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ABSTRACT

The aim of this thesis is to study the extension of valuations in
skew field extensions.

In Chapter I we look at the following problem.

Let K be a field and V a valuation ring of rank 1 in K. Let H be
a crossed product division algebra over K. Then we study conditions
under which there exists a matrix local ring R in H lying over V and
generating H as K-space. We then find that R is a valuation ring in H
lying over V iff R is local. Moreover if V is discrete of rank 1, then
R is a maximal order in H.

In Chapter II we study directly conditions under which a\valuation
on the centre of a finite dimensional central division algebra can be
extended to the whole algebra. 1In particular if H = (E/X; 0, a) is a
cyclic division algebra and v is a discrete rank 1 valuation on K, then
the extension of v to H depends on v(a). We then carry on the study of
the extension problem for the tensor product of algebras. In particular
if H=H, g see % Hr and V a rank 1 valuation ring in K and if there
exists a valuation ring W in H lying over V with WnHi = Wi(i==1,...,r),
we study conditions under which W = W, % “ee 3 Wr'

In Chapter III we look at infinite skew field extensions. We
study valuations in skew function fields. The application will include
among others, free algebras, universal associative envelopes of Lie
algebras and generic crossed product. However our main concern in this
chapter is tﬁe following question raised by P.M. Cohn.

Let X K, be two skew fields with a common subfield K and let»v‘l,v2

ll
be real valued valuations on K, and K, respectively such that
vy K= Vle = v,

Do vy,v, have a common extension to H = K1 g K, (the field
coproduct of K; and K;)?

We show that in general the answer is no. Nevertheless we find

conditions under which v,,v, have a common extension to H.
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Terminology and notations

Throughout this thesis, all rings occurring are associative, but
not necessarily commutative. Every ring has a unit element, denoted
by 1, which is preserved by homomorphisms and inherited by subrings.
An integral domain R is said to be a right QQre domain if any two non-
zero elements of R have a non zero-common right multiple. Left Ore
rings are defined similarly. A non-zero ring in which every non-zero
element has a two sided inverse will be called a skew field, and a
commutative skew field will be called a field.

I1f o: A.+ B is a map, then the image of an element a € A is
denoted o(a) and sometimes ao.

Let R be a ring and S a subring of R, then Z(R) denotes the
centre of R while C(S) denotes the centralizer of § inR.,

By J(R) we shall mean the Jacobson radical of R.



CHAPTER O

Preliminaries

In this chapter we collect some facts on rings and give the
conventions we will follow throughout the work;

In Section 1 we define valuations on skew fields and we state
Cohn-Krasner's theorem plus P.M. Cohn's theorems on finite dimensional
central division algebras and total rings.

In Section 2 we define maximal orders and we state the main
theorem needed for our work.

In Section 3 we define skew polynomial rings, while in Section 4
we define universal skew fields of fractions.

Section 5 will be devoted to the definitions of firs and the

coproduct of fields over a subfield.

§1 Valuations on skew fields

Let K be a skew field and T a totally ordered additive group. A
function v on K with values in I' U {=} is called a valuation on K if
the following cqnditions are satisfied;

v.l v(a) = if and only if a = O for all a € K.

v.2 wv(a-b) 2 min{v(a),v(b)} for all a,b € K.

v.3 v(ab) = v(a) +v(b) for all a,b € K.

The image of K* = (K\{®}) is called the precise value group of v. If
U= {x € K; v(x) = 0}, then imv z K*/U. This of course follows from
the fact that v is a group homomorphism of K* onto imv. If T is
abelian then v is said to be abelian.

A subring V of K>is said to be total if for every a € K*, a eV
or a1l € v; it is invarignt if a~lva = V for all a € K*. By a valuation
ring we understand a total ;nvariant subring of K. It is easily

verified that for any valuation*@, the set



Vv ={x € X|v(x) 2 0}

is a valuation ring in K, and conversely, every valuation ring in K

determines a valuation on K which is unique up to an isomorphism of

the precise value group. V is said to be associated to v.

Remarks. Let v be a valuation on a skew field K, then

1) v(a) # v(b) implies v(a-b) = min{v(a),v(b)}

2) the valuation ring V is local with maximal ideal f = {x € K|v(x) > 0}
3 is called the radical of v and V = V/J is called the residue

class field of v

3) it is known that every valuation on K defines a topology on K; how-
ever K is not necessarily complete for this topology and its
completion % is called the completion of K relative to v.

The following theorem by P.M. Cohn generalizes theorem 9 of ([18]).

Theorem O.1.1. Let D be a finite dimensional division algebra over its

centre K and suppose that K has a real valued valuation v. Then the
following conditions are equivalent, where K denotes the completion of

K relative to v.

(a) D is a topological skew field with a topology inducing the valuation
topology on K, and D has a completion D which is a division algebra.

(b) D g K is a division algebra.

(c) F g K is a field, for any commutative subfield F of D.

(d) v has a unique extension to every commutative subfield of D

(e) v can be extended to a valuation on D.

Proof. Cohn ([5] Theorem 1)

The following theorem is also due to P.M. Cohn.

Theorem 0.1.2. Let D be a finite dimensional central division algebra.

Then any total subring of D inducing a real valued valuation on the
centre of D is a valuation ring.
Proof. Cohn ([5] Theorem 3)

We now state Krasner-Cohn's theorem.
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Theorem 0.1.3. Let K € L be any skew field extension. Given any abelian

valuation v on K with associated valuation ring V and radicalﬂZ,, here
is an abelian extension w ofv to L iff MLC is a proper ideal of VLC,
where L° is the commutator group of L.

Proof. cf. ([8] Theorem 2.3)

N.B. This theorem is used indirectly in our work.

§2. Maximal orders

Let R be a noetherian commutative integral domain with a field of
fractions K and let A be a central simple K-algebra; an R-module M is
called an R-lattice if it is a finitely generated R-torsion free

R-module. M is said to be a full R-lattice in A if M generates A as

K-space.
An R-order in the K-algebra A is a subring A of A which is a full
R-lattice in A.

A maximal R-order in A is an R-order which is not properly contained

in any other R-order in A.
Throughout our work A will be assumed to be a skew field. A ring

S is said to be matrix local if S/J(S) is simple artinian i.e.

S/J(8) ;;Mn(L) where L is a skew field. n is called the capacity of S.
In what follows R is assumed to be a discrete rank 1 valuation ring in
K. Then we have

Theorem 0.2.1. Let A be an R-order in the skew field A, then A is a

maximal order iff A is hereditary and matrix local. Moreover if A is
a maximal order in A then A is a valuation ring iff its capacity is 1.
Proof. The first part of the theorem is ([17] Theorem 18.4) where the
second part can be deduced from ([17] 18.7 and 18.8) and theorem O.1.1l.
In fact if the capacity of A is 1 then A is the unique maximal

R-order.



§3. Skew polynomial rings

Let R be any ring. By a degree function we understand a function
d: R > %Z y {-=} satisfying the following properties.
D.1. For a € R* = R-{0}, d(a) 2 O, while d(0) = -=
D.2. d(a-b) < max{d(a),d(b)} for all a,b € R
D.3. d(ab) = d(a)+d(b) for all a,b € R

D.3 implies d(l) = O; and by D.1 and D.3, R* is closed under
multiplication; i.e. every ring with a degree function is necessarily an
integral domain.

Given a ring R, let S be a ring containing R as subring, as well as
an element x such that every element of the ring A generated by R and x

is uniquely expressible in the form

n
£(x) = aptxaz+...+xa , a; €R (1)

Furthermore, we assume that 4(f) = max{i; a; # 0} is a degree function
on A. This implies that R is an integral domain and moreover, for any

a € R, there exists aa, a‘S in R such that
ax = xa + a . (2)

Firstly we note that aa, a(S are uniquely determined by a and a = O if
and only if aa = 0. Secondly, by (1), we have (atb)x = x(a+b)a+(a+b)6,

6+xba+b8. Therefore, (a+b)a = aa+ba, (a+b)6 = a6+b6 so

ax+bx = xa%+a
o, § are additive mappings of R. Similarly, by comparing a(bx) and

{(ab)x we obtain

(ab)® = a%?, (ab)® = a%* + abt.

Putting a = b = 1, we find 1% = 1, 15 = 0. Hence o is a monomorphism and

§ is an g-derivation of R. The relation (2),with the uniqueness of (1),
suffices to determine the multiplication in A in terms of R, a and 6.

Thus, given R, o and §, A is completely fixed. We shall write
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A = R[x;a,6] and call A the skew polynomial ring in x over R determined
by o and §. When § = O we simply write R[x;0] instead of R[x;a,0].

Skew polynomial rings turn out to be useful in chapter III in
providing examples and counter examples. We note that when R = X is a
skew field, then K[x;a,8] is a right ore domain (cf. [3] pp.36) and thus

has a field of fractions K(x;a,8), say which is called a skew function

field.

4. Universal field of fractions

Given a ring R, by an R-ring we understand a ring L with a
homomorphism R -+ L. The R-rings (for fixed ring R) form a category in

which the maps are ring homomorphisms L -+ L' such that the triangle

/ R\
L —>1)

By an epic R-field we shall mean an R-ring K which is a skew

commutes.

field, and such that K is the least skew field containing the image of
R. 1If, moreover, the canonical mapping R -+ K is injective, we call K a
field of fractions for R. Of course for some rings R there may be no
epic R-fields at all. The only R-ring homomorphism possible between
epic R-fields is an isomorphism. For any homomorphism between skew
fields is injective, and in this case the image will be a skew field
containing the image of R, hence we have a surjection, and therefore an
isomorphism. This shows the need to consider more general maps.

let us define a specialization between epic R-fields K,L as an

R-ring homomorphism f: Ky + L from an R-subring K0 of K to L such that
any element of K, not in the kernel of f has an inverse in K. The
definition shows that Kg is a local ring with maximal ideal Ker f, hence

KO/Kerf .is a skew field and by the definition of L; L =~ Ko/Ker f.



Thus any specialization of epic R-fields is surjective.
Two specializations from K to L are considered equal if they agree
on a subring K, of K and the common restriction to K, is again a
specialization . Bg({S] pp.253) the epic R-fields and specializations
/
again form a category fh say.

An initial object in the category ';; is called a universal epic

R-field. Explicitly a universal epic R~field is an epic R-field U such
that for any epic R-field K, there is a unique specialization U +> K.
Clearly a universal epic R-field, if it exists at all, is unique up to
isomorphism. In general a ring R need not have a universal epic R-field
(e.g. a commutative ring has a universal epic R-field if its nil
radical is prime).

Suppose that R has a universal epic R-field U. Then R has a
field of fractions iff f: R > U is injective. If f is injectivé then

U is called the universal skew field of fractions of R.

§5. Firs and free products

A ring R is said to be a right fir if every right ideal is free
of unique rank as right R-module.

Ieft fir is defined similarly.

A ring R is said to be a fir if it is right and left fir. We now
consider a fixed ring K and K-rings K, /K, then the coproduct of K;.,K,

over K is their pushout

%

x> .
a2 lt;i§iﬂk¢

The coproduct of Kl,K2 over K is saié to be faithful if fl,f2 are
injective. The coproduct is said to be separating if Ky nK, = K in

K, U K,.
18 %2
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The coproduct of K, and K, over K is called a‘free product over K
if it is both faithful and separating. It is known that if Kl’Kz'K
are skew fieldgthen K, LI’< K, is a free product and moreover K, %Kz is
a fir, hence it has a universal skew field of fractions (for proof of

the above see ([4] and [3] PP |06 and 233) .
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CHAPTER I
MATRIX LOCAL RINGS IN SKEW FIELDS

The purpose of this chapter is to study generalisations of the
following well known result to non-discrete valuation rings of rank 1.
Let H be a finite dimensional central division K-algebra and let
V be a discrete rank 1 valuation ring in K; then there exists a maximal
V-order R in H. Moreover R is a valuation ring iff its capacity is 1.
In section 1) we define matrix local rings and we study their
basic properties.
In section 2) we study the case of crossed product division
algebras and we obtain the main theorem of this chapter. NAMELY:
let H = (E/K;f) be a crossed product division algebra and let V be a
rank 1 valuation ring in K such that the following conditions are
satisfied.
i) there exists a unique valuation ring W in E lying over V
ii) the inertia group of W is {1}
iiji) Imf € U(W) (the group of units of W).
Then there exists a matrix local ring in H geneiating H as E-space,

lying over V and given by

R =§:Wug where o ¢ Gal(E/K) and uu_=f for

u
0T 0,T OT

all o,T € Gal(E/K).

Moreover R is a valuation ring iff its capacity is 1. 1In section 3) we
shall study the case im§c U(W) and deduce that condition iii) of the

above theorem cannot be omitted.

§1. Definition and basic properties of matrix local rings

Definition (1.l1.l1). A ring R is called matrix local ring if R/J(R) is

simple artinian; 'i.e. R/J(R):;:Ln , where L is a skew field. n is
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called the capacity of R and will be denoted cap R.

We shall mainly consider matrix local rings which are contained
in skew fields. So let H be a skew field and R a matrix local ring in
H with cap R = n, let fij (i, =1,...,n) be a set of elements in R

such that

(1) fi‘f

5k £, (mod J(R)), (2) Zfii = 1(mod J(R))

= ij

We shall study the set

Sg = {x € R; xfij - fij x € J(R) }.

But first we have

Lemma (1.1.2). Iet B be any ring, }{a subset of B and O the centralizer

of X(mod J(B)), then O is a subring of B and if a is a unit in B which
lies in O then a is a unit in O.
Proof. O is a subring of B
1. O is an additive subgroup of (B,+) because J(R) is
2. O is multiplicatively closed. For
o € Oa»oax-x0 ¢ J(B) for all x € X
B € O=>Bx-xB € J(B) for all x € X.
Hence aBx-xoB = a(Bx-xB) - (ax-¥K)B e J(R) for all x € X,
whence af € O
3. 1 € O because x-x = 0 € J(B) for all x € X
thus O is a subring of B.
For the second part we consider a unit a in B which lies in O; then there

exists b ¢ B such that

Moreover b(ax-xa)b = baxb-bxab = xb~bx ¢ J(B) for any x € X, hence b € O.

We can now have
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Proposition (1.1.3). Sf is a subring of R which is independent of the

choice of the £, . 's.
i]
Proof. Sf is a subring of R by Lemma (l.1.2) and Sf is independent
of the fij's because the fij‘s (mod J(R)) are matrix units of R = R/J(R).
This result allows us to denote Sf by S and we shall do so through-

out this section.

Lemma (1.1.4). J(R) < J(S).

Proof. 1. J(R)

n

S by the definition of S

f

2. J(R)

in

J(S) for let a € J(R), then for any s € 8,x = l+as
is in 8 and is a unit in R, hence by (1.1.2) x is a unit
in 8, thus a € J(8) and J(R) < J(S).

Proposition (1.1.5). J(R) = J(S) and S is a local subring of R.

Proof. Consider 8: R + R/J(R) Ln where L is a skew field. Put
S = 6(S) = S/J(R); then S centralizes the matrix units in Ln hence
¢: Mn(L) -> Mn(g) is an isomorphism which induces an isomorphism between
L and S; but this means that S is a skew field.

Hence the ideal J(R) in S is maximal (as left, right, two sided)
ideal in S, so J(R) = J(S).

J(S) is therefore the only maximal ideal (left, right, two sided)
in S and S is a local subring of R.

lemma (1.1.6). Let R be a ring contained in a skew field D which is

generated by R and let O be a subring of R which contains a non-zero
right ideal I of R then D is also generated by O.
Proof. Denote by ¥I*, 40% the subfields of D generated by I, O
respectively and let i.. be a non-zero element in I.

Consider r € R then ir = j € I hence r = i~1j ¢ «1» thus
R ¢ 4I% which implies D = fI* so D > ¥O% 2 ¥I* = D and D is generated by
o.

We can now describe the matrix local rings.
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Proposition (l1.1.7). Let R be a matrix local ring in a skew field H,

then R contains a local subring S such that ¥Rt is generated by S and
R is an O-algebra over a local subring of the centre of H.
Proof. We consider 6: R + R/J(R) = R ;=Mn(L) and we let
eij (i,j =1,...,n) be the set of matrix units of R. We pick
-1 d we put
fij € 6 (eij) and we pu

S={XeR Xf,, - £,.X € J(R)}.
ij ij
Then by applying prop. (1.1.5) S is a local subring of R and applying

lemma (1.1.6) yields the first part of the proposition.

For the second part we let K be the centre of H and we put

(@)
1t

S n K then O is a local subring of K and R is an O-algebra. In fact

R n Kbecause R n K =S n K.

o
"

Before proceeding to our next result in this section, we recall
some definitions. By a global field we shall mean either an algebraic
number field or else a field of rational functions in one indeterminate
over a finite field. We observe that every valuation on a global field
is discrete of rank 1.

A matrix local ring R will be called non-trivial if R # O and R
is not a skew field.

In the rest of this section, all matrix local rings are assumed
non-trivial. -

We first have

Iemma (1.1.8). Let H be a finite dimensional central division algebra

over a global field K and let R be a matrix local ring in H with

O = R n K. Then there exists a non-trivial valuation ring V in K such
that Vv 2 O.

Proof. If O is not a field, then V is a maximal element for domination
among local subrings of K containing O, see e.g. ([10] pp.65).

If K is an algebraic number field then O cannot be a field since
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otherwise (K:0) is finite. Hence (H:0) is finite, thus (R:0) is
finite, whence R is a field being without zero-divisors so we have a
contradiction because R is non-trivial.

If K = F(X) where F is finite, then

Either (K:0) is finite hence contradiction
or else

O is a field =>
K is non-algebraic over O and by ([10] pp.63)

J a valuation ring V in K containing O

and the lemma is proved.

Proposition (1.1.9). Let H be a finite dimensional central division

algebra over a global field K, then any matrix local ring in H is
contained as an additive group in a full lattice M over a valuation
ring V in K.

Proof. By (1.1.8) R =§:0Ca where O = R n K and {Ca}a is a generating

o
set of R as O-module. By (1.1.8) } in K, a discrete rank 1 valuation

, were exisls
ring V 2 O.
Let us write
n2
H = 2 Kui as K-space
i=1
then

= + ...+ 's .
Ca o,y o 24 2 where the_\al € K

If some of the ai's does not belong to V then by a suitable change of basis

we may assume Ca € Evui where By = ajui (a. is such that

J
v(o,) = * min (,) where v corresponds to V). By a successive
i=1,...,n? n2
change of basis we may assume W.L.0.G. that all the C,eM= Y Vy; -
i=1

Hence R ¢ M. Now M is clearly a full V-lattice in H.

Example and remarks. Ilet H = (:lé:lﬁ be the quaternion algebra and let

yp(P#Z) be the p-adic valuation on Q with associated valuation ring Zp.

Put R

v +427_+§Z +ijZz_ where i2 = j2 = -1,
P P P P

Let J = PR and consider R = R/J;
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then R ~ F+Fi+Fj+Fij ~ (F(I)/F; o, -1)

where g: i + -1 and F o Zp/pzp ~ZzZ/(p).

Since F is finite R splits over F, so ﬁ:; MZ(F)' hence J is
maximal (as two-sided ideal), whence J = J(R) because J(R) 2 J by
([17] theorem 6.15), thus R is a matrix local ring. 1In fact 1) this

shows that R is a P.I.D. (a principal ideal domain) while S is not since
S =2 + ipZ + pjz + pijz
D P b PJ D pij S
and J(S) = J(R) =pZ + ip'2 + jp 2 + ijp Z_.
P o P S ip b 3p D

2) If R is a matrix local ring with Cap R # 1, then R is not invariant
since otherwise cap R = 1 and from the above example we see that S is

not necessarily invariant. For assume that P = 3 and

n

let x 3+ 3i +3j ¢ H

and y=1+31i € S

then XyX~! =1+ i+ 2§ - 2ij £ s.

§2. Matrix local rings in crossed product division algebras

Let H be a crossed product division algebra over the Galois

extension E/K so that,
H = (E/K; f) where f is a factor set from G to E¥,
then H = 2 Euc where G = Gal(E/K)

oeG

uu = f u for all og,T € G
ot G,T OT

uoa = acuO for all a € E and 0 € G.

We note that the centre of H is K and (H:K) = n? where n = ord G.
Throughout this section we are given a rank 1 valuation v on K with
associated valuation ring V and a residue class field V = V/m where m is

the unique maximal ideal of V.
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Let wl,mz,...,wr (r £ n) be the distinct valuation on E which
extend v, see e.g. ([10] theorem 2.12).

We pick one of them which we call w with associated valuation
ring W, maximal idealgp, residue class field W = W4;0 and group of
units U(W).

We consider the set D = {0 € G; oW = W} which is the decomposition
group of W.

Each ¢ € D defines by passage to the residue class a G—automorphism
g of W and we obtain a homomorphism €: D - Aut (W/V) whose kernel is
called the inertia group of W and will be denoted by T.

It is well known (see e.g. the above reference) that W/V is normal
and that D/T o~ Aut(W/V).

Let KD be the fixed field of D,i.e. the decomposition field

Let KT be the fixed field of T,i.e. the inertia field of W.

W

1

D wn KD with value group FD and residue class field ﬁD

W W n K_ with value group PT and residue class field ﬁT’

T T

Then from the above reference we have

FD = FT = A where A is the value group of V.

=1
]

V and WT is the separable closure of V in W.

We now considerxr

A= ) Eu
oeD °

Proposition (1.2.1l). A with the multiplication and addition induced

from H is a subring of H which is a crossed product division algebra
over the Galois extension E/KD.
Proof. A with the induced multiplication and addition is clearly a
subring of H.

Now the restriction of the factor set f£f to D yields a factor set

from D to E*, hence A is crossed product over E/KD; thus A is central
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simple as KD—algebra whence A is a division subring of H because A has
no zero-divisors.

Throughout this section we shall write
= ' ~ . =
A G}E;DE 1 ~ (E/K,; £;) where £, = £/DxD

We shall assume that there exists a factor set (from D to E*) equivalent
to fD and whose image is € U(W). For simplicity we shall assume
imf ) © u(w) .

We consider the left W-module

Then by the above assumption R with induced addition and multiplication
forms a ring which generates A 4§ E-space and such that R n K = V.

Much of the remaining is devoted to the study of this ring.

First we have the following lemma.

Iemma (1.2.2). Let B be any ring containing a local ring O such that B

is finitely generated as left (respectively right) O-module then
J(B) 2 PB (respectively J(B) > BP) where P is the unique maximal ideal
of O. |
Proof. Direct application of Nakayama lemma.

We now go back to hypothesis and notations preceding Lemma 1l.2.2.
We put J =90R and J' = ] R(u-1)R, then

o€eT
Lemma (l1.2.3). M = J+J' is a two sided ideal of R.

Proof. J' is a two-sided ideal of R.
Now J is a right ideal of R.

ILet x = aU u 4+ ... +a u be a non-zero element in R,

1 0'1 Og Ogs
Let a be a non-zero element of ?p
0'1 Og Ui
Xxa=a_a‘*u +...+a a u_ . a séfa because o0, € D
9y CH “og og i

(i=1,...,8) and so every term belongs to J, it follows that =a ¢J .,

hence J is two sided, whence M is two sided.
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Proposition (1.2.4). M is either equal to R or is a maximal two-sided

ideal of R.
Proof. If J' = R then M = R otherwise M is proper since J is proper and
since if 1 = x+y then y = 1-x is a unit because x ¢ J(R).

We claim that M is maximal as two-sided ideal of R. For we let
R = R/M and we prove that R is a simple ring.

If R is not simple then there is a proper two-sided ideal X in ﬁ.

We write R =ZW—1103

then there is a finite basis for R as left ﬁ—spacef if o € T then
50 =1 = ﬁl hence the only ¢ € T which appears as a suffix for a basis

is the identity.

If 0 = T(mod T) then "a"ﬁm O @f T appears as a suffix since

£ £ 1 ! which is a

otherwise u_~-au_ = O where a € W and « -1
o T O,T T, T

contradiction.

We now consider a non-zero element of X,

X=a u +...+a GO with t minimal
171 t 't
- - - - u,.nits
then t > 1 otherwise x is a unit in R’since a and u_ are A jwe can
1 1
now choose b € W with cl(b) # Gz(b) because 0,00, are not both in T and

o.,0, are not equivalent (mod T).

172

Now we put y = x - cl(b)'l;iﬁ and y is clearly in X.
v = x - R o. ) la u b +...+0.Mm la u b
then y = x ol(b) a01 uclb + Ul(b) aozuczb ol(b) aotuotb
=2 -5 "2 5B & -13 3 et ]

X cl(b) a; Gl(b) u + ol(b) a, Gz(b) us +... ol(b)
1 1 2 2 _
uctct(b) ubt

=x-a u +o0.® lo.® a1 +...+0.(0) g (©)a_ u
01 01 1 2 0'2 0'2 1 t Gt Gt

after simplification we see that § is a non-zero element which is shorter
then t,hence a contradiction,; whence R is simple and M is a maximal two-

sided ideal in R.

We can now describe the ring R after keeping all the hypothesés

and notations introduced before.
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Corollary (1.2.5). Consider A = z EuG ;:(E/KD; fD) and assume that
oeD
1) Imf c U(W) 2) 7= {1}.
Then R = 2 Wlll.cr is a matrix local ring generating A as E-space and such
oeD

that RN K = V.
Moreover R = R/J(R) is a crossed product over W/V and R splits over
vV iff fD can be chosen so that (fG,T-l) 6:;9 for all o,T € D.
Proof. Since T = {1}, applying proposition (1.2.4) yields that M =Q¥’R
is maximal as two-sided ideal of R and applying lemma (l.2.2) yields
that J(R) 2 M, hence J(R) = M whence R is a matrix local ring because R
is simple artinian (note that R is artinian because R is finite Qimensional
as §—algebra). Now R clearly generates A as left E-space since EW = E;
and R n K=V since Rn XK =W n K.

- a
We claim that R isdcrossed product. -

R = Z ﬁﬁc where the {Go; o € D} is a basis of R as left W-space.
oceD _
Now T = {1} yields that W/V is a Galois extension with Galois group D

after identifying ¢ in D with E in D/{1}. So we can define

ED: DxD + W* by ED(O,T) = and ED is easily seen to be a factor set

ch,T
from D to W* hence R is a crossed product algebra over ﬁ/ﬁ. Now the
last part is trivial since R splits iff ED is trivial (cf.[19]), iff
DO,T_l) e’yp and the corollary is proved.

Before proceeding to our main result we shall adapt some definitions
but first we recall that if E/K is a field extension and V a valuation
ring in K, then a valuation ring W in E is said to lie over Vif W n K = V.

Let H be a crossed product division algebra over the Galois extension
E/K and let V be a rank 1 valuation ring in K with W a valuation ring
in E lying over V with a decomposition group D. Then A = 2 Eub is
called the division subring of H associated to W. V is saitho be

extendable to A if there exists a matrix local ring R lying over V

(i.e. R n K = V) and such that R generates A as left E-space.
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We shall now state and prove our main theorem.

Theorem (1.2.6). Let H be a crossed product division algebra over the

Galois extension E/K; so that H = Z EuU _ (E/X; £f) where G = Gal(E/K).
e

Iet V be a rank 1 valuation ring in i such that the following conditions
are satisfied

i) There exists a unique valuation ring W in E lying over V

ii) The inertia group T of W is {1}

iii) Imf€ U(W) where U(W) is the group of units of W.
Then V is extendable to R = 2 wu_ in H.
C€G

Moreover R is a valuation ring in H iff the capacity of R is 1.

Proof. Consider H = z Et% since W is the only valuation ring in E
o
lying over V, the decomgosition group of{W is the whole of G. Hence
Corollary (1.2.5) yields that R = 2 wuG is é matrix local ring which
o€

extends V to H and part 1 of the theorem is proved.

If R is a valuation ring then R is local, hence cap R = 1.

If cap R =1, then R is a local ring.

We claim that R is a valuation ring.

We shall prove first that R is a total ring in H i.e. for every
X ‘€ H; either x € R or x~!l € R. ILet h € H\R be a non-zero element, then

x=a u, +...+a u where some of the a £ W(oi € G).

1 m m i

Ifm=1then x =a_u_ wherea_ ¢W. Hence x~! = u~la=l ¢ R because

0, 0, gy o, cl

d;le W and u, is a unit in R, so we assume W.L.0.G. that m > 1 and we
1 1

let w be the wvaluation on E which corresponds to W with ideale’.

/

ILet a  be such that w(a_ ) = min wla )
o, o, : o.
j Jj 1=0,...,m i
= ees + + ... T
Then x = a .(ac /a 'u + u a, /ac.u )

OJ 1 0] g 1 O'j m § O'm

where w(ac /a0 ) 20 i=1,...,m

i 73
Now by Corollary (1.2.5) J(R) =ng, hence the element

y = a /ao_uo + ... tug ..l +oag /ao'ugm € J(R), this implies that

1 73 1 j m J
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y is a unit in R because R is local. Thus x~! = y"la;1 € R since
J
yv~l ¢ R and a;1 € W c R so R is a total subring of H.
3
By theorem (0.1.2) every total subring of a finite dimensional

central division algebra, inducing a rank 1 valuation ring in the centre
is invariant. Hence R is a valuation ring and the theorem is proved.

As a corollary we have

Corollary (1.2.7). Let H = z EI% _ (E/K; f) be a crossed product
division algebra over the Gaigfs extension E/K with G = Gal(E/K). Let
V be a rank 1 valuation ring in K.

wl,...,Wr the valuation rings in E lying over V.
Dl""'Dr the decomposition groups of Wl,...,Wr.

Tl""’Tr the inertia groups of Wl"'f'wr'

Al""’Ar the associated division subrings of H with
fl""’fr their corresponding factor sets
and suppose that imfi c U(Wi) (i=1,...,r) where U(Wi) is the group of

units of Wi.

(i=1,...,r)
Moreover Ri is a valuation ring in A iff Cap Ri =1{(i=1,...,r).
Proof. Direct application of corollary (1.2.5) and theorem (1.2.6).

Remarks and example: (i) If in theorem (1.2.6) V was discrete of rank 1,

then conditions i), ii), iii) are redundant and H can be taken to be
any finite dimensional central division algebralsince there is a maximal
order R over V and R is a valuation ring iff Cap R =1 +« -The theorem
can be considered as é generalization in the cége of crossed product
(note that R is matrix local).

(2) If v is the valuation which correspond to V then theorem

(1.2.6) says that if the conditions 1), ii) and iii) are satisfied then
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v extends to a valuation on H precisely when cap R = 1.
(3) The condition on T cannot be omitted in general as the following
example shows.
1

Example. ILet H = (:ié:—ﬂ ~ (Q(i)/Q; o, -1) be the quaternion algebra

over the rationals where i2 = -1 and 0: i »> -i.

Let v2 be the 2-adic valuation on Q with associated valuation ring
Z, ; then there is one valuation ring in Q(i) and only one lying over Zy,

namely
W=Zt Z,[1] with g = 2 Q@AW ana @ 2 # ().

Now -1 € U(W) (the group of units of W), hence conditions i) and iii)
of theorem (1.2.6) are satisfied.

However condition ii) is not satisfied since
Gal(Q(i)/Q) =D =T = {1,0} where D is the decomposition

group of W and T is the inertia group.

Now R = W+Wj where j2 = =1 is a matrix local ring in H generating
H as Q(i)-space and lying over 25, hence %, is extendable to R in H.
Moreover cap R = 1 since J(R) = J(WR + (j-1)R + (ij-1)R and
R =R/J(R) = %/2% = % (2).

However R is not a valuation ring in H since if it were then
L(l+i+j+ij) € R which is not the case. This proves that condition ii)
cannot be omitted. In fact we shall see later that R is contained in a
valuation ring in H lying over Z&, though this valuation ring does not
have the normal form exhibited in theorem (1.2.6).&E‘é(ﬂ""‘\"--e"(""‘\'9)'(4")MJ

(4) In section 3 we shall see that condition iii) can not be

omitted.
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§3, The cyclic case

Let H be a crossed product division algebra over a cyclic Galois
. . . -1

extension E/K with cyclic group G = {l,c,...,cn }; so that

H = (E/K; 0, a) where a € K*,

n-1

i.e. H = 2 Eu’ where multiplication is defined as follows.
i=0
. i,
i o~ i .
(1) ua=a u for all a¢ Eand i ¢ {o,...,n-1}
{4 )
i u’ g 1+j < n
(2) uu = t+ien
au 3P if i+j 32 n

u® will be identified with 1 and H is called a cyclic algebra. Now
let V be a rank 1 valuation ring with maximal ideal’ﬂL and residue
classified V = V/ﬁz.

Our aim in this section is to study conditions under which V is
extendable to a matrix local ring in H and to prove that condition iii)
of theorem (1l.2.6) cannot be omitted. ILet Wl’WZ""'Wr (r £ n) be the
distinct valuation rings of E lying over V.

We shall treat the case r = 1 first so assume that there is only
one valuation ring W lying over V with maximal idea].i)p and residue
class field W = W/gﬂ. H is always assumed non trivial i.e. H # K.

First we have the following lemma.

Iemma (1.3.1). Let H = (E/K; 0, a) by a cyclic algebra and let V be a

valuation ring in K then H =~ (E/K; 0, b) where b € V.
Proof. Let v be the valuation on K which corresponds to V.
Since a € K* we look at v(a).

If v(a) O then we can take b = a,

1\

O then v(a-n+1) = (~-n+l)v(a) > O

A

if v(a)

because n = [E:X] is > 1.

- . -n+
Now a/a ntl an € NE/K(E*), hence if we put b = a n+l

then (E/K; 0, a) ~ (E/K; 0, b) see for e.g. ([17] theorem 30.4).
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Remark. b can always be chosen so that b is a non unit in Vv, if a is
a unit it suffices to put b = cna where v(c) > 0O and c # O. Since the
case of the imf < U(W) (f the factor set and U(W) group of units) has
been discussed in §2. We shall assume throughout this section that we

are given

H = (E/K; 0, a) where a ¢ m.
n-1 |
We consider R = EWul'R with multiplication and addition induced
i=0
from H is a subring of H generating H as left E-space and such that

R n K= V. We shall study this ring.

Lemma (1.3.2). I = ng + Rilis a proper maximal two-sided idealof R.

Proof. 1. Qf’R is two-sided. (§ee the proof of Lemma (1.2.3)).
2. Ru is a proper right ideal since u is not a unit in R.

Now Ru is two-sided because if x # O element in R,

s
then x = 0 + alu + ... asu where O ¢ s ¢ n-1
c s

and ux = (ag + 04U + ... + agu Ju € Ru

c
because ao,...,u e W.

o
s
Now I is proper since if not then there exist x:e:QDR and ¥y € Ru such
that 1 = x+y. But this implies that y = 1-x is a unit in R because
X egf’R c J(R). We now observe that the map W - R/I is surjective,
hence it induces an isomorphism between Wand R = R/I, thus I is a
maximal two-sided ideal in R.

Before we show that I is the Jacobson radical of R we shall need
a criterion for an element in R to lie in J(R). But first we recall

the following proposition.

Proposition (1.3.3). Let R be any ring and J(R) its Jacobson radical

then J(R) contains every left (right) nilpotent ideal.
Proof. (cf. [17] proof of theorem 6.9).

We now state and prove the criterion.
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Iemma (1.3.4). Iet B be any ring and x an invariant element of B.

Then
n
x € J(B) =Hx € J(B).

Proof. Consider x € B such that xB = Bx and xn € J(B). If x £ J(B)
then x is a non-zero element in B ~ B/J(B) and x generatesa nilpotent

ideal since

—— n — - a— —— —
(Bx)" = BxBX ... Bx = Bx" = Bx = 0

By proposition (1.3.3) Bx C J(B/J(B)) = O, hence x = O whence x € J(B)
and the lemma is proved.

We are now ready to prove the main result of this section. We
shall keep all the definitions and notations introduced in sections 1
and 2.

Proposition (1.3.5). Let H be a cyclic division algebra over the Galois

extension E/K and let V be a rank 1 valuation ring in K. Assume that
there exists a unique valuation ring W in E lying over V with’ f as

maximal ideal.
nl i n
Write H = 2 Eu where u’ € K* and u can be chosen such that
i=0
u" eQZ (?7 is the maximal ideal of V).

Then there exist infinitely many rings extending V to H and given
n-1

by Rc = 2 W(cu)l where ¢ ¢ V. However if V is non-discrete, none of
i=0
the Rc's is a valuation ring of H although cap Rc = 1 for all c € V.
n-1 .
Proof. Consider R = 2 Wul, then applying lemma (1.2.2) yields
i=0

J(Rl) Qle and applying lemma (1.3.4) yields u € J(R) since u” € J(Rl).
Now applying lemma (1.3.2) yields that J(R;) =90 Ry + uR; since
Q{’Rl + uR; is maximal two sided ideal which is contained in J(R,).
Now by (1.3.2) il ~ W= Wé&p (i.e. R, is local) and R, extends
V to H because R, generates H as left E-space and Ry n K = V. If c

R ..

is a unit in Vv, then R1 -

I
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For cfhon unit in V the proof is the same and the first part of
the proposition is proved.

For the second part we notice first that cap RC = 1 for all c.
So we assume that V is non-discrete of rank 1 and we shall prove that
Ry is not a valuation ring. ILet v the valuation on K which correspond$§
to V; then since v is non-discrete 3b ¢ WZ,such that v(b) < v(u)).
Now we consider x = ub~! then x ¢ Ry because v(b~l) < 0. Now

n—1u—n = un--llou—n = un—ld.where d = bu—n.

x~1 = bu"! = bu
n . n
Now v(d) = v(b)-v(u') < O since v(u’) > v(b).
Hence d ¢ V, whence x , x~1 do not belong to Ry; thus R, is not
total and a fortiori R, is not a valuation ring.

For ¢ # 1 we follow the same proof and the proposition is proved.

N.B.: if v(c.,) 2 v(c ) then R CR .
1 2 c, = c,

Before stating a corollary let us noticé that if V is a valuation ring
in K and WyreoosW (r £ [E:X]) are the distinct valuation rings lying
over V. Then they have a common decomposition group, hence a common
inertia group because E/K is cyclic. This implies that there is one and
only one associated division subringA(as defined in section 1) and A
has dimension s = ng as E~space where n = [E:K]. Then we have the
corollary.

n-1 .
Corollary (1.3.6). Let H = 2 Eu be a cyclic division algebra over E/K

i=0
and let V be a non-discrete rank 1 valuation ring V in K with ideal 47@

such that uné’qs . Let W ..,Wr (r £ n) be the distinct valuation rings

1’

in E lying over V.

s-1 r\
Consider the associated ring A = z Eu °, then
i=
(y  Sal i
R\ = Y w, (ct]” for all c e Vand j =1,...,r
(c) -1 3

are local rings which extend V to A.

(3),

However n:Gwg. - of the R ()

s is a valuation ring.
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n-1
Proof. Consider H = 2 Eul and let D be the decomposition group of
i=0
any valuation ring in E lying over V, then order of D = s = n/r and
s-1 .
A= 2 Eur:L is the common associated division ring, hence by applying
i=0

proposition (1.3.5) we achieve the proof of the corollary.

N.B.: if v(c,) 2 v(c,), then R(j) c R(j) but R(j) ¢ R(k)
1 2 c, Co c, c,

Remarks and Example. 1) The second part of proposition (1.3.5) tells

for j # k.

us that condition iii) of theorem (1.2.6) cannot be omitted for (the
non-discrete case) since Rc is a local ring in H extending V and RC is
not a valuation ring.

2) The condition that V is non-discrete for the second part of

(1.3.5) cannot be omitted as the following example shows.

-1,-3
Q

then H _ (Q(i)/Q; 0, -3) where 0: i + -i and H is a division algebra

Iet H = ( ) be the gquaternion algebra over the rationals

since -3 ¢ (Q(i)* . We consider the 3-adic valuation on Q

N_,.
Q(i)/Q
with associated valuation ring ZB’

R='2Z '.-\-'.ﬂg[ih.zz[u] +2[ia) is a valuation ring in H extending .22

3 3 3 3
where u? = -3.

(For the proof see Chapter II §1, corollary (2.1.3)

3) Assume that in the hypothesis of (1.3.5) ¥ is discrete, then
from the N.B. which followed (1.3.5) we see that the order on the value
group of ¥ induces an order on Rc' Each RC is clearly a V-order in H;
we consider the maximal element for this order which exists because V

is discrete, if this element is maximal among all'VLordersin H then it

is a valuation ring in H extending V since it has a capacity 1.
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CHAPTER TII
VALUATIONS IN FINITE DIMENSIONAL CENTRAL DIVISION ALGEBRAS

Our object is to consider central division algebras over a valuated
field K and to investigate conditions under which the valuation v on K
can be extended to the algebra.

In section 1) we consider cyclic division algebras and we assume
v discrete rank 1. The main theorem will be the following.

let H = (E/K; 0, a) be a cyclic division algebra and v a normalized
valéiion on K with ramification index e = 1 in E.

Assume that v(a) is prime to deg H.

Then v extends to a valuation ¢ on'H iff v is indecomposed in E.
Moreover ¢ is unique.

As examples show the condition thét v(a) is prime to deg H is not
necessary; however we shall show that it is so when K is a global field.

In section 2) we shall introduce the notion of Azumaya valuation
over V and carry on the study of the extension problem for the tensor

product of algebras. In particular if V is henselian so that W exists

and H~H, &@H, @ ... ® Hr with W

1 2 ’WZ""’Wr the valuation rings in Hi

1
lying over V we study conditions under which W ~W, e w2 ® ... @ Wr.
The application will be mainly to symmetric algebras and crossed
product algebras with nilpotent Galois group.
In section 3) we study primary algebras while in section 4) we

look at central extensions. In particular we shall give a counter

example showing that v does not extend to central extensions in general.

§l, Extension of valuations in cyclic algebras.

Let H = (E/K; o, a) be a cyclic division algebra where ¢ is a
generator of Gal(E/K); 6" = 1 where n = [E:KX]. Given a discrete rank 1
valuationv onK,we aim to study the extension of v to the whole of H.

We recall that every discrete rank 1 valaution can be normalized
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i.e. its value group can be reduced to Z (the ring of integers).
n-1 .
i
Recall also that H = Z Eu , where u is such that u" ¢K* v is said
i=0
to be indecomposed in E if there is only one valuation on E extending

v. Our first result gives conditions for a valuation on E to extend to

H.
n-1 i

Theorem (2.1.1). Let H = (E/K; o, a) =~ 2 Eu  be a cyclic division
i=0

algebra and let w be a normalized discrete rank 1 valuation on E such

that w(a) = 1, then w extends to a valuation ¢ on H iff ¢ preserves w.
Moreover ¢ is the unique valuation on H extending w and is given
by
n-1

(1) oC Y ad) = min {wla,) + %3
i=o * i=0,...,n-1 - 0

Proof: 1) The condition is necessaryjif ¢ exists then ¢ satisfies (1)
since the w(ai)'s are integers and-% <1 (i=0,...,n-1), ¢(un) = ¢(a) = 1.

Now ub = b’u for all b ¢ E, hence

$ab) = ¢(w) + $(b) = = + w(b) .
=2w(b) = w’)
o g 1
p(ub) = ¢(b") + ¢(u) = w(b") +'H
hence ¢ preserves the valuation.
2) The condition is sufficient.
Assume that o preserves w and consider
1
¢: H>—2Z u {=}
defined by (1), then ¢ is a well defined map beca&sé l‘,u,...,\;zn_1 are

linearly independent over E.

We claim that ¢ satisfies the axioms of a valuation on H. For,

v.l) ¢(x) = «<{e=>x = 0 for every x ¢ H by definition of ¢

v.2) ¢(x~y) 2 min(¢(x),¢(y)) for all x,y e B\{ol}.
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Let x

It

a,. +tau+ ... + u
0 1 qn-1

'l
n-i

b +bu+ ... +b
¥ 0 1

and assume first that ai,bj are different from zero (i,j = O,...,n-1).

_ _ _ _ n-1
Then x-y = (ay=by) + (a;=bjlu + ... + (an_1 bn_l)u
$(x-y) = min{u(ag-by),ula,-b) + Fvepula b ) + 2
2 min{min(w(ao),w(bo)),min(w(al)uw(bl))
1 ~ n-l
+orecemine(@  selb )+ }

= min{min(w(ay) ;u(b)) ,;min(w(a F+z 6 )+D) ... min(ola, )

n-1
n-1 n-1
+ - ,m(bn_l) + a )}
= min{w (ag) ;0 (by) ,w(a;) + %ﬁ""m(bn-l) * n;l}

. . n-1 . n-1
= mln{mln(w(ao),...,w(an_l)4- = ) ymin(w(by) ,e.nwlb ) +—5)}

min (¢ (x),¢(y)).

i

If in the expressions x or y some of the coefficients are O the calculation
is not affected and v.2) holds.
v.3) ¢(xy) = ¢(x) + ¢(y) for all x,y € H.

let us first prove two remarks.

' -1
i) Let x = agtau + ... + an_lun and assume that a; #0 (i =0,...,n-1)
and that ¢(x) = w(ai) + %
- -1,pi -1 n-l+ + - n-l-i, i
X (aoa u e ai_la u ai ai+1u e an~1u Ju
-7 n-1i
(because u ! = a~lu ly
- -] -1 D~ i i
hence x = (a,+a. . u+...+a,a 1un 1+...+a. a~ly l)ul = x'ul
i Ti+l 0 i-1

where ¢(x') = w(ai) because w(aja'l) = m(aj)—l 2 w(ai) for j = 0,...,1i-1
.and w(ak) 2 w(ai) fork =1i,...,n-1.

b) Ifx=a, +a,u+ ... + a un“1 where ai #0 (i =0,...,n~1); then

0 1 n-1
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¢(xuj) = ¢(x) + j/n for any j = O,...,n-1.
Note that these two remarks are not affected if some of the
coefficients are O.

After these two remarks we shall prove the following special case.

= n-1j =
We let x = agta ut...ta _u where a, # 0 and ¢(x) = w(ao).
= n-1 =
And y = b0+b1u+...+bn_lu where bo # 0 and ¢(y) = m(bo).
We write x = a_, + 2 uh and y = b, + 2 b uk
0 “h 0 ko
h#0 k#0
n-1 r n-1 r
then xy = aob0 + E cu = z Ypu -
r=0 r=0
If r = O then YO = a0b0+co.
§ ch n-1
Now ¢ = b + z b a,
r h=0ah r-h h=r+lah r+n-h

n-1 0h
hence cy = hgl ahbn—ha'

n-1 h
o]

whence Yo = aob0 + hElahbn_ha.

Now m(yo) > min(m(aobo),w(co)) and since w(aobo) is strictly less than

the value of each term of the expression c,, we have

0

w(Yo) = w(aobo) = m(ao) + w(bo)-

We now observe that w(yo) < w(yk) for k = 1,...,n-1.

Thus ¢({xy) = w(YO) = m(ao) + w(bo) = ¢(x) + ¢(v).

n-1 h n-1 x
Let us put x = i ahu and y = 2 b u and assume that
k
n=0 k=0
¢(x) = wla;) +i/n and ¢(y) = m(aj) + j/n’
By the remark a) x = x'u’ where x' = a; + ... and ¢(x') = m(ai).
y = y'uj where y' = bj + ... and ¢(y') = m(bj).

1,,]

Hence xy = x‘uly = x'zuluJ where ¢(2) = ¢(y') = m(bj).

We now look at the following two cases.
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o) i+ 3 <n.

Then ¢(xy) = ¢(x'2) + =L = w(ap)+(b,) +i—+% = w(a,) +i’l—+w(bj) +d
= $(x) + §(y) -

B) i+ 33> n.

Then Xy = xz'au®

with p = O if i+j = n, otherwise 1 ¢ p £ n-1.
If we multiply the coefficients of x2' by a and apply b) we see that

P _ i+7 i h]
"Y+14= = _— = - -
wixz') +1 m w(ai)+ (bj)-+ = m(ai)+-n4-m(bj)4-n

¢ (xy)

p(x) + ¢(y).
Hence v.3) is proved and ¢ is a valuation on H which clearly extends w.
3) ¢ is unique.

Assume that there is another valuation ¢' on H extending w and

k [
let x = aku + ... + asu an element of H, then

¢' (u)

%w hence ¢'(aiul) # ¢'(aju3) where i,j = k,...,s, whence

¢' (%) min{w(ak)-+k/nj,...,w(as)4-s/n}, thus ¢' = ¢

and the theorem is proved.
Before applying this theorem to the extension problem indicated in the
introduction we shall need the following lemma.

Lemma (2.1.2). Let H = (E/K; o0, a) be a cyclic division algebra, v a

normalized discrete rank 1 valuation on X such that (v(a),n) = 1 where
n = [E:K], then3b ¢ K* such that H ~ (E/K; or, b) where v(b) = 1 and
(xr,n) = 1.

1.

i
n

Proof. We put v(a) d(mod n) where (d,n)
Ifd =1 then v(a) = 1+mn for some m ¢ Z. Iet c € K such that

1 and b/a ¢ Ng

v(c) = -m, put b = acn then v(b) = l+mn-mn /K(E*) hence

H ~ (E/K; 0, b) where v(b) = 1; here r = 1 if d # 1 thengn',d' € Z

such that n'n+d'd = 1, hence d'd = 1-n'n and (n,d') = 1, thus by
dl

L
([17] pp.260) H »~ (E/K; 0 , a') where v(a®) =d'v(a) = d'd = 1-nn",

hence by the first part of the proof there exists b e€¢ K* such that
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dl
H ~ (E/K; 0 , b) where v(b) = 1. Here r = d' and the lemma is proved.

Recall that if E/K is Galois and v is a valuation on K ofv which
wl,wz,...,wrafgihe distinct valuationson E extending v then they have
a common ramification index e called the ramification index of v in E.
Now we have the following.

Corollary (2.1.3). Let H = (E/K; 0, a) be a cyclic division algebra,

and let v be a normalized valuation on K with ramification index e =1
in E.

Assume that (v(a),n) = 1 where n = [E:X].

Then v extends to a valuation © on H iff v is indecomposed in E.

Moreover ¢ is unique.

Proof. By Lemma (2.1.2) H x (E/K; 0 , b) where v(b) = 1.

Let w be a valuation on E which extends v; since e =1 w is a
normalized valuation on E with w(b) = v(b) = 1 we now observe that the
condition that v is indecomposed in E is equivalent to or preserves w,
hence applying theorem (2.1.1) yields the corollary.

Corollary (2.1.4). Let H = (E/K; 0, a) be a cyclic algebra and let v

be a normalized valuation on K such that v is indecomposed in E and
(v(a),n) =1 (where n = [E:K]) with ramification index e = 1.

Then H is a division algebra.

h-1 |

Proof. By lemma (2.1.2) H = 2 Eu" where u" e K* and N%un) =1,
Let w be the unique valuationlzg E extending v, then w satisfies the
condition of theorem (2.1.1), hence the map ¢: H - %&z U {+»} defined
in the ﬁheorem satisfies ¢(xy) = ¢(x)+¢(y); whence H is an integral
domain, thus H is a division algebra.

The following corollary gives the extension to subrings of H.

Corollary (2.1.5). Let H = (E/K; 0, a) be a cyclic division algebra

and let v be a normalized valuation on K with wl,...,wr the distinct

valuations on E extending v with a common ramification index e = 1 and
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let n = [E:X] and s = n/r. If (v(a),n) = 1, then v can be extended to r
distinct valuations on the associated division subring of H.

Proof. If (v(a),n) = 1 then by the lemma H ~ (E/K; gt, b) where
t n-l i n
(t,n) =1 and v{(b) = 1. Put g = T Wwe write H = z Eu where u ¢ K*
i=0
and v(un) = 1. We consider the associated division subring
s-1
A= § Eu ==(E/KD; 15, b) where K, is the decomposition field. Then

i=0
wl,wz,...,wr satisfy the conditions of theorem (2.1.1) on E, hence
wl,wz,...,wr extend to r-distinct valuations on A.
Remark (2.1.6). There is an alternative approach to corollary (2.1.3)

based on the results of Chapter I, it is much longer than the above
approach. However it has the advantage that it gives a precise description

of the valuation ring in H lying over the valuation ring V associated to

. n-1 )
v. It consists in writing H = z Eu~ with v(un) = 1 where v is the
i=0 n-1 i
normalized valuation on K, then we consider R = E Wu where W is the

i=0
only valuation ring in E lying over V. By proposition (1.3.5) R is a

local ring generating H as left E-space and such that Rn K = V. Moreover
since v is discrete of rank 1 W is finitely generated as V-module, hence

R is finitely generated as V-module, whence R is a V-order in H. After

a rather lengthy proof we show that R is a maximal V-order and since

cap R = 1 R becomes a valuation ring in H lying over V.

If K is a global field (see definition in Chapter 1) Corollary
(2.1.3) can be strengthened. Before we proceed to our next results we
need to recall some remarks and definitions. So let E/K be a finite
cyclic extension with Galois group G = {l,o,...,cn_l} where n = [E:K].
Let v be a valuation on K and let W be a valuation on L Which extends
Vs By a remark in Chapter I v is discrete of rank 1 and so is w. Let
K (respectively E) be the completion of K (resp.E) according to v
(resp. w). Then ([11], Theorem 2.2) yields that E/K is a Galois
extension with Galois group isomorphic to the decomposition group of w.

Recall also that every division algebra H, finite dimensional over
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its centre K where K is a global field is cyclicAi.e. H is represented
by (E/K; o, a) where E/K is a cyclic extension and a ¢ K*. Hence the
study of the extension problem in H is made much simpler by this
representation.

We first have the following lemma which is valid for any K.

Lemma (2.1.6). Let H = (E/K; o, a) be a cyclic division algebra over

(EK/X; 0, a) where K is the

[

the global field K, then H ~ H 4 K
completion of K according to an indecomposed real valued valuation on
K.
Proof. Since v is indecomposed and E/K is Galois, then E g K is a field
which is isomorphic to the completion of E according to the unique
extension w of v and E g R:; EK, hence by the remark above
Gal(E/K) ~ Gal(EK/K).

Now by ([17] pp.261) B ~ (EK/K; 0, a) where ~ means equal in the
Brauer group B(K). By computing dimensions (over K) we see that
" ~ (ER/K; 0, a).

We observe that if E/K is finite Galois where K is global and if
v is a valuation on K with ramification index e then
e = 1<=>v is unramified in E<=>T = {1} (because the residue class field

is finite)

We now show that the condition of corollary 2.1.3 is necessary.

Theorem (2.1.7). Let H = (E/K; 0, a) be a cyclic division algebra over

the global field K and let v be a normalized unramified valuation on K.
Put n = [E:K].

Then v extends to a unique valuation & on H iff
(1) v is indecomposed in E and (2) (v(a), n) =1

Proof. The condition is sufficient by a direct application of corollary
(2.1.3).
The condition is necessary.

If ¢ exists then (1) is satisfied by corollary (2.1.3) and it remains
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to prove (2).
Lord . ~ ~ ~ o~

We consider H = H E K ~ (EK/K; 0, a) by lemma (2.1.6). Now EK/K
isiﬁnramified extension over a complete field K with finite residue class
field because mranramified in E with finite residue class field. The
local class field theory yields that EK = K(e) where € is a primitive
aHn—l)th root of unity where 9 is the cardinal of the residue class
field.

Let T: e-*efibe the Frobenius automorphism, hence T € Gal(Ei/ﬁ) ~ <g>
and T generates Gal(Eﬁ/ﬁ, whence 83 r ¢ Zﬁ. such that t = o and

(r,n) = 1.

Now by ([17] pp.260) H ~ (EK/K; o, a*) and by ([17] pp.266) H is

a skew field iff (v(a®), n) = 1. But H is a skew field because v
extends to H, hence (v(ar), n) =1, thus (v(a), n) =1
and the theorem is proved.

As a corollary we have

Corollary (2.1.8). Let H be a finite dimensional central division algebra

over a global field K, then only finitely many valuations on K (if any)
can be extended to the whole of H.

Proof. H can be represented by a cyclic algebra (E/K; 0, a). It is
well known that almost all the valuations on K are unramified in E,
moreover v(a) = O almost every where (cf .[51399779. Hence applying the
theorem yields the corollary.

Remarks and examples (2.1.9). 1) The condition that v is unramified in

theorem (2.1.7) cannot be omitted.

-1,-1, (Q(i)
Q !l = Q ’

over the rationals and let vy be the 2-adic valuation on Q. We shall

Example 1.1. Let H = ( 0, -1) be the quaternion algebra
prove that v, extends to H. We note first that vy is indecomposed in
Q(i) because (i-l)2 = =24 implies that the ramification index e is 2
and £ = 1, hence by the well known equality (Eeifi = 1), there is one

valuation on Q(i) extending v,.
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Now applying lemma (2.1.6) yields H = H 8 Q = (Q, (1) /Qy5 0, -1)
where Q2 is the completion of Q according to vz.Let 6& be the extension of Vo
to-Q2. We claim that H is a skew field. We let Z, be the valuation ring of

~
\Y

~
5+ If H is not a skew field then 3 a,B €Z, such that (1) N(a+8i) = -1,

2

hence
a?+82 = -1,

which is impossible-

Now by theorem (0.1.1l) v, extends to a valuation on H.

2
However (%f—l), 2) = (0, 2) = 2 and the condition (2) in theorem
(2.1.7) is not necessary, thus the condition that Vv is unramified cannot
be omitted. |
2) Over non-global fields, theorem (2.1.7) is not valid.
Example 2.1. We shall outline briefly the following example since it is
a direct application of Chapter III section 1 (to which we refer for
details).
Let E = Q(i) with o: i + -i and let R = Q(i)[x;0] be the skew
polynomial ring with H = Q(i) (x;0) its skew field of fractioms.
Any p-adic valuation vp on Q(p#2) is unramified and indecomposed
in Q(i). Let w be its unique extension. Since 0 preserves w we can
extend it to a Gaussian extension ¢ on H (see chapter III). Now
H=~ (E(xz)/Q(xz); o, -1) and v, has a Gaussian extension to 0(x2) which
we call vy and which is unramified in E(x2). However (vz(-l), 2) = (0,2)=2
and the theorem is not valid because Z(H) = K = Q(x2) is not global.
3) Let H = (E/K; 0, a) be a cyclic division algebra.and v be an
unramified normalized valuation on K; so far we were mostly interested
in the case (v(a), n) = 1 where n = [E:K]. However there are other
cases. If v(Q) = O(mod n) then this can be reduced to the case v(a) = O

and the study of the extension problem is achieved by applying

(chapter 1, §2).
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For example the valuation ring associated to ¢ in the above example
2.1) is the one described by Theorem (1.2.6), while in the example (1.1)
if we replace v, by \)p(p;éZ) then R =Zp +iZZp -!-jZZp +ijZZP is matrix local
but not local since otherwise it becomes a valuation ring which is
impossible by theorem (2.1.7).

In fact when v is normalized,indecomposed and unramified with
v(a) = O(mod n) then Theorem (1.2.6) gives us a description of the
maximal order since if R is the ring constructed by Theorem (1.2.6) then
R is clearly a v-order. Now applying ([17] pp.375) yields that R is
hereditary and since it is matrix local it becomes a maximal order.

Other results concerning these cases will be obtained in chapter III
§1, e.g. the generic cyclic crossed product. |

4) let H = (E/K; 0, a) be a division algebra and let v be an
unramified,indecomposedfggtmalized valuation on K such that (v(a), n) = d
where n = [E:K];then as before we can assume W.L.0O.G that v(a) = d, ¥f G
is the subgroup of Gal(E/K) of order d with KG fixed field, then
H,K = (E/KG; cs, a) is a division subring of H. Now the study of the

G

extension problem in H_ is reduced to the case 3). lS:n/J)

G

Throughout the rest of this section we are given a cyclic division
algebra H = (E/K; 0, a) with Galois group G = {l,c,...,on-l} and a
normalized totally ramified valuation v on K (in E). Our aim is to study
the extension problem.

Recall that v is totally ramified precisely when its ramification
index e = n and that in this case v is indecomposed in E. We shall have
to distinguish between two cases.

Let p be the characteristic of K then either p divides n or
(p/n) =1
i) (p,n) = 1.

In fact we shall assume that K contains a primitive n-th root of

unity which implies that (p,n) = 1. We shall show that under certain
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conditions this case can be reduced to one of the already discussed
cases. We recall that in this case E/K is cyclic iff E/K is radical
i.e. E = K(a) such that an € K. This means that if we write

n-l i n

H = 2 Eu ; u = a

i=0
Then K(u) /K is cyclic Galois. We know that by the Skolem-Noether
theorem every K-automorphism of K(u) is induced by an element of H.

The following lemma shows that this element can be chosen to be a.

Iemma (2.1.10). Let H = (E/K; o, a) be a cyclic division algebra over

a field containing a primitive n-th root of unity (where n = [E:K]).

Let u € H such that un = a, then the K-automorphisms of K(u) are realised
by inner automorphisms induced by o where o is such that E = K(&) and

o' € K.

n
Proof. By the remark above Ja € H such that E = K(a) and o € K and

L = K(u)/K is a cyclic Galois extension of K.

We consider fa: H->H

x > oxa 1.

We claim that the restriction of fa to L is a K-automorphism of L. 1In

fact it is enough to show that auo”! € L.

-1 -1,0 o1 o
Now ouo * = a(a *) u =00 u-= - u-
o
o.n ol o
But('—o_) =———r'l-—'=—n-=l.
o g(a ) o

o]
Hence a/a0 is an n-th root of unity, whence a/o0 € K, thus
- o
oua ! = a/a u € L.

Put ouo”! = uT, then T is a K—automorphism of L since K centralizes

u and we have Gal(L/K) = {l,T,...,Tn-l}.

We now have
nol i n
Proposition (2.1.11). Let H = z K(a)u ; u € K be a cyclic division
i=0
algebra over a field K containing a primitive n-th root of unity. Then

0. may be chosen such that o” € K and then H = (K(u) /K; T; an) where T is
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the inner automorphism induced by «a.
Proof. Lemma (2.1.10) shows that T is defined by ouo” ! = u’, so that
A = (K(u)/K; T1; an) with the multiplication and addition induced from H

is a subalgebra of H. By computing its dimension over K we find A = H.
n-1 .
Corollary (2.1.12). Ilet H = z K(a)ul; un € K be a cyclic division
‘ i=0
algebra over a field K containing a primitive n-th root of unity and

o €K.

Iet v be a normalized valuation on K such that v(an) = 1(mod n).
If v is indecomposed in K(u) with ramification index e = 1, then v is
extendable to H.
Proof. By proposition (2.1.11) H ~ (K(u) /K; 75 an), hence applying
Corollary (2.1.3) yields that v extends to H.
N.B.: (un) Z 1(mod n) implies 3 c € K such that v((ce)®) =1 and
X{(a) = K(ca). Hence v is totally ramified in K(a) since

vica) = %-and e = n.
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§2. Azumaya valuations in tensor product division algebras

Throughout this section H is a finite dimensional central division
algebra over a field K and v is a real valued valuation on K with associated
valuation ring V, maximal idealﬂﬁb and residue class field V = V/ﬂ?}

A valugtion ring W in H lying over V (if it exists) will be called

Azumaya valuation ring if W is central separable as V-algebra. Recall

that an R-algebra A is separable iff A is projective as left A g a%-module
where A0 is the opposite ring and that if A is finitely generated then
this is equivalent to saying that A/PA ié separable as R/P-algebra where
p ranges over the maximal ideals of R. We note that if A is central
separable over R, then A is finitely geﬁerated over R. The first lemma
shows that a central separable R;élgebra A over a local ring is awmatrix
localAring.

Lemma (2.2.1). Iet A be a central separable R-algebra where R is a local

ring. ‘Then A is a matrix local ring with J(A) = mA where m is the
maximal ideal of R.
Proof. By ([9] Chap.2, Cor.3.7), there is a correspondence between

ideals Elof R and two-sided ideals /- of A given by
0’» —raAand ,2}"""2/'0 R.

Now by lemma (1.2.2) J(A) 2/, A, hence J(A) =¥ A since the above
correspondence yields that mA is maximal (as two-sided) ideal. But this
just means that R is matrix local.

We note as a first consequence that if W exists and is Azumaya, then
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J (W) =/”ZW e.g. it can be shown that the valuation ring associated to
the extension of v, in (2.1.9) example (2.l1) is Azumaya while the one
associated to the extension of v, in (2.1.9) Example (1.1) is not
Azumaya.

More generally, if K is a global field (or the completion of a
global field for a non-archimidean valuation i.e. a local field), then
H can be represented by a cyclic algebra and theorem (2.1.7) yields
that if W exists, then J(W) >7),W . 1In fact it can be easily deduced
that in this case e = f = n where n = deg B (the reason is that v is
discrete and the residue class field is finite), hence by (2.2.1) W is
not Azumaya. This shows that we have to assume that K is not g;obal
(neither of course local). However in the course of this section, we
shall show that this will present no great loss of generalities since
our concern will be the case of H being a tensor product.

Recall that a left Bezout domain is an integral domain in which
every finitely generated left ideal is principal. Then we have

Lemma (2.2.2). Let A be a left Bezout domain, then every finitely

generated torsion free right A-module M is free.
Proof. 1In fact this is an exercise in ([ 3] pp.47). The proof consists
in embedding M in a free module in a well known manner and applying
(3] Chap. 1 prop.l.4) yields the result.

The next lemma describes W (when it exists) as V-algebra.

Iemma (2.2.3). Let H be a finite dimensional central division algebra

over K and let V be a valuation ring in K. Assume that there is a
valuation ring W in H'lying over V. Then the centre of W is V. If
moreover W is finitely generated as V-module, then W generates H as
K-space.

Proof. The first part of the lemma is trivial, ;t suffices to ocbserve
that for any y € H, 3 C € K such that cy ¢ W, hence

X € ZW)=>x € Z(H) =K=>xe Kn W=V, whence Z(W) ¢ V and Z2(W) =V
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since V < Z(W).
For the second part, we observe that lemma (2.2.2) yields that W
is free as V-module, since W is a Bezout domain. Now W has unique rank

m
because V is commutative (it has IBN) so let W = z Vui where
i=1

{u1=l,u ,...,um} is a basis of W over V. We claim that m = n = deg H.

2

We note first that Uys-..,u are linearly independent over K because

m

if iglaiui = O where o, ¢ K then a@Zai/aui) = O where a,/a € V and

a = o, is such that v(a) = min v(ai) (v corresponds to V). But
0 i=1,...,m

this implies that either Zui/a u, = Oor a = 0.

Now Eai/a u, # O because it has coefficient o/0 = 1, hence a = O

whence o, = O(i=1,...,m). Hence we have

(1) mgn,
m

(2) m 2 n, since otherwise D = z Kui becomes a division subring of
i=]

H (because D is finite dimensional over K and has no zero-divisors),
hence D becomes the skew field of fractions of W which contradicts the
fact that W generates H as its skew field of fractions.

Now (1) and (2) imply that m = n. The rest is clear.

We note that if H, is a central division subalgebra of H and

1
Hp = Gy(H;) then it is well known that H = H) @ H, (cf. [171Pp08) .
The next proposition describes matrix local rings in tensor

products.

Proposition (2.2.4). ILet H = H1 % H, be a central division K-algebra,

where Hl,H2 are central division K-subalgebra of H.

Iet V be a rank 1 valuation ring in K.

Assume that there exist valuation rings Wi inH, (i = 1,2) such

i
that Wi n K =V and Wi is separable as v-algebra (i = 1,2)s7Then
W=Ww s W, is a matrix local ring, lying over V and generating H as

K-space.

In particular if V is discrete rank 1 then W is a maximal order.



Proof. We note first that by lemma (2.2.3) W,,W, are Azumaya
valuations, hence they are both finitely generated over V and by the
same lemma Wi generates H as K-space (i = 1,2). Now by ([9] Chap.2,
Prop.3.3) W = W, 3 W, is central separable as V-algebra, hence by lemma

(2.2.1) W is a matrix local ring.

We now observe that W2 Cw(wl) . For

CuWy) € C (W) € C (Hy) =H,
Hence CW(Wl) Ewn H, = W,.
C =
But W2 = CW(Wl) , whence W2 CW(Wl) .

So applying the commutator theorem (Theorem 2.2.6) yields that the map

is an injective homomorphism

£: W, 3W2 + H defined by f(aj @ b,) = ayb

i
hence W is torsion-free finitely generated V-module, hence by lemma

(2.2.2) W is free V-module. We claim that W generates H as K-space.

For, we consider g: (W, ® W,) ® K> (W, ® W,)K defined by
1 v 2 v 1 2

g(g aa ® ba) = Z aor.bB where aa EW, bBe K.

g is an isomorphism because W is torsion free (cf. [17] pp.32). Hence
we can identify (W1 ® W2) gK with (W1 ® WZ)K (as K-space). But

(W, B W, 8K W

® (KO®W)® K~ (W ®BK) @ (W © K)
v 1y K 22v = 1y K 2

\'

Now Wi ® K> WiK (i = 1,2) because W ,W, are torsion free and
WiK = Hi (i =1,2), Wi generates Hi as K-space (i = 1,2). Hence

K~ H @H, ~ H, whence W generates H as

WK = (W, ® WK~ W ) 1 85,

1K g W
K-space and the first part of the theorem is proved.

For the second part it suffices to show that W is hereditary.
Let ] be any left ideal of W, then ] is free as V—-module,‘hence
projective and by the lifting property of central separable algebras

I is projective as left W-module, whence W is left hereditary and
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similarly W is right hereditary, thus W is hereditary.

Now W is a matrix local ring and hereditary, henée applying
Theorem (0.2.1) yields that W is a maximal order.

The rest of this section is devoted to the representation of
valuation rings in tensor product division algebras

By a central division algebra we shall mean a finite dimensional
central division algebra.

Recall that if H is a central division algebra over K with
[H:x] = n2, then n is called the degree of H which will be denoted
deg H. By exp H we shall mean the order of H as an element in the Brauer
group Br(K).

A field K is called stable if every central division K algebra
of deg.n has expswn e.g. global and local fields.

We shall need the following theorem.

Theorem (2.2.6). Let A be a central separable R-algebra. Suppose B is

any separable subalgebra of A containing R. Set S = CA(B). Then S is
a separable subalgebra of A and CA(S) = B. If B is also central, so
is S and the R-algebra map B 8 C - A given by b 8 ¢ » bc is an
isomorphism.
Proof. ([9] pp.57).

The following proposition reduced the study to the prime power
degree case.

1 g H2 be a central division algebra over

Proposition (2.2.7). Let H =H
K, whefe HI'HZ are central subalgebras and let V be a rank 1 valuation
ring V in K. Assume that Hl'H2 have coprime degrees. Then there exists
a valuation ring W lying over V (in H) iff there exist valuation rings
Wy, W, in H; (resp. Hp) lying over V. If moreovernwl,w2 are Azumaya and
V is..discrete..of rank .1 <then W is Azumaya and is given by

WW, 8 W,.

Proof. Let v be the valuation on K.which corresponds to V and let K be



the completion of K relative to v. If Wl,W2 exist, then ﬁi= Hi E K is
a skew field (i = 1,2). Hence

—~

L e -~
H=Ha
fr- @ gH) Bk

2
e

H, @ K) @ (i, & K),
1 8% § @, 8 D)

whence H is a skew field because ﬁl,ﬁ have coprime degrees, thus W

2

exists. If W1’W2 are Azumaya, then proposition (2.2.4) yields that
Wl ! W2 is a maximal V-order in H. But since V is discrete of rank 1,
Vv

W is a maximal V-order, in fact W is the unique maximal V-order, hence
W W W and W is Azumaya because W1 and W, are.

18, =

Recall that if H is central division K-algebra of degree

n = p?l . p?r where the pi's are distinct primes, then H ~H. & ... & Hr

1K
where each Hi is a central subalgebra of degree p?i called the pi—factor,
and by the above proposition we have.

Corollary (2.2.8). Let H = H1 2] H2 2 ... 8 Hr be the decomposition of

H in pi-factors and let V be a rank 1 valuation ring in K. Then there

exists a valuation ring W lying over V (in H) iff there exists Wi in
Hi lying over V (i = 1,...,1).

If Wl,W Wr are Azumaya and V is discrete of rank 1, then W

PIRRRE

is given by W~ W. & ... % Wr and it is Azumaya.

ly
Proof. Repeated applications of proposition (2.2.7).

This corollary shows that it is enough to study central division

algebras of prime power degrees.

To start with we consider an abelian crossed product division
algebra H of degree pn; n>1li.e. H~ (E/K; £f) where E/K is a finite

abelian extension with abelian Galois group G ~S. x ... x.Sr. For

1

simplicity we shall assume r = 2 so that G = S1 X S2 where S1 = <01> of

order nl, 82 = <0y> of order n2 and n = nlnz.
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By the Skolem-Noether theorem each Gi is induced by an element

nj

i P = i = =
zi in H we put Zi a, (i 1,2). We shall assume that 2,2, 2,24

i.e. H is symmetric. 1In this case ai € K.

We let E, = {x € B; o,x = x} and E, = {x ¢ E; 0;x = x}, hence
Ei/K is a cyclic Galois extension with group Si (i = 1,2) so we can
consider the subalgebras Hi = (Ei/K; Oy ai) (i =1,2) and it is easily
seen (cf. [2]) that H ~H, g H,.

Throughout what follows K will be assumed non-stable which is
justified by the following lemma.
Iemma (2.2.9). Let H = H1 g H, be a central division algebra of degree

n = nn, over K where H,,H, are central subalgebras of degrees n, (resp.

nz). Then exp H = n iff exp Hi =n, (i =1,2) and (nl,nz) = 1.
Proof. The proof of this lemma is readily available once we observe
that exp H is the least common multiple of exp H1 and exp H,.

N.B.: The above is true for H=H, & ... ® Hr (r > 2).

1

Throughout the rest of this section the valuation ring V in K will

correspond to a Henselian valuation of rank 1 i.e. satisfying Hensel

condition; namely.

For any monic polynomials f ¢ V[{x] and F/Fp € vix] (5:; Vﬂmz)
such that f = F,F, and F,,F, are coprimey . _. there exist fl,f2 e Vix]
such that £, = F,, £, = F, and £ = £;f,.

We note that this condition is equivalent to saygghat v is
indecomposed in the algebraic closure of K (cf. [10] pp.117).

We recall that any Henselian valuation on the centre K of a central
division algebra H can be extended to the whole of H.([Zdj theorem 9).
We aim to study that extension in tensor products. So we let H be a
symmetric abelian crossed product division algebra over E/K, By the
remark which preceded Lemma (2.2.9) Hx H; ® ... ® H where each H, is
cyclic algebra. We assume r = 2 and we write H = (E/K; 0. Zyn bi,

(i =1,2)).



48,

The following proposition gives a representation of the valuation
ring in H lying over V.

Proposition (2.2.10). Let H = (E/K; Gi, z, bi (i =1,2)) be a

symmetric division algebra and let v be a Henselian rank 1 valuation on
X which is unramified in E with associated valuation ring V.

If v(bl) = v(bz) = O then the valuation ring in H lying over V
is a tensor product.
Proof. Consider the subalgebra Hi = (Ei/K; o, bi (i = 1,2)) where
E,= {xeE, oz(x) = x} and E2 = {x ¢ E; 0% = x}. Let \A be the

valuation rings in Ei (i =1,2) lying over V. We consider

n.,-1 .
i . n,
H, = z E.ul with u ' =b, (i = 1,2) where n, = deg H, »
i . i i A i i
3=0
n,~-1
E.
We let W, = jz A (i =1,2).

Theorem (1.2.6) yields that Wi is a matrix local ring lying over
V and generating Hi as E-space, hence ﬁi = Wi/J(Wi) is simple artinian.
Now since v is unramified in Ei ([10] Cor.20.22) yields that v is def-
ectless in Ei and ( 10 Theorem 18.6 and 18.9) yield that Vi is of
finite rank as V-module, hence by ([1] theorem 24) idempotents mod (two
sided ideal) can be lifted, whence ﬁi is skew field because otherwise
Wi contains non-trivial idempotents which contradicts the fact that Hi
has no zero-divisors.

Thus Wi is a local ring and by theorem (1l.2.6) Wi is a valuation
ring in Hi (i=1,2).

We now consider W = W1 s W,.

By proposition (2.2.4) W is a matrix local ring generating H as
K-space and by a similar proof as aboveW is alocal ring with J(W) =mW

where mL = J(V) hence Theorem (1.2.6) yields that W is a valuation ring

in H lying over V and since there is only one; the proposition is proved.
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N.B.: 1) A necessary condition for the assumption of v(b;) = v(by) =0
is that Br(V) # O, since otherwise ﬁi splits over V as an element of
the Brauer group. Now since Wi is of finite rank over V ([1] theorem
24) yields that Hi splits over K which is a contradiction. However
since every complete field is Henselian for some valuation, our
assumption that K is not stable contains that of Br(V) # O by corollary
2 of ([18]) in the case where K is complete.

2) The proposition is valid by induction for r > 2.

As another application of theorem (2.2.4) we look at crossed
product division algebras with nilpotent Galois groups. We let

H= ) Eu® ~ (E/K; £)
ceG

n
where G is a nilpotent group of order IG] =n =p, p22...prr (the pi‘s

are distinct primes). It is well known from group theory that

~ X X oae X ! -
~ G1 G2 Gr (where the Gi s are the Pi Sylow

subgroups i = 1,...,x)

Put B = {x € E; 0x = x for all 0 ¢ Gj} and Ei = /N E’. Then E
J#L
is the fixed field of G/Gi' and Ei/K is a finite Galois extension with

Galois group Gi (i =1,...,xr). Accordingly we can decompose E as tensor

products i.e.

The following lemma shows that under some conditions on f the pi-factors
of H are crossed products.

Lemma (2.2.11). Let H = (E/K; f) be a crossed product division algebra

with nilpotent Galois group G = Gy X «.. X Gr (the Gi are the pi-Sylow

n
subgroups where n = deg H = p 1

n
Lo prr). Assume that f satisfies the

following

(i # 3)

E
rh
i

fr whenever 0 € Gi' T €G

3



2) p(fG’T) = fo,r whenever O,T € Gi and p € jgiG..

Then H~H & ... @ H
=1 r

where each Hi is a crossed product subalgebra of H with Galois group Gi'

Proof. Write H = 2 Euor where uca = acuo for all a € E, 0 € G
0eG

and uu = f u for all o,t € G
oT G,T OT

By the remark above there exist El”“'Er such that Ei/K is Galois with

Galois -group Gi and E ~ E

the
generated by Ei andAuO (o € Gi))by the condition 2) and the definition

1 ® ... 8 Er' Consider the subalgebra Hi
of E,,) f € E, for all 0,T € G,; hence £f/G, xG, is a factor set from
i’ "o, i i i i :

Gi to E;, whence Hi is a crossed product over Ei/K'

Consider the map

a, @...@a ~»>a, ... a
r i

1 r

since G is nilpotent Gi commute with Gj (i # j), hence condition 1)

yields uouT = uTuo for c € G T € Gj where i # j. Moreover for any

il
G. g . - i . . .

0 ¢ 5 and any a € EJ, i#3 au0 ua because Gl fixes EJ for i # j,

hence Hi and Hj commute element-wise for i # j, whence ¢ is a K-

homomorphism. It is injective becasue its domain is simple and

counting dimensions over K yields surjectivity. Thus

H~H, & H2 ® ... ®8H_.
= r

1

We are now ready to study representation of valuation rings in this case.

Proposition (2.2.12): Keeping the hypothesis of lemma (2.2.11) and

]
assume that v isiHenselian rank 1 valuation on K which is unramified
in E with associated valuation ring V and extension w to E. Let

H = H1 ... ® Hr be the decomposition of H in crossed product pi-factors
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n n,
(where deg H = n = pll...pr ).

If w(imf) = O, then the valuation ring in H lying over V is

represented by a tensor product.

Proof. Consider H = 2 Eu
—_— o]
0 eG
Then Hi = z Eiuo (i=1,...,r) (see Lemma (2.2.11).
O'EGi

Let Vi be the valuation ring in Ei lying over V (i = 1,...,r). Then by
Theorem (1.2.6) Wi = 2 Viu0 is a matrix local ring in Hi lying over
V and generating Hi agegi—space. But by an argument similar to that
in (2.2.10) Vi has finite rank over V, hence by ([1] theorem 24)
idempotents mod (two~sided ideal) can be lifted, whence Wi is local and
applying Theorem (1.2.6) again yields that‘Wi is a valuation ring in
Hi lying over V.

Now by corollary (1.2.5) J(Wi) =)"2,Wi where ], = J(V), hence
Wi/"Lwi is separable as V/# -algebra, whence W, is separable as v-algebra,

thus Wi ig Azumaya valuation over V by lemma (2.2.3) (i = 1,...,r).

We now consider
W=W,0 ... @ W .
v r

First consider le = W1 e W,, it is clearly a matrix local ring and by

an argument similar to above it is local} applying (proposition (2.2.4))

yields that W,, generates H, ® H, as K-space with J(le) =MZW12 and

12

lel] K = V; hence W extends V to H

® H2 in the sense defined in

12 1

Chapter 1, whence applying theorem (1.2.6) yields that le is a valuation

ring in Hl ® H, lying over V.

The rest of the proposition is clear by an easy induction.

§3. Primary algebras

Throughout this section H is a central division algebra over a

field K and v is a real valued valuation on K and K is the completion
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of K relative to wv.

We consider H = H @ K.

We aim to study the subalgebras of H and H and relate that
accordingly to the extension problem. But first we need to recall a
definition. Let A be a central simple algebra over K, then A is said’

to be a primary algebra if A contains no proper central simple sub-

algebra over K and A # K. It is well known that every primary K-algebra
is either a division algebra of prime power degree or of the form

gp where p is a prime number. However the converse does not hold in
general, it does hold over stable fields as the following lemma shows.

Lemma (2.3.1). Let H be a central simple algebra of degree pn (n # 0)

over a stable field K and assume that H is either of the form K.P or
else a division algebra, then H is a primary algebra.
Proof. If H = Kp then the lemma is trivial.

n

If H is division algebra then exp H = p .

Now if A is a central simple subalgebra of H, then

H

iz

A @@ A' where A' = C_(A)
K H

Applying lemma (2.2.9) yields that (deg A; deg A') = 1 which is
a contradiction because deg H = pn and deg A, deg A' divide pn. Hence
H is a primary algebra.

Proposition (2.3.2). Let H be a central division algebra over a stable

field K such that deg H = pn where p is prime and n > 1. ILet v be a
real valued valuation on K, then v extends to H iff H = H % K is a
primary algebra.

Proof. If H is primary, then H is not a matrix ring over K since deg H=p"
and n > 1, H is a division algebra and applying theorem (0.1.1) yields

that v extends to H. The converse is obvious.

Corollary (2.3.3). Let H be a central division algebra over a stable
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n

n
field K such that deg H = n = Pl1 - prr where the p.'s are the

distinct primes and n, >l (i=1,...,r).
Let H = H1 % .o ﬁ Hr be the decomposition of H on pi—factors.

Then a real valued valuation v extends to H iff

H, =H, ©
1 lK

K is a primary K-algebra (i = 1,...,r)
Proof. Combining corollary (2.2.8) and proposition (2.3.2) yields the

proof.

Remark and example (2.3.4). The condition that n > 1 in proposition

(2.3.2) can not be omitted as the following example shows. (This
example is due to P.M. Cohn see ([5] pp.67.)

let H = (:36129 be the rational quaternion algebra then H is a
division algebra because x2+3y2+z2 = 0 has no solution..

Consider the 2-adic valuation vz‘on Q and let Q, be the field
of 2-adic numbers, then Q, contains a 2-adic square root of -3, hence

HE=¢H 8 Q, =~ M,(Q,), thus v, does not extend to H even though H is a

primary Q -algebra.

4. A counter example on the extension of valuations in central extensions

Throughout this section D is a finite dimensional central division
algebra over a field K and F is a field extension of K. By a central
extension of D we shall mean a skew field H generated b& D together
with the centre of H.

If D g F has no zero-divisors, then it is a central extension of D
with centre P, So assume that H = D g F is a skew field and let w be
a non-trivial real valuation on D with restriction v to X, then v is
surely non-£rivia1 (c£ L30]PR1Y)s We aim to study the extension problem
of w to the whole of H and to prove subsequently that the extension
does not always exist.

We note first that if F/K is purely transcendental, then
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H=0D % F is a central extension and w has an extension to H. For if

F

il

K(t), then H = D(t) and the extension follows as in the commutative
case.If F = K(t1’t2"“') then the extension follows by induction. So
we shall assume that F/K is an algebraic extension and we shall be
mainly interested in the finite case. ILet n = (F:K), we shall say

v splits in F if there are n distinct valuations extending v to F.

The following proposition determines a subfield of H to which w

extends.

Proposition (2.4.l1). Let H =D g F be a central extension where F is

a finite abelian Galois extension and let w be a real valued valuation
on D with restriction v to K. Assume that there exist Vl""’V}
valuations on F extending v with common decomposition field E, then

w extends to L = D ® E. In particular if v splits in F, then W extends
K .

to H.

Proof. D % E~+D® ﬁ:; D is an embedding where D is the completion of
- K

D relative to w. Now w extends to g on D and &/D g E is a valuation

extending w.

The second part of the proposition is clear.

Proposition (2.4.2). Let H =D % F be a central extension of D such that
F/K is a finite Galois extension. Put m = [F,K] and n = deg D and
assume that (m,n) = 1.

Then any real valued valuation w on D can be extended to r
valuations on H where r is the number of valuations extending v to F
where v = le.

Proof. Put F = K(a).

Let f be the minimal polynomial of a over K and K be the completion
of K relative to v.

Consider £ = £ .....fr; the factorization of f over K. Iet

1

V.,V

1 reeed Vo be the valuation on F extending v and F" the completion of

2
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F relative to A (i=1,...,r). Then n, = \ﬁl:i) is the same for all

vi and ni divides m because F/K is Galois. We now consider

1 . y . .
H =H®F = (DOF) @ F~D®F ~ (D®K) ® F'. We observe that
F X F - K - K K
1) D ® K is a skew field
K
2) (n,ni) = 1 otherwise (n,m) # 1

hence ﬁi is a skew field, whence v, extends to a valuation on H whose
restriction to D is obviously w since w is the only valuation on D
extending v.

Since we can repeat the same thing for i = 1,...,r, there are
exactly y valuations extending w to H and the proposition is proved.

Remarks and example. 1) The assumption that F/K is Galois was needed to

prove that if (m,n) = 1, then (ni,m) = 1. However if we omit the
normality and assume that v is indecomposed then [ﬁ:i] = [F:X] because
then F _F g i, hence the condition on norﬁality can be lifted.
Example. Let D = (:lé:}d be the quaternion algebra over the rationals
and F = Q(3/2).

Then H = D ® F is a central extension because (x3—2)_is
irreducible over D.

Consider the 2-adic extension v, on Q which is the only vaIAgtion
on Q extendable to D (see Example (2.1.9)) and let w be its extension.

Now v, is clearly indecomposed in F because it is totally ramified
and (deg D, [F:Q]) = (2,3) = 1, hence by the proof of the proposition
w extends to H even though F/Q is not normal.

The following proposition is the catalyst for the counter example.

Proposition (2.4.3). Let D be a finite dimensional central division

algebra over K and let w be a real valued valuation on D such that
WK = v.

Iet F = K(a) be a finite separable extension of K with f a minimal
polynomial of a over K. Assume that f is irreducible over D so that

H=DG®F is a skew field and that v has a unique extension to F,then
K
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w extends to H iff f remains irreducible over D = D K where K is the

&
K
completion of K relative to v.

Proof. The condition is sufficient; let vF be the extension of v to
F then F = K(a).

K(a)

K)

(D ®
K K

®

B[X)/fﬁLX] )

hence it is a skew field because f is irreducible over 5‘whence by
theorem (0.1l.1) w extends to H.

The condition is necessary.

Assume that w extends to a valuation ¢ on H and call Vo its

restriction to F. Let F be the corresponding completion, then

L2+ 34
2
gt
~e

L5 ]
Ii2
(5]

K

H=H®F=(DGBF) 8 F
F K F

~e
@

and H is a skew field.

Now F ~ K[X]/£K[X], hence H ~ D ® K[X]/fk[X] ~ D[x1/£D[x]
X

whence f is irreducible over D otherwise H has zero-divisors.

We now construct the counter example.

et D = (-lé—l) be the quaternion algebra over the f.ationals and
let v, be the 2-adic valuation on Q. We have seen that vy extends to

D, we call v, its extension to D.
Consider H = D 8 F where F = Q(”/E) then £(X) = X*-2 is the
minimal polynomial of %/2 over Q. £(X) is irreducible over D.
For £ (X) = (X-A) (X+i}) (X+1) (X-i\) where A = /2 so if £(X) is
reducible over D then D must contain an element a such that a2 = 2

i.e. 3 o, B, Y, § € Q such that
(a+Bi+yj+6K)2 = 2
hence dg-Bz-72-62+2agi+2ayj+2a6K = 2

this implies that a2-82-y2-§2 = 2

208 = O
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20y = O

2a6

i

o)

hence o = 0, since otherwise B Yy =6 =0 and 02 = 2 which is impossible

]

in Q, whence 82+Y2+62 = -2 in Q which is impossible as well and £(X)
is irreducible over D.
Thus H is a skew field and H is a central extension of D. We shall
prove that f(x) is reducible over D so that Vv, does not extend to H.
First we recall the following theorem (cf. [17] pp.146).
Theorem: ILet D be a central division algebra over a complete field K
for a discrete rank 1 valuation v with finite residue class field
having ¢ elements. Let n = deg D and let € be a primitive (Qp—l)-th
root of unity, then to any uniformizer m of K correspondgsan element

r
€ where r is a positive

]

n _ 1
™ ™ = T i I
D of D such that D and D € ‘D

1.

integer such that 1 < r £ n and (r,n)
Proof. (cf. [17] p.146).

Now 2 is a uniformizer of Q, (the field of 2-adic numbers).
Consider D=D ® Q5. This is a central division algebra over Q5- Then
applying the theorem yields that there exists an element say b in D such
that b2 = 2. So D contains a square root of 2. Now £(X) is irreducible
over Q, since otherwise V2 or 4V2 ¢ Q2 which is impossible because
then 52(/5) = %-where 52 is the extension of v, to Q, but this leads
to a contradiction since the value group of 52 is Z. Now f(X) is

reducible over D because D contains a square root of 2 hence applying

the proposition yields that v2 does not extend to H.
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CHAPTER III

Extension of valuations in infinite skew field extensions

Let H/D be an infinite skew field extension and let v be a
valuation on D. In this chapter we study the extension of v to the
skew field H. 1In section l. we let H be the skew function field
D(X; 0, 6) where ¢ is an automorphism on D and § is a o-derivation.
We prove that v extends to a valuation w with radicalfgp such that

x(modif’) is transcendental over the residue class field of v iff
(1) o preserves v (2) 6 is such that v(aa) 2 v(a) for all a € D.

The importance of this rather easy theorem lies in its wide application
and its repeated use in the rest of this chapter. The applications will
include among others i) free algebras, ii) umniversal associative
envelopes of Lie algebras and iii) Generic Crossed product division
algebras.

The rest of this chapter is devoted to the following question

raised by P.M. Cohn.

A"

Let Kl,K2 be two skew fields with real valued valuations v 2

1

on K1 and K2 respectively such that vl|K = v, K = v where K is a common
subfield.

Let R = Kl‘ié K, be the free product of K, and K, over K and let
H = K1 g K, the field coproduct of K, and K, over K.

Do v,,v, have a common extension to H?

Section 2. recalls some theorems needed later (P.M. Cchn L%}
Theorems 5.1,5.4) which are proved here under rather weaker conditions.

In section 3. we answer the above question negatively by giving a counter

example.
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In section 4 we consider the associated epic R-field L constructed
in ([8]). We study the centre of L, in particular we show that if
KI/K is a finite abelian Galois extension with E the decomposition
field of \8L then the centre C of L contains E. We then generalize the
result of section 2. by showing that in general V,rV, have no extension
to any skew field of fractions of R.

In section 5. we show the following.

Let K,,K, be skew fields with centres C,,C, and a common subfield

K ¢ Ci (i =1,2).

Iet v ,v2 be real valued valuations on Ki/Ky such that v, |[K = v_|[K=v

1 1 2

and such that v, is the only real valued valuation on Ki extending v
(i =1,2).

Assume that Ki admits an endomorphism Ui whose fixed field
intersected with Ci is X, then v,,v, have a common extension to
Ky O Kp.

If D is a skew field with centre C and a central subfield X such
that D has a family of endomorphisms whose fixed field intersected
with C is K. Then any real valued valuation v which uniquely extends
its restriction to K can be extended to a valuation w on DK€X>.

We conjecture that w is real valued.

If the conjecture is true then we have the following theorem.

Let K,,K, be skew fields with centres C,,C, and a common subfield
K ¢ Civ(i =1,2).

Let v,,v, be real valued valuations on K, and K, respectively
such that vllK = v2|K = v and such that Vs is the only réal valued
valuation on Ki extending v (i = 1,2).

Assume that Ki has a family of endomorphisms whose fixed field
intersected with Ci is K.

Then QI,Vé have a common extension to Ky g KZ.'ﬁhe application

will be to the non-commutative Galois extensions. Other results



concerning other cases will be given in this section as well.
In particular we show that a recent generalization of the
specialization lemma by P.M. Cohn entails the generalization of Theorem

(3.2.1).

§1. Extension of valuations in skew function fields

Let K be a skew field with an endomorphism o and a o-derivation 6§
and consider the right skew polynomial ring R = K[x; o0, §] consisting

n .
of the elements 2 xlai where multiplication is defined by ax = xa0+a<5

i=0
and the usual addition. It is well known that R is right ore domain
and hence it has a skew field of fractions D = K(X, o, §) called a skew
function field (see chapter O). Let v be any valuation on D, we aim

to study the extension of Vv to D and its applications.

We first need the following lemma.

Lemma (3.1.1). Let D = K(X; 0, §) be a skew function field and let v
be a (not necessarily) abelian valuation on K with associated valuation
ring V and radical°{L.

Suppose that v extends to w on D with radicalﬂ¥7. Then
§(mod:y9) is right transcendental over Vﬁqg iff

(1) w(xnan + ...+ ao) = min v(ai)

i=0...n

Moreo§er w is the unigque extension for which X remains transcendental
over Véqb.
ggggg.v The proof is exactly the same as in the commutative case
(c£. [20] lemma 17).

The extension w will be called the Gaussian extension. The

following theorem isolates the conditions on o and § for the extension
is an

to be possible. Throughout the section we shall assume ocfautomorphism,

hence R is also a left skew polynomial ring and X is left transcendental

over VA% . We say X is transcendental over V/OZ.
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Theorem (3.1.2). Let D = K(X; 0, 8 be a skew function field and let

v be a valuation on K with associated valuation ring V and radicaldz .
Then v extends to a valuation w with radical.cjp for which i(modgo)
is transcendental over V/MZ iff o preserves v and § is such that
v(as) > v(a) for all a € K.
Moreover w is the unique extension such that X remains transcen-
dental over V/0Z,and is given by the Gaussian extension.
Proof. The condition is necessary.
If w exists then Lemma (3.1.1) yields that i is given by
n .,
w( 2 xlai) = min v(ai)
i=0 i=0,...,n

g 8
Now ax = xa +a .

Hence 1) v(a) = min(v(ac), v(aG)) because w(X) = O whence v(ao) z v(a)
for all a € K.

If v(a”) > v(a) then -v(a®) < -v(a), hence v(a'lo) < v(a~l)
which contradicts 1), thus v(a) = v(ac) and 0 preserves the valuation.

Now it is easily deduced that v(a6) 2 v(a).

The condition is sufficient.

We shall consider the right skew polynomial ring R = K[X; o, 6]
and the map w: R + T U {=} where T is the value group of v defined

n

by w( 2 Xla.) = min v{(a,).
. i . i
i=0 i=0,...,n

Then w satisfies the axioms of a valuation on R namely:
v.l w(f) = w{=>f =0 for all £ € R
V.2 w(f-g) > min(w(f), w(g)) for £,9 € R
v.3 w(fg) = w(f) + w(g) for f,9 € R.
For
i

X a, = O then a#0for i = 0,1,...,n
5 i i

v.l) is clear because if f =

Il o~

i
hencetW(f) = « iff £ = 0O
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v.2) et f=Xa + ... + a
g = Xb + ce. + b
and assume W.L.0.G. that m > n
_ n _
then f-g = X a, + ... + X (an bn) + ... + a

0~Pp

hence w(f-g) = min{v(a ),...,v(a -b ),...,v(ag-by)}

w

min{v(a ),...,min(v(a ),v(b )); min(v(ag),v(by)}

min min{v(am),...,v(ao)}

min{v(b ),...,v(by)}

min(v(£f), v(g))

and v.2) is proved.

. m i
v.3) Consider f = X am + ... + X}ai + t.. + acand assume that

w(f) = v(ai) where a; is the first coefficient on the left taking the

minimum value among the values of the coefficientsa Consider

g=Xb + ... +%Xb. + ... +Db
n i 0

and assume that w(g) = v(bj) where bj is the first coefficient on the

right taking the minimum among the values of the coefficients.

m+n r
Now fg = E Xc
r
r=0
We first compute axt where a is any element in K and t any positive

integer.

2. 2
ax? = x2a0+x(a°6+a60)+a6
3 2 2 2 2 3
aX3 = X3ao +x2(ac 6+a050+a60 ) + x(a06 +a666+a6 0) + a6
: t _ tictoy ta bty t,  t..... 6n
axt = x%% + xt l( 2 a® § %056 cee=1° 1873 Y+...+a
zti=t t.=l,...,t-1

i
tj=l,...,t-1
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We now apply that to compute Xlaiijj and so we have
X . A 3 <J2 3. j
x'a 19, = xtda O w3 (] 2 0T8T s 28y,
i j i e 1 J
ZJK=J
co. ] e Jisd2 ... . o]
+j O - S
= Xl Ja, b,+xl+3 l( z a? 6 L) el ot Xla b.
v L3 =3 ’
K
two cases occur.
1. i <j and i+j = m+p = n+q
i-p ,i+h jza 43k
Then Ci+j = a; n bj+h + z a ik bj—k + elements of the form
h=0 K=1
c,s:“ 652‘ .os
Zas bs' where either s precedes i or s' exceeds j.

fl

We claim that v(ci L)

+3 v(ai) + v(bj) .

For if
,i+h S3+h
h#0 then v(ai_'h bj+h) = v(a.i_h ) + v(bj+h) = v(ai_h) + v(bj+h)
hence v(a°j+hb ) > v(a,) + v(b,). Now v( ) as;bss;_...) > +v(b
i-h P5+h v(a, v nE ow v s a_, b_, v(ai) v ( j)

because either s precedes i or s' exceeds j and because 0 preserves v

and § is such that v(a6) > v(a) for any a € K.
Hence v(ci+j) = v(ai) + v(bj) and by the definition of W

w(fg) = min V(Cr) = v(ai) + v(b.) = w(f) + w(g).
r=0,...,mn J

2. i+j €m £ nor i+j £ n € m.
i i+h i gk
Then Ci-i—j = Z a;_p bj m Y a_y bj—k + elements of the form
h=0 k=1
t' .t}
o182 " . .
ay bt' where either t precedes a, or t' exceeds j hence

an argument similar to that in 1. shows that w(fg) = w(f) + w(g).

In fact these two cases cover all the possibilities, hence v.3 is
satisfied, whence @ is a valuation on R.

Now D= {f/g; £ eR and g e R*}.

Hence w extends to D by w(f/qg) = w(f) - wl(g).



For the uniqueness it suffices to apply lemma (3.1.1).
Assume now that K is commutative and is contained in a skew field
H, let 01,02,...,or be r commuting automorphisms of K fixing the centre
of H. Then by the Skolem-Noether theorem, 01,.--.cr are induced by
inner automorphisms of H defined by xl,xz,...,xr. Assume that the
Xi's are right transcendental over K and that they are right algebraically
independent.

We assume furthermore that uij = [xi,xj] e Kfori,j=1,...,r.

Consider R1 = K[XI;UIJ; the right skew polynomial ring defined by

o
(1) aX1 = Xla ! for all a € K.
We define o; on R1 by
. os .
dz(a) = cz(a) = a for all a ¢ F
and GE(XI) = Xlu12

Then U; preserves the relation (1) because

-1
o 010 01090
* 1y = 1v2 _ 192V = = %
Gg(xla ) = Xju,,a a Xu,, = aXjujp; = oj(ax,).
Hence 05 is a well defined automorphism on R1 and we can consider

R, = Rl[ Xyi 0*2«].

Assume that Rr- is defined so that the following relations hold.

1
9
(2) aﬁ_=Xf. i=2,...,r and %}j=Xf%%j1J=1J“.”r
and define ¢* on R as follows.
r r-1
crr
o*(a) = 0_{(a) = a for all a ¢ F
r r
* = i = e &=
and or(xi) Xiuir i 1, ' X
Then c; preserves (2). For
j o3
*(X.X,) = X,u, X.u, =XX.u, u, =XXu, .u, u,
c’r ij i“irjir i3 ir jx j7i7ij ir ir



and

r i r
o*(X.X,u,.) = X,u X,u (u?. = X.X,uc.u_Au?,
r ji1ij Jir rig 13 J 14 Lo 1)
j i
] g Or

Now applying ([2] Lemma 1.2) yields that u, u’ =u .u_.u,,
Jr. ¢r 1]

u,
ij ir jr
hence o*(X.X,) = o*(X.X,u,.,)
r i’j s N R

o,
And o*(aX,) = o*(X.a l) as above.
r 1 r 1

Whence 0% is a well defined automorphism on R__; and R = R__,[X ;o}] is

1 r—

a right skew polynomial ring. It is an ore domain by induction, hence

it has a skew field of fractions called the iterated skew function field.

We shall have a corollary about the existence of the Gaussian

extension on D.

Corollary (3.1.3). Let D = K(Xi; Ui (i=1,...,r), u) be the iterated

skew function field and let v be any valuation on K with associated
valuation ring V and radical“ﬁb. Then v extends to a valuation W
(with radicalgp ) for which ii(modcf) is transcendental over
V/zZ (i=1,...,r) and il""’ir are right algebraically independent
iff (1) oi preserves v (1 =1,...,r)
(2) v(uij) = Owhere i =1,2,...,rand j = 2,...,r
Moreover w is the Gaussian extension.

Proof. Consider R = K[Xi; o (i=1,...,r), ul, then each element f of

R can be written as f = )X, X, ,...,X. a, ., where X.. € {X;,...,X}
ll 12 ls 11""‘15 1] by

(3 =1,...,5) i, ¢ i2 £ ... € is and where a, € K.

i....d
1 S
Let [ be the value group of v and consider the map w: R+ T U {=}

1

defined by

w(zxi X, <. X ) = min v(a,

a, . . )
1 2 ls ll...ls 11.-.15

W is clearly a well defined map.

Let R, = K[x1‘°1]' then theorem (3.1.2) yields that v extends to



ml on R1 where wl is the Gaussian extension.
Consider R, = Ry[X,; o%]. Conditions (1) and (2) yield that o3

preserve w hence w, extends to a Gaussian extension w, on R, and by

1’ 1

induction we see that v extends to a Gaussian valuation on D. Now we
observe that the same induction process shows that this valuation is
given on D by w. It is also clear by induction that ii(modzf) is
transcendental over VVWZ and that ii”"'ir are right algebraically
independant. Hence the condition is sufficient.

For necessity we follow the same proof as in the theorem.

Remarks (3.1.4). 1) The condition on § in theorem (3.1.2) is a

necessary one for the existence of the Gaussian extension. However it
is not necessary for the sblution of the extension problem in general.
In fact’if D = K(X; o, 68) and v is a valuation on K preserved by o
with a value group F, khen we considér G =2 x T and we order G

lexicographically, i.e.

(zl.Yl)((zz,yz) iff z, <z, or if z, = z, then Y, <Y

2 1 2

Let R = K[X; o, 6] and consider w: R + G U {»} defined by
w(f) = (-n,v(a )) where n = deg f. wlel= 2
To prove that w is a valuation we only need to look at axiom V.3
since the others are easily satisfied.
n

i .
X an + ... + X a, where n > i

So let £

s

g = xmbm + ...+ jbj where m > j
On multiplying fg we need to know the coefficient of the leading term
which is here xn+m.
m
Now anxm = Xmag + h where h is an element of deg < m hence the

leading term will have the coefficient

m m n
a = anc bm' whence w(fg) = (—(n+m),v(ag bm)) = (—n,v(ag ))
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+ (—m,v(bm) = (-n.V(an)) + (—m,v(bm)) = w(f)+wl(g)

and so the extension does not depend on 6.

w is called the leading term extension.

2) The importance of theorem (3.1.2) lies in its wide application kp
the finite and infinite casesas well. It is repeatedly used in field
coproducts.

The rest of this section is devoted to the application of theorem
(3.1.2) and its corollary (3.1.3).

I) Generic abelian crossed product division algebra

Let D = K(X; Gi(i =1l,...,r),u) be the iterated skew function
field constructed above and let K be the fixed field of Oyreees0 .

Assume that o has a finite order n, (i =1,...,r) such that K/k
is Galois with Galois group G = <0,> X oo. X <cr> where <ci> is the
cyclic group generated by oi (i=1,...,r).

Then by ([2] Theorem 2.3) D is a crossed product over E/F where

n nr n nr
E = K(Xll,...,xr ) F = k(Xlla ,...,Xr ar) for some al,...,ar € K.

1

D is called the generic crossed product of K/k. The name is

inspired from the fact that every crossed-product algebra over K/k is
a homomorphic image of R = K[Xi; o, (i = 1,...,v),ul -BY ([2]) every
finite abelian extension has a generic crossed product.

For simplicity we write D = (K/k; G, a, u).

As a first application we have

Corollary (3.1.4). Let D = (K/k; G, a, u) be the generic crossed product

of K/k with centre C.
Let v be a valuation on C satisfying the following:
1) v is the Gaussian extension of a non-trivial valuation vy on k
2) vy has a unique extension wy on K such that
wo(ai) = 0 and mo(uij) =0 (i,j=1,...,r) where r = order of G

Then v extends to a valuation w on D.
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Proof. vy has a unique extension w, on K, hence G preserves mo.(L!O') v?.\oﬂ)
Now wo(uij) =0 for i,j=1,...,r, hence by Corollary (3.1.3)
W), extends to the Gaussian extension w on D.
. n Ny
If D= K(Xi; Ci(l =1,...,r),u) then C = k(xl al""'xr ar),

hence condition 1) and the fact that wo(ai) = 0(i=1,...,r) vield

that & is the extension of v to D.

I1) Free Algebras

Iet A = k<x,y> be the free k-algebra on x,y where x,y are
k-centralizing indeterminates.

Put K = k(t) where t is a central indeterminate over k and let

Rn = Kl z; GnJ be the right skew polynomial ring where Gn: t > tn (n > 1).
Then A can be embedded in R.n where x = z and y = tz (see [12]).
Dn = K(z,cn) is a skew field of fractions of A and from ([13]) the

centre of A is precisely K.
Hence as an application of theorem (3.1.2) on free algebras we
have

Proposition (3.1.5). Let A be a free K-algebra and let Dn (n > 1) be

the skew field of fractions of A arising from the embedding of A in an
ore domain. Then any valuation v on the centre K of A can be extended
to D .

n

Proof. By the construction above Dn = k(t) (z; Un) where on: t+t"

n . .
N i .
v extends to a Gaussian extension w on k(t) (w( 2 ait ) = min v(ai))
: i=0 i=0,...,n

hence cn preserves w and applying theorem (3.1.2)
yields that w extends to Dn'
Remarks. 1) The proposition is true for any n > 1.

2) If A = k<x;,%X,,...> where {xi}i€I is a geneirating set, then
we put K = k(tin; i eI, n eZ+) and R = K[X;0] where o(tin) = tin+l'
hence by the same reference ([12]) A has a skew field of fractions

D = K(X;0). Now any valuation v on k extends to a Gaussian extension

‘ +
won K for which w(t ) =0 (i € I, neZ ) hencel preserves W and W
in,
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extends to a valuation on D.

3) Let A be any free algebra over k and letl) be the universal
skew field of fractions of A. 1In the coming sections we will be
looking at the extension problem. 1In particular we show that every
valuation on k extends to U and that there is always a real valued
valuation w on U such that the restriction of w to k is trivial.

N.B.DJS very much more special than U.

ITI The universal associative envelope of a Lie algebra

Let ¥ be a field containing i such that i2 = -1 and A be the

simple 3-dimensional Lie algebra generated by x,y,z such that
[x,y] = 2z, [y,z] =x and [z,x] = vy.

Let v be any valuation on K.

We aim to construct the universal associative envelope O of A
and prove the existence of a valuation w on the skew field of fractions
of U such that w‘K = v.

The following lemma describes\} .

Lemma (3.1.6). Let A be a simple 3-dimensional Lie algebra over a field

X containing a square root of -1.

Then, the universal associative envelope of A is a skew polynomial
ring over ¥ z].
Proof. Let i denote the square root of -1 and consider the following
changerof variables.

u = x+tiy, v =x-iy and z = z.

Then uz-zu = -y+ix = i(x+iy) = iu, hence uz = (z+i)u
vz=2V = -y-ix = - (y+ix) = =i(-iy+x) = -iv
hence vz = (z-i)v

Now uv-vu = (x+iy) (x-iy)-(x-iy) (x+iy) = -2iz
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Put E = K[z] and let o: K[z]+ k[z]

f(z) » f£(z+i)

Then 0 is an automorphism with inverse o~l(z) = z-i we consider the

left skew polynomial ring
R = €£[u,0] defined by uz = (z+i)u

o (hence o~!) extends to an automorphism on R defined by
o(u) =1

Let 6: R > R be defined as follows.
1) § is trivial onkFE.
2) S(u) = ~2i27.

We note first that § is a well defined map on R. We claim that § is a
o~l-derivation on R. It suffices to prove that §(uz) = §(z+i)u.

-1
For 6(u2) = uO 26 + uGZ = -(2iz)z = -2iz?

-1

§((z+i)u) = (z+i)° ués + (z+i)6u = z(-2iz) = -2iz2.

So we can consider U = R[v, ¢”!, §] and U is the universal associative
envelope of A.

N.B. U is an ore domain, hence it has a skew field of fractions

D = L(v, 0-!, 8) where L is the skew field of fractions of R. We now
deduce easily

Proposition (3.1.7). Let A be a simple 3-dimensional Lie algebra over

a field k containing a square root of -1 and let D be the skew field of
fractions of its universal associative envelope. Then any valuation on
k extends to a valuation on D.

Proof. By the Lemma D = L(v, ¢~ 1, &) where

L = K(u,0) (K=%k(2) and o: Z » Z+i)

n , .
v extends to a Gaussian extension w,; on K given by ml( Z aizl) = min v(ai)
i=0 i=0,...,n
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Now O preserves wy hence applying theorem (3.1.2) yields that
w, extends to a valuation w, on L for which mz(u) = 0, hence §
satisfies the condition of theorem (3.1.2) since o~! preserves
wz(c"l(u) = u) the theorem yields that w, extends to a valuation w

on D and w is surely the extension of v to D.

Iv Weyl algebras

Let K be any field and let A be the Weyl algebra generated by x,y
such that xy-yx = 1. It is easily seen that A can be written as a skew
polynomial ring Rly,1,'] where R = k[X] and ' is the derivation with
respect to X. Let D = K(y,1l,') be the skew field of fractions'where
K = k(X), then any valaution on k extends to a valuation on D. It
suffices to apply theorem (3.1.2).

Example on the iterated case (3.1.8)

Let k be a field containing €, n and £ where € is a primitive
n; -th root of unity, n is a primitive n,—th root of unity and ¢ is a
primitive n3—th root of unity (nl,nz,n3 € zz+) .

Consider the skew field D = k(xl,xz,x3,xu) where the xi's are

k-centralizing indeterminates satisfying the following relations.
XX, = XX and XX, = EX, X;.

Let v be a valuation on k. We claim that v extends to D.

Consider E = K(xl,xz) and let g: E > E be defined as follows.
o(x) =ex; and o(x) =X,

n
¢ is an automorphism of order n, with fixed field F = k(xll,xz).

Let T: E~> E be defined as follows

(%) =% and T(xz) = nx,.



72.

n
2).

T is an automorphism of order n, with fixed field E' = K(xl,x2

Now ot = 10, hence G = <g> % <t> is an abelian group of order n.n,.

172

lLet F be the fixed field of G. Then F.= E°

n, n
T _ 1 2
nNEg = k(x1 1 X, ).
Consider the extension E/F.
n n n, n
We have (E:K; = (R(xl,xz):K(xl,xzz))(K(xl,xzz),K(xll,xzz)) = nn,.
Hence E/F is a Galois extension with Galois group G because there are

nF-automorphisms of E.

We let R, = Elx,;0] where multiplication is defined by
(1) xja = o(a)xy for all a € E.
We define 1* on R, as follows.
t*(a) = 1(a) if a € E

* =
and T (x3) Exs

T* is easily seen to preserve (1), hence it is a well-defined automorphism

on Rl' whence we can define

- T
f=f x where £ ¢ R

R = R [x ,t*] by " 1

Xy

and R is a left skew polynomial ring whose skew field of fractions is D.
Hence by ([2] Theorem 2.3) there exist a, ra, in E such that

n
1%, a,) is the centre of D and indeed D is a generic crossed-

n
C=F(x a
1
product abelian division algebra.
Now proving that v extends to D is a simple matter using

inductively Theorem (3.1.2).

§2. Some remarks on the extension of valuations in field coproducts

Let KX, /K, be two skew fields and consider their coproduct over

a subfield K; R =K Ii K, by ([4] theorem 5.3.2) R is a fir, hence by

1
([3] pp.283) it has a universal field of fractions H = KIC% Ky called

the field coproduct of K; and K, over K. ILet v;,vy be two real
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valuations on K1 and K, respectively such that v, K=v,|K=uv.
Our main object in this section and the rest of this chapter is
to investigate whether there exists a valuation w on H such that

w K1 =V, and w|K, = v

2 2°

If Kl,K2 are K-algebras not both 2-dimensional as K-spaces then
the centre of R is precisely K (see [14]). Hence applying ([6] Theorem
4.3) yields that the centre of H is K.

Throughout the rest of this chapter K;/K, are not both 2-dimensional
over K.

A skew field D with centre C is said to satisfy Amitsur's

condition if i) C is infinite, ii) D has infinite degree over C.

Theorem (3.2.1) (P.M. Cohn). Let D be a skew field with centre C

satisfying Amitsur's condition. Then any abelian valuation on K has
an extension to D O C¢Xy = DC{X> for ény set X.

C
Proof. ([8] Theorem (5.1)).

Theorem (3.2.2). (P.M. Cohn-Mahdavi-Hezavehi). Let Kl,K2 be skew fields

with common centre C, both satisfying Amitsur's condition, and consider

their field coproduct X, O K,. If v,,vy are real valuations on Ki,

lc
respectively Ky, agreeing on C, then they have a common extension to
K, 8 Ky.
Proof. ([8] Theorem (5.4)).

The following lemma is the first step toward lifting Amitsur's

condition.

Lemma (3.2.3). Let D be a finite dimensional central division algebra

over a field C. Then there exists a skew field D' contéining D and
haviﬁg C as a centre.

Moreover (D':C) = o and any real valuation on D can be extended to
a real valuation on D'.
Proof. Consider L = D(t) where t is a central indeterminate. Let

o: £(t) + £(t2) be an endomorphism of L and consider the right skew
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polynomial ring R = L[X;0]. It has a skew field of fractions
D' = L(X; 0). Now applying ([4] pp.6l1) yields that the centre of D'
is precisely C since L has centre C(t) and C is fixed by ¢ hence
(D':C) = o,

Now v extends to a Gaussian extension w on L for which

n
w( % ait ) = min v(ai) hence ¢ preserves w and applying theorem (3.1.2)
i=0 i=0

yields that w extends to a valuation on ﬁ .

Moreover this valuation has the same value group as v, hence it
is a real valuation and the lemma ig proved.

Recall that a matrix A is said to be full if its square, nxn say,
and cannot be written as A = PQ, where P is nxr, Q is rxn and r < n.
A ring homomorphism o: R + R' is said to be honest if it breserves the
full matrices over R i.e. if A is a full matrix over R then a(3d) is a
full matrix over R', where the entrieé of o(A) are the images of the

entries of A.

Lemma (3.2.4). Let K, € K,,K3 be any skew fields all containing E as

a sub-skew field, then the homomorphism Kl‘ﬁ Kg » K2LJ K3 induced by
E

the inclusion th KE is honest.

Proof. ([8] Lemma (5.3)).

We are now ready to lift Amitsur's condition on both theorems.

Proposition (3.2.5). Let K, /K, be two skew fields with a common centre

C, where C is infinite. Let VyirVy be real valuations on Ky/Ky such

that vllc = v2|C = v. Then ViV, have a common extension to K1

2’K2.

Proof. If [Ki:C] = o (i =1,2), then we apply theorem (3.2.2). So

assume W.L.O.G. that [Ki:C] <o (i=1,2). Consider R = KILé K,.
By lemma (3.2.5) there exist Di (i = 1,2) such that Di:) Ki

(i =1,2), Di satisfies Amitsur's condition and v, extends to a real

valuation wy on Di (i =1,2). Moreover Di has centre C (i = 1,2).

Now the homomorphism o: KlmJ K, > Dl\é D, induced by the inclusion
C

Ki c Di (i = 1,2) is honest by a double application of lemma (3.2.4).
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Hence Ky O K, € D7 O Dsy.
1 c 2 1 C 2
Now applying Theorem (3.2.2) yields that Wy s, have a common

extension w to D, O D,, whence wIK 0O K, is a common extension of v,,v
1 ¢ ™2 1 & 2 1772

to K, 0 K,. .
L g “2'\giif{krcjcenTnen.

The condition on C is trivially satisfied since otherwise K, /K,

are commutative. We now lift Amitsur's condition from theorem (3.2.1).

Proposition (3.2.6). Let D be a finite dimensional central division

algebra over a field C. Then any abelian valuation v on D extends to a
valuation on H = DC(X) for any set X.
Proof. By lemma (3.2.3) we embed D in a skew field D' satisfying
Amitsur's condition such that v extends to an abelian valuation w on D'.
Now lemma (3.2.4) yields that the homomorphism D‘é Cc<xX> +.D'\é Cc<X>
induced by the inclusion D < D' is honest. Hence H = DC(X> c Dé{X).
Applying Theorem (3.2.1) yields that w extends to Dé{X} and
restricting w to H yields the result.
The following corollary shows that the extension is always possible
to the universal field of fractions of a free algebra.

Corollary (3.2.7). Let K<X> be a free algebra where X is any set. Then

any abelian valuation on K can be extended to the universal field of
fractions K<X» of K<X>.
Proof. It suffices to observe that K is a finite dimensional central
division algebra over its centre K. Hence applying proposition (3.2.6)
yields the corollary.

We now conéider a free algebra A = K<X> and we let F be the free
group on X: then A is émbedded in the group algebra KF.

Each element a of F can be written as a = u?luzz... (possibly an
infinite product) where the ui's are basic commutators (see [16]). We
order F lexicographically by the exponent of the ui's. With this order

. F
F becomes a totally ordered group (cf. [15]). Consider K , the set of

all functions from F to K. Then the subset of KF consisting of elements
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having well ordered support is a skew field containing K€, hence
containing A (see [15]). It is denoted K((F)) and it is called the skew
field of Laurent series over K. It is shown in ([13]) that the universal
skew field of fractions D of A is the subrbxgof K((F)) generated by A.

The following proposition ensures the existence of a real
valuation w on D such that w restricted to K is trivial.

Proposition (3.2.8). Let A = K<X1,...,Xr> be a free algebra with

universal skew field of fractions D. Then there exists always a non-
trivial real valued valuation w on H such that w|K is trivial.
Proof. We consider the free group F on XI,XZ,...,Xr.

As indicated above; each element a of F can be written as

oy

a=u1

ugz... (possibly an infinite product) where the ui‘s are basic
commutators. Order F lexicographically and consider H = K((F)), then
each element f of H can be written as-follows. £ = Ekaaa where the
ka's are in K; the aa's are in F and have a minimal element for the

ordering of F, say aa , then ka a is called the leading term.

J i3
Now observe that xl""'xr are the first basic commutatorsin F

and the exponent of the commutators are in Z. Consider the map
w: H->2Z U {=}

defined as follows.
If £ = Ekaaa is a non-zero element of H, then 1) w(f) = o where
0y is the exponent of X, appearing in the leading term.
2) w(0) = .
Then @ satisfies the axioms of a valuation on H.
For
V.l) is satisfied by definition.
V.2) is clear from the ordering of F.
It remains to prove V.3) i.e. w(fg) = w(f)+w(g) for all f,g ¢ H. Consider

og s+l

. Gy 0
f and assume that the leading term is k X.!X.2 ... X, Su, .o
ii i ig 1541

1 72
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B B
Consider g and assume that the leading term is k.X.lx.z...x.tuFt+l . e
J Jt 32 Je Jean
Assume further that X, =X, =X
1
Then on computing fg we can shift X1 (in the leading terxrm of q)

1

successively to the left using the commutator formulae, hence we get
ay+B

X, in the leading term of fg, whence w(fg) = a1+81 thus
w(fg) = w(f)+wl(g).

If X, does not appear in the leading term of f or g, then it is
clear that w(fg) = w(f)+w(g) and V.3) is satisfied. Hence w is a
valuation on H and since D is contained in H, restricting w to D finishes
the proof of the proposition.
N.B. 1In the ordering above X; is the first basic commutator, hence
the exponent of Xj (j # 1) in the leading term of an element does not
define a valuation, since axiom V.2) is not satisfied in this case
(it is possible to define another valﬁation by taking xj as a first
commutator) .

If K is commutative and X, ,K, are purely transcendental extensions
(commutative) of K, then for some cases Amitsur's condition can be
lifted as the following proposition shows.

Proposition (3.2.9). Let K be an infinite field and let K, = K(ti' ieI)

1

and K, = K(tj; j € J) where ti'tj (i € I, j € J) are central indeterminates
(I,J are two sets of indices).
Let vy,v, be two real valuations on K, and K, respectively such
that v, [K = v, |[K = v where v is non-trivial and assume that vy and v,
are the Gaussian extensions of v.
Consider H = K; g K,; then v,,v, have a common exfension to H.

Proof. We embed K, in F, = K(tin; i €I and n € Z) where ti = ti and

0

we consider the map

s > i =
o: F1 Fy defined by c(tin) tin+1

Then ¢ is an automorphism of infinite order.
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We now extend vy to w; on F; where w; is the inductive Gaussian
extension, hence o preserves w, -

Consider the skew function field D; = Fy(X;jo) and observe that
the centre of D, is K because K is the fixed field of 0. Moreover
w, extends to ¢1 on D1 since ¢ preserves wy. We similarly construct
D, with centre K and a valuation ¢s extending Vo

Now applying theorem (3.2.2) yields that ¢1,¢2, hence Vi1V, have

a common extension ¢ to D1 O D,.
K

But the homomorphism KlLi K, > lei D, induced by the inclusion

K, ¢D, (i =1,2) is honest (see lemma (3.2.4)). Hence K, OK, ¢ D, OD
i i 1 ¢ 72 1 K 2
and restricting ¢ to K, g K, yields the proposition.
§3. The counter example
Let Kl,K2 be two skew fields with a subfield X and let R = Kl\i K,

be their free product over K.
Given two real valued valuations Vq1:Vy, On Ky, respectively K, such

that v, |K = v, |K = v where v is non-trivial.

1
It has been shown in ([8] theorem (4.4)) that there exists an
epic R-field L containing X,;,K, and to which v;,v, have a common
extension. We shall call L throughout the rest of this chapter the
associated epic R-field (associated to vl,vz). However L is not unique
and whenever L is considered, then L means an arbitrary associated epic
R~field. Theorem (3.2.2) and proposition (3.2.5) show that if K is the
centre of K, /K, then L can be chosen to be the universal skewfield of
fractions of R i.e. L = K, g Ky.

In ([8]) P.M. Cohn and Mahdavi-Hezavehi have conjectured that
ViiVy have always a common extension to K1 2 KZ'

Our aim is to prove that this conjecture is false and we shall give

a counter example.

Before we proceed to our main theorem in this section, we shall
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need a couple of lemmas.

Lemma (3.3.1). Let E/K be a finite cyclic Galois extension and v a

discrete rank 1 valuation on K such that v has ramification index e = 1
in E and v is indecomposed in E.

Then there is a cyclic division algebra D over K to which v can
be extended.
Proof. Assume W.L.O.G. that v is normalized and let a be a uniformizer
in K, i.e. a is such that v(a) = 1. Let 0 be the generator of the
Galois group of E/K and assume that ¢ has order n i.e. on = 1.

Consider the cyclic algebra D = (E/K; o, a).

We claim that D is a division algebra. For let t be the-exponent
of D, then applying ([17] Corollary (36.7)) yvields that there exists
an ¢ € E* such that

n-1
t ]
a = C.C ...C

Un—1
) = nv(c) because

Hence (1) v(at) = tv(a) = t = v(c)+v(co)+...+v(c
0 preserves the valuation v (v is indecomposed in E). (1) implies
v(c) = t/n, hence t = n since v has e = 1 in E and t divides n, whence
applying ([17] pp.261) yields that D is a division algebra. .

Now applying corollary (2.1.3) yields that v extends to a valuation
on D and the lemma is proved.

The second lemma describes subalgebras of a central division algebra.

ILemma (3.3.2). Let H be a central division algebra, not necessarily finite

dimensional over K, and assume that H contains a field F which is a cyclic
extension of K.
Then H contains a cyclic division algebra whose centre is a simple

extension of K.

Proof. Let G <g> be the Galois group of F/K and assume that G has

orderrgiencn = 1. Then, by the Skolem—Noether theorem ¢ is induced by
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an inner automorphism of H, hence there exists an element t in H such

that

at = tao

2
at2 = tza0
at” = t"a

We now consider E, = K(tn) and E, = F(tn), hence Ez/Ei is a cyclic
Galois extension with Galois group G.

Now consider D = (EZ/E17 o, th.

D is a cyclic algebra which is a skew field since it has no
zero—-divisors and the lemma is proved.

We are now ready for the main theorem which we will use to
construct the counter example.

Theorem (3.3.3). Let KI/K be a finite cyclic extension and K2 a skew

field whose centre is K.

Let vy,v, be two real valued valuations on K/ respectively K,
such that VilK=v,|K=v where v is discrete of rank 1. Assume that
the value group of Vi is equal to the value group of v. Then Vi1V, have

a common extension to H = K1 0 X, iff v; is the only valuation on K,
K

extending v i.e. iff v is indecomposed in K,.
Proof. 1) The condition is sufficient.

‘If v is indecomposed in K,, then by lemma (3.3.1) we can find a
division algebra Kq which is cyclic over Kl/K and to wh%ch v (hence vl)

can be extended. Let vy be the extension of v to Ks.

By lemma (3.2.4) the homomorphism KlLé K ~» Ka“i K, induced by

c K, OK

the inclusion K, c K, is honest, hence H = K .
1 3 2 3 K 2

1 QK

Now by the construction of K3, K is the centre of K3 and since K

'V

is the centre of Kz, applying proposition (3.2.5) yields that v 5

3

have a common extension to Kq 0 K,. Restricting w to H yields the
K
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required common extension of VirVy to H, and the condition is sufficient.
2) The condition is necessary.
Assume that ViV, have a common extension w to H = Kl 2 K2. By
the remark in the beginning of §2 the centre of H is K. Hence applying
lemma (3.3.2) yields that H contains a cyclic division algebra

D (E/F; o, a) where 0 is the generator of the Galois group of K, /K.

E

Kl(a), F = K(a) where a = tn (t being the element of H defining the
inner automorphism of H inducing o).

We call wy the restriction of w to D.

We call We the restriction of w to F.

Hence wD is the extension of wF to D, whence wF is indecomposed in
E. Iet F be the completion of F relative to Wer then it is easily seen
that E = E g F is a field (from the commutative theory).

Let K be the completion of K relative to v, then K c F.

Consider the following composition map

. i . . .
K19K+x1®F9‘>(K, ®F) 0 F 3 E & F
K K 1x F F

i is clearly an embedding and o, B are isomorphisms. Hence K1 ® K is
K
embedded in E ® F, whence K, ® K is a field. Hence v is indecomposed in
F K

K1 because it is well known (from the commutative theory of wvalautions)

that when Kl/K is Galois K, © K = Kfl) X eae X Kfr) (direct product)
K
where r is the number of valuations extending v to K1 and K;l),...,Kér)

are the relative completions of K;.
We now construct the counter example.

Example (3.3.4). Consider K = Q(/f), the cyclic extension of degree 2.
2
t

Put F = Q(t) and let o: t =+ -, then o is an endomorphism of infinite
order on F, hence we can consider the skew polynomial ring R = F[X;ol.
It has a skew field of fractions D = F(X;o0). The centre of D is Q

because ¢ has infinite order and Q is the subfield of F fixed by o.
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Let v, be the 7-adic valuation on Q.

We consider the equation X2-2 = O in the residue class field Fo.
This equation has two simple zeros in F7, hence in Q7 (the field of
7-adic numbers), whence Vo splits into two valuations in K, v; and v; .
Thus v; decomposes in K.

Let v be the Gaussian extension of v, to F so that v(t) =0,
hence ¢ preserves v, whenceV extends to a Gaussian extension w on D.

Now consider v§ and w which aré real valuations on K, respectively

D. wv

7 is unramified in K, i.e. v

7 and v; have the same value group and
applying the theorem yields that v; and w have no common extension to
H = KO D (since otherwise Vo becomes indecomposed in K which is not

the case).

§4. On the centre of the associated epic R-field

Let Kl,K2 be two skew fields with a common subfield K, put
R =K, UK, and H = Ky O K,.
1K2 1K2

Let Vv, be two real valued valuations on Ky and K, respectively

such that v1|K = v IK = v and let L be an associated epic R-field.

2
Our aim in this section is to study the centre of L and generalize
Theorem (3.3.3) so as to show that in general Vi:Vy have no common
extension to any skew field of fractions of R and in particular that the
homomorphism R »+ L is not even an embedding.

The following lemma is the key element for our results in this

section.

Lemma (3.4.1). Let D be any division algebra over a field K and let F

be a cyclic extension of K contained in D. Put C = Z(D) and assume
that F n C = K.

Then D contains a cyclic algebra whose centre is a simple
extension of C.

Proof. Let o be the generator of Gal(F/K) and assume that o has order n.
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Since C is the centre of D and F is commutative CF is a field and
by Galois theory CF/C is a cyclic extension with Galois group isomorphic
to Gal(F/CnF) i.e. to <o>.

By the Skolem-Noether theorem ¢ is induced by an inner automorphism

of D; hence 3 t ¢ D such that

at = tac
2 o?

at* = t2a3 for all a € CF
n

at = tna

Put E = CF(tn) and Q = C(tn), then by Galois theory E/Q is a Galois
extension with Galois group isomorphic to <¢>. Consider H = (E/Q; 0, tn);
then H is a cyclic division algebra contained in D and whose centre
is Q.

The following theorem describes the centre of L and generalizes
the theorem (3.3.3) so as to show that ViV, have no common extension
to any skew field of fractions of R.

Theorem (3.4.2). Let Kl/K be a cyclic Galois extension and K, a skew

field with centre K, put R = KIL% K2.

Let vy,vy be two real valued valuations on K; and K, respectively
such that vy K=vy,lK=v and let E be the decomposition field of v;.
Then the centre C of any associated epic R-field L contains E.

Moreovexr if E 2 K, then Vy1:Va have no common extension to any skew
field of fractions of R.
Proof. Assume that C n K; = Q and that @  E. Since L is a division
algebra over { and KI/Q is cyclic, we can apply lemma (3.4.1) to obtain
a cyclic algebra D in L such that D = (Cl/Cz; o tn) where
cy = CKl(tn), C, = c(t™ and o generates Gal(C,/C;) (note that
Gal(Cy/Cy) _ Gal(K,/CN K;). t induces ¢ and n = order of g.

Iet w be the extension of VirVy to L



Iet p_ be the restriction of w to D.

D
" wc be the restriction of w to Cl'
1
" 11" " " " "
mcz w Cz.

Hence w extends v to Cl.

Now let wc be the restriction of W to C.
2

and W " " " " wc2 to w.
Thus W extends v to 2 (because £ 2 K).
Now since & $ E, applying ([10] theorem 15.7) yields that wg
decomposes in K;, hence if Q is the completion of Q relative to W s then
K, ﬁé has zero divisors.

We claim that K, 0'5 is a field. For consider the following

composition map

~ - - 3 ~
K) @ Q@ — K 8C& - (k, 8C) 8 & —>K,c8C-»xcec(th
Q 1 Q 19 c C : c
vy
n n 8 n ~n
KC(t) @ C(t) <— (K, CQC(t)) e c(t")
1 n 1~ ¢ n
c(t™) c(t)

Note that K,C(t™) = ¢, C(t") = C, and K; ® C = K;C. Note further that
. 1)
C is the completion of C relative to We and C(tn) is the completion of

C2 relative to wcz.

Hence we deduce easily that i,j are embeddings and o, B, vy, §

are isomorphisms. This yields that the composition map is an embedding
- n Nn

1 (] C2 = K1C(t ) ® c(t)

c n
2 c(t)

has zero difisors which is a contradiction because w on C_ has a

C2 2

to C1 and the reason is that W is extendable
1 2

to D, see (theorem 0.1l.1).

Thus if K, 8 Q has zero divisors, then C

unique extension We

So K, 8 § has no zero-divisors which is a contradiction; hence
Cn K1 2 E, whence C 2 E.

For the second part of the theorem, it suffices to observe that
if H is any skew field of fractions of R with centre C, then

CnkK =K because K centralizes H and the centre of R is precisely K.
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Hence repeating the same argument as above shows that if E > X, then
Vi,V, have no common extension to H.
N.B. The centre of L surely contains K since K is the centre of
K, O K, and since there is a specialization from Ky g K, to L
K
i.e. L ~ T/gp where T is a local subring of K, O K, and ~ is its
K c
maximal ideal.

As a corollary we have

Corollary (3.4.3). Iet KI/K be a finite abelian extension and K, a

skew field with centre K. Put R = Kltg K,.
Let v,,v, be real valued valuations on K,y and K, respectively such

that vy K =v_|K = v and let E be the decomposition field of vi, then

|

the centre of anylassociated epic R-field) L contains E.

Proof. Let G = <Oy> X ... X <0 > be the Galois group of Kl/K'

i
Put K| = {x € X;; o, (x) = x}.

Let K§l) = N kJ then K§l)
341
isomorphic to <0i> and we have the following decomposition.

/K is a cyclic Galois with Galois group

K, ;K{l) ® K§2) ® ... 8 xF).

K K 1
Let vfl) be the restriction of Vi to Kil) (i=1,...,r) and E(l) the
decomposition field of v{l). Then we have the following

g~ gr? g... g
- K K K

(it suffices to compare dimensions over K).

Iet C be the centre of L.

Then by a similar proof as in the theorem we show that K{l) ncCo E(l).

Hence

C > E(l) for i=1,...,r.

) (xr)

Whence the homomorphism.[‘:E(1 ® ... ®E - C defined by



f(Je, ®e, ®...8e ) =)e e, ...e,
1 1 1
1 2 r 1 2 r

(1) (x)

is injective because E ® ... ® E is a field and the corollary is

proved.

Corcllary (3.4.4), Let Ki/K be a cyclic extension of prime power degree
(different primes) and let vi be a real valued valuation on Ki

K = v and assume that v splits in

(i =1,2) such that v [K = v,

Ki (i =1,2). Then there is one and only one associated epic R-field
given by K. @ K,.

1 g 2
Procf. We know that there is at least one, say L; first observe that

K E K2 is a field, hence an epic R-field. Now let C be the centre of

L. By the theorem C 2 Ki (i = 1,2), hence C 2 K, 8 K, whence

1k

L =K g K,, because L is generated by an image of R. Now any other

associated epic R-field is equal to K1

g Ky, hence L is unique.

§5. Generalizations

Let K;,K, be two skew fields with centres Cl,C2 and let K be a
common subfield contained in both C1 and C,.

Let v,,v, be real valued valuations on K, and K, respectively such
that v{[K = v, [K = v.

We aim to generalize our previous results to the case where K c Ci
(i = 1,2). Throughout this section, all skew fields have infinite
centres.

We first need a lemma.

Lemma (3.5.1). Let D be a skew field with centre C and let K be a

subfield of C.

Let w be a real valued valuation on D such that w|K = v. Assume
that w is the unique real valued valuation on D extending v.

Assume further that D admits an endomorphism ¢ whose fixed field

intersected with C is exactly K. Then D can be embedded in a skew-field
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D' whose centre is exactly K. Moreover w extends to a real valued
valution on D'.
Proof. Assume first that no power of ¢ is inner.

Then we consider the right skew polynomial ring R = D[X; o]
This is a right ore domain, hence it has a skew field of fractions
D' = D(X; O).

Applying ([41 pp.61) yields that the centre of D' is K.

Now since w is the only real valued valuation extending v to D o
must preserve the valuation, hence applying theorem (3.1.2) yields that

extends to a Gaussian extension on D'. Suppose now that o has an

inner power. We put L = D(t) and we extend 0 to L by o(t) = t2, hence
0 is an endomorphism of L with no inner power. '

Now consider D' = L(y, 0); by ([4] iemma 6.3.5) the centre of L
is C(t), hence applying ([4] pp.6l) yields that the centre of D' is K.
Moreover w extends to a Gaussian extension w on L, hence o preserves
wL, whence W extends to a Gaussian extension on D' which is real valued
since it has the same value group as w.

We now have the first generalization of theorem (3.2.2).

Theorem (3.5.2). Let K;,K, be two skew fields with centres CI,C2 and
let K be a common subfield such that K ¢ Ci (i=1,2). Iet v,,v, be
real valuations on K, and K, respectively such that VI'K = vz‘K = v and
such that v, is thé only real valued valuation extending v to Ki (i=1,2).
Assume that Ki admits an endomorphism o, whose fixed field
intersected with Ci is precisely K (i = 1,2).
Then ViV, have a common extension to H = K1 g K,..
Proof. By lemma (3.4.1) each Ki is contained in a skew field Ki whose
centre is precisely K and to which v, has a Gaussian extension ws
(i =1,2).

Now consider the following map



f:K, W3 K, —> KyW K, induced by the inclusion K, © K!
ST 2 17 X2 i i

(i =1,2).
By lemma (3.2.4) f is honest, hence K, g K, © Ka 0 K}. Now
K

applying theorem (3.2.2) yields that w have a common extension

17%2

to Ki g Ké and restricting @ to H yields the required extension.

Proposition (3.5.3). ILet D be a skew field with centre C and let K be

a subfield of C. Aassume that D admits an endomorphism whose fixed
field intersected with C is precisely K. If V is a real valued valuation
on D such that v is the only one on D extending its restriction to K.
Then for any set X, v extends to H = DK€X>.

Proof. By Lemma (3.4.1) D is contained in D' whose centre is K and to
which v extends to a real valued valuation w. Now the following

homomorphism
D\s KXy —> D' D KREXy
K K

is honest (see lemma 3.2.4). Hence DK{X> c Dkﬁx?. Applying theorem
(3.2.1) yields that w extends to a valuation ¢ on DK(X) and restricting
¢ to DK{X? yields the required extension.

Recall that a skew field extension D/K is Galois if K is the fixed
field of a group of automorphisms of D. As a corollary we have an

application to theorem (3.5.2).

Corollary (3.5.4). Let K,/K, be two skew fields with centres C,,C;.
Let K be a common subfield of Ky,K; such that Ci/K is a finite
commutative cyclic extension (i = 1,2) and assume that Ki/K is (a not
necessarily commutative) finite Galois extension with group G. Let

v1,Vy be real valued valuations on K1 and K, respectively such that

2
vijK=v,|K=v and v, is the only valuation on Ki extending v (i = 1,2).
Then VY, have a common extension to H = K; O Kjp.
K

Proof. Let 0, be the generator of Gal(Ci/K), then applying ([ 4]

Proposition 3.3.3) yields that'ci is induced.from an automorphism Ti of



G, hence the fixed field of T intersected with Ci is precisely K
(i =1,2).

So we are in the setting of the theorem, hence applying the
theorem yields the corollary.

We shall generalise proposition (3.5.3) by assuming that D admits
a family of endomorphism whose fixed field intersected with C is K.
The following lemma is the key to our generalization.

Lemma (3.5.5). Let D be a skew field with centre C and let K be a

subfield of C.

Given a real valued valuation w of D such that ¢|K = v and assume
that W is the only real valued valuation on D extending v.

Assume that D admits a family of.endomorphisms whose fixed field
intersected with C is K. Then D can be naturally embedded in a skew
field L whose centre F intersected wiﬁh D is K and to which w extends
to a real valued valuation.

the a\ven

Proof. Let {Oi}ieI be £ family of endomorphisms of D and let {Fi}iEI

be defined as follows.

= € . =
F, {X D; o, (x) X}

r\ (] -
Put C, = F, C and consider {C} €1

The hypothesis yields that K= (M F, )N\ C="N (F,.N ¢ = N c, -
i€r i€ex iex

We assume first that no power of o, (1 € I) is inner. Consider
Li = D(Xi; oi) the skew function fields (i € I): applying ([4] pp.6l)
yields that the centre of Li is precisely Ci' and by the proof of lemma
(3.5.1) w e*tends to a real valued valuation w, on Li because o,
preserves w:

We now consider Rﬁz = LIL% L, (the free product of L1 and L, over
D).

Applying ([8] theorem 4.4) yields that there exists a skew field

Ly, to which wy rw, (hence ) have a common extension Wy,
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Let Ryp3 = L2 La.

Applying the same theorem yields the existence of a skew field
Lio3 to which Wypr Wy have a common extension. Inductively we construct
a skew field L containing all the Li and to which the wi's have a common
extension, say ¢.

Now let F be the centre of L.

We claim that FMN D = K. For FN Lig Ci for all i e I because
Ci is the centre of Li' Hence FMD ¢ Ci for all i because D gILi (i € 1)
whence FM D c N Ci = K. Thus FIMN\ D = K since K is easily proved (by
induction) to be a central subfield of L and the lemma is proved in
this case.

If some of the {Ui}ie have inner power we put D' = D(t) and

I
extend each Gi to D' by Gi(t) = t2, hence we have a family of endo-
morphisms with no inner power. We préceed exactly as above bearing in
mind that if E = D(t) (X; 0,), then the centre of E is ce)N F, where
F, = {Xx eD; 0,(X) =X}. i.e. the centre of E is C, since t ¢ F, for
all i ¢ I.

As a first consequence of this lemma we have the following
important generalization of theorem (3.2.1).

Theorem (3.5.6). Iet D be a skew field with centre C and let K be a

subfield of C.
Assume that D has a family of endomorphisms whose fixed field
intersected with C is K.
let w be a real valuation on D such that w|K = v and assume that
w is the only real valued valuation on D extending v, then w extends to
H = DK{X) where X is any set.
Proof. By the lemma there exists a skew field L satisfying the following
1) Dc L
2) w extends to a real valued valuation ¢ on L

3) if F is the centre of I, then FM D = K and (L:F) = o,
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Now consider H' = LFéx}.

Applying ([4] lemma 6.3.6) yields that DK€X> c LF€X>. Now by
theorem (3.2.1) ¢ extends to a valuation ¢' on H', hence restricting
¢' to H yields the required result.

Whether ¢ is real valued is not known. However at this stage we
shall propose the following Conjecture: Keeping the hypothesis and
notation of theorem (3.5.6) and let w be the real valued valuation on D,
then there exists a real valued valuation on DK<X} extending w.

The conjecture is certainly true if D = K and X is reduced to one
element in the case DK<X} = K{X) and it suffices to consider the
Gaussian extension of w. Throughout the rest of this section we assume
éhat the conjecture is true. First we have a generalization of theorem
(3.5.2).

Theorem (3.5.7). Let KI’KZ be two skew fields with centres CI’CZ and

]

let K be a common subfield such that K ¢ Ci (i 1,2). Let ViV, be

real valued valuations on Ky /Ky such that vi\Ki YE\K = v and assume
that vi is the only real valuation on Ki (i = 1,2) extending v.
Assume that Ki has a family of endomorphisms whose fixed field
intersected with Ci is K (i =1,2).
Then vl,v2 have a common extension to H = K1 g Kz.
Proof. By the conjecture vi extends to a real valued valuation w; on
K, {Xy for any set X (i = 1,2).

K
Consider the homomorphism

K, XK — K (X)\z K

(Y) induced by
1% 2 1 2K

the inclusion K, c K; (X) and K, c K (Y}-By (lemma 3.2.4) this map is
1 lK ZK
honest, hence K, O c K, €X> O £Y}.
' 1 2K 1 KKzK
Note that the centre of K1K<X} is K and the centre of K2 {Y) is K.
K

Hence theorem (3.2.2) yields that w have a common extension ¢ to

1192
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K; €XP O K, €Y) and restricting ¢ to K, O K, yields the result.
K 2K 1K2 ;

As an application we have the following consequence.

Corollary (3.5.8). Let KI,K2 be two skew fields with centres Cl'CZ and
a common subfield K such that K ¢ Ci (i =1,2). Assume that Ki/K is &
(not necessarily commutative) finite Galois extension (i = 1,2).

Let vy,v, be real valuations on K, and K, respectively such that

1

vllK = v

2|K = v and v, is the only real valuation on Ki extending v

(1 =1,2). Then vy,v, have a common extension to K,

g K,.

Proof. We note first that Ci/K is a Galois extension, it suffices to
apply ([4] theorem 3.3.5 (ii)). (i =1,2). ILet Gi be the Galois group
of Ci/K (i = 1,2). Then applying ([4] proposition 3.3.3) yields that
each cj € Gi is induced from the Galoié group S, of Ki/K (i =1,2).

let Tj € Si be the extension of cj to Ki' then it is easily seen that
the fixed field of the Tj's intersectéd with Ci is K (i = 1,2). Hence
we are in the setting of theorem (3.5.7) and the Corollary is proved
by direct application of the theorem.

The rest of this section is devoted to studying the case where K
contains the centre Cl,C2 of KI'KZ and where K is not necessarily
commutative.

In fact the §tudy of this case arises from the generalization of

the specialization lemma.

Generalization of the specialization lemma (3.5.9). (P.M. Cohn)

ILet D be s skew field whose centre C is infinite and let E be a

subfield of D such that
(1) E" = E where E" is the bicentralizer of E
(2) E €@ E' is infinite dimensional as E-space for any ¢ ¢ E* where E'

is the centralizer of E in D.

Then any full matrix A over R = DE<x> is non-singular for some

set of values of X in E' where X is any set.
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Proof. ([7]).

The object of the rest of this section is to see whether the
generalization of the specialization lemma entailsthe generalization
of theorems (3.2.1) and (3.2.2).

For simplicity we shall say that (D,E) satisfies (G,A,C)

(i.e. generalized Amitsur's condition whenever (D,E) satisfies the
hypothesis of lemma (3.5.9).
The basic lemmas for generalization are the following.

Lemma (3.5.10). Let (D,E) be skew fields satisfying (G.A.C.), then

any full matrix A over DE<X,X'1> is non-singular for some set of values
of X in D.
Proof. Similar to ([8] theorem 3.1).

Iemma (3.5.11). lLet (D,E) be skew fields satisfying (G.A.C.) and

consider R = D\E‘ D.

Given any full matrix A over R, there exists an inner automorphism
& of D such that Aa' is non-singular, where o' is the homomorphism
induced by (1,0) on R.
Proof. Similar to ([8] theorem 3.2).

Note that o' is induced from (1,a) by the defining relations of R
where 1 is the identity map on K and ¢o: R = K.

We now apply these lemmas to study generalizations.

Theorem (3.5.12). Let (D,E) be skew fields satisfying (G,A,C), then

any abelian valuation v on D has an extension w to DE£X? for any set X.
Proof. Similar to theorem 3.2.1.

Theorem (3.5.13). Let (D,E) be skew fields satisfying (G.A.C.), then

for any abelian valuation v on K, there is a valuation on the field
coproduct K g K extending v (on both factors).

Proof. Similar to ([8] theorem 5.2).

Remark. Let K;,K, be skew fields having E as common subfield such that

(K, ,E) and (Kp,E) satisfying (G.A.C.).
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Consider H = K, O K,.
1 g2
Iet ViV, be real valued on K, and K, respectively such that
vy E = v, E = v.

It is an open question whether VirVy have a commen extension to

et R = Kl‘é K and let D be an associated epic R-field. If (D,E)
satisfy (G.A.C.) then V,:V, have a common extension to H. For the

homomorphism

K; Y K,—? D U D induced by K, € D is honest

1 E E i
hence K, % K, €D g D and applying theorem (3.5.13) yields the result.
However such a strong condition [ (D,E) satisfy G.A.C.] seems

unlikely to be satisfied by D.
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