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ABSTRACT

The aim of this thesis is to study the extension of valuations in 

skew field extensions.

In Chapter I we look at the following problem.

Let K be a field and V a valuation ring of rank 1 in K. Let H be

a crossed product division algebra over K. Then we study conditions

under which there exists a matrix local ring R in H lying over V and

generating H as K-space. We then find that R is a valuation ring in H 

lying over V iff R is local. Moreover if V is discrete of rank 1, then 

R is a maximal order in H.

In Chapter II we study directly conditions under which a valuation

on the centre of a finite dimensional central division algebra can be

extended to the whole algebra. In particular if H = (E/K; a, a) is a

cyclic division algebra and v is a discrete rank 1 valuation on K, then

the extension of v to H depends on v(a). We then carry on the study of

the extension problem for the tensor product of algebras. In particular

if HsH, 0 ... 0 H and V a rank 1 valuation ring in K and if there 1 K K r
exists a valuation ring W in H lying over V with W n = W^(i = l,...,r),

we study conditions under which W = W. 0 ... 0 W .1 V V r
In Chapter III we look at infinite skew field extensions. We 

study valuations in skew function fields. The application will include 

among others, free algebras, universal associative envelopes of Lie 

algebras and generic crossed product. However our main concern in this 

chapter is the following question raised by P.M. Cohn.

Let K^,K^ be two skew fields with a common subfield K and let v^/Vg 

be real valued valuations on and Kg respectively such that 

v |̂k = Vg|k = V,

Do v^,Vg have a common extension to H = K̂  0 Kg (the field 

coproduct of Kj and Kg)?

We show that in general the answer is no. Nevertheless we find 

conditions under whidh v^/Vg have a ccmmon extension to H.
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Terminology and notations

Throughout this thesis, all rings occurring are associative, but 

not necessarily commutative. Every ring has a unit element, denoted 

by 1, which is preserved by homomorphisms and inherited by subrings.

An integral domain R is said to be a right Qre domain if any two non­

zero elements of R have a non zero-common right multiple. Left Ore 

rings are defined similarly. A non-zero ring in which every non-zero 

element has a two sided inverse will be called a skew field, and a 

commutative skew field will be called a field.

If a: A B is a map, then the image of an element a e A is 

denoted a(a) and sometimes â .

Let R be a ring and S a subring of R, then Z(R) denotes the 

centre of R while C(S) denotes the centralizer ofSinR.,

By J(R) we shall mean the Jacobson radical of R.
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CHAPTER 0 

Preliminaries

In this chapter we collect some facts on rings and give the 

conventions we will follow throughout the work.

In Section 1 we define valuations on skew fields and.we state 

Cohn-Krasner's theorem plus P.M. Cohn's theorems on finite dimensional 

central division algebras and total rings.

In Section 2 we define maximal orders and we state the main 

theorem needed for our work.

In Section 3 we define skew polynomial rings, while in Section 4 

we define universal skew fields of fractions.

Section 5 will be devoted to the definitions of firs and the 

coproduct of fields over a subfield.

§1 Valuations on skew fields

Let K be a skew field and T a totally ordered additive group. A 

function v on K with values in F u {«»} is called a valuation on K if 

the following conditions are satisfied;

V. 1 v(a) = 00 if and only if a = O for all a € K.

v.2 v(a-b)  ̂min{v(a) ,v(b) } for all a,b £ K.

V .3 v(ab) = v(a) +v(b) for all a,b £ K.

The image of K* = (K\{̂ }) is called the precise value group of v. If 

U = {x £ K; v(x) =0}, then imv a K*/U. This of course follows from 

the fact that v is a group homomorphism of K* onto imv . If F is 

abelian then v is said to be abelian.

A subring V of K is said to be total if for every a £ K*, a £ V

or a"l £ V; it is invariant if a“^Va = V for all a £ K*. By a valuation

ring we understand a total invariant subring of K. It is easily 

verified that for any valuation V/ the set
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V = {x € K|v(x) % 0}

is a valuation ring in K, and conversely, every valuation ring in K 

determines a valuation on K which is unique up to an isomorphism of 

the precise value group. V is said to be associated to v.

Remarks. Let v be a valuation on a skew field K, then

1) v(a) v(b) implies v(a-b) = min{v(a) ,v(b) }

2) the valuation ring V is local with maximal ideal ^ = {x € k |v {x ) > O} 

J is called the radical of v and V = V/j is called the residue 

class field of v

3) it is known that every valuation on K defines a topology on K; how­

ever K is not necessarily complete for this topology and its 

completion K is called the completion of K relative to v.

The following theorem by P.M. Cohn generalizes theorem 9 of ([18]). 

Theorem 0.1.1. Let D be a finite dimensional division algebra over its 

centre K and suppose that K has a real valued valuation v. Then the 

following conditions are equivalent, where K denotes the completion of 

K relative to v.

(a) D is a topological skew field with a topology inducing the valuation 

topology on K, and D has a completion D which is a division algebra.

(b) D 0 K is a division algebra.K
(c) F 0 k is a field, for any commutative subfield F of D.

(d) v has a unique extension to every commutative subfield of D

(e) V can be extended to a valuation on D.

Proof. Cohn ([5] Theorem 1)

The following theorem is also due to P.M. Cohn.

Theorem 0.1.2. Let D be a finite dimensional outrai division algW^ra. 

Then any total subring of D inducing a real valued valuation on the 

centre of D is a valuation ring.

Proof. Cohn ([5] Theorem 3)

We now state krasner-Cohn ' s theorem.



Theorem 0.1.3. Let K EL be any skew field extension. Given any abelian 

valuation v on K with associated valuation ring V and radical^ , there 

is an abelian extension o) of V  to L iff ML is a proper ideal of VL , 

where L^ is the commutator group of L.

Proof. cf. ([8] Theorem 2.3)

N.B. This theorem is used indirectly in our work.

§2. Maximal orders

Let R be a noetherian commutative integral domain with a field of 

fractions K and let A be a central simple K-algebra; an R-module M is 

called an R-lattice if it is a finitely generated R-torsion free 

R-module. M is said to be a full R-lattice in A if M generates A as 

K-space.

An R~order in the K-algebra A is a subring A of A which is a full 

R-lattice in A.

A maximal R-order in A is an R-order which is not properly contained 

in any other R-order in A.

Throughout our work A will be assumed to be a skew field. A ring 

S is said to be matrix local if S/J(S) is simple artinian i.e.

S/J(S) ~ M̂ (L) where L is a skew field, n is called the capacity of S.

In what follows R is assumed to be a discrete rank 1 valuation ring in 

K. Then we have

Theorem 0.2.1. Let A be an R-order in the skew field A, then A is a 

maximal order iff A is hereditary and matrix local. Moreover if A is 

a maximal order in A then A is a valuation ring iff its capacity is 1. 

Proof. The first part of the theorem is ([17] Theorem 18.4) where the 

second part can be deduced from ([17] 18.7 and 18.8) and theorem 0.1.1.

In fact if the capacity of A is 1 then A is the unique maximal 
R-order.
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§3. Skew polynomial rings

Let R be any ring. By a degree function we understand a function 

d: R ^ 2Z u {-“} satisfying the following properties.
D.l. For a c R* = R-{O}, d(a) ) 0, while d(0) =

D.2. d(a-b)  ̂max{d(a),d(b)} for all a,b e R

D.3. d(ab) = d(a)+d(b) for all a,b e R

D.3 implies d(l) = O; and by D.l and D.3, R* is closed under 

multiplication; i.e. every ring with a degree function is necessarily an 

integral domain.

Given a ring R, let S be a ring containing R as subring, as well as 

an element x such that every element of the ring A generated by R and x 

is uniquely expressible in the form

f(x) = aQ+xa^+...+x̂ â , â  € R (1)

Furthermore, we assume that d(f) = max{i; â  ^ 0} is a degree function

on A. This implies that R is an integral domain and moreover, for any
a Ôa e R, there exists a , a in R sudh that

ax = xa^ + a*̂. (2)

Firstly we note that a^, a^ are uniquely determined by a and a = O if

and only if a^ = O. Secondly, by (1), we have (a+b)x = x(a+b)^+(a+b)^, 

ax+bx = xa^+a^+xb^+b^. Therefore, (a+h)^ = a^+h^, (a+b)̂  = a^+b^ so 

a, Ô are additive mappings of R. Similarly, by comparing a(bx) and 

(ab)x we obtain

(ab)^ = a°̂b°̂, (ab) ̂ = a^b^ + ab̂ .

Putting a = b = 1, we find 1̂  = 1, = O. Hence ot is a monomorphism and

6 is an a-derivation of R. The relation (2) , with the uniqueness of (1), 

suffices to determine the multiplication in A in terms of R, a and 6.

Thus, given R, a and 6, A is completely fixed. We shall write
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A = R[x;a,ô] and call A the skew polynomial ring in x over R determined 

by a and 6. When 6 = O we simply write R[x;a] instead of R[x;a,0].

Skew polynomial rings turn out to be useful in chapter III in

providing examples and counter examples. We note that when R = K is a 

skew field, then K[x;a,6] is a right ore domain (cf. [3] pp.36) and thus 

has a field of fractions K(x;a,6), say which is called a skew function 

field.

4. Universal field of fractions

Given a ring R, by an R-ring we understand a ring L with a

homomorphism R ̂  L. The R-rings (for fixed ring R) form a category in 

which the maps are ring homomorphisms L L' such that the triangle

%

commutes.

By an epic R-field we shall mean an R-ring K which is a skew 

field, and such that K is the least skew field containing the image of 

R. If, moreover, the canonical mapping R K is injective, we call K a 

field of fractions for R. Of course for some rings R there may be no 

epic R-fields at all. The only R-ring homomorphism possible between 

epic R-fields is an isomorphism. For any homomorphism between skew 

fields is injective, and in this case the image will be a skew field 

containing the image of R, hence we have a surjection, and therefore an 

isomorphism. This shows the need to consider more general maps.

Let us define a specialization between epic R-fields K,L as an 

R-ring homomorphism f: Kq L from an R-subring Kq of K to L such that 

any element of Kq not in the kernel of f has an inverse in Kg. The 

definition shows that is a local ring with maximal ideal Ker f, hence 

Kg/Kerf is a skew field and by the definition of L; L ~ Kg/Ker f.
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Thus any specialization of epic R-fields is surjective.

Two specializations from K to L are considered equal if they agree 

on a subring Kq of K and the common restriction to Kg is again a 

specialization . gy([3] pp. 253) the epic R-fields and specializations 

again form a category ^  say.

An initial object in the category is called a universal epic 

R-field. Explicitly a universal epic R-field is an epic R-field U such

that for any epic R-field K, there is a unique specialization Ü ->• K.

Clearly a universal epic R-field, if it exists at all, is unique up to 

isomorphism. In general a ring R need not have a universal epic R-field 

(e.g. a commutative ring has a universal epic R-field if its nil 

radical is prime).

Suppose that R has a universal epic R-field U. Then R has a 

field of fractions iff f: R ->■ U is injective. If f is injective then 

U is called the universal skew field of fractions of R.

§5. Firs and free products

A ring R is said to be a right fir if every right ideal is free 

of unique rank as right R-module.

Left fir is defined similarly.

A ring R is said to be a fir if it is right and left fir. We now

consider a fixed ring K and K-rings K̂  ,K2 then the coproduct of K^,K2 

over K is their pushout

AcThe coproduct of K^yK^ over K is said to be faithful if f^,f2 are 

injective. The coproduct is said to be separating if K̂  n K2 = K in 

KjU Kz-



The coproduct of Kj and Kg over K is called a free product over K 

if it is both faithful and separating. It is known that if K^,Kg,K 

are skew fields then K̂  U  Kg is a free product and moreover Kg is

a fir, hence it has a universal skew field of fractions (for proof of 

the above see ([4] and [3], ff %  ̂ 3 ) »
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CHAPTER I

MATRIX LOCAL RINGS IN SKEW FIELDS

The purpose of this chapter is to study generalisations of the 

following well known result to non-discrete valuation rings of rank 1.

Let H be a finite dimensional central division K-algebra and let 

V be a discrete rank 1 valuation ring in K; then there exists a maximal 

V-order R in H. Moreover R is a valuation ring iff its capacity is 1.

In section 1) we define matrix local rings and we study their 

basic properties.

In section 2) we study the case of crossed product division 

algebras and we obtain the main theorem of this chapter. NAMELY:

Let H = (E/K;f) be a crossed product division algebra and let V be a 

rank 1 valuation ring in K such that the following conditions are 

satisfied.

i) there exists a unique valuation ring W in E lying over V

ii) the inertia group of W is {l} 

iii) Imf £ U(W) (the group of units of W).

Then there exists a matrix local ring in H generating H as E-space, 

lying over V and given by

R = Y Wu_ where a e Gal(E/K) and u u = f̂  û  for^ a O T 0,T OT

all a,T 6 Gal (E/K).

Moreover R is a valuation ring iff its capacity is 1. In section 3) we

shall study the case im^£ U(W) and deduce that condition iii) of the

above theorem cannot be omitted.

§1. Definition and basic properties of matrix local rings

Definition (1.1.1). A ring R is called matrix local ring if R/J(R) is 

simple artinian; i.e. R/J(R) ^  L^ , where L is a skew field, n is
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called the capacity of R and will be denoted cap R.

We shall mainly consider matrix local rings which are contained 

in skew fields. So let H be a skew field and R a matrix local ring in 

H with cap R = n, let f̂  ̂ (i,j = l,...,n) be a set of elements in R 

such that

(1) fj. = (jkfi&bnoa J(R)), (2) 5 Kmod J(R))

We shall study the set

= {x € R; xf̂ j - f̂ j X e J(R) }.

But first we have

Lemma (1.1.2) . Let B be any ring, ^ a  subset of B and 0 the centralizer

of X(mod J(B)), then O is a subring of B and if a is a unit in B which

lies in O then a is a unit in O.

Proof. 0 is a subring of B

1. O is an additive subgroup of (B,+) because J(%; is

2. O is multiplicatively closed. For

a £ 0 ^  ax-xa e J(B) for all x € X

3 £ 3x-x3 e J(B) for all x £ X.

Hence a3x-xa3 = a(3x-x3) - (ax-3CC) 3 € J(&) for all x £ X, 

whence o3 e O

3. 1 £ O because x-x = 0  € J(B) for all x £ X 

thus O is a subring of B.

For the second part we consider a unit a in B which lies in O; then there 

exists b £ B such that

ab = ba = 1

Moreover b(ax-xa)b = ba3d>-bxab = 2dD-bx £ J(B) for any x £ X, hence b £ O. 

We can now have
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Proposition (1.1.3). is a subring of R which is independent of the

choice of the f̂ '̂s.

Proof. is a subring of R by Lemma (1.1.2) and is independent

of the f^j's because the f^j's (mod J(R)) are matrix units of R = R/J(R) .

This result allows us to denote by S and we shall do so through­

out this section.

Lemma (1.1.4). J(R) ÇJ(S).

Proof. 1. J(R) E S by the definition of S

2. J(R) E J(S) for let a £ J(R), then for any s £ S,x = 1+as 

is in S and is a unit in R, hence by (1.1.2) x is a unit

in S, thus a £ J(S) and J(R) c J(S) .

Proposition (1.1.5). J(R) = J(S) and S is a local subring of R.

Proof. Consider 0: R R/J(R) ~ L^ where L is a skew field. Put

S = 8(S) = S/J(R); then S centralizes the matrix units in L^ hence

(|>: M (L) -> M̂ (S) is an isomorphism which induces an isomorphism between

L and S; but this means that S is a skew field.

Hence the ideal J(R) in S is maximal (as left, right, two sided) 

ideal in S, so J(R) = J(S).

J(S) is therefore the only maximal ideal (left, right, two sided)

in S and S is a local subring of R.

Lemma (1.1.6). Let R be a ring contained in a skew field D which is

generated by R and let O be a subring of R which contains a non-zero

right ideal I of R then D is also generated by O.

Proof. Denote by 4:0i the sub fie Ids of D generated by I, O

respectively and let i . be a non-zero element in I.

Consider r £ R then ir = j £ I hence r = i~^j £ fl* thus

R E "*̂1̂ which implies D = so D 2 2 - D and D is generated by

O.

We can now describe the matrix local rings.
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Proposition (1.1.7). Let R be a matrix local ring in a skew field H, 

then R contains a local subring S such that t̂R:̂ is generated by S and 

R is an 0-algebra over a local subring of the centre of H.

Proof. We consider 6: R ̂  R/J(R) = R ~ M̂ (L) and we let

îj “ l,...,n) be the set of matrix units of R. We pick

f . é 0"l(ê j) and we put

S = {X e R; Xf_ - f_X e J(R)}.

Then by applying prop. (1.1.5) S is a local subring of R and applying 

lemma (1.1.6) yields the first part of the proposition.

For the second part we let K be the centre of H and we put 

O = S n K then O is a local subring of K and R is an 0-algebra. In fact

O = R n K because R n K = S n K.
Before proceeding to our next result in this section, we recall 

some definitions. By a global field we shall mean either an algebraic 

number field or else a field of rational functions in one indeterminate 

over a finite field. We observe that every valuation on a global field 

is discrete of rank 1.

A matrix local ring R will be called non-trivial if R ^ O and R 

is not a skew field.

In the rest of this section, all matrix local rings are assumed 

non-trivial.

We first have

Lemma (1.1.8). Let H be a finite dimensional central division algebra 

over a global field K and let R be a matrix local ring in H with 

O = R n K. Then there exists a non-trivial valuation ring V in K such 

that V 2 0.

Proof. If O is not a field, then V is a maximal element for domination 

among local subrings of K containing O, see e.g. ([10] pp.65).

If K is an algebraic number field then O cannot be a field since
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otherwise (K:0) is finite. Hence (H:0) is finite, thus (R:0) is

finite, whence R is a field being without zero-divisors so we have a

contradiction because R is non-trivial.

If K = F(X) where F is finite, then

/ Either (K:0) is finite hence contradiction

\ or else 
O is a field ^

K is non-algebraic over 0 and by ([10] pp.63)

\ ^ a valuation ring V in K containing O

and the lemma is proved.

Proposition (1.1.9). Let H be a finite dimensional central division 

algebra over a global field K, then any matrix local ring in H is 

contained as an additive group in a full lattice M over a valuation 

ring V in K.

Proof. By (1.1.8) R = VOC where O = R n K and {C } is a generating   ̂ a a a
a

set of R as 0-module. By (1.1.8) in K, a discrete rank 1 valuation 

ring V 2 O.

Let us write

n2
H = 2 Kti, as K-space

i=l

then

C = a,u, + ... + a ou p where the a.'s c K. a l l  n^ n^ ' i

If some of the a^'s does not belong to V then by a suitable change of basis

we may assume C € Yvu. where u. = a.u. (a. is such thata  ̂ 1 1 ] 1 ]
v(a.) = • min v (a.) where v corresponds to V). By a successive

i=l,...,n2  ̂ n2
change of basis we may assume W.L.O.G& that all the C c M = J Vy..

^ 1=1
Hence R c m . Now M is clearly a full V-lattice in H.

Example and remarks. Let H = (— /--) be the quaternion algebra and let

Vp(P?̂ 2) be the p-adic valuation on Q with associated valuation ring Ẑ .

Put R = Z +iz +jZ +ijZ where î  = j2 = -l.P P P P
Let J = PR and consider R = R/J?
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then R ~ F+FÏ+Fj+Fij ~ (F(î)/F; a, -1) 

where a: i ^ -i and F ~ Z^/pZ^ ~S/(p) .

Since F is finite R splits over F, so R ~ (F), hence J is

maximal (as two-sided ideal), whence J = J(R) because J(R) 2 J by 

([17] theorem 6.15), thus R is a matrix local ring. In fact 1) this 

shows that R is a P.I.D. (a principal ideal domain) while S is not since

S = Zp + ipZp + pjZp + pijZp

and J(S) = J(R) = pZ + ip Z + jp Z + ijp Z P P P I

2) If R is a matrix local ring with Cap R / 1, then R is not invariant 

since otherwise cap R = 1 and from the above example we see that S is

not necessarily invariant. For assume that P = 3 and

let x = 3 + B i + 3 j  £ H

and y = 1 + 3i £ S 

then XYX“  ̂= 1 + i + 2j - 2ij ft S.

§2. Matrix local rings in crossed product division algebras

Let H be a crossed product division algebra over the Galois 

extension E/K so that,

H = (E/K; f) where f is a factor set from G to E*,

then H = J EU where G = Gal(E/K)
oeG *

u u = f u for all gf,t € GO T 0,T OT

u a = a %  for all a e E and c e G. a a

We note that the centre of H is K and (H:K) = n̂  where n = ord G. 

Throughout this section we are given a rank 1 valuation v on K with 

associated valuation ring V and a residue class field V = V/m where m is 

the unique maximal ideal of V.
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Let ,0)̂ ,... ,0)̂  (r $ n) be the distinct valuation on E which 

extend v, see e.g. ([10] theorem 2.12).

We pick one of them which we call w with associated valuation 

ring W, maximal ideal ̂  , residue class field W = W / ^  and group of 

units U(W) .

We consider the set D = {a e G; aW = W} which is the decomposition 

group of W.

Each a e D defines by passage to the residue class a V-automorphism 

of W and we obtain a homomorphism e i D Aut (W/V) whose kernel is 

called the inertia group of W and will be denoted by T.

It is well known (see e.g. the above reference) that W/V is normal 

and that D/T ̂  Aut (W/V) .

Let be the fixed field of D, i.e. the decomposition field

Let be the fixed field of T,i.e. the inertia field of W.

Wĵ  = W n Kp with value group and residue class field W^

W^ = W n Kg, with value group and residue class field Ŵ .

Then from the above reference we have

= A where A is the value group of V.

Wp = V and W^ is the separable closure of V in W.

We now consider

A = I EU^
aeD

Proposition (1.2.1). A with the multiplication and addition induced 

from H is a subring of H which is a crossed product division algebra 

over the Galois extension E/Kp.

Proof. A with the induced multiplication and addition is clearly a 

subring of H.

Now the restriction of the factor set f to D yields a factor set 

from D to E*, hence A is crossed product over E/Kp? thus A is central
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simple as K^-algebra whence A is a division subring of H because A has 

no zero-divisors.

Throughout this section we shall write

A = I E.U ~ (E/K ; f ) where f = f/DxD 
a eD

We shall assume that there exists a factor set (from D to E*) equivalent

to fp and whose image is c U(W). For simplicity we shall assume

imfp c u(W).

We consider the left W-module

K = I
aeD

Then by the above assumption R with induced addition and multiplication 

forms a ring which generates A BS E-space and such that R n K = V.

Much of the remaining is devoted to the study of this ring.

First we have the following lemma.

Lemma (1.2.2). Let B be any ring containing a local ring O such that B

is finitely generated as left (respectively right) 0-module then 

J(B) 2 FB (respectively J(B) 2 BP) where P is the unique maximal ideal 

of O.

Proof. Direct application of Nakayama lemma.

We now go back to hypothesis and notations preceding Lemma 1.2.2.

We put J = R and J ' = J R(u^-1)R, then
aeT

Lemma (1.2.3). M = J+J' is a two sided ideal of R.

Proof. J' is a two-sided ideal of R.

Now J is a right ideal of R.

Let X = a u + ... + a u be a non-zero element in R,0̂  Cg Os
Let a be a non-zero element of

a dg ^xa = a a û_ + ... + a^ a u_ . a e ̂  because a. e D0 ^ 0 ^  dg Og ̂ 1
(i = l,...,s) and so every term belongs to J, it follows that xa eJT , 

hence J is two sided* whence M is two sided.
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Proposition (1.2.4). M is either equal to R or is a maximal two-sided 

ideal of R.

Proof. If J' = R then M = R otherwise M is proper since J is proper and 

since if 1 = x+y then y = 1-x is a unit because x e J(R).

We claim that M is maximal as two-sided ideal of R. For we let 

R = R/M and we prove that R is a simple ring.

If R is not simple then there is a proper two-sided ideal X in R, 

\jsje write R =
o

then there is a finite basis for R as left W-spaceJ if a £ T then

U = 1 = hence the only a e T  which appears as a suffix for a basis 

is the identity.

If a E x(mod T) then ' d x appears as a suffix since

otherwise u -au = O where a £ W and a = f _if which is ad X a,x  ̂ X,X 1
contradi ction.

We now consider a non-zero element of X,

X = a_ u + ... + a u with t minimal
'"t "t

_ - _then t > 1 otherwise x is a unit in R since a and u are 4 # we can
     ^

now choose b £ W with ô (b) / dg(b) because are not both in T and

d^fCg are not equivalent (mod T).

Now we put y = x - d̂ (b)  ̂x b and y is clearly in X.

then y = x - d.(b) a u b + a,(b)“ â u b +...+ a, (b)'”̂ a .u .̂b 1 *̂1 ^ 1   ̂ dg Cg 1 at dt
= X - a_(b)"la a,(b) u + a,(b) â d_(b) u +,..+a,(b)1 d ̂ 1 dg 2 a ̂  1

"at
= X - a u^ + a (b)“ â„(b) a u +...+a,(b)” â. (b)a udj d̂  1 2 dg Og 1 t d^ dt

after simplification we see that y is a non-zero element which is shorter

then tjhence a contradiction,* whence R is simple and M is a maximal two-

sided ideal in R.
We can now describe the ring R after keeping all the hypotheses

and notations introduced before.
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Corollary (1.2.5). Consider A = % Eu^ % (E/Kp: fp) and assume that
aeD

1) Imf Ç u(W) 2) T = {1}.

Then R = ̂ WU is a matrix local ring generating A as E-space and such
aeD

that R n K = V.

Moreover R = R/J(R) is a crossed product over W/V and R splits over

V iff f_ can be chosen so that (f -1) eCT for all a,x e D.D a, X ^
Proof. Since T = {1}, applying proposition (1.2.4) yields that M R 

is maximal as two-sided ideal of R and applying lemma (1.2.2) yields 

that J(R) 2 M, hence J(R) = M whence R is a matrix local ring because R

is simple artinian (note that R is artinian because R is finite dimensional

as V-algebra). Now R clearly generates A as left E-space since EW = E;

and R n K = V since R n K = W n K.

We claim that R isHcrossed product.

R =  ̂Wu where the {u ; a e D} is a basis of R as left W-space.
a eD

Now T = {1} yields that W/V is a Galois extension with Galois group D 

after identifying a in D with S in D/{1}. So we can define

fp: DxD ̂  W* by fp(a,x) = and fp is easily seen to be a factor set

from D to W* hence R is a crossed product algebra over W/V. Now the 

last part is trivial since R splits iff fp is trivial (cf.[19]), iff

(f -1) e ̂  and the corollary is proved.nd,x ^

Before proceeding to our main result we shall adapt some definitions

but first we recall that if E/K is a field extension and V a valuation

ring in K, then a valuation ring W in E is said to lie over V if W n K = V.

Let H be a crossed product division algebra over the Galois extension

E/K and let V be a rank 1 valuation ring in K with W a valuation ring

in E lying over V with a decomposition group D. Then A =  ̂Eu. is
aeD

called the division subring of H associated to W. V is said to be 

extendable to A if there exists a matrix local ring R lying over V 

(i.e. R n K = V) and such that R generates A as left E-space.
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We shall now state and prove our main theorem.

Theorem (1.2.6). Let H be a crossed product division algebra over the

Galois extension E/K; so that H =  ̂Eu _ (E/K; f) where G = Gal(E/K).
0€G

Let V be a rank 1 valuation ring in K such that the following conditions 

are satisfied

i) There exists a unique valuation ring W in E lying over V

ii) The inertia group T of W is {l}

iii) lmi£ U(W) where U(W) is the group of units of W.

Then V is extendable to R = T WU in H.CTcreG
Moreover R is a valuation ring in H iff the capacity of R is 1.

Proof. Consider H = I EU since W is the only valuation ring in E
a G

lying over V, the decomposition group of W is the whole of G. Hence

Corollary (1.2.5) yields that R = % WU is a matrix local ring which
a EG

extends V to H and part 1 of the theorem is proved.

If R is a valuation ring then R is local, hence cap R = 1.

If cap R = 1, then R is a local ring.

We claim that R is a valuation ring.

We shall prove first that R is a total ring in H i.e. for every

X e H; either x £ R or x“  ̂£ R. Let h £ h \R be a non-zero element, then

X = a^ u^ + ... + a^ u_ where some of the a_ / W(a. £ G). a, a, a o o. i1 1  m m  1

If m = 1 then x = a^ u where a ̂ W. Hence x“  ̂= u“ â~̂  fc R because

a" ̂ ( W and u is a unit in R, so we assume W.L.O.G. that m > 1 and we
°1 °1

let w be the valuation on E which corresponds to W with ideal ̂ .

Let a be such that w(a ) = min w(a )
i=Or —  î

Then X = a + ... + + ... +

where w(a /a )  ̂O i = l,...,m.
î

Now by Corollary (1.2.5) J(R) R, hence the element

y = a /a u„ + ... + u_ + ... + a_ /a* Ug £ J(R), this implies thata. a. c. CT. o a am
1 3 1 ]  m ]
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y is a unit in R because R is local. Thus x”  ̂= e R since

y 1 e R and a“  ̂ e W c R so R is a total subring of H.
‘'j

By theorem (0.1.2) every total subring of a finite dimensional

central division algebra, inducing a rank 1 valuation ring in the centre

is invariant. Hence R is a valuation ring and the theorem is proved.

As a corollary we have

Corollary (1.2.7). Let H =  ̂ (E/K; f) be a crossed product
oeG

division algebra over the Galois extension E/K with G = Gal(E/K). Let 

V be a rank 1 valuation ring in K.

W ,...,W the valuation rings in E lying over V.

.,D̂  the decomposition groups of 

.,T̂  the inertia groups of W ,...,W .

.,Â  the associated division subrings of H with 

,f their corresponding factor sets

and suppose that imf^ c U(Ŵ ) (i = l,...,r) where U(Ŵ ) is the group of 

units of Ŵ .

If T^ = ... = = 1, then

R. = y W,u (i) is a matrix local ring extending V to A 

(i~lr• • •

Moreover R^ is a valuation ring in A iff Cap R^ = 1 (i = l,...,r).

Proof. Direct application of corollary (1.2.5) and theorem (1.2.6). 

Remarks and example; (i) If in theorem (1.2.6) V was discrete oi rank 1, 

then conditions i), ii), iii) are redundant and H can be taken to be 

any finite dimensional central division algebra^since there is a maximal 

order R over V and R is a valuation ring iff Cap R = 1 ' The theorem

can be considered as a generalization in the case of crossed product 

(note that R is matrix local).

(2) If V is the valuation which correspond to V then theorem

(1.2.6) says that if the conditions i), ii) and iii) are satisfied then
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V extends to a valuation on H precisely when cap R = 1.

(3) The condition on T cannot be omitted in general as the following 

example shows.

Example. Let H = ~ (Q(i)/Q; a, -1) be the quaternion algebra

over the rationale where î  = -1 and a: i ^ -i.

Let ^2 be the 2-adic valuation on Q with associated valuation ring 

; then there is one valuation ring in Q(i) and only one lying over 

namely

=3̂ 4. ̂ .[i] with J(W) = and W ~ ^(2).

Now -1 e U(W) (the group of units of W) , hence conditions i) and iii) 

of theorem (1.2.6) are satisfied.

However condition ii) is not satisfied since

Gal(Q(i)/Q) = D = T = {l,a} where D is the decomposition

group of W and T is the inertia group.

Now R = W+Wj where = -1 is a matrix local ring in H generating 

H as Q(i)-space and lying over 2̂ , hence 3̂  is extendable to R in H. 

Moreover cap R = 1 since J(R) = J(W)R + (j-l)R + (ij-l)R and 

R = R/J(R) ~ 2^/22^ -3^(2).

However R is not a valuation ring in H since if it were then 

*5(l+i+j+ij) e R which is not the case. This proves that condition ii) 

cannot be omitted. In fact we shall see later that R is contained in a 

valuation ring in H lying over TẐ , though this valuation ring does not 

have the normal form exhibited in theorem (1.2.6)

(4) In section 3 we shall see that condition iii) can not be 

omitted.
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§3. The cyclic case

Let H be a crossed product division algebra over a cyclic Galois 

extension E/K with cyclic group G = {l,o,...,a^ so that 

H = (E/K; o, a) where a e K*.

ji.e. H = I Eu where multiplication is defined as follows. 
i=0

i i(1) u a = a u for all a 6 E and i £ n-l}

(2) u^u^ =
u^^^ if i+j < n 

au^^i ■ ̂  if i+j 3 n

u® will be identified with 1 and H is called a cyclic algebra. Now 

let V be a ran IK, 1 valuation ring with maximal ideal and residue 

classified V = V/^.

Our aim in this section is to study conditions under which V is 

extendable to a matrix local ring in H and to prove that condition iii) 

of theorem (1.2.6) cannot be omitted. Let (r  ̂n) be the

distinct valuation rings of E lying over V.

We shall treat the case r = 1 first so assume that there is only

one valuation ring W lying over V with maximal ideal and residue

class field W = W/Q .̂ H is always assumed non trivial i.e. H K.

First we have the following lemma.

Lemma (1.3.1). Let H = (E/K; a, a) by a cyclic algebra and let V be a

valuation ring in K then H ~ (E/K; a , b) where b e V.

Proof. Let v be the valuation on K which corresponds to V.

Since a e K* we look at v(a).

If v(a) ) O then we can take b = a,

if v(a) < O then v(a ) = (-n+l)v(a) > O

because n = CE:K] is > 1.

Now a/a = a^ € Ngy^XE*), hence if we put b = a 

then (E/K; a, a) ~ (E/K; a, b) see for e.g. (Cl7] theorem 30.4).
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Remark, b can always be chosen so that b is a non unit in V, if a is 

a unit it suffices to put b = c^a where v(c) >0 and c / O. Since the 

case of the imf c u(W) (f the factor set and U(W) group of units) has 

been discussed in §2. We shall assume throughout this section that we 

are given

H = (E/K; a, a) where a e m. 

n—1
We consider R = ^Wu^’ ^ with multiplication and addition induced

i=0
from H is a subring of H generating H as left E-space and such that 

R n K = V. We shall study this ring.

Lemma (1.3.2) . I = '^R + R.üis a proper maximal two-sided ideal of R.

Proof. 1. R is two-sided. (̂ ee the proof of Lemma (1.2.3)).

2. RÜ is a proper right ideal since n is not a unit in R.

Now Ru is two-sided because if x / O element in R,

then X = Uq + a^u + ... â û  where 0 $ s $ n-1

and ux = ( + ... + ) u e Ru0 1 s
o abecause a a  e W.0 s

Now I is proper since if not then there exist x E p^R and y £ Ru such 

that 1 = x+y. But this implies that y = 1-x is a unit in R because 
X E ^  R Ç J(R) . We now observe that the map W R/l is surjective,

hence it induces an isomorphism between W and R = R/l, thus I is a

maximal two-sided ideal in R.

Before we show that I is the Jacobson radical of R we shall need 

a criterion for an element in R to lie in J(R) . But first we recall 

the following proposition.

Proposition (1.3.3). Let R be any ring and J(R) its Jacobson radical 

then J(R) contains every left (right) nilpotent ideal.

Proof. (cf. [17] proof of theorem 6.9).

We now state eind prove the criterion.
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Lemma (1.3.4). Let B be any ring and x an invariant element of B.

Then

x^ e J(B) ->x e J(B) .

Proof. Consider x e B such that xB = Bx and x^ e J(B). If x / J(B) 

then X is a non-zero element in B ~ B/J(B) and x generates a nilpotent 

ideal since

(Bx) = BxBx ... Bx = Bx = Bx^ = O

By proposition (1.3.3) Bx c J(B/J(B)) = 0, hence x = 5 whence x e J(B) 
and the lemma is proved.

We are now ready to prove the main result of this section. We 

shall keep all the definitions and notations introduced in sections 1 

and 2.

Proposition (1.3.5). Let H be a cyclic division algebra over the Galois 

extension E/K and let V be a rank 1 valuation ring in K. Assume that 

there exists a unique valuation ring W in E lying over V with as 

maximal ideal.
n—1

Write H = y Eu where u^ e K* and u can be chosen such that 
i=0

u^ £ ̂  ^  is the maximal ideal of V).

Then there exist infinitely many rings extending V to H and given 
n-1 ^

by R = y W(cu) where c £ V. However if V is non-discrete, none of 
 ̂ i=0

the R 's is a valuation ring of H although cap R = 1  for all c £ V.
 ̂ n-1 i ^

Proof. Consider R = % Wu , then applying lemma (1.2.2) yields
i=0 ^

J(Rj) and applying lemma (1.3.4) yields u £ J(R) since u £ J(R%)

Now applying lemma (1.3.2) yields that J(R̂ ) + uR  ̂since

/^Rj + uRj is maximal two sided ideal which is contained in J(Rj).

Now by (1.3.2) R̂  ~ W = W / y  (i.e. R̂  is local) and R̂  extends

V to H because R̂  generates H as left E-space and R̂  n K = V. If c

is a unit in V, then R̂  % R̂ .



26.
aFor cAnon unit in V the proof is the same and the first part of 

the proposition is proved.

For the second part we notice first that cap = 1 for all c.

So we assume that V is non-discrete of rank 1 and we shall prove that

R̂  is not a valuation ring. Let v the valuation on K which correspond?

to V; then since v is non-discrete g b c such that v(b) < v(u^).

Now we consider x = ub“  ̂then x  ̂Rĵ because v(b“ )̂ < O. Now 

x”  ̂= bu"l = bu^ û ^ = u^ b̂u ^ = u^ d̂, where d = bu

Now v(d) = v(b)-v(u^) < 0 since v(û ) > v(b).

Hence d  ̂V, whence x  ̂x“  ̂do not belong to R̂ ; thus R^ is not 

total and a fortiori R̂  is not a valuation ring.

For c ^ 1 we follow the same proof and the proposition is proved.

N.B.: if v(c.) $ v(c ) then R c r .1 2 =1 - =2
Before stating a corollary let us notice that if V is a valuation ring 

in K and (r $ [E:K]) are the distinct valuation rings lying

over V. Then they have a common decomposition group, hence a common 

inertia group because E/K is cyclic. This implies that there is one and 

only one associated division subringA(as defined in section 1) and A 

has dimension s = as E-space where n = [E:K]. Then we have the 

corollary.
n-1

Corollary (1.3.6). Let H = T Eù be a cyclic division algebra over E/K
i=0

and let V be a non-discrete rank 1 valuation ring V in K with ideal

such that u^€*^ . Let W^,...,W^ (r $ n) be the distinct valuation rings

in E lying over V.

Consider the associated ring A =  ̂Eh , then
i=l

( ' \ s—1 . .
RÎ : = y W.(cuf for all c e V and j = l,...,r 

i=l ^

are local rings which extend V to A.

However n:6kĜ —  of the Rĵ j 's is a valuation ring.
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iProof. Consider H = 1 E\i and let D be the decomposition group of
i=0

any valuation ring in E lying over V, then order of D = s = n/r and 
riA = 1 EU is the common associated division ring, hence by applying

i=0
proposition (1.3.5) we achieve the proof of the corollary.

N.B.: if v(c )  ̂v(c_), then S R̂ ^̂  but à R^^^ for j / k.1 2 Cl C2 1̂ Cg
Remarks and Example. 1) The second part of proposition (1.3.5) tells 

us that condition iii) of theorem (1.2.6) cannot be omitted for (the 
non-discrete case) since R^ is a local ring in H extending V and R^ is 

not a valuation ring.

2) The condition that V is non-discrete for the second part of 

(1.3.5) cannot be omitted as the following example shows.

Let H = (— ^— ) be the quaternion algebra over the rationale 

then H _ (Q(i)/Q; o, -3) where O: i -i and H is a division algebra 

since -3 f ^q ( ± ) c o n s i d e r  the 3-adic valuation on Q 

with associated valuation ring 22̂ .

"Ra '4-’22̂ 1̂4--̂ [tl] +zÿ!i‘a). is a valuation ring in H extending 
where u^ = -3.

(For the proof see Chapter II §1, corollary (2.1.3)

3) Assume that in the hypothesis of (1.3.5) v is discrete, then 
from the N.B. which followed (1.3.5) we see that the order on the value 
group of V  induces an order on R^. Each R^ is clearly a V-order in H; 
we consider the maximal element for this order which exists because V 
is discrete, if this element is maximal among all V-orderjin H then it 
is a valuation ring in H extending V since it has a capacity 1.
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CHAPTER II

VALUATIONS IN FINITE DIMENSIONAL CENTRAL DIVISION ALGEBRAS

Our object is to consider central division algebras over a valuated 

field K and to investigate conditions under which the valuation v on K 

can be extended to the algebra.

In section 1) we consider cyclic division algebras and we assume 

V  discrete rank 1. The main theorem will be the following.

Let H = (E/K; a, a) be a cyclic division algebra and v a normalized 

valution on K with ramification index e = 1 in E.

Assume that v(a) is prime to deg H.

Then v extends to a valuation  ̂on H iff v is indecomposed in E. 

Moreover (j) is unique.

As examples show the condition that v(a) is prime to deg H is not 

necessary; however we shall show that it is so when K is a global field.

In section 2) we shall introduce the notion of Azumaya valuation 

over V and carry on the study of the extension problem for the tensor 

product of algebras. In particular if V is henselian so that W exists 

and H ~ H^ ® H^ ® ... ® with the valuation rings in Ĥ

lying over V we study conditions under which W ~ W ^  ®W^ ® ... ® Ŵ .

The application will be mainly to symmetric algebras and crossed 

product algebras with nilpotent Galois group.

in section 3) we study primary algebras while in section 4) we 

look at central extensions. In particular we shall give a counter 

example showing that v does not extend to central extensions in general.

§1. Extension of valuations in cyclic algebras.

Let H = (E/K; Of a) be a cyclic division algebra where a is a 

generator of Gal(E/K); = 1 where n = [E:K]. Given a discrete rank 1

valuation V on K,we aim to study the extension of v to the whole of H.

We recall that every discrete rank 1 valaution can be normalized
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i.e. its value group can be reduced to ZS (the ring of integers).
n-1  ̂ ^

Recall also that H =  ̂Eu , where u is such that u e K* v is said
i=0

to be indecomposed in E if there is only one valuation on E extending 

V. Our first result gives conditions for a valuation on E to extend to 

H.
n—1

Theorem (2.1.1). Let H = (E/K; a, a) ~  ̂Eu^ be a cyclic division
i=0

algebra and let m be a normalized discrete rank 1 valuation on E such 

that w(a) =1, then IV extends to a valuation  ̂on H iff o preserves w. 

Moreover <{) is the unique valuation on H extending w and is given

by

n-1 . .
(1) c|)( y a.u) = min (w(a.) + — }

i=0  ̂ i=0,...,n-l  ̂ ^

Proof : 1) The condition is necessary) if  ̂exists then <j> satisfies (1)

since the w(a^) 's are integers and ̂  < 1 (i = 0,...,n-l), (j>(û) = $(a) = 1, 

Now ub = b^u for all b e E, hence

(j)(ub) = {j)(u) + (|)(b) = ~ + w(b) ^
=>a)(b) = w(b )

(j)(ub) = ^(b*^) + <})(u) = m(b*^) + ^

hence a preserves the valuation.

2) The condition is sufficient.

Assume that o preserves w and consider

(j): H ->• U {"}

- / n— 1defined by (1), then <jj is a well defined map becay&e l,u,...,u are 

linearly independent over E.

We claim that (j) satisfies the axioms of a valuation on H. For,

v.l) <|)(x) = »<^>x = 0 for every x e H by definition of (j)

V. 2) *(x-y)  ̂min((j)(x)̂ <̂ (y) ) for all x,y e H\{0}.
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n— 1Let x = a .  +a,u+ ... + a  u 0 1 n-1

y = b  + b u + . . . + b0 1 n-1
and assume first that a_,bj are different from zero (i,j = G,...,n-1).

Then x-y = (a.-b.) + (a,-b.)u + ... + (a -b )u  ̂  ̂u u i i n-1 n-1

(|)(x-y) =  m i n { w ( a Q - b Q ) , w ( a ^ - b ^ )  * ' ^ ^ ^ n - l ~ ^ n - i ^  +

 ̂min{min(w(aQ),w(b )),mln(w(a^),w(b^))

= min{min(w(a^) ,w(b̂ ) ) ,min(w(a )+— (b. )+%) ,. .. ,min(w(a )0 0 1 n i n  n— 1

= min{w(am),w(b_),w(a.) + m(b ) + 2^} ̂ u i n n— 1 n

= min{min(w(an),...,w(a , ) ,min(w(bn) ,—  ,w(b ) + ü ^ ) }u n-1 n u n-1 n

= min((j) (x) ,cf) (y) ).

If in the expressions x or y some of the coefficients are O the calculation

is not affected and v.2) holds.

V. 3) (() (xy) = 4(x) + (j) (y) for all x,y 6 H.

Let us first prove two remarks.

i) Let X = a.+a.u + ... + a u^  ̂and assume that a. / O (i = O,...,n-l) u i n—1 1
and that (̂x) = w(â ) + —

-1 n-1 . , n-1, , , , n-l-i. iX = (a.a û +. ..+a. . a û +a.+a, ,.u+— +a u )u0 1-1 1 1+1 n-1
,, —1 _ 1 n-1.(because u  ̂= a û )

hence x = (a.+a.,.u+...+a.a“^u^ ^+...+a. a~^u^ ^)u^ = x*u^1 1+1 0 1-1

where (j>(x') = w(a )̂ because w(aja"l) = m(aj)-l $ w(a )̂ for j = 0,...,i-l

and m (â ) 3 w(â ) for k = i,...,n-l.

b) If X = â  + a.u + ... + a .u^  ̂where a. ^ O (i = O,...,n-l); then u 1 n—I 1
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<|)(xû) = <()(x) + j/n for any j = 0,...,n-l.

Note that these two remarks are not affected if some of the 

coefficients are O.

After these two remarks we shall prove the following special case. 

We let X = aQ+a^u+...+a^_^u^  ̂where â  / O and #(x) = m(a^),

And n-1y = bQ+bjU+. . .+b^_^u where b^ / O and c{)(y) = mCb̂ )

We write x = a. + Y a, and y = b« + Y b, û , 
° “ k^O

n-1 n-1
then xy = a^bg + % c uf = %

r=0 r=0

If r = 0 then Yq = a^b^tc^.

r h n-1
NOW I , V r + n - h ^ 'h=0 h=r+l

h=l
n-1 h 

whence = a„b,, + % 3ĵ b̂ _j a.

Now w(Y_)  ̂minCmCaQbp) ,(ü(Cq) ) and since mCa^bp) is strictly less than 

the value of each term of the expression c^, we have

w(Yn) = wfa.b.) = w(a.) + w(b_).

We now observe that (jjCYq) $ w(Y%) for k = l,...,n-l.

Thus (j)(xy) = wfYg) = wCâ ) + w(b ) = *(x) + *(y).

n-1 ^ n-1 ^
Let us put X = Y cL u and y = Y b. u and assume that

n=0^ k=0

(J)(x) = (Jü(â) + i/n and (j>(y) = uiCâ ) + j/n

By the remark a) x = x'u^ where x’ = â  + ... and $(x*) = üj(â )

y = y'u^ where y' = b̂  + ... and (j)(y') = w(bj)

Hence xy = x'u^y'u^ = x'zu^u^ where <|>(z) = #(y') = m(b^).

We now look at the following two cases.
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a) i + j < n.

Then (f) (xy) — (j)(x'z) + — — co (a. )+u) (b . ) + — +-̂  = w(a.) + — + w (b . ) + -̂n 1 ] n n i n  ] n

= ({) (x) + <|) (y) .

3) i + j % n.

Then xy = xz'au^ with p = O if i+j = n, otherwise 1 $ p  ̂n-1.

If we multiply the coefficients of x%' by a and apply b) we see that

(f) (xy) = w(xz')+l + — = w(a.)+ (b.)+ = w(a.) + — + w (b . ) + —ri 1  ̂ n i n i n

= 4) (x) + 4> (y).

Hence v.3) is proved and  ̂is a valuation on H which clearly extends o).

3) 4» is unique.

Assume that there is another valuation <j>' on H extending w and
k slet X = a^u + ... + a^u an element of H, then

(u) = hence ̂ '(a_u )̂ / 4>'(â û ) where i,j = k,...,s, whence

4>'(x) = min{m(a^) + k/n^ ,... ,m(â ) + s/n}, thus #

and the theorem is proved.

Before applying this theorem to the extension problem indicated in the 

introduction we shall need the following lemma.

Lemma (2.1.2). Let H = (E/K; a, a) be a cyclic division algebra, v a

normalized discrete rank 1 valuation on K such that (v(a),n) = 1  where 

n = [E:K], then3 b € K* such that H ~ (E/K; â , b) where v(b) = 1 and 

(r,n) = 1.

Proof. We put v(a) = d(mod n) where (d,n) = 1.

If d = 1 then v(a) = 1+mn for some m e 22 . Let c £ K such that

v(c) = -m, put b = ac^ then v(b) = 1+mn-mn = 1 and b/a £ ^̂ ^̂ ^̂ (E*) hence

H ~ (E/K; o, b) where v(b) = 1; here r = 1 if d / 1 then,g n',d' £ ZS

such that n'n+d'd = 1, hence d'd = 1-n'n and (n,d*) = 1, thus by

([17] pp.260) H ^ (E/K; 0^ , a^ ) where v(a^ ) = d'v(a) = d'd = 1-nn', 

hence by the first part of the proof there exists b € K* such that
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d'H ~ (E/K; a , b) where v(b) = 1. Here r = d' and the lemma is proved.

Recall that if E/K is Galois and v is a valuation on K o4

,Wg, . . . , The distinct valuation)on E extending v then they have

a common ramification index e called the ramification index of v in E.

Now we have the following.

Corollary (2.1.3). Let H = (E/K; o, a) be a cyclic division algebra, 

and let v be a normalized valuation on K with ramification index e = 1 

in E.

Assume that (v(a) ,n) = 1 where n = [E:K].

Then V  extends to a valuation <t> on H iff v is indecomposed in E.

Moreover (j) is unique.

Proof. By Lemma (2.1.2) H ^ (E/K; , b) where v(b) = 1.

Let w be a valuation on E which extends v; since e = 1 w is a

normalized valuation on E with w(b) = v(b) = 1 we now observe that the 

condition that v is indecomposed in E is equivalent to o preserves w, 

hence applying theorem (2.1.1) yields the corollary.

Corollary (2.1.4). Let H = (E/K; a, a) be a cyclic algebra and let v

be a normalized valuation on K such that v is indecomposed in E and

(v(a),n) = 1  (where n = [E:K]) with ramification index e = 1.

Then H is a division algebra.
h—1

Proof. By lemma (2.1.2) H =  ̂EU^ where u^ e K* and V(u^) = 1.
i=0

Let (JÜ be the unique valuation on E extending v, then w satisfies the

condition of theorem (2.1.1) , hence the map <j): H -»• u {+»} defined

in the theorem satisfies 4» (xy) = #(x)+#(y); whence H is an integral 

domain, thus H is a division algebra.

The following corollary gives the extension to subrings of H. 

Corollary (2.1.5). Let H = (E/K; a, a) be a cyclic division algebra 

and let v be a normalized valuation on K with the distinct

valuations on E extending v with a common ramification index e = 1 and
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let n = [E:K] and s = n/r. If (v(a),n) = 1, then v can be extended to r

distinct valuations on the associated division subring of H.

Proof. If (v(a),n) = 1 then by the lemma H ~ (E/K; g , b) where
^ n-1  ̂ ^

(t,n) = 1 and v(b) = 1. Put o = t we write H =  ̂Eu where u e K*
nand v(u ) = 1. We consider the associated division subring

A = / Eu ^ (E/K̂ ; t  , %)) where K^ is the decomposition field. Then
i=0

(0̂ ,00̂ ,... ,0)̂  satisfy the conditions of theorem (2.1.1) on E, hence 

(jOj ,0)2 y • • • ycô extend to r-distinct valuations on A.

Remark (2.1.6). There is an alternative approach to corollary (2.1.3)

based on the results of Chapter I, it is much longer than the above

approach. However it has the advantage that it gives a precise description

of the valuation ring in H lying over the valuation ring V associated to
n— 1

V. It consists in writing H =  ̂Eu with v(u ) = 1  where v is the
i=0 n-1 ^

normalized valuation on K, then we consider R =  ̂Wu where W is the
1=0

only valuation ring in E lying over V. By proposition (1.3.5) R is a 

local ring generating H as left E-space and such that R n K = V. Moreover 

since v is discrete of rank 1 W is finitely generated as V-module, hence 

R is finitely generated as V-module, whence R is a V-order in H. After 

a rather lengthy proof we show that R is a maximal V-order and since 

cap R = 1 R becomes a valuation ring in H lying over V.

If K is a global field (see definition in Chapter 1) Corollary

(2.1.3) can be strengthened. Before we proceed to our next results we 

need to recall some remarks and definitions. So let E/K be a finite 

cyclic extension with Galois group G = {l,a,...,a^ where n = [E;K].

Let V  be a valuation on K and let be a valuation on L which extends 

V» By a remark in Chapter I v is discrete of rank 1 and so is w. Let 

k (respectively È) be the completion of K (resp.E) according to v 

(resp. w). Then ([11], Theorem 2,2) yields that E/K is a Galois 

extension with Galois group isomorphic to the decomposition group of w.

Recall also that every division algebra H, finite dimensional over
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[bi] pp

its centre K where K is a global field is cyclicAi.e. H is represented 

by (E/K; 0, a) where E/K is a cyclic extension and a c K*. Hence the 

study of the extension problem in H is made much simpler by this 

representation.

We first have the following lemma which is valid for any K.

Lemma (2.1.6). Let H = (E/K; o, a) be a cyclic division algebra over 

the global field K, then H ~ H ® K ~ (EK/K; o, a) where K is the 

completion of K according to an indecomposed real valued valuation on 

K.

Proof. Since v is indecomposed and E/K is Galois, then E 0 K is a field
K

which is isomorphic to the completion of E according to the unique 

extension w of v and E 0 K ~ E&, hence by the remark above 

Gal(E/K) ~ Gal(EK/k).

Now by ([17] pp.261) H ~ (EK/K; a, a) where «n, means equal in the 

Brauer group B(K). By computing dimensions (over K) we see that 

IT - (EK/K; C, a).

We observe that if E/K is finite Galois where K is global and if 

V is a valuation on K with ramification index e then

e = 1<=> V is unramified in e<=>T = {1}(because the residue class field

is finite)

We now show that the condition of corollary 2.1.3 is necessary.

Theorem (2.1.7). Let H = (E/K; a, a) be a cyclic division algebra over 

the global field K and let v be a normalized unramified valuation on K.

Put n = [E:K].

Then v extends to a unique valuation (ÿ on H iff

(1) V is indecomposed in E and (2) (v(a), n) = 1

Proof. The condition is sufficient by a direct application of corollary

(2.1.3).

The condition is necessary.

If (j) exists then (1) is satisfied by corollary (2.1.3) and it remains
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to prove (2).

We consider la = H ® k ~ (EK/k; a, a) by lemma (2.1.6). Now EK/k
avx ^isAunramified extension over a complete field K with finite residue class

field because vAunramified in E with finite residue class field. The 

local class field theory yields that Ek = k(e) where e is a primitive 

(4^-1)th root of unity where 4 is the cardinal of the residue class 

field.

Let t: e e*^be the Frobenius automorphism, hence t e Gal (EK/K) ~ <o> 

and T generates Gal (EK/k, whence a r e  2Ẑ  such that x = and 

(r,n) = 1.

Now by ([17] pp.260) H ~ (Ek/k; ô , â ) and by ([17] pp.266) H is 

a skew field iff (v(a ), n) =1. But H is a skew field because v 

extends to H, hence (v(a ), n) =1, thus (v(a), n) = 1 

and the theorem is proved.

As a corollary we have 

Corollary (2.1.8). Let H be a finite dimensional central division algebra 

over a global field K, then only finitely many valuations on K (if any) 

can be extended to the whole of H.

Proof. H can be represented by a cyclic algebra (E/K; a, a). It is 

well known that almost all the valuations on K are unramified in E, 

moreover v(a) = 0  almost every where (cf Hence applying the

theorem yields the corollary.

Remarks and examples (2.1.9). 1) The condition that v is unramified in

theorem (2.1.7) cannot be omitted.

Example 1.1. Let H = ( )̂ ~ (^-^^ a, -1) be the quaternion algebra

over the rationale and let be the 2-adic valuation on Q. We shall 

prove that extends to H. We note first that Vg is indecomposed in 

Q(i) because (i-1)̂  = -21 implies that the ramification index e is 2 

and f = 1, hence by the well known equality = 1), there is one

valuation on Q(i) extending V2«
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Now applying lemma (2.1.6) yields H = H 0 ~ “D

where is the completion of Q according to v̂ * Let V2 be the extension of Vg 

to-Q2* We claim that H is a skew field. We let ZZ2 be the valuation ring of 

^2. If H is not a skew field then 3 a,B e2Z2 such that (1) N(a+$i) = -1, 

hence

a^+32 = - 1 ,

which is impossible- .

Now by theorem (0.1.1) extends to a valuation on H.

However (î (-l) , 2) = (0, 2) = 2  and the condition (2) in theorem

(2.1.7) is not necessary, thus the condition that"V is unramified cannot 

be omitted.

2) Over non-global fields, theorem (2.1.7) is not valid.

Example 2.1. We shall outline briefly the following example since it is 

a direct application of Chapter III section 1 (to which we refer for 

details).

Let E = Q(i) with o: i -h -i and let R = Q(i)[x;a] be the skew 

polynomial ring with H = Q(i)(x?c) its skew field of fractions.

Any p-adic valuation on Q(p/2) is unramified and indecomposed 

in Q(i). Let w be its unique extension. Since 0 preserves co we can 

extend it to a Gaussian extension  ̂on H (see chapter III). Now 

H ~ (E(x2)/q(x2)J 0 , -1) and V2 has a Gaussian extension to Q(x2) which 

we call V2 and which is unramified in E(x2). However (V2 (“D  # 2) = (0,2) =2 

and the theorem is not valid because Z(H) = K = Q(x̂ ) is not global.

3) Let H = (E/K; 0 , a) be a cyclic division algebra and v be an 

unramified normalized valuation on K; so far we were mostly interested 

in the case (v(a), n) = 1 where n = [E:K]. However there are other 

cases. If v(Q) = O(mod n) then this can be reduced to the case v(a) = 0  

and the study of the extension problem is achieved by applying 

(chapter 1, §2).
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For example the valuation ring associated to (j) in the above example

2.1) is the one described by Theorem (1.2.6), while in the example (1.1)

if we replace v„ by v (p/2) then R =2Z + iZ + j2Z tijffi is matrix local
 ̂ P p p p p

but not local since otherwise it becomes a valuation ring which is 

impossible by theorem (2.1.7).

In fact when v is normalized^indecomposed and unramified with 

v(a) 5 O(mod n) 'tJien Theorem (1.2.6) gives us a description of the 

maximal order since if R is the ring constructed by Theorem (1.2.6) then 

R is clearly a v-order. Now applying ([17] pp.375) yields that R is 

hereditary and since it is matrix local it becomes a maximal order.

Other results concerning these cases will be obtained in chapter III 

§1, e.g. the generic cyclic crossed product.

4) Let H = (E/K; o, a) be a division algebra and let v be an
arvcLunramified^indecomposed^normalized valuation on K such that (v(a), n) = d

where n = [E:K])then as before we can assume W.L.O.G that v(a) = d» îf G

is the subgroup of Gal(E/K) of order d with K^ fixed field;then

H_ = (E/K_; ô , a) is a division subring of H. Now the study of the G G
extension problem in is reduced to the case 3).

Throughout the rest of this section we are given a cyclic division 

algebra H = (E/K; a, a) with Galois group G = {l,a,...,a^ and a 

normalized totally ramified valuation v on K (in E). Our aim is to study 

the extension problem.

Recall that v is totally ramified precisely when its ramification 

index e = n and that in this case v is indecomposed in E. We shall have 

to distinguish between two cases.

Let p be the characteristic of K then either p divides n or 

(p,n) = 1 

i) (p,n) = 1.

In fact we shall assume that K contains a primitive n-th root of 

unity which implies that (p,n) = 1. We shall show that under certain
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conditions this case can be reduced to one of the already discussed

cases. We recall that in this case E/K is cyclic iff E/K is radical

i.e. E = K(a) such that £ K. This means that if we write

n-1 r i n H = 2, Eu ; u = a
i=0

Then K(u)/k is cyclic Galois. We know that by the Skolem-Noether 

theorem every K-automorphism of K(u) is induced by an element of H.

The following lemma shows that this element can be chosen to be a.

Lemma (2.1.10). Let H = (E/K; o, a) be a cyclic division algebra over 

a field containing a primitive n-th root of unity (where n = [E:K]).

Let u e H such that u^ = a, then the K-automorphisms of K(u) are realised

by inner automorphisms induced by a where a is such that E = K(a) and

e K.

Proof. By the remark above g a e H such that E = K(a) and £ K and

L = K(u)/K is a cyclic Galois extension of K.

We consider f : H -»■ H a
X ^ oxa” .̂

We claim that the restriction of f to L is a K-automorphism of L. Ina
fact it is enough to show that ocua” ̂ £ L.

-1 , -1.0 0~ ̂ aNow oua -̂ = a ( a ^ ) u  = aa u = —  u.

Hence a/a^ is an n-th root of unity, whence a/ct̂  e K, thus 

aua  ̂= a/a^u € l.

Put aua"^ = û , then t is a K-automorphism of L since K centralizes 

u and we have Gal(L/K) = {1,t,...,t^

We now have
n-1  ̂ ^

Proposition (2.1.11). Let H =  % K(a)n ; u £ K be a cyclic division
i=0

algebra over a field K containing a primitive n-th root of unity. Then 

a may be chosen such that e K and then H = (K(u)/K; t; â ) where t is
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the inner automorphism induced by a.

Proof. Lemma (2.1.10) shows that x is defined by aua"^ = û , so that

A = (K(u)/K; x; â ) with the multiplication and addition induced from H

is a subalgebra of H. By computing its dimension over K we find A = H.
n—1

Corollary (2.1.12). Let H =  ̂K(a)u^; u^ £ K be a cyclic division
i=0

algebra over a field K containing a primitive n-th root of unity and 

â  £ K.

Let V be a normalized valuation on K such that v(â ) = 1(mod n).

If V is indecomposed in K(u) with ramification index e = 1, then v is

extendable to H.

Proof. By proposition (2.1.11) H ~ (K(u)/K; x; a^), hence applying 

Corollary (2.1.3) yields that v extends to H.

N.B.: (â ) = 1 (mod n) implies g c £ K such that v((ca)^) =1 and

K(a) = K(ca). Hence v is totally ramified in K(a) since 

v(ca) = ̂  and e = n.
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§2. Azumaya valuations in tensor product division algebras

Throughout this section H is a finite dimensional central division 

algebra over a field K and v is a real valued valuation on K with associated 

valuation ring V, maximal ideal'^ and residue class field V = V/^.

A valuation ring W in H lying over V (if it exists) will be called 

Azumaya valuation ring if W is central separable as V-algebra. Recall 

that an R-algebra A is separable iff A is projective as left A 0 A®-module 

where A® is the opposite ring and that if A is finitely generated then 

this is equivalent to saying that A/PA is separable as R/P-algebra where 

p ranges over the maximal ideals of R. We note that if A is central 

separable over R, then A is finitely generated over R. The first lemma 

shows that a central separable R-algebra A over a local ring is a+matrix 

local ring.

Lemma (2.2.1). Let A be a central separable R-algebra where R is a local 

ring. Then A is a matrix local ring with J (A) = mA where m is the 

maximal ideal of R.

Proof. By ([9] Chap.2, Cor.3.7), there is a correspondence between 

ideals G^of R and two-sided ideals /%r of A given by

and 2̂/ -+ *7̂  n R.

Now by lemma (1.2.2) J(A) 2 /̂, A, hence J (A) = "Wï A since the above 

correspondence yields that mA is maximal (as two-sided) ideal. But this 

just means that R is matrix local.

We note as a first consequence that if W exists and is Azumaya, then
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J(W) =/^W e.g. it can be shown that the valuation ring associated to 

the extension of Vg in (2.1.9) example (2.1) is Azumaya while the one 

associated to the extension of Vg in (2.1.9) Example (1.1) is not 

Azumaya.

More generally, if K is a global field (or the completion of a 

global field for a non-archimidean valuation i.e. a local field), then 

H can be represented by a cyclic algebra and theorem (2.1.7) yields 

that if W exists, then J(W) . In fact it can be easily deduced

that in this case e = f = n where n = deg H (the reason is that v is 

discrete and the residue class field is finite), hence by (2.2.1) W is 

not Azumaya. This shows that we have to assume that K is not global 

(neither of course local). However in the course of this section, we 

shall show that this will present no great loss of generalities since 

our concern will be the case of H being a tensor product.

Recall that a left Bezout domain is an integral domain in which 

every finitely generated left ideal is principal. Then we have 

Lemma (2.2.2). Let A be a left Bezout domain, then every finitely 

generated torsion free right A-module M is free.

Proof. In fact this is an exercise in ([3] pp.47). The proof consists 

in embedding M in a free module in a well known manner and applying 

([3] Chap. 1 prop.1.4) yields the result.

The next lemma describes W (when it exists) as V-algebra.

Lemma (2.2.3). Let H be a finite dimensional central division algebra 

over K and let V be a valuation ring in K. Assume that there is a

valuation ring W in H lying over V. Then the centre of W is V. If

moreover W is finitely generated as V-module, then W generates H as 

K-space.

Proof. The first part of the lemma is trivial, it suffices to observe 

that for any ye H, 3f C e K such that cy € W, hence

X e Z(W)s-> X e Z(H) = K x e K n W = V, whence Z(W) c v and Z(W) = V
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since V ç Z(W).

For the second part, we observe that lemma (2.2.2) yields that W

is free as V-module, since W is a Bezout domain. Now W has unique rank
m

because V is commutative (it has IBN) so let W =  ̂Vu. where
i=l ^

{u^=l,u^,...,û } is a basis of W over V. We claim that m = n = deg H.

We note first that u^,...,u are linearly independent over K because 
m

if y au. = O where a. e K then aÜZa./Ap.) = O where a./a e V and i=l  ̂ ^ 1 1  1
a = a. is such that v(a) = min v(a.) (v corresponds to V). But 

^0 i=l,...,m ^
this implies that either Ea^/a û  = O or a = 0.

Now Ea^/a u_ / O because it has coefficient a/a = 1, hence a = O

whence â  - O (i = l,...,m). Hence we have

(1) m 3 n,
m

(2) m % n, since otherwise D =  ̂Ku. becomes a division subring of
i=l ^

H (because D is finite dimensional over K and has no zero-divisors), 

hence D becomes the skew field of fractions of W which contradicts the 

fact that W generates H as its skew field of fractions.

Now (1) and (2) imply that m = n. The rest is clear.

We note that if Ĥ  is a central division subalgebra of H and

Hg = 0̂ (8̂ ) then it is well known that H ~ Ĥ  0 Hg (cf. C l 7 ] f .

The next proposition describes matrix local rings in tensor 

products.

Proposition (2.2.4). Let H = Ĥ  0 Hg be a central division K-algebra, 

where Hj,Hg are central division K-subalgebra of H.

Let V be a rank 1 valuation ring in K.

Assume that there exist valuation rings W^ in H^ (i = 1,2) such

that W^ n K = V and W^ is separable as v-algebra (i = 1,2)#Then

W = W .  0 Wm is a matrix local ring, lying over V and generating H asV
K-space.

In particular if V is discrete rank 1 then W is a maximal order.
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Proof. We note first that by lemma (2.2.3) W^/Wg are Azumaya 

valuations, hence they are both finitely generated over V and by the 

same lemma W^ generates H as K-space (i = 1,2). Now by ([9] Chap.2, 

Prop. 3.3) W = W ® Wg is central separable as V-algebra, hence by lemma

(2.2.1) W is a matrix local ring.

We now observe that Wg = C^(W|). For

Ĉ (ŵ ) S Cg(Wi) Ç Cg(Hi) = Hz

Hence Ĉ (Ŵ ) S W  n Hg = Wg.

But W_ S C (W,), whence W_ = C,(WJ .Z W 1 Z W 1

So applying the commutator theorem (Theorem 2.2.6) yields that the map 

f: Ŵ  0 Wg -»■ H defined by -£(a| 0 b̂ ) = â b̂  is an injective homomorphism 

hence W is torsion-free finitely generated V-module, hence by lemma

(2.2.2) W is free V-module. We claim that W generates H as K-space.

For, we consider g: (W, 0 W„) 0 K (W, 0 W„)K defined by ̂ V 2 y 1 I

g(T a 0 b )  = y a bg where a e W, b. e K. ̂ a a  ̂ a 3 a 3a a

g is an isomorphism because W is torsion free (cf. [17] pp.32), Hence 

we can identify (Ŵ  ® Wg) 0 K with (Wĵ 0 Wg)K (as K-space). But

(W, 0 Wm) 0 K ~ W, 0 (K 0 Ŵ ) 0 K ~ (W, 0 K) 0 (W„ 0 K)1 V 2 y -  1 V K 2 y =  l y  k  2 v

Now W^ 0 K ~ W^K (i = 1,2) because Wj ,Wĝ are torsion free and

W^K = (i = 1,2), W\ generates H^ as K-space (i = 1,2). Hence

WK = (W, 0 W«)K ~ W K 0 W«K ~ H, 0 H ~ H, whence W generates H as 1 z 1 K  ̂K
K-space and the first part of the theorem is proved.

For the second part it suffices to show that W is hereditary.

Let I be any left ideal of W, then I is free as V-module, hence

projective and by the lifting property of central separable algebras 

I is projective as left W-module, whence W is left hereditary and
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similarly W is right hereditary, thus W is hereditary.

Now W is a matrix local ring and hereditary, hence applying 

Theorem (0.2.1) yields that W is a maximal order.

The rest of this section is devoted to the representation of 

valuation rings in tensor product division algebras

By a central division algebra we shall mean a finite dimensional 

central division algebra.

Recall that if H is a central division algebra over K with 

CH:K] = n̂ , then n is called the degree of H which will be denoted 

deg H. By exp H we shall mean the order of H as an element in the Brauer 

group Br(K).

A field K is called stable if every central division K algebra 

of deg..n has exp##% e.g. global and local fields.

We shall need the following theorem.

Theorem (2.2.6). Let A be a central separable R-algebra. Suppose B is 

any separable subalgebra of A containing R. Set S = C^(B). Then S is 

a separable subalgebra of A and Ĉ (S) = B. If B is also central, so 

is S and the R-algebra map B 0 C ->■ A given by b 0 c ^ be is an 

isomorphism.

Proof. ([9] pp.57).

The following proposition reduced the study to the prime power 

degree case.

Proposition (2.2.7). Let H = H, 0 be a central division algebra over-----------------------  1 K  2
K, where H^,Hg are central subalgebras and let V be a rank 1 valuation 

ring V in K. Assume that H^,Hg have coprime degrees. Then there exists 

a valuation ring W lying over V (in H) iff there exist valuation rings 

WjrWg in H| (resp. Hg) lying over V. If moreover W^,Wg are Azumaya and

V is - discrete -of rank .1 then W is Azumaya and is given by

W ~Wi 0 Wg.
Proof. Let v be the valuation on K which corresponds to V and let k be
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the completion of K relative to v. If #^,#2 exist, then Sf̂ = g K is 
a skew field (i = 1,2). Hence

"H = H a K - (H a H_) a K ~ (H. a K) a (H_ a K),K = 1 k 2 k - 1 k "k 2 K
whence H is a skew field because H^,^^ have coprime degrees, thus W
exists. If W^,W2 are Azumaya, then proposition (2.2.4) yields that
W a is a maximal V-order in H. But since V is discrete of rank 1,I V z
W is a maximal V-order, in fact W is the unique maximal V-order, hence

a W2 ̂  W and W is Azumaya because and W2 are.

Recall that if H is central division K-algebra of degree

n = p^l ... p^r where the p.'s are distinct primes, then H - IH. a ... a H1 r̂ r y = 1 K
where each is a central subalgebra of degree pYi called the p^-factor, 

and by the above proposition we have.

Corollary (2.2.8). Let H = a H2 a ... a be the decomposition of 

H in pu-factors and let V be a rank 1 valuation ring in K. Then there 

exists a valuation ring W lying over V (in H) iff there exists in 

lying over V (i = l,...,r).

If W^,W2». . . are Azumaya and V is discrete of rank 1, then W 

is given by W ̂  a ... a and it is Azumaya.

Proof. Repeated applications of proposition (2.2.7).

This corollary shows that it is enough to study central division 

algebras of prime power degrees.

To start with we consider an abelian crossed product division 

algebra H of degree p̂ ; n ^ 1 i.e. H ̂  (E/K; f) where E/K is a finite 

abelian extension with abelian Galois group G x ... x Ŝ . For 

simplicity we shall assume r = 2 so that G = x Sg where = <Qi> of

order n̂ , Sg = <0z> of order Ug and n = n^n2»
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By the Skolem-Noether theorem each a. is induced by an element

in H we put “ î “ 1*2) • We shall assume that ~

i.e. H is symmetric. In this case a e K.

We let EL = {x € E; a^x = x} and E = {x e E; o^x = x}, hence

EL/K is a cyclic Galois extension with group (i = 1,2) so we can 

consider the subalgebras = (EL/K; ct̂ , â ) (i = 1,2) and it is easily 

seen (cf. [2]) that H ~ H. 0 H_.
—  1 K  2

Throughout what follows K will be assumed non-stable which is 

justified by the following lemma.

Lemma (2.2.9). Let H = H, 0 be a central division algebra of degree 

n = n^n^ over K where are central subalgebras of degrees n̂  (resp.

n2). Then exp H = n iff exp = n (i = 1,2) and (n̂ ,n̂ ) = 1.

Proof. The proof of this lemma is readily available once we observe

that exp H is the least common multiple of exp and exp Eg.

N.B.: The above is true for H = 0 ... 0 (r > 2).

Throughout the rest of this section the valuation ring V in K will 

correspond to a Henselian valuation of rank 1 i.e. satisfying Hensel 

condition; namely.

For any monic polynomials f e V[x] and F^,F2 e V[x] (V ~ V/wĝ ) 

such that f = F^Fg and F^,Fg are coprimej . there exist f^,fg e V[x]

such that fj = F̂ , fg = F g and f = f̂ f̂ .

We note that this condition is equivalent to sayAthat v is

indecomposed in the algebraic closure of K (cf. [10] pp.117).

We recall that any Henselian valuation on the centre K of a central 

division algebra H can be extended to the whole of H ([20] theorem 9).

We aim to study that extension in tensor products. So we let H be a 

symmetric abelian crossed product division algebra over E/K, By the 

remark which preceded Lemma (2.2.9)̂  H ~ 0 ... 0 where each is

cyclic algebra. We assume r == 2 and we write H = (E/K? ẑ , b̂ ,

(i = 1,2)).
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The following proposition gives a representation of the valuation 

ring in H lying over V.

Proposition (2.2.10). Let H = (E/K; (i = 1,2)) be a

symmetric division algebra and let v be a Henselian rank 1 valuation on 

K which is unramified in E with associated valuation ring V.

If v(b̂ ) = v(bg) = 0  then the valuation ring in H lying over V 

is a tensor product.

Proof. Consider the subalgebra = (Ê /K; ô , b^ (i = 1,2)) where 

E^= {x € E, a^ix) = x} and E^ = {x £ E; a^x = x}. Let be the 

valuation rings in E. (i = 1,2) lying over V. We consider

r /= I E^u with u = b^ (i = 1,2) where n^ = deg •
]=0

nu-1
We let W. = y V.u^ (i = 1,2).

 ̂ j=0 ^

Theorem (1.2.5) yields that W^ is a matrix local ring lying over 

V and generating as E-space, hence W^ = W^/J(W^) is simple artinian. 

Now since v is unramified in Ê  ([10] Cor.20.22) yields that v is def- 

ectless in Ê  and ( 10 Theorem 18.6 and 18.9) yield that is of 

finite rank as V-module, hence by ([1] theorem 24) idempotents mod (two 

sided ideal) can be lifted, whence W^ is skew field because otherwise 

W. contains non-trivial idempotents which contradicts the fact that 

has no zero-divisors.

Thus W^ is a local ring and by theorem (1.2.6) W^ is a valuation 

ring in H_ (i = 1 ,2).

We now consider W = W, 0 W„.1 V 2
By proposition (2.2.4) W is a matrix local ring generating H as 

K-space and by a similar proof as above W is a local ring with J (W) =M%W 

where ̂  = J(V) hence Theorem (1.2.6) yields that W is a valuation ring 

in H lying over V and since there is only one; the proposition is proved.
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N.B.: 1) A necessary condition for the assumption of v(bĵ ) = v(b2) = O

is that Br{V) / O, since otherwise splits over V as an element of

the Brauer group. Now since is of finite rank over V (Cl] theorem 

24) yields that splits over K which is a contradiction. However 

since every complete field is Henselian for some valuation, our 

assumption that K is not stable contains that of Br(V) / O by corollary 

2 of ([18]) in the case where K is complete.

2) The proposition is valid by induction for r > 2.

As another application of theorem (2.2.4) we look at crossed 

product division algebras with nilpotent Galois groups. We let

H = y Eu*̂  ~ (E/K; f)
a EG

II n̂  ^rwhere G is a nilpotent group of order |G| = n = p^^p^ (the p^'s

are distinct primes). It is well known from group theory that

G ̂  Ĝ  X Gg X ... X G^ (where the G^'s are the p^-Sylow

subgroups i = 1,...,r)

Put Ê  = {x € E; ax = X for all a e G.} and E. = /li Ê . Then E
 ̂  ̂ i/i

is the fixed field of G/G ,̂ and E^/K is a finite Galois extension with

Galois group G^ (i = l,...,r). Accordingly we can decompose E as tensor

products i.e.

E %E. 8 ... 0 E *- i K K r

The following lemma shows that under some conditions on f the p^-factors 

of H are crossed products.

Lemma (2.2.11). Let H = (E/K? f) be a crossed product division algebra

with nilpotent Galois group G = Ĝ  x ... x G^ (the G are the p^-Sylow
n. nsubgroups where n = deg H “ ••• ). Assume that f satisfies the

following

1) f = f whenever a e G , t e g . (i / j)v,T TfV 1 j
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2) P(f ) = f whenever a, t e G. and p e II G..

0,T a, T 1 jfi ]

Then H ~ H, 0 ... 0 H— 1 r

where each is a crossed product subalgebra of H with Galois group Ĝ .

Proof. Write H = Y Eu where u a = a*̂ u for all a c E, a £ G 
----  oeG ° ° °

and u u = f u for all a,x e G
a T a,T 0T

By the remark above there exist E^,...,E^ such that E^/K is Galois with

Galois group G. and E ~ E. 0 ... 0 E . Consider the subalgebra H.1  ̂ =  1 r 1■tV%e
generated by E^ and^u^ (a e Ĝ )) by the condition 2) and the definition

of E f  e E. for all 0,x e G.; hence f/G.xG. is a factor set fromr 0,x 1 1 1 1
Ĝ  to Ef, whence is a crossed product oyer Ê /K.

Consider the map

6: H_ @ ... 0 H ^ H ̂ 1 K K r

a. 0 ... 0 a ^ a. ... a1 r 1 r

since G is nilpotent G^ commute with Ĝ  (i / j), hence condition 1)

yields u u = u u for 0 e G., x e G. where i / j. Moreover for any 0 X X 0 1 ]
0 e Ĝ  and any a € E^; i / j au^ = u^a because G^ fixes Ê  for i ^ j, 

hence and commute element-wise for i / j, whence (f> is a K- 

homomorphism. It is injective becasue its domain is simple and 

counting dimensions over K yields surjectivity. Thus

H - H. 0 0 ... 0 H .= 1 2  r

We are now ready to study representation of valuation rings in this case. 

Proposition (2.2.12); Keeping the hypothesis of lemma (2.2.11) and 

assume that v is^Henselian rank 1 valuation on K which is unramified 

in E with associated valuation ring V and extension w to E. Let 

H = Q ... 0 be the decomposition of H in crossed product p^-factors
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n. n.(where deg H = n =

If w(imf) = 0, then the valuation ring in H lying over V is

represented by a tensor product.

Proof. Consider H = Y Eu
0 €G ^

Then H. = J E.u (i=l,...,r) (see Lemma (2.2.11).
 ̂ oeG.  ̂"

Let be the valuation ring in E^ lying over V (i = l,...,r). Then by

Theorem (1.2.6) W. = Y V.u IS a matrix local ring in H. lying overi ^ „ i 0 10 €Ĝ
V and generating as E^-space. But by an argument similar to that 

in (2.2.10) has finite rank over V, hence by ([1] theorem 24) 

idempotents mod (two-sided ideal) can be lifted, whence is local and 

applying Theorem (1.2.6) again yields that is a valuation ring in 

lying over V.

Now by corollary (1.2.5) J(Ŵ ) w h e r e = J(V), hence

is separable as VA^-algebra, whence is separable as V-algebra, 

thus is Azumaya valuation over V by lemma (2.2.3) (i = l,...,r).

We now consider

W = W. ® ... ® W .1 V r

First consider W^g = W^ ® Wg, it is clearly a matrix local ring and by 

an argument similar to above it is local; applying (proposition (2.2.4)) 

yields that W^g generates 0 Hg as K-space with J(Ŵ g) ='”2»W|2 

Wig/1 K = V? hence W^g extends V to 0 in the sense defined in 

Chapter 1, whence applying theorem (1.2.6) yields that W^g is a valuation 

ring in 0 Hg lying over V.

The rest of the proposition is clear by an easy induction.

§3. Primary algebras

Throughout this section H is a central division algebra over a 

field K and v is a real valued valuation on K and K is the completion
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of K relative to v.

We consider H = H ® K.K
We aim to study the subalgebras of H and H and relate that 

accordingly to the extension problem. But first we need to recall a 

definition. Let A be a central simple algebra over K, then A is said 

to be a primary algebra if A contains no proper central simple sub­

algebra over K and A / K. It is well known that every primary K-algebra 

is either a division algebra of prime power degree or of the form 

Kp where p is a prime number. However the converse does not hold in 

general, it does hold over stable fields as the following lemma shows.

Lemma (2.3.1). Let H be a central simple algebra of degree p^ (n / O)

over a stable field K and assume that H is either of the form K orP
else a division algebra, then H is a primary algebra.

Proof. If H = K then the lemma is trivial.  P
If H is division algebra then exp H = p .

Now if A is a central simple subalgebra of H, then

H ~ A ® A' where A' = C (A)
K ®

Applying lemma (2.2.9) yields that (deg A, deg A') = 1 which is

a contradiction because deg H = p^ and deg A, deg A' divide p̂ . Hence

H is a primary algebra.

Proposition (2.3.2). Let H be a central division algebra over a stable 

field K such that deg H = p^ where p is prime and n > 1. Let v be a 

real valued valuation on K, then v extends to H iff H = H Q K is a 

primary algebra.

Proof. If H is primary, then H is not a matrix ring over K since deg H = p 

and n > 1, H is a division algebra and applying theorem (0.1.1) yields 

that V extends to H. The converse is obvious.

Corollary (2.3.3). Let H be a central division algebra over a stable
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n.field K such that deg H = n = P ... p where the p.'s are the1 r 1

distinct primes and > 1 (i = 1,__,r).

Let H = H. 0 ... 0 H be the decomposition of H on p.-factors.1 K  K  r ^
Then a real valued valuation v extends to H iff

H. = H. 0 K is a primary K-algebra (i = l,...,r)1 1 K

Proof. Combining corollary (2.2.8) and proposition (2.3.2) yields the 

proof.

Remark and example (2.3.4). The condition that n > 1 in proposition 

(2.3.2) can not be omitted as the following example shows. (This 

example is due to P.M. Cohn see ([5] pp.67.)

Let H = (-~L—â.) be the rational quaternion algebra then H is a 

division algebra because x^+ly^+z^ = o has no solution.

Consider the 2-adic valuation Vg on Q and let Qg be the field 

of 2-adic numbers, then Q2 contains a 2-adic square root of -3, hence 

H = H 0 Qg ̂  M^(Qg), thus Vg does not extend to H even though H is a 

primary Q -algebra.

4. A counter example on the extension of valuations in central extensions

Throughout this section D is a finite dimensional central division

algebra over a field K and F is a field extension of K. By a central

extension of D we shall mean a skew field H generated by D together

with the centre of H.

If D 0 F has no zero-divisors, then it is a central extension of D K
with centre F. So assume that H = D 0 F is a skew field and let w be

K
a non-trivial real valuation on D with restriction v to K, then v is 

surely non-trivial (cf X’̂cOPPl̂ * We aim to study the extension problem 

of w to the whole of H and to prove subsequently that the extension 

does not always exist.

We note first that if F/K is purely transcendental, then
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H = D 0 F is a central extension and w has an extension to H. For if K
F = K(t), then H = D(t) and the extension follows as in the commutative 

case.Tf F = K(t^,tg,...,) then the extension follows by induction. So 

we shall assume that F/K is an algebraic extension and we shall be 

mainly interested in the finite case. Let n = (F:K) , we shall say 

V splits in F if there are n distinct valuations extending v to F.

The following proposition determines a subfield of H to which w 

extends.

Proposition (2.4.1). Let H = D 0 F be a central extension where F is -----------------  K
a finite abelian Galois extension and let w be a real valued valuation

on D with restriction v to K. Assume that there exist v^,...,v^

valuations on F extending v with common decomposition field E, then

w extends to L = D 0 E. In particular if v splits in F, then W extendsK
to H.

Proof. D 0 E - > D 0 K ~ D i s a n  embedding where D is the completion of K K
D relative to w. Now w extends to w on D and m/D 0 E is a valuationK
extending w.

The second part of the proposition is clear.

Proposition (2.4.2). Let H = D 0 F be a central extension of D such that-----------------  K
F/K is a finite Galois extension. Put m = [F,K] and n = deg D and 

assume that (m,n) = 1.

Then any real valued valuation W on D can be extended to r 

valuations on H where r is the number of valuations extending v to F 

where v = ü)]k .

Proof. Put F = K(a).

Let f be the minimal polynomial of a over K and K be the completion 

of K relative to v.

Consider f = f^..... f̂ , the factorization of f over K. Let

v^fV^f-.-fV^ be the valuation on F extending v and F the completion of
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F relative to v^ (i = l,...,r). Then n̂  = (F^:K) is the same for all 

v^ and n̂  divides m because F/K is Galois. We now consider

= H ® = (D 0 F) 0 F^~ D 0 F^ ~ (D 0 K) 0 F̂ . We observe that
F K F = K “ K K

1) D 0 K is a skew fieldK
2) (n,n̂ ) = 1 otherwise (n,m) / 1

hence H is a skew field, whence v^ extends to a valuation on H whose 

restriction to D is obviously w since w is the only valuation on D 

extending v.

Since we can repeat the same thing for i = l,...,r, there are

exactly f valuations extending w to H and the proposition is proved.

Remarks and example. 1) The assumption that F/K is Galois was needed to

prove that if (m,n) = 1, then (n_,m) = 1. However if we omit the

normality and assume that v is indecomposed then [F:K] = [F:K] because
then F _ F 0 K, hence the condition on normality can be lifted.

Example. Let D = (■ be the quaternion algebra over the rationale

and F = Q(&/2).

Then H = D 0 F is a central extension because (x̂ -2) is Q
irreducible over D.

Consider the 2-adic extension Vg on Q which is the only vafà^tion 

on Q extendable to D (see Example (2.1.9)) and let w be its extension.

Now Vg is clearly indecomposed in F because it is totally ramified 

and (deg D, [F:Q]) = (2,3) =1, hence by the proof of the proposition 

Ü) extends to H even though F/Q is not normal.

The following proposition is the catalyst for the counter example. 

Proposition (2.4.3). Let D be a finite dimensional central division 

algebra over K and let w be a real valued valuation on D such that 

U>|k = V.

Let F = K(a) be a finite separable extension of K with f a minimal

polynomial of a over K. Assume that f is irreducible over D so that

H = D 0 F is a skew field and that v has a unique extension to Fjthen 
K
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ü3 extends to H iff f remains irreducible over D = D 0 K where K is theK
completion of K relative to v.

Proof. The condition is sufficient; let v be the extension of v to ----  F
F then F = K(a).

Now H =  (D0F) 0 F = D 0 K(a) ~ (D 0 K) 0 K(a) ~ D[x]/fD[X] ,K F  K = K K  =
hence it is a skew field because f is irreducible over whence by

theorem (0.1.1) w extends to H.

The condition is necessary.

Assume that w extends to a valuation <}> on H and call v its 

restriction to F. Let F be the corresponding completion, then

H = H 0 F  = (D0F) 0 F ~ D 0 F ~ ( D 0 K )  0 F ~ D 0 F  F K F - K " K K - R

and H is a skew field.

Now F - îix]/fkCX], hence H ~ D 0 R[X]/fK[X] ~ D[X]/fD[x]
K

whence f is irreducible over D otherwise H has zero-divisors.

We now construct the counter example.
- 1,-1Let D = (— -— ) be the quaternion algebra over the f̂ ationals and 

let V be the 2-adic valuation on Q. We have seen that Vg extends to

D, we call Vg its extension to D.

Consider H = D 0 F where F = Q(̂ /J) then f(X) = X^-2 is the

minimal polynomial of ^/2 over Q. f(X) is irreducible over D.

For :.f (X) = (X-X)(X+iX)(X+X)(X-iX) where X = ^/2 so if f(X) is 

reducible over D then D must contain an element a such that a% = 2 

i.e. g a, $, y, 6 e Q  such that

(a+Bi+y j+6K)2 = 2

hence = 2

this implies that _ 2

2a B = O
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2ay = O
2aô = o

hence a = O, since otherwise 3 = Y = <S = O and = 2 which is impossible 

in Q, whence 32+y2+g2 = -2 in Q which is impossible as well and f(X) 

is irreducible over D.

Thus H is a skew field and H is a central extension of D. We shall 

prove that f(x) is reducible over D so that Vg does not extend to H.

First we recall the following theorem (cf. [17] pp.146).

Theorem: Let D be a central division algebra over a complete field K

for a discrete rank 1 valuation v with finite residue class field 

having 1 elements. Let n = deg D and let e be a primitive (9L̂ -l)-th

root of unity, then to any uniformizer w of K correspondsan element
n -1 9.̂of D such that = tt and TT_ e IT.” ̂ = e where r is a positive D D D D

integer such that 1  ̂r $ n and (r,n) = 1.

Proof. (cf. [17] p.146).

Now 2 is a uniformizer of Qg (the field of 2-adic numbers).

Consider D = D 0 Q̂ . This is a central division algebra over Qg. Then

applying the theorem yields that there exists an element say b in D such

that b^ =2. So D contains a square root of 2. Now f(X) is irreducible

over Qg since otherwise /2 or '̂i/2 e Qg which is impossible because 
~ 1then Vg(/2) = — where Vg is the extension of Vg to Qg but this leads 

to a contradiction since the value group of Vg is Z. Now f(X) is 

reducible over D because D contains a square root of 2 hence applying 

the proposition yields that does not extend to H.
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CHAPTER III

Extension of valuations in infinite skew field extensions

Let H/D be an infinite skew field extension and let v be a 

valuation on D. In this chapter we study the extension of v to the 

skew field H. In section 1. we let H be the skew function field 

D(X; o, 6) where a is an automorphism on D and 6 is a o-derivation.

We prove that v extends to a valuation w with radical ̂  such that 

X(modQ^) is transcendental over the residue class field of v iff

(1) o preserves v (2) 6 is such that v(â ) > v(a) for all a £ D.

The importance of this rather easy theorem lies in its wide application 

and its repeated use in the rest of this chapter. The applications will 

include among others i) free algebras, ii) universal associative 

envelopes of Lie algebras and iii) Generic Crossed product division 

algebras.

The rest of this chapter is devoted to the following question 

raised by P.M. Cohn.

Let ,Kg be two skew fields with real valued valuations v^/Vg 

on and Kg respectively such that v |̂k = Vg|K = v where K is a common 

subfield.

Let R = Kj W  Kg be the free product of K^ and Kg over K and let

H = K^ O Kg the field coproduct of K^ and K2 over K.

Do v%,V2 have a common extension to H?

Section 2. recalls some theorems needed later (P.M. Cchn 

Theorems 5.1,5.4) which are proved here under rather weaker conditions.

In section 3. we answer the above question negatively by giving a counter 

example.
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In section 4 we consider the associated epic R-fieId L constructed

in ([8]). We study the centre of L, in particular we show that if

K./K is a finite abelian Galois extension with E the decomposition 

field of V y  then the centre C of L contains E. We then generalize the 

result of section 2. by showing that in general v.fVg have no extension

to any skew field of fractions of R.

In section 5. we show the following.

Let K^fKg be skew fields with centres C^fCg and a common subfield 

K Ç a  (i = 1,2).

Let v^/Vg be real valued valuations on K^,K2 such that Vj|k = v^ |k = v 

and such that v̂  is the only real valued valuation on extending v 

(i = 1,2).

Assume that admits an endomorphism whose fixed field 

intersected with is K, then v%,V2 have a common extension to

Ki O Ko. ̂K ^
If D is a skew field with centre C and a central subfield K such 

that D has a family of endomorphisms whose fixed field intersected 

with C is K. Then any real valued valuation v which uniquely extends 

its restriction to K can be extended to a valuation w on D <X>.

We conjecture that w is real valued.

If the conjecture is true then we have the following theorem.

Let Kj,Kg be skew fields with centres C^,C2 and a common subfield 

K c a  (i = 1,2) .

Let v^,V2 be real valued valuations on K̂  and K2 respectively 

such that v^jx = Vg|K = v and such that v^ is the only real valued 

valuation on K^ extending v (i = 1,2).

Assume that K^ has a family of endomorphisms whose fixed field 

intersected with is K.

Then v^,Vg have a common extension to Kj O K2» "Hhe application 

will be to the non-commutative Galois extensions. Other results
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concerning other cases will be given in this section as well.

In particular we show that a recent generalization of the 

specialization lemma by P.M. Cohn entails the generalization of Theorem

(3.2.1).

§1. Extension of valuations in skew function fields

Let K be a skew field with an endomorphism a and a a-derivation 6

and consider the right skew polynomial ring R = k[x; a, 6] consisting 
” iof the elements  ̂x a. where multiplication is defined by ax = xa^+a 
i=0 ^

and the usual addition. It is well known that R is right ore domain 

and hence it has a skew field of fractions D = K(X, a, 6) called a skew 

function field (see chapter O). Let v be any valuation on D, we aim 

to study the extension of V to D and its applications.

We first need the following lemma.

Lemna (3.1.1). Let D=K(X; a, 6) be a skew function field and let v 

be a (not necessarily) abelian valuation on K with associated valuation 

ring V and radical'»^ .

Suppose that v extends to w on D with radical'^. Then

X(mod<^) is right transcendental over iff

(1) Ü) (X̂ â  + ... + ) = min v(â )
i=0...n

Moreover w is the unique extension for which X remains transcendental 

over V/my.

Proof. The proof is exactly the same as in the commutative case

(cf. [2o3 lemma 17).

The extension w will be called the Gaussian extension. The

following theorem isolates the conditions on a and 5 for the extension
II a n

to be possible. Throughout the section we shall assume a^automorphism, 

hence R is also a left skew polynomial ring and X is left transcendental

over . We say X is transcendental over V/^.
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Theorem (3.1.2). Let D = K(X; Q, 5) be a skew function field and let 

V be a valuation on K with associated valuation ring V and radical^ . 

Then v extends to a valuation o) with radical for which X(mod(f ) 

is transcendental over V/^ iff a preserves v and 6 is such that 

v(â )  ̂v(a) for all a £ K.

Moreover w is the unique extension such that X remains transcen­

dental over and is given by the Gaussian extension.

Proof. The condition is necessary.

If Ü) exists then Lemma (3.1.1) yields that W  is given by

9 iw( 2, X a. ) = min v(a. )
i=0  ̂ i=0,...,n ^

Now ax = xa^+a^.

Hence 1) v(a) = min(v(a^), v(a )̂) because to(X) = O whence v(â )  ̂v(a) 

for all a £ K.

If v(â ) > v(a) then -v(â ) < -v(a) , hence v(a”  ̂) < v(a"’̂)

which contradicts 1), thus v(a) = v(â ) and a preserves the valuation.

Now it is easily deduced that v(a )  ̂v(a).

The condition is sufficient.

We shall consider the right skew polynomial ring R = kCX; a, 6]

and the map w: R ->■ F u {«} where F is the value group of v defined 
n ^

by w( y X â ) = min v(a.).
1—0 1=0,...,n

Then w satisfies the axioms of a valuation on R namely :

V. 1 iü(f) = «»<=> f = O for all f £ R

V. 2 w(f-g) $ min(w(f), w(g)) for f,g £ R

V.3 üj(fg) = w(f) + w(g) for f,g £ R.

For
n .1 - - nv.l) is clear because if f = y X̂ â  = O then a»Ofor i = 0,1,..., 

hence W(f) = <» iff f = O
i=0 ^
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V.2) Let f = X^a + ... + a.m 0

x"b + ... + b.

and assume W.L.O.G. that m > n

then f-g = X™a + ... + X^(a -b ) + ... + a.-bn m n n 0 0

hence w(f-g) = min{v(a^),...,v(a^-b^),...^vCag-bg)}

 ̂min{v(a ),...,min(v(a ),v(b ))? min (v(am) ,v(b«)}m n n « u

= minf min{v(a ),...,v(an)}m u
min{v(b^) ,... ,v(bg) }

= min(v(f) , v(g) ) 

and V.2) is proved.

V.3) Consider f = X^a + ... + X̂ a. + ... + a.and assume thatm 1 V
U)(f) = v(â ) where â  is the first coefficient on the left taking the 

minimum value among the values of the coefficients. C o a s i cLc-C

g = X^^ + ... + X bj + ... + bg

and assume that w(g) = v(b̂ ) where b̂  is the first coefficient on the

right taking the minimum among the values of the coefficients, 
m+n

Now fg = y X^C 
r=0

We first compute ax^ where a is any element in K and t any positive

integer.
cr 6 aX = Xa +a

ax2 = x2a°ïx(a°a+a*°)+a*^

aX 3 = X3a°^+x2(a*^*+a*a°+a*°^) + x ( a ‘’«^a'5“ «+a'^^'') +  a«^

ax^ = x V ^  H- x^-\ I ..
Jt.=t t.=l,...,t-l

 ̂ tj=l,...,t-l
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We now apply that to compute X^a^X^b^ and so we have

x V x \  = xi(x3a,*^+xi-l( I a +...+
^3^-3

= xi+ia°^b.+xl+i-l(^ I a f '*'"■■■.) +...+ x V V
XjK=j 

two cases occur.

1. i < i and i+j = m+p = n+q

i-P gi+h j-q gi-k
I'ken ^j+h ^ 1 ^i+k “̂j-k * elements of the form

g ̂2 ...
Zâ  b^, where either s precedes i or s' exceeds j- 

We claim that v(c^̂ j) = v(â ) + v(b^).

For if

o^+h gj+h
h^O then v(a.b.^^) = v(a._^ ) + v(b.̂ ĵ ) = v(a._ĵ ) + v(b.^^)

o^+h
hence v(a b ) > v(a.) + v(b.). Now v( J. a b , ) > v(a,)+v(b.)1 n ]+n 1 3 Zs'=s ® ®  ̂ 3
because either s precedes i or s' exceeds 3 and because o preserves v 

and 6 is such that v(â ) 3 v(a) for any a e K.

Hence v(CL^j) = v(â ) + v(b̂ ) and by the definition of U3

CÜ (fg) = min v(Ĉ ) = v(a.) + v(b.) = w(f) + w(g). 
r=0,...,m+n  ̂ ^

2. i+j  ̂m 3 n or i+j 2 n $ m.

i cr*''*’ i o3-kThen C. .= )a.,b.., + ) a. , b._ + elements of the form
h=0 ’--*’ 3+h k=l 3-k

^ I ^ #ÇJ £ g % • • •
%a^ b̂ , where either t precedes a^ or t* exceeds j hence

an argument similar to that in 1. shows that ai(fg) = w(f) + w(g).

In fact these two cases cover all the possibilities, hence v.3 is 

satisfied, whence w is a valuation on R.

Now D = {f/g; f £ R and g £ R*}.

Hence m extends to D by u)(f/g) = w(f) - m(g).
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For the uniqueness it suffices to apply lemma (3.1.1).

Assume now that K is commutative and is contained in a skew field 

H, let 0^,0^,.,.,0^ be r commuting automorphisms of K fixing the centre 

of H. Then by the Skolem-Noether theorem, o .,0^ are induced by

inner automorphisms of H defined by X^,Xg, ,X̂ . Assume that the

X^'s are right transcendental over K and that they are right algebraically 

independent.

We assume furthermore that û  ̂= [x^,xj € K for i,j = l,...,r. 

Consider = KCx^;a^]; the right skew polynomial ring defined by

(1) aX̂  = X^a^l for all a e K.

We define o* on R̂  by

o*(a) = GgCa) = a^^ for all a e F

and CJ*(Xj) = XjUjg

Then a* preserves the relation (1) because

G*(X^a^^) = X^UjgS^^^^ = xu^2 = aXqUi2 = a*(aX^).

Hence G| is a well defined automorphism on R. and we can consider

R2 = Rf 0%:-

Assume that R , is defined so that the following relations hold. r-1

(2) aX. = X.a i = 2,...,r and X.X. = X.X.u.. i,j= 1,2,...,ri i ]- ] 3 T 13

and define o* on R _ as follows, r r-1

a*(a) = ô (a) = a for all a £ F 

and G*(X.) = X^u_^ i = l,...,r

Then a* preserves (2). For

q] .. .. o:
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and

aJ(X.X.Ui.) = X.u^^X.u^u”. = X.X̂ u°.u,̂ _u“.

j i r
Now applying ([2] Lemma 1.2) yields that u. .uf u. = u^.u ,uf.13 ir 3r jr. Cr i]

hence a*(X.X.) = a*(X.X.u..)r 1 3 r 3 1 13

“iAnd G*(aX^) = a*(X^a ) as above.

Whence o* is a well defined automorphism on R  ̂ and R = R _[X ; 0*] is r ^ r-1 r-1 r r
a right skew polynomial ring. It is an ore domain by induction, hence 

it has a skew field of fractions called the iterated skew function field.

We shall have a corollary about the existence of the Gaussian 

extension on D.

Corollary (3.1.3) . Let D = K(X̂ ; 0  ̂ (i = l,...,r), u) be the iterated

skew function field and let v be any valuation on K with associated

valuation ring V and radical"^. Then v extends to a valuation lO

(with radicaig^ ) for which X^(mod^) is transcendental over

V/^ (i = l,...,r) and X^,...,X^ are right algebraically independent

iff (1) 0  ̂preserves v (i = l,...,r)

(2) v(û j) = O where i = 1,2,...,r and j = 2 ,... ,r

Moreover w is the Gaussian extension.

Proof. Consider R = K[X^; 0  ̂ (i = l,...,r), u], then each element f of

R can be written as f = Tx. X. ,...,X. a. . where X.. e {X.,...,X_}i2 Is il' 5̂ 3̂  ̂ ^

(j = 1,...,5) i $ i_ $ ... $ i< and where a. . e K.J. ^  ^  i ^ . . .  i g

Let f be the value group of v and consider the map w : R ->■ T u 

defined by

w(Yx. X. ...X. a. . ) = min v(a. . )
^2 1̂ ''' S 4̂'"' S

W  is clearly a well defined map.

Let Rj = kCXj;0j], then theorem (3.1.2) yields that v extends to
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tüj on Rj where is the Gaussian extension.

Consider Rg = R^CXg? a*]. Conditions (1) and (2) yield that a*

preserve hence extends to a Gaussian extension Wg on Rg and by

induction we see that v extends to a Gaussian valuation on D. Now we

observe that the same induction process shows that this valuation is 

given on D by w. It is also clear by induction that X^Cmod^P ) is 

transcendental over V/9^ and that X^,...,X^ are right algebraically 

independant. Hence the condition is sufficient.

For necessity we follow the same proof as in the theorem.

Remarks (3.1.4). 1) The condition on 6 in theorem (3.1.2) is a

necessary one for the existence of the Gaussian extension. However it 

is not necessary for the solution of the extension problem in general. 

In fact^if D = K(X; a, 6) and v is a valuation on K preserved by a

with a value group Jbhen we consider G = ZZ x r and we order G

lexicographically, i.e.

(z^,Y^)<(z2,Yg) iff ẑ  < Zg or if ẑ  = Zg then < y g

Let R = kCX; o , 6] and consider w: R -+ G U {»} defined by 

w(f) = (-n,v(a )) where n = deg f.

To prove that w is a valuation we only need to look at axiom V.3 

since the others are easily satisfied.

So let f = X^a^ + ... + X^a^ where n 3 i

g = X%)^ + ... + x^bj where m > j

On multiplying fg we need to know the coefficient of the leading term 

which is here X̂ ^̂ .
m

Now a X°̂ = x"̂ a + h where h is an element of deg < m hence the n n
leading term will have the coefficient

^m ^m n
a = a b , whence w(fg) = (-(n+m),v(a b )) = (-n,v(a^ )) n m n m n
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+ (-m,v(b ) = (-n,v(a )) + (-m,v(b )) = w(f)+w(g) m n m

and so the extension does not depend on 6.

w is called the leading term extension.

2) The importance of theorem (3.1.2) lies in its wide application to

the finite and infinite case;as well. It is repeatedly used in field

coproducts.

The rest of this section is devoted to the application of theorem

(3.1.2) and its corollary (3.1.3).

I) Generic abelian crossed product division algebra

Let D = K(X; 0^(i = l,...,r),u) be the iterated skew function

field constructed above and let K be the fixed field of a^,...,a^.

Assume that has a finite order n^ (i = l,...,r) such that K/k

is Galois with Galois group G = <o\> x ... x <0 > where <o.> is the1 r 1
cyclic group generated by (i = 1,_,r).

Then by ([2] Theorem 2.3) D is a crossed product over E/F where

E = K(X*1,...,X^^) F = k(Xj^a^,...,X̂ â̂ ) for some a^,...,a^ £ K.

D is called the generic crossed product of K/k. The name is 

inspired from the fact that every crossed-product algebra over K/k is 

a homomorphic image of R = Kfx̂ ; 0 (̂i = l,...,r),u] • 3 ^ ([2]) every 

finite abelian extension has a generic crossed product.

For simplicity we write D = (K/k; G, a, u).

As a first application we have 

Corollary (3.1.4). Let D = (K/k; G, a, u) be the generic crossed product 

of K/k with centre C.

Let V be a valuation on C satisfying the following;

1) V is the Gaussian extension of a non-trivial valuation Vg on k

2) Vg has a unique extension Wg on K such that

Wg(â ) = O and ù)g(û j) = O (i,j = l,...,r) where r = order of G 

Then V extends to a valuation w on D.
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Proof. Vq has a unique extension oOq on K, hence G preserves Wg Y? ^

Now Wg(u_j) = O for i,j = l,...,r, hence by Corollary (3.1.3)

Wg extends to the Gaussian extension w on D.
n n̂.

If D = K(X̂ ; 0^(i = l,...,r),u) then C = k (X̂  â  ,. .. ,X̂  â ), 

hence condition 1) and the fact that Wg(a ) = 0 (i = l,...,r) yield 

that w is the extension of v to D.

II) Free Algebras

Let A = k<x,y> be the free k-algebra on x,y where x,y are

k-centralizing indeterminates.

Put K = k(t) where t is a central indeterminate over k and let

R = K[ z ; a ] be the right skew polynomial ring where a : t t^ (n > 1) n n n
Then A can be embedded in R^ where x = z and y = tz (see [12]).

= K(ZfG^) is a skew field of fractions of A and from ([13]) the 

centre of A is precisely K.

Hence as an application of theorem (3.1.2) on free algebras we

have

Propos ition (3.1.5). Let A be a free K-algebra and let (n > 1) be

the skew field of fractions of A arising from the embedding of A in an

ore domain. Then any valuation v on the centre K of A can be extended

to D . n
Proof. By the construction above D = k(t) (z; a ) where o : t •+ t^

p i "V extends to a Gaussian extension w on k(t) (w( I a.t ) = min v(â ))
i=0 i=0,...,n

hence preserves w and applying theorem (3.1.2)

yields that w extends to D̂ .

Remarks. 1) The proposition is true for any n > 1.

2) If A = k<Xj,Xg, > where a genelrating set, then

we put K = k(t. Î i € I, n £ ZẐ ) and R = K[X;o] where a(t. ) = t. .jLn in m  • i
hence by the same reference ([12]) A has a skew field of fractions

D = K(X;g). Now any valuation v on k extends to a Gaussian extension

w on K for which w(t ) = 0 ( i £ l , n e  ZẐ ) hence preserves w and w
in.
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extends to a valuation on D.

3) Let A be any free algebra over k and letU be the universal 

skew field of fractions of A. In the coming sections we will be 

looking at the extension problem. In particular we show that every 

valuation on k extends to Ü and that there is always a real valued 

valuation w on U  such that the restriction of w to k is trivial.

N . B . very much more special than U.

Ill The universal associative envelope of a Lie algebra

Let If be a field containing i such that î  = -1 and A be the 

simple 3-dimensional Lie algebra generated by x,y,z such that

[x,y] = z, [y,z] = X and [z,x] = y.

Let V be any valuation on K.

We aim to construct the universal associative envelope O  of A

and prove the existence of a valuation w on the skew field of fractions 

of U such that w|K = v.

The following lemma describes O  .

Lemma (3.1.6). Let A be a simple 3-dimensional Lie algebra over a field

K containing a square root of -1.

Then, the universal associative envelope of A is a skew polynomial 

ring over K[z].

Proof. Let i denote the square root of -1 and consider the following 

change of variables.

u = x+iy, V = x-iy and z = z.

Then uz-zu = -y+ix = i(x+iy) = iu, hence uz = (z+i)u

vz-zv = -y-ix = -(y+ix) = -i(-iy+x) = -iv

hence vz = (z-i)v

Now uv-vu = (x+iy)(x-iy)-(x-iy)(x+iy) = -2iz
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Put ^ = K C z ]  and let a: K[z] K[z]

f(z) f(z+i)

Then a is an automorphism with inverse o~^ (z) = z-i we consider the 

left skew polynomial ring

R =ÇCu,a] defined by uz = (z+i)u

o (hence a“ )̂ extends to an automorphism on R defined by 

a (u) = Ti.
Let Ô: R R be defined as follows.

1) 5 is trivial on.Ç..

2) Ô(U) = -2iZ.

We note first that 6 is a well defined map on R. We claim that 6 is a

a"^-derivation on R. It suffices to prove that ô(uz) = ô(z+i)u.

For 6 (uZ) = u*̂ ẑ  + u^z = -(2iz)z = -2iz^

6((z+i)u) = (z+i)̂  û  + (z+i)^u = z(-2iz) = -2iẑ .

So we can consider Ü = rCv, , 5] and O  is the universal associative 

envelope of A.

N.B. CJ is an ore domain, hence it has a skew field of fractions

D = L(v, 6) where L is the skew field of fractions of R. We now

deduce easily

Proposition (3.1.7). Let A be a simple 3-dimensional Lie algebra over 

a field k containing a square root of -1 and let D be the skew field of

fractions of its universal associative envelope. Then ^ y  valuation on

k extends to a valuation on D.

Proof. By the Lemma D = L(v, 6) where

L = K(u,a) (K = k(z) and at Z ->■ Z+i)

V iV extends to a Gaussian extension on K given by ( I a^z ) = min v(â )
1=0 1=0,..., n
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Now a preserves w, hence applying theorem (3.1.2) yields that 

(jOj extends to a valuation ^2 on L for which (u) = O, hence 6 

satisfies the condition of theorem (3.1.2) since preserves

W2(c"̂ (u) = u) the theorem yields that W2 extends to a valuation w

on D and w is surely the extension of v to D.

IV Weyl algebras

Let K be any field and let A be the Weyl algebra generated by x,y

such that xy-yx =1. It is easily seen that A can be written as a skew

polynomial ring R[y,l,'] where R = k[X] and ' is the derivation with

respect to X. Let D = K(y,l,') be the skew field of fractions where

K = k(X), then any valaution on k extends to a valuation on D. It 

suffices to apply theorem (3.1.2).

Example on the iterated case (3.1.8)

Let k be a field containing e , ri and Ç where E is a primitive 

n^-th root of unity, n is a primitive ng-th root of unity and % is a 

primitive n^-th root of unity (n ,̂n2,ng e zẑ ).

Consider the skew field D = k^x^fXgfXgfX^) where the x^'s are 

k-centralizing indeterminates satisfying the following relations.

x^%2 =  XgX^ ; X }X g  =  e X g X ^ ; x^x^^ =  x ^ x ^ ;  X2Xq^ =  riXi^X2;

XgXg = XgXg and XgX^ = Çx^x^.

Let V be a valuation on K. We claim that v extends to D.

Consider E = K(x̂  ̂,Xg) and let a: E ̂  E be defined as follows.

a (Xj ) = ex̂  and o (x̂ ) = 2̂

n
d is an automorphism of order n̂  with fixed field E = k(x^l,%^^ 

Let T : E ̂  E be defined as follows

TfX}) = x̂  and t (x )̂ = n̂ 2 "
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n

T is an automorphism of order n̂  with fixed field = KCx^^x^^).

Now at = TQ, hence G = <a> x <x> is an abelian group of order n̂ n̂ ,.

Let F be the fixed field of G. Then F = Ê  n Ê  = Kfx^lfXg^).
Consider the extension E/F.

We have (E:Kj = (K(Xj^x^):K(x^,X£^))(K(x^,X2^ ) , x ^ 2 ) ) = n^n2. 

Hence E/F is a Galois extension with Galois group G because there are 

nF-automorphisms of E.

We let = E[xg;a] where multiplication is defined by

(1) Xga = o(a)Xg for all a e E.

We define t* on Rj as follows.

T*(a) = T (a) if a e E

and T*(Xg) = 5Xg

T* is easily seen to preserve (1), hence it is a well-defined automorphism 

on R^, whence we can define

T*R = R^[x^,T*] by x^f = f x̂  where f e R̂

and R is a left skew polynomial ring whose skew field of fractions is D.

Hence by ([2] Theorem 2.3) there exist a^,a2 in E such that 
n nC = F(x̂  a^,x^ 3-2̂) is the centre of D and indeed D is a generic crossed- 

product abelian division algebra.

Now proving that v extends to D is a simple matter using 

inductively Theorem (3.1.2).

§ 2. Some remarks on the extension of valuations in field coproducts

Let Kj,K2 be two skew fields and consider their coproduct over 

a subfield K; R = u K2 by ([4] theorem 5.3.2) R is a fir, hence by 

([3] pp.283) it has a universal field of fractions H = KjO K2 called 

the field coproduct of and K2 over K. Let vi,v% be two real
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valuations on and Kg respectively such that v.|K = Vg|K = v.

Our main object in this section and the rest of this chapter is 

to investigate whether there exists a valuation w on H such that 

w|K^ = Vj and w|Kg = Vg.

If K.fKg are K-algebras not both 2-dimensional as K-spaces then 

the centre of R is precisely K (see [14]). Hence applying ([6] Theorem 

4.3) yields that the centre of H is K.

Throughout the rest of this chapter K^,Kg are not both 2-dimensional 

over K.

A skew field D with centre C is said to satisfy Amitsur* s

condition if i) C is infinite, ii) D has infinite degree over C.

Theorem (3.2.1) (P.M. Cohn). Let D be a skew field with centre C

satisfying Amitsur’s condition. Then any abelian valuation on K has

an extension to D O C<X> = D <X> for any set X.C c
Proof. ([8] Theorem (5.1)).

Theorem (3.2.2). (P.M. Cohn-Mahdavi-Hezavehi). Let K^,K^ be skew fields

with common centre C, both satisfying Amitsur's condition, and consider 

their field coproduct O Kg. If Vj,V2 are real valuations on K̂ , 

respectively Kg, agreeing on C, then they have a common extension to

K. O K,.1 C ^
Proof. ([8] Theorem (5.4)).

The following lemma is the first step toward lifting Amitsur's 

condition.

Lemma (3.2.3). Let D be a finite dimensional central division algebra 

over a field C. Then there exists a skew field D’ containing D and 

having C as a centre.

Moreover (D’:C) = « and any real valuation on D can be extended to 

a real valuation on D',

Proof. Consider L = D(t) where t is a central indeterminate. Let 

O: f(t) f (t̂ ) be an endomorphism of L and consider the right skew
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polynomial ring R = L[X;a]. It has a skew field of fractions 

D' = L(X? a). Now applying ([4] pp.61) yields that the centre of D' 

is precisely C since L has centre C(t) and C is fixed by a hence 

(D' :C) = «>.

Now V extends to a Gaussian extension w on L for which 
n n

i=0 “ i=0
yields that w extends to a valuation on d .

i(  ̂a^t ) = min v(â ) hence o preserves w and applying theorem (3.1.2)

Moreover this valuation has the same value group as v, hence it 

is a real valuation and the lemma is proved.

Recall that a matrix A is said to be full if its square, nxn say, 

and cannot be written as A = PQ, where P is nxr, Q is rxn and r < n.

A ring homomorphism a: R ->■ R* is said to be honest if it preserves the 

full matrices over R i.e. if A is a full matrix over R then a(A) is a 

full matrix over R', where the entries of a(A) are the images of the 

entries of A.

Lemma (3.2.4). Let c Kg,Kg be any skew fields all containing E as

a sub-skew field, then the homomorphism K, u Kq K^LJ K, induced byA E  ̂E ^
the inclusion K^c K^ is honest.

Proof. ([8] Lemma (5.3)).

We are now ready to lift Amitsur's condition on both theorems.

Proposition (3.2.5). Let K^,Kg be two skew fields with a common centre

C, where C is infinite. Let v^,Vg be real valuations on Kj,Kg such

that v̂  jC = Vg |C = V. Then v^,Vg have a common extension to K̂  O Kg.
C-

Proof. If [K^:C] = » (i = 1,2), then we apply theorem (3.2.2). So

assume W.L.O.G. that [K. :C] < «> (i = 1,2). Consider R = K. KJ K«.1  ̂C
By lemma (3.2.5) there exist (i = 1,2) such that K^

(i = 1,2), satisfies Amitsur's condition and v^ extends to a real 

valuation on (i = 1,2). Moreover has centre C (i = 1,2).

Now the homomorphism a: K̂ 'W Kg '-J Dg induced by the inclusion

Ki c Di (i = 1,2) is honest by a double application of lemma (3.2.£|).
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Hence O Kg E Dj O D2.

Now applying Theorem (3.2.2) yields that have a common

extension o) to O Dg, whence wjK  ̂0 Kg is a common extension of v^,Vg

The condition on C is trivially satisfied since otherwise K^,Kg 

are commutative. We now lift Amitsur’s condition from theorem (3.2.1). 

Proposition (3.2.6). Let D be a finite dimensional central division 

algebra over a field C. Then any abelian valuation v on D extends to a 

valuation on H = for any set X.

Proof. By lemma (3.2.3) we embed D in a skew field D' satisfying 

Amitsur's condition such that v extends to an abelian valuation w on D'. 

Now lemma (3.2.4) yields that the homomorphism D W  c<X> C<X>

induced by the inclusion D c D' is honest. Hence H = D^<X> c D̂ <X>.

Applying Theorem (3.2.1) yields that w extends to D^<X> and 

restricting w to H yields the result.

The following corollary shows that the extension is always possible 

to the universal field of fractions of a free algebra.

Corollary (3.2.7). Let K<X> be a free algebra where X is any set. Then 

any abelian valuation on K can be extended to the universal field of 

fractions K<X> of K<X>.

Proof. It suffices to observe that K is a finite dimensional central

division algebra over its centre K. Hence applying proposition (3.2.6)

yields the corollary.

We now consider a free algebra A = K<X> and we let P be the free

group on X: then A is embedded in the group algebra KF.
a, ot„Each element a of F can be written as a = u^^Ug^... (possibly an

infinite product) where the u^'s are basic commutators (see [16]). We

order F lexicographically by the exponent of the u^'s. With this order

F becomes a totally ordered group (cf. [15]). Consider K^, the set of
Fàll functions from F to K. Then the subset of K consisting of elements
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having well ordered support is a skew field containing Kir, hence 

containing A (see [15]). It is denoted K((F)) and it is called the skew 

field of Laurent series over K. It is shown in ([13]) that the universal 

skew field of fractions D of A is the subf\>"vî of K((F)) generated by A.

The following proposition ensures the existence of a real 

valuation w on D such that w restricted to K is trivial.

Proposition (3.2.8). Let A = K<X^,...,X^> be a free algebra with 

universal skew field of fractions D. Then there exists always a non­

trivial real valued valuation w on H such that o)|k is trivial.

Proof. We consider the free group F on X^,Xg,...,X .

As indicated above; each element a of F can be written as 

a = u^lug^... (possibly an infinite product) where the u^'s are basic 

commutators. Order F lexicographically and consider H = K((F)), then

each element f of H can be written as follows, f = Yk a where the ̂a a
k 's are in K; the a 's are in F and have a minimal element for the a a
ordering of F, say a , then k a_ is called the leading term.Uj a . a.

Now observe that X^,...,X^ are the first basic commutators in F

and the exponent of the commutators are in Z5. Consider the map

w: H Z U {»}

defined as follows.

If f = IkoBg is a non-zero element of H, then 1) w(f) = a^, where

is the exponent of X̂  appearing in the leading term.

2 )  w ( 0 )  =  CO.

Then w satisfies the axioms of a valuation on H.

For

V.l) is satisfied by definition.

V.2) is clear from the ordering of F.

It remains to prove V.3) i.e. w(fg) = w(f)+w(g) for all f,g é H. Consider

f and assume that the leading term is k.xT^xT^ ... X?®u.^^^ ...1 ig Xg Xg^^
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3, 3j. 3(2+1Consider g and assume that the leading term is k .X . -̂X . % .. x . u . ...

 ̂ ^til
Assume further that X, = X. = X..

Then on computing fg we can shift X̂  (in the leading term of g)

successively to the left using the commutator formulae, hence we get 
ai+3i

X 2 in the leading term of fg, whence w(fg) = 3̂  thus

m(fg) = w(f)+w(g).

If X̂  does not appear in the leading term of f or g, then it is 

clear that w(fg) = w(f)+w(g) and V.3) is satisfied. Hence w is a 

valuation on H and since D is contained in H, restricting w to D finishes 

the proof of the proposition.

N.B. In the ordering above Xj is the first basic commutator, hence 

the exponent of X̂  (j / 1) in the leading term of an element does not 

define a valuation, since axiom V.2) is not satisfied in this case 

(it is possible to define another valuation by taking x̂  as a first 

commutator).

If K is commutative and ^  are purely transcendental extensions 

(commutative) of K, then for some cases Amitsur's condition can be 

lifted as the following proposition shows.

Proposition (3.2.9). Let K be an infinite field and let = K(t^, ie I)

and Kg = K(tj? j c J) where t_,tj (i e I, j € J) are central indeterminates

(I,J are two sets of indices).

Let Vj,Vg be two real valuations on K̂  and Kg respectively such

that |k = Vg|K = V where v is non-trivial and assume that v̂  and Vg

are the Gaussian extensions of v.

Consider H = Kj O Kg; then v^,Vg have a common extension to H.

Proof. We embed Ki in P, = K(t. ; i e I and n e E) where t... = t. and    ̂  ̂ in lO 1
we consider the map

a; F, ->■ F-, defined by o(t. ) = t .  ,
 ̂  ̂ in in+i

Then a is an automorphism of infinite order.
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We now extend to on where is the inductive Gaussian

extension, hence a preserves .

Consider the skew function field = F (̂X?a) and observe that

the centre of is K because K is the fixed field of a. Moreover

extends to (f)̂ on since a preserves . We similarly construct

Dg with centre K and a valuation (j)g extending Vg.

Now applying theorem (3.2.2) yields that 4^,#g, hence v^,Vg have

a common extension ({> to D O D„. ̂K ^
But the homomorphism K, u Ko ̂ D, U D, induced by the inclusion1 K  ̂  ̂K ^

K. CD. (i = 1,2) is honest (see lemma (3.2.4)). Hence K̂  O K, <= D, 0 D« 1 1   ̂ K K
and restricting (j> to K, O Kg yields the proposition. ̂K

§ 3. The counter example

Let Kj,Kg be two skew fields with a subfield K and let R = K̂  w  Kg

be their free product over K.

Given two real valued valuations v, , Vg on Kĵ , respectively Kg such

that Vj|k = Vg|K = V where v is non-trivial.

It has been shown in ([8] theorem (4.4)) that there exists an

epic R-field L containing K%,Kg and to which vj,V2 have a common

extension. We shall call L throughout the rest of this chapter the

associated epic R-field (associated to v.,Vg). However L is not unique

and whenever L is considered, then L means an arbitrary associated epic

R-field. Theorem (3.2.2) and proposition (3.2.5) show that if K is the

centre of K^,Kg then L can be chosen to be the universal skewfield of

fractions of R i.e. L = K. O Kg. ̂K
In ([8]) P.M. Oohn and Mahdavi-Hezavehi have conjectured that 

v^,Vg have always a common extension to K̂  O Kg.

Our aim is to prove that this conjecture is false and we shall give 

a counter example.

Before we proceed to our main theorem in this section, we shall
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need a couple of lemmas.

Lemma (3.3.1). Let E/K be a finite cyclic Galois extension and v a 

discrete rank 1 valuation on K such that v has ramification index e = 1 

in E and v is indecomposed in E.

Then there is a cyclic division algebra D over K to which v can 

be extended.

Proof. Assume W.L.O.G. that v is normalized and let a be a uniformizer 

in K, i.e. a is such that v(a) =1. Let a be the generator of the 

Galois group of E/K and assume that a has order n i.e. = 1.

Consider the cyclic algebra D = (E/K; o, a).

We claim that D is a division algebra. For let t be the exponent 

of D, then applying ([17] Corollary (30.7)) yields that there exists 

an c £ E* such that

t a ^a = c.c ...c

t aHence (1) v(a ) = tv(a) = t = v(c)+v(c ) + ...+v(c ) = nv(c) because

o preserves the valuation v (v is indecomposed in E). (1) implies

v(c) = t/n, hence t = n since v has e = 1 in E and t divides n, whence

applying ([17] pp.261) yields that D is a division algebra.

Now applying corollary (2.1.3) yields that v extends to a valuation

on D and the lemma is proved.

The second lemma describes subalgebras of a central division algebra.

Lemma (3.3.2). Let H be a central division algebra, not necessarily finite

dimensional over K, and assume that H contains a field F which is a cyclic

extension of K.

Then H contains a cyclic division algebra whose centre is a simple 

extension of K,

Proof. Let G = <a> be the Galois group of F/K and assume that G has 

order = 1. Then, by the Skolem-Noether theorem o is induced by
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an inner automorphism of H, hence there exists an element t in H such 

that

(Jat = ta

at̂  = t^a^

at^ = t^a

We now consider = K(t̂ ) and Eg = F(t^), hence E^/E^ is a cyclic 

Galois extension with Galois group G.

Now consider D = (E^/E^; a, t^).

D is a cyclic algebra which is a skew field since it has no

zero-divisors and the lemma is proved.

We are now ready for the main theorem which we will use to 

construct the counter example.

Theorem (3.3.3). Let K^/K be a finite cyclic extension and Kg a skew

field whose centre is K.

Let Vj,Vg be two real valued valuations on , respectively Kg

such that v |̂k = Vg|K = v where v is discrete of rank 1. Assume that

the value group of Vj is equal to the value group of v. Then v^,Vg have

a common extension to H = K̂  O Kg iff Vj is the only valuation on K̂

extending v i.e. iff v is indecomposed in K^.

Proof. 1) The condition is sufficient.

If V is indecomposed in K^, then by lemma (3.3.1) we can find a

division algebra Kg which is cyclic over K^/K and to which v (hence v^)

can be extended. Let Vg be the extension of v to Kg.

By lemma (3.2.4) the homomorphism K, U  Kg -> K-U Kg induced by ̂ K 3 K ^
the inclusion K, c Kg is honest, hence H = K, O K„ c K„ O K„.

1 5  1 K  ̂  ̂K
Now by the construction of Kg, K is the centre of Kg and since K

is the centre of Kg, applying proposition (3.2.5) yields that v^/v^

have a common extension to Kg O Kg. Restricting w to H yields the
K
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required common extension of ,Vg to H, and the condition is sufficient.

2) The condition is necessary.

Assume that have a common extension w to H = O Kg. By

the remark in the beginning of §2 the centre of H is K. Hence applying

lemma (3.3.2) yields that H contains a cyclic division algebra

D = (E/F; a, a) where a is the generator of the Galois group of K̂ /K.

E = Kj(a), F = K(a) where a = t^ (t being the element of H defining the

inner automorphism of H inducing o).

We call the restriction of w to D.

We call o)_ the restriction of w to F.F
Hence is the extension of to D, whence is indecomposed in

E. Let F be the completion of F relative to w , then it is easily seen

that E = E 0 F is a field (from the commutative theory).F
Let K be the completion of K relative to v, then K c F.

Consider the following composition map

K. 0 K K, 0 F “ (K . 0 F) 0 F & E 0 F1 K  ̂K  ̂K F F

i is clearly an embedding and a, 3 are isomorphisms. Hence K. 0 K is
 ̂K

embedded in E 0 F, whence K̂  0 K is a field. Hence v is indecomposed in 

K̂  becau&e it is well known (from the commutative theory of valautions) 

that when K^/K is Galois K̂  0 K = K̂ ^̂  x ... x K̂ ^̂  (direct product) 

where r is the number of valuations extending v to K̂  and K^^^,...,K̂ ^̂  

are the relative completions of K^.

We now construct the counter example.

Example (3.3.4). Consider K = Q(v̂ ) , the cyclic extension of degree 2. 

Put F = Q(t) and let a: t t̂  then a is an endomorphism of infinite

order on P, hence we can consider the skew polynomial ring R = F[X;a].

It has a skew field of fractions D = F(X;a). The centre of D is Q 

because a has infinite order and Q is the subfield of F fixed by cr.
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Let Vy be the 7-adic valuation on Q.

We consider the equation X^-2 = O in the residue class field Fy.

This equation has two simple zeros in Fy, hence in Qy (the field of

7-adic numbers) , whence Vy splits into two valuations in K, vÿ and v'̂ .

Thus Vy decomposes in K.

Let V be the Gaussian extension of Vy to F so that v(t) = 0 ,

hence a preserves v, whence V  extends to a Gaussian extension w on D.

Now consider Vy and w which are real valuations on K, respectively

D. Vy is unramified in K, i.e. Vy and vÿ have the same value group and

applying the theorem yields that vÿ and w have no common extension to

H = K 0 D (since otherwise Vg becomes indecomposed in K which is not 
0 ^

the case).

§4. On the centre of the associated epic R-field

Let K^,Kg be two skew fields with a common subfield K, put

R = Kj U  Kg and H = K̂  O Kg.K K
Let v^fVg be two real valued valuations on K̂  and Kg respectively 

such that V ĵ|k = v^|k = V and let L be an associated epic R-field.

Our aim in this section is to study the centre of L and generalize 

Theorem (3.3.3) so as to show that in general v^/Vg have no common 

extension to any skew field of fractions of R and in particular that the

homomorphism R ->■ L is not even an embedding.

The following lemma is the key element for our results in this 

section.

Lemma (3.4.1). Let D be any division algebra over a field K and let F

be a cyclic extension of K contained in D. Put C = Z(D) and assume

that F n C = K.

Then D contains a cyclic algebra whose centre is a simple 

extension of C.

Proof. Let a be the generator of Gal (̂ /K) and assume that a has order n.
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since C is the centre of D and F is commutative CF is a field and 

by Galois theory CF/C is a cyclic extension with Galois group isomorphic 

to Gal(F/CnF) i.e. to <a>.

By the Skolem-Noether theorem cr is induced by an inner automorphism 

of D; hence t e D such that

at = ta*̂
2

at̂  = t^a^ for all a e CF

at^ = t^a

Put E = CF(t̂ ) and Q = C(t^), then by Galois theory E/Ü is a Galois 

extension with Galois group isomorphic to <a>. Consider H = (E/fi; cr, t^); 

then H is a cyclic division algebra contained in D and whose centre 

is fi.

The following theorem describes the centre of L and generalizes 

the theorem (3.3.3) so as to show that v^,Vg have no common extension 

to any skew field of fractions of R.

Theorem (3.4.2). Let K^/K be a cyclic Galois extension and K2 a skew

field with centre K, put R = K, lj k„. ̂K ^
Let Vj,V2 be two real valued valuations on and K2 respectively 

such that V.|K = Vg|K = v and let E be the decomposition field of Vj.

Then the centre C of any associated epic R-field L contains E.

Moreover if E ^ K, then Vj,V2 have no common extension to any skew 

field of fractions of R,

Proof. Assume that C n Kj = 0 and that fi ̂ E. Since L is a division

algebra over and K^/n is cyclic, we can apply lemma (3.4.1) to obtain

a cyclic algebra D in L such that D = (Ĉ /Cg,* a, t̂ ) where

Cj = CKj(t^), Cg = C(t”) and o generates Gal(Cĵ /Cg) (note that 

Gal{Cj/Cg) _ Gal(K^/cr\ K^). t induces a and n = order of o. 

Let Ü) be the extension of v^,Vg to L
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Let be the restriction of w to D.

" w be the restriction of w to C .

" w " " " " w " C_.

Hence w extends v to C .Cg 1
Now let w be the restriction of o) to C,

2
and " " " " w ̂  to w .

Thus extends v to 0 (because Q 2 K).

Now since 0  ̂E, applying ([10] theorem 15.7) yields that

decomposes in , hence if 0 is the completion of relative to , then

K, 0 Q has zero divisors.1 A
We claim that 0 0 is a field. For consider the following 

composition map

K 0 Q -L- K. 0 C (K. @ C) @ C K,C 0 C K, C 0 C(t̂ )
 ̂ S2 1 n 1 Î2 C 1 C 1 c

I Y
KC(t^) ® C(t") (K,C0C(t^)) 0 C(t̂ )

C(t̂ ) ^ C(t'̂ )

Note that K Ĉ(t^) = Ĉ , C(t̂ ) = Cg and Kj 0 C ̂  K̂ C. Note further that

C is the completion of C relative to and C(t̂ ) is the completion of

Cg relative to .

Hence we deduce easily that i,j are embeddings and a, 3, y, 6

are isomorphisms. This yields that the composition map is an embedding

Thus if K. 0 0 has zero divisors, then C, 0 Cg = KiC(t^) 0 C(t̂ )
 ̂" '"a c(t")

has zero difisors which is a contradiction because w on C has aCg 2.
unique extension to C., and the reason is that is extendable

1 2̂ 
to D, see (theorem 0.1.1).

So Kt 0 0 has no zero-divisors which is a contradiction; hence
1 n .

C n 2 E, whence C 2 E.

For the second part of the theorem, it suffices to observe that 

if H is any skew field of fractions of R with centre C, then 

C n Kj = K because K centralizes H and the centre of R is precisely K.
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Hence repeating the same argument as above shows that if E K, then 

v^fVg have no common extension to H.

N.B. The centre of L surely contains K since K is the centre of 

Kj p Kg and since there is a specialization from K̂  O Kg to L 

i.e. L ~ T/^ where T is a local subring of K̂  O Kg and is its 

maximal ideal.

As a corollary we have

Corollary (3.4.3). Let Kj/K be a finite abelian extension and Kg a

skew field with centre K. Put R = K̂  Kg.

Let Vj,Vg be real valued valuations on K̂  and Kg respectively such 

that Vj|k = v |̂k = V and let E be the decomposition field of v̂ , then 

the centre of any(associated epic R-field) L contains E.

Proof. Let G = <a^> x .... x <â > be the Galois group of K̂ /K.

Put K^ = {x € Ki? o(x) = x}.

Let Kĵ  ̂ = n  Kj then K^^^/K is a cyclic Galois with Galois group

isomorphic to <o^> and we have the following decomposition.

K, ~ 0 Kĵ  ̂ 0 ... 0 K^^).
1 -  1 K 1 K 1

Let vĵ  ̂be the restriction of v̂  to k |̂  ̂ (i = l,...,r) and Ê ^̂  the 

decomposition field of vj^^. Then we have the following

E ~ 0 Ê )̂ 0 ... 0 Ê )̂- K K K
(it suffices to compare dimensions over K).

Let C be the centre of L.

Then by a similar proof as in the theorem we show that k |̂  ̂ n C o Ê ^̂

Hence

C 2 Ê ^̂  for i = l,...,r.

Whence the homomorphism^:E^^^ 0 ... 0 Ê ^̂  ->■ C defined by
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f(Te. 0 e. 0 ... 0 e. ) = Te.1  ̂ 1 e. ... e.
2 -̂r 2̂

is injective because 0 ... 0 Ê ^̂  is a field and the corollary is

proved.

Corollary (3.4.4), Let K./K be a cyclic extension of prime power degree 

(different primes) and let v^ be a real valued valuation on 

(i = 1,2) such that |k = v |̂k = v and assume that v splits in

(i = 1,2). Then there is one and only one associated epic R-field 

given by K @ K_.

Proof. We know that there is at least one, say L; first observe that

Kj 0 Kg is a field, hence an epic R-field. Now let C be the centre of

L. By the theorem C o K. (i = 1,2), hence C o K 0 Kg, whencei 1 K
L = Kj 0 Kg, because L is generated by an image of R. Now any other 

associated epic R-field is equal to 0 Kg, hence L is unique.

§5. Generalizations

Let Kj,Kg be two skew fields with centres C^,Cg and let K be a 

common subfield contained in both Ĉ  and Cg.

Let v^,vg be real valued valuations on K̂  and Kg respectively such

that Vj|k = Vg|K = V.

We aim to generalize our previous results to the case where K c Ĉ  

(i = 1,2). "Hiroughout this section, all skew fields have infinite 

centres.

We first need a lemma.

Lemma (3.5.1). Let D be a skew field with centre C and let K be a

subfield of C.

Let w be a real valued valuation on D such that w |k = v. Assume 

that 03 is the unique real valued valuation on D extending v.

Assume further that D admits an endomorphism a whose fixed field

intersected with C is exactly K. Then D can be embedded in a skew-field
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D' whose centre is exactly K. Moreover w extends to a real valued 

valution on D'.

Proof. Assume first that no power of a is inner.

Then we consider the right skew polynomial ring R = D[X; a].

This is a right ore domain, hence it has a skew field of fractions

D' = D(X; a) .

Applying ([4 ] pp.51) yields that the centre of D' is K.

Now since w is the only real valued valuation extending v to D a 

must preserve the valuation, hence applying theorem (3,1.2) yields that 

extends to a Gaussian extension on D'. Suppose now that a has an 

inner power. We put L = D(t) and we extend a to L by a(t) = t̂ , hence 

a is an endomorphism of L with no inner power.

Now consider D' = L(y, a); by ([4] lemma 5.3.5) the centre of L 

is C(t), hence applying ([4] pp.61) yields that the centre of D' is K. 

Moreover o) extends to a Gaussian extension w on L, hence o preserves 

w , whence w extends to a Gaussian extension on D' which is real valued 

since it has the same value group as w.

We now have the first generalization of theorem (3.2.2).

Theorem (3.5.2). Let Kĵ ,Kg be two skew fields with centres C^,Cg and 

let K be a common subfield such that K g (i = 1,2). Let v^,Vg be 

real valuations on and Kg respectively such that v. |K = Vg|K = v and 
such that v^ is the only real valued valuation extending v to K^ (i= 1,2) .

Assume that K^ admits an endomorphism 0  ̂whose fixed field 

intersected with is precisely K (i = 1,2).

Then v^,Vg have a common extension to H = K̂  0 Kg.

Proof. By lemma (3.4.1) each K^ is contained in a skew field K^ whose 

centre is precisely K and to which v^ has a Gaussian extension 

(i = 1,2).

Now consider the following map
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Kg -- >■ K% W  Kg induced by the inclusion K. <= k !1 1 t , Z  l ^  z 2. 2.K " * K

(i = 1,2).

By lemma (3.2.4) f is honest, hence K, O K? c: k*. O Kg. Now ̂K  ̂K
applying theorem (3.2.2) yields that w^,Wg have a common extension

to K' O K' and restricting w to H yields the required extension. ̂K ^
Proposition (3.5.3). Let D be a skew field with centre C and let K be 

a subfield of C. Assume that D admits an endomorphism whose fixed

field intersected with C is precisely K. If V is a real valued valuation 

on D such that v is the only one on D extending its restriction to K.

Then for any set X, v extends to H = D^ X̂>.

Proof. By Lemma (3.4.1) D is contained in D' whose centre is K and to 

which V extends to a real valued valuation w. Now the following 

homomorphism

D W  K{X>  D' KtXfK K

is honest (see lemma 3.2.4). Hence D fXk E D'-fX)*. Applying theorem

(3.2.1) yields that w extends to a valuation  ̂on D̂ (X) and restricting 

(f) to D ix)" yields the required extension.

Recall that a skew field extension D/K is Galois if K is the fixed 

field of a group of automorphisms of D. As a corollary we have an 

application to theorem (3.5.2). '

Corollary (3.5.4). Let Kj,Kg be two skew fields with centres Ci,C2.

Let K be a common subfield of K]̂ ,K2 such that C^/K is a finite

commutative cyclic extension (i = 1,2) and assume that K^/K is (a not

necessarily commutative) finite Galois extension with group G. Let

Vj,V2 be real valued valuations on K̂  and Kg respectively such that

V j |k  = Vg|K = V and v^ is the only valuation on K^ extending v (i = 1,2).

Then v.,v_ have a common extension to H = Ki O Ko.1 2  K
Proof. Let 0̂  be the generator of Gal(C^/K), then applying ([4] 

Proposition 3.3.3) yields that 0 is induced from an automorphism of
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G, hence the fixed field of x^ intersected with is precisely K 

(i = 1,2).

So we are in the setting of the theorem, hence applying the 

theorem yields the corollary.

We shall generalise proposition (3.5.3) by assuming that D admits 

a family of endomorphism whose fixed field intersected with C is K.

The following lemma is the key to our generalization.

Lemma (3.5.5). Let D be a skew field with centre C and let K be a 

subfield of C.

Given a real valued valuation w of D such that oj|k = v and assume 

that LU is the only real valued valuation on D extending v.

Assume that D admits a family of endomorphisms whose fixed field 

intersected with C is K. Then D can be naturally embedded in a skew 

field L whose centre F intersected with D is K and to which w extends 

to a real valued valuation.

Proof. Let {a.}. be < family of endomorphisms of D and let {F.}JL 1 ̂ Jl 1 i. ̂ 1
be defined as follows.

Ff = {x e D; Q̂ (x) = x}

Put = F^r\ c and consider

The hypothesis yields that K= (fN F.)f\ C = Pv (F.P C) = O  C..
i€i  ̂ ici  ̂ ici ^

We assume first that no power of (i € i) is inner. Consider

L̂  = D(X ;̂ â ) the skew function fields (i e i): applying ([4] pp.61)

yields that the centre of L. is precisely C., and by the proof of lemma

(3.5.1) 0) extends to a real valued valuation on L^ because

preserves w.

We now consider R̂ g = L^W Lg (the free product of L̂  and Lg over

D).

Applying ([8] theorem 4.4) yields that there exists a skew field

L]_2 to which w^fWg (hence w) have a common extension w12
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Let R i23 ~ ^12 3̂-
Applying the same theorem yields the existence of a skew field 

Li23 to which W22'Wg have a common extension. Inductively we construct 

a skew field L containing all the L̂  and to which the ox's have a common 

extension, say (|).

Now let F be the centre of L.

We claim that F H  D = K. For F A  L. c for all i c i  because 

is the centre of L̂ . Hence F P» D s for all i because D ç L̂  (i el) 

whence F P\ D E P\ = K. Thus F P  D = K since K is easily proved (by 

induction) to be a central subfield of L and the lemma is proved in 

this case.

If some of the {0̂  ̂X have inner power we put D' = D(t) and 

extend each 0  ̂to D' by ô (t) = t̂ , hence we have a family of endo­

morphisms with no inner power. We proceed exactly as above bearing in

mind that if E = D(t)(X; 0 )̂, then the centre of E is C(t)P\ F̂  where

F\ = {x c D; 0 (̂X) = x}. i.e. the centre of E is since t  ̂F̂  for 

all i 6 I.
As a first consequence of this lemma we have the following 

important generalization of theorem (3.2.1).

Theorem (3.5.6) . Let D be a skew field with centre C and let K be a 

subfield of C.

Assume that D has a family of endomorphisms whose fixed field 

intersected with C is K.

Let w be a real valuation on D such that w|K = v and assume that

0) is the only real valued valuation on D extending v, then w extends to

H = D^^X> where X is any set.

Proof. By the lemma there exists a skew field L satisfying the following

1) D c L

2) Ü) extends to a real valued valuation (|> on L

3) if F is the centre of L, then F P\D = K and (L:F) = ®.
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Now consider H' =

Applying ([4] lemma 6.3.6) yields that D^<X> q Lp<X>. Now by 

theorem (3.2.1) (p extends to a valuation 4>' on H', hence restricting 

O' to H yields the required result.

Whether 0 is real valued is not known. However at this stage we 

shall propose the following Conjecture: Keeping the hypothesis and

notation of theorem (3.5.6) and let w be the real valued valuation on D, 

then there exists a real valued valuation on D̂ <(X̂  extending w.

The conjecture is certainly true if D = K and X is reduced to one 

element in the case D^iX^ = K(XJ and it suffices to consider the 

Gaussian extension of w. Throughout the rest of this section we assume 

that the conjecture is true. First we have a generalization of theorem

(3.5.2).

Theorem (3.5.7). Let K^,Kg be two skew fields with centres C^,Cg and

let K be a common subfield such that K c (i = 1,2). Let v^,Vg be

real valued valuations on K^,K2 such that v̂  ̂K = \^^K = v and assume

that v^ is the only real valuation on K^ (i = 1,2) extending v.

Assume that K̂  has a family of endomorphisms whose fixed field

intersected with is K (i = 1,2).

Then v,,v. have a common extension to H = K, O K_. i z  ̂K
Proof. By the conjecture v^ extends to a real valued valuation on

K. <(:X> for any set X (i = 1,2).
K

Consider the homomorphism

K u  K̂  — V K, (X) W  K_ (Y) induced by

the inclusion K̂  c K̂ (̂X) and Kg c Kĝ *<Ŷ -By (lemma 3.2.4) this map is

honest, hence K, O Kg c K, ̂ X^ O Kg <YÏ.1 K ̂  K ^K
Note that the centre of K. <X> is K and the centre of K_ is K.

Hence theorem (3.2.2) yields that w^,Wg have a common extension <f> to
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Kl O Kg iYy and restricting é to K, 0 Kg yields the result.K '̂K  ̂K ^

As an application we have the following consequence.

Corollary (3.5.8). Let K^,Kg be two skew fields with centres C^,Cg and

a common subfield K such that K ç (i = 1,2). Assume that K^/K is Z

(not necessarily commutative) finite Galois extension (i = 1,2).

Let v^,Vg he real valuations on K̂  and Kg respectively such that 

V j |k  = Vg|K = V and v̂  is the only real valuation on K̂  extending v

(i = 1,2). Then v^/Vg have a common extension to K̂  O Kg.

Proof. We note first that C^/K is a Galois extension, it suffices to 

apply ([4] theorem 3.3.5 (ii)). (i = 1,2). Let G^ be the Galois group 

of C^/K (i =: 1,2). Then applying ([4] proposition 3.3.3) yields that 

each Oj e G^ is induced from the Galois group of K^/K (i = 1,2).

Let Tj e be the extension of to K̂ , then it is easily seen that 

the fixed field of the t^'s intersected with Ĉ  is K (i = 1,2). Hence 

we are in the setting of theorem (3.5.7) and the Corollary is proved 

by direct application of the theorem.

The rest of this section is devoted to studying the case where K 

contains the centre C^,Cg of K^,Kg and where K is not necessarily 

commutative.

In fact the study of this case arises from the generalization of 

the specialization lemma.

Generalization of the specialization lemma (3.5.9). (P.M. Cohn)

Let D be s skew field whose centre C is infinite and let E be a

subfield of D such that

(1) E" = E where E" is the bicentralizer of E

(2) E d E' is infinite dimensional as E-space for any c e E* where E'

is the centralizer of E in D.

Then any full matrix A over R = Dg<X> is non-singular for some 

set of values of X in E' where X is any set.
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Proof. ([7]).

The object of the rest of this section is to see whether the 

generalization of the specialization lemma entails the generalization 

of theorems (3.2.1) and (3.2.2).

For simplicity we shall say that (D,E) satisfies (G,A,C)

(i.e. generalized Amitsur's condition whenever (D,E) satisfies the 

hypothesis of lemma (3.5.9).

The basic lemmas for generalization are the following.

Lemma (3.5.10). Let (D,E) be skew fields satisfying (G.A.C.), then 

any full matrix A over D <X,X~^> is non-singular for some set of values 

of X in D.

Proof. Similar to ([8] theorem 3.1).

Lemma (3.5.11). Let (D,E) be skew fields satisfying (G.A.C.) and

consider R = D ti d .
E

Given any full matrix A over R, there exists an inner automorphism 

Ofof D such that Â , is non-singular, where a' is the homomorphism 

induced by (l,a) on R.

Proof. Similar to ([8] theorem 3.2).

Note that a' is induced from (l,a) by the defining relations of R 

where 1 is the identity map on K and cx: R K.

We now apply these lemmas to study generalizations.

Theorem (3.5.12). Let (D,E) be skew fields satisfying (G,A,C), then

any abelian valuation v on D has an extension w to D fX)" for any set X. 

Proof. Similar to theorem 3.2.1.

Theorem (3.5.13). Let (D,E) be skew fields satisfying (G.A.C.) , then

for any abelian valuation v on K, there is a valuation on the field

coproduct K O K extending v (on both factors) .E
Proof. Similar to ([8] theorem 5.2).

Remark. Let Kj ,Kg be skew fields having E as common subfield such that

(K^,E) and (K2 ,E) satisfying (G.A.C.).
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Consider H = K, O Kg.1 E ^
Let v^yVg be real valued on Kj and K2 respectively such that 

Vj IE = Vg I E = V.

It is an open question whether v^,Vg have a commen extension to

H.

Let R = Kj u K2 and let D be an associated epic R-field. If (D,E) 

satisfy (G.A.C.) then Vj,Vg have a common extension to H. For the 

homomorphi sm

K, w Kg > D U D induced by K. E D is honest1 E 2 E 1

hence O K2 E D O D and applying theorem (3.5.13) yields the result.

However such a strong condition [(D,E) satisfy G.A.C.] seems 

unlikely to be satisfied by D.
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