinction between a set as a collection 
which is a mathematical thing, and a class as an extension of a 
predicate, which in coDçarison with the mathematical thing has 
the character of an ideal object.* (p. $6).

In view of this distinction Bemays regards *the realm of 
classes not as a fixed domain of individuals but as an open 
universe* and regards the rules stated for class formation to be 
the absolute minimum. The immediate practical outcome of so 
regarding the realm of classes is to avoid all bound class variables 
and to restrict quantification to sets only. As Bemays intimates 
this is of supreme importance when one considem B. as a whole, 
since no reference can be made (within B.) to the realm of classes, 
thus ruling out impredicative class formation; we shall return to 
this point in chapter 17.



4-S

A consequence of the above view of classes (as nothing more 
than the extensions of predicates) is that there is no need to 
posit* as primitive an equality relation " ^  " between classes, 
such a relation can be defined thus:

A % B 4-̂  (x) (x £ A X £ B)
It is possible, using the theory of descriptions and the 

class formalism, to define the basic notions concerning functions. 
Although these notions will be formulated for classes there will 
be no need to reformulate them for sets since, as we shall see, 
for every set there exists a class having the same members#
Df.l# À Ç B ^  (x)(x £ A -4 X £ B)
A is a subclass of B#
Df.2t  Â  s  I X  A  ^
A is the complement of A
Kf#3« A.^ B s ^ x  | x e A ^ x £ B ) r
A^B is the union of A and B
Df #3* # U  A s ^ z I (Ex) (x £ A & z £ x) ̂
V  A is the union of A
Df.ij.o A ^ B  c ^ X I X £ A & X £ B
A ^ B  is the intersection of A and B
Df #4* • n  A -s  ̂z I (x) (x £ A —^ z e x)
A  A is the intersection of A

*Cf# the same point with respect to sets (p# Ço below)#



4-fc

Df o5* V c  \ X I X = X V ^
V is the universal class 
Dfo6. A = ^ x | x = ^ x } '
A  is the null class'.
The following definitions need tlie notion of an ordered pair 

^a, b^(of sets), which is not available until^ after axioms A1 - A5«
We shall discuss it there and assume it in the following

Df . 7 .  ^  SL1 f  ^  I (% )  ( % ) (z & ^ (2,2)

The class of pairs such that A(x,%)
Df.8. Ps(A) O  (x) (x ̂  A (Eu)(Ev)(x = <'u,v'^ ))
A is a pair class

A  5 Z I (Ey)( < x,y >  e a ) y
is the domain of the pair class A© ’

W.IO. Ag(A) = 4 y |(Ex)( <x,y> €: A)
^ 2  (A) is the range (converse domain) of the pair class A 
Df #11. A %  { xy I <y,x >  t \

A is the converse class of the pair class A.
Df.l2. a |b = { xy |(Ez)( <x,z>€A & < z , y >  e B)
A I B is the composition of the pair classes A, B.
Df.15# A X B  5 ^xy| x 6 A & y 6 Bj'
A X B is the cross product of A and B.
Df;i4. A^a in I (Ex)(Ey)(E2i)(u = <<x,y >  ,z> & <x,' <y,z>> t A)
A is the class of triplets «x,y> ,z'> such that <x, \<̂ ŷ zy> t A.
Df.15. Ft(p)4> Ps(F) & (x)(y)(z)( <x,y> P & <x,z> 6 P-> y = z).
F is a function



•<+■7

The t* - scliemata can he applied to this to give
Pt(p) & a e F -^ ( <a,b'> fe P <a,x’> t P) = b)
from which we can then define
Df .16# F ̂  a = <a,x> 6 F) giving
Pt (p) & a e A^P - > ( < a , b > f e P f ^ b = P ^ a )
Thus P ̂  a is the value of the function P for the argument a» (The 
t- schema (2) will yield 0 for F^ a if a is not in the demain of F)# 
F ^ a  is an example of a function teim with terms (here set teims) 
as arguments# (See p#H-l above)#
Of ,17. Crs(K) Pt(K) & Pt(K)
K is a (1,1) correspondence
Df.l8'. A lYI B ^  Crs(K) & A . ^ ( K ^  (AXB)) = A (AK B)) = B,
A is in (1,1) correspondence with B by means of the mapping class K* 

Definitions 1 - 1 8  constitute the basic class formations of B©; 
that they can be transferred to sets is evident frcxn the connection 
between sets and classes that we shall now give (see also p© S 1 below)©
A set a is said to represent a class A, in symbols Rp(A,a), if both 
have the same elements. Formally 
Df #19# Rp(A",a) (x) (x e A ̂  x t a)
As provable formulae concerning representability we have 
Rp ( \ x| X 6 a} , a)
Rp (a ",a) & Rp (A,b) —^ a = b
Thus every set represents some class©
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ttf.20, Rp (A) -f> (Ex) Rp (A,x)
A is represented#
Df #21# r ^ X I X e a V

is the class represented by the set a 
From this it follows that

Rp (A) (Ex) (x* = a )
Using the notion of representability it is possible now to be more 
precise in our account of the realm of classes than we were above#
In B# no class can ever be a member of a class or a set, no matter 
how * small* it is; however if a class is representable, then the 
set which represents it can of course be a member#

The difference between the account in the above paragraph 
and the one given previously is nevertheless a difference of taste 
only# It is perfectly possible to identify a class with its 
representing set and then to speak of the class as being a member -

Itthis is precisely what Godel does in his modification of Be mays 
JSL (see chapter IV)V

One final characteristic of the class formali.sm must be 
mentioned# This is the possibility of expressing any class 
generated by the Church schema in terms of one or more of the following 
ei^t basic notions:

mm 'V —<
a? , A, A^B, A X B ,  ^A, A, A, E

The first seven were defined as above, the eighth, E, is a class 
symbol denoting the class of pairs of sets that satisfy the 
6 - relation, that is E = { zy | x  ̂y#^



The metemathematical result which guarantees this possibility is 
known as the ̂ class theorem© It is proved by Bernays in (JSL 1937) • 
(Cf. chapter IV pp#Jil-S)#

J- - . r

• - " iîKliri.duN
: -1" ii  ̂ 1- ' int
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Section 4# The equality axioms and the axioms of general set theory.
In B# equality '* = " is a primitive relation between sets 

governed'by the following two axioms:
El. a = b - >  a f A b 6 A 
E2. (x)(x e a O x e b ) - ^  a = b

Prom El. by substituting  ̂x A(x )V for A and using the Church 
schema, we get

a = b A(a) A(b) (l)
The main application of El. is through (l). An immediate consequence 
of E2. is the theorem

X = X (2)

Theorems (l), (2) are (CTg), ( respectively of Hilbert/Bernays 
and constitute a sufficient basis for the handling of equality; in 
particular from (l) we obtain the theorem

a = b —^ (x) (x 6 a x e b) (5)
and (5) with E2. provides the following equivalence

a = b (x)(x € a X 6 b) (4)
It may be asked why Bernays does not reduce his primitive 

vocabulary by taking (4) as a definition of equality; E2*. would then 
be derivable. Bernays rejects this course on grounds of taste 
*we want to suggest the interpretation of equality as individual 
identity, whereas by (4) taken as definition, equality is introduced 
only as an equivalence relation*, (p. 53)*
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A too casual reading of Praenkel* s renmrks (historical 
introduction p. 8) on this point gives the impression that if
(4) is taken as definition then the formula x s & % = y y s 
cannot be proved but must be posited* This is, of course, not 
the case here since El* is available (where now the " = " 
appearing in it is an abbreviation) # Thus

X = y ( x i s - ^ y 6 s )  taking x fe s for A(x ) in (l) 
and therefow€

x = y & x 6  s-^ y e s  (prepositional calculus) 
so that the formula in question is derivable.

V

A second equally plausible reason for not defining equality 
by (4) is that such a course would introduce the set-theoretical 
notion of membership, (by way of equality) into the purely 
logical t- schemata*

The form of the axiom of extensionality (E2.) which is taken 
in a system of set theory is governed by the attitude taken towards 
* individuals’ (Ureleraente) * The existence of individuals - 
member less sets - is consistent with the normal set axioms (e og.
ZP2 - ZP9); so that they* can either be excluded, posited or left
as an open (consistent) possibility* The first course is adopted
here, the second in some systems used for independence proofs
(e*g* Praenkel I922) and the last was adopted by Zermelo (I930)* See below.

* The null set is excluded from tliese considerations*
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Thus if i, j were two individuals in B* then frcm the
two identically true foimulae (Ex) (x e i), (Ex) (x e j) we obtain,
by the predicate calculus, the equivalence (x)(x e i ^  x 6 j) 
and hence by E2, i = j; thus E2* renders all individuals equal 
and it is therefore only possible for one individual to exist 
in B. - this is the null set*

Besides individuals there are other abnormal sets the existence 
of which is consistent with the axioms; these are so-called 
extraordinary sets* (See chapter I p* 3% )* None of the
procedures outlined above for individuals has any effect on the 
existence of such sets and it is necessary to introduce a special 
axiom, the Pundierungsaxiom (ZP9) to exclude* them*

Thus all objects of B* are sets (i*e* the objects to which the
individual variables of the predicate calculus refer)* At first 
glance this is somewhat repugnant to common sense, wMch requires 
some sort of basis frcm which to start the generation of sets*
(it was presumably to provide such a basis that Zermelo 1930 retained 
the possibility of an infinite number of Urelementc; however the 
idea of ’individuals’ now finds little favour; such entities are 
certainly not considered necessary for the construction of mathematics 
within set theory* Cf * the attitude of Quine 1940 pp* 121-2 and 
Bernays pp. 53-4*

* or include them if desired - the same independence proofs using 
individuals (cited above) can also be carried out using extraordinary 
sets (Msndelson 1936)*
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It is now recognised that tlie only ’individual* which is 
necessary in a system of set theory is the null set* In fact, 
the totality of sets in B. consists of the null set 0, the 
set whose sole member is the null set [o3 , etc*, also sets
whose members are chosen from the thus defined totality, i*e*
from 0, [o] , [[o]] ,*....; also sets whose members are
chosen from the thus supplemented totality; and so on* This 
totality of sets in B* is more succinctly characterised by 
specifying

(1) The null set*.
(2) The operation of adding a member to a given set to

form a new set*
(3) The operation of forming a new set frcm a previous set 

by replacing the members of the previous set by sets which have 
already been defined*
Bernays formalises (l) - (3) in the axioms A1 - 3 respectively, 

given below*
Al* a 4 0
A2 * a e: b; c ^  a ̂  b v a = c

■ A3* a G 2  (:n,t(x) ) (%)(x e m & a € (x) )*
Each axiom takes the form of an implicit definition of the new 

primitive symbol occurring in it*



Al. introduces the null set, 0* A2. introduces *’ ; ** as a
generalised ’successor* operator, i.e. if we are given an object 
c and wish to add it to the set b to foim a new set whose members 
are the members of b and the object c then b;c is just such a set© 
A3© introduces the ’union operator’ Si(m,jt(x)) which foms 
the union of the sets ̂ (c) with c e mV

The form of A1 - 3 suggests (see p. 43) an extension of Peano’s 
axicans for arithmetic frcm the finite to the transfiniteV A closer 
characterisation of A2, A3 is to be found in Cantor’s two principles 
of formation (Erzeugungsprinzip) (Jourdain pp. 36 - j) where A2 
corresponds to Cantor’s first principle which he uses to generate 
the finite ordinals and A3 to his second principle where he takes 
the limit of a sequence (of ordinals) as the next element of the 
sequence. We shall see in the next section how A2 - 3 do in fact 
yield Cantor’s two principles of formation when applied to well- 
ordered sets© Thus in casting A2 - 3 in the form given Bernays 
indicates a useful and important analogy between set formation in 
general and the narrower and somewhat simpler foimation of ordinals; 
and we are thus able to see the assumptions needed to build a 
hierarchy of sets from the null set.

From A1 - 2 we get immediate characterisations of the unit 
set, the unordered pair (plain set) and the ordered pair:
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Unit set C a"] = 0; a
Unordered pair [a,b3 = QaT) ; b 
Ordered pair < a,b> = [[a] ,
By taking x for term denoted by jfc (x) in AJ we get 
a & %  (m,x) 4^ (Ex) (x 6 m & a e x)

For brevity %  (m,x) can be defined as 2  m and the above theoremac
becomes

a t %  m (Ex) (x e m & a e x) 
which is the assertion of ZP4, so that 2  m is the sum of the 
elements of m. The union a\^b of two sets is defined as ^  ta,b3 
since

c ^ c e a V c e. b.
Recalling that x ̂  is the class which is represented by the

set X, this last foimula can be interpreted as asserting the 
representability of a b i.e.

Rp(A) & Rp(B) Rp(A o B)
It is natural to ask whether the same formula holds for A ̂  B; 
Bernays proves that this is so and what is more that the following 
stronger statement holds:

A & Rp(B) Rp(A ̂  B) .
This is precisely the Aussonderungsaxiom (ZP6) since it asserts that 
the intersection of a set (b) with a condition (the class A) is a 
seta The replacement axiom (ZF8) of which ZF6 is a special case,
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is also derivable from A3 (as is to be expected from the intuitive 
description of A3 above) and Bernays’ statement of it is 

n  (F) & Rp( A  ̂ F) Rp( A  gP)
The main idea behind the derivations of ZF6, ZP8 from A3 

is one of establishing class representability; this combined with 
the fact that axioms Al-3 can be construed as assertions of class 
representability (see below) provides a framework for the proofs.
Thus Al, A2 as statements on representability are as follows (p. 72) 

(x)(i $ o) Rp(A,0)
(x)(i é b ; o O ' X f e b v  x=c) 4-? Rp( ^x | x t b ^ ^ x t c ^  , b;o) 

A3 can be written in a similar faslxLon© ,
This mode of proof is central in B. and Bernays regards it as 

important since "it makes more explicit the situation which consists 
with regard to the role of the logical conceptions of mathematics"
(p. 56). It might be added that by M s  use of the class formalism 
Bernays effects a return (perhaps the closest possible in view of 
the paradoxes) to the Cantorian freedcm of the unfettered formation 
of aggregates.

In the last section we gave the definitions of pair classes, 
mapping classes etc., by using the ^ operator it is possible to 
transfer these definitions directly to sets, thus:
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Df.8‘ Ps(a) e  Ps(a^)

9' = ))
10' A  2̂
11' a = )
12' a|b = = ^|b^ )
15* a X B = L^(x* = a* X b"* )
15^ pt(f) Pt(f^)
16' f a  ' f* ̂ a

17' Cra(f) Crs(f* )
18' a ̂  b ^  (Ex) (Crs(x) & A  = a &

i »e. a ^  b (Ex) (a* b^ ) by virtue
Thus definitions formulated for classes pass easily into 

definitions for sets* As to how results concerning classes pass 
over into results concerning sets, the key to this is that the four 
operations of v 9 r\ > X  , ^  all commute with respect to 
the ^  operator (i.e. with respect to representability) we saw an 
example of this in the theorem: Rp(A) & Rp(B) Rp(A w B) 
which asserts the ccmmutivity of the union operator with respect 
to representability, similar theorems are obtainable for the other 
three operations of intersection, cross product and converse.

We have in this section considered the axioms of general 
set theory and shall in the next section examine the portion of set
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theory derivable from these axioms; this portion which Bernays 
terms ’general* set theory can be rou^ly characterised as 
’constructive’ since the axioms of ZP theory which are derivable 
from El, 2 and Al - J are 2IP1, ZP2, ZP4> 2P6 and ZP8; these 
axioms of ZP are constructive in character in con^arison with the 
more existential content of 2F3 (power set axiom), ZP5 (infinity), 
ZP7 (choice) and ZP9 (Pundierungsaxiom)'. *
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Section 3# General set theory.
Ordinals, natural numbers and recursion.
Ordinals

Cantor’s way of defining ordinals (see Chapter l) was first 
to define order types (in modern terminology as equivalence classes 
with respect to similarity) and then to specialise the notion to 
well-ordered sets - the order types of which were ordinals. Any 
attempt to reproduce this definition within an axicMnatic system 
encounters the difficulty that the sheer generality of the notion 
of order type (as the totality of sets similar to a given set) 
makes such a reproduction subject to ad hoc limitations if the 
antinomies are not to be introduced into the system. The 
character of these limitations will be discussed in the next section 

where roughly the same situation occurs with the 
axiomatisation of Cantor’s definition of cardinals.

In B*. a completely different approach* is used, which is 
accomplished without recourse to any previously developed theory of 
order. The method consists of picking out the essential characteristics 
of an ordinal and then defining ordinals as sets possessing these 
characteristics. These cliaracteristies are embodied in the following 
three predicates.

Due to von Neumann (1925) and R.M. Robinson (1957).
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(1) Trans(d) ^  (x) (y) (x t >( & y 6 d -=> i e d)
(2) Alt(d) 4^ (x) (y) (x e d & y 6 d & x 4% y — ^ x 6 y^^ y e x)
(5) Pund(d) (x) (x Ç d & X o (Ey) ( y e x & y n x  = o)

It is easily seen that (l) can be written as 
Trans (d) (y)(y ^ d y S d)

and as such it expresses the property that any element of an ordinal 
is also a subset of that ordinal; (2) expresses the property that of 
any two ordinals, one is an element of the other (and hence by (l)
an initial subset (section) of the other); (5) expresses that
ordinals are ’well-founded’ (wohlfundiert) in the sense that they 
admit no infinite regression of membership. We shall see that
(3) will be in fact superfluous in view of A7 which imposes the same 
limitation on all sets of B. Ordinals are now defined as sets 
possessing all three of the properties (l) - (3) i.e.

Od(d) 4-̂  Trans(d) & Alt(d) & Fund(d).
Having set up this definition of ordinals, Bernays proves 

(pp. 00-86) that sets d satisfying it have all the required properties 
of ordinals. In particular that they are well-ordered with respect 
to the - relation, i.e. that every non-empty class of ordinals has 
a ’lowest* element. This theorem provides the existential content 
for the definition, by means of the i/-operator, of the least ordinal 
pA belonging to _a class A, thus 2

jiA = L^(Od(x) & x6 A & (z) (0&(z) & z € A x = z ^ t z)).
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This can he extended to classes given in the form of a predicate with 
a free variable ; thus

H^(x) = (i^x|A(x)V

From the above theorem on well-ordering (which he calls the principle 
of the least ordinal) Bernays derives the following schema of 
transfinite induction. ’If, for every ordinal x, A(x) holds
provided that it holds for every ordinal lower than x, then A(^ 
holds for every ordinal’ (p. 86). In symbols

(i)(Od(x) & (z)(z fe X A(z)) A(x )) (Od(e) A(o))o
In the last section (p. S4- ) we stated that A2, AJ were 

generalisations of Cantor’s two principles of formation; we can now 
indicate this more fully.

Corresponding to Al - 5 there are three basic existential 
theorems :

(1) Od(o)
(2) Od(c) Od(C;c)
(3) (i) t m Od(t(x))) Od( (m,t(x)))

From these theorems the following seven theorems (4)-(lO) follow 
Mthout much difficulty.

(4) (x)(xe m — ^ Od(x)) Od(Sm)
This enables the successor c’ of an ordinal c to be defined as 
c’ = c;c
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(5) a e a*, a* o, Od(a) — Od(a’)̂
(6) Od(a) & Od(b) & a’ = b’ -4 a = b
(7) Od(c) -->o = C y O e c
(8) Od(c) & a e c -> a* = c* V a’ ^ c.
Theorems (5) and (8) characterise a’ as the successor of a and 

we see that the operator '*;** when applied to ordinals provides 
Cantor’s first principle of formation. "

(9) (x) (x  ̂m & Od(x)) — > (x) (x e m -4 x = Zi m v ^ € 2  m)
(10 ) Od(c) & (x) (x fc m “4  Od(x) & x C c.

Theorems (9), (10) assert that "For every set of ordinals
m, %  m is as least as high an ordinal as any element of m, and it is the 
lowest one having that property". (p. 87) # Thus if a set of
ordinals m has no highest element then we see that 2  m will be its
limit number; so that " " provides the limit operator ©f-Cantor’s
second principle. The predicate ’c is a limit number’ is defined 
as - * . 1

him(c) 4 4  Od(c) & c o & (x)(x t c' — 4 x’ e c)".
It is to be noted that the clarity provided by the present 

definition of ordinals becomes especially apparent in the proofs 
of the above theorem. For it is possible to construe a theorem about 
ordinals as the conjunction of tliree much simpler theorems corresponding 
to the conjunctive elements of the definition and establishing Od(d) 
thus amounts to establisliing Trans(d), Alt (d) and Fund(d) separately.
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From theorems (4) and (9) one infers immediately that the 
’set of all ordinals’ is contradictory since if m were such a set,

2  m would he an ordinal higher than emy element of m. Thus the 
class ̂  X I Od(x)} is not representable. (See section 6')®

The further development of a theory of ordinals in B. progresses 
without difficulty constituting, for the most part, a rigor is at ion 
of the standard results and methods of the topic (e.g. Sierpinski 1957)• 
There is however an important procedure of Bernays which requires 
comment - this is his method of dealing with recursive definitions 
(both finite and transfinite)• It will be more convenient to describe 
this after we have set down Bernays’ method for introducing the natural 
numbers.
Natural numbers

Number theoiy can be easily embedded in the above theory of 
ordinals by considering finite ordinals only. There is however no 
definition of finiteness available yet, and formally Bernays first 
defines natural numbers as certain special ordinals and then defines 
finiteness as equipollence with natural numbers. Thus he has the 
following definition of a natural number.

Nu(n) ̂  Od(n) & (n=o ̂  Suc(n)) & (x)(x 6 n -4 x = o Suc(x))
’a natural number is an ordinal such that itself and every element 
of it is either 0 or a successor’.
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- ' Peano’s axioms for arithmetic (with the exception of the axiom
of induction which is a special case of the principle of transfinite 
induction given above) follow from theorems (l), (5) and (6) on 
p. 6L above by replacing the predicate "Od" by the predicate "Nu"#
 ̂ Bernays^points out that number theory does not need* the full „  

force of Al-3* but can be developed within the frame of Al-2 and the 
Aus 8 onde rungs theorem; he calls this frame the "weakened general set 
the ory" •

Piniteness can now be defined in the following manner*^
Pin (a) 44 (Ex)(Hu(x) & x ^ a )

’The set a is finite if there exists a natural number equivalent
to a.’ From this, a class is defined to be finite if it is represented
by a finite set, in symbols

Fin (a ) (Ex) (Pin(x) & x^ = A)l
From the above definition of finiteness Bernays derives the usual 

properties of finite sets, e.g.
’The union of finitely many finite sets is again finite’. In particular 
he derives the theorem

a C b & (Pin(a) v Fin(b))-^ a ^  b 
which is Dedekind’s definition of finiteness, since it asserts that 
a finite set cannot be equivalent to a proper subset of itself.

* This is to be expected in view of the purpose of A3 which was designed 
to extend rather than characterise Peano’s axioms.
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Iteration, recursion
Besides the Peano axicxns one more concept is needed for a complete 

characterisation of arithmetic; this is the justification for introducing 
functions by primitive (finite) recursion. Bernays, provides this 
justification by establishing a schema - the schema of primitive recursion - 
which asserts that for every function defined in a primitive recursive 
manner there exists a function which can be defined explicitly. The 
proof of this schema is* an application of the iteration theorem which 
we now describe. First we need the definition of a sequence s 

Sq(s) f> Ft(s) & Od(^  ̂ s)
Thus a sequence is a set of ordered pairs, the first members of which 
are ordinals (note, the elements of a sequence are the ordered pairs 
which constitute it, the members of a sequence are the elements of ^s).
Next we have an iteration sequence It(s,a,F) for a function F starting 
from ̂ 2
It (s,a,F) 44 sq(s) & Nu( A  ^s) & s ̂  o=a & (x) (x* 6 A  -4 ^s ^ x,s^ x ’̂  6 F) 
The interpretation of the right hand side of this is that s is a finite 
sequence starting from a, say

,....... <n,

such that overlapping ordered pairs comprised of adjacent members of s 
belong to F iÇe*. ^

<a,a£^ fe F, t F,.... . ^ (l)

* For an alternative proof which does not use the notion of iteration see 
Suppes i960, pp. 142-4.
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From this is defined the numeral iterator j(F,a) of F _on a:
J(F,a) 5 xy I (Ez) It(z,a,P) & fe z.\

Intuitively j(F,a)^ x iterates the function F applied to a just x times. 
This can he seen* by observing that since the pairs given in (l) are 
overlapping, the function value a^^ for the argument a^ will be 
the argument producing the function value a^^, so that a^=F(a), a2=F(a^)
i.e. a. = F(F(a)) etc. and thus j(F,a)^ x will be a .t X

The iteration theorem now states (p. 92) that "if A is a class
of which a is a member and F a function mapping A into A then the
iterator J(F,a) is a function ÏÏ with domain ^ x j Nu(x)y which satisfies 
the following recursion equations:

h ‘' o = a, Nu(n) h ''n« = P *' (H^n)."
The proof of the theorem follows almost from the definitions and 

consists of two parts. The first in showing that the hypothesis of 
the theorem, namely,

a fe A & Pt(P) & A  s  A & A g F  A

implies the existence of an iteration sequence for every n and the second 
in showing that the iteration sequence so guaranteed is unique; both 
parts follw by induction on n.

The iteration theorem provides the existential part of the schema 
quoted above since essentially j(F,a) is the required explicit function.

Cf. the account in Keene 1961, pp. 82-3©
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An immediate application of the theorem is the definition of 
'the arithmetic functions of addition/ multiplication and 
exponentiation,' thus: .. ' . ^

m # n = j ( { x y (  y = x + m ̂  , o) ^ n 
m^ = J ( {xy | y s = X o m y , o * ) ^  n
We shall now pass on to the introduction of functions hy 

transfinite recursion© Bernays* way of dealing with this does not 
differ essentially from the accepted approach (Cf© Eourhaki lU p.A2); 
he does however frame it as an extension of the method used for 
finite recursion and we shall just give an outline of the basic 
concepts involved® ' . ' ^

The notion of a sequence is extended to a sequential class 
Sq (S) to cover the case where the domain of the sequence is the 
class of all ordinals:

Sq(s) -e» Pt(s) & ((Ex)(Od(x) & =  x* ) v S- ^ x | Od(x) > )
A sequential class whose members belong to a class C is called a 
C-sequence© A function F is said to progress in C if it assigns'* 
to every C-se que nee an element of C, in symbols

Proe(P,C) ^  pt(p) & A ^ p  =• \ X I 8q(x) & AgX^C C }■ & A g P  C C 
 ̂ A sequential class _S is called adapted jto F if for each element 

n of its domain, S^n is the value of the function F when its argument 
is the n-segnent of S:

Adp(S,P) O  Sq(S) & (u)(u t A^S -> sg(S,u) € A^^P & S '' sg(S,u))



where sg(S,u) denotes the segment of S determined hy u, i.e. the 
unique subsequence of S whose domain is u.

From this comes the adaptor of F, AF, whose members are ordered 
pairs which are the elements of some sequence adapted to Ft

AP = I (Ez) Mp(z,E) & <x,y> fe z | .
The general recursion theorem which corresponds to the iteration 

theorem now states: *For any function which assigns to every sequence 
of elements of a class C again an element of C, we can define a 
function G/ whose domain is { x | Od(x) V and whose value for an 
ordinal k is that element of C, which is assigned by F to the 
k-segment of G’.* (p. 102). In symbols

Prog(F)'C) Sq(AF) & |od(x)> & A^APCC

& (x)(Od(x) (AP)^x = P^sg(AP,x))*

The proof of this consists in showing that AF is such a function G.
A transfinite iterator l(G,a) can now be defined as the adaptor 

of that function which satisfies the normal recursive conditions.
As before, an immediate application of the iterator is to define the 
(ordinal) functions of addition, multiplication and exponentiation.
Thus :

a + b = I ( {xy I y = X* } , a)^ b
Similar definitions follow for multiplication and exponentiation.

The iterator provides the means of proving a schema of transfinite 
recursion (p. 10?), since essentially l(G,a) can serve as the required 
explicit function/



Section 6. Cardinal numbers and the remaining axioms of B.
The comparison of powers of sets in B# is based (in the usual 

manner) on the notion of equivalence# The sets x, y are said to
be of equal power if x ^  y (p. 114)* The set x is said to be of at
most equal power to y if x is equivalent to a subset of y i#e#

X ^  y (Ez) (z C y & z x).
X is of lower power than y If x is at most equal power to y but not 
of equal power i.e.

X < y f > x ; j :  y & x/T^ y.
The basic theorem conceming these notions is the equivalence theorem 
(Be rnste in-Schroder)

X ^  y & y ^  X -4 X y.
For a satisfactory construction of Cantor's theory of powers 

two more features are necessary. First one needs the comparability 
of powers, so that it can be asserted that of any two sets x,y, one 
of them must be of higher power, i.e. one needs the theorem

X ^  y ^  y ^  X for any sets x, y.
As is well-known this theorem can be secured by the Choice-axiom 

used in the foim of the well-ordering theorem. (Cf. Chapter I pp.lT^lt).
The second feature necessary for a theory of powers is Cantor's 

theorem that for every set x, the set of subsets of x has a higher 
power than x. In^licit, of course, in this theorem is that for every 
set there exists tlie set of its subsets. The closest one can get
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to this in B# (without postulating it) is that for every set x there 
exists the class of its subsets j z C a^ • The representability 
of this class is the content of the Potenanengeraxicm which takes 
the following form; (p. 1$0).

A4. 0 € Tt(x) 44 c g X
’The elements of n(x) are the subsets of x*’
(A4, like Al-3/ implicitly defines the set-sj/mbol occurring in it).
By the Church dchema, from A4 we have

{ z I z  Ç Ï  V
so that A4 does indeed assert the representability ofjÇz | z ^ x ̂  .

Without this axiom, however, Bernays proves the following result.
There does not exist a function mapping x ^  onto {z | z ̂  x } 

and hence there is no (1,1 ) correspondence between{z j z C xjand x ^  or 
a subset of x^ , in symbols:

Pt(F) & AjF := a^ & AgF B  C -4 (Ez) (z Ç a & z ^ C).
The corresponding statement that there does not exist a (l,l) 

correspondence between a class A and the class of its subsets does 
not hold, as is seen from the universal class V of which every set 
is both an element and a subset and thus ’it appears that Cantor’s 
paradox connected with the set of all sets is removed in our system 
by the distinction between sets and classes’, (p. 118).

Immediately connected with the comparison of powers is the 
notion of cardinal numbers. In fact the cardinal number of a set
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X can be considered to be that which is comnon to all sets having the 
sane power as x© The difficulty, however, is in embedding such a 
conception in an axiomatic system© Let us consider two of the main 
attendis to do this©

(1) The cardinal of a set x is the set of all sets equivalent 
to X©

(2) Cardinal of a set x = cardinal of a set y if and only if 
X ^  y©
Definition (l) was Frege’s attempt to make rigorous Cantor’s 

notion of cardinal number (Chapter I p© 3 )© It is unacceptable
here since foiming the set of sets equivalent to x is not a permissible 
set operation; to make it so for any set x, would require an unrestricted 
axiom of comprehension which leads back to the antimonies© In our 
terminology here the class  ̂x j x ^  a } is not representable (that 
this is so will be shown near the end of this section p© 1 %)©

Definition (2) is an example of a ’working definition’ o Any 
questions involving cardinals are changed by it into ones involving 
equivalence© It suffers however from two defects:

(a) It transgresses the first requisite of any definition, i©e# 
that the definiens should be eliminable (of course, if an alternative 
definition of cardinal number is used in a system then it is essential 
that (a) should be derivable - in this sense the definiens would be 
eliminable© (See Suppes I96O p© 242 and also below)©
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(b) It does not define a cardinal number as an entity nor is there 
any indication that by it cardinal numbers are sets, or classes for 
that matter, since the definition gives no information about the 
nature of a cardinal number# (it is interesting to note in this 
context that the somewhat ideal character of cardinal numbers 
suggests that it might be feasible to have classes as cardinals, 
i.e# defining the cardinal number of x as { z ( z ~  x^ - this 
certainly satisfies (2) and effects a complete return to Frege’s 
notion of cardinal number# For this suggestion to be workable 
it would be necessary to ensure that none of the operations normally 
performed on cardinals rely on the fact that cardinals, as setŝ ,''"'̂  

can be members)#
Bemays* takes a course completely different from either (l) or

(2) and defines cardinals as certain ordinals (p# 159) specifically 
he defines the cardinal of a set x to be the least ordinal in the class 
of sets equivalent to x, thus :

(i) = Pg (z 3:)  ̂'
For every set x to possess a cardinal, this definition requires that 
the class  ̂z j z ̂  x]» contain at least one ordinal; this is guaranteed 
by the well-ordering theorem (which Bernays terms the numeration theorem 
p# 158)# In view of our remarks concerning Bourbaki’s definition of a 
cardinal in the next chapter, we state explicitly that Bemaj'a’ definition
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thus depends on the Choice-axiom (throu^ the we 11-ordering 
theorem) to ensure that every set has a cardinal number©

From his definition Bernays* derives definition (2) as a 
theorem, i©e©

(x) = (y) O  X y
Thus the usual development of cardinal arithmetic, proceeding as 
it does throu^ equivalence, can be obtained©
The remaining axioms of B©

Bemays postulates the following form of the Choice-axiom 
A5. Ps(a) (Ey)(y C a &  & Pt(y))

’For every set of pairs a there exists a subset which is a function
with the same domain as a©’ (p. 137)<>
The form of the Choice-axiom emborlied in A5 is not in any way 
special and Bernays proves that A5 is foimally equivalent to any 
of the usual foimulations of the axiom (e.g. the multiplicative 
form) ; in particular A5 is equivalent to the following:

A5 ’ © (x) (x 6 m X o) (Ey) (Ft (y) & ^  ̂ y = m &
(x)(x e m y ̂  X ex)).

’If m is a set of non-empty sets, there exists a function assigning 
to each element of m one of its elements’.

* The same course is followed in Suppes I96O



We shall return to the Choice-axiom (in the form A5*) later in 
this section#

Bemays* axiom of infinity is for mal ]y equivalent to asserting 
the representability of the class of natural numbers# It takes 
the form of implicitly defining a set symbol for the set of 
natural numbers# Thus:

A6 a ^ lO f>Nu(a) 
which is equivalent to Rep {x j Ru(x)^ , so that 

U> = {x I Nu(x) } #
The predicate of being infinite is defined in the natural way, 

so that a set is infinite if it is not finite, in symbols ^
Infin(a) Pin(a)

On account of this formula the connections between the numerous 
axioms of infinity which have been put forward are similar to the 
connections between the various definitions of finiteness which have 
been thorougiily investigated (Tarski 1924)0 In fact Beinays proves 
that A6 is equivalent to the following axioms of infinity#

Zermelo (Ex) (o 6 x & (y)(y t x [y] t x))
Dedekind (Ex)(Ey)'(y C x & x ̂  y)
von Neumann (Ex) (x 4? o & (y)(y ̂  x — ^ (Ez)(z € . x & y C z ) ) ) #
We now turn to two important strengthenings of the Choice-axiom 

which can be accomplished by using the class formalism# It is more 
convenient to consider A5* rather than A5# The first strengthening
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appears equivalent, in its effect, to a weakening of the hypothesis 
of A5* obtained by replacing the set m occurring there by V# This 
is however our interpretation and formally Bemays introduces a 
function symbol cr (a, b) which makes Ft (y) and A ^ y  = m redundant 
so that we get from A5*

(x)(x e m x4= o) (c é m Cm,c) € c)
[cl is now substituted for m (making c e. m  redundant) to give 
(x)(xe[c]-> x *  o) cr( [cl , c) £ c 
defining or(c) = or ( [cl , c) this becomes 
Ay c %  0 O’ (o) Co

The interpretation of A@. is that to every non-empty set c, a member
of that set <r(c) can be assigned; that this is stronger than A5* can 
be seen intuitively from the fact that we no longer require our sets, 
to which we assign elements, to be members of some other set m.

The motivation for constructing Acr is to bring the Choice-axiom 
in line with the other axioms (A1 - 4,6) which all have a primitive 
symbol in them. However, whereas the other axioms contained an 
extensional definition of their symbols, this is not the case with
the symbol (c) and the nearest one can get to it is to derive
the following theorem:

a = b-? Or(a) = (r (b) (l)
The second strengthening of A5* comes naturally from A by
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allowing* C to be a class variable o This gives
A, ' a e C O- (c) e c

(note that A r • yields Ay by defining <r(a'*) = Of (a))»
The interpretation of A or * is that to every non-empty class C 
is assigned a member cr(c) of that class. The analogue of (l) 
above is, however, not derivable and must be postulated," i,e,

A^»« A =  B cr(A) = cj-(b )
The cpiestion as to which is stronger Ay or Ay », A y ” will 

be answered below, for the answer depends on the construction of a 
(1,1) mapping between the class of all sets, V, and the class of 
all ordinals j x | Od(x)y . This mapping is achieved by making 
essential use of A y  and the Fundierungsaxiom which we now give 

A7. C ̂  o (Ey)(y t c & (x)(x ^ y v x 4  c))
'For every non-empty set c there is an element y of c which has no
element in common with c,' (p, 201), This is equivalent to
postulating Pünd(c) for all sets c in B, (see p, 60 above), Frcan 
A7 using Ay we get the following stronger fonn of the Fundierungsaxiom

* We are not suggesting that the passage fran A y to Ay » is obtained 
by merely substituting a class variable for a set variable - there 
can be no such rule of substitution in B, - only that A a- and Ay » 
are related intuitively in this manner. In fact Ay » must be 
postulated and is motivated by Hilbert's ' £ -formula'.
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P<r cr(c)^c = o
where 0"(c) is the required element jr of c. It is in the form
F cr that the Fundierungsaxiom is used with A cr to construct the 
mapping between V and Od(x)} ; Bemays designates the
mapping class by @  # Using this mapping class, it is possible 
to give an explicit definition of the symbol <̂ {a ) occurring in Ay», thus:

cr (A) = <3) e A & X = © V )
V/e see that cr (a) is the set corresponding (under 0) ) to the least
ordinal of the class of ordinals which represents A under *

From this definition the axioms A », A " are easily derivable 
(as can be seen from their interpretations as statements about 
ordinals) so that Ay  and A^ », A ^ ” are therefore equivalent.

The major importance of the construction of lies however in 
a different direction from the derivation of results concerning 
Choice-axLonso For, usingQj* it is possible to show that 
von Neumann's criterion for 'over-large' classes is present in B,
We recall that for von Neumann a class was 'over-large' and therefore 
non-representable if and only if it was mappable onto V, To show 
that this is true for the classes of B, we must use the following 
theorem (proved within the theory of ordinals p, 129)o 
'For any class C of ordinals either C is represented by a set c.... 
or else for every ordinal k C there is a higher one in C and then 
there is a (l,l) correspondence between ̂ x | Od(x)J'and G#,#.,'
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Hence by any class K corresponds to some class of ordi:nals C.
If C is representable then so is K and K cannot be mapped onto V.
If C is not representable then neither is K and C can be mapped onto 
^ X Od(x)} i.e. K can be mapped onto V.

Precisely why von Neumann chose the above criterion for 
representability is not clear. It is certainly a necessary condition 
for the exclusion of the antinomies ; proving its sufficiency, however, 
would anount to a proof of consistency for set theory. That it is
necessary follows from the fact that if there existed a set c in B.
such that c ^  V then the formation of n(c), the power set of c, 
would reintroduce Cantor's paradox (p.Ik above). This is not a 
very strong justification for the criterion, however, since the 
same effect could be achieved by inserting a clause in A4 (power 
set axiom) disallowing the formation of it(x) for x V.

We oan now prove the assertion that ^x | x ̂  aj* V for any 
set a, as was stated on p. H  above. Since a is a set we have, 
by the mapping (§) , a V and hence 
a ~  V where a is the complement of a with respect to V.

Now let c be any member of a, and consider the set 
y = a“  [o3; I 

(i.e. the set formed-from a by replacing c by x).



It follows immediately that y 
Now if X £ a then

^y|y = a ( 2 c 3 ; x & x £ a } ^ V  
by virtue of a ^  V 
and thus ^x [ x ^  a ̂  V since

^y|y = a“ [,c'3;x&xtâyS^x x-'-aJ.,
]7e turn now to Bemays* sketch of the possibility of constructing 

mathematics within B. This is divided into two main sections, 
the development of classical analysis and the associated structures 
of finite and infinite vector spaces etc* and the development of 
the arithmetic of cardinal and ordinal numbers* Both sections 
amount to formalisations of procedures, accepted by now as standard; 
we shall ignore the last section (cf * p* k3 above) noting only that 
it has been secured in weaker systems, ZP, than B* (See Suppes I96O)*

The fundament of classical analysis is the definition of a real 
number* Bemays* acMeves this after the method of Dedekind by 
defining real numbers as sets of rationals* Formally instead of 
rational8, we have fraction triplets <<a,b > , c^ where a,b,c are 
natural numbers with c different from 0* The formal definition 
of fraction triplets is as follows:
Ptp(d)^(Ex)(Ey)(Ez)(Nu(x) & Hu(y) & Nu(z)%; t #  & d = <<x,y > ,z'> )
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Intuitively ^ w i l l  be interpreted as • The operations
of sun, sifference, product are then defined for these triplets, e.g.
p 4-*" q = tfc(Ptp(p) & Ptp(q) & (x)(y)(z)(u)(v)(w)(p =«x,y>^z>

& q =«u,v> , w> t =^^(wox) + (zou),(woy) + (z.v)> ,z.w^ ))
which formalises

X - y  ̂ u - V _ wx + zu - (wy + zv) 
z w zw

similar definitions follow for p -*̂ q, p.'" q.
The triplet ^a,b is positive, negative or a null triplet

according as b £ a, a £ b o r a = b .  Prom this the predicates of
equality ( p =*" q), greater than (p q) and less than (p ^'^q) are

V*defined according as p - q is a null triplet a postive or negative 
triplet•

It is seen of course that signed fraction come easily frcaa triplets 
by having either a = o or b = o.

A real number is now defined as a special set of fraction triplets,
specifically as a non-void initial section without greatest element in 
the ordered set of fraction triplets, in synbols
Re(c)0 C ^ X Ptp(x)}' & c 4= o & (x)(x £ c ̂  (Ey) (y € c & x<'"y))

& (x) (y) (y € o & (x =*■ y V <''y) x e c)
(That real numbers are sets can be seen from the fact Ifaat ^ x j Ftp(x)y 
is a subclass of the set [to x ‘-o')xtOb The computation laws for real 
numbers follow the usual Dedekind pattern; equality between real numbers



is just set-theoretic equality and the operations of addition and 
multiplication (and their inverse^ are defined in terms of these 
operations on fraction triplets which are the members, e©g# the 
arithmetic sum p 44r q of two real numbers p,q is defined as the 
set of triplets which are the sum of an element of p and an element 
of q, thus
P #  q = ^(Re(p) & Re(q) & t * =  z (Ex) (By) (x fe p & y e q & z=x+''y)̂  )
A real number is positive if it has some positive fraction triplet as
an element; it is negative if there is some negative triplet which 
is not an element of it. The real number null is thus the set of all 
negative triplets. A real number p is called rational if there 
exists a triplet t such that p represents |x x ^  t.^

Bernays proves the property of continuity for the real numbers 
by deriving the theorem of the least upper bound:
A & (x)(x £ A Re(x)) & (Ey) (Re(y) & (x)(x £ A ^  x C y)

(Ez) (Re (z) & (u) (z C u (x) (x <3 A -9 x £ u) ).
*Por every non-void class of real numbers A which has an upper 
bound, there exists a real number which is the least upper bound* .
(p. 161). Bemays proves this by observing that the sum of the elements 
of A, being a class of triplets of the required form, is a real number 
which moreover has the property of being the least upper bound.



Bernays does not go beyond the above theorem in his sketch of 
the possibility of constructing classical analysis in B,; indeed 
there is little need to go beyond the above theorem if one*s 
main interest is to secure the possibility of constructing analysis 
rather than actually constructing it - this point will be 
developed in the next chapter.

* For a fuller and more comprehensive construction of the real 
numbers within an axiomatic system of set theory which is similar 
in many ways to B. see Suppes I96O (pp. 159-194)*
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CHAPTBR H I .
The set theory of N. Bourbaki.

This chapter is an exposition of the set theory pufc forward, by
Bourbaki in*

"Theorie des Ensembles:
Chapitre 1. Description de la Mathématique Formelle.

2J Théorie des Ensembles.
5# Ensembles Ordonnés, Cardinaux - Nombres Entiers”. , 

which constitute the first three chapters of Book 1 of ”Les Structures 
Fondamentales de l'Analyse”.

Reference will be made to chapter and page numbers thus: II, 86 
for page 86 of chapter 11© To avoid confusion we point out that
the pages of chapter III are numbered from 1 again. Lastly Bourbaki's
system as a whole will be referred to as Boul

Bou. is a variant of the ZF set theory outlined in chapter I, but 
departing essentially from this in its use of a selection operator.

* The system described here is different from (and has now superseded) 
the provisional set of axioms published by Bourbaki in 'Foundations of 
Olathematics for the working mathematician'. J.S.L. 1^, pp. 1-8, 1949*
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Section 1 - Basic Logic
The logic upon which the specific axioms of set theory in 

Bou. are superimposed is a first order functional calculus whose 
primitive symbols (signes logiques) are □  , > y » and
a denumberable alphabet of letters x,y,z,...; X,Y,Z.

The primitive symbols of BourbaldL's set theory are = , 6 , O  «
Bourbaki formulates his logic in terms of assemblages. An 

assemblage is a finite string of the seven basic symbols and also 
letters.

For the sake of clarity we shall give the intuitive interpretation 
of the basic symbols before proceeding with our description of the 
logic.

V , "1 are the usual signs denoting disjunction and negation 
respectively; from these the sign of implication is defined as 
an abbreviation for the assemblage v

%  is a selection operator and is identical to Hilbert's 
£- operator. As we shall see, it is the only means of binding 

variables in Bou.
Ü  stamds in place of a bound variable and is joined to the 

appropriate binding operator with a bar. Thus if we wish to write 
down the assemblage which is designated by %%(A) we first join 
all occurrences of x in A to t by a bar then replace all these 
occurrences by Q  C
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E.g. The term 4= y) is first written as
t  n = xy thenX"»= xy and finally as
X = D  y. V/e note that the assemblage designated by 

X:c (A.) does not contain x.
The intuitive interpretations of the signes relationnels 6 , = 

are the usual ones of membership and equality respectively; the 
signe substantifique* O  denotes an ordered pair.

The symbols V, £ , = , O  all have a scope of two letters.
In an assemblage the letters to which a primitive symbol 

applies are written to the ri^t of that symbol. Thus the following 
are assemblages:

( i )  O  x y
( i i )  fe a y
(iii) V fe xy = aac
(iv) X è O y
(v) t  V -I fc ÉJ y t o  z
(vi) -I V Ê xy = xy
Such a method of writing down expressions of the system would, 

however, lead to unmanageable typographical difficulties so (i) - (vi)

* By signe substantifique Bourbaki means a term-generating sign; the 
term generated here being an ordered pair.



would be 'abbreviated' as follows:

(i) ' (x,y) ,
(ii)' X fe y
(iii) ' X t yv X = X
(iv)' Xjt(x e  y )
(▼)' X*(x # y V X fe z)
(vi)' -i(x fe y V X = y)
These abbreviations are effected by. applying single meta- 

mathematioal rules (l. 12, 1), 30). Bourbaki also uses meta
variables which can be classified as follows:
(1) As metavariables denoting set variables of the system we have

X* y> •••» Xt Y f z#
There is no syntactical difference between the use of % and 
X etc.

(2) As metavariables denoting relations* we have
(a) A, B; C, a, S
and as metavariables denoting terms we have
(b) T, Ü.

Thus all metavariables'are in heavy print as opposed to the ordinary 
set variables of the system which are x, ŷ ' z,...; X, Y, Z (where again 
there is no syntactical difference between the use of x and X etc.)#

*The precise definitions of relations and terras are given below.



Although Bourbaki neve'»’ confuses ■vr’riebles of the sys'bem 
with metavariables it must be added tVie distinctions between
cases 2(a) and 2(b) and even between cases ^) and (l) are not 
always to* for typographical reasons we shall use a bar
beneath a variable to indicate that it is a metavariable.

7/e shall now comple-te our account of the intuit i've content 
of the primitive symbols by giving Bourbaki* s accnnnt of the "t- 
operator (l. 16).
"If ̂  is an assertion, x a letter then t%_(B) an object; if 
we consider the assertion JB as expressing a property of the object 
X, then if there exists an object possessing the property in 
question (B) represents one such object (un objet privilégié).
If there does not exist apy such object then "t^(B) represents an 
object about which nothing can be said (dont on ne peut rien dire)."

To delineate the 'well-formed* assemblages Bourbaki sets up 
me tame themat ical rules under the heading constructions format i've s 
(lo 15); any assemblage which satisfies these rules is 'well-formed* . 
At the same time he divides the class of all assemblages into two 
species:

Species 1*. Assemblages beginning with X  , wi-fch a signe 
substantifique or reducing to a single let'ter.

Species 2. All other assemblages.



Assemblages satisfying the constructions formatives which 
belong to species 1 are called terms and those which belong to 
species 2 are called relations. Having thus defined terms and 
relations with respect to assemblages, Bourbaki proves several 
Critères foimatlfs (l. 17) which recursively define the notions 
of term and relation with respect to their abbreviated forms rather 
than assemblages. The outcome of the constructions fomatives 
and the critères f ormatif s is that Bourbaki *s notion of a relation 
coincides* with the usual notion of a well-formed formula built 
up from atomic 6- statements.

It should be noted that Bourbaki frames the constructions 
formatives and hence the critères formatifs in an open manner; that 
is to say he retains the possibility of enlarging his notion of 
relation and of teim by the introduction of new (mathematical) 
primitive symbols. Thus critère format if 4 asserts:
CF. 4* » ^2' * * are terms and _s is a signe relational
(respectively substantifique) of scope n then s ̂  is a
relation (term). (Where, of course £ , = are signes relationeIs 
and O a signe substantifique of scope 2).

* With the proviso that his inclusion of %  - teims somewhat widens 
this usual notion of formula ®



We can now indicate fully Bourbaki*s logic. It is embodied 
in the schemata SI. - SJ. which we now state;

SI. If A is a relation then the relation A ^ A ̂  A ±s an axiom.
S2o If A, B are relations then the relation A ^  (A ̂  B) is an

axiom.
85. If A, B are relations then the relation A ̂  B B A is 

as axiom.
S4« If A, ^  are relations then the relation

A i ^ B r : ^  ( (C ^ A) (Çv^) ) is an axiom.
85* If R is a relation, T a term, x a letter then the relation

(T |x)R (3^)B is an axiom.
Where (t |x )R denotes the result of replacing all 
occurrences of x in R by T.

86. If X is a letter, T, U are teims and R { x V a relation then

^  = U (r {R V) i8 ^  axiom.
87# If R, ̂  are relations and x a letter then

( V  x) (R #  s) ) ( 'Cx (?) = V,. (s) ) is an axiom.
The quantifiers occurring in 8$., 87* are not primitive but are 

defined by means of the “t- operator as follows:
( 3  x )(r ) is an abbreviation for ( and
( V  x)(R) is an abbreviation for -» ( 3  x) ^  (r ) i.e. for 

-I ( ( Yx(R)|x)-iR),
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Now SI. - S4o constitute a standard* fomalisation of the 
propositional calculus; we shall therefore just indicate how S5o - S?* 
yield the remaining axioms of the predicate calculus.

The predicate calculus** is obtainable in Bou. if the formulae 
(a) and (b) given below are derivable and if the rule of Modus Ponens 
and suitable rules of substitution are available.

(a) (Vx) R(x) R^)
(t) R Çr) (3x) R(x)

Now (a) is derivable from S5. (l. 38) and (b) is identical to 
S5. since R(T) is an abbreviation for (T | x)R«

Bourbald. postulates Modus Ponens as a rule of proof (l. 21-2) 
and sets up suitable rules for substitution on pages I. 18-20. 
Furthermore S6. ccmpletely characterises the relation of equality.

Thus SI. - 37* certainly contain a standard formalisation of 
the predicate calculus. We shall return to 85. and 87. when we 
discuss the form of the Choice-axiom derivable in Bou.

Hilbert and Aclœrmann (1958)
3E p. 27
** p. 86
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Section 2 - Set-theoretic teiminology
A relation R is collectivisante in x (II* 63) when the 

formula (5y)(Vx)(x£y 4=̂  R) is provable* Bourbaki abbreviates 
this formula to Collx R#

Intuitively the provability of CoU ĵ R means that there 
exists a set y such that all the objects satisfying R are precisely 
the members of y* Thus, here, as in Bernays system, we have the 
recognition (formulated within the system) of the idea that certain 
classes (here predicates) are not capable of yielding sets, if 
consistency is to be preserved#

Once we have proved C o l l 5 it is permissible to define a 
symbol denoting the extension of R# This is 6^R) which is an 
abbreviation for (( Y x) (( x e y) R) ; as a provable formula 
we have (ll* 64)I

Coll^R ^  (Vx)(x fe 6j(R) O  R)
We note that, like the assemblage designated by (R), the 

assemblages designated by Coll ̂  (R) and ^^(R) do not contain x#
There is clearly a connection between relations collectivisantes 

and the representable classes in Bemays# \le shall exhibit such a 
connection between these two concepts after we have discussed the 
X  - operator in greater detail*

The relations x ̂  x, (Vx)(x£X) are easily proved (ll# 67) 
to be non-collectivisantes in x, X respectively#
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A relation R is said to be functional ("fonctionel") in x 
if there exists one and only one x such that R(x )*o

The relation (V x)(x ̂  X) is functional in X (llo 67) and 
from this (the null set) is defined as t  ̂ (( V  x) (x ̂  X)#
Written out as an assemblage this is "Y "inn £ it "in tT] □ □

A set ̂  is a graph ("graphe"), if all its members are couples 
(ordered pairs). The name pair-set is used by Bemays.

If the relation ( 3 G)(G is a graph and ( V^)( V y ) ( R 4 ^  ((x,y)£ C)) 
is provable, then R is said to admit ̂  ^aph with respect to x,y.

A corresponde nee between sets A, B is a triplet P  = (G,A,^) 
where is a graph such that pr^^CA, pr^ _GCB. (see below). 
is termed the graph of P , A the departure set and _B the arrival 
set.

pr^z, pr^z are the première et deuxième projections de _z 
i.e. terns denoting the first and second members of a couple or 
the set of first and second members of a set of couples.

* V/hen a relation R is functional in x, "Y^(R) is a unique 
object - the x such that R. In this case the operator becomes
identical to the t- operator and thus yields the definite 
article.
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Formal]y pr^ e designates ((3 y) (z = (x,y))
and pr^ z designates Xy ((3x) (z = (xjy) ).

A graph F is called functional graph if for any x there 
exists at most one object y, corresponding to x by F. (i.e.
there is at most one couple of the form (x,y) in F)'. ^

A correspondence f = (F,A,B) is a function if its graph 
F is functional and if its departure set A is pr^ F i.e. f
is a function if, for all x £ A, the relation (x,y) e F is
functional in y (see p.1% above); the unique object y corresponding 
to a given x by F is termed the value of f (for x ia A) and is 
written as f (x) or f^ or F(x ) or F,̂  .

The functions f and g are said to coincide in a set E 
if E is contained in the departure sets (sometimes called sets 
of definition) of f and of g and if f(x) = g(x) for all x £ E.

If for two functions f = (F,‘A,B), g = (G,C,D) we have 
B C D  then we say that g is a prolongation ("prolongement") of f
to C or simply that g prolongs f to C.

In a similar way the reverse of this notion, that of
restriction is defined so that a function prolongs each one of its
restrictions.

Finally the much used notions of one to one, onto and one 
to of\e onto are teimed injection, surjection and bisection 
respectively.
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Section 3 - Derivation of the ZF axioms
We shall in this section derive the axioms ZFl - 8 in 

Bou; first we must state the one schema and five axioms of 
Bourbaki*s set theory.

S8. R is a relation, x, y letters, X,' Y letters distinct 
from X, y and not figuring in R then the following 
relation is an axiom (- schema).

(Vy)(3X)(Vx)(R (xfeX)) (VY) Coll ((3y)((y fcj & R) 
this is known as Iæ  schema de selection et reunion.

Al. (Vx)(vy)(xcy & ycx) (x=y)
Axiom of extensionslity 

A2. (Vx)(Vy) Coll (z=x ̂  z=y)
Axiom of pairs (L* axiome de 1 * ensemble _a deux éléments)

A5- (V%)(Vi' )(Vy)(Vy ' )(((x,y) = (x ';y ' )) ^  (x^'& y-y')
Axiome du couple 

A4. (vx) Coll y (YCx )
Power set axiom (L*axiome de l'ensemble des parties)

A5« "Il existe un ensemble in fini"
The nature of this axiom will be discussed in this 
section.



The derivation of ZFl - 8 proceeds as follows:
ZFl. If we replace the subset relation by its definition 

in terms of £ , then Al. reads:
( V  x)( Vy)( V  z)(((z f ex=^ z f e y ) & ( z 6 y = ^ z f c x ) ) = ^  x=^) 

i.e. ( V  x) ( V  y) ( V  z) ( (z fe X z fe y) x = y)
which is 3F1.

ZP2o Replacing Coll^R by its definition in A2. we get 
( 3 w ) ( V z ) ( z £ w - ^ z = X y Z = y )

ZP3o Replacing Coll (Y C X) by its definition is A4, we get 
( yx)( a  y)( V Y)(Y fe y Y C  X)
which is ZF3*

ZP4# Bourbaki derives a theorem equivalent to this axiom, 
namely:
CoU^( 3 i)(i fe I & X fc X^) (H. 88) 
this can be rewritten as
( 3 y ) (  V x ) ( x  fe y 4» ( 3i)(i e I & X feXĵ ) (l)
we recall that ZF4* asserted
( 3 y) ( V  x) (x fe y O  ( 3 w) (w fc z & X fe: w) (2)
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The equivalence of (l) and (2) can be seen by noting that 
the notion of a family of sets Xu^^^is based on the identity 
transfoimation (application identique II# 77-8) i —^  so that
(Vx)(3i)(i 6 I & x£X^) ^  (Vz)(3 i)(i e I & xei)'.
ZP5« Corresponding to this aiion is A$. (ill# $0) Miich is 

There exists an infinite set#
Whether this axiom is stronger than ZF5* or not depends 
on Bourbaki*s definition of finiteness, which we have 
not yet discussed# For the sake of completeness,

• however, we shall state the relevant result which is 
that Coll (x is an integer) is formally equivalent 
to the proposition that there exists an infinite (i#e# 
non-finite) set. Thus both ZP5* and A$# assert the 
existence of a set which (intuitively) has cardinality

ZF6, a theorem(c# $1. II. 65) equivalent to this axiom is an
immediate consequence of S8# This is of course to be
expected since ZP6# is a special case of ZF8# for the 
derivation of which 88# was set up# The theorem is 
Coll X (P & xtA) 

i#e# (3y)(Vx)(xey ̂
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ZF7* We shall derive a theorem, from which, according to
Wang 1954 a Choice-axiom follows in any system containing 
the E - operator* The theorem is
(Vx)(3y)(Vz)(zfeyé^(3w)[w6*.&z = 6^ (new)]} (w)
This can be rewritten as 
( Vx) Coll^-^(3w) [w Li & z = ICit. (ufew)]}
Now we recall that 88. asserted
(Vy)(3X)(Yx)(R=^(xfeX))=^ (V y ) Coll^ (3y)(ytY & H)
Let us make the following substitution in 88®
X for Y, w for y, z for Xy
and z = e w) for R; then we obtain (w) as the right 
hand member of the main implication of 88. Hence (W) is 
derivable in Bou« if the left hand member is derivable, 

i.e. if (Vw)(^X)(Vz) ^ z = l̂ u,(u 6 w) ̂  zeX^is derivable. Now 
(Vz)(z = T z ̂ {T Y ) is a theorem. Hence 
(3X)(Vz)(z = T z 6:X) is a theorem. From this follows 
(Vw)(3X)(Vz) [ z = >^u(u€w)r:^ z ex'] 
by taking Tu.(u 6 w) as the term T’.
Thus (W) is derivable and a Choice-axiom follows in Bou. ,

The carrying out of the above derivation is not in fact essential 
to our purposes here, which is to show that a Choice-axicm follows in 
Bou*. For we shall now see (using the analysis given by Bernays. see
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Chapter II. p. “It. ) that 35., 37® are equivalent to an extremely 
strong form of the Choice-axiom.

Let us rewrite 35. in terms of the %  - operator.

(t |x)R j ? ) R

i.e. R ( T ) ^  R( %.(#)) (H)
Now (h) is precisely Hilbert*s * G -formula* (with of course "X 

replacing 6 ). Bemays foiniv> of this is
a e C o-(c) e  C A  y

which can be obtained from (h ) by writing the class variable C 
for the predicate variable R and or (c) for Y^^(r ).

Again by writing class variables A, B for the predicate variables 
R, 3 in 37# and by writing ct(A), <t(b) for "Y^ (R), (S)
respectively we obtain

A H B ^  o- (A) = (T (B) A J'
Thus 85., 37. appear to be equivalent to a powerful form* 

of the Choice-axiom. We can not, of course, formally prove this 
equivalence within Bou. since we have no class formalism at our 
disposal to effect the necessary change of variables; however it 
follows that 35# names an object - IĈ (R) satisfying the non-en^ty 
predicate R, and as such is equivalent to A^  which names an object

*Por a powerful form of the Choice-axicmi, for sets, deducible from 
our formula (h ), (see 3ierpinski, 1957, P*93)*
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In the above considerations (especially in the derivation of 

(W)) we have perhaps laboured the point that, the X -  operator embodied 
in S5o, 87® is a generalised Choice-axiom; this is not without reason 
for the contrary opinion is expressed in Wang (loc. cit.) and in 
Fraenkel-Bar Hillel 1958, p.l84, where we find the words "There clearly 
exists a close connection between the £ - formula and the axiom of 
choice* This connection should however not be overstated, as it is 
occasionally done, in the foim that the £- formula is a kind of 
logical (or generalised) axiom of choice. Indeed the 6 - formula 
allows for a single selection only, while the axicm of choice allows 
for a simultaneous selection from each member of an̂  (infinite) set of 
sets and guarantees the existence of the set comprising the selected 
entities"*

Tliere appears to be here a confusion between a choice, as a 
statement of existence, and a choice, by the naming of a representative; 
this is embodies in the dichotomy between *a single selection* and *a 
simultaneous selection** What in fact the X -  operator does is not 
to make a single selection or choice from a set but to name for any- 
set 8 a member of that set. Thus if 8 is any (infinite) set and y is 
any member of 8 then Xjt^(x£y) denotes an object of the set y. The 
existence of the set of all such named objects (one for each y 6' S) 
is guaranteed by the schema 88., that is to say, by the replacement axiom
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under the mapping ( (% €y), j) (See ZF80 below*) .
The X - operator, in so far as its use here distinguishes 

Bourbaki*s system from the normal ZP system, is extremely important 
and we shall return to the above point later in this chapter 
(see section 4 below p. )•
ZF8. This axiom can be obtained from the following two theorems, 

which were both derived from 88®
C. 53 (n. 66) C0II3 (3x) (x fc A & y = t)
This asserts that all the sets y which can be put in the
form T(“T(x )) for x £ A form a set.
C. 54 (II# 78) The formula x £ A & y = T admits a
functional graph P with respect to x and y such that
pr^ F = A, pr^ F = E^^x £ A & y = ïjand for all
X £ A one has P(x) = T®
From C. 54 we get
(Vx)(Vx * )(x £ A & x * £ A &  F(x) = F(x^ ̂  x = x)
Call this formula a, then from 0. 55 we get
a =^(3 s)(Vy)(y 6 s ^ ( 3 x ) ( x £ A & y  = P(x)) vdiich is ZF8® 

ZF9# This appears to be unobtainable in Beu® We say this in 
view of the fact that Bourbaki seems to have chosen his 
axioms so as to yield ZPl - 8 and no more and that ZF9# is
known* to be independent of these.

*8ee for example Thiele E-J 1955#
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Again this only reference to the occurrence of the so called 
extraordinary sets is in the Note Historique p. 106 where one 
is told to see II# 63 where it is proved that non C o U ^ ( x  ^ x) 
is a theorem; hut clearly this has no bearing either way.

Thus Bourbaki*s system certainly contains the usual 
Zennelian set theoiy (omitting ZP9o) built on the predicate 
calculus.

One axian of Bourbaki *s which has not figured in our 
considerations is AJ. which defines an ordered pair (couple) 
i.e. sets up the property of the primitive symbol 0 .
The normal way of dealing with ordered pairs is to use 
Kuratowski*s method of defining the ordered pair (a, b) in 
terms of the plain sets ^a,bY and {b} . Thus:
Df. (a, b) ={(a,bV , (b]r).

We can see no reason why this course is not adopted here 
as follows:
^a,b\r is an abbreviation for ^^(z=a^z=b) 

i.e. $a,b^ is an abbreviation for ( V  z)((z 6 y) ̂  z=a y z=b) 
and {b^is an abbreviation for ( V z)((z t y) 4=̂  z-b)
Thus (a,b) is an abbreviation for{{a,b ̂  { b Y Y
i.e. for £^(u = ( Vz)(z £ y ) ^  z=a v z=b)^u =Xy(V z)((z ey)4^ z=b)
and finaOy (a,b) is an abbreviation for tj^(Vu)((u £ x)

^  = Y^(Vz)((zey) 4=̂  z=ayz=b)^ u = Y^(Vz)((z t y)<=> z=b))
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The proof that (a,b) as defined here has the property of 
an ordered pair (as given in AJ#) is simple. In fact Bourbaki 
sets this proof as an exercise (ll. 70).

Now that we have seen the full extent of Bourbaki* s system 
it is possible to return to the connection between the concepts of 
relations coliectivisantes and representable classes of Bemays.

We shall first indicate informally that Bou. is a subsystem 
of B*; where B* is the system obtained from B by replacing A$. by A<j- 
(note that A^*, A are derivable in B* on a suitable definition 
of <r ) .

SI - 4* and S6. are contained in Bemays* formulation of the 
predicate calculus.

85., 87# are A^*, A^" respectively, as was discussed earlier 
in this chapter.

. 88. which combines the sum axiom and replacement axioms 
(ZF4*, ZP8) can be subsumed under A3* of B* which is a powerful 
combination of the same axioms.

X
There is a slight difficulty here which would have to be 

cleared up in a formal approach. The class of terms in Bou. is 
more comprehensive than in B, since the X  - teims have no cognate 
in Bernays* logical apparatus.
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Al. of Bou# is precisely E2. of B* .
A2. of Bou. is a special case of A2. of B*.
A4', of Bou. is precisely A4* of B*.
A5« of Bou. is equivalent to Coll (x is an integer) and as

such is equivalent to Bemays theorem that ^ x | Nu(x) ̂  is 
re pre sentahle •

Thus it appears that Bou is contained in B*. From this a 
connection between the two concepts stated above is evident.

For let R(x ) be any relation in Bou., then Coll R(i)
implies Rep j y | R (ÿ)̂ * For if not (iie. if there exists a
relation R(x) such that Coll ̂  (R(x)) but not Rep \ y | R(y) ^ )
then by the mapping (0 (chapter II p. 11 ) the class ^ y | R(y)}
is in (1,1) correspondence with V. This cannot be so for by virtue
of Coll X. R(x) the class {y | R(y)V is precisely the set £^(?(x)) 
and thus V would be a set by the replacement axiom.

This is of course only a partial result and the reverse 
implication would be desirable. We shall touch upon this in the 
next chapter.
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Section 4 - The development of set theory

Since ZPl -80 are derivable in Bou. it follows that any 
development of set theory from these axioms which has so far been 
put forward* could be embodied here.

In fact Bourbaki*s development of set theory does (essentially) 
follow the accepted pattern; it will therefore be sufficient for 
us to enlarge upon divergences fran this pattern; or upon those 
notions, the handling of which in the past has presented difficulties.

We have seen in section 1 that the operator is an essential 
part of Bourbaki*s logical apparatus. In the last section we 
have seen that it is equivalent to a generalised Choice-axiom. The 
questions therefore arise whether implicit^ application of this 
axiom can come about, and if so at what points in Bou. they are 
generated.

* E.g. P. Suppes, i960.
cf. Bernays/Praenkel Historical introduction.

By this we mean applications of the axiom, which are not obvious 
and which are often difficult to detect.



It is perhaps not too surprising that these implicit 
applications of the Choice-axiom occur at the very places where 
Bourbaki*s treatment is novel; that is Tsdierever he makes essential 
use of the X -  operator, viz. in the definitions of cardinals, 
order types (hence ordinals) and finiteness.

The introduction of these notions appears to have been 
f emulated with Cant or *s original conceptions in mind. We shall 
therefore preface each example with Cantor*s corresponding notion. 
Definition of Cardinals (ill. 85).

Inherent in Cantor*s definition of the cardinal number of a 
set a was the *set of sets equivalent to a*. This intuitively 
simple definition cannot be mirrored here because of the unwarranted
set of sets *. The collection of sets equivalent to the set
a is non-collectivisante. Bourbaki * s way out of this is first to
define the dyadic predicate of equivalence Eq(X,Z) - *X and Z are 
equivalent* and then to define the cardinal number of the set a as 
the representative (objet privilégie) of the collection of sets 
equivalent to a. Thus:

Card (a) is an abbreviation for X^(Eq(a,z))
Hence cardinal numbers are terms and thus sets.

*In fact Cantor did not define cardinal numbers but used a working 
definition (Jourdain p. 86, cf. Chapter l). The definition quoted 
above was Frege * s *rigorisation* of Cantor* s notion, which however 
was invalidated by Russell*s criticism.
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Note : This definition is not possible using a weaker selection
operator formulated for sets only#

Prom the above definition we see that if a and b are equivalent 
i.e# if Eq(a,b) then *t^(Eq(a,z)= t(Eq(b,z) 
i.e# card (a) = card (b)#

The converse can also be shown; and thus questions involving 
cardinals can be reduced to questions involving equivalence in the 
normal manner.

Consider now the sentence - ’Let (a^)^ ̂  be a family of cardinals * 
( m .  58). (For any set A, Bourbaki defines the family of sets 

 ̂) L€A means of the identity transf oimation such that (X L ) 
is identical to A)« Then if I is infinite, the assertion of the 
existence of such a set of cardinals requires the Choice-axiom#
To illustrate this let I be denumerable#

I = {a^, agV  y

and a^ = card E L = Xju(Eq(E C ̂ x))
then I = {X:^(Eq(E, ,x)), Yjt (Ea(Ej, , x)).....}

To secure the existence of I we are effectively applying the
Choice-axiom to the set E = { E^, E^ Y

Thus an infinite number of selections have been made and the 
result of all these has been combined into a set# We shall for the 
moment delay comment on this until after we have comsidered our 
other examples.
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Definition of order types (ill* 50).
Again Frege’s ’rigorisation* of Cantor’s original notion (op. cit* 

p. 112).is inadraissable here and Bourbaki utilises the t - operator 
as before.

First the dyadic predicate of similarity Is(x7y) - ’There 
exists an order - preserving isomorphism between (the ordered sets)
X and y* is defined* Then the order type of the set a is defined as 
the representative of the predicate Is(a,x) i.e*

Order (a) is an abbreviation for ^^^(is (a, x))
Ordinal numbers can now be defined (precisely as Cantor did

cp. cit* p* 137) the order types of well-ordered sets*
A similar situation, concerning the Choice-axiom, occurs here 

wlien an infinite number of ordinals are combined into a set* 
Definition of finiteness, (ill. 65).

Cantor (cp. cit. pp. 97-9) deals with the concept of finiteness 
by generating a sequence of sets, each one obtained by adding a 
new element e^ (for v = 1,2,...) to the last one; starting from a
single element e^. He calls the sets so obtained "finite cardinal
numbers" and proves all the usual properties of natural numbers 
for them* Thus in Cantor the notions of finite set and natural 
number are fused and the two terms are synonymous*
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Now this fusion, if carried out conscioisly and rigorously 
is intuitively* satisfying and it is, to some extent, reproduced 
Ijy Bourbaki.

In fact Bourbaki inverts the order of Cantor’s procedure by 
using a provable consequence of this procedure, namely, that no 
two cardinal numbers thus generated are equal, (Cf. Dedekind’ s 
definition of finiteness) as his definition. Thus 

A cardinal c is finite if c c + 1  

A set is finite if its cardinal is finite. From this 
definition the terms of the sequence

0, 0 + 1, (0 + 1) + 1,...
are finite cardinals i.e. natural numbers, which is the alternative 
name given to them by Bourbaki.

To prove that the finite cardinals in the above sequence do 
in fact characterise the natural numbers, it is sufficient to show 
that they satisfy Peane’s axiom. Now the induction principle is 
proved by reductio ad absurdum (ill. 67) and the remaining axioms

*Not all definitions of finiteness have this intuitive clarity; 
e.g. a set is finite if, and only if, it is a double well ordered 
set. See Bemays (1958) P* 151*
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follow from theorems that Bourbaki proves for all cardinals
(lllo 59-60). Also from these theorems Bourbaki proves the result
that

( Vx)(x C E & E is finite = %  Card (x) < Card (e ))
and its converse* From this it is seen that Bourbaki*s definition
of a finite set is equivalent to Dedekind’s definition of a finite 
set as one not equivalent to a proper subset of itself* However 
it is known (Tarski I924) that the definition of finiteness as 
equipollence to natural numbers requires the Choice-axiom to prove 
it equivalent to Dedekind’s definition. The proof of the above
result (ill* 66) as well as the theorems from which it is derived
make no explicit use of this axiom - it has thus been used implicitly.

The three examples given above illustrate where and in what 
manner the Choice-axiom is used implicitly in Bou. Candy (1959) 
in liis review of Bourbaki*s system, sees in these implicit 
applications the most severe drawback to Bourbaki*s system. By
building in the T -  operator Bourbaki has foimalised a ’completely 
classical* approach to set theory; an approach which ’is too 
ambiguous to give a definite answer to some problems of analysis 
(e.g* the continuum problem)*.

In addition to the generation of in^licit applications of the 
Choice-axiom there is another aspect of the %  - operator which is
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relevant here. Even when we know that a particulat theory or 
portion of set theory (e.g. the theory of cardinals) is based 
essentially on the X -  operator it is not at all easy to discern 
just how strong* the choice assumption is; either at the outset 
(e.g. in the actual definition of a cardinal) or at various stages 
of the theory. Again the problems of the dependence (or indepeidence) 
of the Choice-axiom from the other axioms of set theory and even 
of the various forms of the axiom itself have not yet been solved**. 
This, together with apparent paradoxical results (e.g. Banach-Tarski, 
1924) arising from the Choice axiom would suggest that a close 
surveillance of its use and examination of its strength in particular 
cases is very necessary. (Cf. the attitude in Sierpinski 1957, P* 9^).

Y/e shall complete our discussion of the "t - operator in the 
next section; there we shall see that its use is to some extent 
justified when considered in the broader context of Bourbaki*s 
programme.

* i.e. in relation to a conventional form of the axiom formulated 
for sets.

That is, not in systems of the type ZF; but results have been 
obtained in ^stems employing an infinite number of individuals 
or employing extraordinary sets. See Fraenkel 1922, Mendelson 195&*
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Section 5 - Bourbaki*a programme
It has been our purpose in this essay to assess two systems 

of set theory which have been put forward to encompass the whole 
of mathematics. The character of this assessment has been one 
of exposition and comment on the system, qua systems, The manner 
in which the theories and concepts of mathematics are to be (or have 
been) axiomatised within these systems is relevant only if it affects 
the character of the systems. We shall be content therefore to set 
down some general remarks.

Any single system set up to encompass mathematics must be a 
compromise between opposing tendencies.

On the one hand the aim of achieving maximum rigour with the 
minimum of existential assumptions is of primary inportance. This 
often calls for investigations of a metamathematical kind such as 
attempts to eliminate (or replace) impredicative definitions, axiom 
schemata etc. from the system. These investigations can only be 
carried out for systems which have been framed with meticulous care ; 
that is, where attention has been paid to such points as the status of
definitions, the use and mention of signs etc.

On the other hand the practical aspect of encompassing mathematics 
in a single system lays its own claims on such a system. The ability
to reproduce all modes of mathematical reasoning as faithfully as
possible is essential; so too is the ability to translate easily from 
mathematics to set theoiy if the project is not to become outdated. Both
these considerations require a system to possess a logical apparatus 
whose expressive power is as comprehensive as consistency permits.
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The needs of the working mathematician moreover must also be 
considered* For him attainment of rigoux which involves the laying 
aside of well tried, but logically vague* procedures in favour of 
safer but perhaps more artificial ones is stultifying© Of much 
more use to him is the exhibition of the interaction and mutual 
connection between seemingly diverse branches of mathematics'©
He see les "to find the common ideas of these theories, buried under 
the accumulation of detail properly belonging to each of them, to 
bring these ideas forward and to put them in their proper right"© 
(Bourbaki, (1950) p. 223).

The systems of set theory constructed by Bernays and Bourbaki 
respectively, illustrate extremely well these two tendencies©

B© was constructed from the point of view of a logician©
Bemays aim was to set up a theory capable of encanpassing mathematics 
and then to proceed with a metalogical investigation of this theory; 
that is to consider "the further axiomatical questions of eliminability, 
relative consistency and independence". Bemays (1958) P® 45*

* E.g. Applying an infinite number of dependent choices. See
Sierpinski (op. cit.) pp. 129 - 31-
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Thus Bemays has given substance to the suggestion that 
the foundations of mathematics and of set theory are one and the 
same thing, and his approach to the problem of "Foundations" is an 
intensive investigation of set theory.

B our bald. * s programme has altogether a more practical character.
It is to enable mathematicians to gain an insight into the assumptions 
and directions particular to their own branches in perspective to 
the # 10le edifice of mathematics. Such a purpose cannot be achieved 
by simply setting up a set theor̂ r capable of yielding all of mathematics; 
the developnent must be realised. That is the whole of mathematics 
must be translated into (or in some cases reconstructed within) the 
language of set theory.

A cogent and very lucid account of the guiding principles behind 
this translation is to be found in Bourbaki I95O. On this we shall 
base a short account* of the dominant idea, #iich is that of structure.

A structure consists of (a) Objects (sets as understood here).
(b) Certain relations into which these

objects can enter.
(c) Axioms which these relations satisfy.

* Cf. JJL.P. Hall (i960), L. Felix (I960) and M. Colmez (I96I) .



"To set up the axiomatic theory of a given structure, amounts to 
the deduction of the logical consequences of the axioms of the 
structure, excluding every other hypothesis on the elements under 
consideration (in particular, every hypothesis as to their own 
nature)"*

Using this notion Bourbaki thinks it possible to examine the 
whole of mathematics© "The organising principle will be the concept 
of a hierarchy of structures, going from the simple to the complex, ' 
from the general to the particular".

"At the centre of our universe we have the three great types of 
structure" or mother structures which are
I. Algebraic structures in which the relations are "laws of 

composition" (i.e. relations between three elements determining 
the third uniquely in terms of the other two).

II. Order structures where the relations are order relations.
III. Topological structures which "furnish an abstract mathematical 

formulation of the intuitive concepts of nei^bourhood, limit and 
continuity, to which we are led by our ideas of space".

"A considerable diversity exists in each of-these types; one 
lias to distinguish between the most general structure of the type 
under consideration, with the smallest number of axioms, and those 
which are obtained by enriching the type with supplementary axioms, 
from each of which comes a new harvest of consequences".
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In addition to the three primary types of structure there are 
also multiple structures. These involve two or more of the primaiy 
structures combined "organically by one or more axioms which set 
up a relation between them".

Finally "further along we come to the theories properly called 
particular. In these the elements of the sets under consideration, 
which, in the general structures have remained entirely indeterminate, 
obtain a more definitely characterised individuality. At this 
point we merge with the theories of classical mathematics*....".

Thus Bourbaki* s programme is to clarify and simplify* the whole 
edifice of mathematics by the axiomatic method. Within this 
programme set theory has the role of a basic language (or logic, for 
Bourbaki the teims are synonymous ̂ Cf. I. 4-9») which contains all
the vocabulary and syntax necessary to conduct mathematics* The 
originality that this programme possesses and its unquestionable 
value to mathematics make it a worthwhile contribution to "Foundations"

*Discussion of the pedagogic aspect of Bourbaki * s programme as well 
as amplification of some of the points raised in this section are to 
be found in L. Felix, I96O*
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and indeed set against this, the valid criticisms of vagueness 
and ambiguity engendered by the use of the X  - operator take on 
a different aspect. Within the bounds of a logician*s attempt 
at reconstructing the Foundations of Mathematics these criticisms 
are valid. In Bou, however, they are of secondary importance and 
perhaps a necessary evil, to be expected in view of the scope of 
Bourbaki*8 programme.

Nevertheless it could be asserted that Bourbaki * s uncritical 
acceptance of all present day mathematics is an act of faith, 
and that "Foundations" exists as a subject to obviate such acts 
of faith. There is considerable truth in this assertion and 
Bourbaki *s answer would be that his programme is being created 
in the same spirit that all mathematics has been created - in 
the hope that posterity (i.e. logicians) will provide justification for 
its *doubtful* regions.
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Chapter IV
ItCodel*s system and some results conceming it

In the preceding two chapters we examined two different 
systems of set theory. Both these systems were desigr^d to 
deal with the construction of the whole of mathematics. In the 
first part of this chapter we shall describe (briefly) a system 
of set theory which was constructed for an entirely different 
purpose; namely, to deal with difficulties arising in set 
theory itself. By far the most important and outstanding of 
these difficulties is the Continuum Hypothesis*. The only 
real progress that has been made towards a solution of this

rtproblem was made by Godel in 1939* He proved that the Continuum 
Hypothesis is consistent with (i.e". cannot be refuted within) 
a certain system of set theory. It is this system that we shall

Itdescribe now, basing our description on Codel I94O0
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Section 1. Godel*s system of set theory.
We shall call this system G. The system G. and the system 

B. considered in chapter II are both modifications of the system 
of set theory expounded by Bemays in the Journal of Symbolic 
Logic (Bemays JSL).

G. was set up very much earlier than B. and is considerably 
closer to Bemays JSL. We shall be - commenting on the relationship 
between B. and G. throughout this section.

The logical basis for G. is the restricted predicate calculus 
with equality * = *.

The relation of membership, denoted by * £ *, is primitive, 
as are the notions of class *C1s (a )* and set *M(a )*.*

large latin letters X, Y, Z,....; are used as class variables, 
small ones x, y. z , a s  set variables.

In contrast to the membership relation in B. (whose left hand 
side was restricted to set variables) the membership relation in 
G. can occur in any of the four following contexts:

X £ Y, X £ y, X £ Y, x £ y.

X "Y/here Godel uses a german letter, we shall use the equivalent 
english letter with a bar underneath. However for the sake of 
convenience we shall use Bemays* symbols for the logical constants 
and quantifiers (as used in chapter II).
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IIGrodel divides his axioms into five groups A,B,C,D,E.
Group A .
Al. CIs(x)
A2. X £ y ^  M(X)
A3 o (u) (u £ X u £ Y) ' X = Y
A4* (x)(y)(Ez)(u £ z (u = x ^ u = y)

ItAl. asserts that all sets are classes. Thus Godel identifies
r  — •a class and a set which have the same members rather than speaking 

of a class being 'represented* by a set.
A2o asserts that classes possessing elementhood are sets.

A class which does not possess elementhood and which is thus not 
a set is called a proper class:

^(X)
AJo is the axiom of extensionality. Using AlJ a special

case of A3 is the following:
(u) (u fc X 6^ u è y) X = y 

which is E2 in B.
Thus the relation of equality is primitive for sets and 

classes in G. as opposed to B. where, as was explained, there is 
no need for a primitive relation of equality between classes*

A4* is the pair set axiom which posits the existence of the 
plain (unordered) set ^ x,y^ whose only members are x and y*



Thus
u € (x,y\ (u = X u = y)

(The set {x,yY is unique by A3.).
From Al - 4 come the usual notions of ordered pairs 4 xy'> , 
inclusion C and the emptiness of a class:

^  (X) 4^ (u) (u ̂  X)
Group B. - I .

The following axions are concerned with the existence of 
classes and constitute a list of the basic* conditions which 
determine classes.

Bio * Axiom of £ - relation*
(EA)(x)(y)( <xy> Ê A O  X € y)
B2. * Axiom of intersection*
(A) (B)&C) (u) (u t C u fr A & u e B)
B3* * Axiom of the complement*
(a) (EB) (u) (u £ B (u 4
B4o * Axiom of domain* .
(A)(EB)(x)(x e B <-?• (Ey)( <'yx> 6 A))

* For an intuitive account of the motivation for choosing the 
particular classes in B1 - 8 see A. Borgers (1948) *
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B5« *Axiom of direct product’
(A)(EB)(x)(y)( < y x >  e B O  x è A)
b6. (a) (EB) (x) (y) ( <xy> é B 4f<yx) e A)
B7‘. (a ) (EB) (x) (y) (z) ( <xyz> £ B <-?• <yzx> € A)
B8. (a) (EB) (x)(y)(z) ( < xyz> fc B <"xzy> £ A)
Axioms 6,7,8 are ’axioms of inversion’*

ItAs Godel points out, the class A in exiœi B1 and the class B 
in axioms B5 - 8 are not uniquely determined y since nothing is said 
about, those sets which are not pairs (or triples) i*e* whether or 
not they belong to A (or B)o TMs is not the case, however,
with the classes C in axiom B2, and B in axioms B3, B4 wMch are
uniquely determined (by Aj)* This uniqueness makes possible 
the following definitions*

Intersection x € A*B x ^ A & x 6 B
Complement x t - A f ^ x ^ A
Domain x 6 D(A) (lÿ)( <yx> € A)
We note the following close correspondence between the 

classes posited in B1 - 8 and the ’primary constituents’ of 
(see chapter II p* VfSf ) ;

Bl* E 
B2 * A ̂  B
B5. A 
B4. A^A
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B5. A X  B 
B6. A 

B7.
B8

Group C.
These axioms are concerned with the existence of sets 

only. Disregarding slight differences of formulation these 
axioms are identical to ZP5 (infinity), ZP4 (Union), ZF5 (Power 
set) and ZP8 (Replacement) respectively.

Cl. (Ea)@ (a) & (x)(x fe a (Ey)(y t a & x C  y )))
02. (x)(Ey)(u)(T)(u é v & T t x - ^  U.ey)
C5‘. (x)(Ey)(uC X u t  y)
C4. (x)(A)(Cn (a) ~f (Ey)(u)(ufe y <-?' (Ev) (v é x & <uv> é A)))

Vihere in C4
Vn (X) (u) (v) (w) ( ( <vu^> €• X & <wu >  e X) v = w)

i.e . *X is sir^e-valued ’ •
Group D.
Em (a) — ^ (Eu) (u 6 A & ̂  (u»&))

This is the Fundierungsaxiom (ZP9) in precisely the same form as 
A7 of B.

Group E .
(EA)(Cn (A)’ & (x)(S (x) (Ey)(y 6 x & <  yx> é A)))'.

This is the Choice-axiom in a strong form since ’it provides for
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the simultaneous choice by a single relation, of an element from 
each set of the universe under consideration* (p. 6).

The main difference between G. and B. is in their respective 
treatments of classes. Even this however is, as we shall see, 
one of approach rather than substance.

In B. the concepts of class and set are kept quite 
distinct and are related only throu^ the notion of representability, 
so that a set x, having the same members as a class X, is said 
to represent that class. In G., on the other hand^ any set x 
is a class (by Al), and (by Aj) would be equal to X if the two had 
the same members.

Of much more importance than this however is the difference 
between the formation of classes in G. and B.

In B. any well-formed predicate P(x) has, as its extension, 
the class of sets*[xjp(x)y satisfying it. Such a formation of 
classes is achieved by means of the ’Church schema*;

a € (x I P(x)\O P(a)
Having thus formed a domain of classes in strict correspondence 
to the domain of predicates, Bemays proves* that an̂  ̂class of 
this domain can be constructed from a small number of basic class 
notions (’primary" constituents’ see above).

* Bernays I 1937, 711 1954® This is his famous class theorem.
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In Go we start with a small number of basic class notions 
(B1 - B8) as the ’definition* of a class, and build up all our 
available classes from these. It would therefore be desirable 
to relate these classes to the predicates of the system# This 
is precisely what Godel does in a series of metatheorems, ML - M6#
We shall describe the basic one ML and its generalisation M2 - 
the others being modifications of these.

For the statement of Ml we need the notion of a primitive 
prepositional function (ppf ). Characterised intuitively a ppf 
is a well-formed formula containing quantification over set 
variables only, more precisely:

Let Tf, P denote variables or particular classes (see below) then
(1) 1T(: P is a ppf
(2) If ^ ,"4' are ppf then so are ^  ^
(3) If $ is a ppf then so is (Ex) ̂   ̂and any result of

replacing x by another set variable is a ppf#
(4) Only formulae obtained by (l) - (3) are ppf#
ML asserts that the extension of any ppf is a class, formally:

If (%2.... .1 )̂ is a ppf containing no free variables other than
x^ x^ (but not necessarily all these) then there exists a class A,
such that for ai\y sets x^.«..*.x^

 ^ ^ ^  .....
The proof of this metatheorem is by cases, using induction on the
length of the formula.



It should be noted that the axiom of extensionality (AJ) 
does not guarantee the uniqueness of A, since nothing is said 
in LEL about sets which are not n - tuplets being members of A.
(This is of course the same situation as in axioms Bl and B5 - 8).

IIOn this point, Godel proves a later metatheorem (M4) which 
restricts membership of A to n - tuplets (A thus becomes an 
n - ary relation); this measure, ccanbined with a generalised A3 
applying to n - tuplets,' secures uniqueness for the class A.

Whilst the notion of a ppf is a wide one, there is an important 
classj(foimulae that it does not cover; this is the class of

Itformulae containing symbols introduced by definition, Godel 
classifies these into four types as follows:

(1) Particular classes 0, V,
(2) Notions M(X). ^ ( X ) , X Ç Y,"......
(3) Operations -X, D(x), X.Y,.....
(4) Kinds of variables x, X,« (these are defined by notions).

These defined symbols are usually introduced by expressions which
make use of quantification over classes and^previously defined symbols#

IITo characterise such expressions Godel extends the idea of a ppf 
to a prepositional function (pf); essentially a pf is a ppf which 
may include previously defined symbols and quantifiers applied to 
classes# Thus the following would be the ’kind of definition’ for 
special (particular) classes#



*A special class A is introduced by a defining postulate ^( a ), 
wliere $ is a pf containing only previously defined symbols and it 
has to be proved first that there is exactly one class A" such that 
<^(A)*’ Similar’kinds of definition* follow for defined notions, 

operations and variables#
ItGodel next introduces the property of normality:

A notion-^ is noimal if there is a ppf ({> such that

B(X^ ....
An operation A is normal if there is a ppf such that

Y 6 A(X^ JĈ )<f̂ <j>(Y,X̂ ...
A variable is normal if its range consists of the elements of a 
class# From these a pf is normal if it contains normal notions, 
noimal operations and noimal bound variables#

Thus a pf is normal if it can be reduced to (or replaced by) 
à ppf® It therefore follows that Ml applies to any pf provided 
^ is normal# This assertion is the content of M2*® It is clear 

that the whole apparatus of normality is designed to prevent the 
foimation of classes as the extensions of pf which contain non- 
eliminable definitions or non-eliminable class quantification#

Leaving aside the question of defined symbols, it is seen that 
the idea of a ppf with a single free variable* coincides with the 
usual idea of a well-defined condition# This being so the formation

* If the ppf in Ml has a single free variable then the problem of 
the uniqueness of A disappears - A will be unique by A3®
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of classes in G* (through ML) and in B# (throu^ the Church 
schema) are identical (i.e* the same demain of classes is produced)® 

In view of the above remarks the systems G#, B. are clearly 
equivalent and differ in form* rather than substance# Thus 
results which have been proved in relation to G. can be taken 
as holding for B# without qualification and we shall make no 
distinction between the systems when discussing such results 
in the next section#

* This difference in form is, of course, important when it allcws 
for the simplification of metamathematical results# E#g# the 
proof of Ml is considerably simpler than Bernays* class theorem 
which achieves the same purpose from the opposite direction#
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Section 2. The relationship between G»and ZF#
It is evident f rem the considerations of Chapters I - III

IIthat the Bernays-Godel set theory is more comprehensive than 
(ioe* contains) the set theory of Zermelo-Fraenkel; the following 
question therefore presents itself.

Does the greater comprehensiveness of G. (embodied in the 
class formalism) entail any inconsistency in G. not existing 
in ZF; more generally,' precisely how much stronger is G# than ZF? 
This question is completely answered by the following results*

(1) If the ZF system of set theoiy is consistent then so is 
the system G.

(2) Any theorem of G. involving set variables only is a 
theorem of ZF. (i.e. the only theorems provable in G. which are not 
obtainable in ZF. are theorems essentially involving classes).

We shall give a brief account of the Rosser/Wang proof of 
result (1). (Cf. Wang/McRaughton 1953 PP* 21 - 2)*.

IIThe starting point for this proof is the Lowenheim-Skolem 
theorem which asserts that any consistent system is satisfiable in 
the domain of natural numbers.

* (1) was proved first by IJÆ. Rovak (1948) and then (more generally) 
by Rosser/Wang (1950). (2) is evidently due to Mostowski (see
Fraenlœl/Bar Hillel p. 122 footnote). It is also obtained by 
Rosser/Wang (op. cit).



Thus, on the hypothesis that the system* ZP is consistent, we can 
assert that it has a de numerable model having the following 

charactero
To every set x of ZF. there can be assigned a number m and to 

the relation ^ of ZF there can be assigned an arithmetical 
relation such that

X E y if and only if m n,
where m and n are the numbers assi^ed to the sets x and y. The 
next step, which is the substance of the proof, is to show how the 

additional objects of G. (i.e. the classes) can be included in the 
model by assigning to each of them a natural number. This is 

done by considering axicmis Al, Bl - B8 of G. (p. >xo above) as 
nine operations which yield classes when applied to certain sets 
and classes. The numbers to be assigned are all of the form 

2^. 3^. 5^ where m takes the values 1 to 9 (according to which 
operation is being considered) and n, k take the values indicated 

below)•

* ZF here refers to Z1 - Z8 in Wang (1949) which does not differ 
essentially from our ZFl - 8; ZF9 or axiom D in G. is left out of 
these considerations - it is, in any case, independent.
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Al. Çls(x)
I n kIf n is assigned to x then 2 • 3 • 5 is assigned to the class 

with the same members as x; k is arbitrary.
Bl. (EA)(x)(y)( <xy> € A£> x fc‘ y) .

2 n kTo the class A the number 2 • 3 • 5 is assigned; n, k are arbitrary.
B2. (a )(B) (EC)(u )(u  f e C O  u f c A & u f c  B)

3 n kTo the class C the number 2 . 3 ® 5 is assigned where n, k have 
been assigned to the classes A, B respectively.

B5. (a ) (EB) (u ) (u  fe B (u ̂  A))
To the class B the number 2^. 3^» 5^ is assigned where n has been 
assigned to A; k arbitrary.
The axioms B4 - 8 can be treated in the same manner. On completing 
the list Al, Bl - 8 one must repeat the process in order to be able 
to assign numbers to those classes provided by B2 (say) which depend 
on classes provided by a later axiom B6 (say).

In this way every class constructed by means of Al, Bl - 8
has a number assigned to it in such a manner that no two different
classes have the same number assigned to them.

A new arithmetical relation € can now be defined such that 
if m is assigned to the set x and n to the class Y then 

m ê n if and only if x ̂  Y.
Now the remaining axicms of G. (i.eo the set axioms) do not differ
essentially from their counterparts in ZP; hence the above construction
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has provided a model for G. as an extension of the original ZP
timodel guaranteed by the Lowenheim-Skolem theorem. Thus G. is 

consistent relative to ZP.
It is clear from this result and from result (2) above that 

the essential difference between G. and ZP is one of expressive power 
rather than strength* in tlie accepted use of the word for mathematical 
theories, and that the class formalism of G. does not enable one to 
prove any stronger results about sets than those already available 
in ZP (one naturally expects resu-lts concerning the relationship 
between sets and classes to be provable in G).

There is an obvious similarity between result (2) and Hilbert’s 
L - theorem (chapter II p. 3 4 ) ; and the class formalism can thus 

be likened (in its effect) to a theory of descriptions which increases 
the richness of a system’s vocabulary without increasing the assumptions 
of the system.

* After giving their proof Rosser/Wang state ’It thus appears that 
despite the appearance to the contrary the systems of ZP, G. are 
of essentially equal strength* .
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In conclusion we mention the inç)ortant fact that G* is 
a weak extension of ZP in that the class formalism of G. is 
predicative. This is achieved in G. (Cf. chapter II p. ify.. ) 
by not allowing bound class variables to figure in the predicates 
which determine classes. Such variables are allowed, however, 
provided that they are eliminable - which is precisely what 
’normality’ for a formula means. This point is seen more 
easily in B. where there are no bound class variables at all 
and thus the predicate occurring in the Church schema obviously 
cannot contain them. This fact is important in the context 
of relative consistency, for it is doubtful whetlier a system 
comprising ZF plus an impredicative class formalism could be 
proved consistent relative to ZP. Certainly the Rosser/Vang 
proof outlined above would not carry through for this type of 
extension since entities (classes) defined in teims of a 
totality of which they were members could not be assigned 
numbers in the same manner as the classes of G.

See Praenkel/Bar Hillel pp. 526 - 8.
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Sect ion 3♦ Conclusi on #
If we view the systems of ZF and G. (i.e. effectively B.) 

in the light of the comments of the last section we see that there 
is little to choose between them if we are seeking a formal system 
which can be said to contain all of mathematics. The additional 
ability of G. to deal with proper classes, important as it is, 
is not essential for mathematics. This could have been discerned 
from Bemays’ interpretation of classes as ideal objects as 
opposed to sets as mathematics things. (Chapter II p. 4̂ 4. )•
In fact the sets necessary for mathematics are in no way as 
comprehensive as the proper classes of G. but are, for the most part, 
subsets of sets wasily securable in G.

A consequence of this is that the antinomies of Russell and 
Burali-Porti, depending as they*do on a questionable manipulation 
of proper classes, do not enter the orbit of normal mathematical 
reasoning.

It is thus clear that the ZP set theory, which is the essential 
portion of either Bourbaki’s or Bemays’ system, is certainly capable 
of containing all known mathematical reasoning; and that the task 
of reshaping Cantor’s notions to avoid the antinomies and at the 
same time producing a system comprehensive enough I to contain 
mathematics can be completed in either of the systems discussed in
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chapters II and H I #  If a choice has to he made between these 
systems then this will depend (as we saw in chapter III) on 
additional factors - i.e# on one’s total progranme in ’Foundations’.

If this programme is concerned with the overall logical assumptions 
inherent in mathematics then Bemays’ system is more suitable.
On the other hand, the greater flexibility of Bourbaki’s system 
is clearly an advantage if one is concerned with the actual construction 
of mathematics and with the logical relations between its parts.

Having said this we shall turn now to some general observations
II , 'on set theory made by Godel in 1947» These observations were made

IIin connection with Godel’s result concerning the Continuum Hypothesis.
We recall that the result is that the Continuum Hypothesis cannot 

be refuted within any of the set theories considered in this essay#
II *Godel proves this result by first considering a certain hypothesis - A, 

about the nature of all sets in G., namely that they are ’constructible ’ 
and then showing that from A the Continuum Hypothesis can be derived 
and that A is consistent with the axioms of G# (provided that these 
axioms themselves are consistent)# Intuitively a set is ’constructible’ 

if it is ’definable in terms of ordinal numbers..... by means of 
transfinite recursions, the primitive teims of logic and the relation,’ 
admitting, however as elements of sets and of ranges of quantifiers 

only previously defined sets’*. The sets defined in this way form a
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model for set theory in which the hypothesis A,,and therefore the 
Continuum Hypothesis, is true#

Consideration of the Continuum Hypothesis shows that there 
are three alternatives - it is provable, disprovable or undecidable#
The complete failure to obtain any results about the cardinal of 
the continuum* over the past seventy years would indicate that there

IIis little hope of proving the Hypothesis# On the other hand Godel’s
result rules out the possibility of disproving the Hypothesis
on the basis of the present axioms# The third alternative is the one

IIwhich Godel thinks is most likely and he interprets his result as
evidence in favour of it#

To say that an hypothesis is undecidable on the basis of a 
system of axioms is to say that these axioms constitute an insufficient
characterisation of their subject matter; it is thus to call for

IInew axiomso This is what Godel does, arguing in the following 
manner#

* By Zermelo’s theorem the continuum can be well-ordered - its 
cardinal is therefore an aleph - p# Not only has it not been 
settled wliether p = 1 but it lias not even been established what kind 
of ordinal it is; neither has an upper bound, however large, been 
assigned to p (see Sierpinski 1957 p* 412)#
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In the first place the two sets Z(^o ) and the continuum, 
whose wquivalence is asserted in the Hypothesis, are of a totally 
different kind. The first set is built up by an iterative procedure 
and is ’constructible* in the sense explained above* As opposed to 
this, the continuum is composed of sets ’in the sense of arbitrary 
multitudes, irrespective of, if, or how they can be defined’© The 
fact that both these sets can be formed from the same system of

IIaxioms is a clear indication for Godel that these axions do not contain 
a complete description of the ’well-defined reality’ in which the sets 
occur©

The second argument for the undecidability of the Hypothesis rests 
on a survey of the facts (as known in 194?) regarding the truth of 
Hypothesis© Not only are there no facts available to support the 
Hypothesis but there are many* which would have seemingly paradoxical

IIresults if adjoined to the Hypothesis© Now since Godel’s result 
makes impossible a refutation of the Hypothesis on the basis of the 
present axioms there appears to be a strong case for supplementing

* ’E#g. The existence of certain properties of point sets©.... for 
which one has succeeded in proving the existence of undenumerable sets 
having these properties, but no way is apparent by means of which 
one could expect to prove the existence of examples of the power 
of the continuum’© (p© 523)*
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IIthe known axioms in order to obtain such a refutation. Godel does 
not of course set down any possible new axioms but does indicate a 
direction in which these should be sou^t. This direction is that 
of the definability of sets. Thus referring to the characteristic 
difference between Z( and the continuum as one of definability,
and to the fact that using this notion (in his own consistency 
proof) he has obtained a partial result he states *It is plausible 
that the continuum problem will not be solvable by means of the 
axioms set up so far, but, on the other hand, may be solvable by 
means of a new axiom which would state or at least imply something 
about the definability of sets’-.
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