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Abstract

Measurements of the tranéverse acoustic resistance of liquid helium-3 have
been made at pressures between 0.3 bar and 28.0 bar in the temperature
range 0.015 Kelvin to 1.0 Kelvin using a helium-3/helium-4 dilution
refrigerator. The method involved observation of the decay of a series of
echos generated in a piezoelectric rod immersed in the liquid, one end of

the rod being excited by a resonant cavity. The frequency of this cavity

was 242 MHz in the greater proportion of this work but similar measure-
ments were also made at 1048 MHz. The measurements at the lower
frequency have confirmed the existence of the collective oscillation known as
transverse zero sound in liquid heliurln—3 at higher pressures, as predicted by
the Landau Theory of a Fermi liquid. This has enabled an estimate to be
made of the magnitude of the symmetrical Landau parameter, Fzs . The
result obtained was in agreement with those of other experimenters who have

used a variety of methods to determine st.

A similar experimental technique has been used to study the longitudinal
acoustic resistance of liquid helium-3 in order to investigate the anomalously

S indicated by previous measurements of this phencmenon.

high value of F3
These measurements, both transverse and longitudinal, have mainly been
carried out on pure helium-3 (ie. better than 99.9997 per cent) but some data
have been obtained for the transverse acoustic resistance of helium-3 in
whiéh a small amount of helium-4 (about 1%) was present. These results

enabled the determination of the acoustic resistance of an assembly of

non-interacting Fermions.
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CHAPTER ONE

1.0. THE FERMI LIQUID

1.1. Introduction

The Landau theory of superfluidity in a quantum liquid of Bosons was
developed to explain the observed behaviour of superfluid liquid helium
(ie. HE II). The lack of a complementary theory in the case of particles
obeying Fermi-Dirac statistics resulted in the theory of a Fermi liquid,

an example of which seemed to be liquid helium-3 in what is now known
as the 'normal' regime. It is interesting to note that, in his original
paper of 1956, Landau allows for the existence of superfluidity in the
case of helium-3 by pointing out that, whilst the theory of a Bose

liquid requires superfluid properties to be exhibited, the converse theorem
that a Fermi liquid cannot be a superfluid is not generally true. The
validity of this far-sighted comment was demonstrated sixteen years later
when the superfluid phases of liquid helium-3 were experimentally observed

for the first time.

The importance of the behaviour of sound in a Fermi liquid stems from
Landau's prediction of new modes of sound propagation_at very low
temperatures. Fermi liquid theory suggests the existence of a series

of modes of which the first is identified as a longitudinal wave, similar

to ordinary, hydrodynamic, sound in a conventional liquid; and the second
as av transverse oscillation that resembles high-frequency shear waves in

a viscoelastic medium. These modes were given the general name
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'Zero sound' by Landau since they can, in principle, exi_st at the absolute
zero of temperature. The interaction forces between the quasiparticles
that form the Fermi liquid are described by a series of parameters and the
Landau theory showed that the properties of the zero sound modes would
depend upon the values of certain members of the series. Obviously, a
full knowledge of the properties of a Fermi liquid requires a complete
knowledge of the Landau parameters, However, if the theory is to be of
use in predicting the behaviour of real systems, knowledge of the first
few parameters only should suffice to enable good approximations to be
made. A study of sound in a Fermi liquid helps in the determination of
these parameters which may then be used to build-up a complete picture

of the system.

The longitudinal zero sound mode was first observed in 1964 by Keen,
Matthews and Wilks, and has since been studied in great detail.
Recently this mode has been used to study the superfluid phases of liquid
helium-3 and has been particularly helpful in unravelling the complexities
of the anisotropic 'A' phase. The history of transverse zero sound is much
shorter, being observed for the first time by Roach and Ketterson towards
the end of 1975, some time after the commencement of this work. The
problems involved in the detection cof the transverse mode are formidable
due to the extremely high attenuation in the liquid and this will probably
limit its usefulness as an experimental probe. In this work, transverse
zero sound was detected by observing the change in acoustic impedance
between a piezoelectric transducer and the liquid, following the method
employed by Wilks and his co-workers in their original work or; the

longitudinal mode.
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The full theory of transverse acoustic impedance is rather complex as
recently derived by Flowers and Richardson, and has been included iﬁ
some detail since a careful quantitative analysis of the experimental

data is necessary to clearly establish the existence of transverse zero
sound. The important contributions to the theory made by Fomin are also
discussed in detail and some attempt has been made to place these in
context within the framework of the complete theory. To make this work to
some extent self-sufficient, the theoretical discussion starts with an
outline of the Landau Theory of a Fermi Liquid and sets down some of the

more important results.

1.2. Landau Theory

The theory of a Fermi gas requires the interactions between the pa'rticles

to be weak. However, the theory has been applied in situations where

this requirement is not met and it is then impossible to det.ermine which
properties of the gas model correspond to the real situation and which are
intrinsic to the model. To overcome this problem Landau formulated the
theory of a Fermi liquid (Landau (1957) and (1959)) in which larger interactions
could be considered. The model was later extended by Abrikosov and

Khalatnikov (1959).

Landau considered a Fermi gas at a temperature below the degeneracy temp-
erature and introduced weak interactions between the particles. In the
diffuse zone, near the Fermi surface, the average energy of the thermally
excited Fermions is directly proportional to temperature. Therefore at a

sufficiently low temperature, known as the Dingle temperature, the energy
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indeterminacy due to collisions is small compared to thehaverage energy.
Also, at very low temperatures, the damping of the excitations (given by
the imaginary part of their self energy) will be small compared to the

real part of the energy.

Landau assumed the following; each energy level corresponds to a level
in a non-interacting system such that when the interaction is 'turned-on’
gradually, the atoms become quasiparticles, each of which possesses a
definite energy. The quasiparticles obey Fermi-Dirac statisfics and their
number always goincides with the number of particles in the liquid. The
momenta of the particles is unchanged as the interaction is turned on.
This leads to the guasiparticle being considered as a particle in a self-
consistent field of particles. In such a field, the energy of the system is
not simply the sum of the energies of the individual particles but depends
upon the distribution function of the particles. Landau therefore defines

the energy of a quasiparticle (6) by the relation :
§E = [€5dT (1.2.1.)

cfE is the change in energy density of the whole system resulting from
an infinitesimal change in the distribution function (n). . The

integration is over all momentum space so that ;

dr = Z2edpe dp dps
e +)

Because the quasiparticles have non-integer spin quantum number the
total energy will depend upon the spin states so Landau introduced the spin

matrix o~ . Bearing in mind that € and n are now matrices,
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equation (1.2.1.) is rewritten in a form that includes the spin dependence :

A‘E = -le- Sﬁ_f€Sno£t (1.2.2.)

Sf’f implies summation of the diagonal elements of the matrix product
and the factor 1 appears because both spin states are included in the

definition of dT .

Landau determines the distribution function n (6) by maximising the
entropy of the system subject to the conditions that the total energy and
total number of quasiparticles is constant. Since there is an exact
correspondence between the particles of a perfect Fermi gas and the quasi-
particles of @ Fermi liquid, the entropy equation for a perfect gas is used

to obtain the expression ;

n(€) =[e<p<§ﬁ#—) +l]#‘ (1.2.3.)

where /u. is the chemical potential and !( is the Boltzmann constant.
The difference between this result and the equivalent expression for a

Fermi gas is that, in this case, € 1is a functionof n .

The energy spectrum of the quasiparticles near the Fermi surface, G(P),
is obtained by assuming a temperature sufficiently low that € f""-/U-

Landau obtains the result ;

€ = pu+ 7%*([a—p,:) (1.2.4.)



where FF' is the Fermi momentum and m* is the "effective mass"”
of the quasiparticle which is defined, by analogy with Fermi gas theory,

thus ;

(_9_6_) =-£Fj§= U;: (1.2.5-)A

(The term in parantheses is evaluated at the Fermi surface).

1.3. The Interaction Function

By considering small deviations from equilibrium at temperatures just

above T = 0, the quasiparticle energy may be expressed thus ;

€ = €F(]Q‘£) + 8¢ (139:) (1.3.1.)

where €F is the Fermi energy.

Landau introduces the interaction function f , an operator dependant
upon momentum _F_ and spin coordinate o , by rewriting (1.3.1.) in

the form ;

€ = &fp.o) + %Qrf/f(]@»f:]9"9-")3“(]9'»2‘)47 (.3.2.)

where Sn =n -nF{o) ., that is, the deviation of n from its equilibrium value
at T = 0.
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To obtain an expression relating the interaction function to the effective
mass, Landau uses Galileo's principle of relativity which states that the

momentum éxriving at unit volume of liquid must equal the mass flow density.

! -
-IZ—SFG;/_\Pno['C _—é-SFr mg_E ndT (1.3.3.)

By taking the variational derivative of this expression with respect to

n , we obtain, at the Fermi surface ;

L= Lo+ PSS f(X)esX da (1.3.4.)

*

m m* o 2pnty

In this expression {(’X) is the value of f at the Fermi surface, where
F:.v., F' »,:,PF , ~and X is the angle between _P and _@f

The integral is now taken over real space ,J..O_ being an element of solid

angle.

1.4, The Landau Parameters

In general, the interaction function ‘F depends upon spin, ie:

» . !
f = f(..FsE ’ _P_:Q‘.)
Landau separates f into two components one of which is independant of

spin, the other spin dependant.



f(g,g::jo_',z') = {(.g) + C(TQ,TD')g.g’ (1.4.1.)

We are only concerned with quasiparticles near the Fermi surface,
therefore F ~ F' = FF and the two components of the interaction

function will depend only upon the angle pA between _'E and _F_'

ie f(d‘q,z‘;g',s_") = (%) + E(X)e. &

Landau now defines two new functions ;

~ e

d€

F(X) = (il) f(’X) FA(%)=(%£] C(x) .4.2.)

where the density of states is evaluated at the Fermi surface,
e al_”c) = P
€/ R

Since the magnitudes of the momenta before and after scattering are
roughly equal the invariance of the system under spatial rotation means

S A
that F and F depend only upon the angle X .. Consequently

they may be expanded in ILegendre polynomials ;

0 (%) = 2.F) PleasX)



{in FA(X) = ZF: Pn (COSX)

Landau's original notation was F('X) and q(%) respectively but it is
S A .
now more common to refer to F and F which are known as the

symmetric and antisymmetric Landau parameters.

S -
The symmetrical parameter F‘ can be obtained by substituting for

f(X) in (1.3 .4_,) and performing the integration to give ;

= -r%*(l + Fsc,osX)

L
m

where the bar denotes the average value over the angle.

S
S
Finally, since FleosX = 5- ., we have ;

_n:_‘_ = ;’\;(H E;_) (1.4.3.)

The effective mass may be determined from measurements of the heat
*
capacity, substituting m for m in the equation for the heat capacity

of a Fermi gas.

The first symmetrical parameter Ff is determined by measuring
the velocity of ordinary (hydrodynamic) sound in the Fermi liquid and

using the relationship derived by Landau ;

C2 = ?3. l + -F_S-
3m? |+ Ffcos X

where C 1is the velocity of sound in the liquid.
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Again, since Fs = F,f ’ we may write :
2 2 s
¢ = P [+ F (1.4.4.)
2 S
3m® ||+ F,/3

Both of these expressions (1.4.3.) and (1.4.4.) are exact by virtue of

cs S v . .
the nature of F and F’cosX (being averages over the whole solid
angle) and do not involve any arbitrary truncation of the infinite series of
Landau parameters. Therefore, the first two symmetrical parameters of
the series may be determined exactly by relatively precise experimental

measurements.

Landau's original paper also shows how the first assymmetric parameter may
be determined from measurements of the magnetic susceptibility. By
considering the change in energy resuiting from the application of a

magnetic field, he obtains the expression ;

X = p \dE/r (1.4.5.)

where XM is the magnetic susceptibility and 13 is the magnetic
moment of the helium-3 atom. The density of states is again evaluated

at the Fermi surface.

. A '
These three Landau parameters, F;s ’ Fls and F; , have now
been determined at pressures from the saturated vapour pressure up to the

melting pressure and have been fully tabulated by Wheatly (1975).
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We note, in passing, the range of values taken by these. parameters :

F? = 10.07 at 0 bar and 94.13 at 34.36 bar

F? = 6.04at 0 barand 15.66 at 34.36 bar
A

F, =-0.67 at 0 bar and -0.74 at 34.36 bar

A A
(NB: Wheatly denotes F, by Z, where Z,=4F, )

The importance of these values, and their dependence upon pressure,
will become clear in the following chapters concerning the propagation
of zero sound. In this work the values used in calculation were those
quoted in Table V of Wheatley's review paper (1975) ‘which were derived
from the values of m* contained in the same table. However, in a
recent publication (Wolfle; 1976) the Landau parameters have been
calculated using a different value of m* and it is unclear at this

time which of these values is to be preferred.
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CHAPTER TWO

2.0. OSCILLATIONS IN A FERMI LIQUID

2.1l. The Kinetic equation and the Fermi Sphere

Having produced the theory of a Fermi liquid, Landau then investigated
the nature of oscillations in such a liquid. In the previous section the
propagation of sound in the hydrodynamic regime was mentioned in which
£he product wT K| , where @ is the angular frequency of the
disturbance and T is the average time between quasiparticle collisions.
Under these conditions, provided that the temperature is not reduced too
far, sound will propagate in the liquid according to the laws of classical
hydrodynamics, the damping of the wave being proportional to T .
However, T is inversely proportional to the square of the temperature
so the damping increases rapidly as the temperature falls. Ultimately, a
temperature will be reached at which the time between collisions (T )
exceeds the period of the sound wave and the precpagation of hydrodynamic
sound will cease. This point is roughly equivalent to wT=1 .
Landau's theory of a Fermi liquid allows quantum mechanical solutions fn
this low-temperature region (known as the “collisionless" regime) which
show that a different form of wave may be propagated at temperatures down
to the absolute zero. For this reason he referred to these modes as "zero

sound” .

Landau starts by considering spin independent vibrations at absélute zZero
for which both the equilibrium distribution function (ng) and the perturbed

function (n ) are independent of the spin variables
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ie. n=ng + gn(]g) (2.1.1.)

A similar expression gives the energy of the perturbed quasiparticle in
terms of the Fermi energy ( €F ) and some small deviation from
equilibrium, Se(F) . Itis assumed that both Sn(]g) and SE (F) are

periodic in time and space such that they vary as exi:(l [_k_l: - ])

For a Fermi liquid, the Boltzmann equation is :
_9__r_a._+ ., 2€6\_(on . 2¢\ = I(n) (2.1.2.)
at QL‘_ 9_'Q 9_‘0_ ar

where L (n) is the collision integral.

Now 1(n) is proportional to Sn /‘t Therefore since we are
considering the region for which 7T > | , I(n) is very small and

may be set to zero at this stage. Following the method of Wilks (1967)

substitution for n and € yields the expression ;

k.o—w]dn = [k.u] One §
[ o w] n [*g]é_gg > (2.1.3.)

where U is the velocity of a quasiparticle which is given by

QE_E = U and also 9—4‘: = U (3_11_,:)
9% %
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Now, 86 may be expressed in terms of the interaction function, F,

to give

frgn ¢’ ciﬂ (2.1.4.)

Landau now introduces a new function V(ﬂ) ’ defined thus ;

v(n) =/c§'n(_f2) de (2.1.5.)

Therefore (2.1.3.) becomes ;

[k.g—w]gn - [g.g] Qf_l_r/F v'._@'(_{l_' = 0 (2.1.6.)
e 4T

The form of this equation implies that 5!!. is proportional to (QEF)
o€

so P may be expressed as the coefficient of proportionality,

ie Sn = Yy _aﬂF
0€

which is consistent with the definition of »(n) , equation (2.1.5.)

Thus ;

[k.g— w]v = [_k.g] Fop da (2.1.7.)
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(The interaction function F 1is taken at the Fermi surface. and therefore

depends only on the angle X between _P and TQ" ).

Landau then takes the direction of K as the polar axis of a set of
spherical coordinates in which the angles ¥ and 55 define the
direction of ]9_ (and hence, of U ) with respect to this axis.

Equation (2.1.7.) then becomes ;

cos [ F(X) 2){6:,/05'} %:% = (Q_— Cos-G) v(ﬁ—,ﬁ) (2.1.8.)

ku

The propagation velocity U is givenby: W = .‘Jf.

Therefore, representing the ratio U./U' by S, we obtain ;

(s—-cose) V{G—,;é) = CoSG-[F(X)l)(G:,}ﬂ')%_Q_' (2.1.9.)
T

That Sn, is proportional to ( 9“%96 ) means that a change in the
distribution function will result in a deformation of the Fermi surface with
the function @Y providing a measure of the amount of distortion.

( Y  has the dimensions of energy).

The simplest solution of (2.1.9.) is obtained by taking F('X) to be a

S
constant, E . The solution is of the form ;
Y — Acost .
(s- cosG)

where A is a constant.
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This solution represents a non—syrﬁmetric distortion of the Fermi surface
along the direction of propagation of the wave. For real solutions, s> |
which means that elongation occurs in the forward direction of propagation
and a flattening of the Fermi sphere in the opposite direction. Figure 2.1.
represents this solution which corresponds to the longitudinal mode of

zero sound.

2.2. General solution of the kinetic equation

Landau did not consider the general so‘lution to the ki.netic equation but

he recognised that it would permit the existence of different types of zero
sound, distinguishable by different velocities and angular dependences,
‘))(-9-, ;75) The solution was obtained by Albrikosov and Khalatnikov
(1959), by expressing F('X) as the sum of spherical-hérmonics, and has
been discussed in detail by Brooker ( (1964) and (1967)). Briefly, the

solution takes the following form :

Expressing F(’X) as a series of Legendre polynomials, equation (2.1.9.)

becomes ;

(S—COS'Q')V(‘G‘, 95) = COSQ‘IZE Pn(cosX)V(G-’,sé")i_g_' (2.2.1.)
" T

Using the addition theorem for spherical harmonics :

RO) = D PP ) ep{in(d-#)} (= imll 2.2
ma-a (n+ T}l
where an = P;m , and are associated Legendre polynomials;

[m[&n




- 17 -
Substituting in (2.2.1.) ;

(cosG—s)v{e,}é) + cosez.ﬁj‘@)e""fﬁ Q = o(2.2.3.)

nm

where

¢ = F (ﬂ—_‘m_‘)!/fam (¢) v (&', ¢) e’im?ﬁ,&_ﬂ' (2.2.4.)
(" + [m|)] 47T

Solving (2.2.3.) for v, Abrikosov and Khalatnikov obtain the result ;

& = _:__Q_ i zm¢ .2.5.
o GG TR AT e

Substituting this into (2.2.4.) and performing the integration with respect

to Id’ gives ;

—~ Iml)] " (g CoS'e', i "d.o = 8
F o= ml) ZB‘(G)(M) B [&)ﬁ@ Zé"”‘ 1 (2.2.6.)

(n + Im)]

This somewhat unwieldy expression represents a system of equations which
determine the quantities @km . The system separates into groups of
independent equations characterised by different values of m.,

Abrikosov and Khalatnikov recognised that each m value would correspond
to a particular dependence upon the angles 5 and 7; . The
waves with m=0 correspond to an angular dependence such that »
is isotropic in the plane perpendicular to _k_ whereas those with m 2

are polarized in the plane of _l_<_ .
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2.3. Physical interpretation of the 'm'’ values

Landau (1957) shows that the momentum flux tensor for a Fermi liquid is ;

ﬂik =/nF-L.3_;_ko€t‘-+ é\zk fneo('t’-E | (2.3.1.)

Putting in the zero sound solutions, it may be shown that the only non-

zero components of this tensor are TT33 , to which only the m=0

waves contribute, and T(B to which only the m=] waves contribute.
We are therefore able tQ identify the m=0 waves with longitudinal waves
(ie. pressure variation) and the m=| waves with viscous, or shear,
waves. We also note that waves with m22 do not contribute to the
transfer of momentum and so cannot be generated nor detected by acoustical

‘methods.

If X is regarded as a measure of the distortion of the Fermi surface
we see that the general solution discussed above gives 27 proportional
to cocs m¢ . Thus, for m=0 there.is no angular dependence
and the distortion of the Fermi surface is the symmetrical elongation
predicted by the simple solution in which F(X) is taken to be a constant
(Figure 2.1.). However, in the case of m= l, , we have 3 propor-
tional to COS¢ which results in an asymmetrical distortion as shown

in figure 2.2.
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propagation direction
of longitudinal wave

distorted surface

Fig. 21 Symmetric distortion of Fermi surface (longitudinal zero sound)

propagation direction
of transverse wave

Fig. 2.2 Asymmetric _ distortion (transverse zero scund)
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2.4. Dispersion Equation for Zero Sound

The Boltzmann equation is ;

- The more general treatment prevents the collision integral, I(n) ,
la
being set to zero. Abrikosov and Kha/\tnikov (1959) express I(n) in

terms of a relaxation time 'Z',' defined thus ;

It) = —$n
T

To ensure a smooth transition from the zero sound region into the
hydrodynamic regime, both momentum and energy must be conserved in

the quasiparticle collisions. Therefore, it is required that :

f]p_ IndT =0 and fe IndT =0

The number of quasiparticles is also conserved, so that :

fI(n) dT=0

These conditions imply that the coefficients of the Iegendre polynomials
F;(Cose‘), : P,o (cose') and Bl(r,os‘Q) in the expansion of I(n) must

be zero. Abrikosov and Khalatnikov define the relaxation time consistent
with these reduirements by subtracting out the coefficients of the corres-

ponding terms in the expansion of Sﬂ (.F)

Therefore, expanding 8n(7g) = Sn(f),-e-,;g) as a series of spherical

harmonics ;
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$n(p,4) = ZZSH:(P,e,g) P (cos8) cos m$

me=0

and the collision integral is then written thus ;

Iy = {gn.— (Sn)o— (gn)?cosﬁ' — (gn):Sine' COS%} (2.4.1)

d
T
Introducing this term into the kinetic equation (2.1.6.) we obtain ;

(kveas&=co) — kucos@*fF V' da
4TC

= _i%‘_{v—“){,-vlocos@'—’ﬂ:sfn‘e'msfg} (2.4.2.)

The ( Sn ) terms have been replaced by 3? terms because Py is
defined thus ;
Sn(p) =» 2
&
Since (anF o€, ) is a délta function at the Fermi surface we

‘have ;

gn(.F_) = P

Equation (2.4.2.) is the general equation for the dispersion of zero sound
which may be solved (after insertion of the appropriate value of m)
for the propagation constant k ’ and hence for the velocity of the

required wave.
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2.5. The dispersion of longitudinal waves (m = O)

Abrikosov and Khalatnikov (1959) solved the dispersion equation for
longitudinal waves using only the first two parameters of the Landau

s
series; Fos , F . However Brooker ((1964) and (1967))

s
has solved the same equation to include the term Fé and obtains the

result ;
g2 = (+R)0+FA) _ (+FA) _ 2 (2.5.1.)
301 + o)? 3(1 + ) az+W
where g = il =1 A= 1
ikTu;. YA

- 8 ln (1) —
w(§)_zn?§__+_i_) l

3(8) = (-3¢)w + |

The superscript '§' has been omitted from the Landau parameters since
only the symmetric parameters appear in this equation. The factor ‘'a.'

involves the parameter F;_s , being defined thus ;

a — _ /4
|+ B/s
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In the hydrodynamic limit, as «wT—> 0, . equation (2.5.1.)

reduces to the following :

[ef = §0eer

Ur

Therefore,

(_‘i)z = (+RNI+FA) _ 4 (1+FA) (1 + RANST  (2.5.2))
ko 3 IS

Taking zero order terms in T

(_@)2 _ RU+R+RA) _ p2 (+E)
3 Im* (I +5A)

This equation is Landau’s result for the speed of ordinary (hydrodynamic)
sound in a Fermi liquid (cf. equation (1.4.4.) ) which confirms that, in
the limit co't'-%o, . the zero sound wave corresponding to m=0 may

be identified with ordinary sound.

The imaginary component of (2.5.2.) may be used to obtain the absorption,

ie :

pARE 1_25:.%; I+ 7/3)(1+ R /6) T
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Comparing this with the classical damping of a wave :

£ ;55 4o

Z(JC

we have;

T = 5"., | (2.5.3.)
(30,2 (I'*'E/?,)(“‘E/S)

For values of WC not close to zero, equation (2.5.1.) must be solved

numerically.

Pethick (1969) has obtained an equation which relates the velocities of

Zero (Co) and hydrodynamic (C,) sound in terms of the Landau

parameters ;

cf—cz, _ _"t_(+F/5)
5 (1+FR)

Therefore, the transition from hydrodynamic sound to longitudinal zero
sound will be signalled by a change in wave velocity and values of F;_
may be obtained by éomparing the sound velocities in the limits T K|

(for ¢) and TSI (for C,).
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2.6. Dispersion of transverse waves (m= 1)

The case of transverse waves was briefly considered by Brooker ((1964)

and (1967)) and studied in more detail by Lea et al (1973)(a).However, the
s s

latter author considers only the Landau parameters F; and F, .

The following sets down the main results of these authors but incorporates

S
the interaction parameters up to F_;_ .

4 2
By simplifying equation (2.§.).) for m=1 , and carrying out the

integration, Brooker obtains the result :

w(-%%) + 1L = 3 (14 o) (2.6.1.)
F/3 — o+ 4a¥?(1+)

where the terms E L W and are as defined in Section 2.5.

and the term @ is again defined by the relationship :

@ = _PRM4
| + F;‘//S
In the hydrodynamic limit, as wC—=0 . Brooker reduces this equation
to :
R

k= w ) | (1+i) (2.6.2.)
g 20+ 73)(1+7/5) T
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If this expression is equated to that for a classical hydrodynamic shear

wave, we find that ; Y, :
k=|wel(+i)
2,

‘Where n is the viscosity of a Fermi liquid, and is given by ;

n = %(;Z‘u;z(l+ﬁ/3)(l+5/5) (2.6.3.)

(We note that this equation is a simple rearrangement of equation (2.5.3.)
which was obtained from the imaginary component of the longitudinal disper-

sion relation).

In the "zero sound limit", as W T—>00 , it is found that the existence
of a wave solution depends crucially upon the value of the interaction
function. Brooker ((1964) and (.1967)) shows that, as WT—-»os ,a

real solution, and hence transverse zero sound, will exist only if :

S
F o+ _3Fk 56 (2.6.4.)
| +F /%

s
(It will be noticed that, if Fz is set to zero, the condition reduces
s
to F: > 6 , a result first obtained by Landau (1959) ). If the values
for F,  for liquid helium-3 quoted by Wheatley (1975) are taken as
5

comrect, ie. F, =6.04 at the saturated vapour pressure, we see that

transverse zero sound should be propagated at all pressures provided that
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$ S
E_ is roughly zero. However, if Fy_ is found to be appreciably

greater than zero, transverse zero sound will only be possible for liquid
helium-3 under pressure. Furthermore, it appears that the properties of
transverse zero sound may provide the most reliable method for the
determination of F;_s. (The question of the existence of transverse

zero sound will be discussed in detail in the concluding chapter)

The velocity of the zero sound wave, relative to the Fermi velocity may
be determined by solving the dispersion relation (2.6.1.) in the zero sound
‘limit. That is, as wC—>00;

— wWT-1 _,

H )
itk T ko

We denote the ratio of zero sound velocity to the Fermi velocity, at

WwCT—+oco, by S.

Thus;

where Ce is the velocity of the transverse zero sound wave.

Also, as T~ o0 ; A=> 0 and equation (2.6.1.) reduces to :
) -1
Stlals+—1|(i-s)+L =2 |F+ 3Fs (2.6.5.)
2 (s-0 3 [+F/5

(The superscript has been omitted from F, and Fz since only

symmetrical parameters are involved).
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The equation (2.6.5.) may be solved numerically for {;ivgn values of
Fz to provide a relationship between F, and §, and
figure 2.3. shows the approximate value of § as a function of E
for the various Fz values indicated. We need not be concerned
with FZ < =2 - since, in liquid helium-3, the value of F, is
limited to about 15.6 by solidification at a pressure of 34.4 bar. Itmay
be seen from figure 2.3. that, for Fz =, . therelative velocity of

the wave increases from 1.002 at ﬁ 2 6.2 to 1.20 at F~=14.3, as

calculated by Fomin (1968).
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CHAPTER THREE

3.0. ACQUSTIC IMPEDANCE AND ZERO SOUND

3.1. Introduction

It was shown in the previous chapter how a change in wave velocity
would signal the transition from ordinary to zero sound. Classical fluid
dynamics relates the speed of sound to the acoustic impedance of a
medium, so we may expect a corresponding change in this property at

the transition. In fact, the change in acoustic impedance provided the
first experimental evidence of the existence of zero sound when it was
observed by Keen, Matthews and Wilks (1965) at a temperature of 92 mK
using longitudinal waves at 1000 MHz in a piezo-electric quartz rod.

A detailed study of the theory of the acoustic impedance of liquid helium -3
has been undertaken by Brooker ((1964) and (1967)), who included a careful
analysis of the experimental results of Keen et al, and by Gavoret (1965).
More recently, the problem of acoustic impedance in the transverse case
has been studied by Flowers and Riéhardson (1978) and by Fomin ((1968)
and (1976)). The following chapter attempts to outline the basic theory
of acoustic impedance, for both longitudinal and transve‘rse waves, and

sets down the more important results of these authors.

3.2. Fluid dynamics and acoustic impedance

Suppose a fluid is subjected to a periodic disturbance which gives rise to

a mass flow represented by the vector .j. . Let the momentum transfer

tensor be T'TLm and the momentum density be _F



- 31 -

Conservation of momentum requires that ;

Mim | 2p =0 (3.2.1.)
Jx,, t

Assuming that both Tﬂm and _P vary as cxr {L(_k N o wt)} we
obtain

LkTTLm = LQJ{DL

If we use the general result that momentum density _,Q is equal to mass

flux j_ and also that, at the boundary, j'_z Gg ,  where W

is the velocity of the boundary, we obtain ;

MW = ﬁ;—eg

The acoustic impedance is defined to be the momentum flow divided by

velocity, thus ;

7 = EL,_,. = @_C-_J_ (3.2.2.)
u k

ie: Z =c¢, (3.2.3.)

Where €, 1is the wave velocity.
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(It is convenient to express the acoustic impedance in this way as the

ratio Z/e assumes the dimensions of velocity.)

This expression assumes that the disturbance is wholly periodic and
whilst this is true in the hydrodynamic regime (w7 ->0), it is

not necessarily true for the zero sound regime, or the transition between,
because of the momentum transferred by excitation of individual quasi-
particles. The rigorous treatment of acoustic impedance by Brooker (1964)
shdws that, in general, the dispersion relation may have more than a
single solution for a given value of T . It would be expected
(mathematically, at least) that some discontinuity in the measurable
properties of liquid helium-3 would be observed whenever a solution
appeared 01; vanished but, experimentally, this is not the case. Brooker
resolves the inconsistency by pointing out that in addition to the collective
waves propagated, single quasiparticles may be excited by the moving
boundary. These quasiparticles then travel their free-path distance and
then give up their ordered motion in collisions with othér quasiparticles.
The contribution of these single particle excitations is such that, although
the total measured acoustic impedance is continuous, the separate
contributions need not be. The acoustic impedance of equation (3.2.3.)

is therefore modified by a factor dependant upon the energy carried away

by the excited quasiparticles as they are scattered from the boundary.

A further modification results from the nature of the scattering (ie. pure
specular, pure diffuse or mixture). This has been discussed in detail by
Bekarevich and Khalatnikov (1961) who show that the scattering mechanism

has a profound effect upon the energy transfer. However, the de Broglie

wave length for helium-3 quasiparticle s near the Fermi surface is of the
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order of a few Angstrom units whereas the surface of the oscillating
boundary will exhibit irreqularities greater in size by at least two orders
of magnitude. Therefore, in the practical case, we assume that the
scattering will be entirely diffuse. This conclusion is supported by the
thermal conductivity experiments of Betts‘, Brewer and Hamilton (1974) who
found that for liquid helium-3 in "Vycor" glass, the specular reflection

coefficient is zero.

The modifications due to non-wavelike processes may be expressed as

follows :

Let a fraction <F of the total mass current J be due to wave motion,

ie. j“ = fJ . Then, the non-wave component will be :
j=0-1)]
If we consider the pressure stress TT to be similarly divided into

components TT and TT; we have ;

(-]

Z _(L+T) _ Hzf+fh(t—f) (3.2.4.)
0 J Joo

If C, is the wave velocity,
Z = Cof +'_f_\'_|r(|-f) (3.2.5.)

We note that in general Z, C, Trn/Jl and f are all complex

q‘ua'ntities which become real in the limit T > | (zero sound regime)

and real or zero for WT & | (the hydrodynamic case).
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In the hydrodynamic regime the fraction *f — | , and only wavelike

processes contribute to the acoustic impedance. Therefore we obtain the

classical result :

Z.::Co
C

In the zero sound limit (T — ©0)  the measured acoustic impedancg/€
will be less than the zero sound wave velocity as a result of the single

quasiparticle contributions.

Bekarevich and Khalatnikov (1961) calculated the effect on the distribution
function of a disturbance composed of both wavelike and non-wavelike

processes and obtained expressions of the form ;

8n (6) = A(® exp {(L&)T"‘ I)t sec O — Lwt}
+ f “Blo,#) exp{(iat- gsect—iwt)dst (2.6

T+ C (6) exP{i(k 2- wt)}

where C = &_
Tu;

The first term is non-zero only for € < TC/Z. . The phase velocity
is U cos® . and the attenuation length is 'C'u": cos©. Brooker (1964)
identifies this term with quasiparticles reflected from the boundary at an
angle .o to the normal to the boundary. They then travel through the
liquid, carrying information about the motion of the boundary, at a velocity
U;_. for a mean time T. On collision with another quasiparticle,
the information is divided between the two mutually scattered quasiparticles
which then both contribute to Sn. The second term in (3.2.6.) is

identifiedwith this contribution. The final term is the contribution due to
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wave motion which is the only significant term at high temperatures,

the first two terms becoming negligible due to the decrease in T.

3.3. Longitudinal Acoustic Impedance

In the case of longitudinal waves, the boundary oscillating in a direction
parallel to the propagation direction of the wave , the Fermi velocity

is small compared to the wave velocity in the zero sound regime ( WT > )‘.
Consequently almost all of the disturbance set up by the oscillating
boundary is observed as zero sound waves. The acoustic impedance of

helium-3 in the longitudinal case may then be expressed simply as
Z = ee
where Q is the density of liquid helium and ¢ is the velocity

of sound in the liquid.

In the experiment of Keen, Matthews and Wilks (1965) a pulse of longitudinal
ultrasound was generated in a piezoelectric rod. This pulse experienced
multiple reflection from the polished. ends of the rod, giving up a small
amount of energy to the liquid at each reflection. The fraction of wave
energy lost into the liquid per reflection depends upon the acoustic

impedances of the quartz rod and the liquid.
‘ Therefore;

energy lost per reflection = | - Rz

where R is the reflection coefficient.
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R is normally given by ;

R =

ZL_Zsl
Z+ Zs

where Z; and Zs are the acoustic impedances of the liquid and

solid respectively.

(Although the experiment was performed under conditions in which classical
hydrodynamics may nof be applicable, this expression has been shown by
Brooker (1964) to be valid without assuming a wavelike transmitted mode.
The only assumption required in this case is that the liquid medium is semi-
infinite which is éatisfied in the case of liquid helium-3 by virtue of its

high attenuation.)

Therefore, energy lost per reflection is given by ;
2
F = I —_ ]ZL "‘Zs
Lt Zs

For . Z[ << Zs

More correctly, since Zl may be complex, we have, in general ;

- i

Z;

where /fe denotes the real part only.
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Keen, Matthews and Wilks (1965) measured the reflection coefficient by
observing the change in the rate of decay of the train of echoes produced in
the piezoelectric crystal when liquid helium-3 was allowed to cover either
one or both faces of the crystal. At about 92mK, the acoustic resistance/()
was found to change quite rapidly by about 19ms~! and this result has been
taken as the first experimental okbservation of the transition from hydro-
dynamic té zero sound. The results of this experiment were analysed by
Brooker ((1964) and (1967)) who showed that, whilst qualitatively in agreement
with the theory, the measured change in acoustic impedance was somewhat

larger than predicted.

Three possible areas of doubt are considered in an effort to explain the

discrepancy between theory and experiment. These are :

(i) the termination of the series of Landau parameters

after only two tems,

(ii) the approximation of the collision integral to a

relaxation time,

(iii) the validity of Landau theory at temperatures above

0.05 Kelvin.

The points (i) and (ii) both require careful mathematical treatment in the
regioﬁ of the transition but in the low-temperature limit (w’C‘ »l) the
collision integral is tending to zero so that (ii) is not significant. Also,
the conditions required by the Landau theory are well satisfied at the low-
- temperature limit so that (iii) may also be disregarded. The remaining area
of doubt was the magnitude of F,_s and succeeding parameters about

s
which little was known at that time. Brooker used E as a variable
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parameter and found that the theory and experiment were .in agreement
when Es was given the value 14.8 at the saturated vapour pressure.
However, doubts were later cast upon this value by the results of the
direct measurement of the attenuation and velocity of longitudinal zero
sound by Abel, Anderson and Wheatley (1971). Three independent estimates
of‘ F;S were obtained from their results, being calculated frbm the peak
attenuation, velocity change and relaxation time. Each of these indicated

S
F, =0.

3.4. Transverse acoustic impedance

The Work of Bekarevich and Khalatnikov (1961) included calculations of the
acoustic impedance in the transverse case but without considering the
effect of the parameters beyond Fs . Recently, a detaiied theory of
the transverse acoustic impedance has been produced by Flowers and

S
Richardson (1978) in which the parameter F; is included.

The experimental study of transverse zero sound is rather more difficult
than that of the longitudinal mode due to the extremely high attenuation
of transverse waves. Corruccini et al (1969) has shown that the
attenuation length of the wave is roughly the same as the single particle
mean free path length, and inversely proportional to the square of the

temperature.

- -1 2
ie : attenuation coefficient, & ~ | = (TU;) ~T
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The attenuation coefficient for the transverse mode is about 103 times
greater than thai of longitudinal zerd sound which implieé that direct
observation of the propagation of such a wave is very difficult. Further-
more, because of the similarity between the attenuation length and the
mean free path length of the quasiparticles, any experiment designed to
observe the zero sound wave will detect a contribution due to the
incoherent single particle excitations of similar magnitude to that of

the wave. As has been mentioned in section 3.2., the total disturbance
of the liquid will be a continuous function although the zero sound
contribution need not be therefore wemay not expect to observe a sudden
transition as in the longitudinal experiments. Fomin (1976) has pointed
out that the frequency and temperature dependences of the acoustic
impedance are similar for both wave and single particle contributions and
if measurements of impedance are to be taken as evidence for the
existence of transverse zero sound, a quantitative correspondence between
experiment and theory must be established. The full theoretical treatment
of transverse acoustic impedance, due to Flowers and Richardson (1978)

is very complex and only a brief outline will be presented here.

The theoretical method follows that of Bekarevich and Khalatnikov (1961)
but uses a two-time relaxation time approximation for the collision
integral in place of the single relaxation time of the earlier work. (The
two-time approach had previously been used in the theory of the
attenuation of longitudinal waves in a Fermi liquid by Pethick (1969).)

In the generalised expression for the collision integral, the terms
involving ‘( =0 and { = | vanish in order to conserve quasiparticle
nﬁmber and total momentum in collisions so that only distortions of the

Fermi surface corresponding to f} 2 need to be considered.



- Lo -

The {'-'- 2 distortions from local equilibrium are characterised by

a relaxation time 7T. For simplicity, the relaxation times associatéd
with higher values of ( (ie. 2‘3 y Ty ...etc)are taken to be equal and
are denoted by the second of the two relaxation times, T. The time

2'2 is obtainable from the hydrodynamic viscosity YL;

N=dnm G T

and T is related to ’Z‘z by a parameter §2 such that ;
1 =%
. T

(see Section 3.7.)

Flowers and Richardson derive a linearised form of the Boltzmann

equation for the system which they solve subject to the boundary conditions
appropriate to pure diffuse scattering. The solution enables the component
of the stress tensor corresponding to transverse waves (-ﬂ;}) to be
determined from which the acoustic impedance is evaluated using the

definition @

Z = Il (3=0)
w

where the boundary is in the xj plane, the oscillations being
polarized in the x direction. Furthemmore, by considering the spatial
dependence of the Laplace transform of the stress tensor, Flowers and
Richardson separate it (and hence, the acoustic impedance) into two
components; a discrete term representing the transverse zero sound and

a continuum due to the excitation of single quasiparticles.
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For the total transverse acoustic impedance, they obtain the expression :

Z= -np (5“’)[/’\“5] (3.4.1.)
sb LA+B

and for the contribution from transverse zero sound only ;

Z = —ZnFF (5"')2“" So) 3_(—-5,,)1 (3.4.2.)
b (s?-s%) L (4+B)

In these expressions ;

A= (5 +ss) B= (-b)s+])
(Sl + l) g-, (S,) (S;+ so) 3{,. (" S:)

But 3_ (s) and %(S) are functions defined such that :

+(— S) = I
¥ g (s)

Therefore,

g = (I-b
A

The function 7,__ (S) is given by the expression ;

% ~sg(s)

o) = (GO e

where ;

§6) = _L/' WA~ 6D B 4 s
|- (us)
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This integral may be evaluated numerically, At (r';) .being obtained

from :

At(—&)=l—bs?u2—_z3rb(l—sfuz) {Zuh- u(l-u?) [Z,-L(Hu)i ,-_7[]} (3.4.4.)

[—u

The function A arises out of the Laplace transform of the linearised
Boltzmann equation obtained by Flowers ahd Richardson. (The phases of the

logarithms in (3.4.3.) are defined to be zero for u.=0).

The function (s) is related to (s) as follows ;
e’

66 = 4, / 9.05

and is defined by the expression ;

AE) = 8=53) C(s) (3.4.5.)
§2—1
S, is given by:
S, = C(l)b—l ; % [SI] >0 (3.4.86.)
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Se is the root of the dispersion relation with positive real part and is

in
obtained &om the following 'wa]:

The propagation vector for the collective mode is ;

k = (S.a
U T
Where Se is a root of the equation A(S) =0, and A(s)

is given by :

Af) = l—%ﬁ—-%(l—-i) [(l-.'_)_% f?n('+5)+ l] (3.4.7.)

This equation always has a root in the hydrodynamic limit but the existence

of a root in the zero sound limit (&JZ‘-—?OO) is found to depend upon ;

F+ 3B g
1 i"'ﬁ-/j)

which is in agreement with the condition obtained by Brooker (1967) in

this limit, see Section 2.6.

3.5. Total acoustic impedance, Z .

Flowers and Richardson use the relationship

B =(=0b
A
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to obtain the following expression for the total transverse acoustic

impedance :

._Z_ = sz’(3+ﬁ) [(Sl+ ’)(SI_- so) e_s‘}“ —_ (Sv— ’)(Sr';' 55) 65|ﬁ] (3.5.1.)
eu,, (3+aF)s, [(s, + )(s,~ sa)e—s"6 (S = D)5+ S, &Y ']

3.5.1. Zero sound and hydrodynamic limits for FZ-*O .

s
As F; -0, a single relaxation time approximation may be sub-
stituted for the two-time approach in the zero sound limit so that §2—> |

Therefore §,— 0 and equation (3.5.1.) reduces to :

Lo _ —iwTE+E)[1 _y 4 )5(0) | (3.5.2.)
P B+aF) |5, |

where }l(o) is calculated from (3.4.3.) for 5=0 (The

subscript '’ denotes the value of impedance at the limit, wT—>00.)

This important result is equivalent to that obtained by Fomin (1976) for the

real part of the acoustic impedance ( R )} in the zero sound limit ;

.%g = 3:]2:: [Q—l+@] | (3.5.3.)

where m is the mass of the helium-3 atom and Yl is the real part of

the reduced velocity. The term @ is defined by Fomin thus :
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$ = 1 [t |IT u(l—»‘uz) du (3.5.4.)
T |2 (-~ utea's) - (Bi3E)

It may be shown by straightforward, though tedious, rearrangement that
®  is identical to the term f(o) in the equation of Flowerg and

Richardson. Then, by substituting the effective mass equation for m

and replacing )2 by S‘:i , - Fomin's equation (3.5.3.) may be

shown to be equivalent to equation (3.5.2.).

In the hydrodyﬁamic limit ( ¢« T—=0 ) equation (3.5.2.) reduces to the

classical result for acoustic impedance :
Z = (2_61
where k is the propagation vector of the coliective mode and is

defined by :

k = L $So
T

-

3.5.2. Zero sound and hydrodynamic limits for F,# 0.

By rearranging the exponential terms in the form of hyperbolic functions,
Flowers and Richardson express equation (3.5.1.) in the zero sound limit

( wT—>00 ) in two parts ;

(i) For -§<F, <0;

Zw _ 3+F fanh(oTﬁ+o(l) (3.5.5.)
F
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z
where c = l3§72| ’ :
R+ )
-
and K, = tanh (,-SD)OT
S~ 072
(ii) For F,>0;
Lo - 3+F .i.fo.n(o;‘}‘,-f-O(z) (3.5.6.)
oY% E oo

where Ky = fan—'[(' - So)OTJ

Flowers and Richardson note that if these equations are éxpanded in terms
of o7 for small values of " F, , - alinear dependance of Z,
upon F; is found to dominate. Consequently, the zero sound limit of

acoustic impedance provides a sensitive measure of Fz .

In the hydrodynamic limit (L)'C'%O) y §—>O0 , so the limiting

impedance is the same as that obtained in the F.‘;_= 0 case,

ie ; 7 = pw
%
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where, k=15

However, in this case, S, is determined by the dispersion relation
(3.4.7.) for K#O0. Flowers and Richardson show that, by

S 4
expanding equation (3 .4.;5’.) in powers of S and T , the root

of the dispersion relation is given by :

S°2= _.S_.E'_(‘O_Z;EZ
(1— F/3)

3.6. The collective contribution , Z.

3.6.1. E-=0 limit.

Again, as F;_—>O y 5,20 and equation (3.4.2.) may be expressed

in simpler form ;

C 3 / g
Z = | +fL) (15" (1=5) (/™ (3.6.1.)
&G K 3/ bss [G (s

where (;(So)=zl_?:. [3“)—‘) + Soz]

¥o
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3.6.2. Zero sound limit for F,#0.

The limiting value of the zero sound contribution to the acoustic impedance
does not simplify greatly but may be expressed in terms of hyperbolic and

trigonometric functions, as follows :

(i) For -9« F,<o.

Zoo = 34K (1 —5,) 3 A 8s°7l(s°) (3.6.2.)
eu} 3 F,(s}—sf) Q(So) cos’n(a;\{wol) -

(i) For K >0 , as above, but  c¢os (0'7 71', +o(2_) is

[} [
substituted for the term involving COSh

In these equations, X, and A, have the same meaning as

in equations (3.5.5.) and (3.5.6.) and q (So) is given by

2s, ds

Gsy == AA]"

$=s,

which yields, on evaluation of the bracketed term using equation

(3.4.6.) the rather cumbersome expression ;

G- 246- :){(e+§;:)s;"- 05 (5.6.3.)

+[s;’ - 3(s+s.‘)s:’+‘ssfs;’] zn(l+s;)}

-5,
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N.B. Richardson (private communication) has recently developed a simpler
theory of transverse acoustic impedance based upon a variational principle.
No details of this method are available at this time, but using a simple
plane-wave trial function, the variational principle vields the following

expression for the transverse acoustic impedance :

Z = 3+  (3.6.4.)

e 8(1+dx)

{28 e + (g )

where X=

In the zero sound limit, the real part of the impedance is given by :

P

w = _ (3+F) | (3.6.5.)
. DU ' l_,___l__f’_if'__)/
\F 8[ z(i+5/s

It is suggested that equation (3.6.4.) is accurate to better than one half of
one percent in the zero sound regime, although the errors in the hydrodynamic
regime may be of the order of a few percent, This new theory is apparently

being extended to include the longitudinal acoustic impedanca.
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3.7. The parameter §,.

The parameter Ez is not directly obtainable from experiment although
estimates are possible by consideration of the quasiparticle scattering
amplitude and a value of 0.35 has been suggested by Dy and Pethick
(unpublished; as quoted by Lawson et al (1974))‘. More recently, Wdlfle
(1976) has suggested that §‘2 /A2 0.28 , this value being obtained from
studies of the superfluid phases of helium-3. However, the importance

of a precise value for - ‘§'2 has been investigated by Flowers and
Richardson and they have found that the effect of _‘§2 upon the transverse
acoustic resistance (that is, the real part of the complex acoustic impedance)
is very small. Numerical calculations have shown that the acoustic
resistance changes by less than one per cent when Ez is changed by a
factor of 3. Consequently, in shear acoustic resistance calculations, the
actual value chosen is not significant and it is often convenient to set §,
to unity, which is equivalent to a single relaxation time approximation in

terms of the departure of the distribution function from local equilibrium.

-In contrast to this, the attenuation of transv‘erse zero sound (which is
related to the imaginary part of the acoustic impedance) is found to be
strongly dependent upon \§z . . Numerical calculations of the imaginary
part of the solution to the dispersion relation show that, in the zero sound
regime, the attenuation coefficient is roughly proportional to (‘g‘z)_l.
Clearly, a single relaxation time approximation is not justified in attenua-
tion calculations. Fortunately, in the work presented here, we are

concerned only with the transverse acoustic resistance so that any

dependence upon. ,Ez may be ignored.
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Furthermore, in the zero sound limit, the term involving §2 approaches
zero so that the limiting values of the acoustic resistance do not depend

upon the parameter g,_ (see equation (3.4.6.)).

3.8. The acoustic impedance of a Fermi gas

An assembly of non-interacting Fermions cannot support shear stress and
therefore no transverse waves can be propagated. However, a finite value
of acoustic impedance may still be obtained by treating the Fermi gas as the

limiting case of a Fermi liquid as the interaction function approaches zero.

If we consider Fomin's equation for the real part of the acoustic impedance

in the limit 7T ->o00,  we have ;

%=%¥E[Q_[+§] (3.8.1.)

| |
where 9—3 =1 /‘tut—‘ i "‘(l-ui) i du,
7 B PY G (R (T

(]

There is no transverse wave propagated, and the term (YI_-—- | ) disappears
from the equation. Now, in the definition of é s @S c._)?;‘—>oo,the second

term in the denominator becomes dominant ;

ie: Q=1 ﬁn"[_lﬂ_'u(l—uz) 3K ]Au.
T 2 (F-6)

o
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Thus, as F;—>O;

3 - _uf m"(E a(1-2) _ﬁ_) du
TC va 2/

Also, as F->O tan . F—%Fl , therefore ;

—

i
@ =_L E_g_ U-(l‘-'u.)alu. =k

T 2 6
2]

Thus, for acoustic resistance, we find ;

.

=.§ _:i_ﬂ‘__
6-{2:1 6mF

e

As the interaction function vanishes, m*—>m;

le: _R_-'-‘-__

flé

-

(3.8.2.)

This same result may be obtained by considering the rate of transfer of

momentum from the oscillating boundary to the quasiparticles by diffuse -

scattering. Transverse acoustic impedance is defined thus :

Z=”Zk/tfa

(3.8.3.)

whefe-”:kis the (ik ) component of the momentum transfer tensor and

U; is the velocity of the boundary (Polarization of the oscillations is

assumed to be in the { direction).
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The momentum transferred to a single quasiparticle = m* U; . Atany
instant, the number of quasiparticles moving away from the boundary will
be roughly n/?. ., where N 1is the number density cf quasiparticles.
Therefore, total momentum transferred in unit time is given by :

Momentum transfer / unit time = N m” Ui
2

The rate at which this transfer occurs is the average of the velocity
components UL of the quasiparticles (ngeing the direction of the
normal to the oscillating boundary) . Now the Fermi sphere is not

distorted but simply displaced by U in the direction L , so the average

—

of the UL components will be that for a half Fermi sphere. Thereifore,

average velocity in direction l_(_ is given by :

7:_3_0‘
k 3 F

Rate of transfer of momentum;

My =hLm s 3o
2 8

Therefore:

Z =3 nm*u;-

16
or,
¥*

L =3my

e [6 m
Again, since m*—=m as F— 0;
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CHAPTER FOUR

4.0. EXPERIMENTAL TECHNIQUES

4.1. Pulse-echo technigues

The basic techniques of reflection mode pulse-echo studies are well
established and figure 4.1. shows a block diagram of the arrangement used

in this work. A high-intensity pulse of radio-frequency energy is applied

to the electrode which induces a short pulse of high-frequency ultrasound

in the piezoelectric rod. (The details of ultrasonic generation by surface
excitation have been described by Lea et al (1973).(b). If the rod has end faces
that have been polished flat and parallel, the pulse will be reflected many
times as it éradually loses energy. Each ultrasonic pulse will therefore
generate a train of echoes, the amplitude of which decreases exponentially
as the number of echos increases. The loss of energyl is due to two main

processes,
(i) attenuation in the material of the rod due to scattering
processes,

(ii) losses due to energy transmission at each reflection.

Therefore any change in the decay pattern of the echo envelope may be

related to these losses.

In the experimental work described here, the piezoelectric rod was

surrounded by liquid helium and the shape of the echo envelope was

observed over the range of temperatures from 2.0 Kelvin to about 15 mK.
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After correcting for the temperature-dependent losses due to attenuation in
the rod, the energy losses due to transmission into the liéuid may be
determined from which the acoustic impedance is cbtained as a function

of temperature. The experiments were carried out using a helium-3/helium-4
dilution refrigerator constructed by the Oxford Instrument Company Limited.
At the start of this work the refrigerator was fitted with a dilution unit
having a nominal base temperature of 25 mK but this was later replaced by

a new unit capable of reaching temperatures down to about 12 mK.
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4.2. The sonic cells

The original sonic cells, constructed to designs by Dr MJ Lea, are shown

in diagrams 4.2. and 4.3. Their resonant frequencies were 24.2. MHz and
1048 MHz respectively. The piezoelectric rod was supported just above

the electrode which was fed by a resonant cavity attached to the base of

the cell. Resonance was achieved by a helical coil in the low frequency
cavity and by a quaIter—wave post in the high frequency unit. In both cases,
couplingwas by a capaciizitve loop since this method ensured thermal isolation
between the electrode (in contact with the liquid helium sample) and the r.f.
feed line (at a considerably higher temperature than the sample). The
resonant frequency was determined by the length of the hélix,and the
Q-factor by the size and position of the coupling loop. Both were the

result of trial and error, various loops being tested until a suitable resonance
characteristic was obtained. Both the resonant frequency and the Q-factor
differed appreciably from their room temperature values when cooled to

liquid helium temperatures but there was no significant change in the
resonance over the temperature range of the experiment. In the high-frequency
cavity, a closed loop was found to overcouple the cavity and this was

later replaced by an incomplete loop. The resonance characteristic of the
low-frequency (Mark I) cavity, at 0.5 Kélvin, is shown in diagram 4.4.

The inner surfaces of both cavities ., the coupling loops and the resonant
helix were electroplated with superconductive tin to reduce eddy current

heating.

The piezoelectric rod was originally separated from the electrode by a disc -
of porous paper but this was later replaced by a grid of human hair supported

by a ring of paper. This method ensured that the rod was completely
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surrounded by liquid helium and also reduced the gap between the rod and
the electrode , resulting in a high coupling factor. However, some
problems were encountered due to the rod rocking from side to side since
it no longer had a flat surface on which to stand. This caused small
changes in the capacitance between the rod and the cell which were
observed as variations in echo amplitude. The problem was simply over-
come by placing thin strips of paper between the rod and the sides of the
holder to prevent sideways movement of the crystal. The echo train was

then unaffected by vibration of the sonic cell.

Both cells shared the same top section since this avoided disturbing the
résistance thermometer contained in the cell. This thermometer was not
anchored to the cell but had strips of copper foil soldered to its contact
wires to improve thermal contact with the liquid helium. In addition to
the thermometer, a small resistive heater was mounted in the top section
of the cell so that thermal response times could be measured. The
connecting wires to both these devices were sealed-in with “Epibond"
heat-cured epoxy resin. The top section and main body of the cells were

sealed together with an O-ring of clean indium wire.

The major fault common to both these early cells was the limited surface .
area of copper in contact with the liquid helium. In the Mark I cell, the
contact surface area was about 5 cm? but considerably less than this for
the'high-frequency (Mark II) cell. If the thermal relaxation time, thatis,
the time required for the liquid helium to come to thermal equilibrium with
the cell, is T then this is given by the expression :
T=CR
where C is the net thermal capacity of the system and R is the

thermal boundary resistance. Using, for R . the Kapitza boundary
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resistance over the contact surface area, ie. R= Rk A , we find that
for the Mark I cavity, T = 0.84 second at 1.0 Kelvin. This time is
short compared to that required to make any observation on the sample so it
is reasonable to assume that the liquid helium is in good thermal contact
with its surroundings. However, as the temperature falls, the Kapitza
resistance increases as T~3 and we find that, at low temperatures, the
thermal relaxation time has increased such that T is about 55 minutes at
0.02K. Obviously with relaxation times of this order, thermal equilibrium
cannot be assumed and, as the cell is cocled, the temperature of the
liquid helium sample increasingly lags behind that of the cell. The

implication of this problem will be discussed further in section 4.7.

A new sonic cell (figure 4.5.) was designed with the aim of considerably
reducing this thermal relaxation time. The use of copper sinter increased
the surface area to such an extent that the surface area of the rest of the
cell was insignificant. The ratio of surface area to volume was roughly
T(«-Jz/a[ where d  is the diameter of the copper particles. In our
case, using 40 micron particles, the surface area of the sintered copper
was about 9.6 x 102 cmz-; a factor of 200 greater than the Mark I cell.

This implies a reduction in the thermal relaxation time by the same factor

to give;

T ~4.2ms at 1.0 Kelvin and

T =~ |6s at 0.02 Kelvin

Bearing in mind that the rate of cooling produced by the refrigerator at the
_l .
lowest temperatures is, typically, 1 mK hour at 30mK, these relaxation

times are quite acceptable and the sample may be taken to be in thermal
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equilibrium with the soﬁic cell at all temperatures. The fabrication of the
sintered copper section was kindly undertaken by the Oxford Instrument
Company Limited. The hole into which the rod was placed was cut using
a spark erosion machine to avoid damage to the sinter. This hole was
stepped , having a diameter of 3 mm at one end and 5 mm at the other,
so that, by inverting this section, the cell could accommodate rods of

either 3 mm diameter or 5 mm diameter.

The resonant cavity was basically the same as in the earlier designs except
that the res'onant helix may be replaced by a quarter-wave post so that the
same cavity may be used over a larger range of frequencies. A new top-cap
was designed for this cell to include provision for a CMN thermometer in
addition to the resistance thermometer. For this reason, the cap was
machined from "Epibond" epoxy resin,bonded to a copper flange. The
shape of the cap was designed to incorporate a right circular cylinder of
pressed cerium magnesium nitrate powder, and a shallow groove was
machined onto the outside of the cap to locate the necessary detection coil.
Again, ir;dium O-rings were used to seal the three sections together.
Considerable force was required to ensure that the cell was leaktight

after assembly and for.this reason stainless-steel bolts were used.
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4.3. Piezoelectric rods

4.3.1. Transverse mode experiments

The most frequently used material in pulsed ultrasonic studies is quartz.
(see, for example, the work of Matthews, Keen and Wilks (1965) and of
Abel, Anderson and Wheatley (1971).) However, this material is unsuitable
for transverse acoustic impedance work because the coupling constants

into the shear modes are very low (0,08 and 0.14 for the AC and Y directions,
respectively; see Neppiras (1973)). An alternative appeared to be lithium -
niobate (Li Nb 03) which has very high coupling constants to the two shear
modes of oscillation (0.62 and 0.68). However, the attenuation does not
fall below 2.0 x 1072 dB cm ™' at 500 MHz (Spencer et al (1967)) even at
temperatures below 4.2 Kelvin and this limited the useful echo train to
about two hundred transits beyond which the echos were lost in electrical
noise. Calculations had shown that about three hundred transits were
required to produce a change in signal height of about 0.5 dB, which was
considered to be the smallest clearly observable change with the apparatus
available at that time. Some early experiments confirmed the unsuitability

of this material.

The search for a piezoelectric material having a lower attenuation coefficient
for the transverse mode was rewarded when reports (Neppiras (1973), Spencer
et al (1967), Rehwald (1973)) describing the properties of bismuth germanium ..

oxide (Be GeOZO) were studied. Although the coupling constant into the

12
singleshear mode is, at 0.24, lower than that for lithium niobate, the

attenuation at temperatures below 4.2 Kelvin is extremely small. Spencer ‘

et al (1967) quotes a value for the attenuation at 4.2 Kelvin of
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0.14 x 10_2 dB cm_l at 118 MHz: a considerable improvement on lithium
niobate. When a suitable rod of BGO was tested it was found to be

capable of producing a train of more than three thousand echos (at 240 MHz)
b_elow 4.2 X although fewer than fifty were observed at room temperature.
Another advantage of this material was that, since its crystal structure

was cubic, pure elastic modes of propagation could be obtained which would
not be sensitive to crystallographic orientation. Furthermore, it has been
shown by Spencer et al (1967) that the application of an electric field in

any major crystallographic direction will couple only into the pure elastic
shear mode, making BGO an almost ideal material for transverse wave

studies.

For this work, a rod orientated with the direction of propagation of the
wave [110] parallel to the axis of the crystal (to an accuracy of better
than five minutes of arc) was used, the rod being 12.5 mm in length and
3.0 mm in diameter. The end faces were required parallel to within five

seconds of arc and were polished to optical flatness ( X/IO ).
4.3.2. Longitudinal mode experiments

Bismuth germanium oxide is not a suitable material for longitudinal étudies
because of the difficulty of generating a pure mode; the only longimdinal
mode is propagated in the [111] direction which also supports shear wave
propagation. To obtain a pure longitudinal mode along a principal axis, -

a rod of X-cut quartz seemed the most suitable since this material. offered

a reasonable compromise between the various piezoelectric parameters.

The rod bwas cut and polished to the same specification as the BGO rods

used in the transverse experiments.
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The echo envelope produced in both transverse and longit}ldinal cases was
not a simple exponential decay but revealed regularly-spaced maxima and
minima (see figure 4.6.). If the heights of the maxima are plotted as a
function of echo number the expected expcnential decay is apparent. Many
experimenters have commented upon the modulation of the echo envelope
and several theories have been proposed to account for this effect. BSmmel
and Dransfeld (1958) have studied the effects of off-axis propagation and a
computer simulation of echo patterns, taking into account the results of
axis misalignment and non-parallelism of the end faces, has been published
by Gates (1964). The theory of wave propagation in piezoelectric rods has
been studied in some detail by McSkimmin (1956) and Redwood (1959) and
the nulls in the decay patiern have been accounted for by interference between
the initial wave and a series of secondary waves produced by 'mode -

conversion’'.

In the longitudinal case, the reflection of the wave at the walls of rod
causes some energy to be converted into a transverse mode which then
travels across the rod at a lower velocity than the longitudinal wave. On
reflection from the opposite wall a similar mode conversion produces a
secondary longitudinal wave which travels with the same speed as the
original wave, but out of phase with it. The neit effect is an interference
pattern superimposed upon the exponential decay due to scattering . For
transverse waves, McSkimmin (1956) has shown that the simult;'aneous
excitation of several transverse modes of vibration will result in inferference
due to the slightly different propagation velocities of these various modes.
The use of a circular driving electrode, which excites the whole> face of the
rod, will inevitably generate several such modes and this is probably the

major cause of the modulations to the echo envelope.
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To excite a single transverse mode, McSkimmin suggests the use of an
elliptical driving electrode that favours excitation of the central area at
the expense of excitation at the edges of the crystal. Fortunately none
of these mechanisms are temperature dependent so that, provided the
frequency of the wave is constant and that all the measurements are taken
using a particular group of echoes, the actual shape of the decay pattern

is unimportant. Figure 4.7. shows a typical group of echos in BGO, at

242 MHz,
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4.4, Electronics

4.4.1. Introduction.

The early experiments were carried out using an analogue data recording
system consisting of Brookdeal "Boxcar" integrators driving an X-Y chart
recorder. The resonant cavity was driven by a cavity oscillator which was
repetitively triggered (at about 10 Hz). The resulting echo train was gated
such that the height of a particular echo could be integrated by the sign‘al‘
averager to give a d.c. level proportional to the average height of the
echos in thegate. Thus any change in echo height would be reflected in the
d.c. level and observed on the chart recorder. A similar system was used
to monitor the first echo so that any»voltage drift or change in the amplifier
gain could be taken into account. Synchronisation was achieved by using
the trigger output of a 'MATEC' pulse comparator as the master trigger and
the delayed trigger cutput of a Tektronix 585 oscilloscope to gate the
Bookdeal integrator after an appropriate delay time. The system worked
quite well and some useful results were obtained. However, two serious

disadvantages soon became apparent :

(i) The position of the integrator gate needed constant
adjustment to ensure that the same echos were integrated

throughout the experiment.

(ii) The fairly high pulse repetition frequency required by the
integrator caused considerable heating in the sonic cell
which prevented the refrigerator from reaching its base

temperature,
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The first of these problems, whilst inconvenient, was not insurmountable
and the task was made easier by fitting a second helical potentiometer to
the oscilloscope to improve control of the delay time. The second problem
was much more important in that it prevented data collection in the most
interesting range of temperatures. To reduce the heating effect of
repetitative running, a single-shot method of operation was devised in
which a single pulse was applied to the cavity. The resulting echo train
was momentarily displayed on the oscilloscope where it was recorded by
means of a Polaroid-Land camera. The present electronic arrangement,
shown in fiéure 4.8., uses this same basic method but with digital triggering
to improve stability and a more sophisticated data-acquisition system based
upon a transient recorder and digital store. The most important features of

the system will be described in the following sections.
4.4.2. Pulse generation.

The driving r.f. pulse was provided by a tuneable cavity oscillator. In the
lower frequency experiments a J.V.M. type 7600/l oscillator was used

V\(hich covered the frequency range from 225 to 400 MHz. This cavity, when
driven by its x_naximum permitted modulation pulse (3 kV), was capable of
producing an output power of about 2 kW but for the experiments described
here such power was unnecessary and the modulator level was never set at
greater than 1 kV. The high-frequency experiments used a similar cavity
oscillator, J.V.M. type 7440/1, which covered the frequency range from 960 .
to 1120 MTIz. Both cavities were fitted with decade counters to ensuré
precise and reproduceable frequency selection. The stability of the

oscillators, both in frequency and output amplitude, was found to be

excellent showing negligible drift over an operating period of several hours..
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The output pulse was fed via a calibrated ( 0 to 25 dB ) barrel-type
attenuator to a ferrite-ring circulator and then to the driving electrode

in the sonic cell through a rigid coaxial feed line.

The design of the coaxial feed line to the cell was important since it

was a potential source of heat leaks into the refrigerator. Materials having
very poor thermal conductivity were required so thin-walled cupro-nickel
tube was used; 5mm diameter for the outer conductor and 2mm diameter

for the inner. This ratio of conductor radii gave an impedance of about

fifty ohms, thereby roughly matching the impedance of the other components.
The outer conductor was thermally anchored at 1.2 Kelvin, 800 mK (the still)
and 20 mK (the lowest heat exchanger) by copper screw-threads, soldered

to the tube, which mated with copper bushes attached to the refrigerator.
The inner conductor must also be thermally anchored and this was
accomplished by the use of glass-to-metal seals. These consist of inner
and cuter coaxial conductors bonded to a glass disc which electrically
insuiates the two conductors whilst thermally connecting them. One of these
seals at each of the thermal anchor points ensured that the inner and outer
conductors were thermally linked. The importance of thermal anchors was
dramatically demonstrated during one experimental run in which the seal at
1.2 Kelvin had broken, leaving the inner conductor themmally isolated. The
result was a heat leak which prevented the refrigerator from cooling belbw
50 mK. Oitside the refrigerator, conventional fifty~-ohm coaxial cable was

successfully used at both 242 and 1048 MHz.

Each arm of the circulator was matched to its particular load by means of
' Weinschel double-stub tuners and a fourth set of tuners was placed between .

the cavity oscillator and the calibrated attenuator. Once these tuners had
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been set further adjustments were not necessary during the course of an

experimental run.
4.4,3. Amplification,

The echo pulses were detected by means of a superheterodyne system
using a Hewlett-Packard (10514 A) matched~diode mixer. The r.f. signal
from the sonic cell was first amplified by a high-gain, low-noise Avantek
amplifier before being fed to the mixer where it was combined with a local
oscillator signal to produce a 60 MHz intermediate-frequency signal.
Amplification of the complete echo train resulted in gross saturation of

the amplifier and distortion of the base line, therefore a radio-frequency
switching circuit was placed before the amplifier so that only the tail of
the echo train would be amplified. Typically, in the transverse experiment,
the switch was timed to open at roughly the twelve hundredth echo. The
point at which the switch opened was originally controlled by the delayed-
trigger output of the oscilloscope but this was later replaced by a digital
delayed trigger which will be described later. The time for which the
switch remained open was determined by a variable delay, controlled by

a helipot,

It was nacessary to record the first few echos (the amplitude of which
would vary little with temperature) so that corrections for variations in

the driving pulse amplitude could be carried out during analysis. This was"
achieved by dividing the signal before the r.f. switch and heavily
attenuating the unswitched signal to reduce the amplitude of the first few
(unampliﬁed) echos to match that of the gated (amplified) echos towards

the end of the train. The two signals were then combined before being
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fed to the mixer. Although the whole echo train was combined with the
gated echos, the unamplified signal is so small at, say, the twelve
hundredth echo, that compared with the amplified echos, its contribution
to the combined signal could be ignored. Figure (4.9.) should make

clear the operation of the r.f. switch and combiner.
4.4.4, Data acquisition

A MATEC PR 201 pulse comparator was used to detect the i.f. signal since
this instrument incorporated an excellent low-noise i.f, amplifier. The
output was fed to a Datalab 920 transient recorder where it was converted
to digital form and then storéd in a Datalab 4000-series memory. The
memory could be read out as analogue data onto a chart recorder, or as

a set of two thousand pure binary numbers onto magnetic tape.

This particular transient recorder was chosen because it offered a facility
by which the input signal could be sampled at two different rates, the
instrument switching rates at a predetermined point. Inr this mode of
operation, designated A/B, the first twelve hundred echos, for example, -
could be sampled at slow rate 'A' after which the recorder switches to its
fastest rate 'B' to analyse the next few echos in detail. In practice, this
was achieved by using an external trigger pulse to coincide with the peaks
of the first 1200 echos which resulted in a digitised record of the echo
envelope, stored in the first 1200 channels of the memory'. When the 1200th
pulse was received, the transient récorder automatically swi'tch‘ed to its
fastest sampling rate so that the remaining 800 channels could bé used to
storé a detailed digital record of the next few echos. This operation is

shown schematically in figure 4.10. Diagram (a) shows the echo train as
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observed on the oscilloscope (ie. the MATEC output) and (b) shows the

start of the train on an expanded scale.

The trigger pulses were arranged to coincide with the peaks of the first

1200 echos and diagram (c) shows the full sweep, the sampling rate

switching at the 1200th pulse. In fact, the r.f. switch was set to open

about fifty echos before the sample rate changed so that the actual echo
pattern stored in the memory appeared as in diagram (d). Figure 4.ll. shows
a copy of a chart recorder plot of the contents of the store after accumulating °
512 shots taken at constant temperature. The echo heights may be measured
directly from charts such as this, or deduced from the pure binary data

read from the store onto the Perex "Perifile" magnetic tape recorder.

4.4.5. Triggering and synchronisation

As the detection system became more sophisticated, the need for fast and
stable triggering became increasingly important and our requirements were
finally met by two instruments built to specifications prepared by Dr MJ Lea.
The design and construction of these units was expertly carried out by

Mr AK Betts,

The first of these devices is known as the "Digital Echo Synchroniser" and
it performs two independent functions. 'I'hga most complex task carried out
by this machine is the synchronisation of the transien>t recorder trigger

pulses with the individual echos. A 10 MHz crystal clock and a system of
digital pulse counters enables the selection of a clock pulse that exactly

coincides with each echo peak. The operator is therefore able to set an

initial delay time (using thumbwheel switches) to bring the first echo into
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coincidence with a trigger pulse, and then select the period required to{
bring trigger pulses into coincidence with the remaining echo peaks. This
operation is shown in figure 4.10.(b). The initial delay is variable in steps
of 0.1 /Asec from zero to 99.9 ]lsec. The period between successi.ve
pulses is variable from zero to 100 A sec in steps of 0.0001 }.Lsec, its
stability being limited- only by that of the crystal clock, which was quoted

as | part in 108.

A separate function of this machine is that of master trigger for the synch-
ronisation of the rest of the electronics. For this purpose a separate crystal
clock emits trigger pulses at a continuously variable repetition rate between
0.5 pulse sec"1 and 105 pulse sec_l. A refinement of this is the "Preset”
mode which allows a set number of trigger pulses, from 1 to 899, to be
generated at any required rate in this range. These pulses are used to
synchronise the modulator, the transient recorder and the "Digital Delay
Trigger". The latter instrument is a digital delay designed to replaced the
delayed-trigger output of the oscilloscope. It is again based upon a 10 MHz
crystal clock and emits a single trigger pulse after either a preset time
(between zero and one second) or after a set number of pulses have been
received. The delayed trigger was used to open the r.f. switch and to
trigger the oscilloscope so that the amplified echos could be observed on

an expanded timebase.
4.4.6, Control system.

The final specialised unit is an automatic control system, also designed by -
Mr AK Betts, to coordinate the operation-of the data ccllection apparatus.

This device, by means of a single push-button, initiates the following
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sequence of events :

(1)

(ii)

(iii)

(iv)

(v)

DL 4000 store is cleared

A preset number of r.f. pulses (typically 512) are fed to

the sonic cell at a preset repetition rate

The transient recorder scales and converts to digital form

the echo pattern resulting from each r.f. pulse.
The store accumulates the data from all 512 echo trains.

The contents of the store are output to the magnetic tape

recorder in the form of a discrete 'subfile’.

A time-switch was incorporated into the control system to enable the

cycle to be initiated automatically, at preset intervals, so that data could

be collected during overnight operation of the refrigerator. A digital

counter indicated the number of subfiles transferred to magnetic tape

during automatic running.
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unamplified echo envelope

amplified echo train

~

(a) As observed on oscilloscope.
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4.5. The Helium sample

The helium-3 obtained for these experiments was not particularly pure

as supplied (roughly 99.99% helium-3). The most serious contaminant
would be helium-4 since this could condense out to form a superfluid

film over the piezoelectric rod. This would reduce the energy losses into
the liquid to almost zero so that a helium-4 impurity, in a quantity
sufficient to form a monolayer, could completely obscure the viscous
losses into liquid helium-3. Keen et al (1965) had suggested that phase
separation would occur at some temperature depending upon the concentratic;n
of the mixture, and the heavier helium-4 would sink to the bottom of the
cell. However, in our experimental configuration, this meant that the
lower end of the rod would be in contact with helium-4 which would even-
tually cover the whole rod under the action of superfluid film creep. This
would be avoided by ensuring that the surface area of the system was
sufficiently large to prevent the formation of a monolaver of superfluid
helium-4. Several experimenters had used a highly porous glass, known
as Vycor, to trap the nomal component of superfluid helium-4 in studies
of fourth sound. A small cell containing a piece 6f this material (kindly
provided by Df DS Betts) was mounted in the helium fill-line, in thermal
contact with the mixing chamber, to increase the surface area available

for helium-4 condensation.

A more satisfactory solution to the problem of helium-4 contamination was
to improve the purity of the sample by distillation. A number of separate
processes have been reported but the apparatus described by Sherman (1966)
shown in Figure 4.12., which uses a continuous reflux process, seemed to.

be the most attractive, being simple to construct whilst producing a very
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pure distillate. A batch-processing technique was used-in which the still
was cooled to about 2.0 Kelvin (that is, slightly below the lambda-point)
in a helium-4 cryostat and charged with impure helium-3 from the store.
The temperature of the still was then raised by the heater so that the
helium-3 would be preferentially boiled off. This gas was collected in the
cryopump and later transferred to the "pure helium-3" store. The impure
residue was then pumped away and a new batch was condensed into the
still. The purity of the resulting helium-3 was measured using a M.A.T.
"Varian" mass spectrometer and, after distillation at about 2.5 Kelvin,
the helium-4 impurity was undetectable using the spectrometer at its
highest sensitivity. This was estimated to correspond to an impurity of

less than three parts per million,

The sarﬁple was pressurized using the system shown in figure 4.13. The
cryopump was opened to the helium-3 reserveir and then cooled to 4.2 Kelvin
by immersion in liquid helium-4. After closing valve 1, the cryopump was
removed from the helium-4 Dewar vessel and the helium-3 contained was
allowed to expand into 'tﬁe experimental cell. This expansion was carefully
controlled to avoid imposing a sudden pressure change on the indium seals
in the sonic cell , When the pump was completely warm and the pressures
were equalised, the pressure of the helium-3 in the cell could be observed
on the Bourdon gauge, Gl. To obtain the highest pressures required,the

cell was isolated by the valve V4 and a new charge of helium-3 gas was
drawn from the reservoir by the cryopump. This procedure was répeated
until the required pressure was obtainéd in the cell. The range of pressures
avgilable was limited by the minimum in the melting pressure curve which
has a value 28.9 bar and occurs at 0.32 Kelvin. Any pressure applied in

excess of this value would simply result in a plug of solid helium-3 being
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formed in the fill line at the point where the temperature was equal to
0.32 K. Consequently, the highest pressure applied during these

experiments was 28.0 bar.

When performing experiments on liquid helium-4, a rather differen;c sémple
handling technique had to be used. A preliminary experiment showed that
below the lambda transition, a superfluid film would form on the walls of
the fill line which extended to the point at which the temperature was
about 2.2 Kelvin. The superfluid film therefore provided a thermal link
between the experimental cell and a heat reservoir at the lambda temperature.
This heat leak was balanced by the cooling power of the refrigerator which
limited the minimum temperature to.about 0.6 Kelvin. One possible
solution was to insert a coil of capilliary tube, several metres long, to
inhibit the film flow but this was impractical due to the limited space
available in the refrigerator. An alternative to this was a pressure 'bomb'
as described by Abraham et al {1969). The arrangement is shown in

Figure 4.14, It was constructed very simply by using a 15 cm length of
2.5 cm diameter copper tube. End caps were solderedin place, the upper
cap having a soft copper tube fitted for filling the bomb and the lower cap
having a stainless steel tube for connection to the cell. The bomb was
mounted vertically, above the sonic cell so that the liquid helium would

fill the cell completely.

The bomb was pressurized with helium-4, using the system described above
after which the soft copper fill line was crimped and cut to isolate the
bomb/sonic cell system. The crimped end of the fill line was éealed

with soft solder to prevent leakage on cooling.
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The pressure of the gas in the bomb at room temperature was sufficient
to ensure that, at 4.2 Kelvin, the sonic cell would be completely filled

with liquid helium at the saturated vapour pressure.
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4.6. Heat dissipation in the sample

When pulses of r.f. energy are applied to the sonic cell some degree of heating
may result. In our early experiments, in which the pulses were applied
continuously, the heat input was sufficient to prevent the refrigerator from
attaining its lowest temperature. Under such conditions a considerable heat
flow from the sonic cell to the mixing chambér of the refrigerator must have
existed thereby possibly setting up a temperature gradient across the sample.”
Although the use of sintered copper in the Mark III cavity considerably
improved thermal contact, much of the data presented here was obtained

using the earlier cells. It is therefore important to ensure that the thermal
time constants involved arc sufficiently short to prevent the establishmeént of

a8 temperature gradient across the sample.

In the 'single-shot' mode of operation, a number of pulses are fed to the
sonic cell at a predetermined rate and the resulting echo trains are éccumulated _
by the transient recorder as explained in section 4.4.3. This procedure
(involving, typically, 512 pulses) is referred to as a 'single shot'. To avoid
local heating of the helium near the surface of the piezo electric rod, the

pulse repetition rate must be sufficiently slow to ensure that the heat resulting
from a single pulse is completely dissipated into the bulk liquid before the
next pulse is received. The time required for dissipation will depend upon

the time constant for heat flow from the rod into the sample, and the rate at
which the heat is transferred through the bulk liquid. These two periods limit
the rate at which the individual pulses of a 'shot' should be fed to the sonic
cell. In tﬁe following calculations quartz is taken as the rod material since

thermal data is readily available from many sources.

The time constant ( Tg ) for the rod to attain thermal equilibrium with the

sample is given by 'Z;fCR where C is the heat capacity of the rod and R
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is the thermal boundary resistance between the rod and liquid helium-3.
The specific heat of quartz has been given by Zeller and Pohl (1971) as
-7.3 -4
5.7x10 "T (Joule g K ') so for a rod of mass 0.233 g the heat capacity
7.3
(

is found to be 1.33 x 10 T Joule K—4). The thermal boundary resistance

is given by :

R=R /A
where Rk is the Kapitza boundary resistance and A is the surface area of
the rod. No data on the Kapitza resistance between quartz and liquid helium
has been published but Lounasmaa (1974) provides a table of values for
various materials in contact with liquid helium. Taking the upper limit of
this table, RkTS is about 0.1 ( quzw*'). Therefore for a rod 12.5mm long
and 3.0mm in diameter :

K E~4 2.9 X !02 KU-'S
T3

. . -4 . . .
giving a time constant ZE of about 1 x 10 ~ second. That is, the time required
for the rod to return to thermal equilibrium with the helium sample is about

0.1 millisecond, and is independent of temperature.

* An alternative approach is to assume that the energy remains in the form of
thermal phonons which reflect within the rod, losing energy at each reflection.
This energy loss into the helium may be calculated using the theory ofacoustic
impedance and an appropriate time constant obtained. If Z'sand Z, are the

acoustic impedances of the solid and liquid respectively, and if Z‘= >>Z,_ then;

fractional energy loss per reflection, x =~ _4__Z_t

Zs
5 .2 C . _ 3 2 -
For quartz, Zg= 151 x IO gen's and for liquid helium-3,Z,= 66 x [0” gem™s

Therefore, fractional energy lost per reflection, X , is about 7.6 x 10”3 .

-xnt
Now, power loss into the liquid = €
where I is the number of reflections per second, or if T’ is the thermal

. ~7
time constant; power loss = € v



Now, the number of reflections per second is given by ;

n = U

{

Where U; is the speed of sound in quartz and ‘ﬁ is the average

distance between reflections. Taking the average of the rod dimensions,
£ ~ 0.7 cm and the thermal time constant ( T ) is found to be

about 2.8 x 10_4 second. Therefore, using acoustic mismatch theory, we
find that the thermal relaxation time for the quartz rod in helium-3 is about

0.3 millisecond, in reasonable agreement with the previous estimate.

We now consider the time required to dissipate the heat from the rod into an
absorption layer of helium of thickness 8 . The rate of flow of heat across
the layer depends upon the thermal conductivity ( K ) and the temperature

differential ( AT ) and we have

Q = KA AT
$

where A is the surface area. But thermal boundary resistance is

given by:

R = AT
Q

. we have;
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The heat capacity of the absorption layer ; C = CVAS

where Cy 1is the specific heat at constant volume. Therefore the ‘

thermal time constant, T, is given by :
2
’Z‘ = RC = CMS
K
For liquid helium-3, K is largely independent of temperature and is

of the order IO—ZWK_lm_l, and the specific heat at 20 mK is about

- 2
3t Thus, T =12.74x10% 8 second.

12.7 Jm
The absorption length 8 is inversely proportional to the absorption coefficient
for thermal phonons 4 X . The peak absorption in liquid helium-3 is
proportional to frequency so, using the value obtained by Kirby and Wilks

(1971) we have, at 240 MHz: & = [400 cm

Thus, & =~ 7.14 x 10" m.

We find that the thermal time constant for dissipation of heat into the
absorption layer is about 6.5 x 10-8 second at 30 mK and is therefore quite
negligiblé compared to the time constant for the quartz rod. Allowing an
uncertainty of an order of magnitude, the period between pulses should not
be less than about 3 millisecond. In practice, the period used was typically

of the order 90_ms.
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4.7. Input power level

The insertion loss into the cavity was measured and found to be about 43 dB.
The output power of the cavity oscillator was measured by comparison with

a calibrated r.f. signal generator and was, typically, about +30dBm. The
power input to the rcd was therefore -13 dBm, or about 50 /uW . The pulse
width was 2 }"3 ’ so that the energy coupled into the rod per pulse was
about 1 x 10—10 Joule. We now consider the implications of this power input

at very low temperatures.

The short thermal time constant obtained above implies that the heat will be
quickly dissipated into the liquid helium sample. However, if a temperature
rise is produced in the piezoelectric rod, it must be ensured that the
maximum temperature reached does not exceed that at which attenuation in
the rod material becomes significant (sbout 0.35 Kelvin) . In their detailed
study of ultrasonic attenuation in quartz, Nava and Rodriguez (1971) found
that for longitudinal waves acoustic attenuation is the result of interactions
with both transverse and longitudinal phonons. However, the latter process
becomes increasingly dominant as the temperature is reduced and, below
about 10 Kelvin, attenuation of the longitudinal mode is due almost entirely
to collinear processes of the form: L + L — L. At these temperatures, this
attenuation is independent of frequency and an expression for the attenuation
coefficient is obtained which indicates a temperature dependence to the

seventh power; that is, the attenuation coefficient for this mode is given by :

o =~ 8.90x 10" (aT*+bT7) 4B ps
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where a and b are empirical constants. Now, the time constant
for thermal relaxation may be approximated to the time required to attenuate
the wave to one half of its original power and, at l Kelvin, this is found to
be about 6 x 103 second. This indicates the time required for the acoustic
energy to be converted into lattice vibrations and at very low temperatures,
20 mK for example, the time constant becomes too long to bephysically
meaningful. We therefore conclude that the temperature of the rod will not
increase as a result of the acoustic power input because the acoustic phonons
will be boundary scattered into the surrounding liquid before lattice excitation

can occur.

As an absolute upper limit to the possible temperature rise we may briefly
consider the classical heat capacity argument. Under conditions of constant
pressure we identify the heat input with an increase in the enthalpy of the
system and we have ;

T

total enthalpy increase, AH = C(T) dT
T

where 1; and 'I: - are the initial and final temperatures, respectively.

3
The heat capacity varies as |  ; thatis CV(T) = CTg. (C = const.)

therefofe; AH = -%—(Tul*"'rf)
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. ) -10
The total heat input to the system, AH, is 1 x10 Joule,

Therefore, inserting the heat capacity C,=1.33 x 10—7 Joule K_& and the value

of AH, we obtain ;

-3 4
TH-T* = 200 107 K|

If we take T, = 0.02K then Tf becomes negligible and we see that the
temperature increase due to a single input pulse, provided that all the energy
of the pulse contributes to the temperature rise, is about 0.2 Kelvin. We
note that even in this unrealistic case the temperature rise is not sufficient
to introduce the effects of temperature dependent attenuation by the rod

material.

To consider the possibility of temperature gradients across the helium sample,
we regard ;che sample as a cylindrical layer of liquid heliurﬁ—3 of thickness

o(‘ , the phonon absorption length. The temperature difference across
this layer due to the r.f. power input may be calculated using the expression

for thermal conduction across a cylindrical layer, ie:

AT=_Q (_L__L)
o ,
= 0.15 x |0 m.

§

)
R
3
I

(l’,—r',_)

K = thermal conductivity

Taking the absorption length 8 to be 7.14 x 10.6 m, as before, and

assuming that all the power input is converted into heat, we obtain the

-3
result; AT =1.26x10 K.
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Consequently, the temperature of the liquid helium sample may differ from

that of the bulk liquid by approximately one milliKelvin.

The time required for the liquid helium to come to thermal equilibrium with

the sonic cell was discussed in Section 4.2. and found to vary between about
one second at 1 Kelvin and almost one hour at 20 mK. Therefore it is inevitable
that the heat resulting from the individual pulses that constitute a single

shot , will accumulate in the liquid helium to some extent and an appropriate
period must elapse betweeri shots to ensure that this heat has been removed

by the refrigerator. .In practice, this delay occurs naturally since, as the
temperature falls, the rate of cooling decreases until, at the lowest
temperatures (that is, below about 30 mK ) the rate of cooling is of the order

of 1 mK hour_l. At such a rate of cooling, the time between shots will be about
one hour; this time is sufficient to ensure that the rod, helium sample and

sonic cell have returned to thermal equilibrium.
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CHAPTER FIVE

5.0. THERMOMETRY

o>.l. Carbon resistance thermometers

5.1.1. Preparation and mounting.

The use of carbon radio resistors for temperature measurement has been
widely studied and a review is to be found in the recent book on refrigeration
and thermometry by DS Betts (1976). In particular, the resistors manufactured
by Speer Electronic Components (USA) have been the subject of many
investigations including a very detailed study by Black,Roach and Wheatley
(1964). These resistors have been found to be particularly suitable and the
general concensus is that, in the temperature fange from 2.0 Kelvin to about
0.02 K, Speer carbon resistors provide a responsive,reasonably sensitive
thermometer that is reproducible from run to runto better than one per cent.
For the purposes of this work, high precision in temperature measurement was
not particularly important and 100 ohm (nominal) Speer resistors, suitably
calibrated, were used both for measuring the sample temperature and for

general monitoring of the refrigerator performance.

Many sophisticated methods of preparation have been suggested for these
resistors such as grinding away the protective insulation from the resistor
body and the removal of the superconducting tin-lead solder from the
connecting leads. However, none of these procedures have beenv shown
conclusively to improve performance and preparation of the resistors used in
this work was limited to the removal of the paint from the insulator body

with acetone.
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The most important thermometer, designated R3, was contained within the

experimental cell, totally immersed in liquid helium. Th;ermal contact to
resistance thermometers is thought to be mainly via the connecting wires
(see, for example, Black et al (1964)). For this reason, the surface area of
the leads was increased by soldering to them strips of copper foil which
were then wrapped around the body of the resistor, separated by strips of
insulating paper. The whole assembly was then enclosed in heat-shrink
sleeving to electrically insulate the resistor from the walls of the cell. The
thermal response time was measured at 40 mK by observing the change in
resistance when a pulse was applied to a bismuth-film heater situated nearby.
Heater power levels of approximately 0.2, 2 and 20 nanoWatt were applied
in turn, and in each case, the thermal response time was found to be less
than 0.5 second, indicating adequate thermal contact between the liquid

helium and the resistor.

For the other resistors, outside the experimental cell, copper turrets were
constructed having at one end a screw clamp to accommodate the resistor in
such a wa‘y ‘that the whole surface area of the insulator was in contact with
copper. After removal of the paint from the resistor a thin film of Apiezon
"N-grease" was applied and the resistor was tightly rolled in gold foil to
ensure a good fit when the retaining clamp was secured. However, the main
thermal link was again through the resistor leads so these were attached to
lengths of 30 s.w.g. enamelled copper wire which were then non-inductively
wound around the base of the turret, having first been smeared with "N-grease"

to ensure good thermal contact.

Electrical contact to all the resistors (and to the bismuth-film heater) was

by superconducting Niomax "CN" wire (type A61/05). This is composed of
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sixty-one filaments of niobium~titanium wire in a cupro-nickel matrix and

has an overall diameter of only 0,05 mm. Between the mixing chamber and

the 4.2 Kelvin level, the wires were thermally anchored, by winding around
0.8

copper posts, at 1.2 K, 668 K (the still) and at each heat exchanger. From

4.2 KX to room temperature, ordinary enamelled copper wire was used.

5.1.2, Power dissipation in resistors

At low temperatures, the deterioration of thermal contact may result in
self-heating of the resistors and rapid loss of sensitivity. Some degree of
Joule heating will always be present and the power dissipaticn in the resistor
must therefore be kept well below the rate at which heat can be dissipated
into the surrounding liquid. Several relationships between power input to
resistor and temperature have been proposed and an expression has been
obtained experimentally for Speer resistors by Oda, Fujii and Nagamo (1974)

which defines a power level, P , which is the power input to the

m
resistor for which the resistance falls by one per cent. For a 220 ohm,

Speer resistor, in the temperature range from 30 mK to 1 K, ’.?,‘ is given by

Ro=2T" pw.

At 20 mK tﬁis gives a power of about 1 x 10-7 /uW and this may be taken as the
maximum permissible power input to the resistor atthat temperature. Although
resistance thermometers have been used successfully at conside-rably higher
input power levels (eg. Black et al (1964) used powers as high as 10_6 Iuw

at 20 mK ) a reduction in the power level of at least one order of magnitude
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will further reduce the possibility of loss of sensitivity due to self-heating.

In practice, the power level at which self-heating occurs at a particular
temperature may be easily determined by observing the resistance whilst

the input power is slowly increased. The resistance remains steady until

the power input exceeds the maximum power dissipation from the resistor

into its surroundings, at which point the resistance suddenly falls due to
self-heating. This is a simple check that may be performed at low-temperatures
to confirm that the power level during temperature measurement is not

excessive.

5.1.3. Resistance measurement

The resistance of the various thermometers was measured using an A.C.
bridge known as the "Cryobridge S72" produced by the Czechoslovak Academy
of Sciences and available in this country through the Oxford Instrument
Company Limited. This instrument operates at 237 Hz using a Wheatstone
bridge with a phase-sensitive detector. The range of measurable resistance,
ﬁsing the built-in comparison resistors, was from 1 ohm to 112,21l ohm and
the accuracy quoted by the manufacturers is 0.1% at a power level of 10_12
Watt. The bridge voltage was variable in steps from 2 mV (r.m.s.) down to
ZO/uV. At 20 mK, the resistance of the main resistance thermometer
(R3) was 23.0 K. , which gives a power input (at the lowest bridge
voltage setting) of about 2 x 10—8/4W ; well within the power criterion
suggested by Oda et al (1974) corresponding to this temperature. At this

power level, it was possible to measure the resistance to better than 0.5%.

To avoid the possibility of errors due to earth-loops, neither the resistor
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nor the bridge were earthed and electrical connection was made using

screened cable, compensated for capacitance and kept as short as possible.

For the monitor resistors at higher temperatures (for example, the still and
1.2 K pot thermometers) a simple d.c. system was found to be adequate.
This consisted of a 1.0 /4A constant current source and a Keighley "155"
microvoltmeter, the output of which was displayed on a digital voltmeter.
At these temperatures (that is, above about 0.1 Kelvin) the power dissipated
is negligible and the convenience of a direct-reading instrument is more

important than precision of measurement.

5.2. C.M.N, Thermometers

The susceptibility (X) of cerium magnesium nitrate (CMN) has been shown to
obey Curie's Law down to temperatures of the order of a few milliKelvin and
therefore provides an excellent thermometric material at these temperatures.
The validity of Curie's Law, X=A/T where _A, is the Curie constant, over
a large temperature range enables calibration to be performed at high
temperatures against, for example, the saturated vapour pressure of liquid
helium-4. Having obtained the value of the constant /A, an extrapolation
to milliKelvin temperatures may be made with confidence. The measurement

of the susceptibility X has been the subject of a vast amount of published
work and the most common method is by some form of mutual inductance
bridge. For the purposes of this work a simpler and more direct method was
required since the thermometer was intended for use within the experimental

cell to ensure intimate thermal contact with the liquid helium sample.
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A thermometer had been proposed by Betts et al (1964) in which a pill of

CMN was used as the core of an inductance coil which then became the
induct{ve element of an LC resonant circuit, driven by a marginal oscillator.
Susceptibility changes in the CMN results in a shift of the resonant frequency
from its high temperature value, -f . Betts et al showed that the change

in frequency (Af) is given by the expression ;

Af - An
f,, T

where A is a constant and n is the packing factor of the salt pill.
This formula should be valid provided that the period of oscillation (w‘()
is less than the spin-lattice relaxation time of the salt ( T ); ie. wT>|.
The condition is satisfied for CMN below 4.2 Kelvin for frequencies of the

order of 1 MH=z.

The frequency shift of the tank circuit may be measured with a suitable
frequency metér. although the low level of oscillation requires an amplifier

to be inserted between the meter and the tank circuit. Many variations of
this thermometer have been published and it was decided to adopt the system
used by Harley, Gustafson and Walker (1970), as shown in figure 5.1.(a).
The circuit is derived from the oscillator designed by Robinson (1959), for
use in nuclear resonance experiments, but drastically simplified by the use
of a tunnel diode submerged in liquid helium. The oscillator was built on a
printed. circuit board about 25 mm square which was thermally anchored to the
1.2 K bath of the refrigerator to improve the temperature stability of the circuit
and to ensure that the distance between it and the probe coil was kept to a
minimum. Electrical connection between the coil and the oscillator was by

"Niomax" superconducting wire. The power supply, which used a 1.35 volt
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mercury cell, was mounted at the top of the cryostat, at room temperature,

and connection to the oscillator was by means of coaxial cable.

The Mark III sonic cell, described in section 4.2., was designed to include
provision for a built-in CMN thermometer of this type but the earlier cells

had no such provision. Therefore a calibration cell was constructed to

enable resistor R3 to be compared with a CMN thermometer without having

to remount the resistor. This cell is shown in figure 5.2. The calibration
cell was designed to fit the top-cap of the Mark I sonic cell so that the

CMN pill and the resistor would be close together and thermally linked by
liquid helium-3. The "Epibond" body of the cell was cast. onto the copper
flange using "Teflon" moulds and machined to shape after heat curing. The
cylindrical inner mould was later used to tamp the powdered CMN into place
so as to produce a right circular cylinder of 0.5 cm diameter and 0.5 cm height.
Moderate hand pressure was applied to compress the powder which resulted

in a filling factor of about 75%. Roughly 150 mg of crystalline CMN was

used which had first been ground by hand into a fine powder and passed
through a 50 }Lm sieve. Laboratory grade CMN was used and this was
obtained from Fluka AG of Buch, Switzerland. A probe coil consisting of
ninety turns of superconducting wire (Niomax CN, A61/05) was carefully wound
around the sample in a shallow groove machined on the cell body. This gave
a resonant frequency of about 450 kHz. The cell was sealed to the top—qap

using an O-ring of indium wire.

At very low temperatures some self-heating of the coil was evident and at
such times the power supply was disconnected from the oscillator to prevent

heating of the mixing chamber, to which the calibration cell was attached.

The self-heating may be reduced by decreasing the level at which the
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oscillator operates by means of a feedback loop. Figure 5.1.(b). shows the
variation of the marginal oscillator circuit used by Andres and Bucher {1974)
which includes a feedback loop controlled by a potentiometer. It is hoped
that this circuit, with its improved control over the oscillation amplitude,

will remove the problem of self-heating down to at least 15 mK.

An important point to note concerning the use of this type of thermom'eter is
that the frequency of resonance is affected by stray capacitance in the probe-
coil leads. The difficulties involved in keeping this capacitance constant if
the thermometer is remounted between runs, means that run-to-run reproduc-
ability cannot be assumed. For this reason the thermometer was calibrated
during each run by comparison with resistance thermometer values at high
temperatures (that is, between 1.0 Kelvin and 0.1 Kelvin) and was then used
mainly as a secondary thermometer to cross-check the resistor values at

lower temperatures.
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5.3. Nuclear orientation thermometer

A further check on resistance thermometry at low temperatures was provided
by a nuclear orientation thermometer. The theory and practice of this form
of thermometry has been described in the review paper by Berglund et al

(1971). Brieﬂy, the principle of the thermometer is as follows :

A If a nucleus decays by radioactive emission in the presence of a steady
magnetic field, the direction of emission of radiation is not random with
respect to the axis of precession of the nucleus. Each nuclear hyperfine
sub-level has a particular anisotropic probability distribution of emission
direction associated with it. The population of these sub-levels for a
collection of nucleii will be determined by the Boltzmann equation and the
directions of emission of radiation from the collection will thérefore take

up a pattern that represents the weighted average of the individual patterns.
At high temperatures (above, say, 100 mK) the sub-levels will be equally
populated and there will be»no resultant anistropy of emission direction.
However, as the temperature falls the relative populations of the sub-levels
will change and a nét anisctropy will become apparent. At the lowest
temperatures this anisotropy will depend wholl? upon the nuclear properties
of the decaying isotope but, in the intermediate range, it may be related, via
the Boltzmanﬁ factor, directly to the absolute temperature. It follows that,
over this range of temperatures, the direction of emission of radiation

from the decaying nuclei will depend only upon the abéolute temperature

of the material and may therefore provide a self-calibrating primary

thermometer. The range over which the anisotropy is temperature dependent

is, typically, from a few milliKelvin up to about 0.1 K.
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If 4 is the angle between the direction of emission of the
radiation and the orientation axis of the nucleii, then the normalised

intensity of emission is given by :

k(ma)

WFQ.> = ZB" (T) Uk Fk Pk(Cos '9')
k=0

The summation extends over even values only of k (because only the
direction of the radiation emission is important, not its polarization) between
zero and [((max), where k(mo.x) is the lesserof 21 (I being the nuclear
spin quantum number) and ZL where 2L is the maximum multipolarity of
the observed radiation. (For quadrupole radiation, L =2 and there_fore
values of k will be limited to k=2 and k=4 .) The factors involved

in the expression are explained below .

(i) The temperature dependence is wholly contained in the statistical

tensors BR(T) which are defined by :

s 3w (T Tk
26 P

m=-1 -m 0 /

B(T) = [(21+:)(2=<+ n)]

where P(m) is the probability of finding the parent nucleus with spin
component (M) along the orientation axis. The value of f)(m) depends

upon the hyperfine splitting Ahf ’ that is ;

F(m) _ ex Ptm_‘:%_hf}

e

m=-L l(T
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Therefore, P(m) will depend not only upon the decaying nucleii but also
upon the nature of the nuclei of the host material. The values of the
hyperfine splitting exhibited by the various combinations of source and
host materials used in N.O. thermometry are toc be found in Berglund et al

(1971), as are the values of Bk tabulated as a function of Z_\.He/ kT.

(ii) Uk are the angular momentum reorientation parameters which account for
all the transitions preceding the detected transition. This can be calculated
exactly provided that the angular momentum properties of the transitions are
known and that the lifetime of the decaying state is sufficiently short (< IO_’OS)

to ensure that the nucleus cannot reorientate itself before the transition occurs.

The parameters Fk are angular momentum coupling coefficients which depend
only upon the multipolarity (.l ) of the observed radiation, and the spins of
the initial and final states. For the two most common gamma-emitters used

. 60 54

in N.O. themometry, Co and Mn , the decay schemes are well
known and the products Ukmk are easily determined. This has been done

by Berglund et al (1971) in the two cases mentioned and yields the simple

numbers :
Uze 045'
“°Co: -0.42056 -0.24280
54
Mn: -0.49486 -0.44649

(iii) The angular dependence of the emission is expressed by the

normalised Legendre polynomials Pk (cos ©).
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The expression W(-G') assumes a point detector of radiation which will

not, of course, be the case in any practical thermometer. Thus, a further
factor Qk is introduced into the sum which accounts for the solid angle
subtended by a detector of finite dimensions. The correction is generally
small and tables of values have been produced by various authors for both

NaI (T‘() and CIe (Li) detectors. Berglund et al (1971) have
interpolated the data available for Na.I(Tf) detectors of various sizes in
the case of S4 Mn gamma radiation of 0.84 MeV énergy and have produced
a graph of correction factors QZ and Q4 as a function of subtended
angle. The corresponding corrections for 4cCo are slightly greater on
account of the higher energy associated with this emission but, for practical
purposes, the differences may be ignored. The theoretical angular distribution
W(@-) for the 1.33 MeV gamma emission from ‘DCO at the two temperature

extremes | =0 and T = o0 is shown in figure 5.3. The angular
sensitivity is a minimum for the directions £ =0° and & =90° and
the most common experimental arrangement is a counter situated at € = O° .
"The use of a single counter does mean, however, that the count rate at a
particular temperature must be related fco the 'warm'count rate (taken at

T =1 Kelvin, say) and the anisotropy is then expressed as a percentage of

this count rate.

The source used in this work was 6°Co in a single, needle-like crystal of
hexagonal cobalt. In such a crystal, provided that the needle axis is parallel
to the crystallographic € -axis, the magnetic domains spontaneously align
themselves to produce a well defined orientation axis without an externally
applied magnetic field. The maximum value of k is four for this source
so that the values of U,_Fé and U4a given by Be‘rglund et al (1971) were

used in the expression for W{e), as were the tabulated values of 32_ and 84
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by the same authors. The scintillation counter used was a 5 cm x 5 cm
crystal of Na.I (T() which was mounted at an angle £ = 0° to the
source axis at a distance of about 10 cm. This gave correction factors

@, =0.97 and Q4= 0.95. Taking the hyperfine splitting to have
the value quoted by Berglund et al, that is, A},F/k = 6.23 mK, a table
of percentage anisotropy as a function of temperature (T) was produced from

which the curve,figure 5.5.,was plotted.

The experimental arrangement is shown in figure 5.4. It is obviously vital
that the 'warmm' count rate, to which the anisotropy is compared, does not
change during the course of the experiment as a result of electronic drift in
the counter or amplifier. Consequently, the window of the analyser must
always be kept aligned with the peak of the fadiation spectrum. If a multi-
channel analyser is available, the count rate corresponding to the radiation
peak may be determined by selecting the appropriate channel. If not, then a
stabilised single channel analyser, such as the "Elscint"” SCA - N - 3, must
be used. This instrument has an energy window that is divided into two equal
subchannels. The 'baseline' and 'window' controls are set such that the peak
coincides with the centre of the analyser window. The lower subchannel then
counts the pulses resulting from one half of the peak whilst the upper sub-
channel counts those aue to the other half. If the two subghannel counting
rates are equal, the peak is properly aligned within the winciow. However,

if the peak drifts to one side of the window the count-rates from the two
subchannels will differ and a signal is produced proportional to the difference
in rates, which automatically adjusts the baseline and the window width to
compensate for the drift. Therefore the single-channel analyser is 'locked-on'
to the photopeak and the count-rate is stabilised against long-term drift

in the counter and analyser.
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The counting time dependé largely on the strength of the ;ource and a
compromise must be made since the heating effect of a very strong source
(due mainly to the absorption of assoéiated Ié-— decay and X-ray emission)
may be significant at very low temperatures. In this work, a source strength
of about 5 /uCi produced about 9 x 104 counts in a counting period of 400 s

which represented a statistical uncertainty = (¥#N) of about 0.3%,
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5.4. Calibration of resistance thermometers

The main thermometer used throughout this work was a Speer 100 ohm carbon
resistor, designated R3. As mentioned in section 5.1., this resistor was
totally immersed in the liquid helium sample in preference to being thermally
anchored to the copper body of the experimental cell. It was hoped that the
intimate thermal contact achieved in this way would ensure a more precise
correspondence between the temperature of the liquid helium and the measured
resistance. The rapid response to heat pulses, applied directly to the sample
bya small heater, appeared to confirm this thermal behaviour, as noted in
section 5.1. However, the accurate calibration of this resistor proved to be
a problem that remained unsolved at the termination of the experimental

work and this created some difficulties in the analysis of the data collected

at the lowest temperatures.

At fhe start of this work, the only thermometry available in the low-temperature
regime (below, say, 1.5 Kelvin) was two Speer resistors, known as R3 and R4,
which had been calibrated at the University of Lancaster in 1972. In the case
of R4, this had been performed with the resistor mounted on a copper post,

by comparing the resistance with the susceptibility of cerium magnesium
nitrate (CMN) using a pair of inductive cecils and a mutual inductance bridge.
At higher temperatures a comparison had been made with the saturated vapour
pressure of liquid helium-3 and, at still higher temperatures, with the s.v.p.
of liquid helium-4. A combination of these methods enabled R4 to be
calibrated against temperature in the range from 4.2 Kelvin to 24 er. This
was extended at Bedford College using the CMN thermometer described in
Section 5.2. and this low-temperature calibration was fitted to the Lancaster

data to provide a smooth calibration curve down to about 16 mK. This had
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been checked from time to time, both at Lancaster and Bedford College,

in the 100 mK region by noting the indicated temperature of the transition
to superconduction in a sample of Iridium and no significant change had

been observed.

The basic calibration for R3 between about 2.0 Kelvin and 30 mK was obtained
at Lancaster University by direct comparison with R4, both resistors being
mounted on copper posts, in vacuum. A plot of (0310 R3 against
—(0310534 produced a good straight line so that when R4 had been extended
to 16 mK, an extrapolation of the R3 calibration to this temperature was
carried out. This enabled a working calibration of R3, down to 16 mK, to be
plotted and it was this provisional calibration that was used in the analysis
of the experimental data. This calibration will in future be referred to as
R3 (1972). The inadequacies of this calibration, due to the indirect methods
employed were appreciated but little could be done to improve the situation
as no other method of temperature measurement below 100 mK was available
with which to check the calibration. The most doubtful aspect of the
R3 (1972) calibration was that it depended upon the resistance characteristic
when in thermal contact with copper whereas, in the experiment, the
resistor was immersed in liquid helium. A direct calibration of R3in liquid
helium was therefore required and the calibration cell described in section
5.2. was constructed. Unlike the CMN sample used in the calibration of
R4, in which the powder was assumed to be in thermal contact with a mass
of copper wires, the sample in the calibration cell was in direct contact
with the liquid helium which, it was hoped, would fully permeate the

loosely-packed pill.
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The calibration cell, containing R3, was mounted on the mixing chamber
of the dilution chamber along with a 470 ohm Speer resistor (R8), a
germanium resistance thermometer (both of which were uncalibrated) and
the other calibrated resistor, R4. With the cell open to a reservoir of
helium-3, simultaneous measurements of these various resistances and
the resonant frequency of the marginal oscillator were made during several
slow sweeps over the temperature range from 4.0 Kelvin, to about 30 mK.
Each sweep was treated as a separate run due to uncertainty in the
reproducibility of the CMN thermometer. However, over a period of two
days, the change in resonant frequency at 4.2 Kelvin was only 2 Hz in

450 MHz.

To ohtain the calibration, the germanium resistor and the 470 ohm Speer
resistor (R8) were mounted in a helium-4 cryostat and calibrated against the
saturated vapour pressure of liquid helium-4, using the standard Tsa
calibration, in the temperature range from 4.2 Kelvin to about 1.4 X, and a
curve of R8 against inverse temperature (T_l) was produced. The earlier
calibration runs in the refrigerator had yielded a straight line relationship
between the resonant frequency of the CMN circuit and R8 in the range 2.0 K
to 0.9 K so that, by combining these results a relationship between
resonant frequency and T—l was obtained. This proved to be a good straight
line so that extrapolation down to 20 mK was possible and the full relationship
between resonant frequency and inverse temperature was determined. This
relationship was then used to convert the R3 versus resonant frequency
information into a calibra'tion of R3 across the complete temperati.lre range

from 4.2 Kelvin to 20 mK. This calibration b.ecame known as R3 (1977).
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5.5. Comparison of calibrations : R3 (1972) and R3 (1977)

The two calibration curves R3 (1972) and R3 (1977) in the low temperature
region are shown together in figure 5.6. At temperatures above 100 mK there
is no significant difference between them but below this temperature a
discrepancy appears which increases to about 7.5 mK at the lowest
temperatures. A discrepancy of this magnitude was unexpected and
disappointing and it was decided that a calibration run to compare R3 with
the nuclear orientation thermometer should be carried out in an attempt to
resolve the conflict. Unfortunately, this was not achieved due to serious
problems with the dilution refrigerator which prevented further experimental

work from being carried out.

It was suspected that the difference between the low temperature resistance
values was due to the 1972 calibration being carried out with the resistor

in vacuum whilst R3 (1977) had been produced with R3 immersed in liquid
heliun-3. However, without an independent check on the 1977 values,
carried out both in liquid helium and in vacuum, it would have been premature
to rely upon the R3 (1977) calibration alone. It was therefore decided to
complete the analysis of the experimental data using the 1972 calibration,
which had been independently checked several times (although not with the
resistor in liquid helium), whilst being fully aware of the large uncertainty
that had appeared in the low-temperature region. In some cases the data were
analysed using both calibrations to indicate the differences that emerge in

the final results, This will be discussed in detail in the next chapter.
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CHAPTER SIX

6.0. ANALYSIS AND CALCUILATIONS

6.1. Data Collection and Analysis

6.1.1. Introduction

The basic data consisted of a series of measurements of echo height as a
function of temperature. The measurement was made in three’ ways, at
different stages during the course of the experimental work, and these
methods have already been described in section 4.4. .The data collected

by the single~shot methods (either by photographs of the oscilloscope screen
or by digital storage) differed from that collected in the early runs using the
"Boxcar" integrators, and required rather different methods of analysis.

For this reason the two techniques will be described separately.
6.1.2., Repetitive-pulse data.

The raw data in the early experimental runs was in the form of a conti‘nuously
varying d.c. output from the “Boxcar" integrator as described in section 4.4.
This output was used to drive the vertical axis of a chart recorder whilst the
horizontal axis was driven by the output from the resistance bridge to provide
a temperature scale. The chart resulting from a typical temperature sweep

is shown in figure 6.1. In this case the data was collected during a warming-
up period of ab‘ogt two hours, the value of the resistor R3 being shown along

the bottom edge of the chart. The vertical scale (in decibels) was obtained

by introducing known attenuation into the signal line, at constant temperature,
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by means of a calibrated attenuator. "A calibration curve,.derived from
this scale, was used to enable the data to be replotted in terms of signal
amplitude and, by dividing this by the qumber of reflections suffered by
.the chosen echos, yvields the loss of energy into the liquid helium at each
reflection. Figure 6.2. shows this energy loss (in dB reflection_l) as a
function of temperature for the same sweep as the raw data plot (figure 6.1.)
combined with similar data from another sweep, carried out at higher
temperatures during the same éxperimental run. The fall in signal with
increasing temperature at high temperatures (above about 600 mK) is due to
temperature dependent losses in the piezoelectric rod. These losses were
measured by observing the change in echo height when the experimental
cell contained only a small amount of helium-3 gas (to ensure thermal contact
between the rod and the cell). It was then possible to correct the data to
account for the temperature dependent losses at high temperatures and the
corrected curve is also shown, by the filled circles ( @ ), in figure 6.2.
The zero on the vertical scale is arbitrary at this stage since we are

concerned with the change in energy loss into the liguid.

6.1.3. Discrete-point data.

The analysis of the single-shot data was more direct in that the raw data
consisted of oscilloscope photographs of a particular group of echos (as
shown in figure 4;7.) or , in the major proportion of the work, a chart
recorder plot of the echo pattern obtained from the digital store as described
in section 4.4.3. (A typical output charf, showing the echo height at about
30 mK, is shown in figure 6.3.) Each datum poiﬁt therefore consisted of the

measured average of the heights of the echos, from either the photographs
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or the chart recorder plots, at the particular temperature at which the shot
"was fired. The advantage of accumulating a large number of echo trains
(typically 512) at a particular temperature in the DL 4000 store, is illustrated
by the noise level between the echos in the photographic data (figure 4.7.)

compared with that shown on the chart recorder plot (figure 6.3.).

To ensure that the measured echo heights could be easily related to an
energy loss in decibel, the output characteristic of the diode detector was
plotted by measuring the height of a 240 MHz calibration pulse, from a
Marconi 801 B/l pulse generator. In this case the height of the pulse as
received was determined as an integer ( h ), from the digital store, and
compared with the input pulse amplitude as indicated by the calibrated
attenuator setting on the pulse generator (in dBm). The ;esults are shown
in figure 6.4. The straight line is a square-law, representing the
expression 20 logmh, where h is the measured signal height in
arbitrary units. The law is closely followed down to a signal level of about
-99 dBm at which point the sensitivity of the detector begins to diminish.
However, the echo height was; normally somewhat greater than this, usually
in the range from -70 to -80 dBm, in which region the detector output‘
conformed well to the square law. The change in echo height could therefore
be expressed in decibel simply by taking the logarithm of the measured
height and multiplying by twenty. In practice, several adjacent echos were
measured and the signal level was taken to be the average of the individual
echo heights. Again, the data were corrected for temperature dependent
losses and expressed in terms of energy loss per reflection by dividing the
signal height (now in decibel) by the number of reflections experienced by
the middle echo of the chosen group (ie. divided by (2n-1) where

N is the echo number).
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6.2. Calculation of acoustic impedance

If the fractional loss of energy across a solid/liquid interface is P,
then the energy reflected back into the solid is (! - 18) . The measured

echo height is this quantity expressed in decibel, that is ;

AS = 10 {’ogw(l-‘s) (6.2.1.)

Converting to natural logarithms : AS =10 fogm e (ﬂ(l—-lB)
f

fn(l—fg} = _AS
fOlogme

Provided [8 is small, -fn(i—ﬁ) a2 —18

Therefore;

{3::: =AS = -0.2303AS (6.2.2.)
{Ol'cgme

Now, it was shown in section 3.3. that the acoustic impedance is related

to /B by the expression

p-eefg

S
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where ZS is the acoustic impedance of the solid medium and Z,_
is the acoustic impedance of the liquid. }% denctes the real part of

the complex quantity contained within the brackets.

- K [z] = % B (6.2.3.)

The acoustic impedance Zs is defined thus ; Zs = es ug
where ()s is the density of the solid medium and U; is the velocity

of sound in that medium , rmw"a”eaf taat the diameter a/ the rod i [Mie conpared
te Yo uaude»«;v‘( and Hat rod ottenuation s ne?/rdk/'é/e.

Ke [ZL] =€5—4‘5—F (6.2.4.)

The complex acoustic impedance (Z,_) consists of a real part (R),

analogous to acoustic resistance, and an imaginary "acoustic reactance" (X)

ie: Z, = R+ iX (6.2.5.)
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In substituting for ﬁ it must be remembered that the quantity AS
is referred to an arbitrary zero. Therefore R will also be referred to an
arbitrary zero (usually taken to be the value of R atl.0 Kelvin) and

will be denoted by AR.

Therefore, substituting for F,

4

It is more convenient to express acoustic resistance in terms of R/Q

since this quantity has the dimensions of velocity ;

A_B = -0.2303 AS esug . (6.2.6.)
Y

*

where e is the density of the liquid helium. In fact, Q varies
slightly with temperature but this was ignored since the variation is less
than one half of one per cent below 1.0 Kelvin, The values of es and

Ug used in the calculations were as follows :

(a) Bismuth germanium oxide; es =9,232 x 103 kg m—-3

(Crystal Technology Inc. data sheet)

G =1.775x10° ms

(from Rehwald (1973))

(b) Quartz; 6)5 =2.65x% 103 kg m.-3

(from Neppiras (1973))

U;=5.700 x 10° ms "

(from Neppiras (1973))
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The density of liqﬁid heliun-3, as a function of pressure, has been measured

by Abraham et al (1972) so using these values, and the numerical factors

-1
obtained above, the data were replotted as graphs of AR /e (inms )
as a function of temperature at various pressures. An example of AR/Q

against temperature at 25,7 bar is shown in figure 6.5.
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6.3. Normalisation of data

For a classical viscous liquid, the transverse acoustic impedance isgivenby ;

Z,= R+ iX,) = (I-t w
o= (Ro+ X)) = (I )&/Zz_pz_ (6»31)

where YZ is the viscosity of the liquid.
Thus, if only the real part is considered,

Bo_ = W (6.3.2.)
0

+F

where Ro is the transverse acoustic resistance in the hydrodynamic

regime, WCT K 1!.

The viscosity of liquid helium-3 under its saturated vapour pressure has been
measured by Black, Hall and Thompson (1971) for temperatures between 0.05

Kelvin and 3.0 XK, and they derive the empirical relationship ;

=220 4 26.3 P. 6.3.3.
Yl T2 + T'/3 /* ( )

This expression was used with equation (6.3.2.) to calculate Ro/(; at the

s.v.p. The viscosity as a function of pressure has been measured in the

temperature range 0.4 K to 1.0 K by McCoy et al (1975) who normalised their
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data to those of Black et al (1971). Using these results a. set of curves
showing Qo /e as a function of temperature were plotted at various
pressures between zero and 28. O. bar. Our data were normalised by fitting
each plot of AQ/() to the curve of R°/€ , at the appropriate pressure,
in the temperature range 0.4 K to 1.0 X and the arbitrary scale (A R/e)

was then replaced by the absolute acoustic resistance,

6.4. Validity of wTKI

Classical viscosity theory is applicable provided that WwT K| . Where
G is the angular frequency of the disturbance and T is some

relaxation time. Wheatley (1975) quotes values of the viscous relaxation

time for helium-3 at pressures from zero to 30 bar, the extreme values being :

2 -
Z"Z T=1.24x%10 6 s (mK)2 at zero pressure

z;zT2= 0.73 x 10_6 S (mK)z at 30 bar

Thus, at 400 mK, for a disturbance with an angular frequency of 240 MHz,

the product T is found to be in the range :

w'Z;z =1.75x 10_2 at zero pressure

wTy=1.03x107 at 30 bar

As the temperature increases, (0T falls still further, so we see that

at 240 MHz, in the temperature range 0.4 Kelvin to 1.0 K, the condition

WT«I is satisfied for pressures between zero and 30 bar.
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The condition is also satisfied at 1048 MHz in the same temperature range,

the corresponding values being :

w'Z',l =5,10 x 10—2 at zero pressure

wTy, =3.00x 1072 at 30 bar.
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CHAPTER SEVEN

7.0. EXPERIMENTAL RESULTS

7.1. 242 MHz transverse waves; liquid helium-3 (0.3 to 28.0 bar)

The results of the above analysis are shown in figures 7.1. to 7.1l.

The first of these, figure 7.1., shows the qualitative behaviour of the
acoustic resistance Q/e of liquid helium~3 as a function of temperature
under the saturated vapour pressure (= 0.3 bar). This graph has been
vplotted twice as a result of the thermometer calibration problem discussed
in section 5.5. The upper graph, 7.1.(a), was obtained using the R3 (1972)
calibration and the lower graph, 7.1. (b), using the R3 (1977). The resulting
difference in the temperature dependence of R /e is small and the sub-
sequent experimental results (figures 7.2. to 7.11.) will be shown using the
1972 calibration only. The solid line represents the acoustic resistance
calculated froﬁ the classical viscosity equation (eqn.(6.3.2.)) using the
viscosity data of Black, Hall and Thompson (1971). Our data have been fited
to this curve atl.0 Kelvin, where the value of Q/e is calculated to be
5.12m s_l. A direct measurement of R/Q , from  AS , at 1.0 Kelvin,
both with and without liquid helium in the celi, agreed with this value although
the experimental error in AS  was rather large due to the change in

resonant frequency of the cavity when the liquid was removed.

The measured temperature dependence of R/e is well described by the
classical expression from 2.0 Kelvin down to 0,2 K at which point it
deviates from the curve as the transition from hydrodynamic to collisionless

” 2
behaviour occurs. Using the values of relaxation time (Zd T ) given
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by Wheatley (1975), the temperature corresponding to "wT = | was
calculated to be 0.043 K at 0.3 bar, and this is indicated by the arrow on
the diagram. Below this temperature R/{) approaches a temperature-

independant limit, Rw/() ’ which will be discussed in detail later.

The remaining diagrams (figures 7.2, to 7.11l.) show the temperature
dependence of R/e fbr liquid helium-3 at the various pressures indicated.
Most of these are the result of a single temperature sweep (warming or
cooling, as indicated) but numbers 7.1., 7.2., 7.7., 7.8., and7.1l. are
composite diagrams which combine the results of two or three different,
overlapping runs in each case, taken, of course, at the same pressure.

The details of these runs may be found in table I, which follows this section.
The temperature corresponding to (WT=1 is shown on each graph, these
values being calculated from the data given in table V of Wheatley (1975) and
shown as a graph of T(wz‘.—_—;) against pressure; see figure 7.12,
The data at pressures greater than the saturated vapour pressure have been
fitted to theoretical curves of R/e obtained from the same classical
expression (equation 6.3.2.) using the viscosity data of McCoy et al (1975),

and are shown as the solid lines on the diagrams between 0.4 K and 1.0 K.

Flowers, Richardson and Williamson (1876) have calculated R/{) , known
/

by these authors as Z /(J , as a function of wT in the range

0.0l to 10 (ie. between about 0.36 Kelvin and 0.0l X, when converted to

temperature, for w/27[ = 240 MHz) using Landau Fermi-liquid

theory for helium-3 at a pressure of 23.0 bar. By interpolating their curve

of R/e versus wT and converting their ordinate axis to

temperature using the data of Wheatley (1975), the theoretical curve shown
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in figure 7.13. was obtained. Having first been replotted on corresponding
log - log scales, the experimental data were fitted to this curve by aligning
the temperatures corresponding to wT=1| and then fitting the data points
to the curve in the low-temperature region (ie. below about 50 mK). In this
way the limit of the acoustic resistance, Qw /(9 , was detemined
by extrapolation. The values obtained, however, were found to depend upon
the choice of thermometer calibration so the extrapolation was performed
using both calibrations in each case. The results are shown in tables II and
III, the first being obtained from the R3 (1972) calibration, and the second
table from R3 (1977). In each table, the uncertainty quoted in the column
labelled "error" is that resulting from data-fitting to which was added a
further uncertainty of + 1% to account for errors in the graphical interpolation
of the theoretical curve. The overall uncertainty is containedin the column
headed "total error". The values of Qﬁ /() obtained using the R3 (1977)
calibration are greater than the corresponding valueé using R3 (1972) by an
average of 4.2%, the greatest difference (5.7%) occuring in the 16.0 bar
case, which represents a maximum uncertainty in Ex /f) of1.32m s-l.

The implications of this difference will be discussed in chapter 8.
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Figure Pressure |Experimental run D Temperature
number (bar) number ate range (mK)
R 27 18.4.75 1700 - 65
7.1 0.3(w) {
R 17(b) 141076 230 - 16
R 16 201276 430 - 43
7.2 0.3(c) R 17(3) 13.10.76 940 - 31
R 18(c) 12.11.76 1000 - 92
7.3 5.5{(w) R 20(qg) 1.12.76 1580 -"16
7.4 5.5(c) R 20(c) 26.11.76 450 - 28
7.5 5.7(w) R 20(f) 30 11.76 900 - 21
7.6 9.2(w) R 20(b) 25.11.76 1450 - 18
R 18(b) 11.11.76 620 .- 15
7.7 16.0(w) {
R 20(1) 8.12.76 1190 - 110
R 17(f) 22.10.76 680 - 25
7.8 21.0(c) {
R 20(k} 7.12.76 1700 - 174 .
7.9 25.7(c) R 17{e) 21.10.76 100 - 30
710 | 26.2(c) R 17(k) 13.12.76 880 - 23
R 18(3) 10.11.76 370 - 17
7.1 28.0(w) {
R 20(j) 3.12.76 1450 - 172
(c):coé{ing
(w): warming

TABLE I Dates of experimerntal runs
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N pressure| Sweep Reo/p total
O | (bar) |[direction | (msh | &7 | error
7@ { 0.3 warming 24.01 t 0461 * 070
7.2 0.3 | cooling 27.19 t075| t1.02
73 5.5 warming 23.43 L 062 085
7.4 5.5 cooling 2245 2040| * 083
7.5 5.7 warming 21.91 1065( 087
.7.6(d)| 9.2 warming 22.51 048] 07
7.6(b)| 9.2 cooling 22.27 1035) 2055
77 16.0 warming 21.75 1069 0.9
7.8 21.0 cooling 20.09 2035) *0s5
7.9 257 cooling 20.59 | *0.30] 2009
710 26.2 | cooling 20.14 2044 064
m 28.0 | warming 2121 1051 2072

TABLE II

Values of ch/(’ (using

R3(1972) calibration)
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pressure| sweep Re/ e total

No. |" (bar) | direction (mel) | €77°" | error

71(b)| 0.3 | warming 24.53 | 2049 | 2074
iz 1 0.3 cooling 28.25 | 096 | t1.24
7.3 5.5 | warming 2604 | 2073 | 097
7.4 5.5 cooling 23.45 |t 0.29‘ £0.52
75 5.7 | warming 2240 | 07 | 093
76@)] 9.2 | warming 2339 | %037 | 20.60
76(b)y 9.2 cooling 2348 1 10.35 | =058
7.7 16.0 | warming 23.07 0.82{ =105
7.8 21.0 cooling 21.10 £0.41 | 20.63
7.9 25.7 cooling 21.73 2035} 2057
790 | 26.2 cooling 2117 *0.56 § 1077

7.1 28.0 | warming 2240 | *053 1§ %075

TABLEIL Values of lee {using R3(1977) calibration)
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7.2. 242 MHz transverse waves ; liquid helium-4 (s.v.p.)

An experiment to observe the losses into liquid helium-4 was carried out to
provide a direct comparison with the previous results. The bomb described
in section 4.5. was pressurized to 3.4 bar at room temperature which
corresponded to about 0.5 cm3 of liquid helium-4, under its saturated
vapour pressure, at 4.2 Kelvin. This volume of liquid was sufficient to fill
the cell completely. The experiment was performed in the same way as the
early experiments in liquid helium-3, using a *Boxcar” intégrator to average
the heights of 39 echos, centred at echo number 2570. Several runs were
carried out, both cooling and warming, and the temperature range covered
was from 1.75 K to 0.045 K. The raw data was analysed in exactly the same
way as the corresponding helium-3 data to yield a curve of energy loss per
reflection ( AS ) as a function of temperature and this was converted to

change in acoustic resistance (AQ /e) as described in section 6.2.

The results are shown in figure 7.14. in which the closed circles (&)

show the high temperature data corrected for temperature dependent losses

in the piezoelectric rod. The energy losses into the liquid abpear to be
independent of temperature below 0.6 Kelvin and have been set to zero.
Above this temperature the energy loss increases due to the viscosity of the
liquid helium-4, but increases less rapidly than in the case of helium-3. The
solid line (in the 1.0 K to 2.0 K region) shows the loss of energy into the
liquid calculated from equation 6.3.2., taking YZ as the viscosity of
liquid helium-4 and () as the density of the normal component (eN)

of the liquid. Numerical values of YZ PN were taken from the measure-

ments of Tough, McCormick and Dash (1963). Although the temperature
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range is limited, the agreement between the calculated values and our
data is good and suggests that the losses into helium-4 fall to zero at
low temperatures. This result is consistent with the inability of superfluid

liquid helium-4 to support a shear stress.
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7.3. 242 MHz transverse waves; helium-3/helium-4 mixture (26.2 bar)

The final set of low—frequenc;y, transverse wave data resulted from the
accidental contamination of the helium-3 sample by a small amount of
helium-4 due to an imperfect indium seal in the experimental cell . The
Boxcar integrator was set to average the heights of three echos, centrad
at echo number 1490, and the sample was pressurized to 26.2 bar. On
cboling the sample the energy losses into the liquid increased as expected
in pure helium-3 until, at a particular temperature, sharply defined, the
losses suddenly fell to a very low value which remained constant when the
temp.era ture was further reduced. This was taken to indicate phase separation
in the helium mixture, the liquid helium-4 forming a superfluid film over the
surface of the piezoelectric rod and the inner surféces of the experimental
cell, thereby reducing the energy losses into the liquid. This phenomenon

has been studied in detail by Borovikov and Peshkov (1976).

Waming the sample from about 43 mK resulted in the chart recorder plot
shown in figure 7.15. The transition begins at about 68 mK and is completed
by 85 mK, the temperature dependence of the energy loss then follows the
pattern expected for pure helium-3. These data were converted in the manner
described in section 6.12. to a graph of acoustic resistance { R /e ) as a
function of temperature; figure 7.16. (The high temperature data have been
corrected for temperature dependent losses in the piezoelectric rod.) Again,
equation 6.3.2. was used to calculate R/e over the temperature range

0.4 Kto 1.0 K, taking the viscosity of pure liquid helium-3 at 26.0 bar from
the data of McCoy et al (1975) and our data were fitted to this curve in the
high temperature region. The limiting value of R/Q at low temperatures was

found to be (1.3 * 0.3) ms—l.



It has already been shown that the energy losses into pure liquid helium-4

fall to zero at low temperatures due to the inability of the superfluid to support
a shear stress. Consequently, the limiting value of acoustic resistance in
this case must be due to helium-3 atoms in solution with the film of liquid
helium-4. The limiting concentration of helium-3 atoms in a dilute solution'
has been measured as a function of pressure by Watson, Reppy and

Richardson (1970) and extrapolating their data to 26.0 bar, the limiting
concentration { X ) is about 8.0%. The number density { N3 ) of

helium-3 atoms is given by :

ny = XNa (7.3.1.)
v
where U is the molar volume of the mixture, NA is Avagadro's

number and X 1is the limiting concentration which is given by :

X = na
n3+l‘%4
( N is the number density of helium-4 atoms).
Now, U may be expressed in terms of Uz , the molar volume of helium-4,
and o, the relative difference in molar volumes of helium-3 and helium-4

atoms, ie:

U"::(’ + O(X)%
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Therefore,

f = XNa4 (7.3.2.)
Uz (1+ «X)

Values of Uz and A  as functions of pressure have been published
by Watson et al (1970) and extrapolating to 26.0 bar gives values of these

factors corresponding to our experimental conditions.

‘ -6 -
ie: U]; = 23.017 x 10 m3 mole b A=0.166

?

27 .
Using equation (7.3.2.) we obtain the number density Ng= 2.077 x10 m 3

At very low temperatures, the Fermi momentum is given by the expression ;

I/
P = {(371:%3)3 (7.3.3.)

Evaluating this equation, using the calculated value of ng gives

P" = 4.163 x !0—” ‘(:}ms-'

In section 3.8., it was shown that for an assembly of non-interacting Fermions,

the acoustic resistance would be given by ;
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_@_=_3__1PL (3.8.2.)

where m is the atomic mass of helium-3. However, only the
helium~-3 atoms contribute to this acoustic resistance so, if 63 is the

density of the helium-3 atoms and () is the density of the mixture, we

have ;

_%:%s__%_{rzng | (7.3.4.)

The density ratio 63 /{) is obtained from the number densities nNng and

n4 since ;
—@i = 3”3
e 3“3'*'4’“4

At 26.0 bar, for an eight per cent solution of helium-3 in helium-4 ;

_gg = 0.06l5
N

Therefore, using the value of m given by Wheatley (1975) of 5.009x10_27Kg

we finally obtain the value for the acoustic resistance :

R = 0.96 ms™

€
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This value compares well with the measured value of (1.3'i 0.3)ms -l

suggesting that the superfluid film surrounding the piezoelectric rod contains

helium-3 atoms that behave as a collection of non-interacting Fermions.
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3He -AHe mixture

for

from ‘Boxcar' integrator

Qutput

Fig.715
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7.4. 1048 MHz transverse waves; liquid helium-3 (s.v.p.)

Some measurements of the acoustic resistance of liquid helium-3, under its
saturated vapour pressure, were made at 1048 MHz, using the Mark 3 sonic
cell described in section 4.2. Ultrasonic attenuation in the piezoelectric
material is proportional to the square of the frequency of the wave so the
number of echos observed at this frequency was considerably less than the
number at 242 MHz. The shape of the echo envelope was alsQ degraded as
may be observed in the photograph of the echo train, figure 7.17. To
obtain a signal to noise ratio comparable with that of the lower frequency
work , a group of four echos centred at echo number 332 was chosen. The
relative position of the group is indicated by the bright spot near the middle
of the trace in the photograph. This spot actually marks the position of the
gate of the Brookdeal "Boxcar" integrator which was used to average the
heights of the chosen echos, the output being fed to a chart recorder in the
same way as in the low-frequency work. The result of the comparatively
small number of reflections was that the energy lost into the liquid was
greatly reduced, the total loss of signal in the temperature range 1.0 K to
about 50 mK keing less than 2.0 dB compared with a loss of as much as

10 dB in the corresponding range in the 242 MHz work. This loss of sensitivity
made detailed quantitative analysis of little value in the high frequency case,
although the best data did permit an estimate of the change in acoustic
resistance tq bemade. Several runs were performed, both cooling and
wamming the sample, but useful data were obtained on four runs only (all
warming -up runs) the others having to be discarded due to excessive noise
on the integrator output. The data obtained in these four runs are shown in
figure 7.18., expressed in terms of energy loss into the liquid per reflection

(AS) as a function of temperature. The zero is arbitrary and the four
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sets of data have been fitted together, at constant temperature, to produce
the best composite plot. (The error bars are derived from the signal noise

in the worst case.)

The temperature dependence of the energy loss at high frequency has the '
same general form as that at 242 MHz, the losses increasing at high tempera-
tures due to attenuation in the piezoelectric material and increasing at low
temperatures as a result of viscous damping in the liquid helium-3. Two of
the runs, (b) and (d) , show some evidence of a limiting value being approached
at low temperatures although run (a) shows no such tendency in the same
temperature region. However, this is little more than speculation in view

of the uncertainty in the measur.ement of AS. The best data were
obtained from run (b) so a quantitative analysis was carried out in this case
only, by converti'ng the AS measurements into acoustic resistance,AQ/(),
by the methods alregdy described. The correction for temperature dependent
attenuation in the rod material was calculated, in the absence of experimental
data at this frequency, from the experimental results taken at 242 MHz
assuming a frequency dependence of 2 where @ is the angular frequency
of the wave. The results of this analysis are shown in figure 7.19. The

solid line in this diagram is a theoretical calculation of R/e using the

familiar expression for the acoustic resistance of a viscous liquid :

L )
e 42

where the values of viscosity- n calculated from the empirical

expression given by Black, Hall and Thompson (1971), see equation (6.3.3.).
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The high temperature correction for attenuation in the rod material appears
to be rather inadequate above 0.3 Kelvin, so the data have been very
tentatively fitted to the theoretical curve between 0.2 X and 0.3 K, where
the correction is small. The low temperature data (below 100 mK) were
replotted on a log.-log. scale and an estimate of the low-temperature limit,
Rw/e ' was made by fitting these data to the theoretical curve of'
Flowers, Richardson and Williamson (1976) and extrapolating, as described
in section 7.1. This yielded the result: Rw/e =(29.7+2.7)ms -1.
The uncertainty quoted is that associated with the data measurement
(+1.7ms —1) plus an uncertainty of +1ms -1 due to data-fitting to the
theoretical curve at high temperatures. (Compared to these uncertainties,

the error in extrapolation was negligible.)

It must be emphasised that the quality of the data was not sufficiently high

to allow anything more than speculative conclusions to be drawn about the
absolute values, R/e and the limiting value of acoustic resistance, R«,/e.
However, the change in acoustic resistance between 1.0 Kelvin and the low-
temperature. (limiting) value does seem, at (13.1 +1.7)m s _l, to be consistent

with the corresponding change measured at 242 MHz; see figure 7.1.
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7.5. 250 MHz longitudinal waves;: liquid helium-3 (s.v.p.)

To complement the transverse-wave work, an experiment was carried out
to measure the longitudinal acoustic resistance of liquid helium-3 at the
saturated vapour pressure which would help to explain the discrepancy
between the measured values of Keen, Matthews and Wilks (1965) and the
theoretical predictions of Brooker (1964 and 1967), see section 3.3. The
experimental method was the same as that used in the transverse work
except that a rod of X-cut quartz was used to generate the longitudinal
waves. The high attenuation in this material resulted in an echo train
even shorter than that of the preceding section, the echo group studied
being centred at echo number 165, and the energy loss into the liquid over
the temperature range 0.5 K to about 20 mK was therefore less than 0.3 dB.
The measurement of such a small change in an already low-level signal
(ie. of the order of -80dBm) would have proved impossible without the
sophisticated data-processing system that became available towards the
end of this work. This system, incorporating the "Datalab" DL 4000 digital
store was basically that desqribed in section 4.4. except that, rather than
the data being outputin an anélogue fashion to a chart recorder, they were
stored in digital form on magnetic tape cartridges by means ofa "Perex"
Perifile recorder. Each datum point stored consisted of the signal heights
of the first 160 echos (the echo envelope), followed by a detailed scan of
the next ten echos as described in section 4.4.3. (aboutninety channels were
available for each of these echos). The digital information stored was

processed, using a computer, as described below.

The mean echo height was obtained by taking the average of the heights of

ten echos (numbers 160 to 169, inclusive), each of which was itself the
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average of twenty-one channels of the transient recorder (that is, the
channel corresponding to the peak of the echo, plus the ten channels to
either side). The mean echo height was then converted to decibel units

and scaled to account for any variations in the amplitude of the r.f. input
pulse. This scaling was performed by comparing the mean echo height

with the heights of the first few echos, for which the losses into the liquid
are very small and may be considered temperature independent. Normalising
the data to the mean echo height at the lowest temperature reached yielded
the change in signal (in dB) which, when divided by the number of reflections
suffered by the mean echo number of the group (ie. 329), gave AS in
decibel per reflection as a function of temperature. The acoustic resistance
was calculated from equation 6.2.6. using the values for (75 and ug
appropriate to X-cut quartz, obtained from Neppiras (1973). A single
experimental run only was performed in which the sample was warmed from
abouf 19 mK (using R3 (1972) calibration) to 0.6 Kelvin, and the results are
plotted as a grarh of acoustic resistance ( R/(} } against temperature;
figure 7.20. It should be noted that the high temperature data have not
been corrected for losses in the piezoelectric rod, unlike the previous
cases, and that the measured acoustic resistance is referred to an arbitrary
zero. The values of Q/(o indicated on the vertical axis refer to the solid

line (see below) to which our experimental data have been fitted.

In spite of the various averaging processes involved in the analysis, there
is considerable scatter associated with the data points which gives rise to
an uncertainty of about +2m s -1 in the acoustic resistance. However, a
small increase in R/e may be observed as the temperature decreases

-1 .
and this change is estimated to be about (5.5 + 2.0)ms ~. For comparison,
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the solid line in the diagram is the theoretical change in longitudinal
acoustic resistance for liquid helium-3 at the saturated vapour pressure,

calculated by Brooker (1964 and 1967) for F S_ 0, to which our data have

2
been fitted at w?T =1. The predicted change in R /P (that is,

A(Z/e) in Brooker's notation) is 6.0 m s“1 if F S is set to zero,

2

-1
the limiting value at low temperature being 189.4ms . This prediction

is calculated using a value of F S of 5.64 (taken from Anderson, Reese and

1
Wheatley (1963)), which is slightly lower than the value given by Wheatley

S

(1975) of P1

= 6.04 at zero pressure. However, Brooker asserts that any

uncertainty in F, will not affect the shape of the curve, or the magnitude of

1

the change in acoustic resistance, but only the value of the zero-sound

limit, R“/e . (If the more recent value for F, is used, the zero-sound

1

1
.)

limit is reduced by about 0.l m s

Brooker (1967) has also calculated the effect of non-zero values of the

Landau parameter Fzs on the acoustic resistance and we find that a value
S . . -1
of Fz = -0.5 reduces the predicted change in R/E) to 5.5ms 7, the

value observed in this experiment. If the uncertainty in R/e is expressed

s .
as an uncertainty in F, , we may tentatively suggest that cur observed

2

change in longitudinal acoustic resistance implies the value F2= -0.5+2.0.
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CHAPTER EIGHT

8.0. DISCUSSION AND CONCLUSIONS

8.1. Zero sound and transverse acoustic impedance

The transverse acoustic impedance of a normal Fermi liquid has been
calculated as a function of temperature by both Fomin (1968) and Flowers

et al (1976) with the Landau parameter F S=O, and by Flowers and Richardson

2
(1978) in the case of PZS# 0 and their methods have been outlined in

chapter 3. The important conclusion that may be drawn from these calculations
is that the complex acoustic impedance contains contributions of comparable
magnitude from both single particle excitations and transverse zero sound
(collective) modes. Since both contributions become independent of
temperature in the collisionless limit, a qualitative study of thetemperature
dependence of the transverse acoustic impedance cannot alone provide
evidence of the existence of transverse zero sound. The contributions have
been separated, however, in the theory of Flowers and Richardson (1978)

for the case PZS #0, which, in the zero sound limit (w'(?'—>oo) , . reduce
to equations (3.5.5.) and (3.5.6.) (Section 3.5.) for the total acoustic
impedance and equation (3.6.2.) (Section 3.6.) for the contribution to the
impedance resulting from zero sound alone. These equations have been

solved numerically, by AJ Cooper, for Fzs = -1, 0,41 over the range of Pl
values corresponding to pressures from 0 bar to 30 bar. The computation
"employed solutions to the dispersion relation obtained by applying Newton's
method to the approximate solutions shown earlier in figure 2.3. Figure 8.1.

shows the results of these calculations. The solid lines represent the

total acoustic resistance Qw /() , in the collisionless limit, as a function
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S .
of pressure for the Fz values indiceted and the broken lines represent the

corresponding zero sound contributions, Ri/ e . The data points (o)
and (@) represent the measured values of acoustic resistance in the
collisioniess limit obtained from our helium-3 data {cooling and warming,
respectively, ) see table II. (The measured values of Rw/e differed
slightly when the calibration R3 (1977) was used; therefore a similar graph,
figure 8.2., shows the values obtained using the later calibration, taken

from table III.)

Both of the graphs show that, with the exception of one point at 0.3 bar,
which will be discussed later, all our data points fall within the limits

< +1, implying that F S

S
1 < F 9

2 is small at all pressures. In view of the

experimental error associated with each point, any further conclusions about

S
Fz must be somewhat speculative, but it seems likely that, from figure

8.1., F S

2 is approximately zero at low pressure, falling to about -1.0+0.5

at pressures greater than about 12.0 bar. The second graph, figure 8.2.,
in which the values of R""/? were obtained using the unconfirmed 1977

temperature calibration, shows that F S may be slightly positive at low

2
pressures (Fzs & 0.5) decreasing to about -0.5 +0.5 at about 27.0 bar.

S

9 > -1, the acoustic

From the theoretical curves, we see that provided F
resistance at pressures greater than about 15.0 bar is dominated by the zero
sound contribution, so we may be confident that transverse zero sound has
been observed attese pressures. The existence of this mode .at low pressure

is much less certain and a discussion of the evidence will be found in the next

section.
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S
8.2. Fz at low pressure

The dispersion relation for transverse zero sound in the limit WT»o0,

as derived by Brooker (1964 and 1967) is :

(=g bfsty b = 2

(prévided that F =0for [>2), where § is the ratio of the transverse
wave velocity '(Ct) to the Fermi velocity, U;_- . Now, for transverse
zero sound to be an identifiable mode, distinguishable from the single particle
excitatibns also produced by a transversely oscillating boundary, the velocity
of the wave must exceed that of the single particles which, being close to
the Fermi surface, will be approximately equal to ¥r . . Therefore, taking
s=| as the limit of existence of the wave, the first term of the dis-
persion relation vanishes to leave the condition for the existence of transverse

zero sound:

F 4+ _3EF s 6 (2.6.4.)
‘ l-!-l:z/s

By equating the two sides of this expression a relationship between ‘r"l and F2
is obtained which determines the limiting values of these parameters when

transverse zero sound first appears. Thus :

F = —(i-F/6)
s - Y%(F5+3)
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which may be solved to give F_, as a function of F.. IfF_is set to

2 1 2

Zero, I—‘1 = 6 which is the condition for the existence of transverse zero

sound obtained by Abrikosov and Khalatnikov (1959) for infinite wT,

and by Lea et al (1973) for all values of «wT. . We note that Fz falls as

F,. is increased and that for F, €< 6, F

| 1 is positive. In the case of liquid

2

given by Wheatley (1975) indicate that F_, will

helium-3, the values of Fl 2

be negative at all pressures since F, = 6.04 at zero pressure. However, if

1
Fl is reduced by about five per cent, as suggested by Wdlfle (1976), F2 is

slightly positive at low pressures becoming negative for pressures in excess

of about 0.7 bar. Therefore taking Wheatley's value of F, at zero pressure

1

with a five per cent uncertainty, we find that F, may be expected to fall

within the range -0.1l to +9.09, providedthat -5 =1; thatis, FZS ~ (0+0.1

2

at zero bar.

In our calculations of the transverse acoustic impedana, the F, values quoted

1
by Wheatley (1975) were used and the transverse zero sound condition (equation
(2.6.4.)) was incorporated by seiting the zero sound contribution to zero when
the condition was not fulfilled. (Under these circumstances, S was set
to 1.) Consequently, in figures 8.1. and 8.2. the zero sound contribution to

¢
the acoustic impedance (Ra,/e) is seen to incresse from zero at zero

S
pressure (ie. F,” &~ 6.0) for F S 0, and from zero at some finite pressure

1 2

for F S < 0. We further see that, if F

2 8 is positive, a contribution to

2
transverse zero sound will exist, even at the lowest pressures. Unfortunately,
it is not possible to differentiate between wave and single particle contributions
by means of transverse acoustic impedance experiments so the existence of
transverse zero sound remains unclear at low pressures. However, we may

. S .
draw some conclusions about the parameter I—',) from the total acoustic

resistance (Qw/e) which is represented by the solid lines in figure

8.1. for the st values -1, 0 +1.



- 174 -
Limiting values of (Rw/e) at the saturated vapour pressure (approx,
0.3 bar) were determined from two sets of data, the lower value being
obtained from data collected by warming the sample at this pressure,
figure 7.1.(a), and the higher value from measurements taken whilst cooling
at the same pressure, figure 7.2. (Both sets of data were the combined
results of two separate runs.) It is clear that the limiting values obtained
from these data are not in agreement. A possible reason_for the discrepancy
could have been poor thermal contact between the liquid helium-3 and the
resistance thermometer which would result in an apparently more rapid
change in acoustic resistance during cooling than during the waming-up
run. Extrapolation to the low-temperature limit would therefore yield an
erroneously high value of R""/f) , particularly in view of the high temperature
from which the extrapolation was made (approx. 30 mK). However, similar
comparisons between cooling and warming at higher pressures (for example

5.5 and9. 2 bar) do not show this degree of inconsistency.

‘When the two values of Rw/e at O.S'bar are compared with the theoretical
estimate of acoustic resistance, figures 8.1. and 8.2., we see that the

higher value implies that P2 is of the order of 3 or 4. Such a value would
require the presence of a large zero sound contribution and a wave velocity
that exceeds Up by a factor of about 1.25 (that is; $ &~ 1.25). Now,
our data indicate, with a fair degree of consistency, that at higher pressures Fz
if probably in the range -0.5 to -1.0 which implies, by a numerical solution

to the dispersion relation, that S &~ 1.1 (see graphical solutions to

dispersion relation, figure 2.3.). Consequently, if we are to accept both

~ 4, and the high pressure value F, & -0.5,

the low pressure value F 2

2

we are then forced to accept that the velocity of transverse zero sound

decreases with increasing pressure, in direct contradiction to the theory.
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Alternatively, if we take the transverse zero sound wave velocity to be

constant (at, say, l.1Ug),  this puts an upper bound on the value of F,

at low pressure which is found to be about +1.5 at 0 bar. We therefore

conclude that the probable value of F,~ at low pressure is in the range

2

0 to +1.0. If the higher measurement is ignored we may take the average
of the values indicated by the two graphs (figures 8.1. and 8.2.) to obtain

S~ 0.4+0.5.

‘ S
a probable value of F2 at the saturated vapour pressure; ie. Fz

This is now consistent with a zero sound wave - velocity roughly equal to
the Fermi velocity, at low pressure, suggesting that the transverse zero

sound contribution is very small (and difficult to identify) at these pressures.

This estimate of FZS may be compared with that obtained from the longitudinal

‘zero sound experiments performed by Abel, Anderson and Wheatley (1971) at

0.32 bar. Although their own analysis ignores the effects of F Brooker

zl

(1964 and 1967) has estimated its magnitude from their measurements of wave

S
velocity, peak attenuation and relaxation time and finds that F, =0+4,0and

2
+0.6 respectively (no uncertainties being given in the last two cases). We
note that our estimate of FZS at 0.3 bar is in good agreement with these

values. However, if our transverse acoustic impedance results at low

pressure are compared ‘with thelongitudinal impedance data of Keen, Matthews
and Wilks (1965), as discussed by Brooker {1964 and 1967), we find no area

of agreement, and the suggestion that FZS ~ 14.8 at 0 bar is still unexplained.
Furthermore, our unfinished attempt to repeat their longitudinal measurements
failed to reproduce their results but rather tended to confirm our own suggestion
by revealing a change in acoustic resistance corresponding to stz -0.5+2.0.

(The large uncertainty associated with this value reflects the somewhat

speculative nature of the data.)
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An expression relating Fzs to the thermal conductivity and shear viscosity
of liquid helium-3 has been produced by Nettleton (19 76): By fitting this
expression to the thermal conductivity data obtained by Anderson, Salinger
and Wheatley (1961) and by Abel, Johnson, Wheatley and Zimmerman (1967),

Nettleton estimates FZS to have the values -0.338 and-0.563 respectively.

No uncertainties are quoted and the author concludes only that FZS is less

than zero. We note here that these results provide further evidence, obtained

S
independently, that F is approximately zero at low pressures.

2

8.3. FZS at high pressure

A direct comparison may be made between this work, at high pressures, and
that of Roach and Ketterson (1976), who reported the first observation of
transverse zero sound in March 1976. Both real Cﬁ/e) and imaginary
(X/e) components of the complex acoustic impedance were measured
as functions of temperature, at pressures between 2.0 and 28.9 bar and at
frequencies ranging from 12.0 to 108.0 MHz. The measurements were made
by observing the ringing of an AC - cut quartz disc transducer,immersed in
liquid helium-3, when the excitation energy was removed. Their published
data show,at 23.0 bar, an increase in R,/e of about 19.0m s_l, the low
temperature limiting value (Rw/e) - being (21.0 +1.0)m s "1, {This is
indicated in figures 8.1. and 8.2., thus: A ). The temperature
dependence of the acoustic resistance was similar to that observed in our
experiments . Roach and Ketterson also noticed a peak in X/e corresponding
to theincrease in R/e and these two features, taken together, were
considered by the authors to be proof of the exiétence of transverse zero

sound. Their experiment independently measured the attenuation in
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propagation of the wave by means of a transmission technique in which two
transducers were separated by a distance of only twenty-five micrometre.
The measured attenuation coefficients were compared with theoretical
estimates obtained from the dispersion relation (equation 2.6.1.) for

various values of FZS and the best agreement was reached with Fzs = +|.5

at 2.0 bar, falling to -1.0 at 28.9 bar.

Their conclusions were criticised by Flowers, Richardson and Williamson
(1976) on the grounds that only a quantitative analysis of acoustic impedance
data, in which the contribution from single particle excitations is also
considered, could be taken as proof of the existence of transverse zero
sound. They performed such an analysis on the dataand found that, whilst
the measured temperature ciependence of Q/e could be fitted to the theory,
the temperature dependence cf the imaginary part, X/e could not be so

fitted. Furthermore, the value of F S at 23.0 bar indicated by the limiting

2

value of the acoustic resistance (F, = -1.0 + 0.5) was not consistent with

2

that indicated by the attenuation data at this pressure. Comparing these

Q

results with our own we find that the value on =-1,0+ 0.5 at 23.0 bar,

obtained from the real part of the acoustic impedance is in good agreement

with our value at this pressure (that is, FZS =~ -1.0 + 0.5 using the R3(1972)

S See Flcg
calibration and 'Pz =~ ~0.5+0.5using R3 (1977)p. We also observe that

S
the total change in F,, is rather less than that suggested by the attenuation

2

-data of Roach and Ketterson (1976). That FZS might be expected to fall with

increasing pressure is contrary to the pressure dependence predicted by
Ostgaard (1969), and also to the known behaviour of the symmetric Landau
parameters F S and F S, but follows from the condition for the existence of

0 1

transverse zero sound (equation 2.6.4.) where the wave velocity is put
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equal to the Fermi velocity; ie. S =1. By differentiating the dispersion
relation (in the limit 7T ~>» oo ), Nettleton (1977) shows that, for constant

S
wave velocity (§21), F, always decreases with increasing F

2 I

Therefore, provided that the ratio of transverse wave velocity to the Fermi

velocity ( § ) is only weakly dependent upon pressure, F S always falls

2

as the pressure is increased.

Recent work on the superfluid phases of liquid helivm-3 has included a
number of longitudinal zero sound experiments at high pressures. Wolfle
(1976) has considered some of these and has produced further estimates of

S \ . . .
1:‘2 which do not seem consistent with the negative values mentioned

above. For example, measurements of the velocity of longitudinal zero
sound in normal liquid helium-3 near the superfluid transition have been
made by Paulson, Johnson and Wheatley (1973) at 32.2 bar, and by

Ketterson et al (1975) at 29.3 bar. Wolfle has calculated values of FZS

from these results and finds that in the first case, F S 0.5+0.3 and,

ZS =1.0+ 0.5. Similar calculations using data collected

2

in the second, F
in the superfluid “B" phase by Paulson et al (1873) at 19.6 bar and by

Roach et al (1975) at 21.0 bar, show that, in both cases, FZS ~ 0.4.

*

Wo3lfle has also pointéd out that the values of m quoted by Wheatley

(1975) may be overestimated at high pressures so the above values of

FZS were obtained using m” values about four per cent lower than those

used in our calculations. However, using Wolfle's value at 21,0 bar

S
(m* m = 4.9) reduces our estimate of F, at this pressure to about

2

-1.2 which increases the discrepancy between our results and these positive

S
F2 values.
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8.4. Estimates of PZS using "“Sum Rule"

The Pauli Exclusion Principle requires that the forward scattering amplitude
for two Fermions of the same spin must vanish. The scattering amplitude
may be expressed in terms of the Landau parameters, as discussed by
Baym and Pethick (1976), which are therefore constrained by the "forward

scattering sum rule"” :

A ‘ [
2 M)=0 e A=F(1+ B
24+
S S A .
The Landau parameters FO . Fl and FO are all quite well known and have

been tabulated, as functions of pressure, by Wheatley (1975). (Note that

Wheatley denotes the first assymmeiric parameter by Zo where Z°=4FOA.)

The parameter FlA

(1969) have estimated values at zero pressure by comparing their exact

is difficult to determine experimentally. Dy and Pethick

calculation of the scattering amplitude with the thermal capacity data of
Abel et al (1967) and the spin diffusion data of Anderson et al (1961) and

then adjusting FIA
I—‘lA =-0.46 + 0.14 and FlA = -0.39 + 0,14 from these data, where the errors

to provide the best agreement. They obtain the results

quoted include only the contributions resulting from curve fitting. Their
method is slightly unsatisfactory in this particular application because they
set the Landau parameters F,_‘ to zero for f? 2 ; but if this point is

ignored and their FIA values are put back into the sum we obtain values for

Fzs of -0.30 + 0.15 and -0.38 + 0.15 respectively. (Being close to zero,

these results retrospectively justify the omission of F2S in the calculation
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Taking the average of these values we obtain F S = -0.34 + 0.15 which is

2

in reasonable agreement with our result and with the other estimates at

low pressure.

The spin -echo experiments of Corruccini et al (1972) allow Pl‘_b‘ to be

determined directly by using an expression for the gyromagnetic ratio,

obtained by Leggett and Rice (1968), in which F A

0 is the only other Landau

parameter involved. The method therefore avoids any arbitrary assumptions

about the other Landau parameters. The values obtained in their experiments

A

were : PA = ~-0.15+ 0.3 at 0 bar and F1

) =+0.2 + 0.6 at 27.0 bar. When

these results are used, the forward scattering sum rule yields Fzs values

of -0.6 + 0.3 and -0.9 + 0.3 at 0 and 27 bar respectively. The low pressure
result is rather more negative than the other estimates (although not
unrealistically so) but the value at high pressure agrees well with our

estimate of Fzs A~ -1.0at27.0 bar.

The various estimates of PZS obtained from the forward scattering sum rule

are, then, broadly consistent with our estimates from experimental data and
indicate that FZS is probably negative, decreasing from a little less than
zero at zero pressure to about -1.0 as the melting pressure is approached.
- Estimates from the sum rule are slightly suspect in that it is necessary to
set all the higher Landau parameters to zero (in our case, FLS = 0 for

{ > 3 and F}_A =0 for {> 2). However, the magnitudes of the Landau
parameters are thought to decrease as f increases, therefore since F1

and FZS are small, it seems likely that the contributions to the sum from

higher parameters may be ignored without casting serious doubts on the

estimates obtained.
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8.5. Concluding remarks

The principal objective at the start of this work was to make the first
experimental observations of transverse zero sound in liquid helium-3 .

by studying the temperature dependence of the acoustic resistance. As
mentioned in section 7.3., the first reported observation of this mode was
made, in March 1976, at the Argonne National Laboratory, Illinois, by

PR Roach and JB Ketterson, who identified changes in both the real and
imaginary parts of the acoustic impedance with the propagation of transverse
zero sound. Their measurements of the attenuation of this mede cover range
of pressures from 2.0 to 28.9 bar, but the published data on the acoustic
impedance are limited to a single value of pressure ; 23.0 bar. Since

the theoretical predictions about transverse zero sound indicated a con-
siderable dependence upon pressure, it was felt that our work, although
concerned only with the real component of the impedance, could yield
valuable information both to confirm the result of Roach and Ketterson ahd to
provide new data at low pressures. It was satisfying to obtain good agree-
ment at 23.0 bar with these authors but the low-pressure data were not
sufficient to clarify the situation near the saturated vapour pressure.
Furthermore, the uncertainty in the value of effective mass, mentioned in
section 8.3., somewhat clouds the issue and it seems doubtful whether any
firm conclusions about the low pressure behaviour of transverse zero sound
will be possible until this value has been firmly estaklished. At present
we must restrict our conclusions concerning the existence of the transverse
mode to pressures greater than about 12.0 bar where the acoustic resistance
observed is too large to be accounted for without a considerable contribution

due to transverse zero sound.
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The estimation of the Landau parameter F from the acoustic resistance

2
data has already been discussed in some detail and it seems clear that

the inclusion of this parameter is necessary for quantitative evaluation of the
data. However, this raises the question of the importance of successive
parameters in the series. Fomin (1976) has suggested that, if the series

cannot be limited to the first two harmonics (ie. F 5 and Pls) , then several

0

. . S
more terms must be considered since the inclusion of Fz only does not
necessarily lead to a more precise result. At present, no experiments have
been proposed by which additional symmetrical Landau parameters may be

S,t

: A
measured and, in view of the already uncertain values of F,” and F he

1 2
calculation of further parameters from the sum rule would be a fruitless

exercise.

It would seem to be more profitable to concentrate work, in the immediate

future, on the precise evaluation of F S since this may resolve some of the

2
conflicts that still remain between experiment and theory, and between the
various experiments themselves. Perﬁaps the most outstanding of these
inconsistencies is the very high value of FZS implied by the longitudinal
acoustic impedance measurements of Keen et al (1965). It was hoped that
some firmm evidence would be obtained from this work but technical problems
with the refrigerator prevented all but a single preliminary run using a

rather poor piezo electric crystal . However, as shown in section 7.5., in
this run we did ﬁot observe a change in the longitudinal acoustic impedance
of anything like the magnitude of that observed previously. Another problem,
also unexplained, is that longitudinal zero sound experiments generally

S N
indicate positive values of F,  whereas transverse wave experiments seem

2
to imply a negative value for this parameter (see Dobbs (1977)). Again it

may prove necessary to include Landau parameters of higher order to resolve

this conflict.
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Although Landau Theory has explained many aspects of thé behaviour of
interacting Fermi systems, there is still a great deal of work yet to be

done before the theory can be used to fully explain the acoustic phenomena
observed in liquid helium-3; the extension of these various experiments

into the superfluid phases of the liquid wiil surely prove to be a fruitful

field of study. The results of the work here presented, although not

entirely clear due to the unsatisfactory thermometer calibration, have
provided some evidence for the existence of transverse zero sound and,

it is hoped, made a worthwhile contribution towards the greater understandil;lg

of the Fermi liquid.

April 1978

K. J. BUTCHER
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The transverse acoustic impedance of liquid *He has been measured at 240 MHz at
pressures from 0-3 to 28 bar in the temperature range 0-015 to 1-0 K. The measure-
ments verify the existence of transverse zero sound in liquid *He at the higher pressures
and enable the Landau parameter F',5 to be determined.

The existence of a transverse zero sound mode in a Fermi liquid was
originally postulated by Landau [1] and predicted in liquid 3He by Brooker
[2] and Fomin [3]. A necessary condition for the existence of the transverse
zero sound mode is [2] :

Fr4+3F3(1+ F3[5)~1>6, (1)

if F,,,5=0, where F are the symmetric Landau parameters. Most of the
experimental properties of normal liquid 3He have been successfully explained
by Landau’s theory with finite values of only F#, F.® and F 2, as discussed
by Wheatley [4], who uses the alternative notation of Z,/4 for F 2, the asym-
metric Landau parameters. Recent measurements of the transverse acoustic
properties of liquid ®He by Roach and Ketterson [5] have indicated that
finite values of F,® may be required to account for their data. If F,5#0, then
clearly the condition in Equation 1 must be satisfied for the transverse zero
sound to exist, whereas with F,*=0 it could exist at all pressures in liquid 3He.
We show here that F,® is much less than F,* and discuss the existence of the
transverse zero sound mode over the pressure range 0 to 28 bar.
Experimentally transverse zero sound should be generated by a trans-
versely oscillating surface immersed in normal liquid 3He, provided wr> 1,
where w is the angular sound frequency and + a quasi-particle relaxation time.
We have measured the transverse acoustic impedance of liquid 3He at 240 MHz
at various pressures from 0-3 to 28 bar over the temperature range 1-0 K to
15 mK. At the lower temperatures we have obtained data in the collisionless
limit. We generated a short pulse (=~ 2 us) of transverse ultrasound in a
piezoelectric rod immersed in liquid ®He, by placing one end of the rod in a
resonant r.f. cavity, following the method originally used for measuring the
longitudinal acoustic impedance, as described by Wilks [6]. The sound pulse
propagates in the rod, producing a series of echoes. The Nth echo represents
a sound pulse which has undergone (2N — 1) reflections at a solid/liquid inter-
face. By measuring changes in the relative amplitudes of the first and Nth

+ Work supported by the Science Research Council, with a grant and a student-
ship.
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echoes, we have determined the fractional power loss per reflection, AS, from
the sound pulse into the liquid 3He. AS is directly related to the real part R
(acoustic resistance) of the transverse acoustic impedance, Z= R +1X, of the
helium :

AS=4R|R,,

when R< R, where R,=p, is the rod’s transverse acoustic impedance ; p,
is the density, and v, is the velocity of sound, in the rod. The condition
R|R <1 is well satisfied for liquid 3He, the maximum value of R/R, being
about 1-2x 10, which corresponds to ASx2x10-2dB. Consequently,
many echoes are required to obtain a measurable change in echo amplitude
due to the liquid helium. Below 4-2 K over 3000 echoes could be seen ; the
measurements reported here were made on the 1200th echo, although AS was
independent of echo number. Further details of the experiment and the data
acquisition techniques used will be published elsewhere.

Measurements of the temperature dependence of RE/p at 0-3 and 28 bar
from 0-015 K to 1-0 K are shown in Figure 1. The density p of the liquid 3He
at T=0K was taken from [4], without allowing for the small temperature
dependence of p which is less than 0-59; below 1 K [7]. The data points above
0-4 K have been corrected for a small temperature-dependent ultrasonic
attenuation in the rod, which was measured separately and varied from
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Figure 1 The temperature dependence of the transverse acoustic resistance
of 3He, R, measured at 240 MHz and at pressures of 0-3 bar (o)
and 280 bar (e). The resistance is plotted as R/p, where p is
the density of the liquid. The dashed line is calculated from
the viscosity data of Black, Hall and Thompson [8] and the
solid line similarly from McCoy et al. [9]. The measurements of
R were fitted to each of these lines at 10 K. The low tempera-
ture limits (R_) are denoted by arrows on the ordinate scale.
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0-18 ms~! at 0-4 K to 2-6 ms~! at 1-0 K when expressed as a correction to R/p.
The measurements of R/p were taken relative to their value at 1.0 K ; the
absolute values of R[p at 1-0 K were calculated from measurements of the
viscosity 7 of liquid 3He, using

Ry =(npw/[2)V?, (2)

where R, is the transverse acoustic resistance of the liquid in the hydro-
dynamic limit, wr<1. Figure 1 shows Ey/p calculated from the semi-empiric
formula for 5 given by Black, Hall and Thompson [8] for liquid 3He under its
8.v.p. above 0-05 K :
2-21 26-3
="zt (uP) (3)

The data at 0-3 bar in Figure 1 have been fitted to these calculations at
1-0 K where B/p=512 ms~'. Direct measurements of R/p at 1-0 K from AS
with and without liquid helium in the cell agree with this value, although the
experimental error in AS, due to the detuning of the resonant cavity when the
liquid is removed, is rather large. The measured temperature dependence of
R[p at 0-3 bar is well described by Equation 2 from 0-2 to 2-0 K, as shown in
Figure 1. At higher pressures, the measurements could be fitted to values of
R/p derived from the viscosity data of McCoy et al. [9]. Below 01K R/p
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Figure 2 The pressure dependence of the transverse acoustic resistance
of liquid *He at 240 MHz in the collisionless limit, R, expressed
as R_/p. Data were obtained by (a) warming from about
16 mK (@) and (b) cooling to about 25 mK and extrapolating to
16 mK (o). The measurement of Roach and Ketterson [5]
at 23-0 bar is also shown (A). The results are compared with
graphs computed from Flowers and Richardson [12] for F,=
1, 0, —1; the solid lines are B_/p and the dashed lines are the
parts (B_°/p) due to transverse zero sound.
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deviates from the classical expression as the transition from the hydrodynamic
to the collisionless regime occurs. We estimate that wr=1 at 0-043 K for
0-3 bar and 0-034 K for 28 bar, from the value of =, T2 given in [4]. At the
lowest temperature BE/p tends to a temperature independent limit R_/p.
Measurements were taken at various pressures up to 28-0 bar and the qualitative
dependence of R/p on T was the same in all cases. Figure 2 shows the limiting
values of R_/p versus pressure as derived from our data, and also the value
R, /p=21+1ms™! at 23 bar from [5]. It can be seen that R_/p is only
slightly pressure dependent, decreasing from 24 +1 ms=! at low pressure to
21 + 1 ms~! at 28-0 bar.

The transverse acoustic impedance Z of a normal Fermi liquid has been
calculated by Fomin [10] and by Flowers et al. [11] with the Landau parameter
Fps=0. Recently Flowers and Richardson [12] have derived Z as a function
of wr, Fi® and F,5. They show that R contains contributions of comparable
magnitude from both single particle excitations and the transverse zero sound
modes. Both these contributions to R become independent of temperature in
the collisionless limit and se the temperature dependence of E/p, observed
both by Roach and Ketterson and by ourselves, is not conclusive evidence for
transverse zero sound. Its presence can, however, be inferred from a quantita-
tive comparison of theory with the measurements of R. Flowers el al. [11]
found that the measured temperature dependence of R/p at 23 bar [5] fitted
the theory and obtained F,8= —1-040-5 from the limiting value B /p. The
temperature dependence of X/p, on the other hand, could not be fitted to the
theory. '

To analyse our data we have used the expressions (which are too complex
to reproduce here) given by Flowers and Richardson [12] to calculate E_/p
as a function of pressure for various values of F,%, using the values for the
density p, the Fermi velocity v, and F,® given in [4]. Figure 2 shows the
calculations of both total R,/p and that part (R_¢/p) due to the transverse
zero sound, for F,5=1, 0, —1. Our data points all fall within these limits so
clearly F,® is small at all pressures. Within our experimental errors, as shown
in Figure 2, F,°~0 at low pressures, but above 12 bar F,f= —1-0+0-5, in
agreement with the values derived by Flowers et al. [11] for 23 bar. We thus
find that F,® decreases as the pressure rises, but our total change in ¥,? is some-
what less than that suggested in [5]. However, Fomin [10] has pointed out
that if F,* is necessary then Landau parameters F,,* might be required.
The theory also assumes that the scattering of quasi-particles from the solid
surface is perfectly diffuse ; if the scattering were specular, then R would be
zero in the collisionless regime. Experiments on the thermal conductivity of
liquid 3He have confirmed [13] that in Vycor glass the specular reflection
coefficient is zero. We conclude that for p> 12 bar, R, is dominated by the
transverse zero sound, but that at lJow pressures the uncertainty in ¥,f implies
a similar uncertainty in the existence of transverse zero sound.

Nettleton [14] has derived F,*= —0-34 and —0-56 from two sets of thermal
conductivity data at low temperatures and zero pressure. The Landau
parameters are constrained by the sum rule [15] :

F," Fla
=Y Af Ap=0. 4
;1+Fls/(2l+l)+2121+F,“/(2l+1) ; l+; ! (4)
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If we use the values of F?, F\* and F® given in [4] and assume that F,® and
F.® are the only other significant Landau parameters, then we find that (4,°+
A,2) varies from —0-86 at 0 bar to —0-64 at 27 bar. F,2 is difficult to deter-
mine experimentally but has been estimated variously (see [15]) as —0-46 +
0-14, —0-39+0-14, —0-15+0-3 at O bar and +0-2+0-6 at 27 bar. The sum
rule would then give respectively F,*= —0-30+0-17, —0-38+0-16, —0-62+
0-26 at O bar and" —0:-9+0-4 at 27 bar. These estimates are in reasonable
agreement with the present measurements and with all other experimental
data, with the sole exception of the measurements of longitudinal acoustic
impedance. Brooker [2] found that the measurements of Wilks and his
co-workers [6] in the collisionless limit could only be fitted to Landau theory
with F,?® of 3-4 at 12:55 atm and 14-8 at zero pressure. These anomalously
large values of F,? suggest that a different explanation must be found for the
longitudinal impedance data, especially as the longitudinal transmission data
[16] is consistent with F,~0 at 0-3 bar. Our conclusions are based on the
correctness of Table V of Wheatley [4] and Wolfle [17] has pointed out that
the m* values given there may be an overestimate at high pressures. He
calculated, for example, from other experimental data that at p=21 bar,
Fy*=0-4, but if we use his lower value of m*/m=4-9 at 21 bar, our value of
Fy? becomes —1-2 instead of —1-0, well within our experimental error.
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