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Abstract of the thesis on "Contributions to the theory
of Generalised Hypergeometric Series

This thesis deals with various aspects of development
in the field of both ordinary and basic hypergeometric
functions.lt comprises six chapters.The first chapter
gives a brief survey of some of the recents developments
in this field including the work done in the present
thesis. The second chapter gives a systematic study of
the transformations connected with the partial sums of
generalised hypergeometric series,both ordinary and basic.
The main theorem proved in the chapter gives the most
general relation of its type.The third chapter is concerned
with the development of the transformation theory of k
bilateral cognate trigonometrical series and generalises
all the known results in that field.The fourth chapter
gives the integral analogues of some of the transformations
of basic series analogous to those for the ordinary series
in Chapter VI of Bailey's Cambridge Tract.The fifth
chapter deals with a systematic classification and study
of two and three term relations between special kinds
of well-poised series of the type and gives a new
method,by integrals,of deducing these transformations
ecasily.The last and the sixth chapter gives a number of
identities involving basic analogues of Appell's
hypergeometric functions of two variables and some

a”ociated functions.
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PREFACE

The present thesis on " Contributions to the
theory of Generalised Hypergeometric Series "embodies
the researches carried on by me since October 1951 to May
1955 a Research student for the degree of Ph.D.at
Bedford College (University of London),London.The thesis * !
contains six chapters on various aspects of the subject

and the following five papers,under publication“form a

shortened version of it
(1) "The partial sums of series of hypergeometric type"

(Accepted for publication in the Proc.Camb.Phil.Soc.)

(11) " General transformations of bilateral cognate
trigonometrical series of ordinary hypergeometric

type "

(Under publication in the Canadian Journal of Math.).
5

(111) " On integral analogues of certain transformation
of well-poised basic hypergeometric series "

(Accepted for publication in the Quart.J.of Math.
(Oxford) ).

(iv) " Some transformations of well-poised basic
hypergeometric series of the type "

(Accepted for publication in the Proc.American
Math. Soc.

n

(v) " Some basic hypergeometric identities

(Under publication in the Quart.J.of Math.(Oxford)).

I am grateful to the authorities of the University

of Lucknow,Lucknow (India) for granting me study leave



(11)

which enabled me to work in this country.l am also
greatly indebted to the Principal and the Council of

the Bedford College,London,for awarding me a Postgraduate
Research Fellowship of £ 500/- for the session 1952-55%*
Finally,my respectful thanks are due to Prof.W.N.Bailey,
under whose kind supervision this work has been done, for
his constant and ungrudging help throughout the present

work.



CHAPTER 1

SOME RECENT DEVELOPMENIS IN THE
THEORY OP HYPERGEOMETRIC FUNCTIONS

(1.1) In this chapter I give a brief historical
survey of the researches carried out in the field of
hypergeometric functions since the publication of the
Cambridge tract on "Generalised Hypergeometric Series" by
W.N.Bailey in 1955*"0 attempt has been made to give a
complete chronological account of all the developments in
this field,but only the important aspects of the subject
and allied topics closely connected with the present thesis
have been dealt with.

During the last two decades relatively fewer
contributions have been made to the theory of ordinary
hypergeometric series than to basic hypergeometric series
which have proved to have applications in the theory of
numbers and combinatory analysis.A study of these researches
reveal that the subject has,broadly speaking,developed
from three main points of view.The first and the most
important being the transformation theory,the second is
the application of the basic hypergeometric functions to
transformations and identities occurring in combinatory

analysis,including the famous Rogers-Ramanujan identities.

ic
Lastly,the theory has developed from the study of hypergeomet



differential equations and the use of differential
operators with applications to expansions and identities
involving hypergeometric functions of two variables and
other miscellaneous functions.

We shall deal with the subject under these three
wide classifications systematically.In many places the
chronological sequence of researches has been ignored in
favour of a connected presentation of the subject.The
following notation will be used throughout this chapter
and the present thesis.

Let

(a)» = r(a+tn)/ P(a) = a(a+tl)(a+2)....(a+n-1);

(a)o = 1; (a)-n = (-)/(1-a)n

I (1) (a,),,
o (A
The series converges for |x|<l when r=s+l and

for all X when r<s+1 and r=s.
When r=s+1, the series 1.1(1) is called

"Saal|chutzian" when Xb - Ea =1,and well-poised when

l+a= bAag e, =A8+A+1 "

When x=1 in 1.1(1) as usual i1t shall be omitted

from the symbol.

In the case of basic hypergeometric series,to avoid

suffixes,we will write



(asn) = (1-a)(1-a Q) ceccrvnncccnnncnne (I-aq””®) 5 (a30) = 15 |g<
(as;-n)= 1/(1-a/q)(1-a/" )ueeeuee. (I-e/q")
= (U)*g2n(n+l) a-V(q/asn) ;
........... »&r; 1 (ai;n)............(ap;n)

X =/ (x? o
b'),eeeee bg, A(b 1 s (bs;n)”

Vken-pzs-rh The series T'5S converges for [x|<]
The series®* 1.1 (2) is called
"Saaljbhutzian" when b"b”".-.-bg = qa-j.... ag’-j , and

well-poised when

(1.2) W.N.Bailey (5),in 19)6,defined the bilateral
ordinary and basic hypergeometric series which helped in
generalising most of the known transformations of.
hypergeometrio series.The first explicit definition and
study of an ordinary bilateral series i1s found in a paper
"On Vandermonde*s theorem and some more general expansions"
by John Dougall (1) in 1907*An ordinary bilateral

hypergeometrio series of order p is defined as

(H >SRp> 1 v O>»liQ............ (sp)n n
*b-), yopr | ). (bp)n

which can be easily written as the sum of two ordinary

Nb Gl mr—S+1



hypergeometric series of the type .In the particular
case when x=1 the series pHp(l) converges for RI(ib-2a9>0.
Similarly,when the argument is -1, the series pHp(-1)
1s convergent when RI(Ib-Ia )> 0.

When bp =1, the series pHp evidently reduces
to a series of the type p”p”i

A consideration of similar results for basic
hypergeometrio series is suggested by Jacobi's classical

formula

VA

So, we define a basic bilateral series as

(2) U, [* e -1 : t
,br J 47(b-] ™).. m..( bp5n)

This series converges in the annular region

Lo XA bp/a™........ ap%)<l, Ww.\</
For bp=q, the series 1.2(2) reduces to one of the
type .
For series of the type 1.2(1) Bailey proved in
his paper that
[+Ca, b, ¢ , d , e ,f » H

-1
ta,l+a-b,l+a-c,1+a-d,l+a-e, l+a-f; -



5
r(I-b) r(l-¢) r (1-d) r(l+a-e) r(i+ta-f) r (1+2a-b-c-d)
r(1+a) r(1-a)r(l+a-b-d )r( 1+a-c-d )T(1+a-e-f)P( 1+a-b-0)
2a-b-c-d, e , f ;

l+a—b,1+ta—o,1+ta—-d,

where one of the parameters (l+a-b),(l+a-c),(l+a-d) is a
positive integer,so that both the series terminate below.
This gives a relation between a well-poised ~H"(-1) and
a general .

The case when the series do not terminate was
explicitly given later by M.Jackson (4-) in 1952 who used
it to derive a number of other transformations of bilateral

series.In another paper (3) she has generalised the theorems

of and Whipple which give two and three term relations
between by deducing transformations of series of
the type

PE vy

Bailey ()) also deduced two and three term relations
between well-poised basic series of the type * . The
three term relations were the analogues of some of
Whipple's transformations between three well-poised

given earlier in 19)).An interesting transformation was

(l-aq"/cf)(l-aq"/df)(1-aq"/ef) »
(if.) A(CaSb,c,d,e,f) —
(1 Y(1-a"/d)(1-g"/e)
@
(l_bqll“”)(l_aqo/b)(l_bgﬂHl\/a)
Jj[ (1 _bfg*-1/a)( 1-fq“/b)(1l-bg"-1/f)
*% (fVa;bf/a,cf/a,df/a,ef/a, f) +



+ a similar expression with f and b interchanged,
where

X (a;b,c,d,e,f)
_IT( l-aqVb)(l-aq"/c )(1-aq"/d)(1-aq"/e )(1l-aq”/f )(1

d_ag!!)

fa,qya,-qya, b, ¢,, d, e , '
| afqZ/bcdef
A ya, - /a,aq/b,aq/c,aq/d,aq/e,aq/f.

If f=q in 1.2(4) the second series on the right

reduces to a multiple of a well-poised,summable and
we get
(5) S Lte S

[ya , - ya,aq/b,aq/c,aq/d,aq/e,

(1-aq" )(1-qVa)(1-g*’)(l-aqgVbo )(1-aq"/bd )(1-aq"/be)
(l-q°/b)(1-q"/0 )(1-qVd ) (1-q“/e )(1-aq"/b)(1l-aqV?°)
(j-aq"/od )(1-aq”/oe )(1-aq"/de)

71

(1-aq"/d ) (1-aq"/e )(1-aV "/bede)

The formula 1.2(5) has proved to have applications
in the theory of elliptic functions,combinatory analysis
and the deduction of Rogers-Ramanujan identities.We shall
discuss these in the next section.

But so far a systematic study of these three term
relations between was lacking and only a few scattered
results were to be found in thé litreature.In Chapter V of

the present thesis these two and three term relations are



systematically studied and classified.Some new three term
relations are given and a very simple method of deducing
all these relations by means of basic integrals of the Barnes
type given by Watson (2) is evolved. Thts method by integrals
1s more fully exploited earlier in Chapter IV,where it 1is
used to deduce integrals representing well-poised basic
hypergeometric functions and the integral equivalent of
Jackson’s analogue of Dougall’s theorem (T. 8.)(j)), thus
filling a long existing significant gap in the theory of
basic series.The results investigated are the basic
analogues of some of the results given in Chapter VI of
Bailey’s tract.

Later in 1947 Bailey (6) gave a two term relation
between two well-poised ’s similar to one proved by him
earlier for two yPg's (T.6.6())). This was the relation
giving the form Jackson’s analogue of Dougall*s theorem
assumes when we remove the restriction that one of the numer-

ator parameters must be of the form q"" » He used this
result to deduce a relation between four non-terminating
10" °s similar to that obtained by him earlier for four
gPg*s. The proof of these analogues was suggested by the
method of obtaining transformations of integrals of
Barnes type by which the corresponding transformations for
the ordinary series were discovered , although the details

in the case of basic transformations were more complicated.



Till recently,the relations between four or
were the most general known transformations of their kind.

In 1951,however,D.B.Sears (I-5) a series of
five papers published in the Proceedings of the London
Mathematical Society developed a novel method by which he
obtained some most remarkable and general transformations
of well-poised and general hypergeometrio functions,both
ordinary and basic.Sears ()) gave a transformation
connecting (M+N+1) general ordinary hypergeometrio series
of order (M+N+l).His proof,which is based on Hill’s (1)
identity for terminating series,uses double induction in
M and N,and from this result he deduced several general
transformations of well-poised ordinary hypergeometrio
series.He also gave there-in a systematic study of the
transformation theory of cognate trigonometrical series
of the hypergeometrio type,introduced into analysis by
Whipple ()) in 19)6.The transformations of these
trigonometrical series include as particular cases the
general and well-poised transformations of ordinary
hypergeometrio series.

In a later paper (5) he extends the methods of this
paper to deduce a general transformation between (MN+1)
series of the type ,mwhich he used to deduce

transformations of well-poised basic series of any order.



These transformations between general and well-
poised hypergeometrio series both in the case of ordinary
and basic functions have been very recently generalised by
L.J.Slater () & 4).She has deduced from Sears’ known
transformations relations between general and well-poised
bilateral series.Thus,her results include Sears’ results
as particular cases.Slater not only deduced these general
bilateral transformations but also has given very elegant
direct proofs of Sears’ and her own bilateral theorems.
She has made use of certain basic integrals different from
those used earlier by Watson (2),to prove the basic trans-
formations and has used contour integrals of Barnes type
to prove the transformations of ordinary hypergeometrio
series,! give below an example of the type of basic
contour integrals given by Slater.She (4) has considered
the integral

[ -r-1-r (1-A-s), (I+ai-A+s),1+1ai+s,1-1ai-s,
(¢é) I 1+ia-j +8+Ai/t, 1-ia-i-s+T i/t ; 95ds

_(ats),(a-a™-8) ;

where there are (M+1) of the 'a'parameters,and (M-1) of

the A parameters and
00 / ctn

TT (I-q F )
TT IT (i_qdl+n)......... (i_gdm+n)
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P
and the left hand symbol has been further abbreviated as
iT[S; ] *where the number of parameters of each kind is
stated.

The line of integration is the imaginary axis taken
from -~t to ~/¢t, where gq=e"”, t positive.

The integral 1.2(6) represents one of the
transformations of well-poised basic series due to Sears
(5;/.2).Similar integrals have been used by her to deduce
other transformations as well. Slater thus generalised
all the ordinary and basic transformations given by Sears.
In Chapter III of this thesis,! give ,however,still more
generalised transformations of ordinary hypergeometrio
series.Using Sears results on general transformations of
cognate trigonometrical series I deduce and give direct
proofs as well,of the general and well-poised transformations
of bilateral cognate trigonometrical series.They thus
generalise all the general transformations given by Sears
for ordinary and cognate trigonometrical series,and also
the bilateral transformations for ordinary series given
by Slater ()}.

In another paper,Sears (4) has given a very a
systematic and complete theory of two,three and four term
relations between series of the type 3%$% “hioh give the

analogues of Thomae’s and Whipple’s relations for the series
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.All these relations have been recently generalised
by M.Jackson (5) by deducing transformations between
bilateral series of the type 373

In Chapter II of the thesis transformations of a
entirely different nature from the above have been deduced
and their consequences studied.The study concerns the trans-
formations of partial sums of series of the hypergeometric
type.The subject had previously caught the attention of a
number of mathematicians such as Ramanujan,Watson (1),
Whipple (1),Darling (1),Hodgkinson (l),and Bailey (4) in
the case of ordinary hypergeometric series. The present
interest in the subject arose from a theorem due to Bailey
(4) given some years back which i1s generalised in this
chapter and the most general relation of that type has
been given.Similar transformations for basic series have
also been studied there in. A recent paper by Hermann Von
Schelling*8uggests that the transformations studied in
this chapter may be applied to certain statistical problems,
but this aspect, being out of our present scope,has not
been studied.

Iconclude this section with the remark that with
Sears’ work on the transformation theory of hypergeometrio

wHermann Von Schelling:- "A second formula for the
partial sum of hypergeometrio series having unity as the
fourth argument." Annals of Math.Statistics,2(1950)458-60.

The result proved is a particular case of a known formula
due to Bailey.
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series and its consequent generalisations by Slater,
M*Jackson and others,the theory can reasonably be said

to be a almost complete one..

(1.)) We pass on now to the consideration of some
basic hypergeometrio identities connected with combinatory
analysis and identities of the Rogers-Ramanujan type.
Bailey (/) in 1947 considerably simplified L.J.Rogers”work
of expressing special series as infinite products.Most of
Rogers work,which was very involved,was inspired by a
thorough study of theta-series and the properties of
elliptic functions.Bailey,however,deduced some of the
identities given by Rogers as limiting cases of more
general basic hypergeometric identities.One of the theorems

that he gave was that ,if

(x*“"sr)(kx";r)

where 1s independent of n , then

@D
Vo (k;n)(k*;n)(aisn)(a2;n) i
AA Ao-(x3n)(x*;n)(bi;n)(b2;n)

“KI.L.J.RogersSecond Memoir on the expansions of
certain infinite products” Proc.London Math. Soc.(1),2)(1894)

......................... ;- "Third Memoir on the expansions of
certain infinite products." Proc.London Math.Soc. (1),26(1795),
15-52.
S "Ontwo theorems of combinatory analysis
and some allied identities." Proc.London Math.Soc.(2),16

(1917),515-56"



)

(k;2r)(aisr)(a2;r) 5
A (Mx2r)(bisr)(bg;r) "
kx " k/x,aix",a2X
,bix N b2X"

b

where there may be any number of numbers a and b.

With the help of this and other transformations
he not only deduced many of Roger"s” identities but also
deduced general transformations of basic series.Prom 1.5(1)
he obtained a transformation giving a Saalchutzian nearly-
poised 5%i] in terms of a well-poised .This was the
first transformation given for a nearly-poised basic series
Of course,later on Bailey (8) and Sears (2) gave some more
transformations for nearly-poised series.In another paper
Bailey (9) developed a new method which led to a remarkable
simplification in the ideas underlying the methods of
finding transformations of basic hypergeometric series
and also identities of the Rogers-Ramanujan type.The

simple fundamental result proved was that if

Y
(2) - 4N "n-F ndr
and
A SyUr-n Vr+n
Y=W
t hen A

%
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a8Suming,of course that the series converge and that
certain other conditions are satisfied.Ey giving suitable
values to the numbers u”, v*, , and he got a number
of interesting new identities besides some of the identities
given earlier by Rogers.It may be mentioned that P.J.Dyson
(1) had previously given new proofs of three of Rogers’
formulae.

In a recent paper L.J.Slater(l) has given some very
general transformation theorems by which she hot only
obtained all the known identities of Rogers but obtained
numerous others,some of them filling significant gaps in
Rogers’ work.In fact,her work simplifies considerably the
very complicated work of Rogers.The transformation 1.5(2)
is fundamental in her work as well,although she also
proved a number of other very general theorems of this type.

She used a particular case of 1.5(2) in the form,that i1f

'S
(Xy

~ o (qsn-r)(xinr)

irv
and

=/ B
few. (q;r-n)(x;r+n)

then

Y\=o0
The summation formula 1.2(5) has,in general,been

used to evaluate the sum .The most interesting of the
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new identities of the Rogers-Ramanujan type deduced by Slater

are those involving products of the types

yl- V=1 yl-|
\\ , n(l-qs5"") fTd-q""V.
y/\

(1.4) Lastly,coming to some of the work done in

various other fields of hypergeometric series we find that
a number of interesting papers have been written on
infinite expansions of Appell’s double hypergeometric
series and their basic analogues*These expansions were first
studied by J.L.Burchnall and T.W.Ghaundy (1) in 1940%*It
was shown about twenty years back by Bailey that Appell’s
double hypergeometrio function of the fourth type reduces
to a product of two ordinary hypergeometrio functions

when its parameters are connected by a single relation.
Burchnall and Chaundy,however,showed that in the case of
an unrestricted Appell’s function of the fourth type that
product is represented as the first term of an infinite
series of such products.It was from this enquiry that they
were further led to a number of other infinite expansions
for other types of double hypergeometrio functions as well*
The expansions have been obtained by the help of certain
symbolic differential operators of which the following

1s the fundamental one
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vV(>) . ,
r(s+h)r(£+h)

where F ,S' = respectively. In a later paper”
they studied the confluent forms of the expansions given
earlier.P.H.Jackson (1) following Burchnall and Chaundy,
defined the basic analogues of Appell’s functions and
deduced a number of transformations which give the basic
analogues of Burchnall-Chaundy expansions for double
hypergeometric functions and conhfluent hypergeometric
functions in two variables.In the case of basic expansions
certain other types of functions called "abnormal"
functions by Jackson occur.The confluent forms of these
"abnormal" functions are closely connected with the basic
analogues of Bessel functions,Laguerre functions and
Whittaker functions given many years back by Jackson.

In a later communication Chaundy (1) gave some
more very general expansions of Appell’s double hypergeometric
functions and functions of higher order in two variables.
In Chapter VI of the thesis the basic generalisations of
some of these expansions have been deduced and their
confluent forms have been studied.Some of these expansions
contain "abnormal" functions as well.

Chaundy (2) in another paper in 194-5 used an
arguément of a rather different character to define what

he calls an "extended" hypergeometric function.It is known

Burchnall*"arid Chaundy (57
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that a hypergeometrio series pPg(a.|a” ;b.jbg; )
terminates if one of the numerator parameters "a is a
negative integer and further that under certain circumsta-
nces it can be summed up to a ’gamma product’ of the type
A" )n("2)n......... (®1)n(% )n............. Calling such a series a
"reducible" hypergeometrio series it is easily seen that
if P is a "reducible" hypergeometrio series,then the
infinite series ZVy\Pr]%"/n! is merely a hypergeometrio
series of the same order,where is any ’gamma product’
of the type mentioned above.This led him to study infinite
series of the above type when P* is no longer reducible.

It is such a series that he calls "extended" hypergeometrio
series.He has studied the differential equations of a number
of such "extended" functions of different types.

The study of differential equations associated
with the generalised hypergeometrio series and Appell’s
double hypergeometrio functions has been made from time to
time by various other authors,as well

I conclude this chapter by briefly mentioning a
somewhat different approach to the subject of hypergeometrio
series found in some recent papers by W.Hahn (1 & 2).

With the help of the basic hypergeometrio series he has
defined the basic analogues of the sine,cosine,exponential
and Bessel functions.These definitions are similar to those

given by P.H.Jackson some fifty years back. Hahn has made
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a study of the q-difference equations,the rec”urrence rel-
ations and other analytic properties of these functions.
With the help of his basic exponential function he has
given a basic analogue of the well-known Laplace integral

transform.



Chapter II

THE PARTIAL SUMS OP SERIES OP
HYPERGEOMETRIO TYPE

(2.1) Introduction. This chapter deals with

a study of the partial sums of the series of the coefficients
of the ordinary and basic hypergeometric series.A number

of scattered results were given about twenty years back
expressing the sum of N terms of a hypergeometrio series
with unit argument,in terms of an infinite series of the
generalised hypergeometrio type.The subject had previously
been studied by Hill and Whipple as early as 190/,but

new interest was aroused when Ramanujan gave the following

theorem

(1) 1/n * (1/2) /(P+1) + (1.5/2.4) 1/fn+2) +
2
=  (Mn)/r(n+-2)j (I + (1/2) + (1.5/2.4) +. e

to n term”.
This was proved by Watson (1), Darling (1), and
later generalised by Whipple (1), Hodgkinson (1) and
BailJ.ey (4).Watson obtained the result as a particular case
of a limiting case of a known formula due to Thomae (T.5.8(1).

Whipple generalised Ramanujan’s result and proved that
(2) r(l+a-c)P(l1+b-c)

J J_l'__"Y"!
ITwm nl (0-1),, * 12-c,n+1
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provided atb-c > -1.

Whipple’s result covers the most interesting case
for which the complete hypergeometric series is not
convergent,but still there remains the problem of finding
the corresponding sum when a+b-c”-1 .This case was covered
by Bailey (j) who proved that for all values of the

parameters the sum of the first n terms of 2Fi(a,b;c) is

P(a+n) r(b+n) a,b,c+n-1;

f(n) r(at+b+n) c, atb+n

Later,Bailey proved a more general and particularly

simple result,namely that

0) r(x+m)P(y+m) X,y,vtm-i;
e p to n terms
P(m)P(x+y+m) Lv,x+y+m
r(x+n)P(y+n) X:Y9V+n'i;

to m terms
Wr(x.y.n) 572 vyx+y+n

When x=y=5, v=I, this result reduces to the theorem

that

X 2 p 2
. r(m+i)/P(m)i U/m + (1/2) U(m+1) + (1.)/2.4) 1/(m+2)+..
A A e...ton terms/

={r(n+i)/P(n)|2 Vi/n + (1/2)21/(n+1) + (l.)/2.4j21/(n+2)+..§

.... to m terms

which gives Ramanujan’s theorem when m tends to infinity
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In this chapter I have generalised all the above
known results by deriving a relation of the type 2.1(5)
between two yPg's with unit argument and have deduced a
number of other transformations connecting partial sums
of hypergeometric series.The main theorem has been proved
in 2.2.Two proofs of this theorem have been given.The
first is the one from which the theorem was first derived.
The second one is as simple a proof as one can expect and
involves very little algebra.lt 1s interesting to find that
all the results on the partial sums of ordinary hypergeome-
tric series have corresponding analogues for basic series
as well.They have also been studied inthis chapter.
(2.2) The main theorem.

We shall now prove that

(1) r( 1+x)P(1+X-D-B) P( 1+E+M) P( 1+D+M) .

r( 1+X-D)P( 1+X-E ) P( 1+D+E+M) P(1+M)

rX,1+iX,1-C+X, CGM , A-D-E, D , E
sX , C ,1+X-C-M,1+D+E+M,1+X-D,1+X-E

to (N+1) terms

PA1+X' )P(1+X'-D-B)r(1I+E+N)P(1+D+N) #
P(1+X’-D)P(1+X'-E) P (1+D+B+N) P( 1+H)

X'1+iX', 1-C+X', CtN , A-D-B , D , B J
11X, C , 1+X° -C-N,1+D+B+N,1+X’-D, 1 +X'-B.

to (M+1) terms.
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where X=AtM  and X =A+N.
First Proof. Let us consider the general

relation connecting two terminating well-poised gPg’s

(T.1f.5(7))> namely that

(2) a,lI1+"a, b , ¢ , d , f g h

~a ,l +a-b, 1+a-c, 1+a-d, 1+a-e, 1+a-f, 1+a-g, 1+a-h.

r(l+a-e)T(1+a-f)T(l+a-g)T(l+a-h)P(1+a-e-g-h) T(1+a-e-f-h)
r(l+a)r(1+a-e-f)r(l+a-e-g)r(1+a-e-h)?(1+a-f-g)P( 1+a-f*"h;j
P(l+a-g-h)P(l+a-e-f-g-h)

k,1+5k,k+b-a,k+c-a,k+d-a, e , f , g , h ;

-/a ik ,1+a-b,1+a-c,1+a-d,l+k-e,1+k-f, 1+k-g,1+k-h _

where k=1+2a-b-c-d,
2+5a =b+c+d+e+f+g+h,
and h is a negative integer say,-N.
Putting f=1+k+N 1in the above relation we get
k,1+&k,k+b-a,k+c-a,k+d-a, e , ¢

to (N+1) terms
Ak, 1+a-b, 1+a-c, 1+a-d ,1+k-e, 1+k-g J

r(1+a)P(a-e-k-N) P(l+a-e-g)P(l+a-e+N)P(a-g-k-N)r(a-k)
njLfca”+Ji)r( a-rerg-k)

1+a- -k-N)M 1+a-g ) P(1 N)P(a-g-W P -e-g+N

r (1+a-e)r(a )M 1+a-g ) P( +a-‘I;('c)1-e(-ak)gP(a-e$-lk—i_-ag-eN%+ )

a,1+?a, b , ¢ , d , e ,l+k+tN, g , -N

m'a, 1+a-b, 1+a-c, 1+a-d, 1+a-e, a-k-N, 1+a-g, 1+a+tN

where k=1+2a-b-c-d and a=g+e.
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Now let ¢ tend to -M (M,a positive integer) and

replace a by g+e, then we get

g—e,kMg—e,k+td—g—e, e , g ;

1+g+e-b,1+g+e+M,i+tg+e-d,1+k-e,1+k-g
to (N+1) terms

r(1+g+e)P(g+e-k)r(-k) P(1+g+N)P(1+e+N)P(g-k-N)P(e-k-N)

P(l1+g)P(l+e)P(e-k)r(g-k)r(l+g+e+N)r(l1+N)P(g+e-k-N)P(-k-N)

*g+e’1+i(g+e)’ b s -M ’ d y € 1+k+N s 8 'N;"

t(gt+e),1 +g+e-b, 1+g+e+M, 1+g+e-d, 1+g,g+e-k-N, 1+e,l +g+
&%\/]l

where k=i+2g+2e-b-d+M.

In the above relation the right hand is

symmetrical in M and N and hence after some transposition

we have

P(e-k) r(g-k)r (1+e+M) P(1+g+M)
‘m —+ X
r(gte-k)r(-k)r(1+g+e+M)P (1+M)

k,lI+*"k,k+b-g-e,k-g-e-M ,k+d-g-e, e

’ to (N+1)

?k,1+g+e-b,1+g+e+M,1+g+e-d,1 +k-e,1+k-g terms

the same expression with Mand N interchanged,

where k=1+2g+2e-b-d+M.
Changing the notation by putting
1+2g+2e-b-d = A

1-b+g+e =0
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e = D
g = E
AtM = X
AN = X°,

and simplifying we get the result in the required form.

Second Proof of 2.2(1).
Let us take N>M. Then the terms containing powers

of C on the left hand side of 2.2(l) are of the type

(1+X-C)p (C+M)p

(C)p (1+A-C)p

If we now multiply both sides of 2.2(1) by
(C)m(1+A-C)m 9 the highest power of C on both sides become;

Hence, we have got two polynomials in C of degree
2M

So,if we canprove that thepolynomials are equal
for (2M+1) values ofC,we shall have proved theresult.

To prove this let C= -N,-N-1,-N-M, 2+A+N,
............... Mt +A+N be.the (2M+l) values. The partial series
in 2.2(1) become complete hypergeometric series which can
be summed by Dougall*s theorem.¥e can thus easily verify

the result in these cases,and so the theorem is proved.

(2.5) Particular cases.

In this section we shall deal with some of the
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particular cases of the main theorem and obtain the known
results mentioned in 2. J.

(i) Let A tend to infinity in 2.2(l),then we get

P(I+E+M)r(i+D+M) C+M,D.E;

) to (N+I1) terms
P(1+D+E+M)r(1+M) 0,1 +D+E+M
P(1+E+N)P(1+D+N) C+N,D,EJ

£ 2 to (mM+1) terms "
r(1+D+E+N)P(1+N) 0, 1+D+E+N

a result due to Bailey given in 2.1(5).
(ii) If we let Mtend to infinity in (i) above

we get

V(+E+N)p(I+D+N) 0+N,D,E;

pFj(D,E2C) to (N+1) terms =
P(1+D+E+N)r(1+N9 C,1+D+E+N
another result due to Bailey (5).
'(iii) The *Pg in the above case (ii) can be
transformed in various ways.In particular using the relation
between three series of the type ' Pp(0;if,5) , Pp(*;0,1)

and Pp(1;0,%) , we get the result 2.1 (2) due to Whipple.

Also if we use the relation
Pp(0;4,5) = Pp(0;l,if)
in (ii) we get a result due to Hodgkinson (l),namely

y TEese are well-known relations due to Thomae.Por the
notation see T.p.1/.
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,p*(D,E;C) to (N+1) terms

P (1+D+N)P(1+B+N) C“DfG-E , C+Nj]
P,
r(I+N)P(1+D+E-C)r(1+G+N) 5 2 C,1+G+N

valid for RI( 1+D+E-C)]>0.

(iv) If we let M tend to infinity in 2.2(l),
we get
A—P-E,D,BJ
to (N+1) terms
0,1 +tA—C
P(1+X' )P(1+X’ -D-E)P(i+E+N)P(1+D+N)
P(I+X’-D)r(I+X'-E)P(1+D+E+N)P(1+N)
X', 1+iX',1-G+X"', C+tN , A-D-E , D E ;
iX', G ,1+X'-C-N,1+D+E+N,1+X"'-D,1+X'-E
where X’=A+N. This gives the sum of a Saalsohutzian

to (n+1) terms in terms of an infinite well-poised

yPg , a result given by Bailey (5).The well-poised "Pg
in this can be transformed into two SaalchUtzian *P"s
(T.7.5(5)) give the following result by Darling (2)

A-D-E,D,EJ

to (N+1) terms
C, 1+A—C
P(1+A-D-B+N) P(1+E+N)P(1+D+N)

r(1+N)P(C+N)r(1+A+N-C)
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r(c)r(2c-i-A)

(1+A-C+N) P(C-D) r(C-E) P(C-A+D+B)

1+D+B—C, 1+tA—CP, 1+A—CE, 1+A—C+Ni
2+A+N—C,1 +A—C, 2+A2C J

P(1+A-C)F(1+A-2C)

(C+N) P(1+A-C-D) P(1+A-C-E) P(1+D+E-C)

"CGAHDHE, CB, CE, ClN%

1+C+N,2C-A,C

(v) If we put E=1+A-C in 2.2(l) we get a

relation of the same type between two "P"'s,namely

P( 1+X) n(C-D+M)P( 1+D+M) r (2+A-C+M)
X
r (1+X-D) P(C+M)P(1+M) P(2+A+D-C+M)

X,1+2X,1-C+X, C-D-1 , D ;
X y{f to (N+1) terms
70 iX, C, 2+A+D-C+M,1+X-D,

= a similar expression with M and N interchanged,
where X=A+M.
(vi) Lastly,if we put h=-N, f=7(l+a) and let
g tend to (1+a+N) in 2.2(2) we get the sum of a well-poised
APA to (N+1) terms in terms of a terminating well-poised

"Pg , namely
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65 to (N+1) terms
ia, 1+a-b, 1+a-c, 1+a-d, 1+a-e

N N 'N
(I+a-e)j”(i+ia)”(5/ 2+iate)’ |y n\

k, 1+-*k,k+b-a,k+c-a,k+d-a, e , i(1+a) ,1+a+N, -N

Ak, 1+a-b, 1+a-c, 1+a-d, 1+k-e,k+~( 1-a) ,k-a-N, 1+k+N

where k=1+2a-b-¢-d and b+c+d+e=i(l +Ja)

(2.if) Next,let us consider a transformation due to

Whipple (T.if.5(if)), namely

(1) a, 1+2 a, b , ¢ -m

~a, 1+a-b,1+a-c,1+a-d, 1+a-e, 1+a+tm

(I+a)jjr(1+a-d-e) p fl+a-b-¢,d, e , -m ;1

NS5 Jita-b,l+a-G,d+e-a-mJ
(I+a-d ym(l+a-e)y

which transforms a terminating well-poised into

a Saalohutzian ﬁP“go .

Put b=l+a+m and we get

a,l+2a, ¢ , d , e ]

to (m+1) terms
Na,l+a-c,lta-d,l1+a-¢ J

-c-m,d , e ;
S’

, to (m+1) terms
(1+a-d)iw(l+a-e)Tn A~ A 1+a-o,d+e-a-m
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Transforming the Saalohutzian on the right by means
of the result of Bailey derived in 2.5(iv) ,we get the
sum of aK XHf well-poised *P» upto (m+1) terms in terms

of an infinite well-poised yPg ,in fact

(2) ra,l+tia, c ., d , e ;

to (m+1) terms
AT | "a,1+a-c,1+a-d,ita-e .

(1+a)~(1+a-d-e )J(1+d+e-0 ) P(1-¢c ) P(1+d+m) P(1+e+m)

(l1+a-d)~(l1+a-e)Jr(l+d+e+tm)ire-c+1 )P(d-c+1 )P(m+1 )

k,1+&k,d+e-a,1ta-ctm, -c-m , d , e

b

l+a-c,d+e-a-ffi,d+e+m+1,e-c+1,d-c+1 J

where k=d+e-c.

If now we let e=i(l+a) in 2.7(2) we obtain

(5) a,l1+2a, c R d
to (m+1) terms
Na,l+ta-c,l+ta-d

r(1+ta+m)r(l+d+m)P(l +a-d) P(1-¢ ) P(-&+&a)

P(1+a-d+m) P(1+m) P(1+a)P(d-c+1)P(i+ia+m)
r(A+*a-d +m)P(5/2+i atm)P(5/2+& a+d-c )

P(5/ 2 +&a+d+m) P(&+&a-d )P (5/2+4a-c )

k,I+ik, (l-a)+d, l+a-ctm , -c-m , d ?7+"a

b

AN “k,l+a-c,i(l-a)+d-m,i(5+a)+d+m,i(5+a)-¢c , d-c+l I

where k="(l+a)+d-c, which gives the sum of a well-poised
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poised yPg -
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in terms of a non-terminating well-

However,if we let e tend to (l+ta+tm) and then let
d tend to infinity in 2.if(l) ,we get
(If) a,1+"a, b ) C
-1 to (m+1) terms
S Na,l1t+a-b,1+a-o
(-1)” ~"l+a)m 1+a-b-¢c,l+a+m,-m;
m 5 1+a-b , 1+a-c

a formula due to Bailey (2) which gives
terms of a well-poised

second parameter,in terms

If we now let
the
terminating 21)1

Gauss’s theorem we

a,1+ia, b
512

An interesting case 1is

[1 + 5(1/2)~ +

= [r(m+5/2)/r(m+1)]

sum of a well-poised "2

with unit

"&, 1+a-b .

the sum to (m+i)

APA(-1) with special kind of
of a terminating "P”"
¢ tend to infinity

) terms

get

W

to (m+1) terms =
ml (I+a-b)vYt

obtained

in 2.4.(2).We get

9(1.5/2.i|.)"

[1/(m+1 )(m+f) + 5/(m+2)(m-+) (?))\

+ 9/(m+7)(m-)/2) (1.5/24)+...

in 2.4.(4.) we get
in terms of a

argument.Summing the gPY by

if we take a=c=d=:

.................... to (m+1) terms]

]A
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a result similar to 2.1(1) given by Ramanujan.

(2.5) Basic Series. Passing on to the
consideration of the partial sums of series of basic
hypergeometric type,we shall first give some elementary
results and then discuss the analogues of the theorems
already derived for ordinary hypergeometric series.

Let us start with Watson’s formula (T.8.5(2)) for
transforming a well-poised terminating into a

Saalohutzian , Viz.

(1) {rSfQ.\/ﬁ, “Qy*a, b, ¢, d, G, q "2 Nr2
| /a , - /a,aq/b,aq/c,aq/d,aq/e,aq”+"

/bod

(I-ag")(l-aq°/ae) A
Yl (1-aq /a )(1-aq“/e) A deg~"/a,aq/b,aq/c

If in 2.5(1) me take bcae=a’“q™'*’* » we get the

analogue of Dougall’s theorem,viz.

Aa,qya, -q/a, b . o, a , e , qn*/\ »
ya , - ya,acyb,aq/c,aq/a,aq/e;aq**""'*

(aq;N)(aq/cd ;N) (ag/bd ;N) (aq/bo ;N)
(aq/b ;N) (aq/c ;N) (aq/d ;N) (aq/bod”IN)

provided bode=a*q”""'"

Let e tend to aq™™" in 2.5(2) then we get
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(3) a, gya, -gya, b 9 ¢ d
to (N+1) terms
A ya, -r/a ,ag/b,ag/o,aq/d
(ag;N)(bg;N)(cg;N)(dg;N)

(aq/b;N)(aq/c;N)(aq/d;N) (g;N)

provided bod=a,which gives the sum of a well-poised
upto (n+1) terms.
Substituting for d from bcd=a in 2.5(5) a“*d letting

a tend to zero we get

(4) A (bg;N)(cg;N)
to (N+1) terms =
beg (beg;N)(g;N)

which gives the basic analogue of 2.5(11) in particular

case when C=D+ErM.

In 2.5(1) let b tend to agM*"* . This gives

(5) a,gya, -gya, ¢ d , e ;
aq/cde to (N+1) terms
ya. Va ,aq/c,ag/d,aq/e
N
(1-aq”)(1-aq”/de) g’re, d, e ;
to (N+1) terms.
o' (l-aq”/d)(l-aq”/e) _deg"Ma,ag/c

which is the basic analogue of the sum of (N+1) terms of
a well-poised in terms of the sum of (N+1) terms of a
%VPS discussed in 2.4#

If we let c¢c=aq/d in 2.5(5) have
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Ta,gya -g/a, e
A 1/e to (N+1) terms
A | y a» - /a, aql/e

N
—qy (1-ag”)(l-ag”/de) dg“*"Va, e ;
R to (N+1) terms
n- (l-ag”/d)(l1-ag” e) deg“”/a
Summing the on the right by the result 2.5(4) we get
a*CL/a, -g/a, e
1/e to (N+1) terms
x/a, -v/a, agle
(1-ag”)(1l-eg™)
w=1(l-q”)(e-ag”)
If however, we let e tend to ag™ " in 2.5(1) we
get the sum of a upto (N+1) terms in terms of a
terminating .
(2.6) In this section we will now derive the basic

analogue of the main theorem 2.2(l). Consider now one of
the most general transformations for basic series due to

Bailey (T.8.5(1)),namely

a,gya, —gy a, b, o, d, a, f >aKg /af, g »

/a, - /a, ag/b,ag/c,ag/d, ag/e,ag/f,ef/kg”" ,agN+1

(1) (I-ag”*)(e-kg”)(f-kg”*)(ef-ag”n) *

(1-kg” ) (e-ag” ) (f-ag” ) (ef-kg”)
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k,qyk, -g yk,kb/a,kec/a,kd/a, e , f ,akg™+''/ef, g"* j

yk, -yk,aq/b,ag/c,aq/d,kg/e,kq/f,fe/ag" ,kg’N"'1

where k=a q/becd.

Putting f=a/e we get

(2)
ﬁ k,gyk, -gyk,kb/a,ko/a,kd/a, e , ale ;

vk, -yk,ag/b,ag/c,ag/d,kg/e,keg/a ,

to (N+1) terms

M
(1-kg”)(e-agB)(l-eg”)(a-kg")

J. (1-ag®)(e-kg” ) (1-g" ) (A-keg”)

Ta,gy a, —gya, b, G, d, e ,ale, kg g »
A | ya, -ya,ag/b,ag/c,ag/d,ag/e, eg,ag"’ k,ag"+""

where k=a”g/bcd.
Now put c=g"” (M,a positive integer) in 2.6(2)
and we see that the on the right becomes symmetrical

in M and N and hence

(1-kg”/e )(1-ag”)(1-keg”/a )(1-g”)

(1-kg”)(1-ag”/e )(1-eg”)(1-kg”/a)

to (N+1)

A'k,g vk, -gyk,kb/a,aq/bd,kd/a, e , ale ;
vk, -yk,ag/b,agh+'",ag/d,kg/e,keg/a terms

= the same expression with M and N interchanged,
where k=arg""*"A/bd.

This on some simplification of the products

gives
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(a”*g”/bcl;M)(ag2/bd;M)(aq/e;M)(eg;M)

(a”g”/bde;M) (aeg”/bd;M)(ag;M)(g;M)

[k,g yk, -g yk,kb/a,ag/bd,kd/a, e , ale ;
to (N+1)
® "L yk, - yk,aq/b,ag**""'"\aq/d,kg/e,keq/a terms

= the same expression with M and N interchanged,

where k=a“g”'*'*/bd.

Again putting

k =X

e =D

a/e = E
a*q/bd = A
aq/b = C,

we get the final result in the form

(3) (Aq;M)(Aq/DE;M)(Eq;M)(Dq;M) #
(Aq/D ;M) (Aq/B; M) (DEq; M) (q; M)

.. X,gyx, -gyx,g¥c, A/DE , Cg”, D, B
J) to (N+1)

¥X, -¥X, C .,DBg*+'",Aq/C,g]lyD,gX/B terms
= the same expression with M and N interchanged,
where X=Aq" -

This gives the exact basic analogue for the main
theorem proved in 2.2. As in 2.2 I give here also a very

simple alternative proof for the above theorem.
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Second Proof of 2.6(5)* Let us suppose as before
that N>M. Then the terms containing powers of C on the

left hand side of 2.6(5) are of the form

(gVC>r)(Cg“;r)

(C;r)(Aq/Csr)

Now multiplying both sides by (C;M)(Aq/C;M)
we find that the highest power of C on either sides of
2.6(5) is 2M.Thus, the relation 2.6(5) can be treated as
a relation between two polynomials in C of degree 2M.So,
if we can show that these polynomials are equal for (2M+1)
different values of C we shall have proved the result.

To do so let C have the (2M+l) values q"*, ,
...... ,q-N-M,Aq2+N,Aq’$+N ..............,AqM+N+1. It is easily
seen that for each of these (2M+l ) values of C the series
become complete hypergeometric series which are summable
by the analogue of Dougall’s theorem and the verification
is immediate.

Hence,our theorem follows.

(2.7) Particular cases of 2.6(5).

(i) Letting Mtend to infinity in 2.6(5) we

get
.~ ADB, D, E ;'
A to (N+1) terms
C, Aq/c
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ex?
(1_Ag!'"/\Vd)(1_Ag’3+Vs )(1-DBg”+A )(l_g"!/\ll )

l-Ag” '"")(I-Ag” +VdB )(1-Bg”+/\ )(I-Dg”‘l'/\ )

X .gyx’, -gyx’,gX’/C, A/DB , Cg~ , D , E ;

yx’, -yx’, ¢ ,DEE™M/ANC ox'/p,gx/E I

where X7= Ag*\ o

This gives the basic analogue of Bailey’s result

2*5(iv),for the partial sum of a terms of an
infinite yPg. If we transform the on the right into
two Saalohutzian by means of the following known

transformation due to Bailey (5:4#5)
a.gya, -gya, b ’

A a*g”/bedef
[ ya, -ya,aq/b,aq/c,aq/d,aq/e,aq/f

- (1-ag”/cd )(1-ag”/cf)(1-ag”/ce )(1-bg””")(1-ag”)

Y= (1l-ag”/¢ )(1-ag”/d )(i-ag”/e )(1-ag”/f)(1-bg”“VO)

(1-a*g”"~Vbdef)
(I-an~g”'"Vbcdef)

ag/bd , aq/be , aq/bf , ¢ ;

"A  &*g”/bdef , aq/b , cq/b

+ a similar expression with b and ¢ interchanged,

we get
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‘A/DE D, E ;

A , to (N+1) terms
c , Aqg/c
v

(1-Aq”+Ve)(1-Cg”)(1-g”*7)
AW (1-Ag”"VdE ) (1-EgMh ) (1.Dg"#h)

i/(i-Cg*~) I 1 (1-DEg°/C)(1-Ag°/CD)(1-Ag"/CE)

» (1-Ag”/G)(1-Ag”/C")(1-g")

r rCDE/A,C/D,C/B,Cg™

fina<i®*\c,c"/A ! |

41/(1-Ag”+Vec) I (1-CDBg”"Va) (1-Gg”"Vd)(1-Cg”"Vb)
Ir d-Cg"-")(1-cV'VA)(l-g")

DEq/C, Aq/GD, Aq/CB, Ag"\""V ¢ ;

K
t.Ag"Vc>Aq/C,AgVch

which is the basic analogue of Darling’s result given in

2.5(1y).
(ii) Putting E= Aq/C in 2.6(5) we get

(Ag;M)(C/D;M)(AgVe;M)(DgsM)
(Aq/D;M)(C;M)(ADgVe;M)(g;M)
X.g/X, -g/X,gX/C, C/Dg , D ;

to (N+1) terms
yX, -yXx, C ,ADg““*Vc,gX/D

= the same expression with M and N interchanged,

where X=Aq”" ¢ This is the analogue of the result 2*5(v).
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(ill) Let A tend to infinity in 2.6(5) and

we get

M
(Eg;M)(Dq;M) Cg
to (N+1) terms

M+

(DBq;M)(g;M) C .DEg

= the same expression with M and N interchanged.

This is the exact analogue of Bailey’s result
2.5(1),from which was deduced the theorem due to Ramanujan
stated in 2.1(1).

(iv) If in (iii) above we make M tend to

infinity we get

to (H+1) terms

TT(-DBg”+)(1-<1"""")_ % D, B ;
" 1L(1-Bg”+V(lI-Dg”+V  ? 4 ¢ , DEg™'1l ~

which is the basic analogue of the result given in 2-5(ii)*

(v) Next,putting C=DEg in (i"V.),we get the
sum of the Saalohutzian iipto (N+1) terms given in 2.5(4)
(vi) Putting e”"=kq 1in 2.6(2),we get

k,g yk, -gy k,kb/a,ko/a,kd/a, V ykg ;
A to (N+1)

vk, -yk,aq/b,aq/c,ag/d,(kg)*"**Va terms
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(I1-kq")(1-ag"-*/yk)(A_yk g” )d-kq™/a)
1d-ag”)d-yk g’-+)(1-g”)d-kyk g’+Va)

[a,gy a, -gya, b, ¢, d, (kg)",a/(kg)", kgi+'", g"~"

9

/a, - /a,aq/b,aq/c,aq/d,agVKkA>Kk"4M M >ag~VKk,ag"'*’"

which gives the sum to (N+1) terms of a well-poised *

in terms of a terminating well-poised

(vii) Again,taking e= aq/d in 2.6(2) we get

rk,q/k, -qyk,kb/a,kc/a, d/q

to (N+1) terms
/k, - /k,aq/b,aq/c,kqVd

r (l-kq’\ )(l-dq’\” "‘)(l-aq""*""/d)(l-kq"/a)

™) (1-aq”)(1-kdq” /&) (1-kq*"7*/d ) (1-q7)

a,q /a’ 'q/a, b ’ LU d/q ’ kqA"A\ q"A

9

"A
ya, -YVya,aq/b,aq/c,aq?/d,aq“”/k, agM""*"" a

where k=:a”q/bcd.This gives the partial sum of a well-

poised in terms of a terminating

Finally,it may be mentioned,for completeness, that

from relations connecting four well-poised >s given by

Bailey (6;/.2 & 8.1), by putting c=q"”" ,and then letting

b tend to agq**'" we obtain two formulaeeach of which

gives the sum of (N+1) terms of the series
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a,gy/a, -g /a, a , e , f g h ;
A g

/a, - /la,aq/d»ag/e,ag/f,aq/g»ag/k

where a2q = defgh, in terms of two infinite well-poised
series. The formulae are too complicated to be of any
interest and hence have not been discussed.

It may also be remarked that it does not seem
possible to give a more general result of the type 2.2(1)
or 2.6(5) than these. Also,one can apply the method to
finding the partial sums of ordinary and basic bilateral
series of the hypergeometric type given by Bailey (5),
but it has not been found possible to obtain results
of the type 2.2(1) or 2.6(5) in the case of these series.
We can either find results by terminating a bilateral
series on one side only or on both sides.The former type
of transformations are equivalent to the results on partial
sums of the unilateral series discussed in this chapter
and the only importance of the sefond type of results
appears to be in their mere existance,and hence they have

. not been discussed here.



CHAPTER III

GENERAL TRANSPOmIATIONS OP BILATERAL
(ONATE TRIGONOMETRICAL SERIES OP
ORDINARY HYPERGEOVIETRIC TYPE

(5.1) Introduction. This chapter is concerned
with the development of the transformation theory of
bilateral trigonometric series of the hypergeometric
type.The trigonometric series arise as limiting cases of
hypergeometric series on their circle of convergence.
These series were first studied by Whipple (5) in

who considered the transformations connecting well-poised
hypergeometric series as particular cases of relations
between cognate trigonometrical series.He used the
integrals of the Barnes’s type to deduce such transforma-
tions.Later /very recently Sears (5) gave a systematic
theory of general and well-poised transformations of
trigonometrical series of any order,which include
Whipple’s result as particular cases.In this chapter 1
have used Sears’ (3) results on the transformations of
trigonometrical series to deduce general transformations
connecting bilteral trigonometrical series.These
transformations for particular values of 0 yield the

known results of Bailey (5),Slater (3) and Sears (3)#
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Let Uj denote the (n+l1)th term of the hypergeometrk
series
P(a™,...., ... ... O e

Then the series
Z (-f sin(K+2n"9 > 1Uq sin(K+2n)0
2 (-) cos(K+2n)0 . X n cos(K+2n)0

will be denoted by the symbols

a.l,oo«ooo’ ;0
0(
y M+1* M
-b.j,eccee, bt K- 10 (L
®1' 71w »R®M+r®
VWU >blj K bi. ;Kj

respectively.When K=a.j , the first numerator parameter,
it will be omitted from each symbol,and following

W hipple,series of the type

a”,a2 >®IVE-1

in which K=a.| necessarily,will be called well-poised.
We will sometimes use the abbreviated notation M+1%(*1)
for this series.We will also make use of the foil07/ing

notation for the well-poised trigonometric series
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/ (2ay-ma/ aa”,aptag-a”, +1-2:G
M+1 M+1%\("1+a/\—a’\

wl+ar~aM+i

for r >1;where the numerator parameter (a“+a”-a,|) is
the first to occur and the denominator parameter
(I+a”*-ay) is omittea.Similar notations will be used for
the series C,S’,C*.

Now let us define the four bilateral

trigonometrical series as follows:

(1) MM [ ®1

(2) M% %1 ,bM;K
sin
cos [(KF2nje]

Vir (O
(5) a., »RM ®
(4) »bjjiK
00
COoS
&3 L A

It is easily seen that

(5) A 1 »EIVH®
(¢) MM M
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Mt % 1 (1-b7) (1-bw)

M+1% by» . byjKj (1-a”™) (1-
M+1% [1 »2-b", 9
M+1% 2‘6%Efm" >2'a,,;2'K

where on the right hand side the positive or negative

sign 1s to be taken according as the series is of the
type 4
Similarly,
(7) roan, »aMJ©
_bi, »bg;K
M+ &M »RVH® (1-b-] ). (1%bj )
M+ % »bjj;K (1-a” oo, (1-8%)
M+ &M 1f2—b" *» * *>2-p|"0
M A 2 Fad SHH#**FH) 2“ajj" 2*K

where on the right hand side the negative or positive

sign 1s

type jjXjj or. *

The convergence factor

to be taken according as the

series 1s of the

M M
RI( T bAN- %Bp-1) will

be,henceforth,denoted by "y”.

The series
y> 0 ;
or -Ky<o0

9

and 5.1(2) converge when either

296 A

- A<26<A
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The series 5*1 (5) and 5.1 (if) converge when either
y >0 ) 0<CG3:”

or -1 <y 0 , 0<0<A,

When y>0 all the series converge uniformly
and absolutely in the variable 0 or in K,but when
-1 < y” 0 the convergence is,in general,conditional.©
is restricted to be real.
(5.2) Notation. The following notation due
to Sears will be used throughout this chapter.

Let

G(a.jaj”;b.[bj") = a™)j ~1TA(bM))

A= 1TTG(ar;b")] | JTo(l-bj,; 1-a™)j ,

A(a®) = 1/P(b”-a”) "yjlG(aj.-a”;bj.-a”)|» IIG(1+a”-bj.;1+a”-
A Y -Ma
/NI
AMMAY) = Vr(bM+1-%+1 1l G(l+ar-bM+i;1+br-bM+i)jX
I
4 bM+1-bp;bM +i-ar)j
B = (A cosecAajj | p/P(-ajj*jj*") ,
B(a®) = A(a?) G(ar;1+ar-arrrr ANy co8eoA(arMM-at)
B(bM+i) = - A(bj,"") ©(bM+r-I""M+1-"M+M+1) >

M I
A(@a%)  [ITG(aj,aj.-a% )] jHE(HaA-aj.,l-aj.)j ,
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Q(ag) = IFgC a2+aj,-a.| )" Iﬂg
E - P/ G(1+a”-22M1' " "2Mr1)  »
T(a,) = <3(72)/ G(1+a2“@M-1»d  "®2"®2MH )
Mil IV (
U =

r(a® ) "ITG(ay,aj.-a” )j A%EG(Ha"-aj,,l-ap);I' ,

V(a2)  [tTG(ay-82,aj,+a2-a" )] ~AGCl+ag-ar.l+ar-a-*-a")]

m X

U G(l+a*r-a2M+i,l-agM +1) »
Y(a2) = V(a2) G(l+a2-a2; ("™ )

" idem (a;b)" means that the preceding expression 1is to
&nd vice-vtvsa.

be repeated with b written in place of g™ The accents

in the product symbols denote the omission of the gamma

functions with zero argument.

(5°+5) the general bilateral transformations.

Sears (5;10.2-10.5) has proved the following four

general transformations for general trigonometrical series

(1) B vV ®VHN+1’ ®
(2) 1» ’bNH-N ;K
S a”, l+aj-b-j,

B(ai
(a1) C 1+a.|-a2,

—ideni(a®;a ~ ® M +1 7
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A\ N
I+a”-bM+7, » T+H®M+AN+1" AM+] >®

I-

AMPm+1 " w1 "AMAL peeenm! HAVHN"*¥A+T pA2

Where Kj —XK+2a-| (1HNG)

Kg

K+2—2b|*-| (1-m/y'O)

These results are valid when either

y N 0 and  (2m-DHA ~ 29

A 2m+1)A )

or -l<vy A 0 and' (2m-1 )A < 29 < (2m+i)A R

and on the rightthe upper or the lower

taken according as we consider the S-

transformation.

The other two transformations

(5) 5 S* * @VHNH
(1) ¢ Lb,,
'S’ a,,1+a,-b,, ,d+ar-
) I i+a,-ag.

A ideni(a™;a2.

C [2-bj ™, 1+bA-bAMA, .

sign is to Dbe

or the C-

are

b 9

1+%+N+1-bM+1'©]
»1+bjj+H"pM+1



49

where
Kz = -K+2a,-(2mtl )A'a,/9 ,
- K+2(l1-b,,*,)*(2.,,)b,,"A/e
These tresults are valid when either
y> 0 and mT< 9 * (m+l )A
or -1<y M0 and nm7T< 9 < (m+l)a ,

where mis a positive integer,and on the right the upper
or the lower sign is to be taken according as we consider
the S’- or the C -transformation.

Now,in the four transformations 3.7 (1-4) let
us take N=M and put D =4, e find
that all the series reduce to the series of the type
M+ % M+I"M M+1% M+1% respectively,
according as to the transformation considered.Letting
now aI\’/[HA tend to.unity the series corresponding to the
parameter on the right combines with the series
on the left hand side in each case to give a biAeral
series of the type or or MX* or ,
as the case may be.Also,on the right hand side the
series corresponding to the parameters a” and
(i=1,2....,M) , combine to give bilateral series in
each case.Thus,each of the transformations 1-4)
gives a transformation connecting (M+1) bilateral
series.Finally,changing the notation by putting *

a’"=Cg ,etc. and in general, ag® "=Cj® , we can write the
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four transformations combined into two as follows

9
(5) ITG(ap,1-a*;bp,1-Cy)
(6) ' "on b”.
M

= ¢ r(aa ) P(l'a’) llG(aA'a’ ’1+as'a/\;b/\'as 9l+a9'Cja) >

1+a,-b,, ,1+a,-b";9
+
MM lta,—,, , 1t+a,
- 1idem(a, ;ag, ,ag) ,

valid when either y >0 and 2m-H™r ~ 2942 {2mt )ar

or -1< y 0 and (2m-)w< 29 < (2m+]))A
The other two transformations are
M M% ®1»
) vm Lbi,
= q r(a™) P(l-an) ]ijT'O(aA-aA,1+aA-aA;bA-aA,l+aA—Cp) X
M% 1+a, —b, , , 1+a,
MM l+a,-c,, , 1+a”-CM;Kj
- idem¢(a,;ag.
valid when either y BP0 and mR 9 (m+l )7T ,
or a -1\ y G and mC <0 < (m+tl )A

If in any of the above bilateral transformations
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say in ,5*5(5) put b=l , the left hand series

becomes a series. If further,we put a,=c, ,a2=Cg,
.............. , 8ij7°=Cj”the first R series on the right also
become series. Similarly, if we reverse the order

of summation of the last (M-R) series by means of the

relation

®1 M. >%>®

Lbi, .bMJKj

1-b7, 1-bjyf;®

L1-a%, N y®
and then put I1+ag?i=bg , 1+agn2=S+1 y**** »
these bilateral series ,as well,reduce to series.

Carrying out all these three operations 5.5(5) reduces
to a restatement of Sears result 5.5(1).Similarly,we can
get Sears other original transformations also from these
bilateral transformations.

Each of these four transformations 5*5(5“8)
contains as a special case transformations connecting
(mtl ) series of the type 7Eyi with argument +1 or -1.
Thus putting 0 =0 and m=0 in 5.5(6),we get

01,

(9) W Glaj.. 1-ariby, 1-Cj.) 1
(b,

=r(a”) r(l-an~) TTG(aj,-a*,1+a”-aj.;b*-a",1+a"-Cj.) x
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1+a,_b,, > 1+ap_b/\;

-1+ idem(a, "a® ),
l+a’-c,, ,1+a,-cg;

which gives a relation connecting (M+1) general series
of the type ~H"(-1).

If,however,we take bj*=1,and a"=Cj;, (r=1,2,...M),
in 5.5(9),we get

Ml r.
(10) ("(cj)) n 0(c”;bp) M%-1 -1

= r1(c™) r(cjj-c™) ]"lI“G(cj.-cA;bj.—cA) X

, I+c™ b, ,1+Ci-bM _i;

-1
/\ -
Mé&-1 1+Ci'Cg, ,1+CI1 -CM ;

+ idem(c,;c2.

»

which gives a relation between (M+1) general series

of the type N/FMA(_I) . It is a particular case of a
result due to Sears (5;10.6 for N=0).

(5°4) Well-poised trigonometrical transformations

Sears (5;11.1-11.8 & 11.10) has proved the
following nine transformations for well-poised

trigonometrical series, for M"1
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(1) P sin“Aa” +
+ «(®2> sinMZag-a") 2MM2M-1"®2> +
+ idemCagja”, WRMH 17 =® »
(2) P ooscAa® 2MM2M-1(®1) =

+ Q(ag) 008iA(2ag-a’) 2M2M-1"®2* +

+ idem(ag;a’, .eenenn. »B®MH1N =°
0) A 2MR2IVHL ) im 2M@2M-1'®R2) +

+ Idem(ag;a”, ... »RMH1N =°  »
(4) X sinAa* 2ME2M-1-®1" ua

+ Y(ag) sinA(2a2-a’) 2MR2M-1"®2" s

+ idem(ag;a”, »ROMHI2N =° )y
(5) R 2MH1M2M(®1 ) + '"N(®2) 2MHI®R2M @™ +

+ idem (a2;aj, »RMFIN =° ¢
(6) U sinAa”  1+2M®2M(®1™ +

+ ~(ag) 8InX(2ag-a”) 2M+I®R2M"®2*

+ idemCagja’, .ccccevvveeeneens »RMH2M »
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(7) U cos™Aa® 2MHIM2MA®I) +
+ vCag) oo08K(2ag-a") gM+I8y®2) +

+ idemCagja”, =0 ,

(8) U sin*Aa® 2MHRM®1" +
+ V(ag) 8lngA(2ag-a”) 2M+I*2M'®2" ¥

+ ldem(ag;ay .cccennnnne »RM+2A =°© »

A 2MHLIA2MeAL ) i MR2 A 2MAT®2mA42N

+ ldem(a2;a”, .. »®MH2) =°  »

The formulae 5»4 (1)»3»4(2),5.4(5)>5*4(6) are
valid when
y*O ¢ [26|/*A or —1 < y”r0, )20|<A'«
Formulae).4(3),3.4(4),3"4(7) and 5.4(8) are valid when
y>0, O"Q”TTTor -1 <y<:0, 0<'O<:A .
The formula 5.4(9) i1s valid when

y >0, |20U<5A or -Ky40, ROkSA

(26 f £7)

(3.5) Tranaformations of well-poised bilateral eeriea.

We will now use the above relations of Sears

to deduce transformations of bilateral trigonometrical

series.Let us first consider the transformations 5.4(1),
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5'"4(2) and 5 . 4 ( 5 each one of these suppose that

M is odd,i.e. M=2N+1, and then let ag"tg=1, ag=l+a,-a" |,
a*=1+a”-a® ,etc.and,in general,ag"=1+a*-a**", . Then
the series in these relations reduce to one of the type
2N+172N ' 2N+1"2N 2N+I1"2N respectively.Simplifying
the coefficients of the series on the left and finally
writing a for a, , b,for , bgfor QE‘H( ,1n
general, b*"for a""*"g and also a,for a* , a”for a"
etc. and in general, a” for &N+l » get on combining

the series in pairs as in 5.5 the following three bilateral

transformations

(1) P' siniTTa g~*g”"(a)

= Q (a,) ‘sin”™(2a,-a) 2N 2N~/ A idem( a, ;a”,..., a™),
(2) P’ cos™?a 2N7"2NAMA

= Q (a,) CO08"(2a,-a) 2N~ 2N~ "MA tdem(a, ;ag,.... ,a’),
(5) P’ 2N”2N

= Q'(®i) +1dem (2”582, . ,a”)
where

M

P* = n(a) r(l-a) [ITG(aj,,l-aj.,1+a-aj.,aj.-a)|x

IN I
MMTG( 1+a—bj,, 1-bp ) j ,
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Q(a,) =r(a,) r(l-a, )I’(a,-a) P(l+a-a,) x

/ X/
X~ G(l+a-a,-ap, a,*ap-a,a”-a,, l+a,-ap)J x

/M
(I 0(1+a,-bp,1 +a-a,-b")]j

and
b=, MM bp ;6
A (a) = A
R7R R'R | tab, ###,1 +a—bpa.
ap+b,-a, ,apt+tbp-a;e
R2g(aj,) - WZR
l+ap-b,, ,I+ap-bp;2ap-al
mwith similar notations for the series pXp , pX* and

pZ” . These notations will be frequently used in the
following sections. The transformations are valid under
the same conditions as for 5.4(1) ,5.2f(2) and ,*.if(") res-
pectively.

(5.6) Next,let us consider the transformations
5.4(4) and 5.2(5). Taking M=N (an even integer) in 5.4(4)
and using the method of 5.5 we get on changing N to

(N+1) in the final transformation

(1) P’ A /\/\/\“®N+1/\ /\/\/\N_|_1) A
X Sinxa

= Q'(a®) r(a*-ata]***) r(l+a-a*-a,* ") r(a*M"r-an)/

*P(1+an-ajj ~™ ) sinA(2a”-a ) 2N2N®1 »
+ idem(a,5Sg,...... ,ap”™,)
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This gives a relation between (N+2) well-poised
series of the type » valid under the same
conditions as for 5. X(If).

Similarly,if we take M=2N+1 in 5.4(5) und proceed

as before we get the transformation
1
= ¥ (a™)/P(l+a”-b2jj ") r(ita-a”-bg™""" ) 2N+I1"2N+1
+ idem(a®;a2,.-.-,a") e

This gives a transformation connecting (N+1)

series of the type 2N+172N+1 * valid under the same

conditions as for 5.4 (5)*

(5.7) Finally, taking M=2N , in the transformations
5,if(6-9) and proceeding as in 5.5 we get the following

four bilateral transformations
(1) P> r(1+a-bgp) ~(1"bgp) sinAa 2N-1"2N-1*
= Qi (a,) (1+a,-bgp) (l+a-a,-bgp) 7
A sinA(2a,—a) 2N-1"2N-1 »M1 A

+ idem(a, ;ag, ,&p) ,

(2) P’ Ad+a-bgp) r(l-bgp) cosKa gp ., X"p ,(a)
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= Q'(a-]) ~(I+afb2N) *A(I+a-a*-b2jj) cosiA(2a’-a)

(}) p- rGhe-bA7) r(@.bjt) i, i, 2B-,2JH-,(*)
= Q (a,) P({+a,-bgp) r(ita-a,-bgp) siniA(2a,-a) x

AON-172N-1("~1) +
+ idem(a,;ag, ..ccccuuenne. ,an)

(if) P’ r( 1+a-bgp) ~(l-bgp) 2N-1"2N-1"""

A Q(a,) r (l1+a,-bgp) P(l+a-a”-bgp) 2N-1M2N-1 (

These are valid under the same conditions as are
required for 5.4(6-9) respectively.

It may be noted that the formula 5«7(1),5*7(2)
and 5.7(4) can also be obtained by putting bgp="(l+a),

in 5#5(1),5*5(5) aud 5.5(2) respectively.

(5.8) In this section I shall discuss some of the
interesting special cases of the well-poised bilateral
transformations deduced in 5*5-5*7%

If we take 9=0 in 5.5(1) or take 9= % ,in 5*5(5)

we get the following result due to Slater (5;11)
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ingAa 2N"2N o P 1
1 singAa -
(1) P 8 I+a-b _|[,..,1+a-bg";
a+b”"-a, ,a,tb2p-a;
= Q (a”) siniA(2a”-a)
l+a”-b", , 1+a”-b2jj;
+ idemCa”jag, &N) '

Again,taking 0=0 in 5.7(1) we get the following

relation between (N+1) well-poised series of the type
2N-1"2N -/""") Siven by Slater (5;14)
(2) P'  r(l +a-bgj®) r(l-bg”) sinAa A
1' 93/\2N_1’ -1
2N-172N-1
 J— ON-1 '

Q (ah) r(i+a*-bgj”) P(l+a-a”-bgjj) sinA(2a”-a) /

a"+b"-a, »aitb2jj 1-a;
-1
A A _
PRSI raneen, »'+®1~""2N-1°
+ idem(a ;a , ,a )
1 2 IN
Similarly, if we take 0=0 in 5*7(5) got a

relation between (N+1) well-poised series of the type

2N-172N-1"N given by Slater (5;15).Next,if we take
0=0 in 5.6(1) we get another result due to Slater (5;12)

viz

*
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3) P

N hZNA 1

X sinAa
INZN qab,, e e ,1+a—bgp”

= Q (*1) L'{a*-ataj™") r(l+a-a*-a*"") p(aj**"-at) X

aa+ba_a:....’ a, a/\

A 1+a”~ajj™.i inA(2a” 2n"2N | 1
n ( 1+a*~ajj*.i) sinA(2a”—a) 2n ita. b, . eees l4a. b

+ ldem(a_ ";ag. ANHT)
Thus, we have obtained all the well-poised results
deduced by Slater as particular cases of the well-poised
bilateral transformations of cognate trigonometrical
series.
life can,also,by suitable substitutions of the
type used in 5.5 ,rediscover from these bilateral
transformations Searss original transformations.From these
then we get for suitable choice of 0 all the well-poised
relations of hypergeometric series of any order given
by Ssears (j; 11.11-11.14)-
If further,we take m=0,M=2 and 0=0 in 5%*5 *
we get a relation between three series of the type 1).

Taking a,=c,,and ag=Cg in this ,two of the series reduce

to a summable gF,(1) and simplification gives the sum

of a general gHg(l) given by Bailey (5;1.5).



61

As shown by Slater (5) we get other results of
Bailey (5) also,as special cases of the foregoing well-
poised bilateral transformations.
(5.9) Bilateral trigonometrical integrals. -

We will now give direct proofs of the general
and well-poised transformations of bilateral trigonometrical
series deduced in the previous sections.We shall prove
in details the transformations 5.5(5 & 6) in the case

me0 . Consider the integral of the Barnes’ type

a,+8,#...,S)Ms, 1—a,—s,.... , 1 ays,—s, 1+s"
(1) IR = \G

C

b,+8,...., bMS,1-€,-8,...°,1
X exp(2is0) ds

The contour of integration C is a large circle
of radius R,with centre as origin,and R is so chosen
that the circle does not pass through anyof the poles
of the integrand.The parameters a’s ,b’s, and c’s are
supposed to be real for the sake of simplicity in the
proof and such that none of the members of the two

sequences

and

n,1-a/\+l’l ®eccccoe © 1 A

coincide. 0 1s restricted to be real. Theextension tb
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the case when a’s,b’s and the c¢’s are complex is easy*

Now, for Rls> 0 the integrand can be written as

r’(c,+s) r(cjyj+s)  TVsin~Cc+s).... sinA(cj* +s)
Ab,+S) r(bj " +s) sinAs sinA(a,+s)s...sinA(aj " +s)

xexp(2is0) -

Writing s =Re™ |, -~2 4 A2 we
find N‘Ithat N‘I[he first fraction in t&e above product is
OC RI® , r j and the second fraction 1is (1)
bounded for R tending to infinity if -7T " gg” A' and
1s (11) O0(exp(-29R sin4>- RA |sin*| )) when R tends
to infinity*

From (i) it follows that the integral round the
semi-circle on the right of the imaginary axis tends
to zero if

(*"br - 1 and -VT~r29 4 A'.
Again from (ii) it follows with the help of Jordan’s
lemma that the integral round the same semi-circle
tends to zero if

(Zb"-Zc”))0 and -A-<29<A ,

Similarly,when Rls <0 , we can write the

integrand as

P(1 b -s) r( 1-bij-s) mA'sin A(  +s) sinA(bj"+s)
" p(-i_c™-s) n(l-Cjj-s) sinxs slnA(a”+s)...8inA(a"+8)

Xexp(2is9) ,
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and similar remarks follow under the same conditions.
Thus,we have shown that the integral tends to zero
as R tends to infinity under the above conditions.
Now,the value of the integral is equal to
2A1 (the sum of the residues at the poles of the integrand
where R is infinitely large. The integrand has poles at
the set of points given by
8§ = d4-—xa , ma
and
8 =n , l-a,+n —am%
The sum of the residues at these poles of the

integrand 1is given by

(_1)11 2+n—b", e .. 24+n-b"j
(2) JLi .
R - Slnxa_ -0 2+n—",... ¢, 2+n—€V
Xexp(-210(n+1)) +
+ TT sinAc. (-1) c,tn. ,CM+n;

G exp(21in0)
sinAa. b AN, .. »bign

Y\rO

AsinA(a, -bp )
-sP(a, ) r (1-a,
(2,) rd ) sin?”(a,-ap)

(-1)*j.1+a”-b"+n, .1+a”-bji+n;
I+a,-0,+n. » 14«1

exp(-219(n+ta™)) —

—idem(a*;a ~ a M) —
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sinA( 84—€p)

Xexp(2i©(1+n-a,)) --
- idem(aa ,ag, aa/\) 5
where N,+1,N2+1,NQ*+1,and N*"+1 are the number of poles

of r(its) , *(-s) , r(a,ts) , r(l-a,-s) respectively
which lie in the circle |s|= R,for any fixed R,and tend
to infinity as R tends to infinity.

We first suppose that the conditions
, -As, 20" A ,

are satisfied. In case these conditions are satisfied
the series of residues are uniformly and absolutely
convergent for R tending to infinity and since Ip tends
to zero as R tends to infinity we have from 5.9(2)

on multiplying throughout by exp(iK0) that

M 00
(3) TT sinxb” "s* (-1) ~ r2-b +n,.....,2-b n;

sinAEp 1 2-cMn,......... ,2-Cjj+n.
Xexp(i0(K-2n-2)) -
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M .
sinACp c,+tn, ,CM+n;
—— G exp(ie(K+2n)) —
- 14 glnAaf . Lbi+n, »bjjtn
sinA(a.-b_)
GO
s (-ml)” rita’-b A +n,... 1+a”~-b”+n;
y G exp(10(K-2n-2a, ))
y\%o [I+a?-c-j+n, 1+a-|-cjyj+n *
—ideni(a, ; ,ee*e, a’)

-T" sinA(a.-c,,
3 A

+ P*(a, l-a,
@) ) sinX( a,-Bp)

" (-1)" l+c”-a”+n,..... ', 1+Gjj-a™+n;
><T ,
V>:0 I+b,—a, tn,* e e i+bj™a, +n
Yexp(i0(K+2+2n-2a, )) +
=0

Now let us equate the real parts in the above

equation 5.9(5) We get on some reduction

M
TTG(aj,,1-a”;bj., 1-Cj.) < mtI®M )
_b,,...,byxK

(1-b*)....(1-b%)
(1=, )....( 1—") L2, 2 Gy’ 2-Ki*

"&We could also change the sign of 0 in 5*9(5) add
the resulting equation to 5.9(5),but since the parameters
are supposed to be real we can easily equate real and

imaginary parts.
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M/
= ) r(l-a, ) Il G ,1+a,-a”;b*-a,, 1+a, -c" ) x
1,1 +a”-b |,.... ,1+a”-b";0
M S| ,1+a”-c” ,1+a1—0w;2a,-K.
(ci-a-)) (°M” ®1 ) 1,1 +c, —a, 1+C27-a, ; 0 .
0
(BA-a% Yoo (bjj-ar ) M1 yip, _a, 14bjyi—a, 12+K-2a,]
+ ldem(a”;ag,....a")

This by 5.1(6) gives the required transformation
5.5(6) , under the‘conditions
H M
Ib -I'c >1 20 A~ 1
Similarly,the \imaginary part of 5.9(5) gives the trans-
formation 5.5(5),under the above conditions.
We next suppose that the conditions
2k - Zcr>0 « 620 < A ;
are satisfied. In these circumstances the series of
residues in 5.9(2) converge but not absolutely as R
tends to infinity.Hence,we need a more delicate argument

to justify the limit R tending to infinity. Let us write

5.9(2) in the abbreviated notation
N M

= Z"n,1 + ?2~n,2 + % + Z Z"n,aj.*

Since we know that I~ tends to zero as R tends
*to infinity, we have

N Na M M
: " % ' %k ' ", T
R>lx 1z «n,, Z »n,2 %\ Z ..., Z 4'm"<4
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Now, (N2-N*) , (N~ -Ngn ) (r=1,2,...M), all
remain bounded as E tends to infinity;and so,since

— '
’{ » W, 69 » U, ap > and rn,&p tend to zero as n
tends to infinity,we have

r N M \

But,since the limits

% («n,1+Rn,2 ) Z(rN,a” ""n,a® ) ,r=1,...M

exist,we have

\V4 4 r4 1
Z(Rn,1 +7,2 ) + % [1f"n,aj], )] =0 ,

and we get the required transformations as in the

previous case.

Thus,we have proved the transformations 5.5(5-6)

under the conditions

M M

Zbj. - Yr> & » - 26 M A
or

dp -G oo, “AN4 29 <AC

In order to obtain the transformations 5.5(7)
and 5.5(8) we have to consider the integral 5.9(1) with
exp(is('A+2G) ), instead of exp(2is0) in the integrand and

proceed in exactly the same manner.
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(5°10) Well-poised bilateral trigonometrical integrals

Let
P~(s) = r(a+s) r(l-a-s) r(-s) P(l+s) A

All G(a*+8,1-a"-8,1+a-a”+8,ay-a-s) ,

and
Q2N (®) = j iTG(l+a-br+s,1-bj,-s)]

Then

(1) QgifLa) sinA(s+ia) exp(2s+a)i9 ds ,
C

(2) ANPA(8) Qgn(8) c08A(stia) exp(2sta)i© ds
C

(3) exp(2s+a)i© ds ;
C

where C is the same contour as before ,give the transform-
ations 5.5(1),5->(2) and 5.5(5) respectively. The other
transformations can be got by suitable modifications

of the above integrals.



CHAPTER IV

ON INTEGRAL ANALOGUES OP
CERTAIN TRANSFORMATIONS OF WELL-POISED
BASIC HYPERGEOMETRIC SERIES

(4%1) Introduction. As long ago as 1909

Watson (2) used basic integrals of Barnes type to obtain
transformations of general basic series.Recently Sears (5)
used a method , not involving integrals , to obtain
transformations of well-poised basic series of any order,
and Slater (4) more recently has used special kinds of
basic integrals (not of the Watson type) to prove these
results.Sears also used his methods to obtain transform-
ations of well-poised basic series corresponding to the
transformations of the series of the ordinary hypergeom-
etric type given in Chapter VI of Bailey’s tract (T).
Bailey’s method makes use of contour integrals of the
Barnes type.But so far the corresponding methods by
integrals,for the basic analogues of these results
(T.Chapter VI) ,has not been given.This significant gap
to some extent is filled by this chapter.The integrals
used are similar to those used by Watson.

(if.2) Notation . The following notation will

be used in this and the succeeding chapters.
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Let
[asn] = (q®;n) = (i_ga+n-1), |q|<i

[a;-n] = (g*;-n) = (-1)® “gn(n+l)-any ,

[(af sn] = (-q®;n) ,

* L
a¥|> « 9aypf AL

1 o
r S.bwj,*n-o’bg _qb],

Whenever there is a parameter of the type

in ,it will be represented by (a*) in*,* Per
example

i a, (b) s €5 A

d, e iqd, q®
% [asn] [(b) ;nj [c;nj
“ 4 nj @nj [esnj

Per a well-poised series of the type

(2) A AD+2a—b—e—aHt ¥ *

Ja> (Ma),l+a—b,l+a—e >eee

we shall use the abbreviated notation
s+1%s (a;b,c,....) or simply W¢(a;b,o, )
when there is no need of specifying the number of

parameters*®

9



!

Also

A

o (I-q*1+0)..ccccceeeee. (I-q*r+%)
TT '
by »bg;j Y\-o +") (1-gba+0)

Further,whenever there is a factor of the type

(1+q&+0) 1vi the product on the right of 4.2(3),it will

*
be,as before,represented as (a) in the symbol on the

le ft.
For the ordinary products we will use the
notation
N
(4.) TT (1-a”g“ )i (1-a~q")
7\=0 B E\go(l-Alq") .............. (1-bgq")

When the limits in the product symbol on the left
are left out we will mean that the limits are from n=0
to n=(23.

We shall also put log q = -60=-(""1 +1"2)
where co , 60" , are definite quantities, G4 and "2
being real and since |q/ < 1 > 0 -

The contour of integration D over which the
integrals have been taken throughout this chapter
consists of an arc C of a large circle the centre of
which is at the origin;the arc lying to the right of

a contour C,which is parallel to the line RI1("s) = 0,
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with loops,if necessary,to ensure that the poles forming
an increasing sequence lie to the right of the contour
while the poles forming a decreasing sequence lie to
the left of the contour.The contour C is terminated by
C.

We will use the following result of Littlewood

giving the asymptotic expansion of
(5) 8(x) = 1/1T(1 -qO+=)

for large values of |x| ,to deduce the convergence of
the integrals.

He has proved that

(1) when RI1(*x)>0 and large,S(x) tends uniformly
to unity as [x| tends to infinity,

(11) when Rl(cox) 1s large and negative and
Ix-Xol >6 , where Xq is a pole of S(x) and € is an assigned
quantity which is not zero,

El log 3(x) = -ird, [r1(w x)f-iRI(W x) + ]
where \J| does not exceed a finite quantity depending

on £

(4.3) The basic analogue of Barnes Second Lemma.

Watson””*(2) has proved the following basic

analogue of Barnes first lemma (T.I1.7)

t Littlewood; Proc.London Math.80c.,(2),5(19("7 )»595-98.
Watson (2) p725*E,Lemma B : The notation has been
changed by using an equivalent expression in infinite
products instead of Jackson's basic gamma functions.
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(1) . 1-"+8 , 1-"+s; Ag” ds

,ar+s , a2+s ;J sinA(”-s) sinR(”"-s)

sinA("-v]) (<"_ cH) IANL4+] T*2 4

Let ~ 7~ (a positive integer) and "= o”-a’-a’

in 4.3(1) , then we get after some simplification

(2) 1 l-n+s,1-c” +a* fSg+s; NVg* ds

c lar+s , agts ; sin“s sin”“(o”-a”-ag-s)

I+a*+a2*“Gj9¢”~ —a29cj91 ;
= cosecA(a*+a2-c) ~ _ )
j * y ¢cM-a™ 9 c”-ag ;]

X (-1)" g4n(n-1)+n(ci-ai-a2) [a”jn]

[ci;nj

Now,multiplying both sides of 4.3(2) by
gqn(b2”c) [c;n]/[1;n] [b2;n]

and summing for n from zero to infinity,we get on reduction
and change of order of integration and summation,a
process easily justifiable.

(5) l+aj+a2“*c”, c*—a*—ag,c”, 1;
cosec A(a® A

2
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Moeone 9C .c-1+bg-ai -ag-o
L°1 ' A2
J 1-"s, 1°“CN+an-1-a2+s; Aq® ds
Jsnt
ia”+8 , agts ; sin”™s sinA(c"-a-j-82-3)

AA,cvvng+bg_cj

Summing the2«”i on the right by the basic analogue

of Gauss's theorem (T.8.4(5)),we get

l+a® +&2"0-j 9c"-a-j-ag*o0”,b2919
(4) cosecA(a*+a2-c”) ~

A 1 "

"oN-8g,bg-c ;

X ai,ag,c , "Q"Mb2-ai-a2-(

3="[c,,b,
+8972+891-c +an-f’a2-f-s; Ag ds
la®*+s 9ag+s fbg-c+s ; 8in A8 sinA(c”-a”-82%*8)
Now,take c¢*= ¢ ; the series on the left can be

summed by the basic analogue of Gauss's theorem and we

get ,on putting
b* = 1-c.+a”4-82 987" = hg-c
i.e. b"+b2

1+a”-1-82+8"
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that
(5) 1+s,b"N+s,b2+s; Ag® ds

a+s,a2+s,a’+s;. siHA-s sinA( 1-b”-s)

> ,1-b”,bg-a”,b2-a2,bg-a"’;

= cosecA(b” -1)
a® 9829 ,l+a”-b”, 1 4 ;

provided b b2 = 1+a’+a2+8]
Using the asymptotic expansion of 4*2(5) the integral is
covergent when Rl [slogq - log(sin/Vs sinA(i-b.j-s) )] <0
for (s|large.

This gives the basic analogue of Barnes Second

Lemma.
(4.4) Integrals representing basic well-poised series.

It is easily verified by 4.3(5) that

1,bAtn91-b”-n 9k-a” +n9k-a2+n,k-a”+n;
cosecA(b"-1) ~

La*+n98g+n9%9a”+n,k-a"-a*,k-a*-a” k-a*-an;
k+s 91-k+a.j+82+8/+891+s; A(-1)" gs(ntD)-in(n+1)j_g.n]as
a*t+s 9 agts 9 a’+s sinAs sinA( 1-b”-s) [k+s;nj

C

where b = 1-k+ar+82+a”

Simplifying the left hand side 1t follows,by

expansion and the interchange in order of integration

and summation , that



(1)
,ag» a®9*-at -aghk-atj-a” yk-at-a”n;
AN A\
a,a” ,a2,a’™, p,... » Pr'  >[-bi
"4 % A€ A QAP AD A »(’]7\>..o9AS}'
k+s,1-k+a”+ag+a*+s,1+s; A ¢@® X
La®ts , ag+s , a’+s ; sinxs sinA (l-b”-s)
& A% > ,V.- d
29 S 9
Taa*PH
where = |-k+a”+a”+a”® and “is an arbitrary

parameter.
Thus 9 if we can sum the series on the right of

4.4(1) in terms of infinite products of the above type,

we can find an integral representing the series on the

le ft.
As an illustration take r=4 , k=l+a , =]+"a ,
=(l+1a) , *=b , ~=c , rf =%a , (J"=(a) , J] =
l+a-b , Qi =1+a-c and =2-fa-b-c. On the right we get
a series which can be summed” and we thus obtain
an integral representing a well-poised " 9 namely
891+289 (1+2a) , b , ¢ 9 a ; ~ “a-b-c-d

AN

89 (ia).X,l-i-a-b,l-i-a—c,l-i-a-d

_ bfl+891+a-b-c, 1+a-b-d, 1+a-c-d ;1
G[ita-b, I+a-c,1+a-d,l+a-b-c-d;] ,
which 1s a particular case of T.8.5())9when l+a=d+e.
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<1(a;b,c, , a”", )

= sinA(a”-1-a2+a”-a-1)A

X AL >"2» "3» 1+a-a”-a”) I+a-ag-a”, 1+a-a”-a”, l+a-b-c;

O 9bxj, 1-b”, 1+a-a* 91+a-a”, 1+a-a”, 1+a-b, 1+a-c;

1 l+a-b+s, I+a-c+891+s; TVq® ds
A& 8"+8 , a"+s , a™+s 9l+a-b-c+8 ; sinAS sinA(i-b”-s)
where b* = a*+a”+a"a

If,however,following Watson,we evaluate the
integral on the right of 4.4(2) by considering the residues
at the poles of cosecxs and cosecA(l-b*-s) lying to
the right of the contour C , we get the wellknown relation
between a and two Saalchutzian 4c”* 's

As another interesting illustration let us
replace a by k, b by b+tk-a , ¢ by c+k-a ,and a® by a’“+k-a
and take k+a“+b+c = 1+2a , in 4.4(2). Then the right
hand integral in 4.4(2) remains unchanged and we get
a relation between two well-poised series of the type

Changing to a ,and so on this gives a

transformation due to Bailey (5;4*5) f namely

‘fAfter changing q”to”"Tand so on,this relation *
becomes the relation between a well-poised "“and
two Saalchutzian 5 given in T.8.5(3) .
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(aaqyaa -g /aa a® s ag , a, s b s c
I qk/aga,
% 1] /a, - ya, aq/a ,aq/ag,aq/a”,aq/b,aq/c A
aq,aq/aga”,kq/ag,kq/a”;
"1 kq,kq/agaj,aq/ag,aq/a’;
X lk,qyk, -qyk, a*k/a, a® , a” ,bk/a,ck/a;
aq/a a
*>11 yk, - yk,aq/a” kq/ag.kq/argag/b. aq/o AT

for ka“bc = a”g

It gives an exact analogue of a relation
between two well-poised s given in T./.5(1)* This
relation between two well-poised '"s and similar
other relations will be considered in greater details

in the next chapter.

(4-5) Integral analogue of basic-Dougall's theorem .

In this section we will deduce an integral
equivalent for the Jackson’s analogue of Dougall’s
theorem (T.8-3(1)).

In 4*4-(2) replacing a”, a”, a”,by d,e,f ,
respectively we get,on imposing the additional restriction
on the parameters

1+2a = b+c+d+te+f

that
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(1) w(a;b,c,a,e,f;q)

l1+a-d-e,l1+a-e-f,1+a-d-f;
= sin A(d+e+f-a-1)

l+a-b+s,I+a-c+s,1+s; Aq® ds '
d+s , ets , f+s ; sinAs sinA(i-"-s)
where p= d+tet+f-a , and

w(a;b,c,d,e,f;q2+2a-b-e-d-e-f)

'l+a-b, 1+a-c, 1+a-d, 1+a-e, 1+a-f;
gW *(a;b,e,d,e,f)

jta , b, ¢ ,d, e, f ;
By analogy we get that
(2) w(2b-a;b,b+o-a,b+d-a,b+te-a,b+f-a; q)

l1+ta-d-e,lta-e-f, 1+a-d-f;

= - sinA’c
LI > , b, ¢ ;

l+b-a+s,l+b-c+s,1+s; JAqQ® ds

AS [b+d-a+s,bt+te-a+s,b+f-a+s;] sinAs sin/v(c-s)

0
provided that 1+2a = b+c+d+e+f
Putting stb-a =t in 4.5(2), so that the

products in the integrand in 4*5(2) become the same as

in 4.5(1) and adding to 4.5(1) we get,after slightly
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simplifying the integrand on the right,that

(5) [w(as;b,c,d,e,f;q) -

- cyl>-*w(2b-aj b, b+c-a, b+d-a, b+te-a, b+f-a; q)J

l+ta-d-e,1ta-e-f,1+ta-d-f;

I-(3 ;
l+a-b+s,l+a-c+s,1+s; Ag® sinA”™a-b) ds
axe d+s , e+s , f+s ; sinATs sinA(b-a-s)
c
provided that 1+2a = b+ct+d+e+f

Now,following Watson,it can be easily verified
by means of the Calculus of Residues,by considering the
residues at the poles of the integrand that lie to the

right of C.,i.e.,the”poles of cosecxrs and cosecA(b-a-s)

b

that the left hand expression in 4.5(5) equal to the
integral
(4)

1+8,7a+8,(ia+s) ,1+a-b+s,1+a-c+s,1+a-d+s,1+a-e+s,1+a-f+s;

ats, Hefma+s, (Hema+s ) ,b+s,c+s,d+s,e+ts,f+s ,
C

Ag® sinA(a-b) ds

sinxs sin/r(b-a-s)

Equating 4.5(4) and the right hand integral of

4.5(5) get on simplification
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(3)

I+s,ia+s,(ia+8) ,1+a-b+s,1+a-c+s,1+a-d+s,1+a-e+s,l+a-f+s;

ats,1+-"a+s, (I+-*a+s) ,b+s, c+s , d+s , ets , f+s ;

Aq® ds
sin AS sinA(b-a-s)

l1ta-d-e,1+a-d-f,1+a-e-f;
- (?b . ¢, l-p

l+a-b+s,l1+a-c+s,1+s; Ag® ds
d+s , ets , f+s ; sinAS sinA(b-a-s)
C
provided that 1+2a = b+c+d+e+f and where ~=d+e+f-a

Now,the right hand integral of 4*5(5) can be
evaluated by the help of 4.3(5) under the condition
1+2a = bt+ctd+et+f

and hence we obtain the result

" #

)
J "1+s,ia+s,(ia+s) ,1+a-bt+ts,1+a-o+s,l+ta-d+s,l1ta-e+s,1+ta-f+s;
,at+s, H&ma+s, (1+*a+s) , b+s , c+s , d+s , e+ts , f+s ;

A q® ds A

sinAs sinA(b-a-s).

= cosecA(a-b) x

l1ta-d-e,1ta-e-f,1+a-d-f,1+a-c-d,i+ta-c-e,1+a-c-f, 1+a-b,
b-a, 1;
b,c¢c,d,e,f, btc-a, d+tb-a , etb-a , f+b-a ;



82

provided 1+2a = b+c+d+e+f

This gives us the integral analogue of basic-
Dougall*s theorem.If,however,we evaluate the integral
in 4.5(6) by considering the residues at the poles of
cosecAs and cosecA(b-a-s) that lie to the right of
C ,we get a relation between two well-poised series
given by Bailey (6;).3) in 194-7* This is the form which
the basic analogue of Dougall* s theorem assumes when we
remove the restriction that one of the numerator
parameters must be a negative integer.It can be easily
shown with the help of the asymptotic expansion of
4.2(5) that the integral converges when Rl [s logq -
-log(sinAS sinA(b-a-s))]<0 for large values of |s]

It may be remarked that it i1s not possible to
use 4.5(6) to deduce the integrals giving the transform-
ation between four well-poised *s ,as was done by
Bailey to deduce the relation' between four "Pg*s from

the integral analogue of Dougall*s theorem (T. 6.8) -



CHAPTER V

SOME TRANSFORMATIONS OP WELL-POISED
BASIC HYPERGBOMETRIC SERIES OF THE
TYPE 3§

(5-1) Introduction. This chapter is concerned
with a systematic study of some transformations of well-t>o0:s«i
series of the type 643[ >as was done by Whipple (2) in
the case of a well-poised * Transformations of the
well-poised basic series have been studied by Bailey
(5),Sears (5) and Slater (3).Bailey (5) in 1936 gave

two and three term relations connecting well-poised (%TI
series with special forms of second and third parameters
in the numerator.Recently,Sears (2;10.2) has given one
such transformation connecting three well-poised of
the above type , which as will be shown later in the
chapter is really equivalent to one of the transformations
of Bailey.Sears also gave general transformations connect-
ing basic hypergeometric series of any order without the
special forms of the parameters.These have been later
studied and proved in other ways by Slater (4).These
general transformations yield as particular cases the
transformations connecting series without special
forms of the second and third numerator parameters.But

a systematic study of these two and three term relations

connecting well-poised (c)&lseries has not yet been made,
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and the relations appear to be rather isolated ones.

In this chapter,following Whipple,I classify
the well-poised 0(JIseries in different groups and study
systematically the relations existing between the 192
allied series that occur in the classification.The
fundamental three term relation due to Bailey (5;5.1)
has been employed to obtain the various relations,of
which some are believed to be new.

In the last two sections of the chapter I have
employed basic integrals of the Barnes type,discussed
in the previous chapter,to give extremely simple and
elegant proofs of the two term relations and the
fundamental three terra relation of Bailey.

The general notation employed is that rf the
previous chapter.

(5.2) In this section I give in a tabular form
the numerator parameters of the well-poised 0(|)' *s of

the type

P
aq/b, aq/c, aq/d, aq/e, aq/f, a qp/bcdef;
(1) X(as;b,c,d,e,f) =Y|
aq;

~1%8,qy"a, —q'y/a, b, 0, d, ~9
X(pi a2q2/bcedef
NAL \/a, -\/a, aq/b,aq/c,aq/d,aq/e,aq/f

that occur in different relations in the following sections.



Name of
group

Op(0)

Gpd)

(8p(2)

etc are
permut-

ations)

G, (0)

(G,(2)

etc are
permut-

ations)
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Parameters of

S =

bcdef/a™q

Numerator parameters

a;b,c,d,e,f
be/s;b,c,aq/de,aq/ef, aq/df

aq/bs; q/s,aq/bo,aq/bd ,aq/be,aq/bf

b~/a;b,bc/a,bd/a,be/a,bf/a
gqb/as;q/s,q/¢c,q/d ,q/e,q/f
b*c/sa;b, bc/a, aq/de, aq/ef,aq/df
qb/sc;q/s,q/c,aq/ed,aq/ce,aq/ct

qb/ed; q/¢c,q/d, be/a,bf/a, aq/cd

q/a; q/b, q/¢c ,q/d,q/e, q/f
qs/bes; q/b, q/c, ef/a,df/a, de/a

bs/a; s, bc/a,bd/a,be/a,bf/a

aq/b”;q/b,aq/bc,aq/bd,aq/be,aq/bf
as/bj;s,c,d,e,f

asq/b”c ;q/b,aq/bc,ef/a,df/a,de/a
sc/b;s,c,cd/a,ce/a, cf/a

cd/bjc,d, aq/be, aq/bf,cd/a

192 allied X-functions

q/s

qa’/bc

q/s

q/c

be/a

aq/ef

be/a

q/b

q/b

aq/bc

ef/a

Convergence No.of
Indicator
[TK 1

permut
ations
of eac
form

10'

o & B
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The group has been obtained from the
respective group by dividing q by the numerator
parameters in order.It is to be understood that,in the
expansions of G*(0) and G*(0) , permutations of the
letters b to f are allowed. In the expansions of Gp(l)

and G*(1) permutations of the letters ¢ to f are allowed

and so on.The number of permutations of each form is
given in the last column of the table.

(5%5) Relations between two series °

The fundamental two term relations of series

were given by Bailey (5;4-5 & 4.4),namely

(1) X(a;b,c,d,e,f) = X(a*q/def;b,c,aq/de,aq/df,aq/ef) ,

and

(2) X(a;b,c,d,e,f)

% {a5q2/b2cdef; aq/bc,aq/bd,aq/be, aq/bf, a*q”/bcdef)

These two relations express the equality
between the sixteen series Gp(0)

In 5.3(1) and 5.3(2) if we change a to q/a,b to
q/b and so on,we get the equality between the sixteen
series G*(0)

Also replacing a by b*/a , ¢ by bc/a, d by bd/a”
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e by be/a and f by bf/a in 5.3(1 ) we get the equality
between the first and the third series of the group
Gp(l)* Similarly,by proper substitutions we can show that
all the sixteen series of each of the groups G*(r) or

G"(r) , r=1,2,3,4-,5 are equal among themselves.

(5*4-) Three term relations between the allied series *
It can be easily shown that there are (apart

from mere interchange of parameters) 110 different

representations of a given in terms of two other

series ,the series being of the types given in table of

5.2.For,taking say, Gp(0) to be the standard series

% (a;b,c,d,e,f) we have that there are

(1) 15 distinct representations of a G (0) in terms of a
% (1) and a Gp(2),

(ii) 25 Gp(l) and a G*(2) ,
G R R0 TR T Gn(l) and a G*(2) ,
R T TS Gp(l)and a G~(l) ,
60 TR 1T Gp(l)and a GA(0) ,
G20 T G~(1) and. a G(0)

Thus,with X (a;b,c,d,e,f) as the standard Gp(0)

series there are six typical transformations between
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this and two other series,which we proceed to deduce
systematically. Two of these relations,namely,a relation
between G”"(0) , 1) and G*(2) and the relation™’
between 07(0) , Op(l) and Gp(2) were given by Bailey
(57°5%1 & 4 6) .

The fundamental three term relation of Bailey

between series of the type G7(0) , G*(2) and G*(1l) is

(1) \l (aq/def,def/a, bd/a, be/a, bf/a, q/c )x

(a;b,c,d,e,f)
g

= y|(aq/b, b/a, aq/ef,aq/df,aq/de, a”q”"/bcdef) *

X (ef/c;e,f,aq/bc,aq/cd,ef/a)

+ (b/a) TT(d,e,f,aq/bc,a”q/bdef,bdef/a” )"

X (h*/a; b,bc/a, bd/a, be/a, bf/a)

Interchanging b and d in 5.4(1),the first two
series remain unchanged and we get a relation between
three series of the type G*(0),G"(2) and Gp(3)*Prom this

relation and 5.4(1) if we eliminate the series G"(2)

we get
(2) TV(q/°>q/e»q/f>bd/a,b/a,qd/b) *
X(as;b,c,d,e,f)
= T|(b,aq/cd,aq/de,aq/df,aq/b,b/a)"*
%(d2/a;d,bd/a,od/a,ed/a,fd/a)
-X! njd-attcrVo A BalJLCy 6¢ OWIL EZJIhOAv  ~0i
y . BU tUo fo e @

QpO) by wA”Ycby c avul f .
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- (h/d) TT(d, aq/bc, aq/bf, agj/be, aq/d,d/a) X

X(b*/a; b,bc/a, bd/a, be/a, bf/a)

This gives a relation between three series of
the type G”(0) , G”(3) and G”"(i) It is equivalent to
Bailey’s result (5;4*6) which is obtained from this by

merely interchanging d and f .

If in 5.4(1) we replace the G (2) series by its

equivalent series X (bdef/aq;s,b,d,e,f) , we get

(5) Tl(aq/def,def/a, bd/a, be/a, bf/a, q/c) A
X(a; b,c,d,e,f).

= Y[(aq/b, b/a,aq/ef,aq/df,aq/de, a*q”/bcdef) »

X(bdef/aq;s,b,d,e,f) +

+ (b/a) TT(d,e,f,aq/bc, a”q/bdef, bdef/a™) »

X(b"/a; b,bc/a, bd/a, be/a, bf/a)

In 5»4-(3) interchange ¢ and f .We then get a
result given by Sears (2;10.2).Next,interchanging c

and e in 5%4-(5) then eliminating G”(l) from the

"In simplifying the coefficients of the series we have
used the formula, for |qK 1

(zb)~* S(za,z/a,be,b/c) = idem(a; b,c) ,
where S(x) =TT(x,q/x) and s(a,b,...) =TT(a,q/a,b,q/b,..),
and so on. This formula will be used very often in K

simplifying the coefficients of the series without
further reference.
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resulting transformation and 5.4(3) we get,after

interchanging b and e in the final result,the relation

(4) c IY(de/a,df/a,ef/a, b/c, qc/b, bcdef/a”,a”q/becdef )x

X (a;b,c,d,e,f)

= 1J(aq/cf, aq/cd, aq/ce, b,a*q”/bcdef,a”q/bdef,bdef/a” ) x
% (cdef/aq;s,c,d,e,f) -

- idem(c;b)

This gives a relation between- three series of
the type 07(0) , G”(1) and G"(2)
Now,eliminating 07(2) between 5%*4-(3) 5.4(4)

we get after some simplification

(5) j~S(def/a, bd/a, be/a, bf/a, cdef/a”,c) +
+c S(de/a,ef/a,df/a,bcdef/a”,b/c,b/a)] A

X (a;b,c,d,e,f)

= (b/a) Tf[(aq/bc, aq/bf, aq/bd, aq/be, c,d, e,f, a”q/bdef,
bdef/a”,a”q/cdef,cdef/a” )].
X(b"/a; b,bc/a, bd/a, be/a,bf/a) +

+ IT[(aq/ce,aq/cd,aq/cf,aq/ed,aq/df,aq/b,b/a, b,a”q/bdef,
&//€£,bdef/a”, arq”/bedef ) x

X (cdef/aq;s,c,d,e,f)

This gives a relation between three series of
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the type Gp(0) , Gp(l) and G"(1) .
I[f in 5.4(5) we put b"/a = A, bc/a = C ,
bd/a = D, be/a = E , bf/a =F and b = B, the Gp(0)

series becomes one of the type Gp(l) and vice-versa.

Also the Gjj(l) series is transformed into a G"(0) series

and hence we get

(6) [s(BDBF/A”,D,E,F,CDEP/A~,BC/A) +

+(BG/A) S(DB/A,EF/A,DF/A,BCDEF/a2, -

b

X (BV A;B,BC/A,BD/A, BE/A,EP/A)

= (A/B)11(q/C,q/D,q/E,q/F,BC/A,BD/A,BE/A,BF/A, Aq/DEF,
DEF/A, CDEF/A® , AAq/CDEF )j K

X(A;B,C,D,E,F)

+[T[(Aq/CE, Aq/CD, Aq/CF,Aq/ED, Aq/BF, Aq/DF, Bq/A,A/B, B,
Aq/DEF,DBF/A,A"q"/BCDEF )

X (BACDEF/A"q; BCDEF/A* q, BC/A,BD/A,BE/A.
BF/A)

which is a transformation connecting three series of the
types Op(l) , Gp(0) and G*(0) respectively.

Finally,in 5.4(5) us put cdef/aq = A ,
bcdef/a®q = B and replace c,d,e,f by the corresponding
capital letters.Then the first 07(0) series is transformed

into the series X(CDEF/Aq;BCDEF/A*q,G,D,E,F) which

2

is of the type G”(l). The second G”(1) series becomes the
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series X(BMCDEP/A"g;BCDEF/A"q,BC/A,BD/A,BB/A,BP/A),

which is of the type 57(0) and the last G”(i) series
becomes the series X(A;B,C,D,E,F), which is of the type

Gp(0). Thus,we get the transformation

(7) [S(Aq/C,BD/A,BE/A,BF/A, A*q"/CDBP,G) +
+G S(Aq/CF,Aq/CD,Aq/CE,Bq,BDEF/A"q,B/A)J *

X (CDEF/Aq;BCDEF/A*q,C,D,E,F)

= (B/A) TF[(Aq/BC, Aq/BD,Aq/BE, Aq/BF, C,D,E,F, A*q"/CDEF,
CDEF/a2q, C/B, gB/C)J »

X(BACDEF/A)q;BCDEF/A%q,BC/A,BD/A,BE/A,BF/A) +

+ Ht(DF/A,EF/A,DE/A, GD/A, CE/A, CF/A,Aq/B,i"A, BCDEP/A"q,
C/B,qB/C,q/B)J /

X (A;B,C,D,E,F)

which gives a relation between three series of the type
Gn(l) » Gn(0) and Gp(0)

This completes the transformation theory of
expressing )(j(a;b,c,ci,e,f) in terms of two other oA*
series of the type given in the table of 5*2.Similar
remarks follow for relations between a given series of
any other group and two other series.

(5*5) Integrals representing twoterm relations.
In this section I will useintegrals of the type

AN

discussed in Chapter IV to give direct proofs of the
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fundamental two term relations given in 5.3.It is

proved in 4.4(2) that
(I)g¥y’(a;b,c,d,e,f) = sinA(d+e+f-a-1) 7

l1+a,d,e,f,1 +ta—d—e, 1+ta—e—f, 1ta—d—£f, 1+ta—b—¢;

l1,d+e+f-a, 1+a-d-e-f, 1+a-b, I+a-c, 1+a-d, l1+a-e, 1+a-f

d+e+f-a+s,1+a-b+s,1+a-c+s,1+s; TV q® ds

d+s , ets , f+s , 1+a-b-c+s ; A sinAs sinA (1+a-d-¢-f-5)
C

Let

1+8,E+s,F+S,1+A+B+C+D-B-F+s; T ds

-At+s , B+s
C

, Ct+s , Dts ; sinAs sinT'(B+F-A-B-CD-s |

Now,the left hand side in 5*5(0 symmetrical
in b,c,d,e and f .Hence,interchanging f and b in 5*5(0

and writing in the notation of 5%5(2) we get the

transformation
(5) m\d,e,f, 1+a-b-¢; 1+a-b, 1+a-c)
sin A(d+e+b-a) b,1 +ta—b-d,1+ta—b—-e,1+ta—e—Ff,dtet+tf—a,
1+a-d-e-f;
sinA(d+e+f-a) f,d+etb-a,1+ta-d-e-b,1+a-e-f,1+a-d-
1+a-b-c;

/J*(d,e,b, 1+a-c-f; 1+a-f, 1+a-c)
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Also interchanging d with ¢ and e with b in

5.5(1) and writing in the above notation we get
(4) /|5(d,e,f, 1+a-b-c; 1+a-b, 1+a-c)

sinA'(b+c+f-a) b,c,l1+a-b-f,1+a-c-f,d+e+f-a,1+a-d-e-f;
9

sin/v(d+e+f-a) S b+c+f-a, 1+a-b-c-f,d,e, 1+a-d-f,1+a-e-f.
/J(c,b,f,1+a-d-e;l1+a-e,1+a-d)

Putting d = A, e=B, f=G, Il+a-b-c = D,
lI+a-b = E and 1+a-¢c = P i.e., ¢ = E-D , b = P-D and

a = E+P-D-1 we get from 5.5(3) and 5.5(4) that

(3)

sin/v(A+B-E) P-D,E-A,P-G,E- B, +A+B+C+D-B-P,
o E+P-A-B-CD;
sin A(A+B+C+D-E-P)" Li +A+B-E,E-A-B, C,E+P-A-C-A,E+P-B-G-D, D;

A, B,P-D,P-C; E+P-D-C,P)

and
(6) yJ(A,B,C,D;E,P)
sinMc¢-D) P-D,P-C,E-D,E-C,AtB+C+D-E-F+1,

E+P-A B GD;
sinA(A+B+C+D-B-F)*11+C-D, D-C, A, B, E+F-B-C-D, E+F-A-C-D;J

/M(E-D,F-D, G,E+F-A-B-D ; E+P-A-D, E+F-B-D)
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In 5.5(6) if Ye put (P-A) for A, (P-B) for B,
(P-D) for C, (P-C) for D, P for E and (2P+E-A-B-C-D)
for P , the right hand integral remains unaltered and

hence v/ie get the transformation

(7)

sinA(P-E)
X

sinA(A+B+C+D-E-P)

E” A>E-B)E—C/ E-D>P—A>P—B>P—C>P-DyE+P-A-B-C D>1 +A+B+GHD-E-P>
"1+P-E>E-PjAjBjCjD,E+P-A-B-C, E+P-A-B-DyE+P-A—C-D, E+P-B-CDj

x/|(P-A,P-B,P-G,P-D;P,2P+B-A-B-G-D)

The relations 5*5(5) aod 5*5(7) give the integrals

representing the tiwo term relations 5*5(0 5*%5(2)
respectively.We can employ 5*5(5);5*5(") 5*%5(7) to
give us relations connecting four Saalchutzian also.

In fact,evaluating the integrals on both sides of 5*5(")

by taking the residues at the poles of the integrand

that lie to the right of the contour Cywv»e get, after

putting A for and so on , the transformation
E,P,G; A,B,C,D ;
A,B,G,D;. - E,P,G
~q2/G,gB/G,CLP/G; qgA/G>GB/G, qG/G, gD/G;
- (q/G) II

qA/G, qB/G, qG/G, gD/G;, .q9*/G,qB/G,qP/G
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EP/AD,EP/BD,P/C,E/C,G,q/G J
X
"% p/C,A,B,G,qVG,qB/G,qC/G ; _
C,E/D,P/D,qG/G ;

A 14G/D,BP/AD,BP/BD °

+ idera(C;D) ,

with BPG = gABGD , a relation between four Saalchutzian

given by Sears (2;11.1)

(5.6) Integral representing the fundamental three
term relation S5#4(1X
Using the notation of if.5 *we can write 5*5(0

in the form
(O w(a;b,c,d,e,f;x)

l1+a-b-G,1+a-d-e, 1+a-d-f,lta-e-f
= sinA(d+e+f-a-1 ) "
J,b,c,dte+f-a, 1+ta-d-e-f

9

d+e+f-ats,l+a-b+s,1+a~c+s,l+s; A q° ds
c d+s , e+s , f+s , l1+a-b-c+s ;. sinAs sinA(l+a-d-e-f-s) ,
where X = +2a-b-c-d-e-f
Hence,by analogy
(2) w(2b-a;b,b+c-a,b+d-a,b+e-a,b+f-a;x)

I-c,1+a-d-e,l1+ta-e-f,1+a-d-f;
= sinA(b+d+e+f-2a-1 )(»
-1,b, b+c-a, b+d+-6tf“2a, 1+2a-b-d-e-f|
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b+d+e+f-2a+s,l+b-a+ts,l+b-c+s,1+s; A g® ds
b+d-at+s,b+te-at+s,b+f-a+s,1-c+s; sin AS sin A(l+2a-b-
-d-e-f-s)
Putting 8+b-a =t in 5*6(2),so that the products
under the integral sign become the same as in 5.6(1),
and combining with 5*6(1),we get after slight

trigonometrical simplification that

(5) I,b,c,d+e+f-a,l1+a-d-e-f;
d4-a-b-c, 1+a-d-e, 1+ta-e-f,1+a-d-f

Xw(a;b,c,d,e,f;x) -

l1,b,b+c-a,b+d+e+f-2a,1+2a-b-d-e-f;
A*C, 1+a—d—e, 14a—e—£f, | +ta—d£"

y w(2b-a;b,b+c-a,b+d-a,b+e-a,b+f-a;x)

l+s,dte+f-a+s,1+a-b+s,l1+a-c+s; Aq ds
= sinA(a-b) *
Ad+s , ets , f+s , l+a-b-c+s sinAs sinA(
b—a—s #

Now,compare the right hand integral in the above
with the integral 5*5(2) after making in it the
substitutions E=d+et+f-a , P=I+a-¢ , A=e , B=f ,
C=1+a-b-c and D=d . Then,using the result 5*5 (0 in

the final result putting a forq” , b for q" and so on,

we get the transformation 5*7(0*
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It may be remarked that,as shown in 5*4 ? the
relation 5*4(1) can be used to find all other relations
between three series of the type o and so we can prove

0

all the relations connecting three by means of

simple transformations and manipulations of integrals

of the type 5.6(1).



CHAPTER VI

30m BASIC HYPERGEOIETRIC IDENTITIES

(6.1) Introduction & Notation . A number of
basic hypergeometric identities have been given some
years back by P.H.Jackson (1 & 2).These identities are
the basic generalisations of some identities given earlier
by Burchnall and Chaundy (1 & 2).In this chapter 1 give
some more basic hypergeometric identities analogous to
those given by Chaundy (1) for ordinary hypergeometric
functions.Since basic hypergeometric functions are of
some importance in the theory of numbers and combinatory
analysis it is thought worthwhile studying the basic
analogues of Chaundy’s results (1).Besides the analogues
of some of Chaundy’s results a formal expansion giving
a generating function for a basic polynomial sequence
has been derived in 6.9 of the chapter.

We will use the following notation throughout
this chapter,in addition to the notation already given
in Chapter IV.

Let

with similar expression for 1&;nj , where S
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and = exp(*logq) and q*' = exp(*logq).
The basic hypergeometric functions of two variables

are defined as (k »o)

Lli;nJ [c;m+nj

mVoon-ofi ;m}  [I;n] [c;m] [o' nj

T.(fi;m] [I;n] [c;m+n]

>A0 Yi-di;mj [Liru [e;mj [c” ;]

The confluent hypergeometric functions used in

the chapter are defined as follows

t,(a;.;0=.,.,K) -
'yl.6ii=oNm3  jj;n] |c;m+h]

@oofa:m fa' :n] [b:ml , _
m"(a,a’;b;c;x,y;K)= X"y gAn("m)

>Aao>*o|i;mJ fl;nj [c;m+n]
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2 [aymj [b;iN
4/\a;b;0;x,y;K) =~ _ “niyngKn(n-1)
;mj [1;nj [c;in+n3
Following Jackson,the functions in whose series
definition there is a factor of the type qKn(n-1) y,iii
be called “abnormal” functions.For K=0

, we call the

functions ”“normal”

(6.2) I give below some fundamental transformations
and results which will be used in the chapter very

frequently.They have been proved fully by Jackson (I & 2).

"

x®y
(1) [-Sjr] [-'b'jrj -xV
t);m] [I;n] LimJ ~;n]

r(r-m-n-1)

xV °

(2) [i-h-i-S';r] xV

{-O*'Di+m+n-rjrJ q-r(h+m+n)x

Xgir(r+1 )*yn

) "1/[S+c;r] MNJl{a,b;o;x) = 1/[c;r] ""(a,b;ctr;Xx)

\'9+h, i+h; qr(6+&'+h)
- D;rj [b;"

'T=0

and its 1inverse
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r=o [lsrj [i-h-£-6"';rj

, f (-D'LhiZrlL-tirjl-t' irg

(6)
r-u Bjrl Lh+r-1 ;rJ[h+S;rJ[h+V;rJ
Also

MMki;2rl [k-hjrl L-";r] £-1>'5r] O 1,
(7) V(h) A(k) =y = ' =T —7 = - —q]"("+eth)

r=o[L;r][k+r-I;r] [k+7;r) [k+uo';r[h;ig

[h-k;rj [-Bsr] [- £ 5r]

(8) = > Y AN __ M _q/\

W (as;b,b' 5¢c5x,y)

A= B.rj [h3rj U-k-S-b ' ;A

V(a) (|P(a,a;b,b’;c;5x,y)

(9)i(i"(tasb,b’ 505x,y) = V(a) A(c) 2<”(a,bsc;x)jJ (a,b’5e5y) ,

[*'U.a'sb,b’j5¢c35x,y)= A(c) "*(a,bs0;x) z4 (a\b' 5¢c3y)

(6.5)

We begin with two simple identities giving

the expansion of a 2~ in terms of another™*, ,namely

(1)
(A,B

and
will
where n

y (_1 La;r] [barJ s [AaBaC:_r;

;Cix) = A 7 ~ 1.7 |
X g™ (atr,btriectrix)

sometimes denoie"

g2"s(s-1) the abbreviated notation

is any positive integer;e.g.,

f!'"!i I,HH.
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r

) (-1) Lair] Lb;rg ‘A,B,c+r-1,-r;

(2) 2Ji(A,B;C;x) = a
lc+r-1;r; ~ 3 a,b,C

A g(M "M (atr,b+r;c+2r;x) e

The proof of 6.5(1) and 6.5(2) depends upon the

following two lemmas.

Lemma 1.
0) % . A °
6=0 &;E-sJ [1;s] A (e=0 )
Proof. The left hand side of 6.5(5) can

be written as

i/[i1E i (-E; .

This by the basic analogue of Vandermonde*s
theorem(T.a particular case of 8.2X(5)) can be easily

shown to give the required result.

Lemma II.
(-1)® ( 0 (R>0),
A [1;87 [1;R-s] [c+2s;R-s] [c+s-1;s] Li (r=0).
Proof. We have the left hand side of 6.5(24.)

equal to
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R (-D)”

DJs] [I;R-s] [C+S-1;R+1]

Aysj [1;R-s] [e+s-1;R+1]

(., «) |-L -'> “: 7 )
L™o[l ;s] [1;R-s-1]lc+s;R] 4mjl;s-1] [1;R-s] [c+s-1 ;R]

This evidently vanishes identically for all R>0.

This proves the lemma.

Now,to prove 6.5(1) we find that the coefficient of
[Asn] [Bin] [c;nj

/\5) _gl\n
t;n] [a;nj [b;q] [Cin]

on the right hand side 1is

A (-1)"[asr) [bir] [-rjnj ,
/ - AMM(atr,b+r;G+r; %)
¢z . psr] [esr)

Granted absolute convergence we can rearrange this as
“R][b;R] <i(n)+(r)-rn
A _j/\R - — 0

Rii  [c:R] fl:R-r] [l:r-n] -

The inner sum is equal to g™ by Lemma I ,for R=n
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and is zero,otherwise.
Hence the coefficient of 6.5(5) is simply
[asnj fib;n] x*q“"*/[c;nj , which proves the identity 6.5(1).
Similarly,to prove 6.5(2) we collect the
coefficient *of
{A;n] LBjn] q" /[&;«] [b;n] [Cin] [l;n]
on the right of 6.5(2) and proceeding as above get the

resulton applying Lemma II

(6.21) If in 6.5(2) we suppose

A+B—€ = atb—e
and change a,b,A,B and x to c-a,c-b,C-A,C-B and
(= respectively,we can use thefollowing

well-known identity (T.8.4.(2) after changing a to q* and

so on )

(1) 2<*(a,b;0;x) =1— — - J(c-a,0-bjc;xqA+"A"0),
po  d-xq") At

to replace the functions on both sides of é.)(2) to

get .

(2) 4 (A,B;C;x) (-x)"" qr(a+b-c)+(r) x

A [e+r-1;r]

,[C-A,C-B,c+r-1,-r; fat+r,b+r;

H”|c-a,c-b,C Ae+2r J



ioé

This gives an alternative form for ¢.)(2).

Again putting A,B,C = a,bth and c+h respectively
in 6.5(2) , the on the right reduces to * ,which
can be summed by the basic analogue of Saalchutz’s

theorem (T.8.i1f(l)) to give

YU 0 ;rj [p+r-1 ;r]jc+h;rj

XqgrM)MM(a+r,b+ri;e+2r;x)

(6.5) Basic hypergeometric functions of two variables.
Now,we shall prove the following four identities
which involve the basic hypergeometric functions of two
variables defined in 6.1 and functions of higher order,
similar to those defined by =Jackson (2;8).The following
are the four expansions
0) ~-DAtAn(asrtsj[br] b

VAN
(1) (A;B,E”;G;x,y;K) = / > _ -
Y 410 [l;r]){l;sl(p;rJrSJ

A,c:B,-r;B’ ,-s;
gria;K|x
a,C:b}b’;

xM(at+r+s;b+r,b*+s;ctr+s;x,y)

a) ANN(-1) N+ e rEs][br i [bY js]
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A:B,c,-r;B’ ,¢c* ,-s;
X q(r)+(s) ¢.:K X
a;b,C;b' ,0";

ft)
X(M(a+tr+s;b+tr,b'+s;c+r,c’+s;x,y)

a)
() 0 (A,A";B,B";C;x,y;K) =

oy (-1 lasr][a’ ;sj[birj[b’ ;sj c;A,B,-r;A" ,B' ,-s;
. . e a! ', q’q’K
7 Z .- [1;r)|1;sjtc;r+s3 C:a,b;a",b';
T-0 4-0
X Mat+r,a*+s;b+r,b’+s;c+r+s;x,y)
ih)
(0]0]

o0 -DM"*"® [a;r+"|b;r+8] $ A,B:c,-r;c*,-s;

- 4sB;r]J[l;sl[c;rI[c’ ;s8] a,b;C;C';

Xx"™y® gd) +(s) * (atr+s,b+r+s;ot+r,c*+s;x,y)

A,G:B,-r;B*,-s;
In -6.5(1) , (]) denotes
a,C:b;b’;

the double hypergeometric series

Y Y' tB;mj [-r;mj [B’;n] L-s;ni ~*u”Kn(n-1)

[I;m]B;n] [aym+nj ICnrtn] [b;mj [b' ;nj

So,in other 'coefficient' s, the colons mark off

the ’“double’ parameters (i.e. those occurring with the
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parameters mtn in the square brackets),the semi-colons
the ’simple’ parameters (occurring with the parameter

m or n).Thus,the pattern of the above four formulae is

quite clear.

The above identities are interesting in the
sense that they express an “abnormal” function >in a
series of the ”“normal” function of the same type.For
K=§ , the left hand functions become similar to those

studied by Jackson (1;9).
We shall prove the first of these formulae 6.5(1)

and the rest follow by an exactly similar procedure.

Proof of 6.5(1 |
The coefficient of
lc;m+nj [Bimj [B'; n]
[a;m+nj [Cmtn) [b;mj [b’;nj

onthe right hand side is

Y [a;r+s] [b;r] t.b';s] (r) +(s)
'Xyq't frym][-s;n] x
w0 [1;r] [1;s] [ci;r+sl

Xc{3>(a+r+s;b+r,b’+s;c+r+s;x,y)

This,granted absolute convergence,can be easily written

in the form

R=o0 S=o (c;R+S; T=ti 5Mji,; R-rJ [1;S-s] [1;r-mj Q;s-n]
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The value of the inner sum is found on
simplification and a consequent double application of

Lemma I.It is zero for R>0 ,S>0 and is q"*”" when

R =mand 3 = n . Hence we get the required result as
in 6.)(1).
(6.6) In this section we will consider some

expansions involving the basic hypergeometric functions
of two variables and generalised hypergeometric functions.
They differ in nature and method of proof from the

foregoing expansions.We shall prove the following

identities

L'o(1 xg»+b-c+n ) (" y”*a+bfc+n)

T=0' [1;1) [c;2r1)

> jZ 0 (c-atr;c-b+r,c-b’+r;ct2r;xg®'* *A“R>yqR+HFA*~0),

(2) fr d-xq") M
........ 0 (a,a’;b,b’;c;x,y)

- [c-a-b;r] [a'sr] [b’;rj_AZ(r)Jrr(’a%-b) ArAr A

0;rJ ye;2r°
X <J  (c-0+T"oitryc-ifT,y + Y , A
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o0
0) U)

9 . Te e
n Ti xgatb c+n)(”.ygatb* -c+n " 4?7 (a;b,b';cix,y)

Lc-b;rl s

4,0 1'1'l L«;2r]

lc—b-b',+F a;, 1 -
43((c-a+r,c-a+r;c-b+r,c-b’+r;c+2r;

3*lec-b , c-b'" A ,
xg'a+b'0 a+b’-c

y8 )

(‘UH' (i-xq")(i-yq") s3)

I(a,a;b,b' ;c;x
Jjo (T-xqatb-c+tn)(”~ _yga+tb'-c+tn j (I(a,a;b, ;C5X,Y)

y (1) Ar(atbHb' _o)+
(1;r] [o;2r1]
bb’,—r; i )
g I (c-at+r;c-b+r,c-b’+r;c+2r;xg"
,0-a,l-r+b+b' ¢ J yga+b’-¢c ~ A

(5) TT  (1-Xq")_

a,c-a;b,b';c;x.
71 (I-xq*+b_c+n) ( x-Y)

 (C1f [c-asr] [air] [b'§~  rb+(r)

[I;r) [c;2r]

X 0 O(c-a+r;c—b+r,b'+r;0+2r;XqA+A"O,Y) "
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(6)ry (I-xq") V)

| éYilZiUT/l

(L;ry [0;2r]

(€ :
* 0 (c-atr,atr;c-b+r,b'+r;c+2r;xq®+°"°y)

(7) | (1-xq")( 1-yq)])
I — ; — $(a,a' ;b,b' ;0;x,y)
w-0 (1 _xq®+'"*~°+") (1-yq® +b' -c+nj

[6 —a—=b,a’ b’ 6 —r;
(o-a+r,c-a’+r;c-b+r,c-b* +r;

A4
4"3b-a, c-b, 1-rta’+b*-c
ct+2r; )

Proof of 6.6(1).
Consider the following identity due to Jackson
(1;)7)

(8,
T {11 [ct+r-1 ;1j[c;21])

/ x"y~r2M(a+r,btr;et+2r;x) X
atr,b'+r;c+2r;y)

'X'There 1s a misprint in Jackson’s result.The solitary
quadratic factor in the series on the right should be

rat+2(r)ana not q*c+jCr)
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Using 6.i]-(1) to replace the ;J ,'s on the right

we get

000
(9) Ll
- (l'an+b-C+n)(/\_yAa+b’-g-;ZZ/\ O(Ca;b,b';c;x,y)

[ [oorj [7r) [easri o
T=o0 LUrJ [c+r-1;r] [c;2r1]

c-atr.c-b+r: rc-a+tr,c-b’+r;
’ " xqa+tb-G ’ ”
ZA|

0 . c+2r = " ct+2r

The series on the right of 6.6(9) is symbolically
equal to
(10)

y - le;2rj [asr] [b; 1j [b* s rj /2% rjf-i ' 1
7 - ji;r][c+r-1;rj[c-a;r][c-b;r][c-b’;rj[ct+'6;rj[c+Db';r]

g"r(E+SL2c-a-
-b-b’) x

~ g("~c-a,c-b;c;xqr+'""-°) ~AJ”c-a.c-b' ;c;yqht'N")
provided one of the numerator parameters 'b or'b is a
positive integer.Using a formula due to Watson (T.8.5(2))

the operator in 6.6(10) can be expressed as » 0 ~ to give

9> .
c-b-b’>a, =SS V(c,-a) A(e) X
c—b,c—b’,1— Sta—e

X0 (c-a,c-b;c;%gatb-c” (c-a,c-b' ;c ;yq®+'" )
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0-b-b*, a, - -8 o
-c—b,c—b’, 1 8L+a—-=€i

by 6.2(9).
This on simplification and using the operator

47N gives the required result.

Proof of 6.6(2).
In order to prove 6.6(2) we use the following

identity due to Jackson (1;55)

(-1)  [Lar] [a* ;1) [b;rj [bjr]

<>

(f(a,a’;b,b' ;C3X,y) =
[1;r) [c;2r] [c+r-1 ;1)

T-0

Xqro+5(r) x*y**,(atr,b+r;c+2r;x)"

/ +r,b’+r;c+t2r;y)

Now,using 6.if(l1) to transform the firsto n the
right we get

co

(11) (1-xq") 0)
DD 0 (a,a’;b,b";c;x,y)
(I-xga+b-c+n)

(-1 fasrj [a';r] [bsrj Lb’jr]
ret)(r)  xEGF ¥
0;rj [c;2r) [ctr-1;r]

% ("(c-a+r,c-b+r;c+2r;xq "+ ") 4,(a%+r,b’+r;o0+2r;y)

There is a misprint in Jackson’s result in the

solitary factor q(”)on the right.It should be q5(").
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The right hand sidec[6.6( 11 ) can easily be shown
to be equal to

(12)

y- (-D” ¢s2rd[asrj[bsrilsbsr][-b'srj Ar(b+7'+20-a-b) +(r)”

lng "imlletr-1fo-asr]fe-b;r][et; rj[c4%; 1j
r

Hj(c-a,c-bicixqn+"-°) (a',b';c;y)

Using a limiting case of a result due to Watson

(a limiting case of T.8.5(2)) we can write 6.6(12) in

the form

' y
c-a,c-b z

c—ab,—%%;

.ctb (0 (c-a,a*;c-b,b";c;xq®+b-eyj A
5 “lc—a,c-b

dn using the result of 6.2(9).

This on simplification gives the desired identity.

(6.7) To deduce 6.6(5) use the following result

due to Jackson (1:;59)

D) V— fb;r] [b”;r] ,
(1) <~(asb,b’jcix,y) =" — -meemeeees - xy” qra+2(r)

41 [1;r] tc;2r]

13
X(A8a+r,a+r;b+r,b’+r;c+2r;x,y)
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on the right hand side of 6.6(1) to replace by
and diagonal summation gives the required result.To
obtain 6. 6(4.) we start with Jackson (1;4.0),viz. ;

1i) 01 (-1)"Ja;rlLb;rJ[b';r]
(2) Q)(a,a;b,b";cix,y) = / xy q fr)>.
AN

Li;rJLc;2r])
X(Matr;b+r,b’+r;c+2r;x,y)

A\)
and replace the Q on the right of it by 6.6(1). Then

diagonal summation and simplification yields 6.6(4.).

To prove 6.6(5) use 6.6(2) with a° = c-a and replace
the “on the right by a using 6.7(2). Consequent
diagonal summation and an application of the basic
analogue of Vandermonde’s theorem (t.8.4-(j)"for b=q"" )
gives the result.

Next,to deduce 6.6(6) we begin with Jackson’s
result 6.7(1) and use 6.6(2) with a’=a on the right hand
side of 6-.7(1) to replace its (%(3)by another (ﬁ/‘(a). Summing
diagonally and applying the basic analogue of Vandermonde’s
theorem we get the expansion.

Next,to deduce 6.6(7) we begin with 6.6(2) and
with the similar expression for ”EgRI'qu)/( l-yq® )]’

(J) “get a double series in . Simplification and

summation as before gives the required identity.
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(6.8) In this section I shall state,without proof,
some identities involving basic confluent hypergeometric
functions.These i1dentities are of special interest
being closely connected with the basic Bessel,Laguerre
and Whittaker’s functions discussed by Jackson. They
can ecither be obtained directly from the identities

of Jackson (2) or as limiting cases of the results
already discussed in 6.6 and 6./,as is indicated in the

section later.The expansions are as follows

(i)fr d-xq")

7\

f Ar(aM-c)Mr) r(,,.a,;0-b+r;o+2r;

atb-c ,, «-c

(2)-\T d-xg") -
M - - G,(a,a’;b;c;x,y;K)
I'o(l-xga+b-«+") !

[c-a-b;r] [a’jr] . r(a+b)+(K+1 )r(r-1 )
—3v

G,(c-a+tr,a'tr;c-b+r;c+2r;xg®+'"®,y4""";K),

\ \ I[(asbsesx,y;5)
U!(l-xgatb-c+n)(1+yg”-°+n)
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a>

XNyr (atb-¢c)+2(r) ~ a,-I;
e [lirj [c;2rj C-b
1 A(c-a+r,c-e+r;c-b+r;c-...xg"+b-c” yta-cj”
00

(4) 11 (I-xgb)
(I-xga+b-c+n)("*y~a-c+n”"

A(a,asbie;x,y;5)
Las [e-a5t) o v Ar(a+b-c)+(r)
B;r] [c;2r1] ,C-a

("Z(c-a+r;c-b+r;c+2r;xg+b-c*-ygS-c) ~

(5)T[_ (l-xg*)
~,(a,c-a;b;c;x,y;K)

= 3 %ryr “rb+ (2K+1)(r) ~

40 [c;271]
Xj4c-a+tri;e-b+r;c+2r;xg®'*'* A" ®,yg2Kr.2j"

A

(6) ff d-xg") y.

\ 4 '— jjbyb qra+2(K+1)(r) x
[1;r] lc;2r]

c-atr,atr;c-btr;c+2r; ;K)
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(7) (1-xq") "

\ f~-4. [b-a,rj [p-b,jj* ybyb gF(at+a'+b-c)+2(r)
47z B;rj [c;2rj

c-a-b,a',-r; Aot
X.It grrre-a A (c-a+r,c-a’+r; c-b+p; c+2r;

-c—a,c—b
xgqatb-o” y*a’-0) ~»

TT U-xq-;

=y - xMy”N “ra+2(Kd)(r)+-'""
r70'0 J”3 Lcj2r]

X&"(o-atr;o-b+r;c+2r;xq"+'"""°,yq"""K)
(K'= K#eL)
The identities 6.8(1),6.8(5),6.8(if) and 6.8(7)
are the limiting cases of 6.6(1),6.6(5),6.6(4.) and
6.6(7) respectively. The identities 6.8(2),6.8(5) 8°d
6.8(6) are the limiting cases of 6.6(2),6.6(5) and 6.6(6)
respectively when K=i.For other values of K they can be
directly derived from known formulae due to Jackson (2).

The identity 6.8(8) is a limiting case of 6.8(2).
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(6.9) I conclude these expansions by giving a
formal expansion which gives the generating function
for a sequence of basic polynomials, in particular,of a
general polynomial of the basic hypergeometric type.

Let ~(t) be an analytic function which does
not vanish for t=0 and let it be defined by an

absolutely convergent series

and let
f(xt) = Qo — prixtgr ), U »
Then,it can easily be shown by simple

rearrangement of the series that

60
(1) $(t) f(xt) = "_y~(x) t” :
where y~(x) 1s a polynomial of degree n given by

(2) ylx) = > — —

Hence,6.9(1) can be taken to be the generating

function of the polynomials 6.9(2).

A particular case of interest to us is obtained

when " (t) itself is a basic hypergeometric function with
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We get from 6.9(2) that (%) 1s given by

2 2.
[Isnj[ci snj ... [Oy;n]

As(r+p+1) I . | . .l
Ao 1—1/S(r P —n;s{lbin-cA sJ i-n-Cpjs ™
. f J liy-Chisl g2
sli  [15s] Ci-n-a”;sd....[l-n-ap;sj
T AN
where T =1s(s+1 )(p-r-1 )+s( + " -f+ 1-np+nr+n)
In particular,if r=p-1 we get the generating
function for
tv,!
tisnj [o2jnl.... [Cp ™Mnd
A |-n,1-01-n, »-Cp_"-n; 7 -Tat+H-1+1
. 1-a-j-n,...., 1-ap-n
(6.10) Convergence conditions ¢ In order that

the various rearrangements be justified in the formal
proofs of the foregoing expansions deduced in 6.5-6.6,
the conditions of absolute convergence of the expansions
must be stated.¥e will take all the parameters in the

hypergeometric functions to be real and positive;the

’
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variables x and y, should be replaced bytheir absolute
values |[x|; |y| ,but, for simplicity, weshall for the
moment regard x,y themselves as positive,replacing
them by ”x) , lyl in the final statement of the
convergence conditions. The base q is also supposed to
be real and positive such that 0 1.

We need then know simple bounds for the basic
hypergeometric functions with positive variables when
their positive parameters diverge to infinity in
certain ways.We establish these bounds by proving the

following simple lemmas.

Lemma 1.

AN N

(i) Q8a+1;b+1,b' et 15x,y)

A
(ii) ((atl;b+l.,b' e+l ,c' ix >y) A
(ill)fi)(a+l,a*;b+l,b' ;etl x oy A
(Iv) (.ISdA)(a+l,b+1;c+1,c’;x,y) A
(v) 2(M(at+1 ,b+1 e+l 5x) < At
where A =1/(1-q,®)( ) =and (g stands

function (p (as;b,b*;c;x,y)* with similar abbreviated

notations for other functions.

Proof. (i) Let _ be the ratio of the

coefficients of x*y” on both sides,then
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(1-9°)(1-qStm+n)(1_gb+mj

(1_gc+m+n)

<C 1 ,since (I-g°)/(l-qesm™)yn~ 1,
for all mand n and 0 <q< i. Hence the result follows.
The proofs of (li-v) follow in éxactly the same

way.

Corollary to Lemma I . Repeated application of the

results of Lemma I give

0) 1 r (U
(1) (a+r+s;b+r,b'+s;c+r+s;x,y) < (-mmmmmmmmmmmmmm- — (P
[a;r+sjLb;rl[b; ; sj ,

1
(i1) p(atr+s;b+r,b’+s;c+r,c’+s;x,y )<f -
(a;rtsj[b;r)[b' ;s] :

A

?
(i1 i)(’p(a+r,a’+s; b+r,b' +s;ct+r+s;x,y) <

jajrUa";sjLb;dLb';s] ,

o 1 XCV
(iv) (p (atr+s,btr+s;c+r,c*+s;x,y) <( ———-—o
[a;r+s]Lb;r+s] ,
(v) 2.'"MN(®+r,b+rje+r;x) < e
[a;r) [b;r]
Lemma I1.
| . (1-q°)
(1) Miatl,bietlix) < — Mj((a,bsesx)

(I-q )
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|
(1-q°)(1-qo+") </

1)
(H) C(a+1l ;b+l,b'+l ;c+2;x,y)-<" _
(I-qA)("_qa)("_qb)("_qb* j
where ¢ > a> A.
Proof. (1) As before

(l-qA)(*".qa+m *

Rm- = (1_q30)Yvi_qC+m) < 1, if ¢>a> A and 0< <1

Thus,the lemma is proved.

(I-qa™ ) {l-qb+>*)(I-qb’ +n)(I-qA)
R = U

c 1

under the stajred conditions.

The inequality follows.

Corollary to Lemma II.;'k
[c:21] "
(1) . atr,b+r;c+2r;x) -
(Asrj [A751]
where c¢)>a>A , c¢c/'b"A”

There 1s no loss of generality in taking C/'a or b
since ¢ diverges to infinity as c+2r and a and b only as
atr ,b+r. Hence c¢ can be easily supposed to be greater
than a and b.
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Loy A, [0;21]
(ii) (p(a+r;b+r,b'+rjc+2r;x,y)<—-— —_ —

[AsrJLasr][bsrjlatpij[b';rj

where cyPa> A .

Lemma II1,
[esm+n] > [e;mj [csn|
< |esmj s
where [0'jn] = (1+q°)(1+q°"*'"" ) e (1+q°+""1)

The proof is obvious.

Lemma IV . For m”r ;r an(3 m being positive
integers
[trjmj; < q-zr(r+1)
Proof.
t-t;mJl = j(l-q-")(l-g-"+h....... (1 g-rtm-1)|
= |gq-mr+ia(m_1).(_*""m (i_qr-m+1)]|
A Aemr+im (m-i) A AN&r(r+1)

for all m:*r , 0< q\ 1

Corollary to Lemma IV.
(1) For large positive values of r and s and 0 <qg<i

c: A, B, -r; A, B, -s; va < K q-&r(r+1)-i8(s+1)
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where K is a constant independant of r and s.

(11) Under the same conditions as for (1)
A, B: C, -r; C, -s ;
< K q-4r(r+1)-"s(s+1)
a , b; ¢ ; ¢ ;

(111) a,b,c,-r;
K g~27(*+1) , for large r and Ocqcl
d,e,f
(IV) a:ba_r;
K q-2r(r+1) » for large r and 0<qg<l
d,e
(V) a9b>C+ra_r; .
(K/[c;rj) q“2r(r+1)~ for large r
and 0 <q V1.
(vi) a,b,o,-r;
< K<¢j for large r and 0< gq< 1
H d,e, f-r
(vit) a,b,-r;
ql < for large r and 0 <q< 1
d,e-r
Proof of (i). The series on the left of (i) is less than

“(o;m+nl [Am] [Bim] L-rym] [A”;n] [B*;nj L-s;n] i

'Wbﬁ;opU;m] [i;n] [b;m] [a’;nj [b*;nj 1C;m+n]
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Alesm+n] [B;m] [A’ snd [B* ;n) it-s;n]|
qm-l-n
O;mj Lin| (a;ml lb;m]  sb) |b' ;nj [Cimrn]
AV O>- ;n | )-is(a™*]) « «
A smjil;n]la;m]|bN|a' ;nJLb’ ;njLC;m+n]
(by Lemma 1V)
< K q“2r(r+1) ~s(s+1)* since 0<g<l (by Lemma III).

The proof of (ii),(iii),(iv) and (v) follows

similarly.In proving (v) we have only to note that

Le;r] Letr;m] = [c;m+r]< [p;m]

Next,to prove (vi) we note that for m<r

(l-q7)
/\_I.;mjV (1V/\“m+!!1_q!/\!l/\)
<C for large r and 0 <f< {1

Hence the required result.

The proof of (vii) follows similarly.

Now,using the results of the lemmas and their
corollaries we can state the following intervals of

convergence for our expansions

x| <d in 6.5(1) s jx/< 1 in 6.5(2) H

tyKcj* in 6.5(1,2,5,4.) R
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IxI <min (l,q°"®"'"") , )yl Cmin (l,g°"®“”™") in ¢.¢(l),
6.6(5) 6.6(if) ;

|x|< min (1,2°-7-%) |, |yl<i in ¢€¢.6(2),6.6(5) and
6.6(6) ;

IxI< min (l1,qG-a-b) , ly|< min (Il ") in 6.6(7)

The conditions of convergence for the expansions
6*5(1)-6.5(4) bave been stated in the case K=0.For
other values of K , the convergence is even sharper under
the same conditions due to the presence of the solitary

quadratic factors of the type gqKn(n-1)" may also be

remarked that these conditions are quite stringent and
probably could be relaxed by proving finer inequalities |,
but this would require much more detailed and complicated
analysis than the possible importance of these expansions
seems to justify.For similar reasons the results have
not been extended to general values of q ,and only the
most interesting region 0<q< i has been considered.

The expansions could,however,be shown true for complex

q as well.'
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